
Team automata : a formal approach to the modeling of collaboration
between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29570
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University 
dissertation. 
 
Author: Beek, Maurice H. ter 
Title: Team automata : a formal approach to the modeling of collaboration between 
system components 
Issue Date: 2003-12-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570


1. Introduction

This thesis studies formal aspects of team automata, a mathematical frame-
work introduced in [Ell97] to model components of groupware systems and
their interconnections. In particular, this thesis focuses on the flexibility team
automata offer when modeling collaboration between system components.

We begin this Introduction by providing some background. Subsequently
we introduce the model in an informal way, after which we discuss its main
features in the context of several related models. Finally, we finish this In-
troduction with an overview of the contents of this thesis.

Background

A set of interacting, interrelated, or interdependent components forming a
complex whole is what we mean by the frequently used, but seldom defined
notion of a system. The human body and computers are thus examples of
a system. A system is distributed if it consists of separate components but
nevertheless appears to its users as a single coherent system. It does not have a
single locus of control, but its components collaborate by way of interactions.
The internet is one of the best known distributed systems.

A system is reactive if, in order for it to function, it has a continuous
need to interact with its environment. Its functioning thus depends on the
functioning of its environment. This contrasts with a system that is transfor-
mational , in which case its functioning (output) is merely a function of its
input. Examples of reactive systems include computer operating systems and
coffee vending machines, whereas a compiler is an example of a transforma-
tional system.

Computer Supported Cooperative Work

As the presence of computer-based systems in daily-life work situations con-
tinues to increase, the understanding of how people work together and ways in
which computer technology can assist, has become more and more important.



12 1. Introduction

This has resulted in the emergence of Computer Supported Cooperative Work
(CSCW for short) as an inherently multi-disciplinary field of research (see,
e.g., [Gru94]). By the nature of the field, part of the computer technology
consists of multi-user software and hardware, called groupware.

Groupware systems are systems intended to support groups of people
working together in collaborative projects. Such systems are often distributed
and reactive, and conceived as consisting of components cooperating in a co-
ordinated way. This leads to complex interactive behavior and, consequently,
coordination policies and their effect on behavior are key issues within CSCW.
At a conceptual level CSCW needs a precise, consistent, and unambiguous
terminology, while at a lower, architectural level CSCW has been search-
ing for a rigorous mathematical framework to specify and verify groupware
systems.

Formal Methods

Mathematical techniques tailored for the specification and verification of sys-
tems are known as formal methods (see, e.g., [CW96]). This field of research
cuts across many areas of computer science and comes with an impressive
body of literature. A brief comparison of the main features of team automata
with some of the best-known formalisms in this field follows later on in this
Introduction, while a more detailed comparison with two such formalisms can
be found in Chapter 7.

The model of Input/Output automata (I/O automata for short) was intro-
duced in [Tut87] for the specification and verification of distributed reactive
systems (see also, e.g., [LT89] and [Lyn96]). I/O automata served as the the-
oretical source of inspiration for the introduction of team automata in [Ell97]
through the distinction of the model’s actions into input, output, and internal
actions. We come back to this shortly. A conceptual source of inspiration for
team automata was [Smi94], which conjectures that well-structured groups
(called teams) outperform individuals in certain tasks, but at the same time
calls for models capturing concepts of group behavior.

Team automata were introduced explicitly for the specification and veri-
fication of groupware systems. They were shown to be promising at both the
conceptual and the architectural level of groupware systems. In this thesis
we elaborate on this. Our goal is furthermore to demonstrate that the use-
fulness of team automata is not limited to clarifying and capturing precisely
notions related to collaboration between components of groupware sytems,
but extends to other kinds of (reactive) systems.



1. Introduction 13

The Model

We now provide an overview of the team automata framework. We begin with
a brief sketch of the overall structure of team automata and subsequently we
introduce them in more detail. Analogous to the setup of this thesis, we follow
an incremental presentation of team automata.

A team automaton is composed of component automata, which are a spe-
cial type of automata. The crux of composing a team automaton is to define
the way in which those originally independent component automata interact.
Their interactions are formulated in terms of synchronizations of shared ac-
tions, a method for modeling collaboration among system components well
known from the literature.

Automata

Automata or labeled transition systems are a well-known model underlying
formal specifications of systems. An automaton consists of a set of states, a
set of actions, a set of labeled transitions between states, and a set of initial
states. Labels represent actions and a transition’s label indicates the action
causing the transition from one state to another.

Assume that we have an automaton modeling a coffee vending machine.
Then a possible event is a user inserting a coin, which when it occurs leads to
a state change of the automaton. The user forms a part of the environment
of the coffee vending machine. A coffee vending machine is thus an example
of a reactive system, with the insertion of coins by a user as interactions with
its environment.

Next assume that also the user is modeled by an automaton, with the
insertion of a coin as one of its actions. Then we have two automata, both
equipped with an action modeling the insertion of a coin. When composing
these two automata into one system, inserting a coin into the coffee vending
machine appears as a single synchronized action. In the composed system
the occurrences of an action from the automaton modeling the user and the
same action from the automaton modeling the coffee vending machine are
identified, i.e. simultaneously executed by the two system components. The
transitions of a thus composed automaton will be synchronized occurrences
of transitions of its constituting automata that have the same action label.

Synchronized Automata

A synchronized automaton over a set of automata is an automaton, deter-
mined by the way in which its constituting automata cooperate by means



14 1. Introduction

?

Fig. 1.1. A user in front of a coffee vending machine.

of synchronized transitions. Its (initial) states are combinations — a carte-
sian product — of (initial) states of its constituting automata. Its actions
are the actions of its constituting automata. Its transitions, finally, are syn-
chronizations of labeled transitions of its constituting automata modeling the
simultaneous execution of the same single action by several (one or more) au-
tomata. The label of a transition is the action being simultaneously executed.
When the synchronized automaton changes state by executing an action, all
automata which participate simultaneously change state by executing that
action, while all others remain idle.

An automaton does not necessarily participate in every synchronization
of an action it shares. Hence there is no such thing as the unique synchronized
automaton over a set of automata. Rather, a whole range of synchronized au-
tomata, distinguishable only by their transition relation, can be constructed
from a given set of automata. It is this freedom to choose a transition relation



1. Introduction 15

that sets the team automata framework apart from most other models. An-
other distinguishing feature of this framework is the fact that the transitions
of a synchronized automaton are labeled with one single action. We come
back to this shortly.

From the way a synchronized automaton is constructed it is clear that it
is itself an automaton again. Consequently, it can serve as a constituting au-
tomaton of a higher-level synchronized automaton, thus allowing hierarchical
designs.

Within a synchronized automaton, three natural types of actions can be
distinguished, based on the way they appear in synchronizations. Actions that
are never executed simultaneously by more than one constituting automaton
are free. Actions that are always executed as synchronizations in which all
automata participate that have this action in their alphabet are called action-
indispensable. State-indispensable actions, finally, require the participation
of only those automata that are ready (in a suitable state) to execute that
action.

Team Automata

A component automaton is an automaton in which input , output , and inter-
nal actions are distinguished. Input actions are not under the automaton’s
control, but instead are triggered by the environment including other com-
ponent automata. Output and internal actions are under its control, but
only the output actions are observable by other automata. Input and output
actions together constitute the external actions and they form the interface
between the automaton and its environment, whereas the internal actions are
not available for interactions. This is formally achieved by requiring that the
internal actions of each component automaton involved are unique to that au-
tomaton, which naturally prohibits synchronizations of internal actions with
other automata.

A team automaton over a set of component automata is defined in a way
similar to the definition of synchronized automata. As before, its (initial)
states are cartesian products of (initial) states of its constituting component
automata. Its actions are the actions of its constituting component automata,
now distributed over input, output, and internal actions. All internal (out-
put) actions of the component automata remain internal (output) actions of
the team automaton. The remaining actions are those input actions of the
component automata that do not occur as an output action of any of the
component automata, and they become the input actions of the team au-
tomaton. Its labeled transitions, finally, are — as before — synchronizations
of labeled transitions of its constituting component automata.



16 1. Introduction

Like in the case of synchronized automata, we do not require all con-
stituting component automata sharing an action to participate in every syn-
chronization of that action. Synchronizations of internal actions never involve
more than one component automaton because every internal action uniquely
belongs to one particular component automaton. Moreover, independently
of the states of the other component automata, an internal action can al-
ways be executed as before the composition. Like in the case of synchro-
nized automata, there is no unique team automaton. Rather a whole range
of team automata, distinguishable only by their transition relation, can be
constructed.

The reason given in [Ell97] for equipping team automata — like I/O
automata — with a distinction of actions into input, output, and internal
actions, is the explicit desire to model different types of synchronization.
This is achieved by taking the different role (input, output, or internal) that
actions can have in different component automata into account. External
actions may be input to some component automata and output to other
component automata. In peer-to-peer synchronizations, actions have the same
role in each of the component automata involved. In such synchronizations,
all component automata are on equal footing with respect to the action being
synchronized. This differs from master-slave synchronizations, in which input
actions (“slaves”) are driven by output actions (“masters”), i.e. the slaves
have to follow the masters.

Team automata form a very broad and generic framework. Component
automata can cooperate in many possible ways through synchronizations of
shared actions. The freedom of choosing the transition relation of a team
automaton moreover offers the flexibility to distinguish even the smallest nu-
ances in the meaning of one’s design. Leaving the set of transitions of a team
automaton as a modeling choice thereby becomes one of the most important
features of team automata. One of the topics of this thesis is a systematic stu-
dy of the role of free, action-indispensable, and state-indispensable actions —
and to a lesser degree peer-to-peer and master-slave synchronizations — in
the modeling of collaboration between system components.

Team Automata Versus Other Models

Team automata are not an isolated model but have several features which
bear a close resemblance to characteristics of other models from the literature.
We now discuss three such features in general terms.

First, the set of actions of a team automaton consists of input, output,
and internal actions, thus allowing the classification of a broad range of often



1. Introduction 17

complex synchronizations in team autamata (cf. Sections 4.4 and 5.3). This
distinction of input, output, and internal actions originates from two inde-
pendently developed models: I/O automata (see, e.g., [Tut87], [LT89], and
[Lyn96]) and I/O systems (see, e.g., [Jon87] and [Jon94]). Since the semantics
of an I/O system — given in terms of automata — is essentially an I/O au-
tomaton, we will speak only of I/O automata in the sequel. Team automata
are, in fact, an extension of I/O automata (cf. Section 7.1).

I/O automata are not the only model in the literature in which a dis-
tinction of actions is used. The same distinction can be found in the I/O
automata-based reactive transition systems (see, e.g., [CC02] and [CCP02])
as well as in interacting state machines (see, e.g., [Ohe03] and [OL02]), which
were introduced specifically for modeling reactive systems. A further exam-
ple is the Calculus of Communicating Systems (CCS for short), an algebraic
specification language introduced by Milner (see, e.g., [Mil80] and [Mil89]).
In CCS, the internal or silent action τ is a distinguished element of the set
of actions. It denotes the “perfect” action of a handshake communication,
i.e. the synchronization of two complementary (input and output) actions .

Secondly, the transitions of a team automaton are synchronizations of
transitions with the same label. The simultaneous execution of actions from
a team automaton’s constituting component automata is thus limited to com-
mon actions. We call such types of synchronization uniform in order to dis-
tinguish them from pluriform synchronizations in which distinct actions can
be executed simultaneously.

Also this feature of allowing solely uniform synchronizations originates
from the I/O automaton model. It is by far not the only model in the lit-
erature prohibiting pluriform synchronizations. Other examples include the
mixed product over a set of automata introduced in [Dub86] and the product
automaton introduced in [TH98]. A further example is the theory of path
expressions , which was introduced in [CH74], consequently encompassed in
the COncurrent SYstems (COSY for short) notation in [LTS79], and given
a vector firing sequence semantics in [Shi79], which considers vector actions
rather than ordinary actions (see also [JL92]). An entry of such a vector
action is not empty if and only if the respective component participates.

There are also examples of automata-based models that do allow pluri-
form synchronizations, such as the free product and the synchronous product
over a set of automata. Both were defined in [Arn94] as the culmination of
a framework of process models proposed by Nivat and Arnold in a num-
ber of papers and course notes such as, e.g., [Niv79], [AN82], and [Arn82].
Another example is the framework of Vector Controlled Concurrent Systems
(VCCSs for short) introduced in [KKR90] (cf. Sections 7.2.3 and 7.2.4). These



18 1. Introduction

systems, introduced as generalizations of the COSY theory, allow pluriform
synchronizations of actions of its constituting components and execute vec-
tors of actions rather than ordinary actions. In Section 7.2.1 we will switch to
vector actions in order to visualize the (potential) concurrency within team
automata actions, but such vector actions will still be uniform synchroniza-
tions.

Yet another type of synchronization is the handshake communication
in CCS mentioned above. Many algebraic specification languages moreover
contain specific parallel composition operators that allow processes to com-
municate through synchronizations (see, e.g., [BPS01]). Among the best
known such examples are the (Theoretical) Communicating Sequential Pro-
cesses ((T)CSP for short) originally introduced by Hoare (see, e.g., [Hoa78],
[BHR84], and [Hoa85]).

Thirdly, the transition relation of a team automaton is not uniquely de-
termined by its constituting component automata, which also distinguishes
team automata from I/O automata. This freedom of choosing the transition
relation of the automaton obtained when composing a set of automata, occurs
in the literature as well. An example is the aforementioned synchronous prod-
uct over a set of automata. Whereas the transition relation of the free product
over a set of automata is the set of all possible pluriform synchronizations,
that of the synchronous product over that set of automata is the restriction
of the free product to the subset of all possible pluriform synchronization
vectors defined by a specifically formulated synchronization constraint. This
synchronization constraint is formulated in terms of the actions only and does
not depend on the current states of the automata.

Most automata-based models, however, use a single and very strict
method for choosing the transition relation of an automaton composed over a
set of automata, in effect resulting in composite automata that are uniquely
defined by their constituents. The choice prevalent in the literature is to in-
clude, for all actions, all and only those transitions in which all automata
participate that have the action in their alphabet. Since this means that all
actions will be action-indispensable, we call this the ai principle. Examples of
automata-based models with composition based on the ai principle include
the aforementioned mixed product and product automaton over a set of au-
tomata, as well as reactive transition systems, interacting state machines, and
I/O automata (cf. Section 7.1). Other examples from the literature — without
claiming completeness — include cooperating (pushdown) automata (see, e.g.,
[DH94] and [HH94]) and timed cooperating automata (see, e.g., [LMP00]). The
ai principle furthermore appears in disguise in non-automata-based models
like (T)CSP and statecharts (see, e.g., [Har87]).



1. Introduction 19

In Section 5.4 we define team automata that are unique with respect to
particular types of synchronization. Through the formulation of predicates
of synchronization we moreover provide direct constructions for such team
automata. Throughout the thesis we will see, though, that of all the resulting
uniquely defined team automata, it is precisely the one based on the ai princi-
ple that possesses the at first sight most appealing characteristics. One of the
contributions of this thesis is to put some order in the “chaos” obtained when
refraining from the ai principle. More precisely, we present an overview of
some interesting characteristics that hold for certain types of team automata,
among which those based on the peer-to-peer and master-slave types of syn-
chronization. Since these types of synchronization are introduced with a clear
practical motivation in mind, it is worthwhile to notice that output peer-to-
peer as well as master-slave synchronizations cannot be distinguished in I/O
automata (cf. Section 7.1). In fact, in a team automaton constructed accord-
ing to the ai principle, all synchronizations are by definition master-slave.

To the best of our knowledge, no automata-based model other than team
automata unites the three features discussed above. I/O automata satisfy the
first two features, viz. the distinction of input, output, and internal actions,
and the prohibition of pluriform synchronizations. However — as already
noted in [Tut87] — the single notion of automaton composition in I/O au-
tomata is rather restrictive and may hinder a realistic modeling of certain
types of interactions. This is the main motivation given in [Ell97] for intro-
ducing team automata as a generalization of I/O automata. Another impor-
tant reason for generalizing I/O automata is the fact that I/O automata are
input enabling, i.e. in every state of the automaton every input action of that
automaton can be executed. Though convenient when modeling reactive com-
puter systems, this hinders a realistic modeling of interactions that involve
humans (cf. Section 7.1). Team automata have thus been introduced with the
motivation of creating a single model in which the above three features are
united.

Origins of the Thesis

This thesis is a monograph which is partly based on papers that were pub-
lished in various places. Below we list these papers in the order in which they
were written.

In [BEKR03] we elaborated further on the concept of team automata,
introduced in [Ell97] for modeling groupware systems, by defining team au-
tomata in a mathematically precise way. We showed how the formal setup



20 1. Introduction

allows one to distinguish between several types of synchronization and to
classify team automata accordingly. Based on the observation that team au-
tomata can be used as components in higher-level teams, we showed also how
the framework allows for the representation of hierarchical systems.

In [HB00] we sketched how team automata can be employed to model
collaboration between teams (of humans) engaged in team-based development
of (software) configuration management models.

In [BEKR01b] we demonstrated the model usage and utility for captur-
ing information security and protection structures, and critical coordinations
between these structures. On the basis of a spatial access metaphor, various
known access control strategies were given a rigorous formal description in
terms of synchronizations in team automata.

In [BEKR01a] we presented a survey of [BEKR03] and [BEKR01b], aug-
mented with the introduction of team automata with vectors as actions, and
a preliminary comparison of team automata with I/O automata and models
based on Petri nets.

In [BK03] we presented an initial investigation of the conditions under
which team automata satisfy compositionality, in the sense that their be-
havior can be described in terms of that of their constituting component
automata.

Outline of the Thesis

Although this is a theoretical thesis written for theoretical computer scien-
tists interested in formal models with a clear practical motivation, we hope
that it is also accessible for practical computer scientists well motivated to
look for formalizations of models that can aid in the early design phase of
complex systems. In order to achieve this we have generously accompanied
our formal definitions and results by explanations and examples, providing
the motivation for and the interpretation of these definitions and results.

After this Introduction, we fix most basic notation and terminology used
throughout this thesis in Chapter 2. In Chapters 3 and 4 we introduce au-
tomata and synchronized automata, respectively. On top of this foundation
we then build our team automata framework in Chapter 5. In Chapter 6
we study the behavior of team automata, while Chapter 7 provides a com-
parison with other models. Before finishing the thesis with a Discussion, we
show some of the fields of application of team automata in Chapter 8. We
now provide a more detailed description of each of these chapters and, where
appropriate, mention the published papers used in that chapter.



1. Introduction 21

In Chapter 3 we define the automata as used in this thesis and we review
some notions from automata theory.

In Chapter 4 we define how to combine a set of automata in order to
form a synchronized automaton. We also define how to obtain a subautoma-
ton from a synchronized automaton as a subset of its constituting automata,
and we study the relation between synchronized automata and their subau-
tomata in terms of computations. Consequently, we show how to compose
synchronized automata in an iterative way. Within synchronized automata
we then characterize three basic and very natural ways of synchronizing on
shared actions of their constituting automata, which form the basis of the
more complex types of synchronization we introduce later. Finally, we define
unique synchronized automata being maximal with respect to a given type of
synchronization. Through the formulation of predicates of synchronization we
moreover provide direct constructions of such synchronized automata. Some
of the material in this chapter is based on [BEKR03].

In Chapter 5 we define team automata as compositions of component au-
tomata, i.e. from now on we distinguish input, output, and internal actions.
To this aim we use the foundation laid in the preceding chapters and build
team automata and component automata on top of (synchronized) automata.
We then build subteams on top of subautomata, and we study the relation
between team automata and their subteams. Also in the case of team au-
tomata, we show how to compose them in an iterative way. We then build
several complex types of synchronization on top of those introduced in the
previous chapter, by using the different roles that an action may have in the
various component automata. Similar to synchronized automata, we define
unique team automata being maximal with respect to particular types of
synchronization. Through the formulation of predicates of synchronization
we furthermore provide direct constructions for such team automata. Most
of the material in this chapter is based on [BEKR03].

In Chapter 6 we study the computations and behavior of team automata
in relation to those of their constituting component automata. Therefore we
study (synchronized) shuffles and their properties. We prove that the behav-
ior of certain types of team automata can be described in terms of certain
(synchronized) shuffles of the behavior of their constituting component au-
tomata. Some of this material is based on [BK03].

In Chapter 7 we provide a comparison of team automata with two other
models. The first is I/O automata, of which team automata are an extension.
The second is a model based on Petri nets, for which we define team automata
with vector actions as an extension of team automata. A small part of this
material is based on [BEKR03], but most of it is based on [BEKR01a].



22 1. Introduction

In Chapter 8 we present three examples demonstrating the usefulness
of team automata in practical settings. Based on [BEKR03], we first show
how to model a specific groupware architecture by team automata. Secondly,
based on [HB00], we show how team automata can be employed to model
collaboration between teams of developers engaged in the development of
models of complex (software) systems. Thirdly, based on [BEKR01b], we
show how various known access control strategies can be given a rigorous
formal description in terms of synchronizations in team automata.

In the Discussion, finally, we recall the main contributions of this thesis
and point out some topics worth further investigation. Furthermore, we indi-
cate how — in theory — team automata can be used for system design and
where — in practice — they have actually been used.

It is worth mentioning that at the end of this thesis one can find — in
addition to the Bibliography and the Index — a List of Figures and a List of
Symbols, which should allow one to quickly find the page on which a figure
or symbol first appeared.


