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1. Introduction

This thesis studies formal aspects of team automata, a mathematical frame-
work introduced in [Ell97] to model components of groupware systems and
their interconnections. In particular, this thesis focuses on the flexibility team
automata offer when modeling collaboration between system components.

We begin this Introduction by providing some background. Subsequently
we introduce the model in an informal way, after which we discuss its main
features in the context of several related models. Finally, we finish this In-
troduction with an overview of the contents of this thesis.

Background

A set of interacting, interrelated, or interdependent components forming a
complex whole is what we mean by the frequently used, but seldom defined
notion of a system. The human body and computers are thus examples of
a system. A system is distributed if it consists of separate components but
nevertheless appears to its users as a single coherent system. It does not have a
single locus of control, but its components collaborate by way of interactions.
The internet is one of the best known distributed systems.

A system is reactive if, in order for it to function, it has a continuous
need to interact with its environment. Its functioning thus depends on the
functioning of its environment. This contrasts with a system that is transfor-
mational , in which case its functioning (output) is merely a function of its
input. Examples of reactive systems include computer operating systems and
coffee vending machines, whereas a compiler is an example of a transforma-
tional system.

Computer Supported Cooperative Work

As the presence of computer-based systems in daily-life work situations con-
tinues to increase, the understanding of how people work together and ways in
which computer technology can assist, has become more and more important.
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This has resulted in the emergence of Computer Supported Cooperative Work
(CSCW for short) as an inherently multi-disciplinary field of research (see,
e.g., [Gru94]). By the nature of the field, part of the computer technology
consists of multi-user software and hardware, called groupware.

Groupware systems are systems intended to support groups of people
working together in collaborative projects. Such systems are often distributed
and reactive, and conceived as consisting of components cooperating in a co-
ordinated way. This leads to complex interactive behavior and, consequently,
coordination policies and their effect on behavior are key issues within CSCW.
At a conceptual level CSCW needs a precise, consistent, and unambiguous
terminology, while at a lower, architectural level CSCW has been search-
ing for a rigorous mathematical framework to specify and verify groupware
systems.

Formal Methods

Mathematical techniques tailored for the specification and verification of sys-
tems are known as formal methods (see, e.g., [CW96]). This field of research
cuts across many areas of computer science and comes with an impressive
body of literature. A brief comparison of the main features of team automata
with some of the best-known formalisms in this field follows later on in this
Introduction, while a more detailed comparison with two such formalisms can
be found in Chapter 7.

The model of Input/Output automata (I/O automata for short) was intro-
duced in [Tut87] for the specification and verification of distributed reactive
systems (see also, e.g., [LT89] and [Lyn96]). I/O automata served as the the-
oretical source of inspiration for the introduction of team automata in [Ell97]
through the distinction of the model’s actions into input, output, and internal
actions. We come back to this shortly. A conceptual source of inspiration for
team automata was [Smi94], which conjectures that well-structured groups
(called teams) outperform individuals in certain tasks, but at the same time
calls for models capturing concepts of group behavior.

Team automata were introduced explicitly for the specification and veri-
fication of groupware systems. They were shown to be promising at both the
conceptual and the architectural level of groupware systems. In this thesis
we elaborate on this. Our goal is furthermore to demonstrate that the use-
fulness of team automata is not limited to clarifying and capturing precisely
notions related to collaboration between components of groupware sytems,
but extends to other kinds of (reactive) systems.
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The Model

We now provide an overview of the team automata framework. We begin with
a brief sketch of the overall structure of team automata and subsequently we
introduce them in more detail. Analogous to the setup of this thesis, we follow
an incremental presentation of team automata.

A team automaton is composed of component automata, which are a spe-
cial type of automata. The crux of composing a team automaton is to define
the way in which those originally independent component automata interact.
Their interactions are formulated in terms of synchronizations of shared ac-
tions, a method for modeling collaboration among system components well
known from the literature.

Automata

Automata or labeled transition systems are a well-known model underlying
formal specifications of systems. An automaton consists of a set of states, a
set of actions, a set of labeled transitions between states, and a set of initial
states. Labels represent actions and a transition’s label indicates the action
causing the transition from one state to another.

Assume that we have an automaton modeling a coffee vending machine.
Then a possible event is a user inserting a coin, which when it occurs leads to
a state change of the automaton. The user forms a part of the environment
of the coffee vending machine. A coffee vending machine is thus an example
of a reactive system, with the insertion of coins by a user as interactions with
its environment.

Next assume that also the user is modeled by an automaton, with the
insertion of a coin as one of its actions. Then we have two automata, both
equipped with an action modeling the insertion of a coin. When composing
these two automata into one system, inserting a coin into the coffee vending
machine appears as a single synchronized action. In the composed system
the occurrences of an action from the automaton modeling the user and the
same action from the automaton modeling the coffee vending machine are
identified, i.e. simultaneously executed by the two system components. The
transitions of a thus composed automaton will be synchronized occurrences
of transitions of its constituting automata that have the same action label.

Synchronized Automata

A synchronized automaton over a set of automata is an automaton, deter-
mined by the way in which its constituting automata cooperate by means
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?

Fig. 1.1. A user in front of a coffee vending machine.

of synchronized transitions. Its (initial) states are combinations — a carte-
sian product — of (initial) states of its constituting automata. Its actions
are the actions of its constituting automata. Its transitions, finally, are syn-
chronizations of labeled transitions of its constituting automata modeling the
simultaneous execution of the same single action by several (one or more) au-
tomata. The label of a transition is the action being simultaneously executed.
When the synchronized automaton changes state by executing an action, all
automata which participate simultaneously change state by executing that
action, while all others remain idle.

An automaton does not necessarily participate in every synchronization
of an action it shares. Hence there is no such thing as the unique synchronized
automaton over a set of automata. Rather, a whole range of synchronized au-
tomata, distinguishable only by their transition relation, can be constructed
from a given set of automata. It is this freedom to choose a transition relation
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that sets the team automata framework apart from most other models. An-
other distinguishing feature of this framework is the fact that the transitions
of a synchronized automaton are labeled with one single action. We come
back to this shortly.

From the way a synchronized automaton is constructed it is clear that it
is itself an automaton again. Consequently, it can serve as a constituting au-
tomaton of a higher-level synchronized automaton, thus allowing hierarchical
designs.

Within a synchronized automaton, three natural types of actions can be
distinguished, based on the way they appear in synchronizations. Actions that
are never executed simultaneously by more than one constituting automaton
are free. Actions that are always executed as synchronizations in which all
automata participate that have this action in their alphabet are called action-
indispensable. State-indispensable actions, finally, require the participation
of only those automata that are ready (in a suitable state) to execute that
action.

Team Automata

A component automaton is an automaton in which input , output , and inter-
nal actions are distinguished. Input actions are not under the automaton’s
control, but instead are triggered by the environment including other com-
ponent automata. Output and internal actions are under its control, but
only the output actions are observable by other automata. Input and output
actions together constitute the external actions and they form the interface
between the automaton and its environment, whereas the internal actions are
not available for interactions. This is formally achieved by requiring that the
internal actions of each component automaton involved are unique to that au-
tomaton, which naturally prohibits synchronizations of internal actions with
other automata.

A team automaton over a set of component automata is defined in a way
similar to the definition of synchronized automata. As before, its (initial)
states are cartesian products of (initial) states of its constituting component
automata. Its actions are the actions of its constituting component automata,
now distributed over input, output, and internal actions. All internal (out-
put) actions of the component automata remain internal (output) actions of
the team automaton. The remaining actions are those input actions of the
component automata that do not occur as an output action of any of the
component automata, and they become the input actions of the team au-
tomaton. Its labeled transitions, finally, are — as before — synchronizations
of labeled transitions of its constituting component automata.
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Like in the case of synchronized automata, we do not require all con-
stituting component automata sharing an action to participate in every syn-
chronization of that action. Synchronizations of internal actions never involve
more than one component automaton because every internal action uniquely
belongs to one particular component automaton. Moreover, independently
of the states of the other component automata, an internal action can al-
ways be executed as before the composition. Like in the case of synchro-
nized automata, there is no unique team automaton. Rather a whole range
of team automata, distinguishable only by their transition relation, can be
constructed.

The reason given in [Ell97] for equipping team automata — like I/O
automata — with a distinction of actions into input, output, and internal
actions, is the explicit desire to model different types of synchronization.
This is achieved by taking the different role (input, output, or internal) that
actions can have in different component automata into account. External
actions may be input to some component automata and output to other
component automata. In peer-to-peer synchronizations, actions have the same
role in each of the component automata involved. In such synchronizations,
all component automata are on equal footing with respect to the action being
synchronized. This differs from master-slave synchronizations, in which input
actions (“slaves”) are driven by output actions (“masters”), i.e. the slaves
have to follow the masters.

Team automata form a very broad and generic framework. Component
automata can cooperate in many possible ways through synchronizations of
shared actions. The freedom of choosing the transition relation of a team
automaton moreover offers the flexibility to distinguish even the smallest nu-
ances in the meaning of one’s design. Leaving the set of transitions of a team
automaton as a modeling choice thereby becomes one of the most important
features of team automata. One of the topics of this thesis is a systematic stu-
dy of the role of free, action-indispensable, and state-indispensable actions —
and to a lesser degree peer-to-peer and master-slave synchronizations — in
the modeling of collaboration between system components.

Team Automata Versus Other Models

Team automata are not an isolated model but have several features which
bear a close resemblance to characteristics of other models from the literature.
We now discuss three such features in general terms.

First, the set of actions of a team automaton consists of input, output,
and internal actions, thus allowing the classification of a broad range of often
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complex synchronizations in team autamata (cf. Sections 4.4 and 5.3). This
distinction of input, output, and internal actions originates from two inde-
pendently developed models: I/O automata (see, e.g., [Tut87], [LT89], and
[Lyn96]) and I/O systems (see, e.g., [Jon87] and [Jon94]). Since the semantics
of an I/O system — given in terms of automata — is essentially an I/O au-
tomaton, we will speak only of I/O automata in the sequel. Team automata
are, in fact, an extension of I/O automata (cf. Section 7.1).

I/O automata are not the only model in the literature in which a dis-
tinction of actions is used. The same distinction can be found in the I/O
automata-based reactive transition systems (see, e.g., [CC02] and [CCP02])
as well as in interacting state machines (see, e.g., [Ohe03] and [OL02]), which
were introduced specifically for modeling reactive systems. A further exam-
ple is the Calculus of Communicating Systems (CCS for short), an algebraic
specification language introduced by Milner (see, e.g., [Mil80] and [Mil89]).
In CCS, the internal or silent action τ is a distinguished element of the set
of actions. It denotes the “perfect” action of a handshake communication,
i.e. the synchronization of two complementary (input and output) actions .

Secondly, the transitions of a team automaton are synchronizations of
transitions with the same label. The simultaneous execution of actions from
a team automaton’s constituting component automata is thus limited to com-
mon actions. We call such types of synchronization uniform in order to dis-
tinguish them from pluriform synchronizations in which distinct actions can
be executed simultaneously.

Also this feature of allowing solely uniform synchronizations originates
from the I/O automaton model. It is by far not the only model in the lit-
erature prohibiting pluriform synchronizations. Other examples include the
mixed product over a set of automata introduced in [Dub86] and the product
automaton introduced in [TH98]. A further example is the theory of path
expressions , which was introduced in [CH74], consequently encompassed in
the COncurrent SYstems (COSY for short) notation in [LTS79], and given
a vector firing sequence semantics in [Shi79], which considers vector actions
rather than ordinary actions (see also [JL92]). An entry of such a vector
action is not empty if and only if the respective component participates.

There are also examples of automata-based models that do allow pluri-
form synchronizations, such as the free product and the synchronous product
over a set of automata. Both were defined in [Arn94] as the culmination of
a framework of process models proposed by Nivat and Arnold in a num-
ber of papers and course notes such as, e.g., [Niv79], [AN82], and [Arn82].
Another example is the framework of Vector Controlled Concurrent Systems
(VCCSs for short) introduced in [KKR90] (cf. Sections 7.2.3 and 7.2.4). These
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systems, introduced as generalizations of the COSY theory, allow pluriform
synchronizations of actions of its constituting components and execute vec-
tors of actions rather than ordinary actions. In Section 7.2.1 we will switch to
vector actions in order to visualize the (potential) concurrency within team
automata actions, but such vector actions will still be uniform synchroniza-
tions.

Yet another type of synchronization is the handshake communication
in CCS mentioned above. Many algebraic specification languages moreover
contain specific parallel composition operators that allow processes to com-
municate through synchronizations (see, e.g., [BPS01]). Among the best
known such examples are the (Theoretical) Communicating Sequential Pro-
cesses ((T)CSP for short) originally introduced by Hoare (see, e.g., [Hoa78],
[BHR84], and [Hoa85]).

Thirdly, the transition relation of a team automaton is not uniquely de-
termined by its constituting component automata, which also distinguishes
team automata from I/O automata. This freedom of choosing the transition
relation of the automaton obtained when composing a set of automata, occurs
in the literature as well. An example is the aforementioned synchronous prod-
uct over a set of automata. Whereas the transition relation of the free product
over a set of automata is the set of all possible pluriform synchronizations,
that of the synchronous product over that set of automata is the restriction
of the free product to the subset of all possible pluriform synchronization
vectors defined by a specifically formulated synchronization constraint. This
synchronization constraint is formulated in terms of the actions only and does
not depend on the current states of the automata.

Most automata-based models, however, use a single and very strict
method for choosing the transition relation of an automaton composed over a
set of automata, in effect resulting in composite automata that are uniquely
defined by their constituents. The choice prevalent in the literature is to in-
clude, for all actions, all and only those transitions in which all automata
participate that have the action in their alphabet. Since this means that all
actions will be action-indispensable, we call this the ai principle. Examples of
automata-based models with composition based on the ai principle include
the aforementioned mixed product and product automaton over a set of au-
tomata, as well as reactive transition systems, interacting state machines, and
I/O automata (cf. Section 7.1). Other examples from the literature — without
claiming completeness — include cooperating (pushdown) automata (see, e.g.,
[DH94] and [HH94]) and timed cooperating automata (see, e.g., [LMP00]). The
ai principle furthermore appears in disguise in non-automata-based models
like (T)CSP and statecharts (see, e.g., [Har87]).
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In Section 5.4 we define team automata that are unique with respect to
particular types of synchronization. Through the formulation of predicates
of synchronization we moreover provide direct constructions for such team
automata. Throughout the thesis we will see, though, that of all the resulting
uniquely defined team automata, it is precisely the one based on the ai princi-
ple that possesses the at first sight most appealing characteristics. One of the
contributions of this thesis is to put some order in the “chaos” obtained when
refraining from the ai principle. More precisely, we present an overview of
some interesting characteristics that hold for certain types of team automata,
among which those based on the peer-to-peer and master-slave types of syn-
chronization. Since these types of synchronization are introduced with a clear
practical motivation in mind, it is worthwhile to notice that output peer-to-
peer as well as master-slave synchronizations cannot be distinguished in I/O
automata (cf. Section 7.1). In fact, in a team automaton constructed accord-
ing to the ai principle, all synchronizations are by definition master-slave.

To the best of our knowledge, no automata-based model other than team
automata unites the three features discussed above. I/O automata satisfy the
first two features, viz. the distinction of input, output, and internal actions,
and the prohibition of pluriform synchronizations. However — as already
noted in [Tut87] — the single notion of automaton composition in I/O au-
tomata is rather restrictive and may hinder a realistic modeling of certain
types of interactions. This is the main motivation given in [Ell97] for intro-
ducing team automata as a generalization of I/O automata. Another impor-
tant reason for generalizing I/O automata is the fact that I/O automata are
input enabling, i.e. in every state of the automaton every input action of that
automaton can be executed. Though convenient when modeling reactive com-
puter systems, this hinders a realistic modeling of interactions that involve
humans (cf. Section 7.1). Team automata have thus been introduced with the
motivation of creating a single model in which the above three features are
united.

Origins of the Thesis

This thesis is a monograph which is partly based on papers that were pub-
lished in various places. Below we list these papers in the order in which they
were written.

In [BEKR03] we elaborated further on the concept of team automata,
introduced in [Ell97] for modeling groupware systems, by defining team au-
tomata in a mathematically precise way. We showed how the formal setup
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allows one to distinguish between several types of synchronization and to
classify team automata accordingly. Based on the observation that team au-
tomata can be used as components in higher-level teams, we showed also how
the framework allows for the representation of hierarchical systems.

In [HB00] we sketched how team automata can be employed to model
collaboration between teams (of humans) engaged in team-based development
of (software) configuration management models.

In [BEKR01b] we demonstrated the model usage and utility for captur-
ing information security and protection structures, and critical coordinations
between these structures. On the basis of a spatial access metaphor, various
known access control strategies were given a rigorous formal description in
terms of synchronizations in team automata.

In [BEKR01a] we presented a survey of [BEKR03] and [BEKR01b], aug-
mented with the introduction of team automata with vectors as actions, and
a preliminary comparison of team automata with I/O automata and models
based on Petri nets.

In [BK03] we presented an initial investigation of the conditions under
which team automata satisfy compositionality, in the sense that their be-
havior can be described in terms of that of their constituting component
automata.

Outline of the Thesis

Although this is a theoretical thesis written for theoretical computer scien-
tists interested in formal models with a clear practical motivation, we hope
that it is also accessible for practical computer scientists well motivated to
look for formalizations of models that can aid in the early design phase of
complex systems. In order to achieve this we have generously accompanied
our formal definitions and results by explanations and examples, providing
the motivation for and the interpretation of these definitions and results.

After this Introduction, we fix most basic notation and terminology used
throughout this thesis in Chapter 2. In Chapters 3 and 4 we introduce au-
tomata and synchronized automata, respectively. On top of this foundation
we then build our team automata framework in Chapter 5. In Chapter 6
we study the behavior of team automata, while Chapter 7 provides a com-
parison with other models. Before finishing the thesis with a Discussion, we
show some of the fields of application of team automata in Chapter 8. We
now provide a more detailed description of each of these chapters and, where
appropriate, mention the published papers used in that chapter.
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In Chapter 3 we define the automata as used in this thesis and we review
some notions from automata theory.

In Chapter 4 we define how to combine a set of automata in order to
form a synchronized automaton. We also define how to obtain a subautoma-
ton from a synchronized automaton as a subset of its constituting automata,
and we study the relation between synchronized automata and their subau-
tomata in terms of computations. Consequently, we show how to compose
synchronized automata in an iterative way. Within synchronized automata
we then characterize three basic and very natural ways of synchronizing on
shared actions of their constituting automata, which form the basis of the
more complex types of synchronization we introduce later. Finally, we define
unique synchronized automata being maximal with respect to a given type of
synchronization. Through the formulation of predicates of synchronization we
moreover provide direct constructions of such synchronized automata. Some
of the material in this chapter is based on [BEKR03].

In Chapter 5 we define team automata as compositions of component au-
tomata, i.e. from now on we distinguish input, output, and internal actions.
To this aim we use the foundation laid in the preceding chapters and build
team automata and component automata on top of (synchronized) automata.
We then build subteams on top of subautomata, and we study the relation
between team automata and their subteams. Also in the case of team au-
tomata, we show how to compose them in an iterative way. We then build
several complex types of synchronization on top of those introduced in the
previous chapter, by using the different roles that an action may have in the
various component automata. Similar to synchronized automata, we define
unique team automata being maximal with respect to particular types of
synchronization. Through the formulation of predicates of synchronization
we furthermore provide direct constructions for such team automata. Most
of the material in this chapter is based on [BEKR03].

In Chapter 6 we study the computations and behavior of team automata
in relation to those of their constituting component automata. Therefore we
study (synchronized) shuffles and their properties. We prove that the behav-
ior of certain types of team automata can be described in terms of certain
(synchronized) shuffles of the behavior of their constituting component au-
tomata. Some of this material is based on [BK03].

In Chapter 7 we provide a comparison of team automata with two other
models. The first is I/O automata, of which team automata are an extension.
The second is a model based on Petri nets, for which we define team automata
with vector actions as an extension of team automata. A small part of this
material is based on [BEKR03], but most of it is based on [BEKR01a].
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In Chapter 8 we present three examples demonstrating the usefulness
of team automata in practical settings. Based on [BEKR03], we first show
how to model a specific groupware architecture by team automata. Secondly,
based on [HB00], we show how team automata can be employed to model
collaboration between teams of developers engaged in the development of
models of complex (software) systems. Thirdly, based on [BEKR01b], we
show how various known access control strategies can be given a rigorous
formal description in terms of synchronizations in team automata.

In the Discussion, finally, we recall the main contributions of this thesis
and point out some topics worth further investigation. Furthermore, we indi-
cate how — in theory — team automata can be used for system design and
where — in practice — they have actually been used.

It is worth mentioning that at the end of this thesis one can find — in
addition to the Bibliography and the Index — a List of Figures and a List of
Symbols, which should allow one to quickly find the page on which a figure
or symbol first appeared.



2. Preliminaries

In this chapter we fix most basic notation and terminology used throughout
this thesis.

Sets

Set inclusion is denoted by ⊆, whereas proper inclusion is denoted by ⊂.
The set difference of sets V and W is denoted by V \ W . For a finite set
V , its cardinality is denoted by #V . The empty set is denoted by ∅. For
convenience, we sometimes denote the set {1, 2, . . . , n} by [n]. Then [0] = ∅.
We sometimes identify a singleton set {j} with its only element j.

Let N denote the set of positive integers. Let I ⊆ N be a set of in-
dices given by I = {i1, i2, . . .} with ij < i! if 1 ≤ j < " and let Vi

be a set, for each i ∈ I. Then
∏

i∈I Vi denotes the cartesian product
{(vi1 , vi2 , . . .) | vij ∈ Vij , for all j ≥ 1}. The elements of

∏
i∈I Vi are called

vectors. If I is finite and #I = n, then the vectors in
∏

i∈I Vi are said to
be n-dimensional. Throughout this thesis vectors may be written vertically
as well as horizontally. If vi ∈ Vi, for all i ∈ I, then

∏
i∈I vi denotes the

element (vi1 , vi2 , . . . ) of
∏

i∈I Vi. If I = ∅, then
∏

i∈I Vi = ∅. In addition to
the prefix notation

∏
i∈I Vi for a cartesian product, we sometimes also use

the infix notation Vi1 × Vi2 × · · · .
Let j ∈ I. Then projI,j :

∏
i∈I Vi → Vj is the projection function defined

by projI,j((ai1 , ai2 , . . . )) = aj . We thus observe that if I = {2, 3}, then
projI,2((a, b)) = a. Note moreover that whenever I = N, then projI,j is the
standard projection. Similarly, for J ⊆ I, projI,J :

∏
i∈I Vi →

∏
i∈J Vi is

the projection function defined by projI,J(a) =
∏

j∈J projI,j(a). Whenever
I is clear from the context we write projj and projJ rather than projI,j and
projI,J . Note that for each j ∈ I and a ∈

∏
i∈I Vi we have proj{j}(a) =∏

j∈{j} projj(a), which we do not identify with projj(a). Formally, we have
projj(proj{j}(a)) = projj(a).

The set {Vi | i ∈ I} is said to form a partition (of
⋃

i∈I Vi) if the Vi are
pairwise disjoint, nonempty sets.
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Functions

All functions considered are total, unless explicitly stated otherwise.
Let f : A → A′ and let g : B → B′ be functions. Then f × g : A × B →

A′×B′ is defined as (f ×g)(a, b) = (f(a), g(b)). We will use f [2] as shorthand
notation for f × f . Thus f [2](a, b) = (f(a), f(b)). This notation should not
be confused with iterated function application. In particular, we will use
projI,j

[2] as shorthand notation for projI,j × projI,j and likewise projI,J
[2]

for projI,J×projI,J . We write projj
[2] and projJ

[2] rather than projI,j
[2] and

projI,J
[2] whenever I is clear from the context. If C ⊆ A, then f(C) = {f(a) |

a ∈ C}. Thus if D ⊆ A×A, then f [2](D) = {(f(d1), f(d2)) | (d1, d2) ∈ D}.
The function f is injective if f(a1) (= f(a2) whenever a1 (= a2, f is

surjective if for every a′ ∈ A′ there exists an a ∈ A such that f(a) = a′, and
f is a bijection if f is injective and surjective. The restriction of the function
f to a subset C of its domain A is denoted by f ! C and is defined as the
function C → A′ defined by (f ! C)(c) = f(c), for all c ∈ C.

Alphabets, Words, Languages

An alphabet is a set of letters — symbols — which may be used, e.g., to
represent actions of systems. We do not impose any a priori constraints on
the size of an alphabet. Alphabets may thus be empty and they may be
infinite. For the remainder of this chapter we let Σ be an arbitrary but fixed
alphabet.

A word (over Σ) is a sequence of symbols (from Σ). A word may be a
finite or infinite sequence of symbols, resulting in finite and infinite words,
respectively. An infinite word is also referred to as an ω-word. The empty
sequence is called the empty word and denoted by λ. As usual we represent
nonempty words a1, a2, . . . over Σ as strings a1a2 · · · . For a finite word w, we
use the notation |w| to denote its length. Thus |λ| = 0 and if w = a1a2 · · · an,
with n ≥ 1 and ai ∈ Σ, for all 1 ≤ i ≤ n, then |w| = n.

Words may also be considered as functions which assign symbols to po-
sitions. Thus a finite word w = a1a2 · · · an, with n ≥ 1 and ai ∈ Σ for all
1 ≤ i ≤ n, is identified with the function w : [n] → Σ defined by w(i) = ai,
for all 1 ≤ i ≤ n. Similarly, an infinite word w = a1a2 · · · , with ai ∈ Σ for
all i ≥ 1, defines the function w : N → Σ by w(i) = ai, for all i ≥ 1. To the
empty word λ we associate the function λ : [0] → Σ, which has an empty
domain.

For a finite word w over Σ and a symbol a ∈ Σ, we use #a(w) to denote
the number of occurrences of a in w. Thus #a(w) = #{i ∈ [|w|] | w(i) = a}.
Note that #a(λ) = 0, for all a. For a (finite or infinite) word w, its alphabet,
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denoted by alph(w), consists of all symbols that actually occur in w. Thus
alph(w) = {a ∈ Σ | ∃i ∈ N : w(i) = a}. Note that alph(λ) = ∅ and that
alph(w) may be an infinite set if Σ is infinite and w is an infinite word.

The set of all finite words over Σ (including λ) is denoted by Σ∗. The set
Σ+ = Σ∗\{λ} consists of all nonempty finite words. By convention Σ ⊆ Σ+.
The set of all infinite words over Σ is denoted by Σω. By Σ∞ we denote the
set of all words over Σ. Thus Σ∞ = Σ∗∪Σω. A language (over Σ) is a set of
words (over Σ). A language consisting solely of finite words is called finitary.
If L ⊆ Σω, i.e. all words of L are infinite, then L is called an infinitary
language or ω-language. As usual we refer to a collection (set) of languages
as a family of languages.

Concatenation

Using the operation of concatenation, two words (over Σ) are combined into
one word (over Σ) by gluing them together.

Formally, given u, v ∈ Σ∞, their concatenation u·v is defined as follows. If
u, v ∈ Σ∗, then u · v(i) = u(i) for i ∈ [|u|] and u · v(|u|+ i) = v(i) for i ∈ [|v|].
Note that |u · v| = |u| + |v|. If u ∈ Σ∗ and v ∈ Σω, then u · v(i) = u(i)
for i ∈ [|u|] and u · v(|u| + i) = v(i) for i ≥ 1. If u ∈ Σω and v ∈ Σ∞,
then u · v(i) = u(i) for all i ≥ 1. In the last two cases u · v ∈ Σω. Note
that u · λ = λ · u = u, for all u ∈ Σ∞. Since concatenation is associative
this implies that Σ∞ with concatenation and unit element λ is a monoid.
Moreover, since concatenation of two finite words yields a finite word, also
Σ∗ with concatenation restricted to Σ∗ is a monoid with unit element λ.

The concatenation of two languages K and L (over Σ) is the language
K ·L (over Σ) defined by K ·L = {u · v | u ∈ K, v ∈ L}. Observe that K ·L
is finitary if and only if both K and L are finitary. Moreover, K · L = K if
L = {λ} or K is infinitary. In the sequel, we will mostly write uv and KL
rather than u · v and K · L, respectively.

For u ∈ Σ∞ we set u0 = λ and un+1 = un · u, for all n ≥ 0. Note that
if u ∈ Σω, then un = u, for all n ≥ 1. Similarly, for a language K ⊆ Σ∞ we
have K0 = {λ} and Kn+1 = Kn ·K, for all n ≥ 0.

Prefixes

A word u ∈ Σ∗ is said to be a (finite) prefix of a word w ∈ Σ∞ if there
exists a v ∈ Σ∞ such that w = uv. In that case we write u ≤ w. If u ≤ w
and u (= w, then we may use the notation u < w. Moreover, if |u| = n, for
some n ≥ 0, then u is said to be the prefix of length n of w, denoted by
w[n]. Note that w[0] = λ. The set of all prefixes of a word w is denoted by
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pref (w) and it is defined as pref (w) = {u ∈ Σ∗ | u ≤ w}. Note that pref (w)
is finite if and only if w ∈ Σ∗. Note also that, for a word x ∈ Σ∞, whenever
pref (w) = pref (x), then w = x.

For a language K, pref (K) =
⋃
{pref (w) | w ∈ K}. Thus K ⊆ pref (K)

whenever K is a finitary language. A language K is prefix closed if and only
if K ⊇ pref (K). A family of languages L is prefix closed if pref (K) ∈ L for
all K ∈ L.

Limits

Both finite and infinite words can be defined as limits of their prefixes. Let
v1, v2, · · · ∈ Σ∗ be an infinite sequence of words such that vi ≤ vi+1, for all
i ≥ 1. Then lim

n→∞
vn is the unique word w ∈ Σ∞ defined by w(i) = vj(i),

for all i, j ∈ N such that i ≤ |vj |. Thus vi ≤ w for all i ≥ 1 and w = vk
whenever there exists a k ≥ 1 such that vn = vn+1 for all n ≥ k. For a word
u ∈ Σ∞ we define uω = lim

n→∞
un if u ∈ Σ∗ and uω = u if u ∈ Σω. Note

that λω = λ. For an infinite sequence u1, u2, . . . ∈ Σ∞ we define the word
u1 · u2 · · · · ∈ Σ∞ by u1 · u2 · · · · = lim

n→∞
u1 · u2 · · · · · un if ui ∈ Σ∗, for all

i ≥ 1, and u1 · u2 · · · · = u1 · u2 · · · · · un−1 · un if un ∈ Σω, for some n ≥ 1.
These notations are carried over to languages in the natural way: for

K,K1,K2, . . . ⊆ Σ∞, we set Kω = {u1u2 · · · | ui ∈ K, for all i ≥ 1} and
K1 · K2 · · · · = {u1u2 · · · | ui ∈ Ki, for all i ≥ 1}. Observe that Σω =
{a1a2 · · · | ai ∈ Σ, for all i ≥ 1} is indeed the set consisting of all infinite
words over Σ.

Homomorphisms

Let h : Σ → Γ ∗ be a function assigning to each letter of Σ a finite word
over the alphabet Γ . The homomorphic extension of h to Σ∗, also denoted
by h, is defined in the usual way by h(λ) = λ and h(xy) = h(x)h(y) for
all x, y ∈ Σ∗. This homomorphism is further extended to Σ∞ by setting
h( lim

n→∞
vn) = lim

n→∞
h(vn), for all v1, v2, . . . ∈ Σ∗ such that for all i ≥ 1, vi ≤

vi+1. Note that this is well defined, since vi ≤ vi+1 implies h(vi) ≤ h(vi+1).
Note however that if h is erasing, i.e. h(a) = λ for some a ∈ Σ, then there
exists a word x ∈ Σω such that h(x) ∈ Σ∗. For such x we have h(xy) = h(x),
for all y ∈ Σ∞, and consequently h(xy) = h(x)h(y) is no longer guaranteed.
In fact, h(xy) = h(x)h(y), for all x, y ∈ Σ∞, if and only if either h is not
erasing or h(a) = λ, for all a ∈ Σ. Thus h : Σ → Γ ∗ cannot always be lifted
to a homomorphism on Σ∞. Still we sometimes abuse terminology and refer
to the extension h : Σ∞ → Γ∞ of h as a homomorphism. If h(Σ) ⊆ Γ , then



2. Preliminaries 27

we refer to h as a coding, and if h(Σ) ⊆ Γ ∪ {λ}, then h is called a weak
coding.

The function presΣ,Γ : Σ → Γ ∗, defined by presΣ,Γ (a) = a if a ∈ Γ and
presΣ,Γ (a) = λ otherwise, preserves the symbols from Γ and erases all other
symbols. Whenever Σ is clear from the context, we simply write presΓ rather
than presΣ,Γ . Note that presΣ,Γ is a weak coding.





3. Automata

The basic concept underlying team automata is an automaton. An automaton
captures the idea of a system with states (configurations, possibly an infinite
number of them), together with actions the executions of which lead to (non-
deterministic) state changes. In addition some of the states may be designated
as initial states from which the automaton may start its executions. Also final
or accepting states may be distinguished, which can be used to define when an
execution of the automaton is considered successful. A particular automaton
model is the well-known finite (state) automaton. Such an automaton has a
finite set of states, with initial states and final states, as well as a finite set of
actions. Finite automata are among the most basic models in many branches
of computer science.

In this thesis automata are used as structures defining a state space that is
traversed by executing actions. They come into play when designing and an-
alyzing complex systems with a potentially infinite number of configurations
due to, e.g., unbounded data structures such as counters.

We begin this chapter by defining precisely the type of automata we shall
use in the sequel, thus laying the foundation on which we shall build our team
automata framework. Subsequently we review some notions from automata
theory.

3.1 Automata, Computations, and Behavior

Definition 3.1.1. An automaton is a construct A = (Q,Σ, δ, I), where

Q is the set of states of A, which may be infinite,
Σ is the set of actions of A such that Σ ∩Q = ∅,
δ ⊆ Q×Σ ×Q is the set of labeled transitions of A, and
I ⊆ Q is the set of initial states of A. -.

In the figures, the states of an automaton are drawn as circles and labeled
transitions appear as labeled arcs between states. Wavy arcs are used to
indicate the initial states. See, e.g., Figure 3.1.
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Let A = (Q,Σ, δ, I) be an automaton and let a ∈ Σ. Then the set of a-
transitions (of A) is denoted by δa and is defined as δa = {(q, q′) | (q, a, q′) ∈
δ}. An a-transition (q, q) ∈ δa is called a loop (on a). We refer to A as the
trivial automaton if A = (∅,∅,∅,∅). Instead of labeled transition we often
simply say transition. Finally, a transition (q, q′) ∈ δa is called an outgoing
transition of q and an incoming transition of q′.

Executing an action in a certain state leads to a change of state as de-
scribed by the labeled transitions. The consecutive execution of a sequence
of actions from an initial state defines a computation.

Definition 3.1.2. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) a finite computation of A is a finite sequence α = q0a1q1a2q2 · · ·anqn,
where n ≥ 0, qi ∈ Q for 0 ≤ i ≤ n, and aj ∈ Σ for 1 ≤ j ≤ n are such
that q0 ∈ I and (qi, ai+1, qi+1) ∈ δ for all 0 ≤ i < n;
if n = 0 and hence α = q0 ∈ I, then α is a trivial computation;
by CA we denote the set of all finite computations of A,

(2) an infinite computation of A is an infinite sequence α = q0a1q1a2q2 · · · ,
where qi ∈ Q for all i ≥ 0 and aj ∈ Σ for all j ≥ 1 are such that q0 ∈ I
and (qi, ai+1, qi+1) ∈ δ for all i ≥ 0;
by Cω

A we denote the set of all infinite computations of A, and

(3) the set of all computations of A is denoted by C∞
A and is defined as

C∞
A = CA ∪Cω

A. -.

Thus for a given automaton A = (Q,Σ, δ, I), its finite computations form
a finitary language CA ⊆ I(ΣQ)∗ while its infinite computations form an
infinitary languageCω

A ⊆ I(ΣQ)ω. Observe thatCA = ∅ if and only if I = ∅.
Moreover, Cω

A may be empty, even when CA is infinite (cf. Example 3.1.12).
The infinite computations of A can be expressed in terms of finite compu-

tations, viz. as limits of length-increasing sequences of finite computations.

Lemma 3.1.3. Let A = (Q,Σ, δ, I) be an automaton. Let α ∈ C∞
A . Then

α ∈ Cω
A if and only if there exist α1 ≤ α2 ≤ · · · ∈ CA such that for all

n ≥ 1, αn (= αn+1 and α = lim
n→∞

αn.

Proof. (If) Trivial.
(Only if) Obvious from the observation pref (α) ∩ I(ΣQ)∗ ⊆ CA. -.

Both finite and infinite computations are thus sequences of which every prefix
of odd length is a finite computation.



3.1 Automata, Computations, and Behavior 31

Theorem 3.1.4. Let A be an automaton. Then

α ∈ C∞
A if and only if for all n ≥ 1 there exist α1 ≤ α2 ≤ · · · ∈ CA such

that α = lim
n→∞

αn. -.

In fact, the infinite computations of an automaton are determined by its set
of finite computations.

Lemma 3.1.5. Let A and A′ be two automata. Then

if CA ⊆ CA′ , then Cω
A ⊆ Cω

A′ .

Proof. Let α ∈ Cω
A. Hence by Lemma 3.1.3, α = lim

n→∞
αn for computations

αn ∈ CA such that αn ≤ αn+1 and αn (= αn+1, for all n ≥ 1. Since CA ⊆
CA′ , again applying Lemma 3.1.3 (now in the other direction) yields that
α ∈ Cω

A′ . -.

Theorem 3.1.6. Let A and A′ be two automata. Then

C∞
A = C∞

A′ if and only if CA = CA′ . -.

Given a computation of an automaton one may choose to focus on certain
actions while filtering away other information. In this way, behavioral records
are made of computations.

Definition 3.1.7. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) v ∈ Θ∞ is a Θ-record of A if v = presΘ(α) for some α ∈ C∞
A ,

(2) the Θ-behavior of A is denoted by BΘ,∞
A and is defined as BΘ,∞

A =
presΘ(C

∞
A ),

(3) the finitary Θ-behavior of A is denoted by BΘ
A and is defined as BΘ

A =
BΘ,∞

A ∩Θ∗, and

(4) the infinitary Θ-behavior of A is denoted by BΘ,ω
A and is defined as

BΘ,ω
A = BΘ,∞

A ∩Θω. -.

If Σ is the full set of actions of automaton A, then a Σ-record is also simply
called a record and the (finitary or infinitary) Σ-behavior of A is also referred
to as the (finitary or infinitary) behavior of A, respectively.
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ab
a

s1 t1
b

W1:

Fig. 3.1. Automaton W1.

Example 3.1.8. Let W1 = ({s1, t1}, {a, b}, δ1, {s1}), where δ1 = {(s1, b, s1),
(s1, a, t1), (t1, a, t1), (t1, b, s1)}, be an automaton modeling a wheel (of a car).
It is depicted in Figure 3.1.

The state s1 indicates that the wheel stands still, while the state t1 indi-
cates that the wheel turns. The result of accelerating, modeled by action a,
makes the wheel turn. The result of braking, modeled by action b causes the
wheel to stand still. Initially the wheel stands still, as indicated by the initial
state s1.

An example of a finite computation of W1 is α = s1at1bs1 ∈ CW1 ,
modeling accelerating and subsequently braking. The record of this com-
putation is presΣ(α) = ab, which is thus an element of the finitary be-
havior of W1: ab ∈ BΣ

W1
. An example of an infinite computation of W1 is

s1at1bs1bs1 · · · ∈ Cω
W1

, which thus leads to an example of an infinitary be-

havior abω ∈ BΣ,ω
W1

. -.

It is immediate that finite computations define finite records. In fact, all finite
Θ-records can be obtained from finite computations. On the other hand,
infinite computations may give rise to finite Θ-records even though infinite
Θ-records can only be obtained from infinite computations.

Lemma 3.1.9. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an alpha-
bet disjoint from Q. Then

(1) BΘ
A = presΘ(CA) and

(2) BΘ,ω
A = presΘ(C

ω
A) ∩Θω.

Proof. (1) (⊇) Immediate.
(⊆) Let v ∈ Θ∗ and α ∈ C∞

A be such that presΘ(α) = v. Let
α1 ≤ α2 ≤ · · · ∈ CA be such that α = lim

n→∞
αn. Since presΘ is a homomor-

phism we have presΘ(α1) ≤ presΘ(α2) ≤ · · · . By definition lim
n→∞

presΘ(αn) =

presΘ(α) = v ∈ Θ∗, from which it follows that there exists an m ≥ 1 such
that presΘ(αm) = presΘ(αm+k) for all k ≥ 0. Hence presΘ(α) = presΘ(αm) ∈
presΘ(CA).
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(2) (⊇) Immediate, by Definition 3.1.7(2,4).
(⊆) Let α ∈ BΘ,ω

A . Then Definition 3.1.7(2,4) implies α ∈ presΘ(C
∞
A ) ∩

Θω . Hence either α ∈ presΘ(C
ω
A) ∩Θω or α ∈ presΘ(CA) ∩Θω = ∅. -.

The finite computations thus determine the finitary behavior of an automa-
ton. By Theorem 3.1.6, moreover, they also determine its infinitary behavior
and thus the full behavior.

Theorem 3.1.10. Let A and A′ be two automata and let Θ be an alphabet
disjoint from their sets of states. Then

if CA = CA′ , then BΘ
A = BΘ

A′ and BΘ,ω
A = BΘ,ω

A′ . -.

Corollary 3.1.11. Let A and A′ be two automata and let Θ be an alphabet
disjoint from their sets of states. Then

if CA = CA′ , then BΘ,∞
A = BΘ,∞

A′ . -.

Unlike the situation for computations as formulated in Lemma 3.1.5 and
Theorem 3.1.6, the finitary behavior of an automaton does not determine
its infinitary behavior. The loss of information due to the omission of states
prohibits combining “matching” finite records into an infinite record.

Example 3.1.12. Consider the two automata A = (Q, {a}, δ, {q}) and A′ =
(Q′, {a}, δ′, {q′}), where Q = {q, q11, q21, q22, q31, q32, q33, . . . }, Q′ = {q′, q1,
q2, q3, . . . }, and δ and δ′ are as depicted in Figure 3.2.

It is easy to see that Cω
A = ∅, even though CA = {q, qaq11, qaq21aq22, . . . }

is infinite. We furthermore see that B{a}
A = B{a}

A′ = {λ, a, aa, aaa , . . . },

whereas aω ∈ B{a},∞
A′ \B{a},∞

A . In fact, BΣ,ω
A = ∅. -.

By considering automata with a possibly infinite set of states we have chosen
a computationally very powerful model. Any given Turing machine M can be
unfolded into an automaton A that has the same behavior: A has all possible
configurations of M as its set of states and a transition from a state C to C′

with label p whenever M can move from configuration C to configuration C′

by executing instruction p.
A direct consequence is that many problems or questions concerning au-

tomata that are decidable for finite automata are now undecidable, e.g., there
exists no effective procedure for deciding for a given automaton whether or
not a given state can be reached by a computation that starts from the initial
state. If this problem would be decidable, then an effective decision procedure
for the halting problem for Turing machines would exist, which is known to
be undecidable.
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Fig. 3.2. Automata A and A′.

3.2 Properties of Automata

In this section we discuss some basic notions for automata. In three subsec-
tions we consider reduced versions of automata, the enabling of actions in
automata, and deterministic automata.

3.2.1 Reduced Versions

An automaton may have states, actions, or transitions that are “superfluous”
in the sense that they do not occur in any computation of the automaton.
Thus for the description and investigation of the dynamic — behavioral —
properties of an automaton these elements are often not relevant and may be
ignored.

In this subsection we introduce and relate to each other various reduced
versions of an automaton. A reduced version of an automaton has less states,
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actions, or transitions than, but the same set of computations as, the original
automaton.

We begin by identifying those elements of an automaton that are crucial
for its set of computations and behavior, and which thus cannot be omitted
from an automaton without affecting its set of computations and behavior.

Definition 3.2.1. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) a state q ∈ Q is reachable (in A) if there exists a computation α ∈ C∞
A

such that α = βqγ for some β ∈ (QΣ)∗ and γ ∈ (ΣQ)∞,

(2) an action a ∈ Σ is active (in A) if there exists a computation α ∈ C∞
A

such that α = βaγ for some β ∈ I(ΣQ)∗ and γ ∈ Q(ΣQ)∞, and

(3) a transition (q, a, q′) ∈ δ is useful (in A) if there exists a computation
α ∈ C∞

A such that α = βqaq′γ for some β ∈ (QΣ)∗ and γ ∈ (ΣQ)∞. -.

By Definition 3.1.7, an action can occur in a (Θ-)record of an automaton
if and only if it occurs in a computation of that automaton (and belongs
to Θ). It thus suffices to focus on computations only and there is no need
for an additional definition for actions occurring in the (Θ-)behavior of an
automaton.

Every occurrence of a state in a computation marks the end of a finite
computation (cf. the proof of Lemma 3.1.3). Thus a state is reachable if and
only if it can be reached as a result of a finite computation. Recall that the
initial states are always reachable by a trivial computation. Moreover, as
an immediate consequence of their definitions, it follows that reachability of
states, activity of actions, and usefulness of transitions can be established by
following the paths laid out by the labeled transitions starting from initial
states. However, one should keep in mind that — since no a priori constraints
are imposed on the state space, the alphabet, and the set of transitions of an
automaton — this is in general not an effective procedure.

Lemma 3.2.2. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) a state q ∈ Q is reachable in A if and only if there exists a finite compu-
tation α ∈ CA such that α = βq for some β ∈ (QΣ)∗,

(2) a transition (q, a, q′) ∈ δ is useful in A if and only if q is reachable in A,

(3) an action a ∈ Σ is active in A if and only if there exists a useful transition
(q, a, q′) ∈ δ, and

(4) if (q, a, q′) ∈ δ is useful in A, then q′ is reachable in A and a is active in
A. -.
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Definition 3.2.3. Let A be an automaton. Then

(1) its set of reachable states is denoted by QA,S,

(2) its set of active actions is denoted by ΣA,A, and

(3) its set of useful transitions is denoted by δA,T . -.

Whenever A is clear from the context, then we often simply use QS, ΣA, and
δT rather than QA,S , ΣA,A, and δA,T .

An immediate consequence of these definitions is the fact that the set of
computations of an arbitrary automaton contains the set CA of computations
of a given automaton A, if and only if QA,S is contained in its set of reachable
states, ΣA,A is contained in its set of active actions, δA,T is contained in its
set of useful transitions, and the initial states of A are among its initial states.

Lemma 3.2.4. Let A and A′ be two automata with sets of initial states IA
and IA′ , respectively. Then

CA ⊆ CA′ if and only if QA,S ⊆ QA′,S, ΣA,A ⊆ ΣA′,A, δA,T ⊆ δA′,T ,
and IA ⊆ IA′ . -.

The reduced versions of automata we are about to define will again be au-
tomata. Since they are the result of omitting — and not of adding — certain
elements, any reduced version of an automaton will always be contained in
the original automaton in the following sense.

Definition 3.2.5. Let A1 = (Q1, Σ1, δ1, I1) and A2 = (Q2, Σ2, δ2, I2) be two
automata. Then

A1 is contained in A2, denoted by A1 / A2, if Q1 ⊆ Q2, Σ1 ⊆ Σ2,
δ1 ⊆ δ2, and I1 ⊆ I2. -.

The containment relation / is reflexive and transitive and hence a partial
order on automata. Although it would be natural to say that A1 is a “sub-
automaton” of A2 whenever A1 / A2 holds, we refrain from doing so. The
reason being that this might lead to confusion with the notion of subautoma-
ton that we will introduce later in the context of synchronized automata.

Containment of one automaton in another implies that the first automa-
ton has no other (initial) states, actions, or transitions than those already
present in the second automaton. Consequently, it will also have no other
computations.

Lemma 3.2.6. Let A1 and A2 be two automata. Then
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if A1 / A2, then CA1 ⊆ CA2 . -.

Note that by Lemma 3.1.5, CA1 ⊆ CA2 implies Cω
A1
⊆ Cω

A2
and it thus

suffices to refer to finite computations only.
Since an automaton may have states, actions, and transitions that never

occur in its computations, this statement cannot be reversed unless the con-
dition of containment is weakened by relating to initial states and useful
transitions only.

Lemma 3.2.7. Let A1 = (Q1, Σ1, δ1, I1) and A2 = (Q2, Σ2, δ2, I2) be two
automata. Then

CA1 ⊆ CA2 if and only if I1 ⊆ I2 and δA1,T ⊆ δ2. -.

A reduced version A′ of an automaton A lacks certain elements of A, but
should still define the same set of computations. Hence we require that A′

is an automaton. Furthermore, from here on we will focus on finite com-
putations. This is sufficient because according to Theorem 3.1.6 and Corol-
lary 3.1.11, equality of the sets of finite computations of A and A′ guarantees
that also the sets of all computations of A and A′ will be the same, as well
as their Θ-behavior (for every set of actions Θ).

We distinguish three different criteria that can be used to reduce an au-
tomaton. We define separately reductions based on states, on actions, and
on transitions, and subsequently we combine them. Action reductions and
transition reductions are both described relative to a given set Θ of actions,
similar to the definitions of the Θ-records and Θ-behavior of an automaton.

We begin by introducing the Θ-action-reduced version of an automaton
A, which is defined by omitting from the set of actions of A those actions
from Θ that are not active in A. Thus also the transitions of A which are
labeled with an action from Θ that is not active in A, will be omitted.

Definition 3.2.8. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) the Θ-action-reduced version of A is the automaton denoted by AΘ
A and

is defined as AΘ
A = (Q,ΣΘ

A,A, δ
Θ
A,A, I), where

ΣΘ
A,A = {a ∈ Σ | a ∈ Θ ⇒ a ∈ ΣA,A} and

δΘA,A = δ ∩ (Q×ΣΘ
A,A ×Q), and

(2) A is Θ-action reduced if A = AΘ
A. -.
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Whenever the automaton A is clear from the context, then we may simply
write ΣΘ

A and δΘA rather than ΣΘ
A,A and δΘA,A, respectively.

Note that Σ∅

A = Σ and ΣΣ
A = ΣA. In general, ΣΘ

A = (Σ \Θ)∪ (ΣA ∩Θ).
Observe furthermore that in δΘA there may still be transitions labeled with a
symbol from Θ which are not useful in A. We have δΘA = {(q, a, q′) ∈ δ | a ∈
Θ ⇒ a ∈ ΣA}. Hence δ∅A = δ and δΣA ⊇ δT . Consequently A∅

A = A, which
shows that action reduction relative to ∅ does not affect the automaton.

Next we define the Θ-transition-reduced version of an automatonA. Tran-
sitions that are labeled with an action from Θ are retained only if they are
useful, while all other transitions remain.

Definition 3.2.9. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) the Θ-transition-reduced version of A is the automaton denoted by AΘ
T

and is defined as AΘ
T = (Q,Σ, δΘA,T , I), where

δΘA,T = {(q, a, q′) ∈ δ | a ∈ Θ ⇒ (q, a, q′) ∈ δA,T }, and

(2) A is Θ-transition reduced if A = AΘ
T . -.

Whenever the automaton A is clear from the context, then we may simply
write δΘT rather than δΘA,T .

Note that δ∅T = δ and thus A∅

T = A. Hence transition reduction relative
to ∅ does not affect the automaton. Moreover, δΣT = δT and — in general —
δΘT = (δ \ (Q×Θ ×Q)) ∪ (δT ∩ (Q×Θ ×Q)). In fact, δT ⊆ δΘT ⊆ δΘA . In the
following example we show that both of these inclusions can be proper.

Example 3.2.10. Let A = ({p, q}, {a, b}, δ, {p}), with δ = {(p, a, p), (q, a, q),
(q, b, p)}, be an automaton. It is depicted in Figure 3.3(a).

p

A{a}
T :

a

q

(b)

b
p q

(a)

A:

a a

b

Fig. 3.3. Automata A and A{a}
T .
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It is easy to see that δT = {(p, a, p)}, i.e. A has only one useful transition.
This implies that ΣA = {a} and thus δ{a}A = δ, i.e. A is {a}-action reduced:

A{a}
A = A. It also implies that the {a}-transition-reduced version of A is

A{a}
T = ({p, q}, {a, b}, δ{a}T , {p}), with δ{a}T = {(p, a, p), (q, b, p)}, as depicted

in Figure 3.3(b). Consequently, δT " δ{a}T " δ{a}A . -.

Lemma 3.2.11. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an al-
phabet disjoint from Q. Let AΘ

A = (Q,ΣΘ
A , δΘA , I) and let AΘ

T = (Q,Σ, δΘT , I).
Then

(1) δT = δΘT \ {(q, a, q′) ∈ δ | a /∈ Θ and (q, a, q′) /∈ δT } and

(2) δΘT = δΘA \ {(q, a, q′) ∈ δ | a ∈ Θ and (q, a, q′) /∈ δT }.

Proof. (1) (⊆) Immediate because δT consists only of useful transitions.
(⊇) This follows from the observation that all transitions (q, a, q′) ∈ δΘT ,

with a ∈ Θ, are useful in A.
(2) (⊆) Let (q, a, q′) ∈ δΘT . Thus (q, a, q′) ∈ δ.
If a /∈ Θ, then a ∈ ΣΘ

A and so (q, a, q′) ∈ δΘA .
If a ∈ Θ, then (q, a, q′) ∈ δT .

Hence (q, a, q′) ∈ δΘA \ {(q, a, q′) ∈ δ | a ∈ Θ and (q, a, q′) /∈ δT }.
(⊇) Let (q, a, q′) ∈ δΘA be such that a ∈ Θ implies (q, a, q′) ∈ δT . Then by

Definition 3.2.9(1), (q, a, q′) ∈ δΘT . -.

It is immediate from the definitions that for every automaton A and for
every set of actions Θ, both the Θ-action-reduced version AΘ

A of A and its Θ-
transition-reduced version AΘ

T are contained in A. Consequently, CAΘ
A
⊆ CA

and CAΘ
T
⊆ CA always hold due to Lemma 3.2.6. In addition, Lemma 3.2.11

implies that the transition relations of both AΘ
A and AΘ

T contain δT . Since
AΘ

A and AΘ
T have the same initial states as A, it follows from Lemma 3.2.7

that CA ⊆ CAΘ
A
and CA ⊆ CAΘ

T
.

We conclude that Definitions 3.2.8 and 3.2.9 thus satisfy the requirement
that the computations of an automaton are not affected by the reduction.

Theorem 3.2.12. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

CA = CAΘ
A
= CAΘ

T
. -.

An immediate consequence of this theorem is that an automaton, its Θ-
action-reduced version, and its Θ-transition-reduced version, all three have
the same reachable states, active actions, and useful transitions.
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Corollary 3.2.13. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(1) QA,S = QAΘ
A ,S = QAΘ

T ,S,

(2) ΣA,A = ΣAΘ
A ,A = ΣAΘ

T ,A, and

(3) δA,T = δAΘ
A ,T = δAΘ

T ,T . -.

In Definitions 3.2.8 and 3.2.9, the reduced versions of an automaton are
defined relative to some given alphabet Θ. From both definitions it is however
immediately clear that actions which do belong to Θ but not to the alphabet
of the automaton, are not even considered.

Lemma 3.2.14. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(1) AΘ
A = AΘ

T = A whenever Θ ∩Σ = ∅,

(2) AΘ
A = AΘ∩Σ

A , and

(3) AΘ
T = AΘ∩Σ

T . -.

In addition, both in Definition 3.2.8 and in Definition 3.2.9 the role of each
action is assessed on an individual basis, and reduction relative to any action
is independent of the role of other actions.

Example 3.2.15. (Example 3.2.10 continued) Let A2 be the automaton ob-
tained fromA by adding the transition (p, c, p) to its transition relation. Then
ΣA2,A = {a, c} are the active actions of A2. Hence A2 is {a}-action reduced,
{c}-action reduced, and {a, c}-action reduced. Since b is not active in A2 it
follows that A2 is neither {b}-action reduced, nor {a, b}-action reduced, nor
{b, c}-action reduced.

The useful transitions of A2 are δA2,T = {(p, a, p), (p, c, p)}. Hence A2 is
not {a}-transition reduced as (q, a, q) is not useful in A2. Since also (q, b, p)
is not useful in A2, it follows that A2 is neither {b}-transition reduced nor
{a, b}-transition reduced. Because the only c-transition is useful in A2, we
do have that A2 is {c}-transition reduced. However, A2 is neither {a, c}-
transition reduced nor {b, c}-transition reduced. -.

Consequently, as formally stated in the next lemma, the order in which ac-
tions are considered is irrelevant and has no effect on the resulting reduced
version.
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Lemma 3.2.16. Let A = (Q,Σ, δ, I) be an automaton, let Θ be an alphabet
disjoint from Q, and let Θ1, Θ2 ⊆ Θ be such that Θ = Θ1 ∪Θ2. Then

(1) (AΘ1
A )Θ2

A = AΘ
A and

(2) (AΘ1
T )Θ2

T = AΘ
T .

Proof. (1) Let AΘ1
A = (Q,ΣΘ1

A , δΘ1
A , I), (AΘ1

A )Θ2
A = (Q, (ΣΘ1

A )Θ2
A , (δΘ1

A )Θ2
A , I),

and AΘ1∪Θ2
A = AΘ

A = (Q,ΣΘ
A , δΘA , I). First we prove that (ΣΘ1

A )Θ2
A = ΣΘ

A .
Let a ∈ (ΣΘ1

A )Θ2
A . Then a ∈ ΣΘ1

A , which implies that a ∈ Σ.
If a /∈ Θ, then a ∈ ΣΘ

A by definition.
If a ∈ Θ1, then a ∈ ΣA,A because a ∈ ΣΘ1

A , and hence a ∈ ΣΘ
A .

If a ∈ Θ2, then a ∈ Σ
A

Θ1
A ,A

because a ∈ (ΣΘ1
A )Θ2

A . By Corollary 3.2.13 it

follows that a ∈ ΣA,A and hence a ∈ ΣΘ
A .

Now assume that a ∈ ΣΘ
A . Then a ∈ Σ.

If a /∈ Θ, then by definition a ∈ ΣΘ1
A and a ∈ (ΣΘ1

A )Θ2
A .

If a ∈ Θ, then a ∈ ΣA,A because a ∈ ΣΘ
A and by Corollary 3.2.13 also

a ∈ Σ
A

Θ1
A ,A

. Hence a ∈ ΣΘ1
A and a ∈ (ΣΘ1

A )Θ2
A .

Having established (ΣΘ1
A )Θ2

A = ΣΘ
A we immediately obtain that (δΘ1

A )Θ2
A =

δΘ1
A ∩(Q×(ΣΘ1

A )Θ2
A ×Q) = (δ∩(Q×ΣΘ1

A ×Q))∩(Q×ΣΘ
A×Q). Since ΣΘ

A ⊆ ΣΘ1
A

this yields (δΘ1
A )Θ2

A = δ ∩ (Q ×ΣΘ
A ×Q) = δΘA .

(2) Let AΘ1
T = (Q,Σ, δΘ1

T , I), let (AΘ1
T )Θ2

T = (Q,Σ, (δΘ1
T )Θ2

T , I), and let
AΘ1∪Θ2

T = AΘ
T = (Q,Σ, δΘT , I). We prove that (δΘ1

T )Θ2
T = δΘT .

Let (q, a, q′) ∈ (δΘ1
T )Θ2

T . Then (q, a, q′) ∈ δΘ1
T , which implies (q, a, q′) ∈ δ.

If a /∈ Θ, then (q, a, q′) ∈ δΘT by definition.
If a ∈ Θ1, then (q, a, q′) ∈ δA,T because (q, a, q′) ∈ δΘ1

T , and hence
(q, a, q′) ∈ δΘT .
If a ∈ Θ2, then (q, a, q′) ∈ δ

A
Θ1
T ,T

because (q, a, q′) ∈ (δΘ1
T )Θ2

T . By Corol-

lary 3.2.13 it follows that (q, a, q′) ∈ δA,T and hence (q, a, q′) ∈ δΘT .
Now assume that (q, a, q′) ∈ δΘT . Thus (q, a, q

′) ∈ δ.
If a /∈ Θ, then by definition (q, a, q′) ∈ δΘ1

T and (q, a, q′) ∈ (δΘ1
T )Θ2

T .
If a ∈ Θ, then (q, a, q′) ∈ δA,T because (q, a, q′) ∈ δΘT . Thus by Corol-
lary 3.2.13 we have (q, a, q′) ∈ δ

A
Θ1
T ,T

. Hence (q, a, q′) ∈ δΘ1
T and (q, a, q′) ∈

(δΘ1
T )Θ2

T . -.

An immediate consequence of this lemma is that the Θ-action-reduced and
the Θ-transition-reduced versions of an automaton are indeed Θ-action-
reduced and Θ-transition-reduced automata, respectively.

Theorem 3.2.17. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then



42 3. Automata

(1) AΘ
A is Θ-action reduced and

(2) AΘ
T is Θ-transition reduced.

Proof. AΘ
A = (AΘ

A)
Θ
A and AΘ

T = (AΘ
T )

Θ
T follow directly from Lemma 3.2.16. -.

A more general consequence is that reduction relative to more actions has a
cumulative effect, but only for those actions that have not yet been considered
there is an effect.

Lemma 3.2.18. Let A = (Q,Σ, δ, I) be an automaton and let Θ1, Θ2 be
alphabets disjoint from Q and such that (Θ1 ∩Σ) ⊆ Θ2. Then

(1) (i) (AΘ2
A )Θ1

A = AΘ2
A ,

(ii) AΘ2
A / AΘ1

A , and

(iii) if A = AΘ2
A , then A = AΘ1

A , and

(2) (i) (AΘ2
T )Θ1

T = AΘ2
T ,

(ii) AΘ2
T / AΘ1

T , and

(iii) if A = AΘ2
T , then A = AΘ1

T .

Proof. (1) (i) Let Σ′ be the alphabet of AΘ2
A . Thus Σ′ ⊆ Σ and hence

Θ1 ∩ Σ′ ⊆ Θ1 ∩ Σ ⊆ Θ2. From Lemma 3.2.14(2) we know that (AΘ2
A )Θ1

A =
(AΘ2

A )Θ1∩Σ
′

A . Combining these facts with Lemma 3.2.16(1) yields (AΘ2
A )Θ1

A =

(AΘ2
A )Θ1∩Σ

′

A = AΘ2∪(Θ1∩Σ
′)

A = AΘ2
A .

(ii) Lemma 3.2.16(1) implies that (AΘ2
A )Θ1

A = (AΘ1
A )Θ2

A . Thus, by the
above, AΘ2

A = (AΘ1
A )Θ2

A . Since reduction always yields an automaton con-
tained in the original one, we now have AΘ2

A = (AΘ1
A )Θ2

A / AΘ1
A .

(iii) Let A = AΘ2
A . Then using (i) above we conclude that A = AΘ2

A =
(AΘ2

A )Θ1
A = AΘ1

A .
(2) (i) First we note that Σ is the alphabet of AΘ2

T . By Lemmata 3.2.13(3)

and 3.2.16(2) we have (AΘ2
T )Θ1

T = (AΘ2
T )Θ1∩Σ

T = AΘ2∪(Θ1∩Σ)
T = AΘ2

T .
(ii) Lemma 3.2.16(1) implies that (AΘ2

T )Θ1
T = (AΘ1

T )Θ2
T . Then, by the

above, AΘ2
T = (AΘ1

T )Θ2
T . Since the transition reductions always yield an au-

tomaton contained in the original one, we now have AΘ2
T = (AΘ1

T )Θ2
T / AΘ1

T .
(iii) Let A = AΘ2

T . Then from (2) (i) we conclude that A = AΘ2
T =

(AΘ2
T )Θ1

T = AΘ2
T . -.

Since all actions of an automaton A with alphabet Σ have been considered,
a further reduction with respect to actions of AΣ

A or a further reduction with
respect to transitions of AΣ

T thus has no additional effect.
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Theorem 3.2.19. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) AΣ
A / AΘ

A and

(2) AΣ
T / AΘ

T . -.

From Lemma 3.2.6 it follows that whenever an automaton A1 is contained
in an automaton A2, then all elements which are superfluous in A2 will cer-
tainly be superfluous in A1. This implies that action reduction and transition
reduction are monotonous operations with respect to containment (/).

Lemma 3.2.20. Let A1 = (Q1, Σ1, δ1, I1) and A2 = (Q2, Σ2, δ2, I2) be two
automata such that A1 / A2 and let Θ be an alphabet disjoint from Q1 ∪Q2.
Then

(1) (A1)ΘA / (A2)ΘA and

(2) (A1)ΘT / (A2)ΘT .

Proof. (1) Let (A1)ΘA = (Q1, (Σ1)ΘA , (δ1)
Θ
A , I1) and let (A2)ΘA = (Q2, (Σ2)ΘA ,

(δ2)ΘA , I2). Since A1 / A2 we know that Q1 ⊆ Q2 and I1 ⊆ I2. By
Lemma 3.2.6, CA1 ⊆ CA2 and thus every action that is active in A1 is also
active in A2. Hence (Σ1)ΘA ⊆ (Σ2)ΘA . This in turn implies that (δ1)ΘA ⊆ (δ2)ΘA
because the transition relation of A1 is contained in that of A2. We conclude
that (A1)ΘA / (A2)ΘA .

(2) Let (A1)ΘT = (Q1, Σ1, (δ1)ΘT , I1) and let (A2)ΘT = (Q2, Σ2, (δ2)ΘT , I2).
Since A1 / A2 we know that Q1 ⊆ Q2, Σ1 ⊆ Σ2, and I1 ⊆ I2. From the fact
that CA1 ⊆ CA2 by Lemma 3.2.6, we deduce that every transition that is
useful in A1 is useful also in A2. Hence (δ1)ΘT ⊆ (δ2)ΘT and we conclude that
(A1)ΘT / (A2)ΘT . -.

Given an alphabet Θ, an automaton A may contain many automata that
are Θ-action reduced or Θ-transition reduced. We can now show that among
these AΘ

A and AΘ
T , respectively, are the largest (with respect to containment).

Lemma 3.2.21. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Let A′ / A. Then

(1) if A′ is Θ-action reduced, then A′ / AΘ
A, and

(2) if A′ is Θ-transition reduced, then A′ / AΘ
T .

Proof. Since A′ / A, Lemma 3.2.20 implies (A′)ΘA / AΘ
A and (A′)ΘT / AΘ

T .
Hence if A′ = (A′)ΘA , then A′ / AΘ

A , and if A′ = (A′)ΘT , then A′ / AΘ
T . -.
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Theorem 3.2.22. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(1) AΘ
A is the largest Θ-action-reduced automaton contained in A and

(2) AΘ
T is the largest Θ-transition-reduced automaton contained in A.

Proof. Immediate from Theorem 3.2.17 and Lemma 3.2.21. -.

For a given automaton A and an alphabet Θ, the difference between A and
AΘ

A and between A and AΘ
T is thus minimal. Nevertheless, by definition, the

remaining actions of Θ in AΘ
A are active in both A and AΘ

A , and the remaining
transitions in AΘ

T with a label from Θ are useful in both A and AΘ
T . Hence,

a further reduction of AΘ
A or AΘ

T that will not affect the computations is
only feasible when other elements are considered. We already observed in
Theorem 3.2.19 that in case all actions of A have been involved in action
reduction (yielding AΣ

A) or transition reduction (yielding AΣ
T ), further action

reduction or transition reduction, respectively, will have no additional effect.
From Definitions 3.2.8 and 3.2.9 and the observations immediately follow-

ing these definitions we know that given an automaton A = (Q,Σ, δ, I) we
have AΣ

A = (Q,ΣA,A, δΣA , I) and AΣ
T = (Q,Σ, δA,T , I), with ΣA,A ⊆ Σ and

δA,T ⊆ δΣA . Hence AΣ
A and AΣ

T are in general incomparable. We now consider
the effect of combining action and transition reductions.

Lemma 3.2.23. Let A = (Q,Σ, δ, I) be an automaton and let Θ1, Θ2 be
alphabets disjoint from Q. Then

(AΘ1
A )Θ2

T = (AΘ2
T )Θ1

A .

Proof. Let AΘ1
A = (Q,ΣΘ1

A , δΘ1
A , I) and AΘ2

T = (Q,Σ, δΘ2
T , I). Then (AΘ1

A )Θ2
T

= (Q,ΣΘ1
A , δ2, I) with δ2 = {(q, a, q′) ∈ δΘ1

A | a ∈ Θ2 ⇒ (q, a, q′) ∈ δ
A

Θ1
A ,T

}.

By Corollary 3.2.13(3), (q, a, q′) ∈ δ
A

Θ1
A ,T

if and only if (q, a, q′) ∈ δA,T .

Hence δ2 = {(q, a, q′) ∈ δΘ1
A | a ∈ Θ2 ⇒ (q, a, q′) ∈ δA,T } = δΘ1

A ∩ δΘ2
T =

δΘ2
T ∩ (δ∩ (Q×ΣΘ1

A ×Q)). Since δΘ2
T ⊆ δ, we have δ2 = δΘ2

T ∩ (Q×ΣΘ1
A ×Q).

Next consider (AΘ2
T )Θ1

A = (Q,Σ1, δ1, I), with Σ1 = {a ∈ Σ | a ∈ Θ1 ⇒
a ∈ Σ

A
Θ2
T ,A

} and δ1 = δΘ2
T ∩(Q×Σ1×Q). By Corollary 3.2.13(2), a ∈ Σ

A
Θ2
T ,A

if and only if a ∈ ΣA,A. Thus Σ1 = {a ∈ Σ | a ∈ Θ1 ⇒ a ∈ ΣA,A} = ΣΘ1
A .

Hence δ1 = δΘ2
T ∩ (Q × ΣΘ1

A × Q) = δ2. We thus conclude that (AΘ1
A )Θ2

T =
(AΘ2

T )Θ1
A . -.

By this lemma, the order in which action and transition reductions are ap-
plied is irrelevant. Together with Lemma 3.2.16 this implies that for every
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automaton A, any finite succession of action reductions and transition re-
ductions (relative to certain sets of actions) yields an automaton of the form
(AΘ1

A )Θ2
T = (AΘ2

T )Θ1
A .

Example 3.2.24. (Example 3.2.10 continued) We consider A, as depicted in
Figure 3.3(a). Since b is not active in A, the {b}-action-reduced version
of A is A{b}

A = ({p, q}, {a}, {(p, a, p), (q, a, q)}, {p}). Because (q, a, q) is not

useful in A{b}
A , the {a}-transition-reduced version of A{b}

A is (A{b}
A ){a}T =

({p, q}, {a}, {(p, a, p)}, {p}).
Now we consider the {a}-transition-reduced versionA{a}

T ofA, as depicted

in Figure 3.3(b). Since b is not active in A{a}
T , the {b}-action-reduced version

of A{a}
T is (A{a}

T ){b}A = (A{b}
A ){a}T . -.

Theorem 3.2.25. Let A be an automaton and let Θ1, Θ2 be alphabets dis-
joint from its set of states. Then

(1) (AΘ1
A )Θ2

T is the largest automaton contained in A that is both Θ1-action
reduced and Θ2-transition reduced, and

(2) C
(A

Θ1
A )

Θ2
T

= CA.

Proof. (1) By Lemma 3.2.23, (AΘ1
A )Θ2

T = (AΘ2
T )Θ1

A . Using Lemma 3.2.16 it
is easy to see that (AΘ1

A )Θ2
T is both Θ1-action reduced and Θ2-transition re-

duced. Now let A1 be an automaton contained in A. Then, by Lemma 3.2.20,
(A1)

Θ1
A / AΘ1

A and thus ((A1)
Θ1
A )Θ2

T / (AΘ1
A )Θ2

T . If A1 is Θ1-action reduced
and Θ2-transition reduced, then A1 = (A1)

Θ1
A and A1 = (A1)

Θ2
T . In that case

we have A1 = (A1)
Θ1
A = ((A1)

Θ1
A )Θ2

T / (AΘ1
A )Θ2

T .
(2) From Theorem 3.2.12 directly follows C

(A
Θ1
A )

Θ2
T

= C
A

Θ1
A

= CA. -.

In particular we now have that given an automaton A = (Q,Σ, δ, I), the
two automata (AΣ

A)
Σ
T and (AΣ

T )
Σ
A are the same. In fact, the definitions

together with Theorem 3.2.12 and Corollary 3.2.13 imply that (AΣ
A )ΣT =

(Q,ΣA,A, δA,T , I) = (AΣ
T )

Σ
A and this automaton has neither superfluous ac-

tions nor superfluous transitions.

Theorem 3.2.26. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) AΣ
T is the least automaton with set of states Q and alphabet Σ such that

CAΣ
T
= CA, and

(2) (AΣ
A)

Σ
T is the least automaton with set of states Q such that C(AΣ

A )ΣT
=

CA.
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Proof. By Theorem 3.2.12, CAΣ
T

= CA = CAΣ
A

= C(AΣ
A )ΣT

. As observed
before, AΣ

T = (Q,Σ, δA,T , I) and (AΣ
A)

Σ
T = (Q,ΣA,A, δA,T , I). Now assume

that A′ = (Q,Σ′, δ′, I ′) is an automaton such that CA′ = CA. Thus I ′ = I,
δA′,T = δA,T , and ΣA′,A = ΣA,A. Since δA′,T ⊆ δ′ and ΣA′,A ⊆ Σ′ we have
(AΣ

A )ΣT / A′, and if Σ′ = Σ, then we have AΣ
T / A′. -.

Finally, we consider (additional) reductions with respect to states.
The state-reduced version of an automaton is defined by omitting the

non-reachable states from its specification. Consequently, the outgoing and
incoming transitions of these states are no longer proper transitions and thus
disappear as well.

Definition 3.2.27. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) the state-reduced version of A is the automaton denoted by AS and is
defined as AS = (QS , Σ, δT , I), and

(2) A is state reduced if A = AS. -.

Note that δT = {(q, a, q′) ∈ δ | q, q′ ∈ QS} by Lemma 3.2.2. Exactly those
transitions that are outgoing or incoming transitions of a non-reachable state
of A have thus been omitted. Hence δT = δ ∩ (QS × Σ × QS) and, since
I ⊆ QS , AS is well defined. Now Lemma 3.2.7 immediately implies that
CA ⊆ CAS . Furthermore, since AS / A we know from Lemma 3.2.6 that
CAS ⊆ CA.

Theorem 3.2.28. Let A be an automaton. Then

CA = CAS . -.

Example 3.2.29. (Example 3.2.10 continued) Consider the automaton A de-
picted in Figure 3.3(a). We have seen that δT = {(p, a, p)}. This im-
plies that QS = {p}. Hence the state-reduced version of A is AS =
({p}, {a, b}, {(p, a, p)}, {p}) and thus CA = CAS = {p, pap, papap, . . .}. -.

Using the notion of a state-reduced version we can now reformulate Lem-
mata 3.2.6 and 3.2.7.

Lemma 3.2.30. Let A1 = (Q1, Σ1, δ1, I1) and A2 = (Q2, Σ2, δ2, I2) be two
automata such that Σ1 ⊆ Σ2. Then

CA1 ⊆ CA2 if and only if (A1)S / (A2)S.
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Proof. (Only if) Let CA1 ⊆ CA2 . Then by Lemma 3.2.7, I1 ⊆ I2 and δA1,T ⊆
δ2. In fact, δA1,T ⊆ δA2,T holds because all transitions in δA1,T are used in
the computations of A2. From δA1,T ⊆ δA2,T and Lemma 3.2.2 now follows
that we also have QA1,S ⊆ QA2,S . Together with the fact that Σ1 ⊆ Σ2 this
proves that (A1)S / (A2)S .

(If) Let (A1)S / (A2)S . Then CA1 = C(A1)S ⊆ C(A2)S = CA2 by
Lemma 3.2.6 and Theorem 3.2.28. -.

As a consequence we obtain that also state reduction is a monotonous oper-
ation with respect to containment (/).

Lemma 3.2.31. Let A1 and A2 be two automata such that A1 / A2. Then

(A1)S / (A2)S.

Proof. By Lemma 3.2.6, CA1 ⊆ CA2 , and since the alphabet of A1 is con-
tained in that of A2, Lemma 3.2.30 implies that (A1)S / (A2)S . -.

Another consequence of Lemma 3.2.30 is that once an automaton has been
reduced with respect to its states, no further state reduction is possible.

Theorem 3.2.32. Let A be an automaton. Then

AS is state reduced.

Proof. By definition, A and AS have the same alphabet. By Theorem 3.2.28,
CA = CAS . Since A and AS have the same alphabet we can now apply
Lemma 3.2.30 twice and thus obtain A = (AS)S . Consequently, AS is state
reduced. -.

A state-reduced version of an automaton has neither superfluous states nor
superfluous transitions.

Theorem 3.2.33. Let A = (Q,Σ, δ, I) be an automaton. Then

AS is the least automaton with alphabet Σ such that CAS = CA.

Proof. By definition, AS and A have the same alphabet. By Theorem 3.2.28,
CAS = CA. Now assume that A′ is an automaton with alphabet Σ and
such that CA = CA′ . Then by applying Lemma 3.2.30 twice we have AS =
(A′)S / A′. -.

Though an automaton A may still contain many automata that are state
reduced, we now show that among these AS is the largest (with respect to
containment).
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Lemma 3.2.34. Let A be an automaton and let A′ / A. Then

if A′ is state reduced, then A′ / AS .

Proof. If A′ = (A′)S , then by Lemma 3.2.31, A′ = (A′)S / AS . -.

The difference between A and AS is thus minimal.

Theorem 3.2.35. Let A be an automaton. Then

AS is the largest state-reduced automaton contained in A.

Proof. Immediate from Theorem 3.2.32 and Lemma 3.2.34. -.

A further reduction can only be achieved through the actions and transitions.
We thus combine state reductions with action reductions and transition re-
ductions.

Lemma 3.2.36. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an al-
phabet disjoint from Q. Then

(1) (AΘ
A)S = (AS)ΘA and

(2) (AΘ
T )S = (AS)ΘT = AS .

Proof. (1) Let AΘ
A = (Q,ΣΘ

A , δΘA , I). By Corollary 3.2.13, QAΘ
A ,S = QA,S and

δAΘ
A ,T = δA,T . Hence (AΘ

A)S = (QA,S , ΣΘ
A , δA,T , I).

Next we consider (AS)ΘA = (Q′, Σ′, δ′, I ′). By Definitions 3.2.8 and 3.2.27,
I ′ = I and Q′ = QA,S . Furthermore, Σ′ = {a ∈ Σ | a ∈ Θ ⇒ a ∈ ΣAS ,A}.
Since CAS = CA by Theorem 3.2.28, we have Σ′ = {a ∈ Σ | a ∈ Θ ⇒
ΣA,A} = ΣΘ

A . Finally, δ′ = δA,T ∩ (Q × ΣΘ
A × Q) = δA,T . Hence (AΘ

A)S =
(AS)ΘA .

(2) Both A and AΘ
T have alphabet Σ. By Theorem 3.2.12,CA = CAΘ

T
and

thus applying Lemma 3.2.30 twice yields AS = (AΘ
T )S . Also A and (AS)ΘT

have the same alphabet. Since CA = C(AS)ΘT
by Theorems 3.2.12 and 3.2.28,

applying Lemma 3.2.30 twice yields AS = ((AS)ΘT )S . ThusAS = ((AS)ΘT )S /
(AS)ΘT / AS and hence it must be the case that AS = (AS)ΘT . -.

Transition reduction in the context of state reduction thus has no effect. All
transitions that are not useful will disappear by the state reduction.

Theorem 3.2.37. Let A be a state-reduced automaton and let Θ be an al-
phabet disjoint from its set of states. Then

A is Θ-transition reduced.
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Proof. Since A is state reduced we have A = AS . Then Lemma 3.2.36(2)
implies AΘ

T = (AS)ΘT = AS = A and hence A is Θ-transition reduced. -.

Example 3.2.38. (Example 3.2.29 continued) By definition every transition
of AS is useful. Hence AS trivially is Θ-transition reduced for any set of
actions Θ. -.

Lemmata 3.2.16, 3.2.23, and 3.2.36 now imply that for every automaton A,
any finite succession of action reductions and state reductions (at least one)
has the same effect as one state reduction and one action reduction (relative
to some alphabet Θ) and yields an automaton (AΘ

A)S = (AS)ΘA.

Example 3.2.39. (Examples 3.2.24 and 3.2.29 continued) Consider the state-
reduced version AS of A. Since ΣAS ,A = {a}, the {b}-action-reduced version

of AS is (AS)
{b}
A = ({p}, {a}, {(p, a, p)}, {p}).

Now consider the {b}-action-reduced versionA{b}
A ofA. We have seen that

its only useful transition is (p, a, p), which implies that q is not reachable and
thus (A{b}

A )S = (AS)
{b}
A . -.

Theorem 3.2.40. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(AΘ
A)S is the largest automaton contained in A that is both state reduced

and Θ-action reduced.

Proof. By Lemma 3.2.36(1) and Theorems 3.2.17(1) and 3.2.32, (AΘ
A)S =

(AS)ΘA is Θ-action reduced and state reduced.
Now let A1 / A. Then by Lemma 3.2.20(1), (A1)ΘA / AΘ

A , and by
Lemma 3.2.31, ((A1)ΘA)S / (AΘ

A)S . If A1 is Θ-action reduced, then by
definition (A1)ΘA = A1. If — in addition — it is state reduced, then
A1 = (A1)S = ((A1)ΘA)S / (AΘ

A)S . -.

Summarizing, an automaton may have superfluous states, actions, or tran-
sitions, which can be omitted without affecting its operational potential (as
represented by its set of finite computations). We have considered reductions
with respect to each of these elements separately, and in combination. It has
been shown that transition reduction is implied by state reduction, whereas
the other combinations of reductions are stronger than each reduction sep-
arately. Consequently, once an automaton has been reduced with respect
to states and actions, then it cannot be reduced any further without losing
computations.

In correspondence to the notions of Θ-records and Θ-behavior of an au-
tomaton, both action reduction and transition reduction have been investi-
gated relative to an alphabet. In case no special actions are distinguished and
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every element of the alphabet of an automaton is considered, then we drop
in the sequel — as before — the reference to the alphabet if this cannot lead
to confusion.

The above implies that for an automaton A = (Q,Σ, δ, I) we now have
AA = AΣ

A as its action-reduced version, and we have AT = AΣ
T as its

transition-reduced version. Furthermore, we will refer to AR = (AA)S =
(AS)A as the reduced version of A. Note that the definitions of AS and
(AS)ΣA , together with Theorem 3.2.28 and Corollary 3.2.13, imply that the
automaton AR is specified as AR = (QS , ΣA, δT , I). Hence AR has no super-
fluous elements at all.

Theorems 3.2.37 and 3.2.40 imply that AR is the largest automaton con-
tained in A that is state reduced, action reduced, and transition reduced,
and has the same computations as A. We now show that AR is the only such
automaton.

Theorem 3.2.41. Let A = (Q,Σ, δ, I) be an automaton. Then

AR is the unique automaton contained in A that is state reduced, action
reduced, and transition reduced, and such that CAR = CA.

Proof. Let A′ = (Q′, Σ′, δ′, I ′) be an action-reduced, transition-reduced, and
state-reduced automaton such that A′ / A. From Theorems 3.2.37 and 3.2.40
we know that A′ / AR.

Now assume that CA′ = CA. Then QA′,S = QA,S , ΣA′,A = ΣA,A,
δA′,T = δA,T , and I ′ = I. Since QA′,S ⊆ Q′, ΣA′,A ⊆ Σ′, and δA′,T ⊆ δ′, we
have AR = (QA,S , ΣA,A, δA,T , I) / A′. We thus conclude that A′ = AR. -.

3.2.2 Enabling

For an arbitrary automaton and a given action, it is in general not the case
that this action can always (i.e. at any give state) be executed by the au-
tomaton. For certain types of systems (such as, e.g., reactive systems) it may
however be crucial that specific actions (in reaction to stimuli from the en-
vironment) can always be executed. Thus when such a system is modeled as
an automaton, the transition relation should contain a transition for each of
these actions at every (reachable) state.

In this subsection, we define enabledness of actions as a local (state de-
pendent) property of the transition relation and then lift it to the level of
the automaton. This contrasts with our approach in the previous subsection
in which the role of states, actions, and transitions was assessed on basis of
their occurrence in computations.
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Definition 3.2.42. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) an action a ∈ Σ is enabled (in A) at a state q ∈ Q, denoted by a enA q,
if (q, a, q′) ∈ δ for some q′ ∈ Q.

Let Θ be an alphabet disjoint from Q. Then

(2) A is Θ-enabling if for all a ∈ Θ and for all q ∈ Q, a ∈ Σ ⇒ a enA q. -.

Note that, as in previous definitions, also the property of enabling is defined
with respect to a separately specified arbitrary set of actions Θ. Similar to
those previous notions, whether or not an automaton is Θ-enabling is solely
determined by those elements of Θ that are actions of A. To be precise,
A is always ∅-enabling. Furthermore, A is Θ-enabling if and only if it is
Θ ∩Σ-enabling, where Σ is the set of actions of A.

Example 3.2.43. (Example 3.2.10 continued) It is easy to see that A is {a}-
enabling but not {b}-enabling. Hence A is neither {a, b}-enabling. However,
A is {d}-enabling, for all d /∈ Σ, and thus also {a, d}-enabling. -.

The deletion of states and/or transitions from an automaton does not affect
its enabling of given actions, provided relevant transitions are preserved.

Lemma 3.2.44. Let A1 = (Q1, Σ1, δ1, I1) and A2 = (Q2, Σ2, δ2, I2) be two
automata and let Θ1, Θ2 be two alphabets disjoint from Q1∪Q2. Let Q2 ⊆ Q1,
Θ2 ∩Σ2 ⊆ Θ1 ∩Σ1, and δ2 ⊇ δ1 ∩ (Q2 × (Θ2 ∩Σ2)×Q1). Then

if A1 is Θ1-enabling, then A2 is Θ2-enabling.

Proof. Let A1 be Θ1-enabling. Now let a ∈ Θ2 and let q ∈ Q2. If a ∈ Σ2,
then a ∈ Θ1 ∩ Σ1. Since q ∈ Q1, it then follows that there exists a q′ ∈ Q
such that (q, a, q′) ∈ δ1. Thus (q, a, q′) ∈ δ2 and we have a enA2 q. -.

Corollary 3.2.45. Let A = (Q,Σ, δ, I) be an automaton and let Θ1, Θ2 be
two alphabets disjoint from Q and such that (Θ2 ∩Σ) ⊆ Θ1. Then

if A is Θ1-enabling, then A is Θ2-enabling. -.

From the computational and the behavioral point of view, enabledness of
actions is especially relevant at the reachable states of an automaton. Recall
that for a given automaton A = (Q,Σ, δ, I) we denote by QS its set of
reachable states. We have defined AS = (QS , Σ, δT , I) as the state-reduced
version of A, where δT = δ ∩ (QS × Σ × QS) = δ ∩ (QS × Σ × Q) consists
of the useful transitions of A. Thus, as another immediate consequence of
Lemma 3.2.44, we have that the state-reduced version of A is Θ-enabling
whenever A is.
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Theorem 3.2.46. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

if A is Θ-enabling, then AS is Θ-enabling. -.

The converse clearly does not hold, since actions which are enabled at reach-
able states of an automaton A are not necessarily enabled at every non-
reachable state of A. The fact that the state-reduced version of A may have
less states than A thus causes a lack of information concerning outgoing
transitions of non-reachable states.

The situation is different when A is reduced by removing only its non-
useful transitions with a label from an alphabet Θ1, but no states whatsoever,
as is done in order to obtain its Θ1-transition-reduced version AΘ1

T . In that
case the enabledness of actions in AΘ1

T can thus be used to decide their
enabledness in A. In fact, since AΘ1

T may have less transitions than A, but
it may never have less states than A, Lemma 3.2.44 immediately yields the
following result.

Lemma 3.2.47. Let A be an automaton and let Θ,Θ1 be two alphabets dis-
joint from its set of states. Then

if AΘ1
T is Θ-enabling, then A is Θ-enabling. -.

Furthermore, all transitions of AΘ1
T with a label from Θ1 are by definition

useful in AΘ1
T . Hence if there exists an a ∈ Σ ∩Θ1 which is enabled at every

state of AΘ1
T , then all states of AΘ1

T are reachable.

Lemma 3.2.48. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be two
alphabets disjoint from Q and such that Θ ∩Θ1 ∩Σ (= ∅. Then

if AΘ1
T is Θ-enabling, then Q = QA,S.

Proof. Let AΘ1
T = (Q,Σ, δΘ1

A,T , I) be Θ-enabling. Since QA,S ⊆ Q always
holds, we only have to prove the converse inclusion Q ⊆ QA,S. Let q ∈ Q.
Consider a ∈ Θ∩Θ1∩Σ. Then the assumption that AΘ1

T is Θ-enabling implies
there exists a q′ ∈ Q such that (q, a, q′) ∈ δΘ1

A,T . Since a ∈ Θ1, the definition

of δΘ1
A,T implies that (q, a, q′) ∈ δA,T . Consequently, q ∈ QA,S . -.

We have thus established that A is Θ-enabling whenever AΘ1
T is. Conversely,

AΘ1
T obviously is Θ-enabling whenever A is and no action from Θ is included

in both Θ1 and the set of actions of A. If the latter part of this condition
is not met, then the Θ-enabling of A nevertheless does imply that AΘ1

T is
Θ-enabling if A is Θ1-transition reduced.
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Theorem 3.2.49. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be
two alphabets disjoint from Q. Then

AΘ1
T is Θ-enabling if and only if A is Θ-enabling and A = AS = AΘ1

T

whenever Θ ∩Θ1 ∩Σ (= ∅.

Proof. (Only if) By Lemma 3.2.47, A is Θ-enabling if AΘ1
T is Θ-enabling.

Assume that Θ ∩ Θ1 ∩ Σ (= ∅. Then from Lemma 3.2.48 we know that
the fact that AΘ1

T is Θ-enabling implies that Q = QA,S . Consequently, δ =
δ ∩ (QA,S × Σ × QA,S) and so δ = δA,T . Thus we have A = AS . Finally,
by definition δA,T ⊆ δΘ1

A,T ⊆ δ. Hence δA,T = δΘ1
A,T = δ, which implies that

A = AΘ1
T .

(If) If A is Θ-enabling and A = AΘ1
T , then it trivially follows that AΘ1

T is
Θ-enabling. Thus we assume that A is Θ-enabling and that Θ∩Θ1 ∩Σ = ∅.
Let AΘ1

T = (Q,Σ, δΘ1
A,T , I). By definition δΘ1

A,T ⊇ δ \ (Q×Θ1 ×Q) = δ \ (Q×

(Θ1∩Σ)×Q). Since Θ∩(Θ1∩Σ) = ∅, it follows that δΘ1
A,T ⊇ δ∩(Q×Θ×Q) =

δ∩(Q×(Θ∩Σ)×Q). Consequently, we can apply Lemma 3.2.44 and conclude
that AΘ1

T is Θ-enabling. -.

Corollary 3.2.50. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

AΘ
T is Θ-enabling if and only if A is Θ-enabling and A = AΘ

T . -.

Let us now focus on the interplay between active actions and enabled ac-
tions. Recall that whenever an action is active, then there exists at least one
reachable state where it is enabled. Given an automaton we can thus delete
the non-active actions from its alphabet and the transitions these actions are
involved in from its transition relation, without effecting the enabling of this
automaton.

Lemma 3.2.51. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be two
alphabets disjoint from Q. Then

if A is Θ-enabling, then AΘ1
A is Θ-enabling.

Proof. Let A be Θ-enabling. By definition AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I), with

ΣΘ1
A,A ⊆ Σ and δΘ1

A,A = δ ∩ (Q × ΣΘ1
A,A × Q). Thus Θ ∩ ΣΘ1

A,A ⊆ Θ ∩ Σ.

Furthermore, δΘ1
A,A ⊇ δ ∩ (Q× (Θ ∩ΣΘ1

A,A)×Q). Consequently we can apply

Lemma 3.2.44 and conclude that AΘ1
A is Θ-enabling. -.
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The converse in general does not hold, even though A contains all transitions
of AΘ1

A . The reason is that A may contain more actions than AΘ1
A does. Thus

whenever AΘ1
A is Θ-enabling also A will be Θ-enabling, provided Θ contains

no action of Θ1 that is a non-active action of A. Hence we require all actions
from Θ1 ∩Θ that appear also in the set of actions of A, to be active.

Lemma 3.2.52. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be two
alphabets disjoint from Q and such that Θ ∩Θ1 ∩Σ ⊆ ΣA,A. Then

if AΘ1
A is Θ-enabling, then A is Θ-enabling.

Proof. Let AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I) be Θ-enabling. By definition δΘ1

A,A ⊆ δ

and hence — once we have established that Θ ∩ Σ ⊆ Θ ∩ ΣΘ1
A,A — we can

apply Lemma 3.2.44 and conclude that A is Θ-enabling.
Assume that Θ ∩ Θ1 ∩ Σ ⊆ ΣA,A. Now let a ∈ Θ ∩ Σ and recall that

ΣΘ1
A,A = (Σ \Θ1) ∪ (ΣA,A ∩Θ1).

If a /∈ Θ1, then a ∈ (Σ \Θ1) ⊆ ΣΘ1
A,A.

If a ∈ Θ1, then a ∈ ΣA,A by our assumption and thus a ∈ ΣΘ1
A,A.

Hence in both cases a ∈ Θ ∩ΣΘ1
A,A and we are done. -.

From Lemma 3.2.2(3) we know that an action a ∈ Σ of an automaton A =
(Q,Σ, δ, I) is active if and only if there exists a useful transition (q, a, q′) ∈ δ.
This means that ΣA = ∅ whenever QS = ∅. If QS (= ∅, however, and A is
Θ-enabling, for some set of actions Θ, then every action in Θ ∩ Σ is active
in A. This is due to the fact that a nonempty set of reachable states implies
that all actions Θ ∩ Σ are enabled in every initial state of A, all of whose
outgoing transitions are by definition useful.

Lemma 3.2.53. Let A = (Q,Σ, δ, I) be an automaton such that QS (= ∅
and let Θ be an alphabet disjoint from Q. Then

if A is Θ-enabling, then Θ ∩Σ ⊆ ΣA and A = AΘ
A.

Proof. Let A be Θ-enabling and let a ∈ Θ ∩ Σ. Since I = ∅ implies that
QS = ∅, it must be the case that I (= ∅. Now let q ∈ I. Then there exists a
q′ ∈ Q such that (q, a, q′) ∈ δ. Since q ∈ I ⊆ QS is reachable in A this implies
that a is active in A, and thus a ∈ ΣA. Hence Θ ∩Σ ⊆ ΣA.

Now let AΘ
A = (Q,ΣΘ

A,A, δ
Θ
A,A, I). Then ΣΘ

A,A = (Σ \ Θ) ∪ (ΣA ∩ Θ) =
(Σ \Θ) ∪ (Σ ∩Θ) = Σ because Θ ∩Σ = Θ ∩ΣA by the above and ΣA ⊆ Σ.
By definition δΘA,A = δ∩ (Q×ΣΘ

A,A×Q). Hence δΘA,A = δ∩ (Q×Σ×Q) = δ.
Consequently, AΘ

A = A. -.

This lemma, together with Lemmata 3.2.51 and 3.2.52, directly implies the
following theorem.
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Theorem 3.2.54. Let A = (Q,Σ, δ, I) be an automaton such that QS (= ∅
and let Θ,Θ1 be two alphabets disjoint from Q. Then

A is Θ-enabling if and only if AΘ1
A is Θ-enabling and Θ∩Θ1∩Σ ⊆ ΣA,A.

-.

Corollary 3.2.55. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

A is Θ-enabling if and only if AΘ
A is Θ-enabling and A = AΘ

A. -.

In this subsection we have thus presented various conditions under which en-
abling is preserved from one (reduced) automaton to another. We have con-
sidered separately the state-reduced, action-reduced, and transition-reduced
versions of automata. We now conclude with a result that incorporates also
the reduced version of an automaton. It is obtained as a direct consequence
of combining Theorem 3.2.46 with Corollary 3.2.55.

Theorem 3.2.56. Let A = (Q,Σ, δ, I) be an automaton. Then

if A is Σ-enabling, then AS = AR. -.

3.2.3 Determinism

For an arbitrary automaton and a given action, it is in general not the case
that for each of its states there is at most one possible way to execute this
action. For certain types of systems (such as, e.g., transformational systems)
it may however be crucial that the outcome of the execution of one of its
actions is uniquely determined by the state the automaton is in. Thus when
such a system is modeled as an automaton, the transition relation should
contain at most one transition for each combination of such an action and a
state of the automaton.

In a deterministic automaton, there is no choice as to what state the
automaton ends up in after the execution of a sequence of actions. As was
the case for enabling, the definition of determinism of an automaton is based
on a local (state dependent) property of the transition relation.

Definition 3.2.57. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

A is Θ-deterministic if I contains at most one element and for all a ∈ Θ
and for all q∈Q, {q′∈Q |(q, a, q′)∈δ} contains at most one element. -.
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Note the duality between enabling and determinism: given that a is an action
of the automaton, then this automaton is {a}-enabling if each of its states
has at least one outgoing a-transition, while it is {a}-deterministic if each of
its states has at most one outgoing a-transition.

As in previous definitions, also the property of determinism is defined with
respect to a separately specified arbitrary set of actions Θ. Similar to those
previous notions, whether or not an automaton is Θ-deterministic is solely
determined by those elements of Θ that are actions of A. More precisely, if
we assume that A contains at most one initial state, then A is always ∅-
deterministic and — moreover — A is Θ-deterministic if and only if it is
Θ ∩Σ-deterministic, where Σ is the set of actions of A.

Example 3.2.58. (Example 3.2.10 continued) Let A′ be the automaton ob-
tained from automaton A of Example 3.2.10 — depicted in Figure 3.3(a) —
by replacing transition (q, a, q) with (q, b, q). Then A′ is {a}-deterministic but
not {b}-deterministic. Hence A′ is neither {a, b}-deterministic. However, A′

is {d}-deterministic, for all d /∈ Σ, and thus {a, d}-deterministic as well. -.

The deletion of states and/or transitions from an automaton does not affect
its determinism of given actions.

Lemma 3.2.59. Let A1 = (Q1, Σ1, δ1, I1) and A2 = (Q2, Σ2, δ2, I2) be two
automata and let Θ1, Θ2 be two alphabets disjoint from Q1∪Q2. Let Θ2∩Σ2 ⊆
Θ1, let δ2 ∩ (Q2 × Θ2 × Q2) ⊆ δ1, and let I2 contain at most one element.
Then

if A1 is Θ1-deterministic, then A2 is Θ2-deterministic.

Proof. Let A1 be Θ1-deterministic. Now let a ∈ Θ2 and let p ∈ Q2. Suppose
that there exist q, q′ ∈ Q2 such that both (p, a, q) ∈ δ2 and (p, a, q′) ∈ δ2.
This implies that a ∈ Θ2 ∩Σ2 and that both (p, a, q) ∈ δ1 and (p, a, q′) ∈ δ1.
Since Θ2 ∩Σ2 ⊆ Θ1 and A1 is Θ1-deterministic it follows that it must be the
case that q = q′. Together with the fact that I2 contains at most one element
this implies that A2 is Θ2-deterministic. -.

This lemma has several immediate consequences.

Corollary 3.2.60. Let A = (Q,Σ, δ, I) be an automaton and let Θ1, Θ2 be
two alphabets disjoint from Q and such that (Θ2 ∩Σ) ⊆ Θ1. Then

if A is Θ1-deterministic, then A is Θ2-deterministic. -.

Corollary 3.2.61. Let A1 = (Q1, Σ1, δ1, I1) and A2 = (Q2, Σ2, δ2, I2) be
two automata such that A2 / A1 and let Θ1, Θ2 be two alphabets disjoint
from Q1 ∪Q2 and such that (Θ2 ∩Σ2) ⊆ Θ1. Then
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if A1 is Θ1-deterministic, then A2 is Θ2-deterministic. -.

Corollary 3.2.62. Let A = (Q,Σ, δ, I) and A′ = (Q,Σ′, δ, I) be two au-
tomata such that Σ ⊆ Σ′ and let Θ be an alphabet disjoint from Q. Then

if A is Θ-deterministic, then A′ is Θ-deterministic. -.

From the computational and the behavioral viewpoint also determinism is
most relevant at the reachable states of an automaton. We thus finish this
subsection with an overview of the influence that the determinism of one type
of reduced automaton has on the determinism of another type of reduced
automaton.

Theorem 3.2.63. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be
two alphabets disjoint from Q. Then

(1) if A is Θ-deterministic, then so is AΘ1
A ,

(2) if AΘ1
A is Θ-deterministic, then so is AΘ1

T , and

(3) if AΘ1
T is Θ-deterministic, then so is AS.

Proof. (1) This follows directly from Corollary 3.2.61 since AΘ1
A is a reduced

version of A and thus AΘ1
A / A.

(2) Let AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I) be Θ-deterministic. As by defini-

tion ΣΘ1
A,A ⊆ Σ, Corollary 3.2.62 implies that also the automaton A′ =

(Q,Σ, δΘ1
A,A, I) is Θ-deterministic. Now consider AΘ1

T = (Q,Σ, δΘ1
A,T , I). By

definition δΘ1
A,T ⊆ δΘ1

A,A and thus AΘ1
T / A′. Corollary 3.2.61 subsequently

implies that also AΘ1
T is Θ-deterministic.

(3) From Lemma 3.2.36(2) we know that AS = (AΘ1
T )S . Analogous to (1)

the result now follows from the fact that (AΘ1
T )S / AΘ1

T . -.

In certain cases Θ-determinism is thus preserved from one automaton to
another, for a set Θ of actions. The proof of this theorem however is heavily
based on the containment of one automaton in another. In case the reverse
of such a containment does not hold, often some characteristics crucial for
preserving Θ-determinism from one automaton to another, are lacking. When
formulating the reverses of the statements of this theorem, we thus settle for
a demonstration of the preservation of determinism from one automaton to
another for only a subset of Θ.

Theorem 3.2.64. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be
two alphabets disjoint from Q. Then
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(1) if AS is Θ-deterministic, then AΘ1
T is (Θ ∩Θ1)-deterministic,

(2) if AΘ1
T is Θ-deterministic, then AΘ1

A is (Θ \Θ1)-deterministic, and

(3) if AΘ1
A is Θ-deterministic, then A is (Θ \ (Θ1 \ΣA,A))-deterministic.

Proof. (1) Let AS = (QA,S , ΣA,A, δA,T , I) be Θ-deterministic. Now consider
AΘ1

T = (Q,Σ, δΘ1
A,T , I). Since (Θ∩Θ1)∩Σ ⊆ Θ and δΘ1

A,T ∩(Q×(Θ∩Θ1)×Q) ⊆

δA,T it follows from Lemma 3.2.59 that AΘ1
T is (Θ ∩Θ1)-deterministic.

(2) Let AΘ1
T = (Q,Σ, δΘ1

A,T , I) be Θ-deterministic. Now consider AΘ1
A =

(Q,ΣΘ1
A,A, δ

Θ1
A,A, I). Since (Θ\Θ1)∩Σ

Θ1
A,A ⊆ Θ and δΘ1

A,A∩(Q×(Θ\Θ1)×Q) ⊆

δ ∩ (Q × (Σ \ Θ1) × Q) ⊆ δΘ1
A,T it follows from Lemma 3.2.59 that AΘ1

A is
(Θ \Θ1)-deterministic.

(3) Let AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I) be Θ-deterministic. Clearly (Θ \ (Θ1 \

ΣA,A))∩Σ ⊆ Θ. Moreover, sinceΘ\(Θ1\ΣA,A)) = (Θ\Θ1)∪(Θ∩(ΣA,A∩Θ1))
it follows that δ ∩ (Q× (Θ \ (Θ1 \ΣA,A))×Q) ⊆ (δ ∩ (Q× (Σ \Θ1)×Q)) ∪
(δ ∩ (Q× (ΣA,A ∩Θ1)×Q)) = δΘ1

A,A. Hence by Lemma 3.2.59 it follows that
A is (Θ \ (Θ1 \ΣA,A))-deterministic. -.



4. Synchronized Automata

In the previous chapter we have introduced automata as the basic components
underlying team automata. In this chapter we define precisely how automata
can be combined in order to form a synchronized automaton. Within such a
synchronized automaton its constituting automata interact by synchronizing
on certain occurrences of shared actions. We also define how to obtain a
subautomaton from a synchronized automaton by focusing on a subset of
its constituting automata, and we study the relation between synchronized
automata and their subautomata in terms of computations. Consequently,
we show how to iteratively obtain synchronized automata from synchronized
automata.

We then characterize three basic and natural ways of synchronizing. We
also define maximal-syn synchronized automata as the unique synchronized
automata being maximal with respect to a given type of synchronization syn.
Through the formulation of predicates of synchronization we furthermore pro-
vide direct descriptions of such synchronized automata. Finally, we conclude
this chapter with a study of the effect that synchronizations have on the in-
heritance of the automata-theoretic properties introduced in Section 3.2 from
synchronized automata to their (sub)automata, and vice versa.

Notation 1. In this chapter we assume a fixed, but arbitrary and possibly
infinite index set I ⊆ N, which we will use to index the automata involved.
For each i ∈ I, we let Ai = (Qi, Σi, δi, Ii) be a fixed automaton. Moreover,
we let S = {Ai | i ∈ I} be a fixed set of automata. Note that I ⊆ N implies
that I is ordered by the usual ≤ relation on N, thus inducing an ordering on
S. Also note that the Ai are not necessarily different. -.

4.1 Definitions

We begin this section by defining synchronized automata as composite au-
tomata. Consequently, we consider also the dual approach by defining how
to extract (sub)automata from a given synchronized automaton.
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4.1.1 Synchronized Automata

Consider the set S = {Ai | i ∈ I} of automata, as fixed above. Then a state
q of any synchronized automaton over S describes the states that each of the
automata is in. The state space of any synchronized automaton T formed
from S is thus the product

∏
i∈IQi of the state spaces of the automata of S,

with the product
∏

i∈IIi of their initial states forming the set of initial states
of T .

The transition relation of such T is defined by allowing certain “synchro-
nizations” and excluding others and is based solely on the transition relations
of the automata forming the synchronized automaton.

Definition 4.1.1. Let a ∈
⋃

i∈I Σi. Then the complete transition space of
a in S is denoted by ∆a(S) and is defined as

∆a(S) = {(q, q′) ∈
∏

i∈IQi ×
∏

i∈IQi | ∃j ∈ I : projj
[2](q, q′) ∈ δj,a∧

(∀i ∈ I : proji
[2](q, q′) ∈ δi,a ∨ proji(q) = proji(q

′))}. -.

The complete transition space ∆a(S) thus consists of all possible combi-
nations of a-transitions from automata of S, with all non-participating au-
tomata remaining idle. It is an explicit requirement that at least one au-
tomaton is active, i.e. executes an a-transition. The transitions in ∆a(S) are
referred to as synchronizations (on a).

This ∆a(S) is called the complete transition space of a in S because
whenever a synchronized automaton T is constructed from S, then for each
action a, all a-transitions of T come from ∆a(S). The transformation of a
state of T is defined by the local state changes of the automata participating
in the action of T being executed. When defining T , for each action a, a
specific subset δa of ∆a(S) has to be chosen. By restricting the set of allowed
transitions in this way, a certain kind of interaction between the automata
constituting the synchronized automaton can be enforced.

Definition 4.1.2. A synchronized automaton over S is a construct T =
(Q,Σ, δ, I), where

Q =
∏

i∈I Qi,
Σ =

⋃
i∈I Σi,

δ ⊆ Q×Σ ×Q is such that for all a ∈ Σ,

δa ⊆ ∆a(S), and

I =
∏

i∈I Ii. -.
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All synchronized automata over a given set of automata thus have the same
set of states, the same alphabet of actions, and the same set of initial states.
They only differ by the choice of their transition relation, which is based on
but not fixed by the transition relations of the individual automata. Due to
this freedom of choosing a δa for each action a, a set of automata does not
uniquely define a single synchronized automaton. Instead, a flexible frame-
work is provided within which one can construct a variety of synchronized
automata, all of which differ solely by the choice of the transition relation.

In the literature, automata are mostly composed according to some fixed
strategy, thus leading to a uniquely defined synchronized automaton. In fact,
the strategy that is prevalent in the literature (cf. the Introduction) is the
rule to include, for all actions a, all and only those a-transitions in which all
automata from S participate that have a as one of their actions. This leaves
no choice for the transition relation and thus leads to a unique synchronized
automaton. In Section 4.5 we will describe this and other fixed strategies for
choosing transition relations in a predetermined way. Within our framework,
however, it is precisely the freedom to choose transition relations which pro-
vides the flexibility to distinguish even the smallest nuances in the meaning
of one’s design.

The following example illustrates the definition of synchronized automata.
Recall that vectors may be written vertically, even though in the text they
are written horizontally.

Example 4.1.3. (Example 3.1.8 continued) Consider the automaton W2 =
({s2, t2}, {a, b}, δ2, {s2}), with δ2={(s2, b, s2), (s2, a, t2), (t2, a, t2), (t2, b, s2)},
modeling the second wheel of a car. Since W2 in essence is just a copy of W1

its structure is the same as that of W1, depicted in Figure 3.1.
Now we show how W1 and W2 can form a synchronized automaton (an

axle). The synchronized automaton T{1,2} over {W1,W2} is depicted in Fig-
ure 4.1(a). It has four states of which (s1, s2) is its only initial state. It
has no other actions than a and b. We require the two wheels W1 and
W2 to accelerate and break in unison, so we choose δ{1,2} = {((s1, s2), b,
(s1, s2)), ((s1, s2), a, (t1, t2)), ((t1, t2), a, (t1, t2)), ((t1, t2), b, (s1, s2))}. We note
that only the transition relation had to be chosen, all other elements follow
from Definition 4.1.2.

Note that T{1,2} is action reduced and transition reduced but not state
reduced, since its states (s1, t2) and (t1, s2) are not reachable.

By choosing a different transition relation such as, e.g., δ′{1,2} = {((s1, s2),
a, (s1, t2)), ((t1, t2), b, (s1, s2))}, another synchronized automaton over {W1,
W2} is defined, which we denote by T ′

{1,2}. Apart from its transition relation,
T ′
{1,2} contains the same elements as T{1,2}. T ′

{1,2} is depicted in Figure 4.1(b).
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Fig. 4.1. Synchronized automata T{1,2} and T ′
{1,2}.

If we assume that a flat tire is modeled by a wheel that cannot accelerate,
then in T ′

{1,2} the wheel W1 has a flat tire. T ′
{1,2} ends up in a deadlock (i.e. in

a state where no action is enabled) after the execution of a, since one doesn’t
drive far with a flat tire. Furthermore, T ′

{1,2} is not even action reduced nor
is it transition reduced, because action b can never be executed in T ′

{1,2} due
to the fact that state (t1, t2) is not reachable. -.

Definition 4.1.2 immediately implies the following result.

Theorem 4.1.4. Every synchronized automaton is an automaton. -.

Since every synchronized automaton is again an automaton, it could in its
turn be used as a constituting automaton of a new synchronized automaton.

Note, however, that even though a synchronized automaton over just one
automaton {Aj} is again an automaton, such a synchronized automaton is
different from its only constituting automaton. Even when Qj and

∏
{j} Qj

are identified, the transition relation of the synchronized automaton may be
properly included in the transition relation of the automaton. This is due to
the fact that the freedom in choosing the transition relation of a synchronized
automaton, allows one to omit transitions from Aj in the transition relation
of a synchronized automaton over {Aj}.

Example 4.1.5. (Example 4.1.3 continued) We now show how to form a syn-
chronized automaton (a car) over three automata (an axle and two wheels).

For i ∈ {3, 4}, let Wi = ({si, ti}, {a, b}, δi, {si}), where δi = {(si, b, si),
(si, a, ti), (ti, a, ti), (ti, b, si)}, be two automata modeling the third and the
fourth wheel of a car. Since W3 and W4 (like W2) are in essence just copies
of W1, their structure is the same as that of W1, depicted in Figure 3.1.
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Any synchronized automaton over {T{1,2},W3,W4} has alphabet {a, b}
and 16 states, among which the initial state ((s1, s2), s3, s4). We choose syn-
chronized automaton T̂ by defining δ̂ = {(((s1, s2), s3, s4), b, ((s1, s2), s3, s4)),
(((s1, s2), s3, s4), a,((t1, t2), t3, t4)),(((t1, t2), t3, t4), a,((t1, t2), t3, t4)),(((t1,t2),
t3, t4), b, ((s1, s2), s3, s4))} as its transition relation. Its state-reduced version
T̂S is depicted in Figure 4.2. -.
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T̂S :
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Fig. 4.2. State-reduced synchronized automaton T̂S.

We conclude this section with two additional observations.
First it should be noted that in the definition of a synchronized automaton

over S = {Ai | i ∈ I} we have implicitly used the ordering on S induced
by I. Every synchronized automaton over S has

∏
i∈I Qi as its set of states

and thus, if I = {i1, i2, . . . } with i1 < i2 < · · · , then every state q of T is
a tuple (q1, q2, . . . ) with qj ∈ Qij for j ≥ 1. This is convenient in concrete
situations, but note that changing the order of the automata in S leads to
formally different state spaces. As an example, consider two automata A4

and A7 with sets of states Q4 and Q7, respectively. Let S = {Ai | i ∈ {4, 7}}
and let S ′ = {Dj | j ∈ {1, 2}} with D1 = A7 and D2 = A4. Synchronized
automata over S have Q4 × Q7 as their state space, whereas synchronized
automata over S ′ have Q7 × Q4 as their state space. In Section 4.3 we will
come back to the ordering within state spaces in a more general setup.

Secondly, neither in the definition of an automaton nor in the definition
of a synchronized automaton, have we required a priori that states have
to be reachable, that actions have to be active, or that transitions have to
be useful in at least one computation starting from the initial state of the
system. The lack of such extra conditions allows for a smooth and general
definition of a synchronized automaton, with the full cartesian product of the
sets of states of its constituting automata as the synchronized automaton’s
state space, the full union of the sets of actions of its constituting automata
as its alphabet of actions, and an arbitrary selection of synchronizations as
its transitions. Moreover, recall that in general no effective procedures exist
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to obtain the reduced versions of synchronized automata defined in Defini-
tions 3.2.8, 3.2.9, and 3.2.27.

4.1.2 Subautomata

Given a synchronized automaton T over S, by focusing on a subset of the
automata in S, a subautomaton within T can be distinguished. Its transitions
are restrictions of the transitions of T to the automata in the subset, while
its actions of course are the actions of these automata.

Definition 4.1.6. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let J ⊆ I. Then the subautomaton of T determined by J is denoted by
SUBJ(T ) and is defined as SUBJ (T ) = (QJ , ΣJ , δJ , IJ ), where

QJ =
∏

j∈J Qj,
ΣJ =

⋃
j∈J Σj,

δJ ⊆ QJ ×ΣJ ×QJ is such that for all a ∈ ΣJ ,

(δJ)a = projJ
[2](δa) ∩∆a({Aj | j ∈ J}), and

IJ =
∏

j∈J Ij. -.

We write SUBJ instead of SUBJ(T ) if the synchronized automaton T is
clear from the context. In Figure 4.3 we have sketched a subautomaton of a
synchronized automaton.

The transition relation of a subautomaton SUBJ of a synchronized au-
tomaton T (over S) determined by some J ⊆ I, is obtained by restricting
the transition relation of T to synchronizations between the automata in
{Aj | j ∈ J}. Hence in each transition of the subautomaton at least one of
the automata from {Aj | j ∈ J} is actively involved. This is formalized by
the intersection of projJ

[2](δa) with ∆a({Aj | j ∈ J}), for each action a, as
in each transition in this complete transition space at least one automaton
from {Aj | j ∈ J } is active.

Note that if J = ∅, then SUBJ is the trivial automaton.

Example 4.1.7. (Example 4.1.5 continued) Subautomaton SUB{1}(T{1,2}) =
({(s1), (t1)}, {a, b}, δ{1}, {(s1)}), where δ{1} = {((s1), b, (s1)), ((s1), a, (t1)),
((t1), a, (t1)), ((t1), b, (s1))}, is depicted in Figure 4.4(a).

Note that SUB{1}(T{1,2}) differs from W1 in the sense that it has (s1)
and (t1) as states rather than s1 and t1. Obviously, SUB{1}(T{1,2}) and W1

do exhibit the same behavior.
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• ••

• ••

T over S = {Ai | i ∈ I} with I = [n] for some even n ≥ 1

AnA4A2

A1 A3

SUB{j∈[n]|j is odd}

An−1

Fig. 4.3. Subautomaton SUB{j∈[n]|j is odd} of synchronized automaton T .
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Fig. 4.4. Subautomaton SUB{1}(T{1,2}) and automaton (SUB{3,4}(T̂ ))S.

Subautomaton SUB{3,4}(T̂ ) = ({(s3, s4), (s3, t4), (t3, s4), (t3, t4)},{a, b},
δ̂{3,4}, {(s3, s4)}), where δ̂{3,4} = {((s3, s4), b, (s3, s4)), ((s3, s4), a, (t3, t4)),
((t3, t4), a, (t3, t4)), ((t3, t4), b, (s3, s4))}, has as its state-reduced version the
automaton (SUB{3,4}(T̂ ))S depicted in Figure 4.4(b). -.

It is not hard to see that subautomata satisfy the requirements of a synchro-
nized automaton.

Theorem 4.1.8. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let J ⊆ I. Then

SUBJ is a synchronized automaton over {Aj | j ∈ J}.

Proof. The states, alphabet, and initial states of SUBJ as given in Defini-
tion 4.1.6 satisfy the requirements of Definition 4.1.2 for synchronized au-
tomata over {Aj | j ∈ J}. Finally, (δJ)a ⊆ ∆a({Aj | j ∈ J}) by Defini-
tion 4.1.6. -.
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According to this theorem a subautomaton of a synchronized automaton is
again a synchronized automaton and thus, by Theorem 4.1.4, also an automa-
ton. In Section 4.3 we will consider the dual approach and use synchronized
automata as automata in “larger” synchronized automata. It will be shown
that subautomata can be used as automata to iteratively define the synchro-
nized automaton they are derived from.

We conclude this section by comparing the set of transitions and com-
putations of a singleton subautomaton SUB{j} of a synchronized automaton
T over S with those of the single automaton Aj from S, where j ∈ I.
Due to the fact that SUB{j} has vectors (of one element) as states, whereas
Aj does not, SUB{j} never equals Aj (see, e.g., Example 4.1.7). This is
a purely syntactic reason, though. Therefore, in order to compare the set
of transitions and computations of Aj with those of SUB{j}, we identify∏

{j} Qj and Qj . To this end we define, for j ∈ I, the homomorphism
υj : (Σ ∪

∏
{j} Qj)∞ → (Σ ∪Qj)∞ by

υj(x) =

{
x if x ∈ Σ and
projj(x) if x ∈

∏
{j} Qj.

Consequently, we now show that for all j ∈ I, the set of transitions (compu-
tations) of the subautomaton SUB{j} of a synchronized automaton T over S
is included in the set of transitions (computations) of the single automaton
Aj from S. However, as shown in the example directly following this result,
these inclusions can be proper.

Lemma 4.1.9. Let T = (Q,Σ, δ, I) be a synchronized automaton over S and
let j ∈ I. Then

(1) projj
[2]((δ{j})a) ⊆ δj,a, for all a ∈ Σ, and

(2) υj(C∞
SUB{j}

) ⊆ C∞
Aj

.

Proof. (1) Let a ∈ Σ and let (p, p′) ∈ (δ{j})a. From Definition 4.1.6 then
follows that (p, p′) ∈ ∆a({Aj}) = {(q, q′) ∈

∏
Qj ×

∏
Qj | projj

[2](q, q′) ∈

δj,a}. Consequently, projj
[2](p, p′) ∈ δj,a.

(2) Let α ∈ C∞
SUB{j}

. First consider the finitary case, i.e. let α ∈ CSUB{j}
.

If α ∈ Ij , then α =
∏

{j} q for some q ∈ Ij . Hence projj(α) = q ∈ Ij and
υj(α) = q ∈ CAj .

If α = βqaq′ for some βq ∈ CSUB{j}
, q, q′ ∈

∏
{j} Qj, and a ∈ Σ{j}, with

(q, q′) ∈ (δ{j})a, then we proceed with an inductive argument and assume
that υj(βq) ∈ CAj . From (1) follows that projj

[2](q, q′) ∈ δj,a and we thus
conclude υj(α) = υj(β)projj(q)aprojj(q

′) ∈ CAj .
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Consequently consider the infinitary case, i.e. let α ∈ Cω
SUB{j}

. Let
α1 ≤ α2 ≤ · · · ∈ CSUB{j}

be such that α = lim
n→∞

αn. By the same rea-

soning as above υj(αn) ∈ CAj , for all n ≥ 1. Since υj is a letter-to-letter
homomorphism we have υj(α1) ≤ υj(α2) ≤ · · · and lim

n→∞
υj(αn) is an infinite

word. Furthermore lim
n→∞

υj(αn) = υj( lim
n→∞

αn).

Hence υj(α) = υj( lim
n→∞

αn) = lim
n→∞

υj(αn) ∈ Cω
Aj

. -.

Given a synchronized automaton T = (Q,Σ, δ, I) over S, the following ex-
ample shows that it can be the case that there exists a j ∈ I for which
projj

[2]((δ{j})a) ⊂ δj,a, for all a ∈ Σ, and υj(C∞
SUB{j}

) ⊂ C∞
Aj

.

Example 4.1.10. Let A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1), (q

′
1, a, q

′
1)}, {q1}) and

A2 = ({q2, q′2}, {a}, {(q2, a, q
′
2)}, {q2}) be the automata depicted in Fig-

ure 4.5(a).
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Fig. 4.5. Automata A1 and A2, and synchronized automaton T .

Consider the synchronized automaton T = (Q, {a}, {((q1, q2), a, (q′1, q
′
2))},

{(q1, q2)}), in which Q = {(q1, q2), (q1, q′2), (q
′
1, q2), (q

′
1, q

′
2)}, over {A1,A2}. It

is depicted in Figure 4.5(b).
Let j = 1. It is clear that (δ{1})a = {((q1), (q′1))}. Thus proj1

[2]((δ{1})a) =
{(q1, q′1)} ⊂ {(q1, q′1), (q

′
1, q

′
1)} = δ1,a. Clearly, CSUB{1}

= {(q1), (q1)a(q′1)}.
Hence υ1(CSUB{1}

) = {q1, q1aq′1} ⊂ {q1, q1aq′1, q1aq
′
1aq

′
1, . . . } ∪ {q1(aq′1)

ω} =
C∞

A1
. -.
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4.2 Projecting

In this section we want to extract the computations of any one of the
(sub)automata constituting a synchronized automaton from the computa-
tions of this synchronized automaton. Note, however, that within the for-
malization of a synchronized automaton, no explicit information on loops is
provided. That is to say, in general one cannot distinguish whether or not
an automaton with a loop on a in its current local state participates in the
synchronized automaton’s synchronization on a. This automaton may have
been idle or, after having participated in the action a starting from the global
state, it may have returned to its original local state.

Example 4.2.1. Consider the three automata A1, A2, and A3, as depicted in
Figure 4.6(a).

(p, q, r)

a
(p, q, r′)

(a)

T :A2:A1:

A3:

p

r
a

r′

q

a

(b)

a

Fig. 4.6. Automata A1, A2, and A3, and synchronized automaton T .

A1 and A2 each have only one state, p and q, respectively, which are their
initial states. A3 has two states, r and r′, of which r is its initial state. A1

has an empty alphabet, while both A2 and A3 have {a} as their alphabet.
Finally, A1 has no transitions at all, the transition relation of A2 consists
solely of the loop (q, a, q), and that of A3 is {(r, a, r′)}.

Now consider the synchronized automaton T = ({(p, q, r), (p, q, r′)},
{a}, δ, {(p, q, r)}), where δa = ∆a({A1,A2,A3})\{((p, q, r), a, (p, q, r))}, over
{A1,A2,A3}. It is depicted in Figure 4.6(b). Now one might wonder which
automata participate when the a-transitions of T are executed.
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First consider the execution of the loop on a at (p, q, r′) in T . Clearly
A1 does not participate as it cannot execute a at all. Also A3 does not
participate since a is not enabled in r′. However, since in every transition of
a synchronized automaton at least one component is required to participate,
it must thus be the case that A2 executes its loop on a.

Secondly, consider the execution of the a-transition from (p, q, r) to
(p, q, r′) in T . Clearly A1 is not involved. On the other hand, A3 is responsi-
ble for the local state change from r to r′ and thus participates by executing
a. But what about A2 — does it execute its loop on a or does it remain idle
during this execution of a by T ? -.

In spite of the fact that Example 4.2.1 shows that information on the actual
execution of loops by the constituting automata is lacking in the definition
of a synchronized automaton, in order to relate the computations of a syn-
chronized automaton to those taking place in its constituting automata we
simply apply projections.

Recall that computations of a synchronized automaton are determined
by the consecutive execution of transitions, starting from the initial state.
Consider a transition (q, a, q′) of a synchronized automaton over S. We now
assume that the j-th automaton participates in this transition by executing
(projj(q), a, projj(q

′)) whenever proj[2](q, q′) ∈ δj,a. Otherwise no transition
takes place in the j-th automaton. We thus resolve the lacking of information
on loops by assuming that the presence of an automaton’s loop in a transi-
tion of a synchronized automaton implies execution of that loop. This may
be considered as a “maximal” interpretation of the participation of its con-
stituting automata in transitions of synchronized automata, in the sense that
we assume that if an automaton could have participated in an a-transition
of the synchronized automaton by executing a loop on this action a, then it
indeed has done so.

Example 4.2.2. (Example 4.2.1 continued) We consider the abovementioned
maximal interpretation of the automata’s participation in transitions of the
synchronized automaton. Then A2 is thus assumed to execute its loop on
a at q during the execution of a at (p, q, r) by means of the a-transition
((p, q, r), (p, q, r′)) of T . -.

Using the maximal interpretation we define the projection on (sub)automata
of the computations of a synchronized automaton. Because of the results at
the end of Section 4.1 we define separately the projection on the subautoma-
ton defined by {j} of a synchronized automaton and the projection on its j-th
automaton. The formal reason behind this is the fact that Qj and

∏
{j} Qj
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are not identified. In fact, as we will show shortly, the two separate definitions
are the same whenever Qj and

∏
{j} Qj are identified.

Finally, one could think of other interpretations of the participation of
constituting (sub)automata in transitions of synchronized automata in case
of loops.

Definition 4.2.3. Let T = (Q,Σ, δ, I) be a synchronized automaton over S.
Let J ⊆ I. Then

(1) the projection on subautomaton SUBJ of a finite computation α ∈ CT

is denoted by πSUBJ
(α) and is defined as

(a) if α = q ∈ I, then πSUBJ (α) = projJ (q), and
(b) if α = βqaq′, for some βq ∈ CT , q, q′ ∈ Q, and a ∈ Σ, then

πSUBJ
(α) =

{
πSUBJ

(βq) if projJ
[2](q, q′) /∈ (δJ)a and

πSUBJ
(βq)aprojJ(q

′) if projJ
[2](q, q′) ∈ (δJ)a,

and

(2) the projection on subautomaton SUBJ of an infinite computation α ∈
Cω

T is denoted by πSUBJ
(α) and is defined as

πSUBJ
(α) = lim

n→∞
πSUBJ

(αn) whenever α = lim
n→∞

αn for

α1 ≤ α2 ≤ · · · ∈ CT .

Let j ∈ I. Then

(3) the projection on automaton Aj of a finite computation α ∈ CT is de-
noted by πAj (α) and is defined as
(a) if α = q ∈ I, then πAj (α) = projj(q), and
(b) if α = βqaq′, for some βq ∈ CT , q, q′ ∈ Q, and a ∈ Σ, then

πAj (α) =

{
πAj (βq) if projj

[2](q, q′) /∈ δj,a and

πAj (βq)aprojj(q
′) if projj

[2](q, q′) ∈ δj,a,
and

(4) the projection on automaton Aj of an infinite computation α ∈ Cω
T is

denoted by πAj (α) and is defined as

πAj (α) = lim
n→∞

πAj (αn) whenever α= lim
n→∞

αn for α1 ≤ α2 ≤ · · · ∈ CT . -.

Recall that every prefix of odd length of an infinite computation α of a
synchronized automaton T is a finite computation. Thus α is the limit of any
prefix-ordered infinite subset of its finite prefixes. Moreover, if α1 ≤ α2 for
finite computations α1 and α2 of T , then πSUBJ

(α1) ≤ πSUBJ
(α2), for all
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J ⊆ I, and πAj (α1) ≤ πAj (α2), for all j ∈ I. Hence the projection πSUBJ (α)
on subautomaton SUBJ (T ) and the projection πAj (α) on automaton Aj are
well defined for any computation α ∈ C∞

T . Furthermore, πSUBJ
( lim
n→∞

αn) =

lim
n→∞

πSUBJ (αn) and πAj ( lim
n→∞

αn) = lim
n→∞

πAj (αn).

Note that πSUBJ
(α) and πAj (α) can be finite sequences. This happens

if subautomaton SUBJ(T ) or automaton Aj , respectively, no longer partici-
pates in α after a finite number k of steps. In that case, if α = q0a1q1a2q2 · · · ,
then πSUBJ

(q0a1q1a2q2 · · ·anqn) = πSUBJ
(q0a1q1a2q2 · · · anqnan+1qn+1), for

all n ≥ k, and hence πSUBJ (α) = πSUBJ (q0a1q1a2q2 · · ·akqk). Likewise
πAj (α) = πAj (q0a1q1a2q2 · · · akqk) in that case.

Contrary to what one might expect from Example 4.1.10, we indeed see
that for each computation of a synchronized automaton its projection on
an automaton “agrees” with its projection on the corresponding singleton
subautomaton, in the sense that they are equal whenever Qj and

∏
{j} Qj

are identified.

Theorem 4.2.4. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let j ∈ I. Then

υj(πSUB{j}
(C∞

T )) = πAj (C
∞
T ).

Proof. Let α ∈ C∞
T . First consider the finitary case, i.e. let α ∈ CT . We

proceed by induction on the length of w. If α = q, then α ∈
∏

i∈I Ii. By Def-
inition 4.2.3, πAj (α) = projj(α) and πSUB{j}

(α) = proj{j}(α). Consequently
υj(πSUB{j}

(α)) = projj(proj{j}(α)) = projj(α) = πAj (α).
Next assume that α = βqaq′ for some β ∈ (Σ ∪ Q)∗, q, q′ ∈ Q, and

a ∈ Σ, such that βq ∈ CT and (q, q′) ∈ δa. It is not difficult to see that
projj

[2](q, q′) ∈ δj,a if and only if proj{j}
[2](q, q′) ∈ (δ{j})a. Indeed we al-

ready know from Lemma 4.1.9 that proj{j}
[2]((δ{j})a) ⊆ δj,a and hence

proj{j}
[2](q, q′) ∈ (δ{j})a implies projj

[2](proj{j}
[2](q, q′)) = projj

[2](q, q′) ∈

δj,a. Conversely, if projj
[2](q, q′) ∈ δj,a then proj{j}

[2](q, q′) ∈ (δ{j})a pro-
vided that (q, q′) ∈ δa, which is the case. Returning to our computation α we
now obtain the following.

If projj
[2](q, q′) /∈ δj,a, then by induction πAj (α) = πAj (βq) and πAj (βq)

= υj(πSUB{j}
(βq)). As proj{j}

[2](q, q′) /∈ (δ{j})a it follows that πSUB{j}
(α) =

πSUB{j}
(βq). Consequently πAj (α) = υj(πSUB{j}

(α)).

If projj
[2](q, q′) ∈ δj,a, then by induction πAj (α) = πAj (βq)aprojj(q

′) =

υj(πSUB{j}
(βq))aprojj(q

′). As proj{j}
[2](q, q′) ∈ (δ{j})a, then πSUB{j}

(α) =
πSUB{j}

(βq)aproj{j}(q
′). Hence πAj (α) = υj(πSUB{j}

(βq)aproj{j}(q
′)) =

υj(πSUB{j}
(α)). This concludes the proof for the finitary case.
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Now consider the infinitary case, i.e. let α ∈ Cω
T . Let α1 ≤ α2 ≤ · · · ∈ CT

be such that α = lim
n→∞

αn. Then by definition πAj (α) = lim
n→∞

πAj (αn) and

πSUB{j}
(α) = lim

n→∞
πSUB{j}

(αn). By the same reasoning as above πAj (αn) =

υj(πSUB{j}
(αn)) and since υj is a homomorphism we thus obtain πAj (α) =

lim
n→∞

υj(πSUB{j}
(αn)) = υj( lim

n→∞
πSUB{j}

(αn)) = υj(πSUB{j}
(α)). -.

Example 4.2.5. (Example 4.1.10 continued) It is easy to see that CT =
{(q1, q2), (q1, q2)a(q′1, q

′
2)}. Now recall that j = 1. Then υ1(πSUB{1}

(CT )) =
υ1({(q1), (q1)a(q′1)}) = {q1, q1aq′1} = πA1(CT ). -.

We conclude this section by showing that if we take the set of computations
of a synchronized automaton and consequently project on a (sub)automaton
of that synchronized automaton, then the result is always included in the set
of computations of that (sub)automaton. However, these inclusions may be
proper.

Lemma 4.2.6. Let T = (Q,Σ, δ, I) be a synchronized automaton over S and
let J ⊆ I. Then

πSUBJ
(C∞

T ) ⊆ C∞
SUBJ

.

Proof. Let α ∈ C∞
T . First consider the finitary case, i.e. let α ∈ CT . Hence

α = q0a1q1a2 · · ·anqn for some n ≥ 0, q! ∈ Q for 0 ≤ " ≤ n, and a! ∈ Σ
for 1 ≤ " ≤ n. By Definition 4.2.3 we have πSUBJ

(α) = p0b1p1b2 · · · bmpm for
some m ≥ 0, p! ∈ QJ for 0 ≤ " ≤ m, and b! ∈ ΣJ for 1 ≤ " ≤ m.
We prove by induction on n that πSUBJ

(α) ∈ CSUBJ
and, furthermore, that

projJ (qn) = pm.
If n = 0, then α = q0 ∈ I. Thus by Definition 4.2.3 we have πSUBJ

(α) =
projJ (q0) ∈ IJ , which implies that πSUBJ

(α) ∈ CSUBJ
. Moreover, m = 0

and projJ(q0) = p0.
Now assume that the statement holds for some k ≥ 0. Let n = k + 1.

Then by Definition 4.2.3 we have πSUBJ
(α) = πSUBJ

(q0a1q1a2 · · · akqk)γ,
where γ = λ if projJ

[2](qk, qk+1) /∈ (δJ )ak+1 and γ = ak+1projJ (qk+1) other-
wise.
First consider the case γ = λ. Then πSUBJ (α) ∈ CSUBJ by the induction
hypothesis. Moreover, since projJ

[2](qk, qk+1) /∈ (δJ)ak+1 , Definition 4.1.1 im-
plies that projJ(qk) = projJ(qk+1). By the induction hypothesis projJ(qk) =
pm, and hence projJ(qk+1) = pm.
Secondly, consider the case γ (= λ. Then πSUBJ

(α) = p0b1p1b2 · · · bmpm =
πSUBJ (q0a1q1a2 · · · akqk)ak+1projJ(qk+1). Thus in this case bm = ak+1 and
pm = projJ(qk+1).
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The only thing left to prove is that πSUBJ (α) ∈ CSUBJ . We already
have that projJ

[2](qk, qk+1) ∈ (δJ)ak+1 . From the induction hypothesis
above it now follows that p0b1p1b2 · · · bm−1pm−1 ∈ CSUBJ

and pm−1 =
projJ (qk). Thus projJ

[2](pm−1, pm) = projJ
[2](qk, qk+1) ∈ (δJ)bm , which im-

plies πSUBJ
(α) = p0b1p1b2 · · · bmpm ∈ CSUBJ

.
Now consider the infinitary case, i.e. let α ∈ Cω

T . Hence α = lim
n→∞

αn for fi-

nite computations α1 ≤ α2 ≤ · · · ∈ CT . Then πSUBJ
(α1) ≤ πSUBJ

(α2) ≤ · · ·
and πSUBJ

(αn) ∈ CSUBJ
, for all n ≥ 1. Thus πSUBJ

(α) = lim
n→∞

πSUBJ
(αn) ∈

C∞
SUBJ

. -.

Corollary 4.2.7. Let T be a synchronized automaton over S and let j ∈ I.
Then

πAj (C
∞
T ) ⊆ C∞

Aj
.

Proof. Directly from Theorem 4.2.4 and Lemmata 4.2.6 and 4.1.9. -.

In the following example we show that, given a synchronized automaton T
over S, it can be the case that there exists a subset J ⊆ I or a j ∈ I for
which πSUBJ

(C∞
T ) ⊂ C∞

SUBJ
or πAj (C

∞
T ) ⊂ C∞

Aj
, respectively.

Example 4.2.8. Let A1 = ({q1, q′1}, {a, b}, {(q1, a, q1), (q1, b, q
′
1)}, {q1}) and

A2 = ({q2, q′2}, {a}, {(q2, a, q
′
2)}, {q2}) be the automata depicted in Fig-

ure 4.7(a).

a

a

q1 q′1

(

q1
q2

) (

q′1
q′2

)

A1:

q2 q′2

(

q1
q′2

) (

q′1
q2

)

A2:

(a) (b)

a

T :

b

Fig. 4.7. Automata A1 and A2, and synchronized automaton T .

Consider synchronized automaton T = (Q, {a, b}, {((q′1, q2), a, (q
′
1, q

′
2))},

{(q1, q2)}), in which Q = {(q1, q2), (q1, q′2), (q
′
1, q2), (q

′
1, q

′
2)}, over {A1,A2}. It

is depicted in Figure 4.7(b).
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It is clear that (q1, q2) is the only computation of T , whereas SUB{2} has
the two computations (q2) and (q2)a(q′2). Hence we have πSUB{2}

(C∞
T ) =

proj{2}((q1, q2)) = (q2) ⊂ {(q2), (q2)a(q′2)} = C∞
SUB{2}

and, according
to Lemma 4.1.9(2) and Theorem 4.2.4, πA2 (C

∞
T ) = υ2(πSUB{2}

(C∞
T )) =

υ2((q2)) = q2 ⊂ {q2, q2aq′2} = υ2({(q2), (q2)a(q′2)}) = υ2(C∞
SUB{2}

) ⊆ C∞
A2

.
As a further example we consider the synchronized automaton T ′ = (Q,

{a, b}, {((q1, q2), a, (q1, q′2))}, {(q1, q2)}) over {A1,A2}. It is depicted in Fig-
ure 4.8.

(

q1
q2

) (

q′1
q′2

)

(

q′1
q2

)

T ′:

(

q1
q′2

)

a

Fig. 4.8. Synchronized automaton T ′.

It is clear that C∞
T ′ = {(q1, q2), (q1, q2)a(q1, q′2)}, whereas we have C∞

A1
=

{q1, q1aq1, q1bq′1, q1aq1aq1, q1aq1bq
′
1, . . . }∪{q1(aq1)

ω}. Hence we now see that
πA1 (C

∞
T ′) = {q1, q1aq1} ⊂ C∞

A1
. -.

4.3 Iterated Composition

In this section we show that synchronized automata are naturally suited to
describe hierarchical systems. We do this by demonstrating how to iteratively
build synchronized automata from synchronized automata, and how to con-
sider subautomata as constituting automata in an iterated definition of a
synchronized automaton.

Given a set of automata S, there may be several ways of forming a syn-
chronized automaton over S. Until now we directly defined synchronized au-
tomata over S, but other routes are also feasible. We might first (iteratively)
form synchronized automata from (disjoint) subsets of S and then use these
as automata for a higher-level synchronized automaton, until after a finite
number of such iterations all automata from S have been used. This is shown
in Example 4.1.5 and Figure 4.2, where four wheels are combined by first
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connecting two of them (to form an axle) and then attaching the other two
to the result. This section shows that whatever route chosen, the resulting
iterated synchronized automaton can always be regarded as a synchronized
automaton over S: it will always have the same alphabet of actions and it
will have essentially the same state space, transition space, and set of initial
states as any synchronized automaton formed directly over S.

Example 4.3.1. Let S = {Ai | i ∈ [7]}, with Ai = (Qi, Σi, δi, Ii), for i ∈ [7].
Let T1−7 = (

∏
i∈[7] Qi,

⋃
i∈[7] Σi, δ,

∏
i∈[7] Ii) be a synchronized automaton

over S. As δ is not relevant for the moment, it is not specified any further. Re-
call that all other parameters of T1−7 are uniquely defined by Definition 4.1.2.
The structure of this synchronized automaton relative to S, is depicted in the
tree of Figure 4.9(a).

T1−7

A2 A4 A5 A6

T ′′

T{2,4,6} T{1,3,5}

A2 A4 A6 A1 A3 A5 A1 A3 A4 A5

U2 U3U1

U4

U5

U6

(c)

A7A3A1

A7 A6A7A2

(b)

(a)

T ′

Fig. 4.9. Three synchronized automata constructed from {Ai | i ∈ [7]}.

Next consider the synchronized automaton T{2,4,6} over {A2,A4,A6}
and the synchronized automaton T{1,3,5} over {A1,A3,A5}. Let T{2,4,6}
be specified as T{2,4,6} = (P1, Γ1, γ1, J1) and let T{1,3,5} be specified as
T{1,3,5} = (P2, Γ2, γ2, J2).

Let T ′ be a synchronized automaton over S ′ = {A′
1,A

′
2}, with A′

1 =
T{2,4,6} and A′

2 = T{1,3,5}. Let T ′ be specified as T ′ = (P ′, Γ ′, γ′, J ′).
Let T ′′ be a synchronized automaton over S ′′ = {A′′

1 ,A
′′
2}, with A′′

1 = T ′

and A′′
2 = A7. Let T ′′ be specified as T ′′ = (P ′′, Γ ′′, γ′′, J ′′), for some γ′′ ⊆

P ′′ × Γ ′′ × P ′′. By Definition 4.1.2 we have P ′′ = P ′ ×Q7 = (
∏

i∈{1,2} Pi)×



76 4. Synchronized Automata

Q7 = ((
∏

i∈{2,4,6} Qi)×(
∏

i∈{1,3,5} Qi))×Q7 = ((Q2×Q4×Q6)×(Q1×Q3×
Q5))×Q7. Similarly, J ′′ = ((I2× I4× I6)× (I1× I3× I5))× I7. Furthermore,
Γ ′′ = Γ ′∪Σ7 = (

⋃
i∈{1,2} Γi)∪Σ7 = ((

⋃
i∈{2,4,6} Σi)∪(

⋃
i∈{1,3,5} Σi))∪Σ7 =⋃

i∈[7] Σi.
Thus T ′′ has the same actions as any synchronized automaton formed

directly over S. Its set of states, however, differs from the set of states of a
synchronized automaton over S by its nested structure and its ordering. In
Figure 4.9(b) the structure of T ′′ relative to S is depicted.

In Figure 4.9(c) the structure relative to S of yet another route for con-
structing a synchronized automaton, starting from the automata in S, is
depicted. The set of states of this particular synchronized automaton U6 is
(((Q1 ×Q2)×Q3)× (Q7 ×Q4))× (Q6 ×Q5). -.

In order to describe in a precise way the relationship between a synchronized
automaton obtained by iteratively composing synchronized automata and a
synchronized automaton formed directly from a given set of automata, we
need formal notions enabling us to describe the construction and the parsing
of vectors with vectors as elements. Let D = {Dj | j ∈ J} be an indexed set,
with J ⊆ N and J (= ∅. Then V(D) is defined as consisting of all finitely
nested combinations of elements from D provided each Dj is used at most
once. The domain of an element V from V(D) consequently is defined to
consist of the indices of the sets in D combined to form V . This leads to
the following recursive definition of V(D) and the accompanying notion of
domain.

Definition 4.3.2. V(D) is the smallest set V such that

(1) Dj ∈ V, for each j ∈ J ;
Set dom (Dj) = {j}, and

(2) if {V! | " ∈ L} ⊆ V, with L ⊆ N and L (= ∅, then
∏

!∈L V! ∈ V provided
that for all k (= " ∈ L, dom (Vk) ∩ dom (V!) = ∅;
Set dom (

∏
!∈L V!) =

⋃
!∈L dom (V!). -.

This definition provides a description of how to construct products of prod-
ucts of indexed sets. Every element of V(D) describes a finitely nested carte-
sian product of sets from D, while its domain gives the information as to
which Dj have been used.

Note that according to step (2) of Definition 4.3.2 each product may
combine an infinite number of sets. In the construction of any product in V ,
however, step (2) is applied only a finite number of times. This corresponds
to the intuition that a synchronized automaton is constructed by a finite
iteration.
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Example 4.3.3. (Example 4.3.1 continued) Let Q = {Qi | i ∈ [7]}. The set of
states P2 =

∏
i∈{1,3,5} Qi is an element of V(Q) with domain {1, 3, 5}. Also

P ′ = P1×P2 =
∏

i∈{2,4,6} Qi×
∏

i∈{1,3,5} Qi is an element of V(Q). Its domain
is {2, 4, 6}∪ {1, 3, 5} = {1, 2, 3, 4, 5, 6}. Finally, for P ′′ = P ′×Q7 ∈ V(Q), we
have dom(P ′ ×Q7) = {1, 2, 3, 4, 5, 6, 7}. -.

Given an element v of a nested cartesian product V from V(D) with do-
main dom(V ), we want to unpack and reorder v in such a way that the
“corresponding” element of

∏
j∈dom (V ) Dj results. To this end we define the

function uV which recursively, for each j ∈ dom(V ), locates in v the element
in the position of Dj according to the construction of V . Note that since
each Dj with j ∈ dom(V ) is used exactly once in the construction of V , its
position in V is unique. Thus uV unpacks v and on basis of this unpack-
ing the resulting elements of

⋃
j∈dom (V ) Dj are ordered in 〈v〉V according to

dom (V ).

Definition 4.3.4. Let V ∈ V(D) be such that dom (V ) = J ′ for some J ′ ⊆ J .
Then

(1) the function uV : V × J ′ →
⋃

j∈J′ Dj is defined as follows:
(a) if J ′ = {j} and V = Dj, then uV (v, j) = v for all v ∈ V and
(b) if V =

∏
!∈L V!, with V! ∈ V(D) for all " ∈ L, then, for all v ∈ V

and j ∈ J ′, uV (v, j) = uVk
(projk(v), j), where k ∈ L is such that

j ∈ dom (Vk), and

(2) the reordering of an element v ∈ V relative to the construction of V is
denoted by 〈v〉V and is defined as

〈v〉V =
∏

j∈J′ uV (v, j). -.

Example 4.3.5. (Example 4.3.3 continued) Assume that we know that q =
(((x,m, "), (e, a, p)), e) ∈ P ′′. With the above definition we now reorder
q relative to the construction of P ′′: 〈q〉P ′′ =

∏
i∈[7] uP ′′(q, i). Here, e.g.,

uP ′′(q, 3)=a. This follows from the fact that uP ′′((((x,m, "), (e, a, p)), e), 3) =
uP ′(((x,m, "), (e, a, p)), 3) since 3 ∈ dom (P ′), uP ′(((x,m, "), (e, a, p)), 3) =
uP2((e, a, p), 3) as 3 ∈ dom (P2), and uP2((e, a, p), 3) = uQ3(a, 3) = a. Each
uP ′′(q, i) can thus be determined, leading to 〈q〉P ′′ = (e, x, a,m, p, ", e). -.

Definition 4.3.4 may seem unnecessarily complicated but, as illustrated in
the next example, the information about the construction of V ∈ V(D) is
necessary in order to obtain a faithful reordering of the entries from

⋃
j∈J Dj

in V .
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Example 4.3.6. LetQ = {Qi | i ∈ [3]}. Let a ∈ Q1 and let b, c ∈ Q2∩Q3. Now
assume we want to reorder q = (a, (b, c)). Then we need to know whether we
are dealing with a construction Q1 × (Q2 ×Q3) ∈ V(Q), which would mean
that the faithful reordering of q is (a, b, c), or with a construction Q1× (Q3×
Q2) ∈ V(Q), which would result in (a, c, b) as the faithful reordering of q. -.

Only if Di∩Dj = ∅ for any two sets of states of a set of automata, the above
definitions could be simplified. This has never been a condition though.

Unpacking and reordering all elements of a nested cartesian product V
over sets from D (relative to the construction of V ) results in the cartesian
product (over sets from D) according to J . This is formally stated in the
following lemma.

Lemma 4.3.7. If V ∈ V(D) and dom (V ) = J ′, then {〈v〉V | v ∈ V } =∏
j∈J′ Dj.

Proof. Let V ∈ V(D) and let dom (V ) = J ′.
(⊆) Let v ∈ V . By Definition 4.3.4 we have 〈v〉V =

∏
j∈J′ uV (v, j). Now

we only have to prove that uV (v, j) ∈ Dj , for all j ∈ J ′. We do this by
structural induction.
If J ′ = {j} and V = Dj , then uV (v, j) = v ∈ V = Dj .
Next assume that V =

∏
!∈L V!, with V! ∈ V(D) for all " ∈ L. Then, by

Definition 4.3.4, for all j ∈ J ′, uV (v, j) = uVk
(projk(v), j), where k is such

that j ∈ dom (Vk). Since each Vk ∈ V(D), the depth of its nesting is strictly
less than the depth of the nesting in V . Thus by the induction hypothesis,
uVk

(projk(v), j) ∈ Dj , for all j ∈ dom(Vk), which completes this direction of
the proof.

(⊇) Let d ∈
∏

j∈J′ Dj . Then we only have to prove that there exists a
v ∈ V such that 〈v〉V = d or, equivalently, that there exists a v ∈ V such
that for all j ∈ J ′, uV (v, j) = projj(d). We do this by structural induction.
Assume that J ′ = {j} and V = Dj . Now set v = projj(d). Then uV (v, j) =
v = projj(d).
Next assume that V =

∏
!∈L V!. Then from the induction hypothesis it follows

that for all " ∈ L, {〈v!〉V#
| v! ∈ V!} =

∏
j∈J#

Dj where J! = dom (V!). Hence
for all " ∈ L and for all j ∈ J! we have a v! ∈ V! such that uV#

(v!, j) =
projj(d) ∈ Dj . Let v ∈ V be such that for all " ∈ L, proj!(v) = v! with
v! ∈ V!. Then for all j ∈ J ′, uV (v, j) = uV#

(proj!(v), j), where " is such that
j ∈ dom(V!). Since for all " ∈ L, uV#

(proj!(v), j) = uV#
(v!, j) = projj(d), this

completes also this direction of the proof. -.

Now we are ready to return to the issue of iteratively forming a synchronized
automaton, given a set of synchronized automata. We begin by generalizing
the notion of a synchronized automaton.
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Definition 4.3.8. T is an iterated synchronized automaton over S if either

(1) T is a synchronized automaton over S, or

(2) T is a synchronized automaton over {Tj | j ∈ J }, where each Tj is an
iterated synchronized automaton over {Ai | i ∈ Ij}, for some Ij ⊆ I,
and {Ij | j ∈ J } forms a partition of I. -.

We see that iterated synchronized automata indeed are a generalization of
synchronized automata: every synchronized automaton over a given set of
automata may also be viewed as an iterated synchronized automaton over
that set. But, as announced in the beginning of this section, synchronized au-
tomata formed iteratively over a set of automata are essentially synchronized
automata over that set. Intuitively the only difference lies in the ordering and
grouping of the elements from the set of automata. In the remainder of this
section, we will formalize this statement.

The following lemma shows that the set of (initial) states of an iterated
synchronized automaton over a set of automata is — upto a reordering —
the same as the set of (initial) states of any synchronized automaton over
that set.

Lemma 4.3.9. Let T = (P, Γ, γ, J) be an iterated synchronized automaton
over S. Let Q = {Qi | i ∈ I}. Then

(1) P ∈ V(Q) and dom (P ) = I,

(2) {〈q〉P | q ∈ P} =
∏

i∈I Qi, and

(3) {〈q〉P | q ∈ J} =
∏

i∈I Ii.

Proof. If T is a synchronized automaton over S, then P =
∏

i∈I Qi and
J =

∏
i∈I Ii.

By Definition 4.3.2(2) we have P ∈ V(Q) and dom (P ) =
⋃

i∈I dom(Qi) = I.
By Lemma 4.3.7 we have {〈q〉P | q ∈ P} =

∏
i∈I Qi.

Since according to Definition 4.3.4 for all q ∈ P , 〈q〉P =
∏

i∈I uP (q, i) =∏
i∈I uQi(proji(q), i) =

∏
i∈I proji(q) = q, it follows that {〈q〉P | q ∈ J} =

{q | q ∈
∏

i∈I Ii} =
∏

i∈I Ii.
Now assume that T is an iterated synchronized automaton over S. Hence

T is a synchronized automaton over a set of automata {Tj | j ∈ J }, where
J ⊆ N, {Ij | j ∈ J } forms a partition of I, and each Tj is an iterated
synchronized automaton over {Ai | i ∈ Ij}. Let, for j ∈ J , Tj be specified
as Tj = (Pj , Γj , γj , Jj). Hence P =

∏
j∈J Pj and J =

∏
j∈J Jj . As induction

hypothesis we assume that for all j ∈ J , Pj ∈ V(Q) with dom(Pj) = Ij , and
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{〈q〉Pj | q ∈ Jj} =
∏

i∈Ij
Ii.

Since {Ij | j ∈ J } forms a partition of I, we immediately have P =∏
j∈J Pj ∈ V(Q) and dom(P ) =

⋃
j∈J dom (Pj) =

⋃
j∈J Ij = I.

By Lemma 4.3.7 we have {〈q〉P | q ∈ P} =
∏

i∈I Qi.
Furthermore, q ∈ J if and only if projj(q) ∈ J , for all j ∈ J . By
the induction hypothesis, for all j ∈ J , projj(q) ∈ Jj if and only if
〈projj(q)〉Pj =

∏
i∈Ij

uPj (projj(q), i) ∈
∏

i∈Ij
Ii. Thus q ∈ J if and only

if for all j ∈ J and for all i ∈ Ij , uPj (projj(q), i) ∈ Ii. Since for all q ∈ P ,
〈q〉P =

∏
i∈I uP (q, i) =

∏
i∈I uPki

(projki
(q), i), where ki ∈ J is such that

i ∈ dom (Pki), it follows that {〈q〉P | q ∈ J} =
∏

i∈I Ii. -.

Next we consider the actions and transitions of iterated synchronized au-
tomata. The actions of an iterated synchronized automaton over a set of
automata S are the same as the actions of any synchronized automaton
over S. Furthermore, the transitions of any synchronized automaton over
{Tj | j ∈ J } are — after reordering — the transitions of a synchronized
automaton over S.

Lemma 4.3.10. Let T = (P, Γ, γ, J) be an iterated synchronized automaton
over S. Then

(1) Γ =
⋃

i∈I Σi and

(2) {(〈q〉P , 〈q′〉P ) | (q, q′) ∈ γa} ⊆ ∆a(S), for all a ∈ Γ .

Proof. If T is a synchronized automaton over S, then (1) follows immedi-
ately from Definition 4.1.2. In that case also (2) follows immediately from
Definition 4.1.2 because, as in the proof of Lemma 4.3.9, 〈q〉P = q, for all
q ∈ P .

Now assume that T is a synchronized automaton over {Tj | j ∈ J },
where J ⊆ N, and each Tj = (Pj , Γj , γj, Jj) is an iterated synchronized
automaton over {Ai | i ∈ Ij}, with {Ij | j ∈ J } forming a partition of I.
Assume furthermore inductively that for all j ∈ J , Γj =

⋃
i∈Ij

Σi. Then
Γ =

⋃
j∈J Γj =

⋃
j∈J

⋃
i∈Ij

Σi =
⋃

i∈I Σi, by Definition 4.1.2, and because
{Ij | j ∈ J } forms a partition of I.

Consequently we consider the transitions of T . Let a ∈ Γ . Since T is a
synchronized automaton over {Tj | j ∈ J }, we know that γa ⊆ ∆a({Tj | j ∈
J }). We have to prove that — upto the reordering relative to the construction
of P — every a-transition of T is an element of the complete transition space
of a in S. In order to prove this we make inductively the following assumption.
For all j ∈ J , {(〈p〉Pj , 〈p

′〉Pj ) | (p, p
′) ∈ γj,a} ⊆ ∆a({Ai | i ∈ Ij}).

Before we turn to the proof we make the following auxiliary observation.
Let q ∈ P . By Lemma 4.3.9 we have 〈q〉P ∈

∏
i∈I Qi and thus 〈q〉P =
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∏
i∈I proji(〈q〉P ). Let i ∈ I. By Definition 4.3.4 we have proji(〈q〉P ) =

uP (q, i) = uPj (projj(q), i), where j is such that i ∈ Ij . Now projj(q) ∈ Pj and
hence, again by Lemma 4.3.9, 〈projj(q)〉Pj ∈

∏
i∈Ij

Qi. By Definition 4.3.4
once again we have proji(〈projj(q)〉Pj ) = uPj (projj(q), i), whenever i ∈ Ij .
Hence proji(〈q〉P ) = proji(〈projj(q)〉Pj ), for all q ∈ P , i ∈ Ij , and j ∈ J .
This ends the observation.

Now let (q, q′) ∈ γa. In order to prove that (〈q〉P , 〈q′〉P ) ∈ ∆a(S) we verify
the two conditions in Definition 4.1.1.
First we prove that there exists an i ∈ I such that proji

[2](〈q〉P , 〈q′〉P ) ∈
δi,a. Let j ∈ J be such that projj

[2](q, q′) ∈ γj,a. Such a j exists be-
cause γa ⊆ ∆a({Tj | j ∈ J }). By the induction hypothesis we have
(〈projj(q)〉Pj , 〈projj(q

′)〉Pj ) ∈ ∆a({Ai | i ∈ Ij}). Hence by Definition 4.1.1

there exists an i ∈ Ij such that proji
[2](〈projj(q)〉Pj , 〈projj(q

′)〉Pj ) ∈ δi,a.

Thus, by our observation above, for this i we have proji
[2](〈q〉P , 〈q′〉P ) ∈ δi,a,

as desired.
Secondly, we prove that for all i ∈ I, either proji

[2](〈q〉P , 〈q′〉P ) ∈ δi,a or
proji(〈q〉P ) = proji(〈q

′〉P ). Let i ∈ I and let j ∈ J be such that i ∈ Ij . Be-
cause {Ij | j ∈ J } forms a partition of I such a j exists and is unique. Since

γa ⊆ ∆a({Tj | j ∈ J }), Definition 4.1.1 implies that either proj[2]j (q, q′) ∈ γj,a
or projj(q) = projj(q

′).

If proj[2]j (q, q′) ∈ γj,a, then (〈projj(q)〉Pj , 〈projj(q
′)〉Pj ) ∈ ∆a({Ai | i ∈ Ij})

by the induction hypothesis. Hence by Definition 4.1.1, we get that either
proji

[2](〈projj(q)〉Pj , 〈projj(q
′)〉Pj ) ∈ δi,a, which — by the above auxiliary ob-

servation — implies that proji
[2](〈q〉P , 〈q′〉P ) ∈ δi,a, or proji(〈projj(q)〉Pj ) =

proji(〈projj(q
′)〉Pj ), which — again by the above auxiliary observation —

implies that proji(〈q〉P ) = proji(〈q
′〉P ).

If projj(q) = projj(q
′), then proji(〈q〉P ) = uPj (projj(q), i) = uPj (projj(q

′), i)
= proji(〈q

′〉P ), which completes the proof. -.

Note that this lemma states that for each action a its complete transition
space in {Tj | j ∈ J } is included — after reordering — in its complete tran-
sition space in S. Iteration in the construction of a synchronized automaton
thus does not lead to an increase of the number of possibilities for synchro-
nization. In other words, every iterated synchronized automaton over a set
of automata can be interpreted as a synchronized automaton over that set,
by reordering its state space and transition space.

Definition 4.3.11. Let T = (Q,Σ, δ, I) be an iterated synchronized automa-
ton over S. Then the reordered version of T w.r.t. S is denoted by 〈〈T 〉〉S
and is defined as
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〈〈T 〉〉S = ({〈q〉Q | q ∈ Q}, Σ,
{(〈q〉Q, a, 〈q′〉Q) | q, q′ ∈ Q, (q, a, q′) ∈ δ}, {〈q〉I | q ∈ I}). -.

From Lemmata 4.3.9 and 4.3.10 we conclude that 〈〈T 〉〉S is indeed a synchro-
nized automaton over S whenever T is an iterated synchronized automaton
over S. In fact, 〈〈T 〉〉S is the interpretation of T as a synchronized automaton
over S by reordering. Since their only difference is the ordering of the ele-
ments of their state spaces, it is immediate that 〈〈T 〉〉S and T have — upto
a reordering — the same set of computations and thus the same behavior.

Theorem 4.3.12. Let T = (Q,Σ, δ, I) be an iterated synchronized automa-
ton over S and let Θ be an alphabet disjoint from Q. Then

(1) C∞
〈〈T 〉〉S

= {〈q0〉Qa1〈q1〉Qa2〈q2〉Q · · · | q0a1q1a2q2 · · · ∈ C∞
T } and

(2) BΘ,∞
〈〈T 〉〉S

= BΘ,∞
T . -.

Clearly the converse of the inclusion of Lemma 4.3.10(2) in general does not
hold, since synchronized automata — and hence also iterated synchronized
automata — are equipped with only a subset of all possible synchronizations.
Moreover, a given intermediate synchronized automaton Tj over a subset Sj

of S may have a transition relation that is properly included in the complete
transition space of Sj . As a consequence, {Tj | j ∈ J } may provide less
transitions for the forming of a synchronized automaton than {Ai | i ∈ I}
does. However, there is a natural condition that guarantees that for a given
arbitrary synchronized automaton T over S and given iterated synchronized
automata Tj over subsets Sj = {Ai | i ∈ Ij}, where the Ij form a partition
of I, one can still obtain a synchronized automaton T̂ over the set consisting
of the Tj , such that 〈〈T̂ 〉〉S = T . This condition requires that each of the
Tj has at least all transitions — after reordering — of the corresponding
subautomaton of T determined by Ij . In fact, when loops are ignored this
is a necessary and sufficient condition for obtaining an iterated version of a
given synchronized automaton over S. Formally, we have the following result,
where we recall δIj to be the transition relation of SUBIj (T ).

Theorem 4.3.13. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let {Ij | j ∈ J }, where J ⊆ N, form a partition of I. Let, for each j ∈ J ,
Tj = (Pj , Γj , γj , Jj) be an iterated synchronized automaton over {Ai | i ∈ Ij}.
Then

(1) if (δIj )a ⊆ {(〈q〉Pj , 〈q
′〉Pj ) | (q, q

′) ∈ γj,a}, for all a ∈ Γj for all j ∈ J ,

then there exists a synchronized automaton T̂ over {Tj | j ∈ J } such
that 〈〈T̂ 〉〉S = T , and
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(2) if T̂ is a synchronized automaton over {Tj | j ∈ J }, then 〈〈T̂ 〉〉S = T im-
plies that (δIj )a \ {(p, p) | (p, p) ∈ ∆a({Ai | i ∈ Ij})} ⊆ {(〈q〉Pj , 〈q

′〉Pj ) |
(q, q′) ∈ γj,a}, for all a ∈ Γj for all j ∈ J .

Proof. Let T̂ = (P, Γ, γ, J) be an arbitrary synchronized automaton over
{Tj | j ∈ J }. First we make an auxiliary observation similar to the
one in the proof of Lemma 4.3.10. Let q ∈ P and let j ∈ J . Then
projIj

(〈q〉P ) = 〈projj(q)〉Pj , since P =
∏

j∈J Pj and, by Lemma 4.3.9(2),∏
i∈Ij

Qi = {〈q〉Pj | q ∈ Pj}.
(1) Assume that (δIj )a ⊆ {(〈q〉Pj , 〈q

′〉Pj ) | (q, q′) ∈ γj,a}. By Lem-
mata 4.3.9(2), 4.3.10(1), and 4.3.9(3) we know that Q = {〈q〉P | q ∈ P},
Σ = Γ , and I = {〈q〉J | q ∈ J}, respectively. Thus it only remains to
prove that the transition relation γ for T̂ can be chosen in such a way that
δ = {(〈q〉P , a, 〈q′〉P ) | q, q′ ∈ P, (q, a, q′) ∈ γ}. Thus using the injectivity
of reordering we define γ simply by γa = {(q, q′) ∈

∏
j∈J Pj ×

∏
j∈J Pj |

(〈q〉P , 〈q′〉P ) ∈ δa}, for all a ∈ Γ and prove that this is indeed the transition
relation of a synchronized automaton over {Tj | j ∈ J }.

Let (p, p′) ∈ γa. We prove there exists a j ∈ J so that projj
[2](p, p′) ∈ γj,a.

As (〈p〉P , 〈p′〉P ) ∈ δa there exists an i ∈ I such that projj
[2](〈p〉P , 〈p′〉P ) ∈

δi,a. Let j be such that i ∈ Ij . Then it follows that projIj

[2](〈p〉P , 〈p′〉P ) ∈
(δIj )a. Since (δIj )a ⊆ {(〈q〉Pj , 〈q

′〉Pj ) | (q, q
′) ∈ γj,a} there exists an (r, r′) ∈

γj,a such that (〈r〉Pj , 〈r
′〉Pj ) = projIj

[2](〈p〉P , 〈p′〉P ). Thus by the observation
above we have (〈r〉Pj , 〈r

′〉Pj ) = (〈projj(p)〉Pj , 〈projj(p
′)〉Pj ). Since reordering

is an injective operation it follows that r = projj(p) and r′ = projj(p
′), and

thus projj
[2](p, p′) = (r, r′) ∈ γj,a.

It now remains to prove that for all j ∈ J , either projj(p) = projj(p
′) or

projj
[2](p, p′) ∈ γj,a. Let j ∈ J be such that projj(p) (= projj(p

′). Then

we only have to prove that projj
[2](p, p′) ∈ γj,a. Since (p, p′) ∈ γa we

have (〈p〉P , 〈p′〉P ) ∈ δa. By the observation above we have projIj
(〈p〉P ) =

〈projj(p)〉Pj and projIj
(〈p′〉P ) = 〈projj(p

′)〉Pj . From the fact that reordering
is an injective operation we infer that projIj

(〈p〉P ) (= projIj
(〈p′〉P ). Hence

projIj

[2](〈p〉P , 〈p′〉P ) ∈ (δIj )a. Since (δIj )a ⊆ {(〈q〉Pj , 〈q
′〉Pj ) | (q, q

′) ∈ γj,a}

it follows that projj
[2](p, p′) ∈ γj,a.

(2) Now assume that 〈〈T̂ 〉〉S = T . Let j ∈ J and a ∈ Γ be fixed. Let
(p, p′) ∈ (δIj )a be such that p (= p′. By Definition 4.1.6 there is a pair

(r, r′) ∈ δa such that projIj

[2](r, r′) = (p, p′). Since 〈〈T̂ 〉〉S = T there are
(r̂, r̂′) ∈ γa such that (〈r̂〉P , 〈r̂′〉P ) = (r, r′). By the observation above we have
(p, p′) = projIj

[2](r, r′) = (〈projj(r̂)〉Pj , 〈projj(r̂
′)〉Pj ) and thus the only thing

left to prove here is that (projj(r̂), projj(r̂
′)) ∈ γj,a. Assume to the contrary

that this is not the case. Then the fact that T̂ is a synchronized automaton
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over {Tj | j ∈ J }, together with (r̂, r̂′) ∈ γa, implies that projj(r̂) = projj(r̂
′)

and thus p = p′, a contradiction. Hence (projj(r̂), projj(r̂
′)) ∈ γj,a. -.

Thus, not only can every iterated synchronized automaton over S be con-
sidered as a synchronized automaton directly constructed from S by Defi-
nition 4.3.11, but according to Theorem 4.3.13 also every synchronized au-
tomaton can be iteratively constructed from its subautomata. Consequently,
both subautomata and iterated synchronized automata can be treated as
synchronized automata — including the considerations concerning their com-
putations and behavior — and it thus suffices to study only the relationship
between (sub)automata and synchronized automata in the sequel, i.e. without
considering iterated synchronized automata explicitly.

4.4 Synchronizations

As said before, the high level of flexibility that is obtained by leaving the set
of transitions of a synchronized automaton as a modeling choice is an impor-
tant — perhaps even the most important — feature of the team automata
framework we are introducing. The choice for a specific interconnection strat-
egy (which automata synchronize on what actions, and when) is based on the
system one wants to model.

In this section we provide the basis for the introduction of a broad variety
of often complex interconnection strategies for team automata in Section 5.3.
We do so by introducing some basic and natural types of synchronization
that can be expressed already within the synchronized automata underlying
team automata.

We focus on the individual actions of a synchronized automaton and we
distinguish several different ways of synchronizing on shared actions. We con-
sider actions that are never used in synchronizations between multiple au-
tomata, as well as actions on which all automata having these actions have
to synchronize. The latter case is weakened by requiring participation only if
an automaton is in a state at which that action is enabled.

Recall that information on the actual execution of loops is missing in the
transition relation of a synchronized automaton. In the coming definitions and
their intuitive explanation, the presence of loops on action a in automata is
treated as if a is actually executed, which is in accordance with the maximal
interpretation of the participation of automata adopted in Section 4.2.

Notation 2. For the remainder of this chapter we assume T = (Q,Σ, δ, I)
is an arbitrary but fixed synchronized automaton over our fixed set S of au-
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tomata. Note that Σ is the alphabet of any synchronized automaton over S
(i.e. not only of T ). -.

4.4.1 Free

Intuitively, an action a is a free action of T if no a-transition of T is brought
about by a simultaneous execution of a by two or more automata. Thus,
whenever a is executed by T only one automaton is active in this execution.

Definition 4.4.1. The set of free actions of T is denoted by Free(T ) and is
defined as

Free(T ) = {a ∈ Σ | (q, q′) ∈ δa ⇒
#{i ∈ I | a ∈ Σi ∧ proji

[2](q, q′) ∈ δi,a} = 1}. -.

Example 4.4.2. (Example 4.1.3 continued) Actions a and b both are not free
in synchronized automaton T{1,2}. This can be concluded from the fact that
the a-transition ((s1, s2), a, (t1, t2)) and the b-transition ((t1, t2), b, (s1, s2))
can serve as an example of a simultaneous execution of a and b, respectively,
by two automata. In synchronized automaton T ′

{1,2}, however, action a is free
while action b is not free. -.

4.4.2 Action-Indispensable

If an action a is action-indispensable, then all automata which have a as one
of their actions are involved in every execution of a by T . This means that
T cannot execute an a if there is an automaton to which a belongs but in
which it is not enabled at the current local state.

Definition 4.4.3. The set of action-indispensable (ai for short) actions of
T is denoted by AI (T ) and is defined as

AI (T ) = {a ∈ Σ | ∀i ∈ I : (a ∈ Σi ∧ (q, q′) ∈ δa)⇒
proji

[2](q, q′) ∈ δi,a}. -.

Example 4.4.4. (Example 4.4.2 continued) Actions a and b both are ai in the
synchronized automaton T{1,2}. This follows directly from the fact that in all
of the a-transitions and in all of the b-transitions of T{1,2}, both W1 and W2

participate. Hence b is also ai in T ′
{1,2}, while a however is not ai in T ′

{1,2}.
This difference stems from the fact that in the a-transition ((s1, s2), a, (s1, t2))
only W2 participates while also W1 has a in its alphabet. -.
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4.4.3 State-Indispensable

State-indispensable, finally, is a weak version of action-indispensable: if an
action a is state-indispensable, then all executions of a by T involve all au-
tomata in which a is enabled at the current local state. In this case T does
not have to “wait” with the execution of a until a is enabled in all automata
to which it belongs.

Definition 4.4.5. The set of state-indispensable (si for short) actions of T
is denoted by SI (T ) and is defined as

SI (T ) = {a ∈ Σ | ∀i ∈ I : (a ∈ Σi ∧ (q, q′) ∈ δa ∧ a enAi proji(q))⇒
proji

[2](q, q′) ∈ δi,a}. -.

Example 4.4.6. (Example 4.4.4 continued) Actions a and b both are si in the
synchronized automaton T{1,2}. This follows immediately from the fact that
in all of the a-transitions as well as in all of the b-transitions of T{1,2}, both
W1 and W2 participate. Hence b is also si in T ′

{1,2}, whereas a is not si in
T ′
{1,2}. This is due to the fact that in the a-transition ((s1, s2), a, (s1, t2)) only

W2 participates, while at state (s1, s2) action a is also enabled at the local
state s1 of W1. -.

4.4.4 Free, Action-Indispensable, and State-Indispensable

We now compare the three types of synchronization introduced in this section.
It is immediate that all ai actions in T also satisfy the weaker requirement

of being si actions.

Lemma 4.4.7. AI (T ) ⊆ SI (T ).

In fact, as we show next, this lemma describes the only dependency among
free, ai , and si actions.

The combination of the properties of being free, ai , and si leads in princi-
ple to eight different types of actions in a synchronized automaton. However,
by Lemma 4.4.7, ai implies si , which eliminates the combinations 〈free, ai ,
not si〉 and 〈not free, ai , not si〉. Each of the remaining six combinations is
feasible, as we demonstrate in the following example.

Example 4.4.8. Consider the automata A1 = ({q, q′}, {a}, {(q, a, q′)}, {q})
and A2 = ({r, r′}, {a}, {(r, a, r′)}, {r}), as depicted in Figure 4.10.

From {A1,A2} we construct the following five synchronized automata
T i = ({(q, r), (q, r′), (q′, r), (q′, r′)}, {a}, δi, {(q, r)}), with i ∈ [5], where
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a

A1:

q q′
a

A2:

r r′

Fig. 4.10. Automata A1 and A2.

δ1 = {((q, r), a, (q, r′)), ((q, r), a, (q′, r′))}; now a is not free since both au-
tomata execute a in the second transition, while a is not si (and thus also
not ai) since A1 does not execute a in the first transition, even though
it is in a state at which a is enabled,

δ2 = {((q, r), a, (q′, r′))}; now a is not free since in the given transition a is
executed by both automata, which implies that a is ai and thus si ,

δ3 = {((q, r), a, (q′, r))}; now a is free since only one automaton is involved
in the a-transition, but a is not si (and thus also not ai) since A2 does
not execute a even though it is in a state at which a is enabled,

δ4 = {((q, r′), a, (q′, r′))}; now a is free for the same reason as in the previous
case, a is not ai since A2 does have a in its alphabet but nevertheless
does not execute a, and a is si since C2 cannot execute a in state r′ (a is
not enabled at state r′), and

δ5 = ∅; now a trivially is free, ai , and si .

These synchronized automata T 1, T 2, T 3, T 4, and T 5 thus illustrate the
cases 〈not free, not ai , not si〉, 〈not free, ai , si〉, 〈free, not ai , not si〉, 〈free,
not ai , si〉, and 〈free, ai , si〉, respectively.

It is not difficult to check that action a is si but neither free nor ai in the
synchronized automaton T of Example 4.2.1, depicted in Figure 4.6(b). This
concludes our display of the remaining six combinations. -.

We conclude by noting that the definitions of free, ai , and si synchronizations
are based on the maximal interpretation adopted in Section 4.2. We will
come back to this in Subsection 7.2.1, where we will reconsider free, ai ,
and si synchronizations in a context in which precise information on the
participation of loops in synchronizations is available.

4.5 Predicates of Synchronizations

Our exposition until now has been analytical, in the sense that we have
investigated transition relations to determine whether or not they satisfy the
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conditions inherent to certain types of synchronization. These conditions in
general do not lead to uniquely defined synchronized automata.

In this section we deal with the question of how to describe a unique
synchronized automaton, given a set of automata and certain conditions to
be satisfied by the synchronizations. Recall that all elements of a synchronized
automaton, except for its set of transitions, are uniquely determined by the
set of automata it is composed over.

We begin by describing specific synchronized automata satisfying certain
constraints on synchronizations. Synchronization constraints for an action a
are conditions on the a-transitions to be chosen from ∆a(S), the complete
transition space of a in S. Together, these conditions should determine a
unique subset Ra, which will be the set of a-transitions in the synchronized
automaton. We will refer to subsets of the complete transition space ∆a(S) as
predicates (of synchronizations) for a. Once predicates have been chosen for
all actions, the synchronized automaton over S defined by these predicates
is unique.

The following generic definition formalizes this setup.

Definition 4.5.1. For all a ∈ Σ, let Ra(S) ⊆ ∆a(S) and let R = {Ra(S) |
a ∈ Σ}. Then T is the R-synchronized automaton over S if for all a ∈ Σ,

δa = Ra(S). -.

A natural way of fixing a predicate for a given type of synchronization is to
apply a maximality principle. Since a predicate is a subset of the complete
transition space, this amounts to including everything that is not forbidden,
i.e. everything that is in accordance with the chosen type of synchroniza-
tion. This is the intuitive approach of [Ell97] and generalizes the classical
approach to define synchronized systems from ai to other types of synchro-
nization (cf. the Introduction). Thus when a synchronized automaton is to
be constructed according to a specification of synchronization conditions for
its set of actions, the strategy is to include as many transitions as possible
without violating the specification, while checking that the result is unique.

This leads to the following predicates.

Definition 4.5.2. Let a ∈ Σ. Then

(1) the predicate no-constraints in S for a is denoted by Rno
a (S) and is defined

as

Rno
a (S) = ∆a(S),

(2) the predicate is-free in S for a is denoted by Rfree
a (S) and is defined as
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Rfree
a (S) = {(q, q′) ∈ ∆a(S) |#{i ∈ I | a ∈ Σi∧proji

[2](q, q′) ∈ δi,a}=1},

(3) the predicate is-ai in S for a is denoted by Rai
a (S) and is defined as

Rai
a (S) = {(q, q′) ∈ ∆a(S) | ∀i ∈ I : a ∈ Σi ⇒ proji

[2](q, q′) ∈ δi,a}, and

(4) the predicate is-si in S for a is denoted by Rsi
a (S) and is defined as

Rsi
a (S) = {(q, q′) ∈ ∆a(S) | ∀i ∈ I : (a ∈ Σi ∧ a enAi proji(q))⇒

proji
[2](q, q′) ∈ δi,a}. -.

Each of these predicates selects, for a given action a, all transitions from its
complete transition space ∆a(S) that obey a certain type of synchronization.
In the case of no-constraints for a, this means that all a-transitions are al-
lowed since nothing is required (and thus no transition is forbidden). In the
other three cases, all and only those a-transitions are included that respect
the specified property of a.

Theorem 4.5.3. Let a ∈ Σ. Then

(1) a ∈ Free(T ) if and only if δa ⊆ Rfree
a (S),

(2) a ∈ AI (T ) if and only if δa ⊆ Rai
a (S), and

(3) a ∈ SI (T ) if and only if δa ⊆ Rsi
a (S).

Proof. Immediately from Definitions 4.4.1, 4.4.3, 4.4.5, and 4.5.2. -.

The predicate Rfree
a (S) (Rai

a (S), Rsi
a (S)) thus defines the largest transition

relation in ∆a(S) in which an action a is free (ai , si). In other words, each of
the types of synchronization introduced in the previous section gives rise to
a predicate that is the unique maximal representative among all transition
relations satisfying the type of synchronization.

Definition 4.5.4. Let syn ∈ {free, ai , si}. Then

(1) the {Rsyn
a (S) | a ∈ Σ}-synchronized automaton over S is called the

maximal-syn synchronized automaton (over S) and

(2) an action a ∈ Σ is called maximal-syn in T if δa = Rsyn
a (S). -.

In case the automata from S have no shared actions, then the maximal-
free (maximal-ai , maximal-si) synchronized automaton equals the Rno-
synchronized automaton (over S).

Theorem 4.5.5. Let a ∈ Σj \ (
⋃

i∈I\{j} Σi). Then

Rno
a (S) = Rsyn

a (S), for all syn ∈ {free, ai , si}. -.
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4.6 Effect of Synchronizations

In this section we study the effect that the types of synchronization intro-
duced in the previous sections have on the inheritance of the automata-
theoretic properties from Section 3.2. We investigate both top-down inheri-
tance — from synchronized automata to their (sub)automata — and bottom-
up preservation — from (sub)automata to synchronized automata.

Notation 3. For the remainder of this chapter we fix an arbitrary j ∈ I and
an arbitrary subset J ⊆ I. The subautomaton SUBJ of T will be specified
as SUBJ = (QJ , ΣJ , δJ , IJ ). We moreover fix Θ to be an arbitrary alphabet
disjoint from Q. -.

The properties whose inheritance we study are static, in the sense that they
depend on the mere “presence” of transitions in (sub)automata and synchro-
nized automata. We begin by introducing two useful auxiliary notions.

A transition (p, a, p′) of automaton Aj defines the execution of an action
a by taking Aj from a (local) state p to a (local) state p′. Such a transition
is present in the synchronized automaton T if it participates in one or more
of the transitions of T . In other words, if T can execute a by going from
a (global) state q such that projj(q) = p to a (global) state q′ such that
projj(q

′) = p′. The transition (p, a, p′) is omnipresent in T if for all (global)
states q of T such that projj(q) = p, it can always be executed by partici-
pating in an a-transition (q, a, q′) of T with projj(q

′) = p′. The presence and
omnipresence of transitions of SUBJ is defined likewise.

Definition 4.6.1. (1) Let (p, a, p′) ∈ δJ . Then

(a) (p, a, p′) is present in T if there exists a (q, a, q′) ∈ δ such that
(projJ(q), a, projJ(q

′)) = (p, a, p′) and

(b) (p, a, p′) is omnipresent in T if for all q ∈ Q such that projJ (q) = p,
there exists a (q, a, q′) ∈ δ such that projJ (q

′) = p′.

(2) Let (p, a, p′) ∈ δj. Then

(a) (p, a, p′) is present in T if there exists a (q, a, q′) ∈ δ such that
(projj(q), a, projj(q

′)) = (p, a, p′) and

(b) (p, a, p′) is omnipresent in T if for all q ∈ Q such that projj(q) = p,
there exists a (q, a, q′) ∈ δ such that projj(q

′) = p′. -.

Note that any transition of a (sub)automaton that is omnipresent in T is
also present in T .
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We now investigate which conditions guarantee the presence or even om-
nipresence of the transitions of (sub)automata in synchronizations of synchro-
nized automata over these (sub)automata. We are particularly interested in
the presence or omnipresence of transitions in case of free, ai , and si actions.

As the transitions of any subautomaton of T are obtained from transitions
of T by projection, each transition of a subautomaton of T is present — but
not necessarily omnipresent — in T .

Theorem 4.6.2. Each transition of SUBJ is present in T . -.

Since the transition relation of T is chosen from the complete transition
space, certain transitions of automata from S may not be present (and thus
neither omnipresent) in T . We now study the types of synchronized automata
in which not too many transitions from the complete transition space have
been left out, i.e. in which transitions are (omni)present.

In the maximal-si synchronized automaton T over S, all executions of an
action a by definition involve all automata in which a is enabled at the current
local state. Hence it is not surprising that all transitions of (sub)automata
from S are omnipresent — and thus present — in T .

Theorem 4.6.3. Let a ∈ Σ.

if δa = Rsi
a (S), then each a-transition of SUBJ as well as each a-

transition of Aj is omnipresent in T .

Proof. We only prove the statement for SUBJ , as the other case is analogous.
Let δa = Rsi

a (S) and let (p, a, p′) ∈ δJ . Now let q ∈ Q be such that projJ(q) =
p and let q′ ∈ Q be the state that is defined by projJ(q

′) = p′ and, for
all i ∈ I \ J , proji(q

′) is such that (proji(q), a, proji(q
′)) ∈ δi whenever

a enAi proji(q). Then by Definitions 4.1.1 and 4.5.2(4), (q, a, q′) ∈ Rsi
a (S).

Hence (p, a, p′) is omnipresent in T . -.

It is clear that once a transition of an automaton is present or omnipresent in a
synchronized automaton, adding more transitions to the latter will not affect
that property. We may thus conclude from Theorem 4.6.3 that whenever
T is such that δa = Rno

a (S), for all a ∈ Σext, then all transitions of the
automata from S are omnipresent — and thus present — in T . Moreover, if
δa = Rno

a (S), for all a ∈ Σext, then for every transition (p, a, p′) of SUBJ ,
we have that (q, a, q′) ∈ Rno

a (S) for all q ∈ Q such that projJ(q) = p,
projJ (q

′) = p′, and for all i ∈ I \ J , proji(q) = proji(q
′).

Theorem 4.6.4. Let a ∈ Σ. Then
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if δa = Rno
a (S), then each a-transition of SUBJ as well as each a-

transition of Aj is omnipresent in T . -.

In the following example we demonstrate that in the maximal-free (maximal-
ai) synchronized automaton over S, not all transitions of all automata from
S need to be present — let alone omnipresent. Apparently the is-free (is-ai)
predicate may contain too few transitions from the complete transition space.

Example 4.6.5. Consider automata A1 = ({p}, {a}, {(p, a, p)}, {p}), A2 =
({q, q′}, {a}, {(q, a, q), (q, a, q′), (q′, a, q′)}, {q}), and A3 = ({r}, {a},∅, {r}).
They are depicted in Figure 4.11.

q

A2:

q′

a a

a
r

A3:

p

A1:

a

Fig. 4.11. Automata A1, A2, and A3.

It is not difficult to see that both the Rfree -synchronized automaton T free
1,2

over {A1,A2} and the Rai -synchronized automaton T ai
2,3 over {A2,A3} have

an empty transition relation. We thus see that none of the a-transitions ap-
pearing in A2 is present — and thus neither omnipresent — in either T free

1,2

or T ai
2,3. -.

By looking more closely at Example 4.6.5 we obtain some hints as to why
some transitions of automata from S cannot be omnipresent in the maximal-
free (maximal-ai) synchronized automaton over S.

First consider the case that T is the maximal-ai synchronized automaton
over S. From Example 4.6.5 it follows immediately that no a-transition of
Aj will be present in T if δa = ∅. On the other hand, if δa = Rai

a (S) (= ∅,
then every a-transition of Aj can be executed in T from every state in which
a is enabled at the local states of all other automata that also have a as an
action.

Theorem 4.6.6. For all a ∈ Θ ∩Σj, let δa = Rai
a (S). Then

Rai
a (S) (= ∅ if and only if δj,a (= ∅ and each a-transition of Aj is present

in T .
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Proof. (If) Trivial.
(Only if) Let δa = Rai

a (S) (= ∅. Then for all i ∈ I, if a ∈ Σi, then there
exist qi, q′i such that (qi, a, q′i) ∈ δi. Now let (p, a, p′) ∈ δj and let q, q′ ∈ Q be
such that projj(q) = p and projj(q

′) = p′, proji(q) = qi and proji(q
′) = q′i,

for all i ∈ I such that a ∈ Σi and i (= j, and projk(q) = projk(q
′), for all

k ∈ I such that a /∈ Σk. This implies that (q, a, q′) ∈ Rai
a (S) and hence

(p, a, p′) is present in T . -.

Example 4.6.5 suggests furthermore that certain transitions of automata from
S cannot be omnipresent in T in case the following situation exists. Let q be
a state of T at which an action a is locally enabled — due to the existence of
an a-transition t — in (at least) one of the automata from S, while it is not
locally enabled — due to the absence of an a-transition — in (at least) one
other automaton from S that does have a in its alphabet . If this is the case,
then a is not enabled at q in T . The reason is that otherwise action a could
be executed from q without the participation of all of the automata having
this a as one of their actions, which would be contradicting the fact that T
is the maximal-ai synchronized automaton over S. Hence the a-transition t
cannot be omnipresent in T .

To avoid the situation sketched above from occurring when dealing with
maximal-ai synchronized automata, we define a Θ-enabling set of automata
as a set of automata with the property that each of its constituting automata
is Θ-enabling. Recall Θ to be an arbitrary alphabet disjoint from Q.

Definition 4.6.7. S is Θ-enabling if for all i ∈ I, Ai is Θ-enabling. -.

If S is Σ-enabling, then we may also simply say that S is enabling. Note,
however, that in that case the maximal-ai synchronized automaton over S
and the maximal-si synchronized automaton over S are one and the same.
In fact, if S is {a}-enabling and δa = Rai

a (S), for an action a, then clearly
δa = Rsi

a (S).

Theorem 4.6.8. For all a ∈ Θ ∩Σ, let δa = Rai
a (S). Then

if S is Θ-enabling, then for all a ∈ Θ, each a-transition of SUBJ as well
as each a-transition of Aj is omnipresent in T .

Proof. Let S be Θ-enabling. Together with the fact that δa = Rai
a (S), for all

a ∈ Θ ∩Σ, this implies that δa = Rsi
a (S), for all a ∈ Θ ∩Σ, after which the

result follows directly from Theorem 4.6.3. -.

We conclude that whenever S is enabling, all transitions of (sub)automata
from S are omnipresent — and thus present — in the maximal-ai synchro-
nized automaton T over S.
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Now consider the case that T is the maximal-free synchronized automa-
ton over S. Consequently, Example 4.6.5 suggests that certain transitions of
automata from S cannot be omnipresent in T in case the following situation
exists. Let q be a state of T at which an action a is locally enabled in (at
least) two of the automata from S, of which (at least) one time as a loop.
Then the other a-transition that is locally enabled at q cannot be omnipresent
in T . The reason is that by our maximal interpretation the automaton with
the loop on a participates in the execution of any a-transition in T from q.
This would be contradicting the fact that T is the maximal-free synchronized
automaton over S.

To avoid the situation sketched above from occurring when studying
maximal-free synchronized automata, we define a Θ-J-loop-limited set of au-
tomata as a set of automata with the property that whenever there is an
a-transition, with a ∈ Θ, in the maximal-free team automaton over Ak,
k ∈ J , then none of the other automata in the set has a loop on a.

Definition 4.6.9. (1) S is Θ-J-loop limited if for all a ∈ Θ∩ΣJ , whenever
there exists an i ∈ I \ J such that (q, q) ∈ δi,a for some q ∈ Qi, then
Rfree

a ({Ak | k ∈ J}) = ∅, and

(2) S is Θ-j-loop limited if for all a ∈ Θ ∩ Σj, whenever there exists an
i ∈ I \ {j} such that (q, q) ∈ δi,a for some q ∈ Qi, then δj,a = ∅. -.

We thus note that S being Θ-j-loop limited is the same as S being Θ-{j}-
loop limited. If S is ΣJ -J-loop limited or Σj-j-loop limited, then we may also
simply say that S is J-loop limited or j-loop limited, respectively. Finally,
note that whenever Θ ⊆ ΣJ \ (

⋃
i∈I\J Σi) or Θ ⊆ Σj \ (

⋃
i∈I\{j} Σi), then S

is Θ-J-loop limited or Θ-j-loop limited, respectively.
Loop limitedness is a sufficient and necessary condition on S for guaran-

teeing all transitions of (sub)automata from S to be omnipresent — and thus
present — in the maximal-free synchronized automaton T over S.

Theorem 4.6.10. For all a ∈ Θ ∩Σ, let δa = Rfree
a (S). Then

(1) each a-transition of SUBJ , for all a ∈ Θ, is omnipresent in T if and only
if S is Θ-J-loop limited, and

(2) each a-transition of Aj , for all a ∈ Θ, is omnipresent in T if and only if
S is Θ-j-loop limited.

Proof. (1) (If) Let S be Θ-J-loop limited, let a ∈ Θ, and let (p, a, p′) ∈ δJ .
Now let q ∈ Q be such that projJ(q) = p and let q′ ∈ Q be the state that
is defined by projJ (q

′) = p′ and, for all i ∈ I \ J , proji(q
′) = proji(q).
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Then Definitions 4.1.1 and 4.5.2(2) together with the fact that S is Θ-J-loop
limited imply that (q, a, q′) ∈ Rfree

a (S). Hence (p, a, p′) is omnipresent in T .
(Only if) Let each a-transition of SUBJ , for all a ∈ Θ, be omnipresent in

T . Now assume that S is not Θ-J-loop limited. Then there exist an a ∈ Θ,
a (p, a, p′) ∈ Rfree

a ({Ak | k ∈ J}), and an i ∈ I \ J such that (q, a, q) ∈ δi.
Now let r ∈ Q be such that projJ(r) = p and proji(r) = q. Since (p, a, p′)
is omnipresent in T , there exists an (r, a, r′) ∈ δ such that projJ (r

′) = p′.
Moreover, because δa = Rfree

a (S) it must be the case that for all " ∈ I \ J ,
proj!(r

′) = proj!(r) and (proj!(r), a, proj!(r
′)) /∈ δ!, which contradicts the

fact that (q, a, q) ∈ δi. Hence S is Θ-J-loop limited.
(2) Analogous. -.

This concludes our intermezzo on the presence and omnipresence of transi-
tions of (sub)automata in synchronized automata over these (sub)automata.
In the next two subsections we investigate the inheritance of the automata-
theoretic properties introduced in Section 3.2 from synchronized automata to
their (sub)automata, and vice versa. While doing so we adhere to the order
according to which these properties were introduced.

4.6.1 Top-Down Inheritance of Properties

Initially we search for sufficient conditions under which the automata-
theoretic properties of Section 3.2 are inherited from synchronized automata
to their (sub)automata.

Reduced Versions

In order to investigate the conditions under which action reducedness, tran-
sition reducedness, and state reducedness are inherited from a synchronized
automaton to its (sub)automata, it is important to know whether or not the
projection on a (sub)automaton of a state that is reachable in a synchronized
automaton is itself reachable in that (sub)automaton.

Lemma 4.6.11. Let q ∈ Q be reachable in T . Then

(1) projJ(q) is reachable in SUBJ and

(2) projj(q) is reachable in Aj.

Proof. If q ∈ Q is reachable in T , then there exists a computation αq ∈ CT .
Hence (1) and (2) follow directly from Lemma 4.2.6 and its Corollary 4.2.7,
respectively. -.
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An immediate consequence of Lemma 4.6.11 is that the state reducedness of
a synchronized automaton is inherited by all its (sub)automata.

Theorem 4.6.12. Let T be state reduced. Then

SUBJ as well as Aj is state reduced. -.

Note that the statements of Lemma 4.6.11 cannot be reversed. This fol-
lows from Example 4.2.8. This also means that the Θ-action-reduced (Θ-
transition-reduced) versions of the subautomata of a synchronized automa-
ton in general are different from the subautomata of the Θ-action-reduced
(Θ-transition-reduced) versions of that synchronized automaton. Hence in
general SUBJ(T Θ

A ) (= (SUBJ(T ))ΘA and SUBJ(T Θ
T ) (= (SUBJ(T ))ΘT , even if

Θ ⊆ ΣJ . The situation is different in case of state reducedness. In fact, since
the state-reduced version TS of a synchronized automaton T over S need
not be a synchronized automaton over S, subautomata of TS are not defined
unless TS = T , i.e. T is state reduced. However, if T is state reduced, then
Theorem 4.6.12 implies that SUBJ(T ) = (SUBJ(T ))S .

In the following example we show that the fact that T is Θ-action reduced
(Θ-transition reduced) in general does not imply that each of its constitut-
ing automata is Θ-action reduced (Θ-transition reduced). To construct a
Θ-action-reduced synchronized automaton T over S, it suffices to have just
one Θ-action-reduced automaton in S. By basing the transition relation of
T solely on that Θ-action-reduced automaton, e.g., one obtains that T is Θ-
action reduced while obviously not all automata from S need to be Θ-action
reduced. It is even easier to construct a Θ-transition-reduced synchronized
automaton T over S, viz. by equipping T with only useful a-transitions, for
all a ∈ Θ.

Example 4.6.13. Consider automata A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1)}, {q1})

and A2 = ({q2, q′2}, {a}, {(q
′
2, a, q2)}, {q2}), as depicted in Figure 4.12(a).

Consider the synchronized automaton T = (Q, {a}, δ, {(q1, q2)}), with
Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)} and δ = {((q1, q2), a, (q′1, q2))}, over

{A1,A2}. It is depicted in Figure 4.12(b).
It is easy to see that T is both action reduced and transition reduced,

whereas A2 clearly is neither action reduced nor transition reduced. -.

The action reducedness of a synchronized automaton is inherited by each of
its (sub)automata in case each of the latter’s actions is ai in the synchronized
automaton.

Theorem 4.6.14. Let T be Θ-action reduced. Then
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Fig. 4.12. Automata A1 and A2, and synchronized automaton T .

(1) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-action reduced, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-action reduced.

Proof. (1) Let a ∈ Θ ∩ ΣJ and let δa ⊆ Rai
a (S). Since T is Θ-action re-

duced we know that there exists a computation α ∈ CT such that α = βaq
for some β ∈ I(ΣQ)∗ and q ∈ Q. Since δa ⊆ Rai

a (S), πSUBJ
(α) =

πSUBJ
(β)aprojJ (q) ∈ CSUBJ

by Definition 4.2.3(1) and Lemma 4.2.6. Hence
a is active in SUBJ and SUBJ is thus Θ-action reduced.

(2) Analogous, but now using Definition 4.2.3(3) and Corollary 4.2.7. -.

It is worthwhile to notice that the requirement of every action being ai as
condition in this theorem cannot be replaced by requiring each action to
be free or si without invalidating the statement. In the following example
we show this by demonstrating that the action reducedness of T in general
is not inherited by each of its (sub)automata in case T is the maximal-
free synchronized automaton nor in case T is the maximal-si synchronized
automaton — and hence neither in case T is a synchronized automaton in
which every action is free nor in case T is a synchronized automaton in which
every action is si .

Example 4.6.15. (Example 4.6.13 continued) First we consider the Rfree-
synchronized automaton T free = (Q, {a}, δfree, {(q1, q2)}), with δfree = δ ∪
{((q1, q′2), a, (q1, q2)), ((q1, q

′
2), a, (q

′
1, q

′
2)), ((q

′
1, q

′
2), a, (q

′
1, q2))}, over {A1,A2}.

It is depicted in Figure 4.13(a).
Clearly, T free is {a}-action reduced. Now note that SUB{2}(T free) is es-

sentially a copy of A2. It is easy to see that neither SUB{2}(T free) nor A2 is
{a}-action reduced.
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Fig. 4.13. Synchronized automata T free and T si .

Next we consider the Rsi -synchronized automaton T si = (Q, {a}, δsi ,
{(q1, q2)}), with δsi = δ ∪ {((q1, q′2), a, (q

′
1, q2)), ((q

′
1, q

′
2), a, (q

′
1, q2))}, over

{A1,A2}. It is depicted in Figure 4.13(b).
Clearly, T si is {a}-action reduced. Moreover, also SUB{2}(T si) is essen-

tially a copy of A2. Since we know that A2 is not {a}-action reduced, neither
is SUB{2}(T si).

Finally, we note that the Rai -synchronized automaton T ai = (Q, {a},
{((q1, q′2), a, (q

′
1, q2))},{(q1, q2)}) over {A1,A2} is not {a}-action reduced. -.

In Example 4.6.13 we have seen that the fact that T is transition reduced
in general does not imply that Aj is transition reduced. As we show next,
the transition reducedness of a synchronized automaton is inherited by each
of its (sub)automata in case each of the latter’s transitions is present in the
synchronized automaton.

Theorem 4.6.16. Let T be Θ-transition reduced. Then

(1) SUBJ is Θ-transition reduced and

(2) if each a-transition of Aj , for all a ∈ Θ, is present in T , then Aj is
Θ-transition reduced.

Proof. (1) Let a ∈ Θ∩ΣJ and let (p, a, p′) ∈ δJ . Then Theorem 4.6.2 implies
that there exists a transition (q, a, q′) ∈ δ such that (projJ (q), a, projJ(q

′)) =
(p, a, p′). Since T is Θ-transition reduced there furthermore exists a compu-
tation αq ∈ CT , i.e. q is reachable in T . Lemma 4.6.11(1) now implies that
p is reachable in SUBJ and thus (p, a, p′) is useful in SUBJ . Hence SUBJ is
Θ-transition reduced.

(2) Analogous. -.
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Together with Theorems 4.6.3, 4.6.4, 4.6.6, and 4.6.10(2) this implies the
following result.

Corollary 4.6.17. Let T be Θ-transition reduced and let syn ∈ {si , no}.
Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-transition reduced,

(2) if δa = Rai
a (S) (= ∅, for all a ∈ Θ ∩Σj, then Aj is Θ-transition reduced,

and

(3) if δa = Rfree
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-j-loop limited, then Aj

is Θ-transition reduced. -.

Enabling

We now turn to the inheritance of enabling from synchronized automata to
their (sub)automata. In the following example we show that when a syn-
chronized automaton T over S is Θ-enabling, then this in general does not
imply that each of its (sub)automata is Θ-enabling. We show this by using
the fact that a necessary condition for a synchronized automaton to be {a}-
enabling, for an action a, is that in each of its states (at least) one of its
constituting automata enables a. However, it is not guaranteed that each of
the synchronized automaton’s (sub)automata enables a in each of its states.

Example 4.6.18. (Example 4.2.1 continued) Clearly T is action reduced and
state reduced (and thus transition reduced). It is moreover enabling. However,
we immediately see thatA1 and A3 are not. It is also easy to see that SUB{3},
which is essentially a copy of A3, is not enabling. -.

Note that this example allows us to conclude that also the Θ-enabling of
a Θ-action-reduced (Θ-transition-reduced, state-reduced) synchronized au-
tomaton in general is not inherited by its (sub)automata.

The enabling of a synchronized automaton is inherited by each of its
(sub)automata in case every action of the synchronized automaton is ai .

Theorem 4.6.19. Let T be Θ-enabling. Then

(1) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-enabling, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-enabling.
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Proof. (1) Let a ∈ Θ∩ΣJ and let δa ⊆ Rai
a (S). Let p ∈ QJ . Now let q ∈ Q be

such that projJ (q) = p. Since T is Θ-enabling we know that a en T q. Hence
there exists a q′ ∈ Q such that (q, q′) ∈ δa. Moreover, projJ

[2](q, q′) ∈ (δJ )a
because a ∈ ΣJ and δa ⊆ Rai

a (S). Consequently, a en SUBJ
p. Hence SUBJ

is Θ-enabling.
(2) Analogous. -.

It is worthwhile to notice that the requirement of every action being ai as
condition in this theorem cannot be replaced by requiring each action to be
free or si without invalidating the statement. In the following example we
show this by demonstrating that the enabling of T in general is not inherited
by each of its (sub)automata in case T is the maximal-free synchronized
automaton nor in case T is the maximal-si synchronized automaton — and
hence neither in case T is a synchronized automaton in which every action
is free nor in case T is a synchronized automaton in which every action is si .

Example 4.6.20. Let A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1), (q

′
1, a, q1)}, {q1}) and let

A2 = ({q2, q′2}, {a}, {(q2, a, q
′
2)}, {q2}). These automata are depicted in Fig-

ure 4.14.

q1 q′1

a

a

a

A1:

q2

A2:

q′2

Fig. 4.14. Automata A1 and A2.

In Figure 4.15(a) we have depicted the Rfree-synchronized automaton
T free = (Q, {a}, δfree, {(q1, q2)}), with Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}

and δfree as depicted, over {A1,A2}.
It is easy to see that T free is enabling. Now note that SUB{2}(T free) is

essentially a copy of A2. Clearly neither SUB{2}(T free) nor A2 is enabling.
Consequently, in Figure 4.15(b) we have depicted the Rsi -synchronized

automaton T si = (Q, {a}, δsi , {(q1, q2)}), with δsi as depicted, over {A1,A2}.
It is again easy to see that T si is enabling. Clearly also SUB{2}(T si) is

essentially a copy of A2. Since A2 is not enabling, neither is SUB{2}(T si).
Finally, we note that the Rai -synchronized automaton T ai = (Q, {a},

{((q1, q2), a, (q′1, q
′
2)), ((q

′
1, q2), a, (q1, q

′
2))}, {(q1, q2)}) over {A1,A2} is not en-

abling. -.
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Fig. 4.15. Synchronized automata T free and T si .

Determinism

We now conclude this subsection by turning to the inheritance of deter-
minism. We begin by showing that when a synchronized automaton T over
S is Θ-deterministic, then this in general does not imply that each of its
(sub)automata is Θ-deterministic. In case of inheritance from a synchronized
automaton to its constituting automata, this can be concluded directly from
Example 4.6.5. In case of inheritance from a synchronized automaton to its
subautomata, this can be concluded from the following example. This ex-
ample uses the fact that the states of Aj can be used to distinguish states
of a synchronized automaton T that without the j-th component cannot be
distinguished.

Example 4.6.21. Consider automata A1 = ({p, p′}, {a}, {(p, a, p′), (p′, a, p)},
{p}), A2 = ({q, q′}, {a}, {(q, a, q′), (q′, a, q)}, {q}), and A3 = ({r, r′}, {a},
{(r, a, r′), (r′, a, r)}, {r}), as depicted in Figure 4.16.

In Figure 4.17(a) we have depicted the synchronized automaton T =
(Q, {a}, δ, {(p, q, r)}), withQ = {(p, q, r), (p′, q, r), (p, q′, r), (p′, q′, r), (p, q, r′),
(p′, q, r′), (p, q′, r′), (p′, q′, r′)} and δ as depicted, over {Ai | i ∈ [3]}.

It is easy to see that T is action reduced and state reduced (and thus
transition reduced). Furthermore, T clearly is deterministic.

Consequently, in Figure 4.17(b) we have depicted its subautomaton
SUB{1,2} = ({(p, q), (p, q′), (p′, q), (p′, q′)}, {a}, δ{1,2}, {(p, q)}), with δ{1,2} as
depicted.

Clearly SUB{1,2} is not deterministic as, e.g., ((p′, q), a, (p, q)) ∈ δ{1,2}
and ((p′, q), a, (p, q′)) ∈ δ{1,2}. -.
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Fig. 4.16. Automata A1, A2, and A3.
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Fig. 4.17. Synchronized automaton T and its subautomaton SUB{1,2}.

The determinism of a maximal-free (maximal-ai , maximal-si) synchronized
automaton is inherited by each of its (sub)automata in case each of the
latter’s transitions is present in the synchronized automaton.

Theorem 4.6.22. Let T be Θ-deterministic and let syn ∈ {no, free, ai , si}.
Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-deterministic, and
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(2) if δa = Rsyn
a (S) and each a-transition of Aj is present in T , for all

a ∈ Θ ∩Σj, then Aj is Θ-deterministic.

Proof. (1) Let a ∈ Θ ∩ΣJ and let δa = Rsyn
a (S). Since T is Θ-deterministic

we know that I = {q0}, for some q0 ∈ Q. Hence, trivially, IJ = {projJ (q0)}.
It thus remains to prove that for all q ∈ QJ , there exists at most one q′ ∈ QJ

such that (q, a, q′) ∈ δJ .
Now assume that there exists a p ∈ QJ such that (p, a, p′) ∈ δJ and

(p, a, p′′) ∈ δJ , with p′ (= p′′. Then Theorem 4.6.2 implies that there exist a
(q, a, q′) ∈ δ such that (projJ(q), a, projJ(q

′)) = (p, a, p′) and an (r, a, r′) ∈ δ
such that (projJ (r), a, projJ(r

′)) = (p, a, p′′). Moreover, since q′ (= r′ and
T is Θ-deterministic, we know that q (= r. Consequently, the fact that δa =
Rsyn

a (S) implies that we can replace the components from J in (q, q′) by those
in (r, r′) and still have a transition in Rsyn

a (S). Hence there exists a q′′ ∈ Q
such that (q, a, q′′) ∈ δ with projI\J(q

′′) = projI\J(q
′) and projJ(q

′′) =
p′′ = projJ(r

′). Since p′ (= p′′ this means that T is not Θ-deterministic, a
contradiction. Hence SUBJ is Θ-deterministic.

(2) Analogous. -.

Together with Theorems 4.6.3, 4.6.4, 4.6.6, and 4.6.10(2) this implies the
following result.

Corollary 4.6.23. Let T be Θ-deterministic and let syn ∈ {si , no}. Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-deterministic,

(2) if δa = Rai
a (S) (= ∅, for all a ∈ Θ ∩Σj, then Aj is Θ-deterministic, and

(3) if δa = Rfree
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-j-loop limited, then Aj

is Θ-deterministic. -.

4.6.2 Bottom-Up Inheritance of Properties

Dual to the above investigations we now change focus and study sufficient
conditions under which the automata-theoretic properties of Section 3.2 are
preserved from automata to synchronized automata.

We recall from Section 4.3 that T is a synchronized automaton over S ′ —
upto a reordering — whenever S ′ = {SUBIj | {Ij | j ∈ J } forms a partition
of I}. Hence it suffices to investigate the conditions under which a property
that holds for (elements of) a set of automata is preserved by a synchronized
automaton over that set of automata. Therefore, we extend Definition 4.6.7
by defining when a set of automata is Θ-action reduced (Θ-transition reduced,
state reduced, Θ-deterministic).
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Definition 4.6.24. S is Θ-action reduced (Θ-transition reduced, state re-
duced, Θ-deterministic) if for all i ∈ I, Ai is Θ-action reduced (Θ-transition
reduced, state reduced, Θ-deterministic). -.

If S is Σ-action reduced (Σ-transition reduced, Σ-deterministic) we may also
simply say that S is action reduced (transition reduced, deterministic).

In the following example we show that the fact that S is Θ-action reduced
(Θ-transition reduced, state reduced) in general does not imply that T is Θ-
action reduced (Θ-transition reduced, state reduced). We moreover show that
in case S is Θ-enabling (Θ-deterministic), then this in general does not imply
that T is Θ-enabling (Θ-deterministic). To show this we use the fact that the
transition relation of a synchronized automaton over a set of automata is
chosen from the complete transition space. Hence we simply consider a set
of automata that satisfies a certain property (i.e. each of its constituting
automata satisfies this particular property) and consequently we choose the
transition relation of a synchronized automaton over it in such a way that
the property fails to hold for that particular synchronized automaton.

Example 4.6.25. Let automata A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1), (q

′
1, a, q1)},

{q1}) and A2 = ({q2, q′2}, {a, b}, {(q2, b, q2), (q2, a, q
′
2), (q

′
2, b, q

′
2)}, {q2}) be as

depicted in Figure 4.18.

bb

q1 q′1

a

a
q2 q′2

a

A1: A2:

Fig. 4.18. Automata A1 and A2.

It is easy to see that both A1 and A2 are action reduced, state reduced
(and thus transition reduced), and deterministic. Moreover, A1 is enabling
and A2 is {b}-enabling.

Now consider the synchronized automaton T = (Q, {a, b}, δ, {(q1, q2)}),
where Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)} and δ = {((q1, q2), a, (q′1, q

′
2)),

((q1, q2), a, (q1, q′2)), ((q
′
1, q2), a, (q1, q

′
2))}, over {A1,A2}. It is depicted in Fig-

ure 4.19(a).
Since b is not active in T it is clear that T is not action reduced. Fur-

thermore, T is not transition reduced (and thus neither state reduced) since
((q′1, q2), a, (q1, q

′
2)) is not useful in T . By removing both this transition and
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Fig. 4.19. Synchronized automaton T and its state-reduced version TS .

the resulting isolated state (q′1, q2) we obtain the state-reduced version TS of
T , which is depicted in Figure 4.19(b).

Clearly neither T nor TS is enabling since, e.g., b is not even active in
either of these synchronized automata. It is also easy to see that neither T nor
TS is deterministic since both synchronized automata contain the transition
((q1, q2), a, (q1, q′2)) as well as the transition ((q1, q2), a, (q′1, q

′
2)). -.

Note that this example thus also suffices to conclude that the Θ-enabling
(Θ-determinism) of a set of automata is not inherited by a Θ-action-reduced
(Θ-transition-reduced, state-reduced) synchronized automaton over that set
of automata.

Summarizing, we conclude that the automata-theoretic properties of Sec-
tion 3.2 in general are not preserved from a set of automata S to a synchro-
nized automaton T over S. We nevertheless show next that — under certain
conditions — some of these properties are preserved from S to T .

Reduced Versions

As before we begin by considering action reducedness, transition reducedness,
and state reducedness. Note that these properties are based on the notion of
reachability of states. We know from Lemma 4.6.11(2) that whenever a state
q is reachable in T , then for all i ∈ I, proji(q) is reachable in Ai. Here we
study the inheritance from automata to synchronized automata. Given a state
q of a synchronized automaton T over S comprising solely reachable states of
the automata from S, it is not necessarily the case that q is reachable in T .
This is because it may be the case that the transition relation of T allows no
synchronous execution of actions from its constituting automata that would
lead to q. In the following example we show that even when we consider
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the maximal-free (maximal-ai , maximal-si) synchronized automaton over S,
then this may still be the case.

Example 4.6.26. (Examples 4.6.5 and 4.6.20 continued) Note that all the
states of all the automata of Examples 4.6.5 and 4.6.20, depicted in Fig-
ures 4.11 and 4.14, are reachable. Hence all these automata are state reduced.

Since in Example 4.6.5 both the maximal-free synchronized automaton
T free
1,2 and the maximal-ai synchronized automaton T ai

2,3 have an empty tran-
sition relation, it is however clear that (p, q′) and (q′, r) are not reachable in
T free
1,2 and T ai

2,3, respectively. Finally, in the maximal-si synchronized automa-
ton T si of Example 4.6.20 — depicted in Figure 4.15(b) — it is clear that
(q′1, q2) is not reachable. Hence neither of these three maximal synchronized
automata is state reduced. -.

This example thus not only presents counterexamples for the preservation of
reachability of states of automata from S to the maximal-free (maximal-ai ,
maximal-si) synchronized automaton over S, but it also demonstrates that
state reducedness of automata from S in general is not preserved by the
maximal-free (maximal-ai , maximal-si) synchronized automaton over S.

We now show that we can use the notion of loop limitedness to prove
the reachability of any state q of the maximal-free synchronized automaton
T over S that comprises solely reachable states of the automata from S. To
this aim, we extend Definition 4.6.9 by defining when S is Θ-loop-limited .

Definition 4.6.27. S is Θ-loop limited if for all i ∈ I, S is Θ-i-loop limit-
ed. -.

If S is Σ-loop limited, then we may also simply say that S is loop limited.
Observe that whenever there exists a k ∈ I such that Θ ⊆ Σk\(

⋃
i∈I\{k} Σi),

then S is Θ-loop limited. Whenever S is loop limited and T is the maximal-
free synchronized automaton over S, then Theorem 4.6.10 implies that all
transitions of the automata from S are omnipresent in T . Moreover, in all
synchronizations of T only one automaton participates. If in addition S is
finite, then we can thus simply reach q by executing one by one the sequences
of transitions responsible for the reachability of those states constituting q.

Lemma 4.6.28. Let q ∈ Q be such that for all i ∈ I, proji(q) is reachable
in Ai. Then

if S is finite and loop limited and δa = Rfree
a (S), for all a ∈ Σ, then q is

reachable in T .
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Proof. Let S be finite and loop limited and let δa = Rfree
a (S), for all

a ∈ Σ. Now let #I = n, for some n ≥ 1, and assume without loss
of generality that I = [n]. For all i ∈ [n], we can fix a computation
αi = qi0ai1qi1ai2qi2 · · · aimi

qimi
∈ CAi such that mi ≥ 0, qi0 ∈ Ii, aik ∈ Σi

and qik ∈ Qi, for all k ∈ [mi], and qimi
= proji(q) ∈ Qi. Consequently, we

define β inductively by a sequence β0, β1, . . . , βn such that βn = β as follows.
β0 = q0 is defined by proji(q0) = qi0 , for all i ∈ [n]. Hence q0 ∈

∏
i∈[n] Ii =

I and β0 ∈ CT . Moreover, πAi(β0) = qi0 , for all i ∈ [n].
β1 = β0a11q1a12q2 · · · a1m1

qm1 is defined, for all k ∈ [m1], by proj1(qk) =
q1k and proji(qk) = proji(q0) = qi0 if 1 < i ≤ n. Since (q1k−1 , a1k , q1k) ∈ δ1,
for all k ∈ [m1], S is loop limited, and δa = Rfree

a (S), for all a ∈ Σ, it follows
that β1 ∈ CT , πA1(β1) = α1 ∈ CA1 , and πAi(β1) = qi0 , for all 1 < i ≤ n.

Now let 0 ≤ " ≤ n and assume that β0, β1, . . . , β!−1 are defined in such
a way that β!−1 ∈ CT , πAi (β!−1) = αi ∈ CAi , for all i ∈ [" − 1], and
πAi(β!−1) = qi0 , for all " ≤ i ≤ n.

β! = β!−1a!1p1a!2p2 · · ·a!m#
pm#

is defined, for all k ∈ [m!], by proj!(pk) =
q!k , proji(pk) = qimi

if i ∈ [" − 1], and proji(pk) = proji(q0) = qi0 if " <
i ≤ n. Since (q!k−1 , a!k , q!k) ∈ δ!, for all k ∈ [m!], S is loop limited, and
δa = Rfree

a (S), for all a ∈ Σ, it follows that β! ∈ CT , πAi(β!) = αi ∈ CAi ,
for all i ∈ ["], and πAi(β!) = qi0 , for all " < i ≤ n.

βn = β = q0b1q1b2q2 · · · bzqz is thus defined in such a way that β ∈ CT

and, for all i ∈ [n], πAi(β) = αi ∈ CAi and proji(qz) = qimi
= proji(q).

Hence q is reachable in T . -.

An immediate consequence of Lemma 4.6.28 is that whenever S is a finite,
loop-limited, and state-reduced set of automata, then the maximal-free syn-
chronized automaton over S is state reduced (and thus transition reduced).

Theorem 4.6.29. Let S be state reduced. Then

if S is finite and loop limited and δa = Rfree
a (S), for all a ∈ Σ, then T

is state reduced as well as transition reduced. -.

It is worthwhile to notice that the requirement of every action being maximal-
free as condition in this theorem cannot be replaced by requiring each action
to be maximal-ai or maximal-si without invalidating the statement. In the
following example we show this by demonstrating that the fact that S is state
reduced (and thus transition reduced) in general does not imply that either
the maximal-ai synchronized automaton over S or the maximal-si synchro-
nized automaton over S is state reduced — nor does it imply that either of
these synchronized automata is transition reduced.



108 4. Synchronized Automata

Example 4.6.30. (Example 4.6.20 continued) ClearlyA1 and A2 form a state-
reduced (and thus transition-reduced), finite, and loop-limited set of au-
tomata. We have seen, however, that the maximal-si synchronized automa-
ton T si and the maximal-ai synchronized automaton T ai both contain the
transition ((q′1, q2), a, (q1, q

′
2)) while (q

′
1, q2) is not reachable in either of these

synchronized automata. Hence neither T si nor T ai is transition reduced (and
thus neither state reduced). -.

Finally, we investigate the conditions under which action reducedness is pre-
served from S to a synchronized automaton over S. It turns out that already
one action-reduced automaton Ak in S guarantees that T is action reduced,
provided that each transition of Ak is omnipresent in T .

Theorem 4.6.31. Let Aj be Θ-action reduced. Then

if each transition of Aj is omnipresent in T and I (= ∅, then T is Θ∩Σj-
action reduced.

Proof. Let each transition of Aj be omnipresent in T and let I (= ∅. If
Θ∩Σj = ∅, then there is nothing to prove. We thus assume that a ∈ Θ∩Σj .
Then the fact that Aj is Θ-action reduced implies that there exists a useful
transition (p, a, p′) ∈ δj and a computation p0a1p1a2p2 · · · ampmap′ ∈ CAj

such that pm = p. Now let q0 ∈ I be such that projj(q0) = p0. Then the
fact that each transition of Aj is omnipresent in T implies that there ex-
ists a (q0, a1, q1) ∈ δ such that projj(q1) = p1. By repeating this argu-
ment we thus obtain that for all k ∈ [m], there exists a (qk−1, ak, qk) ∈ δ
such that projj(qk−1) = pk−1 and projj(qk) = pk. This means that there
exists a computation α = q0a1q1a2q2 · · · amqm ∈ CT such that πAj (α) =
p0a1p1a2p2 · · · ampm. Since projj(qm) = pm = p and (p, a, p′) is omnipresent
in T , there must exist a computation αaqm+1 ∈ CT such that projj(qm+1) =
p′. Hence a is active in T and T is thus Θ ∩Σj-action reduced. -.

Together with Theorems 4.6.3, 4.6.4, 4.6.8, and 4.6.10(2) this implies the
following result.

Corollary 4.6.32. Let Aj be Θ-action reduced, let I (= ∅, and let syn ∈
{si , no}. Then

(1) if δa = Rsyn
a (S), for all a ∈ Σ, then T is Θ ∩Σj-action reduced,

(2) if δa = Rai
a (S), for all a ∈ Σ, and S is Θ-enabling, then T is Θ ∩ Σj-

action reduced, and

(3) if δa = Rfree
a (S), for all a ∈ Σ, and S is Θ-j-loop limited, then T is

Θ ∩Σj-action reduced. -.
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Enabling

We now turn to an investigation of the conditions under which enabling is
preserved from S to a synchronized automaton over S. It turns out that
already one enabling automaton Ak in S guarantees that T is enabling,
provided that each transition of Ak is omnipresent in T .

Theorem 4.6.33. Let Aj be Θ-enabling. Then

if each a-transition of Aj, for all a ∈ Θ, is omnipresent in T , then T is
Θ ∩Σj-enabling.

Proof. Let each a-transition of Aj , for all a ∈ Θ, be omnipresent in T . If
Θ ∩ Σj = ∅, then there is nothing to prove. We thus assume that a ∈
Θ ∩ Σj . Now let q ∈ Q. Since a ∈ Σj and Aj is Θ-enabling we know that
a enAj projj(q). The fact that each a-transition of Aj , for all a ∈ Θ, is
omnipresent in T consequently implies that a en T q. Hence T is Θ ∩ Σj-
enabling. -.

Together with Theorems 4.6.3, 4.6.4, 4.6.8, and 4.6.10(2) this implies the
following result.

Corollary 4.6.34. Let Aj be Θ-enabling and let syn ∈ {si , no}. Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩Σj, then T is Θ ∩Σj-enabling,

(2) if δa = Rai
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-enabling, then T is

Θ ∩Σj-enabling, and

(3) if δa = Rfree
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-j-loop limited, then T

is Θ ∩Σj-enabling. -.

Determinism

Finally, we turn to an investigation of the conditions under which determinism
is preserved from S to a synchronized automaton over S. It turns out that
whenever S is deterministic, then so is T provided that all its actions are
maximal-ai or maximal-si .

Theorem 4.6.35. Let S be Θ-deterministic and let syn ∈ {ai , si}. Then

if δa ⊆ Rsyn
a (S), for all a ∈ Θ ∩Σ, then T is Θ-deterministic.
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Proof. Let a ∈ Θ∩Σ and let δa ⊆ Rsyn
a (S). Now assume there exists a q ∈ Q

such that (q, q′) ∈ δa and (q, q′′) ∈ δa, with q′ (= q′′. Then there must exist
an i ∈ I such that proji(q

′) (= proji(q
′′). Now we have two possibilities.

If proji
[2](q, q′) ∈ δi,a and proji

[2](q, q′′) ∈ δi,a, then Ai is not {a}-determinis-
tic, a contradiction.
If proji

[2](q, q′)∈δi,a and proji
[2](q, q′′) /∈δi,a or — vice versa — proji

[2](q, q′) /∈
δi,a and proji

[2](q, q′′) ∈ δi,a, then (q, q′′) /∈ Rsyn
a (S) or — respectively —

(q, q′) /∈ Rsyn
a (S), a contradiction in either way.

Hence q′ = q′′ and T is thus Θ-deterministic. -.

We note that this theorem does not cover the case of maximal-free synchro-
nized automata. In fact, if S is Θ-deterministic, then this in general does
not imply that also the maximal-free synchronized automaton over S is Θ-
deterministic. This can be concluded from Example 4.6.20, where it is easy
to see that {A1,A2} is loop limited and deterministic, whereas T free is not
deterministic. This implies that neither the Θ-determinism of the Rno -team
automaton over S is implied by the Θ-determinism of S.

4.6.3 Conclusion

This section forms a detailed, although limited, account of our initial inves-
tigation of the top-down inheritance — from synchronized automata to their
(sub)automata — and the bottom-up preservation — from automata to syn-
chronized automata — of the automata-theoretic properties from Section 3.2.
The obtained results lean heavily on the presence and omnipresence of tran-
sitions of (sub)automata in synchronizations of synchronized automata over
these (sub)automata. These two auxiliary notions have been treated in an
intermezzo preceding our investigation.

We have focused on maximal-free, maximal-ai , and maximal-si synchro-
nized automata. To a lesser degree we have moreover considered synchronized
automata in which either every action is free, or every action is ai , or ev-
ery action is si . Results on the Rno -synchronized automaton over S have
been mentioned only when they required almost no effort. Finally, the only
additional conditions that have been considered in our search for sufficient
conditions under which the automata-theoretic properties from Section 3.2
are inherited top-down or preserved bottom-up, are the loop limitedness and
enabling of S. Consequently, for many of these properties it remains to nar-
row down which combinations of specific conditions and types of (synchro-
nized) automata guarantee their top-down inheritance and their bottom-up
preservation. Furthermore, once other types of synchronization have been in-
troduced, inheritance and preservation can be considered in the context of a
broader class of synchronized automata (cf. Chapter 5).
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4.7 Inheritance of Synchronizations

In the previous section we investigated the effect that the types of synchro-
nization introduced in Sections 4.4 and 4.5 have on the inheritance of the
automata-theoretic properties from Section 3.2. In this section we investigate
the conditions under which these types of synchronization are themselves
inherited top-down — from synchronized automata to subautomata — and
preserved bottom-up — from subautomata to synchronized automata.

Note that we deal with synchronizations between automata constituting
a synchronized automaton. There is thus no need to study whether synchro-
nizations are inherited by automata from synchronized automata — and vice
versa — since in any automaton — and in any synchronized automaton over
a single automaton — all its actions trivially are free, ai , and si .

We begin by studying the inheritance of the types of synchronization
introduced in Section 4.4. The property of an action a being free (ai , si) in a
synchronized automaton is inherited by all its subautomata having a as one
of their actions.

Lemma 4.7.1. (1) ΣJ ∩ Free(T ) ⊆ Free(SUBJ),

(2) ΣJ ∩AI (T ) ⊆ AI (SUBJ ), and

(3) ΣJ ∩ SI (T ) ⊆ SI (SUBJ).

Proof. (1) Let a ∈ ΣJ ∩ Free(T ). Now assume that a /∈ Free(SUBJ ).
This means there must exist a transition (p, a, p′) ∈ δJ such that #{i ∈
J | proji

[2](p, p′) ∈ δi,a} > 1. Then Theorem 4.6.2 implies that there ex-
ists a (q, q′) ∈ δa such that projJ

[2](q, q′) = (p, p′), and thus #{i ∈ I |
proji

[2](q, q′) ∈ δi,a} > 1. This contradicts the fact that a is free in T . Hence
a ∈ Free(SUBJ ).

(2,3) Analogous. -.

Note that the proof of Lemma 4.7.1 relies heavily on the observation that
in a subautomaton of a synchronized automaton no (new) transitions —
i.e. other than those obtained as projections of existing transitions of the
synchronized automaton — are introduced. Hence if there exists a transition
in SUBJ violating the free (ai , si) requirement for a, then Theorem 4.6.2
implies that this transition is present in T , i.e. there exists an “extension” of
this transition in T which also violates the free (ai , si) requirement for a.

The converses of the statements of Lemma 4.7.1 in general do not hold.
The reason for this resides in the fact that an action a that is not free in
a synchronized automaton T , is free in a subautomaton of T provided the
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restriction to a subset of the automata leads to dropping those automata
from T that caused a not to be free in T . The same reasoning can be applied
in case a is ai or si . In the following example we demonstrate this.

Example 4.7.2. (Example 4.4.8 continued) We have seen that in synchronized
automaton T 1 action a is neither free, nor ai , nor si . However, in subautoma-
ton SUB{2}(T 1) — which is essentially a copy of A2 — action a trivially is
free, ai , and si . -.

We now demonstrate that the converses of the statements of Lemma 4.7.1
do hold if always only one automaton participates in the execution of an
action, as is the case for internal actions. More general, whenever an action
only belongs to automata which are included in a subautomaton, then the
properties of being free (ai , si) are preserved from that subautomaton to the
synchronized automaton as a whole.

Lemma 4.7.3. Let ΣJ ∩ (
⋃

i∈I\J Σi) = ∅. Then

(1) Free(SUBJ) ⊆ ΣJ ∩ Free(T ),

(2) AI (SUBJ ) ⊆ ΣJ ∩ AI (T ), and

(3) SI (SUBJ ) ⊆ ΣJ ∩ SI (T ).

Proof. (1) Let a ∈ Free(SUBJ ). Hence a ∈ ΣJ . Now assume that a /∈
Free(T ). Then there exists a transition (q, q′) ∈ δa that violates the require-
ment for a to be free in T . However, since ΣJ∩(

⋃
i∈I\J Σi) = ∅, we have that

for all i ∈ I \ J , a /∈ Σi. We conclude that the violation of the requirement
for a to be free in T thus occurs in SUBJ , i.e. projJ

[2](q, q′) violates the re-
quirement for a to be free in SUBJ , a contradiction. Hence a ∈ ΣJ ∩Free(T ).

(2,3) Analogous. -.

Together with Lemma 4.7.1, this lemma implies the following result.

Theorem 4.7.4. Let ΣJ ∩ (
⋃

i∈I\J Σi) = ∅. Then

(1) ΣJ ∩ Free(T ) = Free(SUBJ ),

(2) ΣJ ∩AI (T ) = AI (SUBJ ), and

(3) ΣJ ∩ SI (T ) = SI (SUBJ). -.

Finally, we conclude this section with a result on the inheritance of the max-
imal types of synchronization introduced in Section 4.5. We show that under
certain conditions, the property of an action a being maximal-free (maximal-
ai , maximal-si) in a synchronized automaton is inherited by each subautoma-
ton of that synchronized automaton having a as one of its actions.
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Theorem 4.7.5. Let a ∈ ΣJ . Then

(1) if δa=Rfree
a (S) and S is {a}-loop limited, then (δJ)a=Rfree

a ({Aj |j∈J}),

(2) if δa = Rai
a (S) (= ∅, then (δJ)a = Rai

a ({Aj | j ∈ J}), and

(3) if δa = Rsi
a (S), then (δJ )a = Rsi

a ({Aj | j ∈ J}).

Proof. (1) Let δa = Rfree
a (S) and let S be {a}-loop limited. Then according

to Lemma 4.7.1(1) we only need to prove that Rfree
a ({Aj | j ∈ J}) ⊆ (δJ )a.

Now let (q, q′) ∈ Rfree
a ({Aj | j ∈ J}). Then there exists a k ∈ J such that

projk
[2](q, q′) = (p, p′) ∈ δk,a and for all i ∈ J \ {k}, proji(q

′) = proji(q).
Since S is {a}-loop limited it follows from Theorem 4.6.10(2) that (p, a, p′)
is omnipresent in T . Together with the fact that δa = Rfree

a (S) this implies
that there must exist an (r, r′) ∈ δa such that projJ

[2](r, r′) = (q, q′) and thus
(q, q′) = projJ

[2](r, r′) ∈ (δJ )a.
(2) Let δa = Rai

a (S) (= ∅. Then by Lemma 4.7.1(2) we only need to prove
that Rai

a ({Aj | j ∈ J}) ⊆ (δJ)a. Now let (q, q′) ∈ Rai
a ({Aj | j ∈ J}). Then

there exists a K ⊆ J such that for all k ∈ K, a ∈ Σk, projk
[2](q, q′) ∈ δk,a,

and for all i ∈ J \K, proji
[2](q, q′) /∈ δi,a and a /∈ Σi. Since δa = Rai

a (S) (= ∅,
it follows from Theorem 4.6.6 that for all k ∈ K, (projk(q), a, projk(q

′)) is
present in T . Together with the fact that δa = Rai

a (S) this implies that
there must exist an (r, r′) ∈ δa such that projJ

[2](r, r′) = (q, q′) and thus
(q, q′) = projJ

[2](r, r′) ∈ (δJ )a.
(3) Let δa = Rsi

a (S). Then according to Lemma 4.7.1(3) we only need to
prove that Rsi

a ({Aj | j ∈ J}) ⊆ (δJ )a. Now let (q, q′) ∈ Rsi
a ({Aj | j ∈ J}).

Then there exists a K ⊆ J such that for all k ∈ K, projk
[2](q, q′) ∈ δk,a and

for all i ∈ J \K, proji
[2](q, q′) /∈ δi,a and a is not enabled in Ai at proji(q).

From Theorem 4.6.3 it now follows that for all k ∈ K, (projk(q), a, projk(q
′))

is omnipresent in T . Together with the fact that δa = Rsi
a (S) this implies

that there must exist an (r, r′) ∈ δa such that projJ
[2](r, r′) = (q, q′) and thus

(q, q′) = projJ
[2](r, r′) ∈ (δJ )a. -.





5. Team Automata

In the preceding two chapters we have prepared the basis for team automata.
In Chapter 3 we have defined automata underlying the component au-

tomata that team automata are built on. In Chapter 4 we consequently
defined synchronized automata over sets of automata as a way to coordi-
nate the interactions of those automata. Team automata are defined similar
to synchronized automata, but they coordinate component automata rather
than automata. The extra feature of component automata with respect to
automata is a classification of their set of actions into input , output , and
internal actions. Subteams of team automata are defined analogous to the
subautomata of synchronized automata and we show how to iteratively build
team automata over team automata similar to the iterative construction of
synchronized automata.

The extra feature of component automata now allows us to character-
ize more types of synchronization and more predicates of synchronization by
using the classification of their sets of actions. Consequently maximal-syn
team automata are defined with respect to a given type of synchronization
syn, similar to the way we did this in the context of synchronized automata.
Finally, also this chapter is concluded with a study of the effect that syn-
chronizations have on the inheritance of the automata-theoretic properties
introduced in Section 3.2.

5.1 Definitions

Throughout this section we will occasionally illustrate our definitions using
simple examples of coffee vending machines and their customers. This class
of examples is very common in the literature on formal methods. Through
these examples we thus hope to facilitate an interesting comparison of the
team automata framework with models such as, e.g., (Theoretical) Commu-
nicating Sequential Processes (see, e.g., [Hoa78], [BHR84], and [Hoa85]) and
Input/Output automata (see, e.g., [Tut87], [LT87], [LT89], and [Lyn96]). A
survey can be found in [Shi97].



116 5. Team Automata

5.1.1 Component Automata

Team automata are built from component automata.
A component automaton is an automaton together with a classification

of its actions. The actions are divided into two main categories. Internal
actions have strictly local visibility and can thus not be used for collaboration
with other components, whereas external actions are observable by other
components. These external actions can be used for collaboration between
components and are divided into two more categories: input actions and
output actions. As formulated in [Ell97]: ”input actions are not under the
local system’s control and are caused by another non-local component, the
output actions are under the system’s control and are externally observable
by other components, and internal actions are under the local system’s control
but are not externally observable”.

When describing a component automaton with the system to be modeled
in mind, one of the design issues that thus has to be considered is the role
of the actions within that component in relation to the other components
within the system.

Definition 5.1.1. A component automaton is a construct C = (Q, (Σinp,
Σout, Σint), δ, I), where

(Q,Σinp ∪Σout ∪Σint, δ, I) is an automaton,
Σinp is the input alphabet of C,
Σout is the output alphabet of C, and
Σint is the internal alphabet of C such that Σinp, Σout, and Σint are

mutually disjoint. -.

The automaton (Q,Σinp ∪ Σout ∪ Σint, δ, I) of a component automaton
C = (Q, (Σinp, Σout, Σint), δ, I) is called the underlying automaton of C
and it is denoted by und(C). Moreover, the elements of the input, output,
and internal alphabet of C are called the input , output , and internal ac-
tions of C, respectively. We refer to C as the trivial component automaton if
C = (∅, (∅,∅,∅),∅,∅). Finally, if both Q and Σinp ∪Σout ∪Σint are finite,
then C is called a finite component automaton.

Definition 5.1.2. Let C = (Q, (Σinp, Σout, Σint), δ, I) be a component au-
tomaton. Then

(1) the (full) alphabet of C is denoted by Σ and is defined as Σ = Σinp ∪
Σout ∪Σint,

(2) the external alphabet of C is denoted by Σext and is defined as Σext =
Σinp ∪Σout, and
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(3) the locally-controlled alphabet of C is denoted by Σloc and is defined as
Σloc = Σout ∪Σint. -.

The elements of the full alphabet of a component automaton C are called the
actions of C. The elements of the external and locally-controlled alphabets
are called the external and locally-controlled actions of C, respectively.

For a given component automaton C, its set of (finite and infinite) compu-
tations and — given a set of actions Θ — its Θ-records and its Θ-behavior are
carried over from Definitions 3.1.2 and 3.1.7 through its underlying automa-
ton und(C). This means that we have, e.g., CC = Cund(C) and BΘ

C = BΘ
und(C).

The different roles actions can play within a component automaton natu-
rally give rise to various behavioral language definitions. Given a component
automaton C, we can distinguish specific records and behavior of C by select-
ing an appropriate subset of Σ.

If Θ = Σinp, then we refer to the Θ-records of C as the input records and
to BΘ,∞

C as the input behavior of C. Analogously, by setting Θ = Σout, we
obtain the output records and the output behavior of C; with Θ = Σint we
deal with internal records and the internal behavior of C; in case Θ = Σext we
have external records and the external behavior of C; finally, when Θ = Σloc

we have locally-controlled records and the locally-controlled behavior of C.
Needless to say, also finitary and infinitary (Θ-)behavior can be distinguished
in this way.

Example 5.1.3. Let C = ({e, f}, ({$}, {c},∅), {(e, $, f), (f, c, e)}, {e}) be a
component automaton modeling a very simple coffee vending machine. It
is depicted in Figure 5.1.

C:
$

e

c

f

Fig. 5.1. Component automaton C.

State e indicates that the coin slot of the vending machine is empty, while
state f indicates that it is filled. The result of inserting a dollar is modeled
by the action $ and fills the coin slot. The vending machine obviously is not
in charge of determining the moment a dollar is inserted and $ is thus defined
to be an input action. The automaton does decide when to output coffee and
this should moreover be observable by the environment. Hence the result of
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outputting a coffee is modeled by the output action c. After the vending
machine has produced the coffee it is ready for another request for coffee.
Initially, the vending machine is waiting for the insertion of a dollar into its
empty coin slot. Hence the vending machine’s initial state is e.

The behavior of the vending machine is alternatingly accepting a dollar
and producing a coffee. It can do so ad infinitum. -.

Before we turn to the definition of a team automaton formed from a set of
component automata we fix some notation.

Notation 4. In the rest of this chapter we assume a fixed, but arbitrary and
possibly infinite index set I ⊆ N, which we will now use to index the compo-
nent automata involved. For each i ∈ I, we let Ci = (Qi, (Σi,inp, Σi,out, Σi,int),
δi, Ii) be a fixed component automaton and we use Σi to denote its set of ac-
tions Σi,inp ∪Σi,out ∪Σi,int. Moreover, we let S = {Ci | i ∈ I} be a fixed set
of component automata. Recall that I ⊆ N implies that I is ordered by the
usual ≤ relation on N, thus inducing an ordering on S. Note that the Ci are
not necessarily different. -.

5.1.2 Team Automata

When composing a team automaton over S, we require that the internal ac-
tions of the component automata involved are private, i.e. uniquely associated
to one component automaton. This is formally expressed as follows.

Definition 5.1.4. S is a composable system if for all i ∈ I,

Σi,int ∩
⋃

j∈I\{i} Σj = ∅. -.

Note that every subset of a composable system is again a composable system.

Example 5.1.5. (Example 5.1.3 continued) Let A = ({s, t}, ({c}, {$},∅),
{(s, $, t), (t, c, s)}, {s}) be a component automaton modeling a coffee addict.
It is depicted in Figure 5.2.

A:
$

s

c

t

Fig. 5.2. Component automaton A.
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State s indicates that our coffee addict is (temporarily) satisfied, while
state t indicates that our coffee addict is thirsty (again). The result of our
coffee addict inserting a dollar (into a coffee vending machine) is modeled by
the action $ and shows our coffee addict’s thirst. Our coffee addict obviously
is in charge of determining when to show his or her thirst and thus when
to insert a dollar. Since this should also be observable by the coffee vending
machine we define $ to be an output action. Our coffee addict however cannot
decide when the coffee vending machine produces the much-awaited coffee.
The result of our coffee addict trenching his or her thirst and becoming
satisfied is thus modeled by the input action c. Initially our coffee addict is
satisfied, modeled by our coffee addict’s initial state s.

The behavior of our coffee addict is alternatingly inserting a dollar and
trenching his or her thirst with a delicious cup of coffee. Like a true addict,
our coffee addict can do so ad infinitum.

Since neither C nor A has any internal actions, C and A trivially form a
composable system {C,A}. -.

We are now ready to define a team automaton over a composable system
S as a synchronized automaton over S, except that in our definition of a
team automaton we need to specify how to deal with the distinction of the
alphabet into input, output, and internal actions.

The alphabet of actions of any team automaton T formed from S is
uniquely determined by the alphabets of actions of the component automata
constituting S. The internal actions of the component automata will be the
internal actions of T . Each action which is output for one or more of the com-
ponent automata is an output action of T . Hence an action that is an output
action of one component automaton and also an input action of another com-
ponent automaton, is considered an output action of the team automaton.
The input actions of the component automata that do not occur at all as an
output action of any of the component automata, are the input actions of
the team automaton. The reason for this construction of alphabets is again
based on the intuitive idea of [Ell97] that when relating an input action a of a
component automaton to an output action a of another component, then the
input may be thought of as being caused by the output. On the other hand,
output actions remain observable as output to other component automata.

Finally, the freedom of choosing a particular transition relation for a syn-
chronized automaton over S is reduced slightly in the definition of a team
automaton over S, viz. for an internal action each component automaton
always retains all its possibilities to execute that action and change state.
Since S is a composable system, all internal actions are moreover uniquely
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associated to one component automaton, which implies that synchronizations
on internal actions thus never involve more than one component automaton.

Definition 5.1.6. Let S be a composable system. Then a team automaton
over S is a construct T = (Q, (Σinp, Σout, Σint), δ, I), where

(Q,Σinp∪Σout∪Σint, δ, I) is a synchronized automaton over S such that

δa = ∆a(S), for all a ∈ Σint,

Σinp = (
⋃

i∈I Σi,inp) \
⋃

i∈I Σi,out,
Σout =

⋃
i∈I Σi,out, and

Σint =
⋃

i∈I Σi,int. -.

The synchronized automaton (Q,Σinp∪Σout∪Σint, δ, I) of a team automaton
T = (Q, (Σinp, Σout, Σint), δ, I) is called the underlying synchronized automa-
ton of T and it is denoted by und(T ).

All team automata over a given composable system have the same set
of states, the same alphabet of actions — including the distribution over
input, output, and internal actions — and the same set of initial states. They
only differ by the choice of the transition relation, and in fact only as far as
external actions are concerned: for each external action a we have the freedom
to choose a δa. This implies that S, even if it is a composable system, does
not uniquely define a team automaton.

Example 5.1.7. (Example 5.1.5 continued) We now show how our coffee ad-
dict can obtain a coffee from our vending machine by forming a team au-
tomaton T over the composable system {C,A}. This team automaton should
model a form of collaboration between our coffee addict and the vending
machine. This is implemented by synchronizations of certain actions. We re-
quire the output action $ of our coffee addict to be synchronized with the
input action $ of our vending machine. The occurrence of this action in
the team automaton then reflects the simultaneous execution of $ by our
coffee addict and our vending machine. Likewise action c is simultaneously
executed by our coffee addict and our vending machine. This defines the
transition relation of T . Note that only the transition relation of T had
to be chosen, the other elements of T follow directly from Definition 5.1.6.
Note in particular that both $ and c are output actions of T . Hence T is
formally defined as T = ({(e, s), (e, t), (f, s), (f, t)}, (∅, {$, c},∅), δ, {(e, s)}),
where δ = {((e, s), $, (f, t)), ((f, t), c, (e, s))}. It is depicted in Figure 5.3. -.

Consistency in the sense that in a team automaton every action appears
exclusively as an input, output, or internal action, is guaranteed by Defini-
tion 5.1.6 (which ensures that input and output actions remain distinct) and
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Fig. 5.3. Team automaton T over {C,A}.

the fact that a team automaton is constructed over a composable system. To-
gether with Definition 5.1.4 this implies that every team automaton is again
a component automaton, which in its turn could be used as a component
automaton in a new team automaton.

Theorem 5.1.8. Every team automaton is a component automaton. -.

As was the case for synchronized automata (cf. Section 4.1) we note that even
though a team automaton over a composable system consisting of just one
component automaton {Ci} is again a component automaton, such a team
automaton is different from its only constituting component automaton.

All observations on (component) automata hold for team automata as
well. The abbreviations for sets of alphabets carry over to team automata
in the obvious way. Finally, note that whenever the distinction of the al-
phabet of actions into input, output, and internal actions is irrelevant, then
a synchronized automaton can be seen as a team automaton. As a matter
of fact, in examples in the remainder of this chapter we will often refer to
synchronized automata defined in earlier chapters as team automata.

5.1.3 Subteams

Similar to the way we extracted subautomata from synchronized automata,
by focusing on a subset of the composable system S of component automata
constituting a team automaton T we now distinguish subteams within T .
As before, the transitions of a subteam are restrictions of the transitions
of T to the component automata in the subteam, while its actions are the
actions of the component automata involved. However, the actions of both
component automata and team automata are distributed over three distinct
alphabets. Since we want to be able to deal with a subteam as an independent
team automaton over a subset of S, we need to classify its actions without



122 5. Team Automata

the context provided by T . Hence, whether an action is input, output, or
internal for the subteam only depends on its role in the component automata
forming the subteam rather than on how it is classified in T . This means in
particular that an action which is an output action of T is an input action
for the subteam, whenever this action is an input action of at least one of
the component automata of the subteam and no component automata of the
subteam have this action as an output action.

Definition 5.1.9. Let T = (Q, (Σinp, Σout, Σint), δ, I) be a team automa-
ton over the composable system S and let J ⊆ I. Then the subteam of
T determined by J is denoted by SUBJ (T ) and is defined as SUBJ(T ) =
(QJ , (ΣJ,inp, ΣJ,out, ΣJ,int), δJ , IJ), where

(QJ , ΣJ,inp ∪ΣJ,out∪ΣJ,int, δJ , IJ) is the subautomaton SUBJ (und(T )),
ΣJ,inp = (

⋃
j∈J Σj,inp) \

⋃
j∈J Σj,out,

ΣJ,out =
⋃

j∈J Σj,out, and
ΣJ,int =

⋃
j∈J Σj,int. -.

As before, we write SUBJ instead of SUBJ (T ) whenever T is clear from the
context. Note that the notation SUBJ is used both for the subautomaton
of a synchronized automaton and for the subteam of a team automaton. In
cases where this might lead to confusion, we will always state explicitly the
type of automaton we deal with.

It is not hard to see that any subteam satisfies the requirements of a team
automaton.

Theorem 5.1.10. Let T = (Q, (Σinp, Σout, Σint), δ, I) be a team automaton
over the composable system S and let J ⊆ I. Then

SUBJ is a team automaton over {Cj | j ∈ J}.

Proof. We already noted that every subset of a composable system is again a
composable system. Since the alphabets of SUBJ as given in Definition 5.1.9
moreover satisfy the requirements of Definition 5.1.6 for team automata over
{Cj | j ∈ J}, it directly follows from Theorem 4.1.8 that SUBJ is a team
automaton over {Cj | j ∈ J}. -.

Similar to our conclusion — in Subsection 4.1.2 — that a subautomaton of
a synchronized automaton is again a synchronized automaton, and thus also
an automaton, we now conclude from Theorem 5.1.10 that a subteam of a
team automaton is again a team automaton and thus, by Theorem 5.1.8,
also a component automaton. Based on the results from Section 4.3 we will
consider the dual approach and use team automata as component automata
in “larger” team automata in the next section.
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5.2 Iterated Composition

This section continues our investigation of Section 4.3, the difference being
that instead of synchronized automata we now consider team automata. This
means that we have to take into account that team automata can only be
formed over composable systems and, moreover, that we deal with three
mutually disjoint alphabets constituting the alphabet of a team automaton.

Notation 5. In the rest of this chapter we let S be a composable system. -.

We consider the issue of iteratively composing team automata, given a com-
posable system of team automata. First we prove that composability is pre-
served in the process of iteration.

Theorem 5.2.1. Let {Ij | j ∈ J }, where J ⊆ N, form a partition of I. Let,
for each j ∈ J , Tj be a team automaton over Sj = {Ci | i ∈ Ij}. Then

{Tj | j ∈ J } is a composable system.

Proof. Denote for each Tj , j ∈ J , by Γj its set of actions and by Γj,int

its internal alphabet. By Definition 5.1.6 we have Γj,int =
⋃

i∈Ij
Σi,int and

Γj =
⋃

i∈Ij
Σi, for all j ∈ J . By the composability of S we have Σi,int ∩⋃

!∈I\{i} Σ! = ∅, for all i ∈ I. Since the Ij are mutually disjoint it now
follows immediately that for all j ∈ J , Γj,int ∩

⋃
!∈J\{j} Γ! = ∅. Hence

{Tj | j ∈ J } is a composable system. -.

Given a composable system one may thus form team automata over disjoint
subsets of the composable system. These team automata together with the
component automata not involved in any of these team automata form — by
Theorem 5.2.1 — again a composable system, which can subsequently be used
as the basis for the formation of still higher-level team automata. Completely
analogous to Definition 4.3.8 we now define iterated team automata as a
generalization of team automata.

Definition 5.2.2. T is an iterated team automaton over S if either

(1) T is a team automaton over S, or

(2) T is a team automaton over {Tj | j ∈ J }, where each Tj is an iterated
team automaton over {Ci | i ∈ Ij}, for some Ij ⊆ I, and {Ij | j ∈ J }
forms a partition of I. -.
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As was the case for iterated synchronized automata, we see that an iterated
team automaton is thus a generalization of a team automaton: every team
automaton over a given composable system may also be viewed as an iterated
team automaton over that composable system. Conversely, as before, team
automata formed iteratively over a composable system are essentially team
automata over that composable system. Once again, the only difference is the
ordering and grouping of the elements from the composable system. Heavily
based on the results from Section 4.3, we now formalize this statement.

By Lemma 4.3.9, the set of (initial) states of an iterated team automaton
over S is — after reordering — the same as the set of (initial) states of any
team automaton over S. According to Lemma 4.3.10 also its actions are the
same as the actions of any team automaton formed over S. However, the
basic difference between team automata and synchronized automata is the
distinction of actions into three mutually disjoint alphabets. The following
lemma shows that this property is not destroyed by iteration.

Lemma 5.2.3. Let T = (P, (Γinp, Γout, Γint), γ, J) be an iterated team au-
tomaton over S. Then

(1) Γinp = (
⋃

i∈I Σi,inp) \
⋃

i∈I Σi,out,

(2) Γout =
⋃

i∈I Σi,out, and

(3) Γint =
⋃

i∈I Σi,int.

Proof. If T is a team automaton over S, then the statement follows imme-
diately from Definition 5.1.6. Now assume that T is a team automaton over
{Tj | j ∈ J }, where J ⊆ N, and each Tj = (Pj , (Γj,inp, Γj,out, Γj,int), γj , Jj)
is an iterated team automaton over {Ci | i ∈ Ij}, with {Ij | j ∈ J } forming
a partition of I. Assume furthermore inductively that for all j ∈ J , Γj,inp =
(
⋃

i∈Ij
Σi,inp) \

⋃
i∈Ij

Σi,out, Γj,out =
⋃

i∈Ij
Σi,out, and Γj,int =

⋃
i∈Ij

Σi,int.
Then Γint =

⋃
j∈J Γj,int =

⋃
j∈J

⋃
i∈Ij

Σi,int =
⋃

i∈I Σi,int, by Defini-
tion 5.1.6, and because {Ij | j ∈ J } forms a partition of I.
Similarly, Γout =

⋃
i∈I Σi,out.

Finally, Γinp = (
⋃

j∈J Γj,inp) \ Γout by Definition 5.1.6. Hence Γinp =
(
⋃

j∈J ((
⋃

i∈Ij
Σi,inp) \

⋃
i∈Ij

Σi,out)) \ Γout = (
⋃

i∈I Σi,inp) \ Γout because
{Ij | j ∈ J } forms a partition of I. -.

Hence the set of actions — including their distribution over input, output,
and internal actions — of every iterated team automaton over S is the same as
that of any team automaton over S. Finally, from Lemma 4.3.10 we moreover
know that the transitions of any team automaton over {Tj | j ∈ J } are —
after reordering — the transitions of a team automaton over S. Iteration in
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the construction of a team automaton thus does not lead to an increase of the
possibilities for synchronization. In other words, we can conclude that every
iterated team automaton over a composable system can be interpreted as a
team automaton over that composable system by reordering its state space
and its transition space.

Definition 5.2.4. Let T = (Q, (Σinp, Σout, Σint), δ, I) be an iterated team
automaton over S. Then the reordered version of T w.r.t. S is denoted by
〈〈T 〉〉S and is defined as

〈〈T 〉〉S = ({〈q〉Q | q ∈ Q}, (Σinp, Σout, Σint),
{(〈q〉Q, a, 〈q′〉Q) | q, q′ ∈ Q, (q, a, q′) ∈ δ}, {〈q〉I | q ∈ I}). -.

Note that the notation 〈〈T 〉〉S is used both for the reordered version of a
synchronized automaton and for the reordered version of a team automaton.
In cases where this might lead to confusion, we will always state explicitly
the type of automaton we deal with.

From Lemmata 4.3.9, 4.3.10, and 5.2.3 we conclude that 〈〈T 〉〉S indeed is
a team automaton over S whenever T is an iterated team automaton over
S. In fact, 〈〈T 〉〉S is the interpretation of T as a team automaton over S
by reordering. We thus obtain the following direct consequences of Theo-
rems 4.3.12 and 4.3.13.

Theorem 5.2.5. Let T = (Q, (Σinp, Σout, Σint), δ, I) be an iterated team
automaton over S and let Θ be an alphabet disjoint from Q. Then

(1) C∞
〈〈T 〉〉S

= {〈q0〉Qa1〈q1〉Qa2〈q2〉Q · · · | q0a1q1a2q2 · · · ∈ C∞
T } and

(2) BΘ,∞
〈〈T 〉〉S

= BΘ,∞
T . -.

Theorem 5.2.6. Let T = (Q, (Σinp, Σout, Σint), δ, I) be a team automaton
over S and let {Ij | j ∈ J }, where J ⊆ N, form a partition of I. Let, for
each j ∈ J , Tj = (Pj , (Γj,inp, Γj,out, Γj,int), γj , Jj) be an iterated team over
{Ci | i ∈ Ij}. Then

(1) if (δIj )a ⊆ {(〈q〉Pj , 〈q
′〉Pj ) | (q, q′) ∈ γj,a}, for all a ∈ Γj,inp ∪ Γj,out ∪

Γj,int for all j ∈ J , then there exists a team automaton T̂ over {Tj | j ∈
J } such that 〈〈T̂ 〉〉S = T , and

(2) if T̂ is a team automaton over {Tj | j ∈ J }, then 〈〈T̂ 〉〉S = T implies
that (δIj )a \ {(p, p) | (p, p) ∈ ∆a({Ci | i ∈ Ij})} ⊆ {(〈q〉Pj , 〈q

′〉Pj ) |
(q, q′) ∈ γj,a}, for all a ∈ Γj,inp ∪ Γj,out ∪ Γj,int for all j ∈ J . -.
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Similar to the conclusion we reached for synchronized automata in Section 4.3
we now see that not only every iterated team automaton over S can be con-
sidered as a team automaton directly constructed from S by Definition 5.2.4,
but according to Theorem 5.2.6 also every team automaton can be iteratively
constructed from its subteams. Consequently, both subteams and iterated
team automata can be treated as team automata — including the considera-
tions concerning their computations and their behavior — and it thus suffices
to study only the relationship between subteams and team automata in the
sequel, i.e. without considering iterated team automata explicitly.

5.3 Synchronizations

In Section 4.4 we introduced three natural types of synchronization. These
types of synchronization can be studied in the context of team automata
as well. However, they obviously ignore whether actions are input, output,
or internal to certain component automata. For internal actions which be-
long to only one component automaton, distinguishing between their roles in
different component automata is indeed not very relevant. External actions,
however, may be input to some component automata, and output to other
component automata. In this section we thus investigate types of synchro-
nizations relating to the different roles that an action may have in different
component automata.

Notation 6. For the remainder of this chapter we let T = (Q, (Σinp, Σout,
Σint), δ, I) be a fixed team automaton over S. Note that Σinp, Σout, and
Σint are the input, output, and internal alphabet, respectively, of any team
automaton over S (i.e. not only of T ). Furthermore, we use Σ to denote the
set of actions Σinp ∪ Σout ∪ Σint, we use Σext to denote the set of external
actions Σinp ∪ Σout, and we use Σloc to denote the set of locally-controlled
actions Σout ∪Σint of any team automaton over S (i.e. including T ). -.

First we separate the output role of external actions from their input role.
Given an external action, we locate its input and output domain within I,
and then use these domains to define input subteams and output subteams.
Finally, we define two specific types of synchronization relating such input
subteams and output subteams of team automata.

Definition 5.3.1. Let a ∈ Σext. Then

(1) Ia,inp(S) = {j ∈ I | a ∈ Σj,inp} is the input domain of a in S and

(2) Ia,out(S) = {j ∈ I | a ∈ Σj,out} is the output domain of a in S. -.
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No external action of any team automaton T will ever be both an input
and an output action for one component automaton. Thus, for each j ∈ I,
Σj,inp ∩ Σj,out = ∅, and consequently Ia,inp(S) ∩ Ia,out(S) = ∅, for all
a ∈ Σext.

Note that, by Definition 5.1.6, a ∈ Σout if and only if Ia,out(S) (= ∅, while
a ∈ Σinp if and only if Ia,inp(S) (= ∅ and Ia,out(S) = ∅.

In the following example we show how to to determine the input and
output domains of actions in a composable system.

Example 5.3.2. (Example 4.1.5 continued) We turn the automata Wi, with
i ∈ [4], into component automata by distributing their alphabet {a, b} over
input, output, and internal alphabets. We let a and b be output actions in
both W1 and W2 and we let them be input actions in both W3 and W4.
Since {W1,W2} is now a composable system, the synchronized automaton
T{1,2} (over {W1,W2}) is now a team automaton. Likewise {T{1,2},W3,W4}
is now a composable system and the synchronized automaton T (over
{T{1,2},W3,W4}) is now a team automaton. Both these team automata have
an empty input alphabet, output alphabet {a, b}, and an empty internal al-
phabet.

Let T1 = T{1,2}, T2 = W3, and T3 = W4. Then T is a team automaton
over S = {T1, T2, T3}. Actions a and b are output actions in T1, whereas they
are input actions in both T2 and T3. Hence Ia,out(S) = {1} and Ia,inp(S) =
{2, 3}. -.

Note that the input domain and the output domain of an external action
of a team automaton may be empty. For every external action, however, at
least one of these domains is nonempty. In case the input (output) domain is
empty, then the input (output) subteam is the trivial component automaton.

Example 5.3.3. In Figure 5.4 the structure of a team automaton T with
respect to one of its external actions a is depicted. Indicated are its input
subteam SUBa,inp and its output subteam SUBa,out. The square boxes in this
figure denote component automata. Clearly, T may also contain component
automata that do not have a as an external action. -.

Notation 7. For the remainder of this chapter we make no more explicit
references to the fixed composable system S when denoting the input and
output domain of an action a in S, i.e. we write Ia,inp and Ia,out rather than
Ia,inp(S) and Ia,out(S), respectively. Furthermore, for all a ∈ Σext, we use
SUBa,inp(T ) to denote SUBIa,inp(T ), the input subteam of a in T , and we
use SUBa,out(T ) to denote SUBIa,out(T ), the output subteam of a in T .
If no confusion arises we even omit the T and simply write SUBa,inp and
SUBa,out, respectively. -.
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• ••

• ••

• ••

T a ∈ Σext

a ∈ Σj,out

a ∈ Σj,inpSUBa,inp

SUBa,out

Fig. 5.4. A team automaton T with its subteams SUBa,inp and SUBa,out.

5.3.1 Peer-to-Peer

Having determined for each external action a its input and its output sub-
team, we can now identify certain types of synchronization relating to a in its
role as input or output. We begin by looking within these subteams, in which
a by definition has only one role and all component automata are peers, in
the sense that they are on an equal footing with respect to a. We say that an
input (output) action a is input (output) peer-to-peer if every execution of a
involving component automata of that subteam requires the participation of
all.

This obligation to participate can be explained in a strong and in a weak
sense. Strong input (output) peer-to-peer simply means that no synchroniza-
tions on a can take place unless all component automata in the input (output)
domain of a take part. Weak input (output) peer-to-peer means that synchro-
nizations on a involve all of the component automata in the input (output)
domain of a which are ready to execute a — i.e. which are in a state in which
a is enabled. Thus the notion of strong input (output) peer-to-peer requires
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that a is ai in its input (output) subteam, while the notion of weak input
(output) peer-to-peer requires that a is si in its input (output) subteam.

Definition 5.3.4. (1) The set of strong input peer-to-peer (sipp for short)
actions of T is denoted by SIPP(T ) and is defined as

SIPP(T ) = {a ∈ Σext | a ∈ AI (SUBa,inp)},

(2) the set of weak input peer-to-peer (wipp for short) actions of T is denoted
by WIPP(T ) and is defined as

WIPP(T ) = {a ∈ Σext | a ∈ SI (SUBa,inp)},

(3) the set of strong output peer-to-peer (sopp for short) actions of T is
denoted by SOPP(T ) and is defined as

SOPP(T ) = {a ∈ Σext | a ∈ AI (SUBa,out)}, and

(4) the set of weak output peer-to-peer (wopp for short) actions of T is
denoted by WOPP(T ) and is defined as

WOPP(T ) = {a ∈ Σext | a ∈ SI (SUBa,out)}. -.

We should remark here that an external action a that does not occur as an
input action in any of the component automata (implying that Ia,inp = ∅
and that SUBa,inp is the trivial component automaton) can neither be sipp
nor wipp. This is due to the fact that trivial component automata (as was
the case for trivial automata) have no actions whatsoever, and thus neither
ai nor si actions. Note that a ∈ SIPP(T ) or a ∈ WIPP(T ) does not imply
that a ∈ Σinp. Similarly, if a is sopp or wopp in T , then it must be the case
that it occurs as an output action in at least one component automaton of
T (implying that a ∈ Σout).

Note that an external action of a team automaton T over S can be both
sipp and sopp in T . In that case the external action is an input action of
one component automaton of S and an output action of another component
automaton of S.

Example 5.3.5. (Example 5.3.3 continued) As depicted in Figures 5.5 and 5.6,
strong and weak input (output) peer-to-peer synchronizations relate to syn-
chronizations within the corresponding input (output) subteam. -.

Next we present a more concrete example of strong and weak input (output)
synchronizations within team automata.
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• ••

• ••

• ••

a is ai/si

T a ∈ Σext

a ∈ Σj,inp

a ∈ Σj,outSUBa,out

SUBa,inp

Fig. 5.5. A team automaton T with a sipp/wipp action a.

Example 5.3.6. (Example 5.3.2 continued) Actions a and b both are sopp as
well as wopp in T . This can be concluded from the fact that we already know
from Example 4.4.4 that actions a and b both are ai in the output subteam
T1 = T{1,2} of T . It is easy to verify that actions a and b both are also sipp
as well as wipp in T . -.

5.3.2 Master-Slave

We now define synchronizations between the input and output subteams of an
external action a. Here the idea is that input actions (“slaves”) are driven by
output actions (“masters”). This means that if a is an output action, then its
input counterpart can never take place without being triggered (i.e. the slave
never proceeds on its own). Consequently, the input subteam of an output
action a cannot execute a unless a is also executed as an output action (by
its output subteam). It is however possible that a is executed as an output
action without its simultaneous execution as an input action. We say that a
is master-slave if it is an output action and its output subteam participates
in every a-transition of T .
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• ••

• ••

• ••

T a ∈ Σext

a ∈ Σj,inp

a ∈ Σj,outSUBa,out

SUBa,inp

a is ai/si

Fig. 5.6. A team automaton T with a sopp/wopp action a.

In addition one could require that a in its role of input action has to
synchronize with a as an output action (i.e. the slave has to follow the master).
Since the obligation of the slave to follow the master may again be formulated
in two different ways, we obtain notions of strong and weak master-slave
actions. When guided by the ai principle, we get a strong notion of master-
slave synchronization, while the si principle leads to a weak notion of master-
slave synchronization. We say that a is strong master-slave if it is master-slave
and its input subteam moreover participates in every a-transition of T . We
say that a is weak master-slave if it is master-slave and its input subteam
moreover participates in every a-transition of T whenever it can.

Definition 5.3.7. Let a ∈ Σout, and let J = Ia,out and K = Ia,inp. Then

(1) the set of master-slave (ms for short) actions of T is denoted by MS (T )
and is defined as

MS (T ) = {a ∈ Σout | projJ
[2](δa) ⊆ (δJ )a},

(2) the set of strong master-slave (sms for short) actions of T is denoted by
SMS (T ) and is defined as
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SMS (T ) = {a ∈ Σout | a ∈ MS (T ) ∧ ([K (= ∅]⇒
[projK

[2](δa) ⊆ (δK)a])}, and

(3) the set of weak master-slave (wms for short) actions of T is denoted by
WMS (T ) and is defined as

WMS (T ) = {a ∈ Σout | a ∈ MS (T ) ∧ ([K (= ∅]⇒
[((q, q′) ∈ δa ∧ a en SUBK projK(q))⇒ (projK

[2](q, q′) ∈ (δK)a)])}. -.

For a to be ms , we require it to occur at least once as an output action
(Ia,out (= ∅) — i.e. a can act as a master. Otherwise we could have slaves
without a master. A master without slaves is allowed: Ia,out (= ∅ and Ia,inp =
∅. In that case a trivially is sms and wms , since there are no slaves that do
not follow the master.

Since the definition of a beingms in T guarantees that the output subteam
of a is actively involved in every a-transition of T , it follows immediately
from Definition 4.1.6 that the a-transitions of the output subteam of a are
precisely the projections of the a-transitions of T on the output domain of a.
Similarly, in case a is sms we have in addition that the a-transitions of the
input subteam of a are precisely the projections of the a-transitions of T on
the input domain of a.

Theorem 5.3.8. Let J = Ia,out and let K = Ia,inp. Then

(1) if a ∈ MS (T ), then projJ
[2](δa) = (δJ )a, and

(2) if a ∈ SMS (T ), then projK
[2](δa) = (δK)a.

Proof. (1) By Definition 4.1.6 we have (δJ)a = projJ
[2](δa)∩∆a({Cj | j ∈ J}).

Since a ∈ MS (T ) we have projJ
[2](δa) ⊆ (δJ )a, for J = Ia,out. Hence in this

case (δJ )a = projJ
[2](δa).

(2) Analogous. Note that if K = ∅, then projK
[2](δa) = ∅ = (∅)a. -.

Note that if a is wms , then there may be a-transitions in T in which the
input subteam — even when it is not trivial — is not actively involved. In
those cases a is executed as an output action by T without the simultaneous
execution of a as an input action.

Note that in Definition 5.3.7 input subteams and output subteams are
treated as given entities (black boxes). Clearly, one can combine the master-
slave types of synchronization with additional requirements on the synchro-
nizations taking place within the subteams. One might, e.g., prescribe a
master-slave type of synchronization on an action a that is in addition input
peer-to-peer, in which case all component automata with a as an input action
have to follow the output action. We will come back to this later.
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Example 5.3.9. (Example 5.3.5 continued) If for an external action a of T ,
SUBa,out is involved in all a-transitions of T , then a is an ms action. If
SUBa,inp moreover “has to” participate in every a-transition of T , then a is
an sms or wms action in T . The idea of (strong or weak) types of master-
slave synchronization between input and output subteams, is sketched in
Figure 5.7. -.

• ••

• ••

• ••

T a ∈ Σext

a ∈ Σj,inp

a ∈ Σj,outSUBa,out

SUBa,inp

a is ms/sms/wms

Fig. 5.7. A team automaton T with a ms/sms/wms action a.

We thus note that whereas peer-to-peer types of synchronization are defined
within subteams, master-slave types of synchronization are defined between
input and output subteams.

Next we give a more elaborate example in which we apply the various
types of synchronization introduced in this chapter so far to one of our run-
ning examples.

Example 5.3.10. (Example 5.3.6 continued) In this example we show that
the car T is actually a two-wheel drive. Recall that we assume a maximal
interpretation of the involvement of component automata in loops.



134 5. Team Automata

Actions a and b are both sms in T . For a this can be concluded from
the fact that proj{1}

[2](δa) = {((s1, s2), (t1, t2)), ((t1, t2), (t1, t2))} = (δ{1})a
and proj{2,3}

[2](δa) = {((s3, s4), (t3, t4)), ((t3, t4), (t3, t4))} = (δ{2,3})a, thus
satisfying (1) and (2) of Definition 5.3.7. For b one can verify this in a similar
fashion. We thus conclude that T models a two-wheel drive, in the sense that
one axle (the input subteam of a and b) only turns and halts as a reaction to
the other axle (the output subteam of a and b). Hence the former axle is the
“slave” of the latter axle. -.

5.3.3 A Case Study

In [Ell97] a simple example was presented to illustrate the concept of peer-
to-peer and master-slave types of synchronization within team automata. In
this subsection we give this example from [Ell97] a rigorous treatment in our
formal team automata framework.

Example 5.3.11. Consider the three component automata depicted in Fig-
ure 5.8. They are formally defined by Ci = (Qi, (Σi,inp, Σi,out, Σi,int), δi, Ii),
where for i ∈ [3],

Qi = {qi, q′i},
Σ1,inp = Σ2,inp = Σ3,out = ∅,
Σ1,out = Σ2,out = Σ3,inp = {b},
Σi,int = {ai, a′i}, with all ai and a′i distinct symbols different from b,
δi,b = {(qi, q′i)},
δj,aj = {(qj , q′j)} and δj,a′

j
= {(q′j , qj)}, for j ∈ [2],

δ3,a3 = {(q3, q3)} and δ3,a′
3
= {(q′3, q

′
3)}, and

Ii = {qi}.

Hence {C1, C2, C3} is a composable system.

a1

b

q1 q′1

a′
1

a2

b

q2 q′2

a′
2

b

q3 q′3

a3

C1: C2: C3:

a′
3

Fig. 5.8. Component automata C1, C2, and C3.

Two slightly different team automata T and T ′ over this composable
system are defined next. All parameters of these team automata, except for
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the set of labeled transitions, are predetermined by {C1, C2, C3}. In fact, only
the b-transitions can be varied as all the other actions are internal. The first
team automaton (T ) is the one spelled out in [Ell97], whereas the second one
(T ′) is the one discussed in the text in [Ell97].

Let T = (
∏

i∈[3] Qi, (Σinp, Σout, Σint), δ, {(q1, q2, q3)}) and let T ′ =
(
∏

i∈[3] Qi, (Σinp, Σout, Σint), δ′, {(q1, q2, q3)}), where

Σinp = ∅,
Σout = {b},
Σint = {a1, a′1, a2, a

′
2, a3, a

′
3}, and

δ and δ′ are defined by
δa = δ′a = ∆a({C1, C2, C3}), for each a ∈ {a1, a′1, a2, a

′
2, a3, a

′
3},

δb = {((q1, q2, q3), (q′1, q
′
2, q

′
3))}, and

δ′b = {((q1, q2, q3), (q′1, q
′
2, q

′
3)), ((q1, q2, q

′
3), (q

′
1, q

′
2, q

′
3))}.

Hence in T there is only one b-transition that can take place. It involves all
three component automata and requires the j-th component to be in state
qj , for each j ∈ [3]. This transition is thus a simultaneous execution of b
by all three component automata. In T ′, however, next to this b-transition
just described, there is another b-transition that can take place and it in-
volves only the first two component automata while the third component
automaton is in state q′3 (in which b is not enabled). Hence this transition
is a simultaneous execution of b by the first two component automata only.
Both these team automata are depicted in Figure 5.9: T ′ contains all the de-
picted transitions, whereas T is obtained by ignoring the “dashed” transition
((q1, q2, q′3), b, (q

′
1, q

′
2, q

′
3)).

It is easy to check that Free(T ) = Free(T ′) = AI (T ′) = Σint and
AI (T ) = SI (T ) = SI (T ′) = Σ. Thus b is both si and ai in T , while b
is si but not ai in T ′. This is because T ′ has a b-transition in which C3 does
not participate, even though C3 contains b in its (input) alphabet.

Note that in {C1, C2, C3} the input domain Ib,inp of b is {3} and the
output domain Ib,out of b is {1, 2}. The subteams of T and T ′ deter-
mined by {1, 2} are the same: SUB{1,2}(T ) = SUB{1,2}(T ′). This is be-
cause proj{1,2}

[2](δc) = proj{1,2}
[2](δ′c), for each c ∈ {a1, a′1, a2, a

′
2, b}. Also

SUB{3}(T ) = SUB{3}(T ′), since proj{3}
[2](δc) = proj{3}

[2](δ′c), for each

c ∈ {a3, a′3}, and proj{3}
[2](δb) ∩ ∆b({C3}) = proj{3}

[2](δ′b) ∩ ∆b({C3}) =
{((q3), (q′3))}.

Since b is ai in T , Lemma 4.7.1(2) implies that b is also ai in both
SUB{1,2}(T ) = SUB{1,2}(T ′) and SUB{3}(T ) = SUB{3}(T ′). From this it
follows that b is both sopp and sipp in T as well as in T ′.

Moreover, action b is ms in both T and T ′ since we have proj{1,2}
[2](δb) =

proj{1,2}
[2](δ′b) = {((q1, q2), (q′1, q

′
2))} ⊆ {((q1, q2), (q′1, q

′
2))} = (δ{1,2})b =
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Fig. 5.9. Team automata T and T ′.

(δ′{1,2})b, i.e. the output subteam of b participates in every b-transition of
the team automata. In fact, b is even sms in T as b is ms in T and
proj{3}

[2](δb) = {(q3, q′3)} ⊆ {(q3, q′3)} = (δ{3})b, i.e. also the input subteam
of b participates in every b-transition of T . It is clear that b is also wms in T .
However, proj{3}

[2](δ′b) = {((q3), (q′3)), ((q
′
3), (q

′
3))} # {((q3), (q′3))} = (δ′{3})b

and b is thus not sms in T ′. Since q3 is the only state of C3 at which b is
enabled in C3 we do have that b is wms in T ′.

The fact that T does not allow an output action b to take place without a
“slave” input action b leads to b being sms in T . In T ′, however, b is wms since
the input action b follows the “master” output action b only when enabled.

To understand that despite the similarities this subtle difference —
due to the distinction between ai and si — may lead to different ex-
ternally observable behaviors of T and T ′, it is sufficient to show that
ba′1a

′
2b ∈ BΣ

T ′ while no word with two b’s is contained in BΣ
T . The computa-

tion (q1, q2, q3)b(q′1, q
′
2, q

′
3)a

′
1(q1, q

′
2, q

′
3)a

′
2(q1, q2, q

′
3)b(q

′
1, q

′
2, q

′
3) ∈ CT ′ proves
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that ba′1a
′
2b ∈ BΣ

T ′ , whereas in δ the execution of b from the initial state
(q1, q2, q3) always leads to (q′1, q

′
2, q

′
3), after which (q1, q2, q3) — the only state

from which b can be executed — has become unreachable. -.

5.3.4 Peer-to-Peer and Master-Slave

We continue our comparison of the various types of synchronization started
in Subsection 4.4.4 by extending our study to the types of synchronization
introduced in this section.

First we revisit the synchronizations introduced in Section 4.4. This time,
however, we deal with team automata rather than synchronized automata
and we thus have a distribution of the alphabet of actions into input, output,
and internal actions. We immediately note that if a is an internal action of
one of the component automata of a team automaton T , then it is not an
action of any other component automaton of T , in which case a thus trivially
is free, ai , and si in T .

Lemma 5.3.12. Σint ⊆ Free(T ) ∩ AI (T ).

Proof. Let a ∈ Σint. From Definition 5.1.4 it follows that for all (q, q′) ∈
δa there exists a unique i ∈ I such that (proji(q), a, proji(q

′)) ∈ δi and,
moreover, a /∈

⋃
j∈I\{i} Σj . Hence a trivially is free, ai , and si . -.

We continue our investigation by involving also the synchronizations intro-
duced in Section 5.3. We begin by comparing the various types of peer-to-peer
(master-slave) synchronization among each other.

Definition 5.3.4 and Lemma 4.4.7 directly imply that actions that are sipp
(sopp) are also wipp (wopp).

Lemma 5.3.13. (1) SIPP(T ) ⊆WIPP(T ) and

(2) SOPP(T ) ⊆WOPP(T ). -.

From Example 4.4.8 we immediately conclude that the inclusions of this
lemma in general do not hold the other way around.

From Definition 5.3.7 we immediately obtain that the fact that an action
is sms implies that it is wms , which in its turn implies that it is ms.

Lemma 5.3.14. SMS (T ) ⊆WMS (T ) ⊆ MS (T ). -.

In Example 5.3.11 we have seen an example of a synchronization that is wms
but not sms . This implies that also the inclusion of this lemma in general
does not hold the other way around.
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We now continue our investigation by comparing the various types of
peer-to-peer (master-slave) synchronizations with the types of synchroniza-
tion introduced in Section 4.4.

First we consider the types of peer-to-peer synchronization. Recall that
Σout =

⋃
i∈I Σi,out, whereas Σinp need not equal

⋃
i∈I Σi,inp.

Theorem 5.3.15. (1) (
⋃

i∈I Σi,inp) ∩ AI (T ) ⊆ SIPP(T ),

(2) (
⋃

i∈I Σi,inp) ∩ SI (T ) ⊆WIPP(T ),

(3) Σout ∩ AI (T ) ⊆ SOPP(T ), and

(4) Σout ∩ SI (T ) ⊆WOPP(T ).

Proof. (1) Let a ∈ (
⋃

i∈I Σi,inp) ∩ AI (T ). According to Definition 5.3.4(1)
it remains to prove that a ∈ AI (SUBa,inp). However, a ∈

⋃
i∈I Σi,inp im-

plies that Ia,inp (= ∅ and since a ∈ AI (T ), it thus follows directly from
Lemma 4.7.1(2) that a ∈ AI (SUBa,inp).

(2-4) Analogous. -.

In the following example we show that in general none of the inclusions of
this theorem holds also the other way around.

Example 5.3.16. (Example 4.4.8 continued) We turn automata A1 and A2

into component automata C1 and C2, respectively, each with input action a.
This is done in the obvious way, viz. C1 = ({q, q′}, ({a},∅,∅), {(q, a, q′)}, {q})
and C2 = ({r, r′}, ({a},∅,∅), {(r, a, r′)}, {r}). Note that und(C1) = A1 and
und(C2) = A2 are depicted in Figure 4.10.

Now consider the team automaton T̂ 1 = ({(q, r), (q, r′), (q′, r), (q′, r′)},
({a},∅,∅), δ1, {(q, r)}), where we recall that δ1 = {((q, r), a, (q, r′)), ((q, r), a,
(q′, r′))}. Then it is clear that input action a is not si and thus neither ai .
However, in SUB{2}(T̂ 1) — which is essentially a copy of C2 — action a
trivially is sipp and wipp.

In an analogous way we can show that in general neither of the inclusions
stated in Theorem 5.3.15(3,4) holds the other way around as well. -.

Next we consider the types of master-slave synchronization.

Theorem 5.3.17. Σout ∩ AI (T ) ⊆ MS (T ).

Proof. Let a ∈ Σout ∩ AI (T ) and let (q, q′) ∈ δa. Then for all j ∈ Ia,out,
we have that projj

[2](q, q′) ∈ δj,a. This implies that it must be the case that

projIa,out

[2](δa) ⊆ (δIa,out)a and thus a ∈ MS (T ). -.
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In the following example we show that in general the inclusion of this theorem
does not hold also the other way around.

Example 5.3.18. Consider the composable system {C1, C2} consisting of com-
ponent automata Ci = ({qi, q′i}, (∅, {a},∅), {(qi, a, q′i)}, {qi}), with i ∈ [2]. It
is depicted in Figure 5.10(a).

(

q1
q2

)

q2 q′2

q1 q′1

(

q′1
q2

)

(

q′1
q′2

)

(a)

(

q1
q′2

)

C2:

C1:

(b)

T :

a

a

a

Fig. 5.10. Component automata C1 and C2, and team automaton T .

Now consider team automaton T = ({(q1, q2), (q′1, q2), (q1, q
′
2), (q

′
1, q

′
2)},

(∅, {a},∅), {((q1, q2), a, (q′1, q2))}, {(q1, q2)}) over {C1, C2}, depicted in Fig-
ure 5.10(b).

Clearly Ia,out({C1, C2}) = {1, 2}. Hence a trivially is ms (sms , wms) in
T , but a is not ai in T since C2 does not participate in the a-transition of T
even though it has a in its alphabet. -.

The preceding two theorems immediately imply the following result.

Corollary 5.3.19. Σout ∩AI (T ) ⊆ SOPP(T ) ∩MS (T ). -.

Finally we involve also sms and wms actions.

Theorem 5.3.20. If Σout ⊆ AI (T ), then MS (T ) = SMS (T ) = WMS (T ).

Proof. Let Σout ⊆ AI (T ). Now let a ∈ MS (T ). Then by Definition 5.3.7(1),
a ∈ Σout and thus also a ∈ AI (T ). We distinguish two cases.
If there does not exist a j ∈ I such that a ∈ Σj,inp, then Ia,inp = ∅ and thus
trivially a ∈ SMS(T ).
If there exist a j ∈ I such that a ∈ Σj,inp, then Ia,inp (= ∅ and, because a is
ai , projIa,inp

[2](δa) ⊆ (δIa,inp)a. Hence a ∈ SMS (T ).
In both cases we thus obtain that a ∈ SMS(T ). Hence MS (T ) ⊆ SMS(T )

and since, by Lemma 5.3.14, SMS (T ) ⊆ WMS (T ) ⊆ MS (T ) the equality
follows. -.
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5.4 Predicates of Synchronizations

In the preceding sections of this chapter we have presented our team automata
framework. We have seen that team automata over composable systems are
themselves component automata that can be used in further constructions
of team automata. Team automata can thus be used as building blocks. We
have analyzed the transition relations of team automata in order to determine
whether or not they satisfy the conditions inherent to certain specific types
of synchronization modeling collaboration between system components. How-
ever, we have seen that these conditions in general do not lead to uniquely
defined team automata.

To make the model of team automata of any use, e.g. in the early phases
of system design, it is necessary to be able to unambiguously construct a team
automaton according to the specification of the required type of synchroniza-
tion. Given a composable system and certain conditions to be satisfied by
the synchronizations, we want to construct the unique team automaton over
this composable system. This is done in very much the same way as we con-
structed the maximal-free (maximal-ai , maximal-si) synchronized automata
of Section 4.5, viz. by defining predicates of synchronization. Since for an
internal action the transition relation is by definition equal to its complete
transition space in S, we need to choose predicates only for all external ac-
tions. Once we do so, the team automaton over S defined by these predicates
is unique.

Based on Definition 4.5.1, this is formalized as follows.

Definition 5.4.1. Let Ra(S) ⊆ ∆a(S), for all a ∈ Σext, and let Ra(S) =
∆a(S), for all a ∈ Σint. Let R = {Ra(S) | a ∈ Σ}. Then T is the R-team
automaton over S if for all a ∈ Σ,

δa = Ra(S). -.

In Section 4.5 we have seen that each of the predicates Rfree
a (S), Rai

a (S), and
Rsi

a (S) defines the largest transition relation in ∆a(S) in which an action a
is free, ai , and si , respectively.

As an immediate corollary of Theorem 4.5.5 we obtain that in case of
an internal action, each such a predicate equals the no-constraints predicate,
i.e. its complete transition space in S.

Theorem 5.4.2. Let a ∈ Σint. Then

∆a(S) = Rno
a (S) = Rsyn

a (S), for all syn ∈ {free, ai , si}. -.
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The generic setup of Definition 5.4.1 now allows us to define three specific
team automata as an extension of Definition 4.5.4.

Definition 5.4.3. Let syn ∈ {free, ai , si}. Then

the {Rsyn
a (S) | a ∈ Σ}-team automaton over S is called the maximal-syn

team automaton (over S). -.

We now consider the constraints relating to the types of synchronization de-
fined in Section 5.3. This will allow us to define more types of team automata
than those of Definition 5.4.3. We define the predicates of synchronization
without any reference to a team automaton, its subteams, and its transition
relation.

We begin by considering the peer-to-peer types of synchronization. In this
case we have to distinguish between the input and output role an external
action a may have in S. The predicates thus have to refer to the input and
output domains of a in S. Moreover, we have to distinguish between strong
(ai) and weak (si) types of synchronization. This leads to four predicates,
each of which includes all and only those transitions from ∆a(S) in which all
component automata given by the input or output domain, respectively, are
forced (in the strong or in the weak sense) to participate.

Recall that, for an external action a, Ia,inp(S) = {i ∈ I | a ∈ Σi,inp} is
the input domain of a in S and Ia,out(S) = {i ∈ I | a ∈ Σi,out} is the output
domain of a in S. As before, we may simply write Ia,inp and Ia,out, since S
has been fixed.

First we focus on input actions.

Definition 5.4.4. Let a ∈ Σ and let Sa,inp = {Ci | i ∈ Ia,inp}. Then

(1) the predicate is-sipp in S for a is denoted by Rsipp
a (S) and is defined as

if a ∈
⋃

i∈I Σi,inp, then

Rsipp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)⇒

projIa,inp

[2](q, q′) ∈ Rai
a (Sa,inp)},

otherwise

Rsipp
a (S) = ∆a(S), and

(2) the predicate is-wipp in S for a is denoted by Rwipp
a (S) and is defined as
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if a ∈
⋃

i∈I Σi,inp, then

Rwipp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)⇒

projIa,inp

[2](q, q′) ∈ Rsi
a (Sa,inp)},

otherwise

Rwipp
a (S) = ∆a(S). -.

Next we focus on output actions.

Definition 5.4.5. Let a ∈ Σ and let Sa,out = {Ci | i ∈ Ia,out}. Then

(1) the predicate is-sopp in S for a is denoted by Rsopp
a (S) and is defined as

if a ∈
⋃

i∈I Σi,out, then

Rsopp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,out

[2](q, q′) ∈ ∆a(Sa,out)⇒

projIa,out

[2](q, q′) ∈ Rai
a (Sa,out)},

otherwise

Rsopp
a (S) = ∆a(S), and

(2) the predicate is-wopp in S for a is denoted by Rwopp
a (S) and is defined

as

if a ∈
⋃

i∈I Σi,out, then

Rwopp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,out

[2](q, q′) ∈ ∆a(Sa,out)⇒

projIa,out

[2](q, q′) ∈ Rsi
a (Sa,out)},

otherwise

Rwopp
a (S) = ∆a(S). -.

One should recall at this point that we are not discussing the properties of a
given team automaton over S, with a fixed transition relation determining the
transitions in the input and output subteams of an external action a. Thus, in
Definitions 5.4.4 and 5.4.5, we relate to the complete transition spaces of a in
the respective “subsystems” determined by the input and output domain of a.
Each predicate includes all and only those transitions from ∆a(S), for which
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all component automata given by the input or output domain, respectively,
are forced (in the weak or in the strong sense) to participate in the execution
of a by any of these component automata.

As the next result shows, the predicates of Definitions 5.4.4 and 5.4.5
describe the maximal sets of a-transitions satisfying the given constraint.
Recall that Σout =

⋃
i∈I Σi,out.

Theorem 5.4.6. Let a ∈
⋃

i∈I Σi,inp. Then

(1) a ∈ SIPP(T ) if and only if δa ⊆ Rsipp
a (S), and

(2) a ∈WIPP(T ) if and only if δa ⊆ Rwipp
a (S).

Let a ∈ Σout. Then

(3) a ∈ SOPP(T ) if and only if δa ⊆ Rsopp
a (S), and

(4) a ∈WOPP(T ) if and only if δa ⊆ Rwopp
a (S).

Proof. (1) (Only if) Let a ∈ SIPP(T ). Hence according to Definition 5.3.4(1)
we have a ∈ AI (SUBa,inp), i.e. a is ai in the subteam of T determined by
the input domain of a. According to Definition 4.1.6 the a-transitions of this
subteam are (δIa,inp)a = projIa,inp

[2](δa) ∩ ∆a({Ci | i ∈ Ia,inp}). Now, by
Theorem 4.5.3(2), a ∈ AI (SUBa,inp) implies that (δIa,inp)a ⊆ Rai

a ({Ci | i ∈
Ia,inp}). Hence for all (q, q′) ∈ δa, whenever projIa,inp

[2](q, q′) ∈ ∆a({Ci |

i ∈ Ia,inp}), then projIa,inp

[2](q, q′) ∈ Rai
a ({Ci | i ∈ Ia,inp}). Consequently,

according to Definition 5.4.4(1), δa ⊆ Rsipp
a (S).

(If) Let δa ⊆ Rsipp
a (S). By Definition 5.3.4(1) we now have to prove that

a ∈ AI (SUBa,inp). Since a ∈
⋃

i∈I Σi,inp, we know that Ia,inp (= ∅. Hence
consider an arbitrary pair (p, p′) ∈ (δIa,inp)a. Since (p, p′) ∈ (δIa,inp)a =
projIa,inp

[2](δa) ∩ ∆a({Ci | i ∈ Ia,inp}) there is a (q, q′) ∈ δa ⊆ ∆a(S) for

which projIa,inp

[2](q, q′) = (p, p′). From δa ⊆ Rsipp
a (S) we infer that (p, p′) ∈

Rai
a ({Ci | i ∈ Ia,inp}). Hence (δIa,inp)a ⊆ Rai

a ({Ci | i ∈ Ia,inp}) and thus, by
Theorem 4.5.3(2), a ∈ AI (SUBa,inp).

(2-4) Analogous. -.

Now we turn to the master-slave types of synchronization. As in the case of
the peer-to-peer predicates, we have to distinguish between the input and
the output role of actions. This time, however, the predicates describe syn-
chronizations between the component automata from the input domain and
those from the output domain.

The is-ms predicate for an external action a includes all and only those
a-transitions in which a appears at least once in its output role. For the
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predicates is-sms and is-wms in S, there is the additional requirement that a
should also be executed by the component automata from its input domain.
In the strong case, this obligation is strict in the sense that if the input
domain of a is not empty, then always at least one component automaton
from the input domain of a participates in every a-transition included in the
predicate. In the weak case, this obligation has to be met only when at least
one component automaton from the input domain of a is ready to execute a.

Definition 5.4.7. Let a ∈ Σ, let Sa,inp = {Ci | i ∈ Ia,inp}, and let Sa,out =
{Ci | i ∈ Ia,out}. Then

(1) the predicate is-ms in S for a is denoted by Rms
a (S) and is defined as

if a ∈ Σout, then

Rms
a (S) = {(q, q′) ∈ ∆a(S) | projIa,out

[2](q, q′) ∈ ∆a(Sa,out)},

otherwise

Rms
a (S) = ∆a(S),

(2) the predicate is-sms in S for a is denoted by Rsms
a (S) and is defined as

if a ∈ Σout, then

Rsms
a (S) = Rms

a (S) ∩ {(q, q′) ∈ ∆a(S) | Ia,inp (= ∅⇒

projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)},

otherwise

Rsms
a (S) = ∆a(S), and

(3) the predicate is-wms in S for a is denoted by Rwms
a (S) and is defined as

if a ∈ Σout, then

Rwms
a (S) = Rms

a (S) ∩ {(q, q′) ∈ ∆a(S) | Ia,inp (= ∅⇒

[(∃i ∈ Ia,inp : a en Ci proji(q))⇒ projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)]},

otherwise

Rwms
a (S) = ∆a(S). -.
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The is-ms (is-sms , is-wms) predicate guarantees that the output action a is
indeedms (sms , wms) in every team automaton over S with that predicate for
its a-transitions. The predicates is-ms and is-sms , moreover, are the largest
set of a-transitions satisfying the specified constraint.

It is, however, not necessarily the case that every set of a-transitions by
which a is is-wms is contained in the predicate is-wms . This difference stems
from the fact that the predicate refers to component automata from the input
domain of a rather than an input subteam. There is no way out and in fact
the maximality principle is not applicable, because to define a subteam with
transitions, a team automaton including the transition relation should have
been defined already. Since a subteam only contains a selection of all possible
a-transitions, it may happen that a is enabled in a component automaton
of the input subteam, but not in the subteam. Thus a can be wms in team
automaton T even when δa contains transitions in which the input subteam
of a does not participate, although a is currently enabled in a component
automaton of this subteam.

Theorem 5.4.8. Let a ∈ Σout. Then

(1) a ∈ MS (T ) if and only if δa ⊆ Rms
a (S),

(2) a ∈ SMS (T ) if and only if δa ⊆ Rsms
a (S), and

(3) if δa ⊆ Rwms
a (S), then a ∈WMS (T ).

Proof. (1) (Only if) Let a ∈ MS (T ). Hence by Lemma 5.3.8(1) we have
projIa,out

[2](δa) = (δIa,out)a. By Definition 4.1.6 consequently (δIa,out)a =

projIa,out

[2](δa) ∩ ∆a({Ci | i ∈ Ia,out}) and thus projIa,out

[2](δa) ⊆ ∆a({Ci |
i ∈ Ia,out}). Hence by Definition 5.4.7(1), δa ⊆ Rms

a (S).
(If) Let δa ⊆ Rms

a (S). Then by Definition 5.3.7(1) we have to prove
that projIa,out

[2](δa) ⊆ (δIa,out)a. By Definition 4.1.6 we thus have to prove

projIa,out

[2](δa) ⊆ ∆a({Ci | i ∈ Ia,out}). This follows immediately from Defi-
nition 5.4.7(1).

(2) Let a ∈ SMS (T ). If Ia,inp = ∅, then there is nothing to prove.
Hence assume that Ia,inp (= ∅. As in the proof of (1), for Ia,out it is easy
to prove that projIa,inp

[2](δa) ⊆ (δIa,inp)a if and only if δa ⊆ {(q, q′) ∈

∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a({Ci | i ∈ Ia,inp})}. By using Defini-
tion 5.3.7(2) we thus infer that a ∈ SMS (T ) if and only if δa ⊆ Rms

a (S)
and δa ⊆ {(q, q′) ∈ ∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a({Ci | i ∈ Ia,inp})}. Hence
according to Definition 5.4.7(2) we are ready.

(3) Again there is nothing to prove whenever Ia,inp = ∅. Hence assume
that Ia,inp (= ∅. Let δa ⊆ Rwms

a (S). Then by Definition 5.3.7(3) we have
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to prove that whenever (q, q′) ∈ δa and a en SUBa,inp projIa,inp
(q), then

projIa,inp

[2](q, q′) ∈ (δIa,inp)a. Definition 5.4.7(3) implies that for all (q, q′) ∈

δa, if there is an i ∈ Ia,inp for which a en Ci proji(q), then projIa,inp

[2](q, q′) ∈
∆a({Ci | i ∈ Ia,inp}). Since a en SUBa,inp

projIa,inp
(q) implies that then there

is an i ∈ Ia,inp for which a en Ci proji(q), we now have that if (q, q′) ∈ δa and
a en SUBa,inp

projIa,inp
(q), then projIa,inp

[2](q, q′) ∈ ∆a({Ci | i ∈ Ia,inp}).

Now Definition 4.1.6 implies that (δIa,inp)a = projIa,inp

[2](q, q′) and thus we
are ready. -.

In the following example we show that, as announced before, the converse of
Theorem 5.4.8(3) in general indeed does not hold.

Example 5.4.9. Let C1 = ({q1, q2}, ({a},∅,∅), {(q1, a, q′1)}, {q1}) and C2 =
({q2, q′2}, (∅, {a},∅), {(q2, a, q′2)}, {q2}) be the two component automata de-
picted in Figure 5.11(a).

(

q1
q2

)

q2 q′2

q1 q′1

(

q′1
q2

)

(

q′1
q′2

)

(a)

C2:

C1:

(b)

T :

a

a
(

q1
q′2

)

a

Fig. 5.11. Component automata C1 and C2, and team automaton T .

Clearly S = {C1, C2} is a composable system. Consider team automaton
T = ({(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}, (∅, {a},∅), {((q1, q2), a, (q1, q′2))},

{(q1, q2)}) over S. It is depicted in Figure 5.11(b). Since a is not enabled
in state (q1) of the input subteam of T it is trivial to see that a ∈WMS (T ).
Note however that a is enabled in state q1 of component automaton C1
of the input subteam. Since this component automaton does not partici-
pate in the a-transition ((q1, q2), (q1, q′2)) of T , however, we have found that
((q1, q2), (q1, q′2)) ∈ δa \ Rwms

a (S). -.

Summarizing we thus conclude that except for wms , each of the types of syn-
chronization introduced in Section 5.3 — as did each of the types introduced
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in Section 4.4 — gives rise to a predicate that is the unique maximal rep-
resentative among all transition relations satisfying the constraints implied
by the type of synchronization. Consequently, we can now distinguish more
specific types of team automata.

Definition 5.4.10. Let syn ∈ {sipp,wipp, sopp,wopp,ms, sms}. Then

(1) the {Rsyn
a (S) | a ∈ Σ}-team automaton over S is called the maximal-syn

team automaton (over S) and

(2) an action a ∈ Σ is called maximal-syn in T if δa = Rsyn
a (S). -.

5.4.1 Homogeneous Versus Heterogeneous

The team automata from Definitions 5.4.3 and 5.4.10(1) differ by the type of
predicate that needs to be satisfied. However, it is one and the same predicate
that needs to be satisfied by all external actions. Such team automata are
called homogeneous , as opposed to team automata for which different subsets
of external actions satisfy (potentially) different predicates, which are called
heterogeneous .

When defining heterogeneous team automata we need to specify exactly
which (combinations of) predicates must hold for which subsets of external
actions. Consider, e.g., that we want to construct a team automaton over
S such that all of its input actions are ai , while all of its locally-controlled
actions are ms . Then we construct the {Rai

a (S) | a ∈ Σinp} ∪ {Rms
a (S) | a ∈

Σloc}-team automaton over S, which is thus an example of a heterogeneous
team automaton.

Example 5.4.11. (Example 4.2.8 continued) We turn the automata A1 and
A2, depicted in Figure 4.7(a), into component automata C1 and C2, respec-
tively, by distributing their respective alphabets over input, output, and inter-
nal alphabets. We let a and b be input actions in C1 and we let a be an output
action in C2. Consequently, S = {C1, C2} is a composable system. Note that
any team automaton over S will have input alphabet {b}, output alphabet
{a}, and an empty internal alphabet.

We now construct a homogeneous team automata over S. The {Rsms
c (S) |

c ∈ Σ}-team automaton T 1 (i.e. the maximal-sms team automaton) over S
is depicted in Figure 5.12(a).

It is easy to construct other homogeneous team automata over S. The
{Rms

c (S) | c ∈ Σ}-team automaton over S, e.g., is obtained by adding the
transition ((q′1, q2), a, (q

′
1, q

′
2)) to the transition relation of T 1. The resulting

maximal-ms team automaton T 2 is depicted in Figure 5.12(b).
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Fig. 5.12. Team automata T 1 and T 2.

It is also not difficult to construct heterogeneous team automata over S.
The {Rfree

c (S) | c ∈ Σinp} ∪ {Rai
c (S) | c ∈ Σout} ∪ {∆c(S) | c ∈ Σint}-team

automaton over S, e.g., is the team automaton T 1 depicted in Figure 5.12(a).
This is thus an example of a team automaton that is both homogeneous and
heterogenous. -.

As this example has shown, the dividing line between homogeneous and het-
erogeneous team automata is very thin.

We have paved the way for even more specific team automata that lie
inbetween homogeneous and heterogeneous team automata, since we can also
construct, e.g., the {Rsopp

a (S) ∩ Rms
a (S) | a ∈ Σext} ∪ {∆a(S) | a ∈ Σint}-

team automaton over S or the {Rai
a (S) | a ∈ Σinp} ∪ {Rsopp

a (S) ∩Rms
a (S) |

a ∈ Σout} ∪ {∆a(S) | a ∈ Σint}-team automaton over S.
To conclude this section we make the observation that, given a compos-

able system S, there exist team automata over S that cannot be obtained
as the homogeneous team automaton of any of the types introduced above.
Shortly we will give an example of one such a team automaton. We moreover
conjecture that it does not help to consider heterogeneous team automata. In
other words, there exist team automata over S whose transition relations can-
not be obtained as the result of any combination of the predicates introduced
in Definitions 4.5.2, 5.4.4, 5.4.5, and 5.4.7.

Example 5.4.12. (Example 5.4.11 continued) Let T 3 be obtained by removing
the transition ((q1, q2), b, ((q′1, q2)) from the transition relation of T 2. Now T 3

is clearly a team automaton over S. However, it is straightforward to verify
that T 3 cannot be obtained as the homogeneous team automaton defined by
any of the predicates introduced in Definitions 4.5.2, 5.4.4, 5.4.5, and 5.4.7.
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Furthermore, it seems unlikely that — given the current predicates — T 3

can be obtained as a heterogeneous team automaton over S. Intuitively, the
reason for this resides in the fact that in T 3, b is its only input action, its
output domain is empty, and as far as its input domain is concerned, tran-
sitions ((q1, q2), b, ((q′1, q2)) and ((q1, q′2), b, (q

′
1, q

′
2)) cannot be distinguished.

It thus appears to be the case that any team automaton over S that is
constructed according to any (combination) of the predicates introduced in
Definitions 4.5.2, 5.4.4, 5.4.5, and 5.4.7 will either contain none of the two
b-transitions above, or both. -.

Summarizing, in this section we have shown that there exists a large variety
of combinations of types of synchronizations that can be used to model many
intricate interactions among system components. Given that those compo-
nents are modeled by component automata and that the interactions the
system should exhibit are known, a designer can choose how to construct
the unique team automaton over the component automata as a model of the
system he or she set out to design.

5.5 Effect of Synchronizations

The (maximal) types of synchronization introduced earlier in this chapter,
together with the (maximal) types of synchronization introduced in Sec-
tions 4.4 and 4.5, form a whole range of possible synchronizations within
team automata. In Section 4.6 we studied the effect that the basic synchro-
nizations free, ai , si , and their maximal variants have on the inheritance of
the automata-theoretic properties of Section 3.2 from synchronized automata
to their (sub)automata, and vice versa. In this section we extend this study
to team automata, i.e. we now take into account that we deal with alpha-
bets with a distinction into three distinct types of actions. We apply some
restrictions, though.

First we do not extend this study to incorporate also the more complex
types of synchronization introduced earlier on in this chapter. As already
mentioned in the Introduction, such a full study is beyond the scope of this
thesis. What we do provide is a systematic study of the role free, ai , and
si actions play in our approach of modeling collaboration between system
components through synchronizations of actions shared by these components.

Secondly, we do not take into account the properties action reducedness,
transition reducedness, and state reducedness. Again, such a full study is
beyond the scope of this thesis. Instead we focus on the inheritance of enabling
and determinism from team automata to their constituents, and vice versa.
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To this aim, the results of Section 4.6 are carried over to team automata, after
which we study the specific role of the distinction of the set of actions of a
team automaton into input, ouput, and internal actions. It turns out that we
need to be particularly careful concerning the possibility of an action being
input to a component automaton from S and output to the team automata
over S.

We start this section with a study of the top-down inheritance — from
team automata to their subteams and component automata — of enabling
and determinism. Subsequently we investigate also the bottom-up preserva-
tion — from subteams and component automata to team automata.

Notation 8. For the remainder of this chapter we let Σi,ext denote the set of
external actions Σi,inp∪Σi,out of our fixed component automaton Ci, where i ∈
I, and we let Σi,loc denote its set of locally-controlled actions Σi,out ∪Σi,int.
Recall that Σi denotes its set of actions Σi,inp ∪Σi,out ∪Σi,int. Furthermore,
we fix an arbitrary j ∈ I and an arbitrary subset J ⊆ I. We let ΣJ,ext denote
the set of external actions ΣJ,inp ∪ΣJ,out of the subteam SUBJ of T and we
let ΣJ,loc denote its set of locally-controlled actions ΣJ,out∪ΣJ,int. Recall that
ΣJ denotes its set of actions ΣJ,inp ∪ ΣJ,out ∪ ΣJ,int. Finally, recall that Σ
denotes the set of actions Σinp∪Σout∪Σint, Σext denotes the set of external
actions Σinp ∪ Σout, and Σloc denotes the set of locally-controlled actions
Σout ∪Σint of any team automaton over our fixed composable system S. -.

5.5.1 Top-Down Inheritance of Properties

In this subsection we search for sufficient conditions under which enabling
and determinism are inherited from team automata to their subteams and
component automata.

It is clear that Definitions 3.2.42 and 3.2.57 extend in a natural way
to component automata. Given an alphabet Θ disjoint from the set of
states, we can thus speak of a Θ-enabling component automaton and of a Θ-
deterministic component automaton. Moreover, if Θ equals its set of actions,
then we simply speak of enabling and deterministic component automata,
respectively.

Finally, recall from Theorem 5.4.2 that for all a ∈ Σint, we know that
δa = Rsyn

a (S), for all syn ∈ {no, free, ai , si}.

Enabling

In case the distribution of the alphabet plays no role, then the results con-
cerning the inheritance of enabling from team automata to their subteams
and component automata can obviously be lifted from Theorem 4.6.19.
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Theorem 5.5.1. Let T be Θ-enabling. Then

(1) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-enabling, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩Σj, then Cj is Θ-enabling. -.

Since Σalph∩ΣJ ⊆ ΣJ,alph andΣalph∩Σj ⊆ Σj,alph, for alph ∈ {inp, int , ext},
the following result follows immediately.

Corollary 5.5.2. Let alph ∈ {inp, int , ext} and let T be Σalph-enabling.
Then

(1) if δa ⊆ Rai
a (S), for all a ∈ ΣJ,alph, then SUBJ is Σalph-enabling, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Σj,alph, then Cj is Σalph-enabling. -.

Note that this corollary does not cover the cases in which alph ∈ {out , loc}.
In the following example we show that the fact that a team automaton T
over S is Σout-enabling in general does not imply that each of its subteams
(component automata from S) is Σout-enabling, not even if all its output
actions are ai in T .

Example 5.5.3. (Example 4.2.1 continued) We turn automata A2 and A3

into component automata C2 and C3, respectively, by making a an output
action of C2 and an input action of C3. The other elements of C2 and C3 are
as in their underlying automata depicted in Figure 4.6(a). Then {C2, C3} is
a composable system and any team automaton T over {C2, C3} has output
alphabet {a}, while its input as well as its internal alphabet is empty.

Consequently, let T be the team automaton whose underlying synchro-
nized automaton is depicted in Figure 4.6(b) once states (p, q, r) and (p, q, r′)
have been replaced by states (q, r) and (q, r′), respectively. Clearly T is {a}-
enabling. It is however easy to see that C3 is not, even though all its output
actions trivially (since there are none) are ai in T . Moreover, the subteam
SUB{3} of T is essentially a copy of C3 and is thus neither {a}-enabling. -.

An additional condition is needed to extend Corollary 5.5.2 to the cases in
which alph ∈ {out , loc}.

Corollary 5.5.4. Let alph ∈ {out , loc} and let T be Σalph-enabling. Then

(1) if Σalph∩ΣJ ⊆ ΣJ,alph and δa ⊆ Rai
a (S), for all a ∈ ΣJ,alph, then SUBJ

is Σalph-enabling, and

(2) if Σalph ∩ Σj ⊆ Σj,alph and δa ⊆ Rai
a (S), for all a ∈ Σj,alph, then Cj is

Σalph-enabling. -.
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Determinism

In case the distribution of the alphabet plays no role, then the results concern-
ing the inheritance of determinism from team automata to their subteams
and component automata can obviously be lifted from Theorem 4.6.22.

Theorem 5.5.5. Let T be Θ-deterministic and let syn ∈ {no, free, ai , si}.
Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-deterministic, and

(2) if δa = Rsyn
a (S) and each a-transition of Cj is present in T , for all

a ∈ Θ ∩Σj, then Cj is Θ-deterministic. -.

Since Σalph∩ΣJ ⊆ ΣJ,alph andΣalph∩Σj ⊆ Σj,alph, for alph ∈ {inp, int , ext},
the following result follows immediately.

Corollary 5.5.6. Let alph ∈ {inp, int , ext} and let T be Σalph-deterministic.
Let syn ∈ {no, free, ai , si}. Then

(1) if δa = Rsyn
a (S), for all a ∈ ΣJ,alph, then SUBJ is Σalph-deterministic,

and

(2) if δa = Rsyn
a (S) and each a-transition of Cj is present in T , for all

a ∈ Σj,alph, then Cj is Σalph-deterministic. -.

Note that this corollary does not cover the cases in which alph ∈ {out , loc}.
In the following example we show that the fact that a team automaton T
over S is Σout-deterministic in general does not imply that each of its consti-
tuting component automata is Σout-deterministic, not even if all its output
actions are maximal-free, maximal-ai , or maximal-si in T and all component
automaton transitions of output actions are present in T . It is not difficult
to provide a similar example for the case of subteams.

Example 5.5.7. (Example 4.6.5 continued) We turn automataA1 and A2 into
component automata C1 and C2, respectively, by making a an output action
of C1 and an input action of C2. The other elements of C1 and C2 are as in their
underlying automata depicted in Figure 4.11. Then {C1, C2} is a composable
system and any team automaton T over {C1, C2} has output alphabet {a},
while its input as well as its internal alphabet is empty.

Now let T be the team automaton with empty transition relation. Hence T
is trivially {a}-deterministic. It is however clear that C2 is not, even though all
its output actions trivially (since there are none) are maximal-free, maximal-
ai , and maximal-si in T and all its transitions of output actions trivially
(again, there are none) are present in T . -.
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An additional condition is needed to extend Corollary 5.5.6 to the cases in
which alph ∈ {out , loc}.

Corollary 5.5.8. Let alph ∈ {out , loc} and let T be Σalph-deterministic. Let
syn ∈ {no, free, ai , si}. Then

(1) if Σalph ∩ ΣJ ⊆ ΣJ,alph and δa = Rsyn
a (S), for all a ∈ ΣJ,alph, then

SUBJ is Σalph-deterministic, and

(2) if Σalph ∩ ΣJ ⊆ ΣJ,alph, δa = Rsyn
a (S), and each a-transition of Cj is

present in T , for all a ∈ Σj,alph, then Cj is Σalph-deterministic. -.

5.5.2 Bottom-Up Inheritance of Properties

Dual to the above investigations we now change focus and study the suffi-
cient conditions under which enabling and determinism are preserved from
component automata from S to team automata over S.

We recall from Section 5.2 that T is a team automaton over S ′ — upto a
reordering — whenever S ′ = {SUBIj | {Ij | j ∈ J } forms a partition of I}.
Hence it suffices to investigate the conditions under which the enabling and
determinism of (component automata from) a composable system is preserved
by a team automaton over that composable system.

Enabling

In case the distribution of the alphabet plays no role, then the results con-
cerning the preservation of enabling from component automata from S to a
team automaton over S can obviously be lifted from Theorem 4.6.33.

Theorem 5.5.9. Let Cj be Θ-enabling. Then

if each a-transition of Cj, for all a ∈ Θ, is omnipresent in T , then T is
Θ ∩Σj-enabling. -.

As the set of input (output, internal) actions of any team automaton T over
S is included in the union of the sets of input (output, internal) actions of the
component automata from S, we immediately obtain the following result.

Corollary 5.5.10. Let alph ∈ {inp, out , int , ext , loc} and let Ci be Σi,alph-
enabling, for all i ∈ I. Then

if all a-transitions of Ci, for all a ∈ Σi,alph and for all i ∈ I, are om-
nipresent in T , then T is Σalph-enabling. -.
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Note how, contrary to the results in the previous subsection, the possibility
of an action being input to a component automaton from S and output
to the team automata over S plays no role here. The reason is the fact
that every input (output) action of a team automaton T over S needs to
be an input (output) action of at least one component automaton from S.
Hence no additional condition is needed to cover the case in which alph ∈
{out , loc} in this corollary. Even though an input action a of a non-{a}-
enabling component automaton from S may be an output action of T , it
cannot prevent T from being Σout-enabling if the conditions of this corollary
are satisfied. The reason is that according to these conditions, the component
automaton from S in which a appears as an output action must not only be
{a}-enabling, but all its a-transitions must moreover be omnipresent in T .

Determinism

In case the distribution of the alphabet plays no role, then the results con-
cerning the preservation of determinism from component automata from S
to a team automaton over S can obviously be lifted from Theorem 4.6.35.

Theorem 5.5.11. Let S be Θ-deterministic and let syn ∈ {ai , si}. Then

if δa ⊆ Rsyn
a (S), for all a ∈ Θ ∩Σ, then T is Θ-deterministic. -.

Since Σalph ∩ Σj ⊆ Σj,alph, for alph ∈ {inp, int , ext}, the following result
follows immediately.

Lemma 5.5.12. Let alph ∈ {inp, int , ext}. Then

if Cj is Σj,alph-deterministic, then Cj is Σalph-deterministic. -.

Since an action may be input in a component automaton from S but output
in a team automaton over S, Lemma 5.5.12 cannot be extended to the cases
in which alph ∈ {out , loc}. To see this, consider an external action a that is
input to a component automaton (e.g. C2) which is Σ2,out-deterministic but
not {a}-deterministic, and output to another component automaton (e.g. C1).
Then a will clearly be an output action of any team automaton over {C1, C2},
but C2 nevertheless is not {a}-deterministic.

Lemma 5.5.12 allows us to extend Theorem 5.5.11 to the cases in which
alph ∈ {inp, int , ext}.

Corollary 5.5.13. Let alph ∈ {inp, int , ext} and let Ci be Σi,alph-determini-
stic, for all i ∈ I. Let syn ∈ {ai , si}. Then

if δa ⊆ Rsyn
a (S), for all a ∈ Σalph, then T is Σalph-deterministic. -.
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Note that — contrary to Corollary 5.5.10 — Corollary 5.5.13 cannot be ex-
tended to the cases in which alph ∈ {out , loc}, not even when we consider
team automata whose every action is maximal-free, maximal-ai , or maximal-
si . This is because the transitions that cause a component automaton not to
be deterministic are not a priori excluded from being present in such team
automata, but when they are present they thus also cause those team au-
tomata not to be deterministic. In the following example we demonstrate
this by showing that even if Ci is Σi,out-deterministic, for all i ∈ I, and
δa ⊆ Rsyn

a (S), for all a ∈ Σout and syn ∈ {free, ai , si}, then this in general
does not imply that T is Σout-deterministic.

Example 5.5.14. Let component automata C1 = ({q1, q′1}, ({a},∅,∅), {(q1, a,
q1), (q1, a, q′1)}, {q1}) and C2 = ({q2, q′2}, (∅, {a},∅), {(q2, a, q′2)}, {q2}) be as
depicted in Figure 5.13.

q1 q′1 q2 q′2

C1: C2:

a a

a

Fig. 5.13. Component automata C1 and C2.

Note that both Ci, with i ∈ [2], are Σi,out-deterministic. Furthermore,
{Ci | i ∈ [2]} is a composable system. Now consider the team automaton T =
(Q, (∅, {a},∅), δ, {(q1, q2)}), where Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}

and δ = {((q1, q2), a, (q1, q′2)), ((q1, q2), a, (q
′
1, q

′
2))}, over this composable sys-

tem. It is depicted in Figure 5.14(a).
Clearly δa = Rai

a (S) ⊆ Rsi
a (S), but T obviously is not Σout-deterministic.

Next consider the team automaton T ′ = (Q, (∅, {a},∅), δ′, {(q1, q2)}),
where δ′ = {((q1, q2), a, (q1, q2)), ((q1, q2), a, (q′1, q2))}, over this composable
system. It is depicted in Figure 5.14(b). Clearly δ′a ⊆ Rfree

a (S). However, also
T ′ obviously is not Σout-deterministic. -.

5.6 Inheritance of Synchronizations

In this section we start an initial exploration into the conditions under which
the types of synchronization introduced in Sections 5.3 and 5.4 are inherited
top-down— from team automata to subteams — and preserved bottom-up—
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Fig. 5.14. Team automata T and T ′.

from subteams to team automata — as an addition to the results presented in
Section 4.7 on the inheritance and preservation of the basic synchronizations
free, ai , and si .

Since we deal with synchronizations between component automata consti-
tuting a team automaton, there is no need to study whether synchronizations
are inherited by component automata from team automata — and vice versa:
in any component automaton — and in any team automaton over a single
component automaton — all its input (output) actions trivially are sipp and
wipp (sopp and wopp) while all its output actions trivially are ms , sms , and
wms .

We begin by considering the inheritance of the peer-to-peer types of syn-
chronization. In the following example we show that if an action is sipp (wipp,
sopp, wopp) in a team automaton, then this in general does not imply that
it is also sipp (wipp, sopp, wopp) in each of its subteams.

Example 5.6.1. Consider the composable system {C1, C2}, which consists of
component automata C1 = ({q1, q′1}, ({a},∅,∅), {(q1, a, q′1)}, {q1}) and C2 =
({q2, q′2}, (∅, {a},∅), {(q2, a, q′2)}, {q2}). It is depicted in Figure 5.15(a).

Now consider team automaton T = ({(q1, q2), (q′1, q2), (q1, q
′
2), (q

′
1, q

′
2)},

(∅, {a},∅), {((q1, q2), a, (q′1, q
′
2))}, {(q1, q2)}) over {C1, C2}, depicted in Fig-

ure 5.15(b).
Clearly Ia,inp({C1, C2}) = {1} and Ia,out({C1, C2}) = {2}. Thus a trivially

is ai in both SUBa,inp = SUB{1} and SUBa,out = SUB{2}. Hence a is sipp
and sopp (and thus wipp and wopp) in T .

We observe that SUB{2}a,inp({C2})(SUB{2}) = (∅, (∅,∅,∅),∅,∅) =
SUB{1}a,out({C1})(SUB{1}). This implies a /∈ SI (SUB{2}a,inp({C2})(SUB{2}))
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Fig. 5.15. Component automata C1 and C2, and team automaton T .

and a /∈ SI (SUB{1}a,out({C1})(SUB{1})). Hence a is neither wipp nor wopp
(and thus neither sipp nor sopp) in SUB{2} and SUB{1}, respectively. -.

From Lemma 4.7.1(2,3) we obtain that sipp and wipp (sopp and wopp) actions
are inherited from a team automaton to a subteam as long as the subteam is
chosen from the input (output) domain of the team automaton. Recall that
Σout =

⋃
i∈I Σi,out.

Lemma 5.6.2. Let a ∈
⋃

i∈I Σi,inp and let ∅ (= K ⊆ Ia,inp(S). Then

(1) if a ∈ SIPP(T ), then a ∈ SIPP(SUBK(T )), and

(2) if a ∈WIPP(T ), then a ∈WIPP(SUBK(T )).

Let a ∈ Σout and let ∅ (= L ⊆ Ia,out(S). Then

(3) if a ∈ SOPP(T ), then a ∈ SOPP(SUBL(T )), and

(4) if a ∈WOPP(T ), then a ∈WOPP(SUBL(T )).

Proof. (1) From a ∈ Σinp and ∅ (= K ⊆ Ia,inp(S) we know that the input
domain of a in {Ck | k ∈ K} is K itself. Hence Ka,inp({Ck | k ∈ K}) =
K (= ∅. Now let a be sipp in T . Then by Definition 5.3.4(1), a is ai in
SUBIa,inp(S)(T ). Since K ⊆ Ia,inp(S), Lemma 4.7.1(2) directly implies that
a is ai in SUBK(SUBIa,inp(S)(T )) = SUBKa,inp({Ck|k∈K})(SUBK(T )). Defi-
nition 5.3.4(1) now implies that a is sipp in SUBK(T ).

(2-4) Analogous. -.

Next we wonder whether sipp and wipp (sopp and wopp) actions are preserved
from subteams to team automata. In the following example we show that in
general they are not.
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Example 5.6.3. (Example 5.3.18 continued) Note that a /∈ WOPP(T ) ∪
SOPP(T ) since a /∈ SI (SUBa,out). However, it is easy to see that a ∈
SOPP(SUB{1}(T )) ⊆ WOPP(SUB{1}(T )). It is not difficult to adjust this
example in order to show that also sipp and wipp actions in general are not
preserved from subteams to team automata. -.

It turns out that sipp and wipp (sopp and wopp) actions are preserved from
the input (output) subteam of a team automaton to the team automaton
as a whole, which together with the previous lemma provides us with the
following result.

Theorem 5.6.4. Let a∈
⋃

i∈I Σi,inp, let K=Ia,inp(S), and let SUBK(T ) =
(QK , ΣK , δK , IK). Then

(1) a ∈ ΣK ∩ SIPP(T ) if and only if a ∈ SIPP(SUBK(T )) and

(2) a ∈ ΣK ∩WIPP(T ) if and only if a ∈WIPP(SUBK(T )).

Let a ∈ Σout, let L = Ia,out(S), and let SUBL(T ) = (QL, ΣL, δL, IL). Then

(3) a ∈ ΣL ∩ SOPP(T ) if and only if a ∈ SOPP(SUBL(T )) and

(4) a ∈ ΣL ∩WOPP(T ) if and only if a ∈WOPP(SUBL(T )).

Proof. (1) (Only if) Directly from Lemma 5.6.2(1).
(If) Let a ∈ SIPP(SUBK(T )). Then Definition 5.3.4(1) implies that a ∈

ΣK ∩ AI (SUBK(T ))). Since K = Ia,inp(S) and a ∈ ΣK ∩ AI (SUBK(T )),
Definition 5.3.4(1) implies that a ∈ ΣK ∩ SIPP(T ).

(2-4) Analogous. -.

Finally, we turn to the master-slave types of synchronization. In the following
example we show that if an action is ms (sms , wms) in a team automaton,
then this in general does not imply that it is also ms (sms , wms) in each of
its subteams.

Example 5.6.5. (Example 5.6.1 continued) Clearly a is sms (and thus also
ms and wms) in T . However, a is not an output action of SUB{1} and it thus
cannot be ms (and hence neither sms nor wms) in SUB{1}. -.

We do have that every output action a of T is ms in any subteam of T
determined by a subset of the output domain of a in S.

Theorem 5.6.6. If a∈Σout and ∅ (=K⊆Ia,out(S), then a∈MS (SUBK(T )).
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Proof. Let a ∈ Σout and let ∅ (= K ⊆ Ia,out(S). Clearly a ∈ ΣK,out. In
fact, the output domain J = Ka,out({Ck | k ∈ K}) of a in {Ck | k ∈ K}
is K itself. Now let (p, p′) ∈ (δK)a = projK

[2](δa) ∩ ∆a({Ck | k ∈ K}).
Then projK

[2](p, p′) = (p, p′) and it thus follows from the above that
projJ

[2]((δK)a) = (δK)a = (δJ)a. Hence a ∈ MS (SUBK(T )). -.

We also get that an ms action a from a team automaton over S is also ms in
all subteams determined by a set that contains the output domain of a in S.

Theorem 5.6.7. If a∈MS (T ) and K⊇Ia,out(S), then a∈MS (SUBK(T )).

Proof. Let a ∈ MS (T ) and let K ⊇ Ia,out(S). Clearly a ∈ Σout and hence
Ia,out(S) (= ∅. Now let (p, p′) ∈ (δK)a. Then there must exist q, q′ ∈ Q
such that (q, q′) ∈ δa and projK

[2](q, q′) = (p, p′) ∈ ∆a({Ck | k ∈ K}).
Since a ∈ MS (T ), there exists a k ∈ Ia,out(S) ⊆ K such that projk

[2](q, q′) =
projk

[2](p, p′) ∈ δk,a. Because the output domain J = Ka,out({Ck | k ∈ K}) of
a in {Ck | k ∈ K} is Ia,out(S) it follows that projJ

[2](q, q′) ∈ ∆a({C! | " ∈ J})
and thus projJ

[2]((δK)a) = (δJ)a. Hence a ∈ MS (SUBK(T )). -.

Furthermore, as we show next, an ms action a is preserved from a subteam
to the team automaton over S as a whole, provided that the subteam is
determined by a set that contains the input domain of a in S.

Theorem 5.6.8. Let a ∈ Σout and let K ⊇ Ia,inp(S). Then

if a ∈ MS (SUBK(T )), then a ∈ MS (T ).

Proof. Let J = Ia,out(S). Note that J (= ∅. Now let (q, q′) ∈ δa and assume
that projJ

[2](q, q′) /∈ (δJ )a, which means that proj!
[2](q, q′) /∈ δ!,a, for all

" ∈ J , i.e. only the input domain of a in S is involved in this transition.
Consequently, projK

[2](q, q′) ∈ ∆a({Ck | k ∈ K}). Now suppose that a ∈
MS (SUBK(T )). Then a ∈ ΣK,out and thus K ∩ J (= ∅. Moreover, from a
being ms in SUBK(T ) it follows that there exists a k ∈ K ∩ J such that
projk

[2](q, q′) ∈ δk,a, a contradiction with the fact that projJ
[2](q, q′) /∈ (δJ )a.

Hence we have proven that a /∈ MS (T ) implies a /∈ MS (SUBK(T )). -.

Finally, we note that whenever an output action a is sms (wms) in T and
J ⊆ Ia,out(S), then a trivially is sms (wms) in SUBJ (T ) because the input
domain of a in {Cj | j ∈ J} is empty.

This completes our initial exploration into the conditions under which
the complex types of synchronization introduced in Section 5.3 are inherited
from team automata to subteams, and vice versa.

We conclude this section with a result on the inheritance of the maximal
types of synchronization introduced in Section 5.4. Using our knowledge from
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earlier results of this section we extend the results presented in Theorem 4.7.5
to the case of peer-to-peer and master-slave types of synchronization.

Theorem 5.6.9. Let a ∈
⋃

i∈I Σi,inp and let K ⊆ Ia,inp(S). Then

(1) if δa = Rsipp
a (S), then (δK)a = Rsipp

a ({Ck | k ∈ K}), and

(2) if δa = Rwipp
a (S), then (δK)a = Rwipp

a ({Ck | k ∈ K}).

Let a ∈ Σout and let L ⊆ Ia,out(S). Then

(3) if δa = Rsopp
a (S), then (δL)a = Rsopp

a ({C! | " ∈ L}),

(4) if δa = Rwopp
a (S), then (δL)a = Rwopp

a ({C! | " ∈ L}), and

(5) if δa = Rms
a (S), then (δL)a = Rms

a ({C! | " ∈ L}).

Proof. (1) By Lemma 5.6.2(1) we only need to prove that δa = Rsipp
a (S)

implies Rsipp
a ({Ck | k ∈ K}) ⊆ (δK)a. Hence let (p, p′) ∈ Rsipp

a ({Ck |
k ∈ K}). Then by Definition 5.4.4(1) there exists a (q, q′) ∈ Rsipp

a (S)
such that projK

[2](q, q′) = (p, p′) and thus, since δa = Rsipp
a (S), (p, p′) =

projK
[2](q, q′) ∈ (δK)a.

(2-4) Analogous.
(5) Analogous, but now using Theorem 5.6.6 and Definition 5.4.7(1). -.

5.7 Conclusion

Team automata can be classified on basis of the properties of their transition
relations or by imposing conditions on their transition relations, which may
lead to team automata that are maximal with respect to the given conditions.
Furthermore, we can consider properties at the team level, or at the level of
subteams.

Team automata allow exact descriptions of certain groupware notions
which may otherwise have an ambiguous interpretation. Consider, e.g., the
distinction between cooperation and collaboration within the team automa-
ton model as described in [Ell97]:

“A Team Automaton is defined to be cooperating if it is structured so
that one of its components is the active master, and all the others are passive
slaves.”

and
“A Team Automaton is defined to be collaborating if it is structured so

that all of the automata are active peers.”
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To this it is added that the master-slave mechanism is referred to as
passive cooperation, since the master is never blocked waiting for a slave.
This contrasts with the peer-to-peer mechanism, in which blocking may occur
when not all of the participants are ready to execute the action, and which
is called active collaboration.

The framework of team automata clearly allows for more and finer distinc-
tions. This is mainly due to the uniform approach towards the formalization
of the notion of obligation for component automata to participate in the ex-
ecution of a certain action, which is independent of the role of that action
(input or output, peer, master, or slave).

We have thus provided two global interpretations of collaboration through
the notions of ai (comparable to the adjective “active” above, as blocking may
occur) and si . Here the input role an action may have is not yet separated
from its output role. When this distinction is made we arrive at the four
notions of strong (weak) input (output) peer-to-peer.

Cooperation, on the other hand, is formalized through the notions of
(weak and strong) ms synchronizations. When an action is ms , then it can-
not be executed as an input action without being simultaneously executed as
an output action. In the strong case, all slaves (the component automata hav-
ing the action as an input action) should participate in the action, whereas in
the weak case all component automata that are ready for that action should
participate in the synchronization (which corresponds to the “passive” co-
operation mentioned above). Note that the master in an ms synchronization
may be a subteam rather than a single component automaton. As argued
in Section 5.2, there is no essential difference between a subteam of a team
automaton and a component automaton which itself may have been obtained
as a team automaton. Similarly, the slaves may be one or more component
automata or one or more subteams.

The above viewpoint also easily allows combinations of cooperation and
collaboration, called hybrids in [Ell97]. One may, e.g., have an ms synchro-
nization in which within the master (subteam) the synchronizations are sopp,
while the subteam of the slaves exhibits wipp synchronization (all slaves that
can, participate) or sipp synchronization (all slaves have to take part).

Finally, observe that these considerations on cooperation and collabo-
ration all relate to the synchronizations of a single external action. These
notions can also be lifted to the level of the team automaton as a whole,
either in a homogeneous way or in an heterogeneous way. In the first case
there is one type of cooperation or collaboration (the same for all actions)
including the identity of the master, the slaves, the input domain, the out-
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put domain, etc. In the second case, each external action can have its own
cooperation or collaboration specification.

Given requirements for each external action, one may follow the approach
outlined in Section 5.4 to construct a unique team automaton with the ap-
propriate combinations of cooperating and collaborating synchronizations.

The theory presented so far has thus led to a flexible framework that
allows one to precisely classify, describe and construct many different incar-
nations of cooperation and collaboration. Which of these may be of use in
applications, is for practice to decide.



6. Behavior of Team Automata

In this chapter we study the behavior of team automata. We begin with a
few elementary observations on the computational power for the case of finite
component automata, i.e. component automata with a finite set of states
and a finite alphabet (of input, output, and internal actions). For the rest of
this chapter we then turn to component automata and team automata with
possibly infinite sets of states and actions. We study the relation between
the computations and behavior of team automata on the one hand, and
those of their constituting component automata on the other hand. Since a
composable system does not uniquely define a team automaton, the relation
between the computations and behavior of a team automaton and those of its
constituting component automata depends on the allowed synchronizations.

We are particularly interested in conditions which guarantee that a team
automaton satisfies compositionality. This means that the behavior of a team
automaton can be described as a function of the behavior of its constituting
component automata. Since component automata and team automata have
languages as behavior, we use language-theoretic operations — so called shuf-
fles — to describe the combination of words into new words. In order to be
able to apply these shuffles in the context of team automata, we extensively
investigate their properties in two separate sections. This eventually enables
us to identify several types of team automata satisfying compositionality.

6.1 Behavior of Finite Component Automata

Most types of automata considered in this thesis may have an infinite set of
states and an infinite set of actions. As already discussed in Section 3.1, by
allowing the automata in our framework to have an infinite set of states we
end up with automata that have Turing machine power. In this section we
study the behavior of finite component automata, i.e. of component automata
with a finite set of states and a finite alphabet, and — subsequently — the
influence that the distinction between input, output, and internal actions has
on their behavior (cf. Section 7.1.4).
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In the remainder of this section, all component automata have a finite
set of states and a finite alphabet. Moreover, we restrict our study to an
investigation of their finite computations, and the resulting finitary behavior.

Component automata differ from automata only by the distinction of their
set of actions into input, output, and internal actions. In fact, by ignoring this
distinction, every finite component automaton C = (Q, (Σinp, Σout, Σint), δ, I)
can be viewed as an automaton A = (Q,Σ, δ, I) such that Σ = Σinp∪Σout∪
Σint, with BΣ

A = BΣ
C . Conversely, every automaton A = (Q,Σ, δ, I) such that

Q and Σ are finite can be viewed — once its alphabet is disjointly distributed
over input, output, and internal actions Σ1, Σ2, and Σ3 — as a component
automaton C = (Q, (Σ1, Σ2, Σ3), δ, I) such that Σ1 ∪ Σ2 ∪ Σ3 = Σ, with
BΣ

C = BΣ
A.

The computational power of automata with a finite set of states and a
finite set of actions equals that of the family of prefix-closed regular finitary
languages, which we denote by pREG. The family of regular languages, de-
noted by REG, is precisely the family of languages accepted by the well-known
model of finite (state) automata (cf. the introduction to Chapter 3). Formally,
pREG = {L ∈ REG | L is prefix closed}. It is known that pREG ⊂ REG and
FIN ⊂ REG, where FIN denotes the family of finite languages, while FIN and
pREG are incomparable.

We denote CA = {BΣ
C | Σ is an alphabet and C is a finite component au-

tomaton with alphabet Σ}. Then the above observations immediately yield
the following result.

Lemma 6.1.1. pREG = CA. -.

Note that the inclusion pREG ⊆ CA can be proven by choosing any distribu-
tion of an automaton’s alphabet over input, output, and internal alphabets.

Using this observation once more we now prove that all behavior collected
in CA (and hence in pREG) can also be obtained as the input, output, internal,
external, and locally-controlled behavior of component automata.

First we introduce some notation. Consider an arbitrary component au-
tomaton C = (Q, (Σ1, Σ2, Σ3), δ, I) and let Σ = Σ1 ∪ Σ2 ∪ Σ3. Conse-
quently we set Binp

C = BΣ1
C , thus Binp

C = presΣ1
(BΣ

C ); B
out
C = BΣ2

C , thus
Bout

C = presΣ2
(BΣ

C ); B
int
C = BΣ3

C , thus Bint
C = presΣ3

(BΣ
C ); B

ext
C = BΣ1∪Σ2

C ,
thus Bext

C = presΣ1∪Σ2
(BΣ

C ); B
loc
C = BΣ2∪Σ3

C , thus Bloc
C = presΣ2∪Σ3

(BΣ
C ).

Next we consider the following component automata as variants of C:
[C, inp] = (Q, (Σ,∅,∅), δ, I), [C, out ] = (Q, (∅, Σ,∅), δ, I), and [C, int ] =
(Q, (∅,∅, Σ), δ, I).

Lemma 6.1.2. Let [C, inp], [C, out ], and [C, int ] be as described above. Then

(1) BΣ
C = Binp

[C,inp] = Bout
[C,out] = Bint

[C,int],
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(2) BΣ
[C,inp] = Binp

[C,inp] = Bext
[C,inp],

(3) BΣ
[C,out] = Bout

[C,out] = Bext
[C,out] = Bloc

[C,out], and

(4) BΣ
[C,int] = Bint

[C,int] = Bloc
[C,int].

Proof. (1) Let alph ∈ {inp, out , int}. Then BΣ
C = BΣ

[C,alph] = presΣ(B
Σ
[C,alph])

= Balph
[C,alph].

(2) BΣ
[C,inp] = presΣ(B

Σ
[C,inp]) = Binp

[C,inp] and Bext
[C,inp] = presΣ∪∅(B

Σ
[C,inp])

= presΣ(B
Σ
[C,inp]).

(3,4) Analogous to (2). -.

Now we denote CAalph = {Balph
C | C is a finite component automaton}, with

alph ∈ {inp, out , int , ext , loc}.
All languages in CAalph are the images under a weak coding presΣ of

languages in CA = pREG. It is known that pREG is closed under (weak)
codings, i.e. whenever L ∈ pREG and L′ is a (weak) coding of L, then we
know that also L′ ∈ pREG. Using this closure of pREG under weak codings
we immediately obtain the following result.

Lemma 6.1.3. Let alph ∈ {inp, out , int , ext , loc}. Then

CAalph ⊆ pREG. -.

Combining this lemma with Lemmata 6.1.1 and 6.1.2 leads to the following
result, which shows that the distinction of the set of actions into input, out-
put, and internal actions has no influence on the behavior of finite component
automata.

Theorem 6.1.4. pREG=CA=CAinp=CAout=CAint=CAext=CAloc. -.

6.2 Team Behavior Versus Component Behavior

For the remainder of this chapter all component automata (and thus all
team automata) have a possibly infinite set of states and a possibly infinite
set of actions. We investigate the relation between the computations and
behavior of team automata on the one hand, and those of their constituting
component automata on the other hand. Since we know that subteams of a
team automaton can be viewed as components of (an iterated version of) that
team automaton, it suffices to study the relation between team automata and
their constituting component automata.
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We first continue our study started in Section 4.2. Given the computations
(behavior) of a team automaton we investigate how to extract the compu-
tations (behavior) of its constituting component automata. Later we change
focus and investigate how to combine the given computations (behavior) of a
composable system in such a way that the resulting computations (behavior)
are those of a team automaton over that composable system.

Initially we consider team automata in which all actions are ai . In such a
team automaton, in every synchronization on a given action always the same
component automata participate. The results we obtain in this case form a
satisfying picture. Consequently we move on to consider team automata with
only free actions. In such a team automaton — although depending on the
state a component (team) automaton is in — in every synchonization on a
given action always only one component automaton participates. Also in this
case we obtain interesting results. Finally, in a team automaton with only
si actions, the participation of component automaton in synchronizations
is fully state dependent. We argue that a drastically different approach is
required to obtain results in this case.

Notation 9. Also in this chapter we once more assume a fixed, but arbitrary
and possibly infinite index set I ⊆ N, which we will use to index the compo-
nent automata involved. For each i ∈ I, we let Ci = (Qi, (Σi,inp, Σi,out, Σi,int),
δi, Ii) be a fixed component automaton and we use Σi to denote its set of ac-
tions Σi,inp ∪ Σi,out ∪ Σi,int. Moreover, we once more let S = {Ci | i ∈ I}
be a fixed composable system and we let T = (Q, (Σinp, Σout, Σint), δ, I) be
a fixed team automaton over S. Furthermore, we use Σ to denote its set of
actions Σinp ∪Σout ∪Σint. Recall that I ⊆ N implies that I is ordered by the
usual ≤ relation on N, thus inducing an ordering on S, and that the Ci are
not necessarily different. Finally, we let Θ be an arbitrary but fixed alphabet
disjoint from Q. -.

6.2.1 From Team Automata to Component Automata

In this subsection we assume that the computations and behavior of a team
automaton are given. From these we want to extract computations and be-
havior of its constituting component automata. We start by addressing this
issue element-wise, i.e. given one particular computation (behavior) of a team
automaton, we want to know whether we can extract from it the underlying
computation (behavior) of one of its constituting component automata.

Notation 10. For the remainder of this section we let j ∈ I. -.
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Given a team computation α ∈ C∞
T we know from Corollary 4.2.7 that

πCj (α) ∈ C∞
Cj
. Hence we can simply apply projections on the computa-

tions of team automata in order to obtain computations of its constitut-
ing component automata. Moreover, by definition, presΘ(α) ∈ BΘ,∞

T and
presΘ(πCj (α)) ∈ BΘ,∞

Cj
. This reflects the fact that behavior is obtained by

filtering out state information from computations. We thus have the situation
depicted by the diagram in Figure 6.1.

presΘ presΘ

presΘ(πCj (α)) ∈ BΘ,∞
Cj

πCj (α) ∈ C∞
Cj

α ∈ C∞
T

presΘ(α) ∈ BΘ,∞
T

?

πCj

Fig. 6.1. Extracting behavior from team automata to component automata.

In addition we would like to obtain the Θ-behavior presΘ(πCj (α)) of com-
ponent automaton Cj directly from the Θ-behavior presΘ(α) of team automa-
ton T . We thus look for an operation that makes the diagram of Figure 6.1
commute. A natural candidate is the homomorphism presΣj

preserving only
those actions from presΘ(α) that belong to component automaton Cj. Hence
we wonder whether presΣj

(presΘ(α)) = presΘ(πCj (α)). In the following ex-
ample we show that this equality in general does not hold.

Notation 11. For the remainder of this section we may also specify our
fixed component automata Ci as (Qi, Σi, δi, Ii), i ∈ I, and our fixed team
automaton T as (Q,Σ, δ, I) whenever the distinctions of their alphabets into
input, output, and internal actions are irrelevant. -.

Example 6.2.1. Let component automata C1 = ({q1, q′1}, {a, b}, {(q1, b, q1),
(q1, a, q′1)}, {q1}) and C2 = ({q2, q′2}, {a, b}, {(q2, a, q

′
2), (q

′
2, b, q

′
2)}, {q2}) be as

depicted in Figure 6.2.
We assume {C1, C2} to be a composable system and consider team automa-

ton T = (Q, {a, b}, δ, {(q1, q2)}), with Q = {(q1, q2), (q1, q′2), (q
′
1, q2), (q

′
1, q

′
2)}

and δ = {((q1, q2), b, (q1, q2)), ((q1, q2), a, (q′1, q
′
2))}, over this composable sys-

tem. It is depicted in Figure 6.3(a).
Let α = (q1, q2)b(q1, q2)a(q′1, q

′
2) ∈ CT . Then presΣ2

(pres{a,b}(α)) = ba (=
a = pres{a,b}(q2aq

′
2) = pres{a,b}(πC2 (α)). -.
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q1 q′1
a

C1:

b

q2 q′2
a

C2:

b

Fig. 6.2. Component automata C1 and C2.

b

(b)(a)

(

q′1
q2

)

(

q1
q2

)

(

q′1
q′2

)

(

q1
q′2

)

(

q1
q2

)

(

q1
q′2

)

(

q′1
q′2

)

(

q′1
q2

)

a

a

T : T ′:

Fig. 6.3. Team automata T and T ′.

This example shows that in general we cannot assume that a component
automaton participates in a synchronization, just because it has the action
that is being synchronized as one of its actions. Hence there is no a priori
relation between a component automaton’s set of actions and its participation
in synchronizations of those actions. The question we ask ourselves in this
section now boils down to finding a necessary and sufficient condition which
guarantees that presΣj

(presΘ(α)) = presΘ(πCj (α)).
As suggested by the example, we thus need to find a way to know whether

or not a component automaton participates in a synchronization of the team
automaton. It is therefore not surprising that the condition we present next is
based on the ai principle, since every synchronization of an ai action involves
all component automata that share this action. However, we obviously do
not care about useless transitions as they can never be used anyway. It thus
suffices to require the actions of T to be ai with respect to useful transitions
only. Furthermore, for a given component Cj and action a ∈ Σj it suffices
to know that a is ai with respect to j, i.e. it is sufficient if Cj is required
to participate in every useful a-transition of T . This leads to the following
definition.
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Definition 6.2.2. The set of useful j-action-indispensable actions is de-
noted by uAI j(T ) and is defined as

uAI j(T ) = {a ∈ Σj | ∀q, q′ ∈ Q : (q, q′) ∈ δa is useful ⇒
projj

[2](q, q′) ∈ δj,a}. -.

Note that AI (T )∩Σj ⊆ uAI j(T ). We moreover note that whenever an action
a of a component Cj is not active in T , then a ∈ uAI j(T ).

We can now formulate a sufficient condition under which the preserving
homomorphism presΣj

makes the diagram of Figure 6.1 commute. First we
limit ourselves to finite computations.

Lemma 6.2.3. If Θ∩Σj⊆uAI j(T ), then for all α∈CT , presΣj
(presΘ(α))=

presΘ(πCj (α)).

Proof. Let Θ ∩ Σj ⊆ uAI j(T ) and let α = q0a1q1a2q2 · · ·anqn ∈ CT . By
induction on n we prove presΣj

(presΘ(α)) = presΘ(πCj (α)).
If n = 0, then α = q0 and thus presΣj

(presΘ(q0)) = presΘ(πCj (q0)) = λ.
Next assume that n = k+1, for some k ≥ 0, and that presΣj

(presΘ(β)) =
presΘ(πCj (β)), where β = q0a1q1a2q2 · · · akqk. Hence α = βanqn. This im-
plies that presΣj

(presΘ(α)) = presΣj
(presΘ(β))an if an ∈ Θ ∩ Σj and

presΣj
(presΘ(α)) = presΣj

(presΘ(β)) if an /∈ Θ ∩Σj.

First consider that an ∈ Θ ∩ Σj . Then projj
[2](qn, qn+1) ∈ δj,an since

Θ ∩Σj ⊆ uAI j(T ) and thus presΘ(πCj (α)) = presΘ(πCj (β)anprojj(qn+1)) =
presΘ(πCj (β))an = presΣj

(presΘ(βanqn)) by the induction hypothesis. Hence
presΣj

(presΘ(α)) = presΘ(πCj (α)).
Next consider that an /∈ Θ ∩Σj. Then an /∈ Θ or an /∈ Σj .

If an /∈ Σj , then πCj (α) = πCj (β) and thus, by the induction hypothesis,
presΘ(πCj (α)) = presΘ(πCj (β)) = presΣj

(presΘ(β)). As presΣj
(presΘ(β)) =

presΣj
(presΘ(βanqn)) it follows that presΘ(πCj (α)) = presΣj

(presΘ(α)).
If an /∈ Θ, then presΘ(πCj (α)) = presΘ(πCj (β)) and thus, by the induction
hypothesis, presΘ(πCj (α)) = presΣj

(presΘ(β)) = presΣj
(presΘ(α)). -.

Next we allow also infinite computations.

Corollary 6.2.4. If Θ ∩ Σj ⊆ uAI j(T ), then for all α ∈ C∞
T ,

presΣj
(presΘ(α)) = presΘ(πCj (α)).

Proof. Let Θ ∩ Σj ⊆ uAI j(T ) and let α ∈ C∞
T . Due to Lemma 6.2.3 we

only need to consider the infinite case. Hence we assume that α ∈ Cω
T . Let

α1 ≤ α2 ≤ · · · ∈ CT be such that α = lim
n→∞

αn. Thus presΣj
(presΘ(α)) =

presΣj
(presΘ( lim

n→∞
αn)). Then, by the definition of homomorphisms on infi-

nite words, presΣj
(presΘ( lim

n→∞
αn)) = lim

n→∞
presΣj

(presΘ(αn)). Consequently,
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by the same reason and from Lemma 6.2.3 it now follows that
lim
n→∞

presΣj
(presΘ(αn)) = lim

n→∞
presΘ(πCj (αn)) = presΘ(πCj ( lim

n→∞
αn)) =

presΘ(πCj (α)). -.

It turns out that the condition proposed above is also necessary.

Lemma 6.2.5. If (Θ ∩ Σj) \ uAI j(T ) (= ∅, then there exists an α ∈ CT

such that presΣj
(presΘ(α)) (= presΘ(πCj (α)).

Proof. Let (Θ ∩ Σj) \ uAI j(T ) (= ∅. Then the following situation must ex-
ist. Let α = q0a1q1a2q2 · · · anqn ∈ CT be such that for all 1 ≤ i < n, either
ai /∈ Θ, or ai /∈ Σj , or projj

[2](qi−1, qi) ∈ δj,ai , while projj
[2](qn−1, qn) /∈ δj,an ,

with an ∈ Θ∩Σj . Hence presΣj
(presΘ(α)) = presΣj

(presΘ(a1a2 · · ·an−1))an.

Then projj
[2](qn−1, qn) /∈ δj,an however implies that presΘ(πCj (α)) =

presΘ(πCj (q0a1q1a2q2 · · · an−1qn−1)) (= presΣj
(presΘ(a1a2 · · · an−1))an =

presΣj
(presΘ(α)). -.

We thus conclude that the proposed condition is necessary and sufficient for
the diagram of Figure 6.1 to commute.

Theorem 6.2.6. For all α ∈ C∞
T , presΣj

(presΘ(α)) = presΘ(πCj (α)) if and
only if Θ ∩Σj ⊆ uAI j(T ).

Proof. (Only if) This is the contrapositive of Lemma 6.2.5.
(If) Directly from Corollary 6.2.4. -.

Summarizing, we thus have the following situation. Whenever Cj contains at
least one action from Θ which is not useful j-action-indispensable in T , then
T can execute a computation α for which presΣj

(presΘ(α)) does not equal
presΘ(πCj (α)) (cf. Lemma 6.2.5).

Until now we extracted the behavior of the component automata of a team
automaton from the computations of this team automaton. The above results
however also provide us with a sufficient condition for obtaining the behavior
of component automaton Cj directly from the behavior of team automaton
T , viz. by simply applying presΣj

to its behavior.

Theorem 6.2.7. If Θ ∩Σj ⊆ uAI j(T ), then B
Θ∩Σj,∞
T ⊆ BΘ,∞

Cj
.

Proof. Let Θ ∩ Σj ⊆ uAI j(T ) and let v ∈ BΘ∩Σj,∞
T . This means that

v ∈ presΘ∩Σj
(C∞

T ). Now let α ∈ C∞
T be such that presΘ∩Σj

(α) = v. From
Corollary 4.2.7 we know that πCj (α) ∈ C∞

Cj
. Since Θ ∩ Σj ⊆ uAI j(T ),

Corollary 6.2.4 implies that presΣj
(presΘ(α)) = presΘ(πCj (α)). Hence v =

presΘ∩Σj
(α) = presΣj

(presΘ(α)) = presΘ(πCj (α)) ∈ BΘ,∞
Cj

. -.
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Note that Example 4.2.8 implies that it can still be the case that B
Θ∩Σj,∞
T ⊂

BΘ,∞
Cj

, even if Θ ∩Σj ⊆ uAI j(T ).
Contrary to what might be expected from Theorem 6.2.6, the next exam-

ple demonstrates that the statement from Theorem 6.2.7 cannot be reversed,
i.e. Θ ∩Σj ⊆ uAI j(T ) is not a necessary condition for B

Θ∩Σj ,∞
T ⊆ BΘ,∞

Cj
to

hold. The reason is that the Θ ∩ Σj-behavior of T can be nonempty due to
team computations in which Cj does not participate at all.

Example 6.2.8. (Example 6.2.1 continued) Consider team automaton T ′ =
(Q, {a, b}, {((q1, q2), a, (q1, q′2))}, {(q1, q2)}) over {C1, C2}. It is depicted in Fig-
ure 6.3(b).

Clearly BΣ,∞
T ′ = {λ, a}. Now let Θ = {a, b}. Then Θ ∩ Σ1 = {a, b} ∩

{a, b} = {a, b} # {b} = uAI 1(T ′). However, BΘ∩Σ1,∞
T ′ = B{a,b},∞

T ′ = {λ, a} ⊆

{bn | n ≥ 0} ∪ {bω} ∪ {bna | n ≥ 0} = B{a,b},∞
C1

= BΘ,∞
C1

. -.

Whereas a simple projection πCj applied to a computation of T suffices to
obtain a computation of Cj , a similarly simple preserving homomorphism
presΣj

applied to a behavior of T need not always yield a behavior of Cj
unless all actions Σj of Cj are useful j-ai . The reason for this difference is as
follows.

In a computation of T we still have available the information as to which
components from S participated in each synchronization performed during
this computation. When we deal with a behavior of T , however, only the
sequence of executed actions is available, i.e. we have lost all information
as to which component automata from S participated in which execution.
This implies that whenever we can be sure of a component automaton’s
participation in each execution of an action it has as an action itself, then we
can simply apply our preserving homomorphism to the behavior of a team
automaton in order to obtain the behavior of that component automaton.

Since every action of a component automaton from S is useful j-action-
indispensable in the maximal-ai team automaton T over S, Theorem 6.2.7
implies the following result. Slightly less general versions of this result,
viz. without Θ being an arbitrary alphabet, have been formulated for other
automata-based specification models with composition based on the ai prin-
ciple (see, e.g., [Tut87] and [Jon87]). Theorems 6.2.6 and 6.2.7 however show
a more precise condition guaranteeing this result and moreover exclude the
existence of a similar relation in case composition is not based on the ai
principle.

Theorem 6.2.9. Let T be the Rai -team automaton over S. Then

B
Θ∩Σj,∞
T ⊆ BΘ,∞

Cj
. -.
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At this point it is important to recall that in case S is such that none of
its constituting component automata shares an action, then the maximal-
free team automaton over S equals the maximal-ai team automaton over S
(cf. Theorem 4.5.5) — in which case this theorem can thus be applied.

This completes our display of how to obtain the computations (behavior)
of component automata constituting S from the computations (behavior) of
team automata over S. In the next section we study the dual approach.

6.2.2 From Component Automata to Team Automata

Contrary to the previous subsection we now assume that the computations
and behavior of a set of component automata are given. Consequently we
want to use this information to describe computations and behavior of team
automata that can be composed over that set of component automata. We
start by addressing this issue element-wise, i.e. given a computation (behav-
ior) of each component automaton in a subset of S we want to know whether
there exists a team automaton over S with a computation (behavior) that
uses this combination of computations.

Definition 6.2.10. Let α ∈
∏

i∈I C
∞
Ci
. Then

α is used in T if there exists a β ∈ C∞
T such that for all i ∈ I, πCi(β) =

proji(α). -.

Note that any vector of initial states is used in T since
∏

i∈I Ii ⊆ C∞
T . If

K ⊆ I and αk ∈ C∞
Ck
, for all k ∈ K, then we say that

∏
k∈K αk is used in

T whenever there exists a γ ∈
∏

i∈I C∞
Ci

that is used in T and which is such
that projk(γ) = αk, for all k ∈ K. Finally, as vectors

∏
{j} C

∞
Cj

have one
element we will also say that α ∈ C∞

Cj
is used in T whenever

∏
{j} α is.

In the following example we show that in general not all vectors over
computations of component automata from S are used in T . It may be the
case that a computation of a component automaton from S never participates
in a team computation. Moreover, it may happen that a vector over two or
more computations of component automata from S is not used as such in T ,
even when each entry of this vector is used in T .

Example 6.2.11. (Examples 6.2.1 and 6.2.8 continued) We immediately see
that C2 has a computation α′ = q2aq′2bq

′
2 ∈ CC2 that is not used in T since

there exists no β ∈ C∞
T such that πC2(β) = α′.

Next we consider the team automaton T ′′ over {C1, C2}, which is obtained
from team automaton T ′ as specified in Example 6.2.8 by adding transition
((q1, q2), a, (q′1, q2)) to its transition relation. It is depicted in Figure 6.4(a).
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)

(a) (b)

T ai :

Fig. 6.4. Team automaton T ′′ and maximal-ai team automaton T ai .

Clearly, both α1 = q1aq′1 ∈ CC1 and α2 = q2aq′2 ∈ CC2 are used in T ′′

since β1 = (q1, q2)a(q′1, q2) ∈ CT ′′ and β2 = (q1, q2)a(q1, q′2) ∈ CT ′′ are such
that πC1(β1) = α1 and πC2(β2) = α2. However, β1 and β2 are the only two
nontrivial computations of T ′′. Because πC1(β2) = q1 and πC2(β1) = q2 this
means that there exists no β ∈ C∞

T ′′ such that πC1(β) = α1 and πC2(β) = α2.
Hence (α1, α2) is not used in T ′′.

Finally, note that (α1, α2) is used in team automaton T since β =
(q1, q2)a(q′1, q

′
2) ∈ CT is such that πC1(β) = proj1((α1, α2)) = α1 and

πC2(β) = proj2((α1, α2)) = α2. -.

While in general not every vector over computations of component automata
from S is used in T , we wonder whether the situation improves in case T is
defined in a particular way.

In analogy with the previous subsection, we first consider T to be such
that all of its actions are ai . This is not yet enough, though, since whenever
T has an empty transition relation, then all of its actions are ai while none
of the computations of component automata from S is used in T . Therefore
we furthermore require T to be the maximal-ai team automaton over S.
However, in the following example we show that in general not all vectors
over computations (behavior) of component automata from S are used in
computations of the maximal-ai team automata over S.

Example 6.2.12. (Example 6.2.11 continued) The maximal-ai team automa-
ton over {C1, C2} is T ai = (Q, {a, b}, δai , {(q1, q2)}), where δai = {((q1, q2), a,
(q′1, q

′
2)), ((q1, q

′
2), b, (q1, q

′
2))}. It is depicted in Figure 6.4(b).

Trivially, q1 ∈ CC1 . However, since (q1, q2)a(q′1, q
′
2) is the only nontriv-

ial computation of T ai , there exists no computation β′ ∈ C∞
T ai such that

πC1(β
′) = q1 and πC2(β

′) = α2. Hence (q1, α2) is not used in T ai . -.
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The fact that the ai type of synchronization forces component automata to
synchronize on their shared actions provides us with enough information to
formulate the conditions under which a vector of computations is used in
a computation of the maximal-ai team automaton over S. To this aim we
define a vector α consisting of computations of the component automata
from S — one for each such component automaton — to be ai-consistent
if there exists a word w over Σ with the following property: whenever we
preserve from w only the actions of a component automaton from S, then
we obtain exactly the behavior resulting from the computation in α that
originates from that component automaton. In an ai-consistent vector the
computations forming its entries thus “agree” with respect to the behavior
of their respective components.

Definition 6.2.13. Let α ∈
∏

i∈I C
∞
Ci
. Then

α is ai-consistent if there exists a w ∈ Σ∞ such that for all i ∈ I,
presΣi

(w) = presΣi
(proji(α)). -.

It turns out that each ai-consistent vector over computations of component
automata from S is used in the maximal-ai team automaton T over S.

Lemma 6.2.14. Let T be the Rai -team automaton over S and let α ∈∏
i∈I C

∞
Ci
. Then

if α is ai-consistent, then α is used in T .

Proof. Let α be ai-consistent. Then by definition there exists a w ∈ Σ∞ such
that presΣi

(w) = presΣi
(proji(α)), for all i ∈ I.

First consider the case that w ∈ Σ∗. Let w = a1a2 · · · an for some
n ≥ 0 and ak ∈ Σ, for all k ∈ [n]. For each i ∈ I, let the indices
i1, i2, . . . , ini ∈ [n] be such that presΣi

(w) = ai1ai2 · · · aini
. Hence ni = 0

if presΣi
(w) = λ and 1 ≤ i1 < i2 < · · · < ini ≤ n otherwise. Moreover,

observe that
⋃

i∈I{i1, i2, . . . , ini} = [n]. Since for all i ∈ I, presΣi
(w) =

presΣi
(proji(α)) and proji(α) ∈ CCi , it follows that for all i ∈ I, proji(α) =

qi0ai1q
i
1ai2 · · ·aini

qini
with qi0 ∈ Ii and qi1, q

i
2, . . . , q

i
ni
∈ Qi.

Now define β = q0a1q1a2 · · · anqn, with qk ∈
∏

i∈I Qi for all 0 ≤ k ≤ n,
in such a way that for all i ∈ I and for all 0 ≤ k ≤ n, proji(qk) = qi! if
i! ≤ k < i!+1 with " < ni (by convention, i0 = 0) and proji(qk) = qini

if
ini ≤ k ≤ n. Consequently we prove that β ∈ CT while — in one stroke —
πCi(β) = proji(α), for all i ∈ I, follows from an inductive argument.

By its definition, q0 =
∏

i∈I q
i
0 ∈

∏
i∈I Ii = I. Next consider (qk−1, ak, qk),

for some k ∈ [n]. Let i ∈ I. We distinguish the following two cases.
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If ak ∈ Σi, then k = i! for some " ∈ [ni] and i!−1 ≤ k − 1 < k = i!. The
definitions of qk−1 and qk then yield proji(qk−1) = qi!−1 and proji(qk) = qi!.
Since proji(α) ∈ CCi it follows that (qi!−1, q

i
!) ∈ δi,ai#

= δi,ak
.

If ak /∈ Σi, then k (= i! for some " ∈ [ni].
If k < ini , then there exists an " ≥ 1 such that i!−1 ≤ k − 1 < k < i! and
thus proji(qk−1) = proji(qk) = qi!−1.
Conversely, if k ≥ ini , then ini ≤ k−1 < k ≤ n and thus again proji(qk−1) =
proji(qk).

Since
⋃

i∈I{i1, i2, . . . , ini} = [n], it follows that ak ∈ Σi for at least one
i ∈ I and hence (qk−1, qk) ∈ Rai

ak
(S) = δak

. This implies that for all k ∈ [n],
q0a1q1a2 · · · akqk ∈ CT and for all i ∈ I, πCi(q0a1q1a2 · · · akqk) ∈ CCi . Hence
for all i ∈ I, πCi(β) = πCi(q0a1q1a2 · · · anqn) = proji(α) and α is thus used
in the maximal-ai team automaton T .

Next consider the case that w ∈ Σω. Let w = a1a2 · · · , with ak ∈ Σ
for all k ≥ 1. Let i ∈ I. For each i ∈ I, if presΣi

(w) ∈ Σ∗
i , then as before

there are indices i1, i2, . . . , ini such that presΣi
(w) = ai1ai2 · · · aini

. Moreover,
proji(α) = qi0ai1q

i
1ai2 · · · aini

qini
. If presΣi

(w) ∈ Σ∞
i , then there is an infinite

sequence 1 ≤ i1 < i2 < · · · such that presΣi
(w) = ai1ai2 · · · . Then because w

is such that for all i ∈ I, presΣi
(w) = presΣi

(proji(α)), we can assume that
proji(α) = qi0ai1q

i
1ai2 · · · for some qik ∈ Qi, with k ≥ 0.

Now we define β = q0a1q1a2 · · · such that for all i ∈ I, πCi(q0) = qi0 and
πCi(qk) = qi!, for i! ≤ k < i!+1 and " ≥ 1. Clearly q0 ∈ I. Similar to the
finitary case it can now be shown that (qk−1, ak, qk) ∈ δ, for all k ≥ 1.

Hence β ∈ Cω
T and, moreover, πCi(β) = proji(α), for all i ∈ I. -.

From the proof of this lemma we immediately obtain the following result.
Corresponding versions of both these results have been formulated for other
automata-based specification models with composition based on the ai prin-
ciple (see, e.g., [Tut87] and [Jon87]).

Corollary 6.2.15. Let T be the Rai -team automaton over S and let α ∈∏
i∈I C

∞
Ci
. Then

if w ∈ Σ∞ is such that for all i ∈ I, presΣi
(w) = presΣi

(proji(α)), then
there exists a β ∈ C∞

T such that presΣ(β) = w. -.

We thus see that ai-consistency is a sufficient condition for a vector over
computations of component automata from S to be used in the maximal-ai
team automaton over S. Next we show that this condition is also necessary.

Theorem 6.2.16. Let T be the Rai -team automaton over S and let α ∈∏
i∈I C

∞
Ci
. Then
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α is used in T if and only if α is ai-consistent.

Proof. (If) This is Lemma 6.2.14.
(Only if) Let β ∈ C∞

T be such that πCi(β) = proji(α), for all i ∈ I.
Since every action of T is ai , we can now apply Corollary 6.2.4 to obtain
presΣi

(presΣ(β)) = presΣ(πCi(β)) = presΣi
(πCi(β)) = presΣi

(proji(α)), for
all i ∈ I. Hence α is ai-consistent. -.

In order to formulate a general result relating the computations of maximal-
ai team automata to the computations of their constituting component au-
tomata, we now define when a composable system is ai-consistent.

Definition 6.2.17. S is ai-consistent if for all i ∈ I and for each γ ∈ C∞
Ci

there exists an ai-consistent vector α∈
∏

i∈I C∞
Ci

such that proji(α)=γ. -.

Note that we have now defined ai-consistency both for vectors (over com-
putations) and for composable systems. However, from the context it will
always be clear whether we deal with an ai-consistent vector or rather with
an ai-consistent composable system.

An ai-consistent composable system thus guarantees that for all compu-
tations of its constituents there exists a vector over such computations which
is ai-consistent and thus each computation of a component automaton from
S is used in a computation of the maximal-ai team automaton T over S.
In that case the set of computations (behavior) of a component automaton
from S thus equals the set of computations (behavior) of the maximal-ai
team automaton over S projected on that component automaton.

Theorem 6.2.18. Let T be the Rai -team automaton over S. Then

(1) C∞
Ci

= πCi(C
∞
T ), for all i ∈ I, if and only if S is ai-consistent, and

(2) if S is ai-consistent, then BΣi,∞
Ci

= BΣi,∞
T , for all i ∈ I.

Proof. (1) (Only if) Let C∞
Ci

= πCi(C
∞
T ), for all i ∈ I. Let γ ∈ C∞

Ck
for some

k ∈ I. Since C∞
Ck

= πCk
(C∞

T ) there exists a β ∈ C∞
T such that πCk

(β) = γ.
Now let α =

∏
i∈I πCi(β). Since πCi(C

∞
T ) = C∞

Ci
, for all i ∈ I, it follows that

α ∈
∏

i∈I C
∞
Ci
. Furthermore, α is used and thus, by Theorem 6.2.16, α is

ai-consistent. Definition 6.2.17 then implies that S is ai-consistent.
(If) Due to Corollary 4.2.7 we only need to prove that whenever S is

ai-consistent, then for all i ∈ I, C∞
Ci
⊆ πCi(C

∞
T ). Now let γ ∈ C∞

Ck
for

some k ∈ I. Since S is ai-consistent there exists an ai-consistent vector
α ∈

∏
i∈I C

∞
Ci

such that projk(α) = γ. Then by Theorem 6.2.16 there exists
a β ∈ C∞

T such that πCk
(β) = projk(α) = γ. Hence γ ∈ πCk

(C∞
T ).
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(2) Let k ∈ I. Since T is the Rai -team automaton over S, Theorem 6.2.9
implies that BΣk,∞

T ⊆ B∞
Ck
. Moreover, by (1) and Corollary 6.2.4, B∞

Ck
⊆

BΣk,∞
T . -.

Next we move on to the case that our team automaton T under considera-
tion is the maximal-free team automaton over S. Hence T consists of com-
pletely independent, non-synchronizing component automata. Consequently,
our first intuition might be to jump to the conclusion that every single com-
putation of a component automaton from S is used in T .

As we have seen in Section 4.6, however, T does have one tricky char-
acteristic in case loops are present in the component automata from S: the
combination of a loop, e.g. on a, in one component automaton from S and an
a-transition in another component automaton from S results in the latter of
these a-transitions not being omnipresent in T . This implies that even if this
a-transition is useful in its component automaton, i.e. it is part of a computa-
tion of that component automaton, then it is not at all guaranteed that this
computation is used in T . The reason for this is the maximal interpretation
of the participation of transitions from component automata in transitions
of team automata that we adopted in Section 4.2.

Indeed, in the following example we show that in general not each com-
putation of a component automata from S is used in the maximal-free team
automaton over S.

Example 6.2.19. Let component automata C = ({p}, {b}, {(p, b, p)}, {p}) and
C′ = ({q, r}, {b}, {(q, b, r)}, {q}) be as depicted in Figure 6.5(a).

b b b

r
b

q

p

(

p

q

)

(

p

r

)

(b)

C:

C′:

(a)

T free :

Fig. 6.5. Component automata C and C′, and maximal-free team automaton T free .
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Obviously {C, C′} is a composable system. The Rfree-team automaton
over {C, C′} is T free = ({(p, q), (p, r)}, {b}, {((p, q), b, (p, q)), ((p, r), b, (p, r))},
{(p, q)}). It is depicted in Figure 6.5(b).

It is clear that α = qbr ∈ CC′ and that there does not exist a computation
β ∈ C∞

T free such that πC′(β) = α. Hence α is not used in T free . -.

In case we only deal with a specific type of component automata, however,
we can use Theorem 4.6.10(2). Recall that, given that S is j-loop limited
and that T is the maximal-free team automaton over S, this theorem states
that every transition of Cj is omnipresent in T . This means that whenever
(p, a, p′) is a transition of Cj , then for all states q of T for which projj(q) = p,
there exists a transition (q, a, q′) in T such that projj(q

′) = p′, i.e. in which
(p, a, p′) is participating. Since T is the maximal-free team automaton over
S we moreover know that proji(q

′) = proji(q), for all i ∈ I \{j}, i.e. (p, a, p′)
is the only participating transition. It thus comes as no surprise that in case
S is j-loop limited, each computation of a component automaton from S is
used in a computation of the maximal-free team automaton over S.

Lemma 6.2.20. Let T be the Rfree-team automaton over S and let α ∈ C∞
Cj
.

Then

if S is j-loop limited, then α is used in T .

Proof. Let S be j-loop limited.
First consider the case that α ∈ CCj . Let α = p0a1p1a2 · · · anpn for some

n ≥ 0, i.e. (pk−1, pk) ∈ δj,ak
, for all 1 ≤ k ≤ n. Since Q =

∏
i∈I Qi and

I =
∏

i∈I Ii, Theorem 4.6.10(2) implies that there exists a computation β =
q0a1q1a2 · · · anqn ∈ CT such that projj

[2](qk−1, qk) = (pk−1, pk) ∈ δj,ak
, for

all 1 ≤ k ≤ n. Hence πCj (β) = α and α is thus used in T .
Secondly, the case that α ∈ Cω

Cj
is analogous to the finitary case. -.

We thus see that loop limitedness is a sufficient condition for a vector over
computations of component automata from S to be used in the maximal-free
team automaton over S. We will soon see that this condition is not necessary.

From Corollary 4.2.7 we know that given a computation of a team au-
tomaton T over S, the projection on a component automaton from S is
included in the set of computations of that component automaton. Together
with Lemma 6.2.20 this implies that whenever S is j-loop limited, then the
set of computations of a component automaton from S equals the set of com-
putations of the maximal-free team automaton T over S projected on that
component automaton. Moreover, the behavior of that component automa-
ton is included in the behavior of T . Like the proof of Lemma 6.2.20, also
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the proof of this statement is based on the observation that in a maximal-free
team automaton, each executed action has only one participating component
automaton. This implies that the team automaton can always execute any
computation of any of its constituting component automata while keeping all
remaining component automata from S in an initial state.

Theorem 6.2.21. Let T be the Rfree-team automaton over S. Then

if S is loop limited, then C∞
Ci
=πCi(C

∞
T ) and BΣi,∞

Ci
⊆BΣ,∞

T , for all i∈I.

Proof. Let S be loop limited. Then Lemma 6.2.20 implies that C∞
Ci
⊆

πCi(C
∞
T ) and thus, by Corollary 4.2.7, C∞

Ci
= πCi(C

∞
T ). Now let k ∈ I,

let α ∈ BΣk,∞
Ck

and let β ∈ C∞
Ck

be such that presΣk
(β) = α. Since

C∞
Ck

= πCk
(C∞

T ), there must exist a γ ∈ C∞
T such that β = πCk

(γ). More-
over, since by Theorem 4.6.10(2) all transitions of Ck are omnipresent in T ,
it follows that we may assume that πC#

(γ) ∈ I!, for all " ∈ I \ {k}. Hence
presΣ(γ) = presΣ(πCk

(γ)) = presΣk
(β) = α and thus α ∈ BΣ,∞

T . -.

The behavior of the maximal-free team automaton T over S trivially is made
up of the behavior of not just one component automaton from S, but of the
behavior of all of the component automata from S. Therefore, in general
B
Σj ,∞
Cj

⊆ BΣ,∞
T will be proper, even if S is j-loop limited. Furthermore, the

fact that C∞
Ci

= πCi(C
∞
T ), for all i ∈ I, need not imply that S is loop limited.

Example 6.2.22. (Example 6.2.11 continued) The maximal-free team auto-
maton over {C1, C2} is T free = (Q, { a, b }, δfree , { (q1, q2) } ), where δfree =
{ ( (q1, q2), b, (q1, q2) ), ( (q1, q2), a, (q1, q′2) ), ( (q1, q2), a, (q′1, q2) ), ( (q1, q

′
2), a,

(q′1, q
′
2) ), ( (q′1, q2), a, (q

′
1, q

′
2) ), ( (q′1, q

′
2), b, (q

′
1, q

′
2) ) }. It is depicted in Fig-

ure 6.6(a).
Since β = (q1, q2)a(q1, q′2)a(q

′
1, q

′
2)b(q

′
1, q

′
2) ∈ CT free , α′ is used in T free . It

is moreover not difficult to see that for all k ∈ [2], C∞
Ck
⊆ πCk

(C∞
T free ) and

thus, by Corollary 4.2.7, C∞
Ck

= πCk
(C∞

T free ). However, {C1, C2} is not loop
limited because (q1, q1) ∈ δ1,b and (q′2, q

′
2) ∈ δ2,b. -.

Note that Theorem 6.2.21 relies heavily on the fact that in the maximal-free
team automaton over a loop-limited S, each action of a component automa-
ton can be executed independently of the current local states that the other
component automata of S are in, since none of these other component au-
tomata participates in such an execution. In the maximal-ai team automaton
over S, this situation can only occur when none of the other component au-
tomata from S contains any of the actions that was executed as part of the
computation of the maximal-ai team automaton. Hence even when S is ai-
consistent, then the behavior of Cj is in general not contained in the behavior
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Fig. 6.6. Team automata T free and T fa .

of the maximal-ai team automaton over S. From Theorem 6.2.18(2) we how-
ever know that if S is ai-consistent, then the behavior of Cj is contained in
the Σj-behavior of the maximal-ai team automaton over S.

Both for maximal-ai team automata (cf. Theorem 6.2.18(1)) and for
maximal-free team automata (cf. Theorem 6.2.21) over S we have thus found
a sufficient condition on S (ai-consistency and loop limitedness, respectively)
under which all component computations contribute to team computations.
In case of maximal-ai team automata this condition is even necessary. As
direct consequences of these results we have subsequently been able to relate
the behavior of component automata to that of maximal-ai team automata
(cf. Theorem 6.2.18(2)) and to that of maximal-free team automata (cf. The-
orem 6.2.21).

In the remainder of this chapter we moreover define the behavior of the
maximal-ai (maximal-free) team automaton over S in terms of the behav-
ior of its constituting component automata. This requires establishing which
combinations of words — if any — from the behavior of component automata
from S can be combined — and in particular how — such that a word from
the behavior of the maximal-ai (maximal-free) team automaton over S re-
sults. For this we use shuffling operations, known from the theory of formal
languages. We will consider both “free” shuffles (to deal with free actions)
and “synchronized” shuffles (to deal with ai actions).

In the succeeding two sections we formally define the different kinds of
shuffles and study some of their properties. In the subsequent and final sec-
tion of this chapter we then show that the behavior of team automata con-
structed on the basis of maximal-ai and/or maximal-free synchronizations
can be expressed as a (synchronized) shuffle of the behavior of their consti-
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tuting component automata, where the kind of shuffle depends on the type
of synchronization.

The two sections dealing with various kinds of shuffles are rather techni-
cal and relatively extensive. One of the main reasons for this resides in the
fact that our team automata framework allows for infinite computations and
infinite behavior. Therefore we need to consider shuffles on finite as well as
infinite words. Moreover, when dealing with composable systems consisting
of two or more component automata, notions of commutativity and asso-
ciativity for the various kinds of shuffles are of crucial importance. Readers
interested only in the results can jump to the final section of this chapter
and when necessary skim Subsections 6.3.1, 6.3.4, 6.4.1, and 6.4.4 for the
definitions needed to interpret the results.

6.3 Shuffles

This section marks the beginning of our exposition on shuffles. The idea
behind a shuffle of languages is the creation of a new language, the words of
which consist of the words of the original languages “woven” in a particular
fashion. For one, words of the original languages are part of the words of
the new language. Consider, e.g., the (finite) words eae and wv . Then we
can weave these words into a new (finite) word weave. To the best of our
knowledge, the oldest reference to this way of shuffling two (finite) words is
[GS65], which was presented at a conference as early as 1964.

In this simple example we described a shuffle of two finite words. We
know, however, that the languages of our component (team) automata may
contain infinite words. When we try to shuffle two infinite words in the above-
mentioned way we are forced to take some decisions concerning “fairness”.
Consider, e.g., the words aω and bω. Then we can weave these words into
new (infinite) words of the form (a+b+)ω, consisting of both infinitely many
a’s and infinitely many b’s. Hence aω and bω are woven in a fair way: finite
nonempty subwords of the two words occur alternatingly, i.e. each word gets
its fair turn in the new words. However, we could also decide to allow infinite
subwords of the original words to appear in the new word. In that case a
result of weaving aω and bω can be an (infinite) word from (a+b+)∗aω. Note,
however, that in this case the result does not contain an infinite number of
b’s. The oldest reference — again, to the best of our knowledge — to this
idea of shuffling two infinite words is [Sha78], and to this idea of fair shuffling
is [Par79] (where fair shuffling is called fair merging, though).

These simplified examples suggest that there is a clear need to define pre-
cisely and unambiguously what types of shuffles we shall consider. Another
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reason for being more precise is to avoid the confusion that could arise from
the fact that the (fair) shuffle is a well-known language-theoretic operation.
It thus has a long history within theoretical computer science, in particu-
lar within formal language theory. Shuffling is sometimes called interleaving,
weaving, or merging, and — given two words u and v — it may be denoted
by u7 v, u || v, u .. v, u-. v, u⊗ v, u ||| v, or u 9 v (see, e.g., [GS65], [Sha78],
[Par79], [Gis81], [Jan81], [BÉ96], [RS97]). The idea of shuffling also appears in
numerous other disguises throughout the computer science literature. Within
concurrency theory, e.g., as a semantics of parallel operators modeling com-
munication between processes (see, e.g., [Ros97] and [BPS01]). In the next
section we will consider also shuffles which are not merely interleavings, but
which may require the synchronized occurrence of certain symbols.

The remainder of this section and the subsequent section together form
a self-contained theory of shuffles. By no means do we claim that all results
are new. We are aware of the fact that some results have appeared in the
literature, but we have been unable to find a comprehensive theory of shuffles
in the literature that would suit our approach. Due to the generic setup of
the team automaton model we need to be able to deal with shuffles of infinite
words and, moreover, we need several specific shuffles that are combinations
of shuffling and synchronizing. Most of this has largely gone unexplored in
the literature.

In this section we introduce the basic shuffle, well-known from the lit-
erature. We study its basic properties and prove its commutativity and as-
sociativity. In the subsequent section we consequently introduce three more
intricate types of shuffles, built on top of the basic shuffle. We briefly study
also their properties and establish notions of commutativity and associativity
also for these types of shuffles. The fact that all four shuffles satisfy some sort
of commutativity and associativity is crucial for applying them in the context
of team automata in the final section of this chapter.

6.3.1 Definitions

We begin by introducing the basic shuffle.

Definition 6.3.1. Let u, v ∈ ∆∞. Then

a word w ∈ ∆∞ is a shuffle of u and v if one of the following four cases
holds. Either

(1) u, v ∈ ∆∗ and w = u1v1u2v2 · · ·unvn, where n ≥ 1, u1 ∈ ∆∗,
u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆∗, u1u2 · · ·un = u, and
v1v2 · · · vn = v, or
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(2) u ∈ ∆∗, v ∈ ∆ω, and w = u1v1u2v2 · · ·unvn, where n ≥ 1, u1 ∈ ∆∗,
u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆ω, u1u2 · · ·un ∈ pref (u),
and v1v2 · · · vn = v, or

(3) u ∈ ∆ω, v ∈ ∆∗, and w is a shuffle of v and u, or

(4) u, v ∈ ∆ω and either

(a) w is a shuffle of u and a prefix of v, or
(b) w is a shuffle of v and a prefix of u, or
(c) w = u1v1u2v2 · · · , where u1 ∈ ∆∗, uj , v1, vj ∈ ∆+ for all j ≥ 2,

u = lim
n→∞

u1u2 · · ·un, and v = lim
n→∞

v1v2 · · · vn.

A shuffle w of u and v is called fair (w.r.t. u and v) if u and v are finite
(case (1)), or if in case (2) u1u2 · · ·un = u, or if in case (3) w is a fair
shuffle of v and u, or if in case (4) subcase (c) holds. -.

For u, v ∈ ∆∞ the language consisting of all (fair) shuffles of u and v
is denoted by u || v (u ||| v) and is defined as u || v = {w ∈ ∆∞ | w is
a shuffle of u and v} and u ||| v = {w ∈ ∆∞ | w is a fair shuffle of u and v},
respectively.

For L1, L2 ⊆ ∆∞ the (fair) shuffle of L1 and L2 is denoted by L1 || L2

(L1 ||| L2) and is defined as the language consisting of all words which are
a (fair) shuffle of a word from L1 and a word from L2. Thus L1 || L2 =
{w ∈ u || v | u ∈ L1, v ∈ L2} =

⋃
u∈L1, v∈L2

(u || v) and L1 ||| L2 =⋃
u∈L1, v∈L2

(u ||| v).

Example 6.3.2. Let ∆ = {a, b, c, d}. Let u = abc ∈ ∆∗ and let v = cd ∈
∆∗. Then u || v = {abccd,acbcd,cabcd,abcdc,acbdc,cabdc,acdbc,cadbc,cdabc} =
u ||| v.

Consequently, let w1 = aω ∈ ∆∞ and let w2 = bω ∈ ∆∞. Then (ab)ω is a
fair shuffle of w1 and w2, whereas abaω is a shuffle of w1 and w2, but not a
fair shuffle.

Moreover, note that v ||| w2 = {bmcbndbω | m,n ≥ 0}, whereas v || w2 =
{bω} ∪ {bncbω | n ≥ 0} ∪ v ||| w2. -.

6.3.2 Basic Observations

Definition 6.3.1 immediately implies that the fair shuffle of two languages is
included in the shuffle of those two languages.

Lemma 6.3.3. Let u, v ∈ ∆∞ and let L1, L2 ⊆ ∆∞. Then

(1) u ||| v ⊆ u || v and
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(2) L1 ||| L2 ⊆ L1 || L2. -.

From Example 6.3.2 we conclude that both of these inclusions may be proper.
In fact, the following result follows immediately from Definition 6.3.1.

Lemma 6.3.4. (1) If u, v ∈ ∆∗, then u || v = u ||| v,

(2) if u ∈ ∆∗ and v ∈ ∆ω, then u || v =
⋃

u′∈pref(u)(u
′ ||| v), and

(3) if u, v ∈ ∆ω, then u || v =
⋃

u′∈pref(u)(u
′ ||| v) ∪

⋃
v′∈pref(v)(u ||| v′) ∪

u ||| v. -.

Example 6.3.5. (Example 6.3.2 continued) We thus have that w1 || w2 =
(a∗ ||| {w2}) ∪ ({w1} ||| b∗) ∪ (w1 ||| w2), with w1 ||| w2 = (a+ || b+)ω. -.

Note furthermore that two words always define at least one (fair) shuffle,
i.e. given u, v ∈ ∆∞, then u ||| v (= ∅ (and thus u || v (= ∅). Whenever both
u and v equal λ, however, then u || v = u ||| v = {λ}. Also the case that only
one of the words u and v is λ exhibits no surprises.

Lemma 6.3.6. Let u ∈ ∆∞. Then

u || λ = u ||| λ = {u} = λ ||| u = λ || u. -.

In Definition 6.3.1 we have defined a (fair) shuffle of two words as an (infi-
nite) alternation of (finite) nonempty subwords of the one word with (finite)
nonempty subwords of the other word. We now show that dropping the re-
quirement that the subwords be nonempty does not alter the definition.

Lemma 6.3.7. Let u, v ∈ ∆∞. Then

(1) w ∈ u ||| v if and only if w = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1,
u = u1u2 · · · , and v = v1v2 · · · , and

(2) w ∈ u || v if and only if w ∈ u ||| v or w = u1v1u2v2 · · · , with ui, vi ∈
∆∗ for all i ≥ 1, and either u1u2 · · · ∈ pref (u) and v = v1v2 · · · or
u = u1u2 · · · and v1v2 · · · ∈ pref (v).

Proof. (1) (Only if) Immediate from Definition 6.3.1.
(If) Let w = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1, u = u1u2 · · · ,

and v = v1v2 · · · . The proof of the statement makes use of the following con-
struction, which provides representations ρk, k ≥ 1, of prefixes of w satisfying
some particular properties. Formally, the representations ρk, for all k ≥ 1,
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are defined by ρ1 = (u1, v1) and if ρk = (α1, β1, α2, β2, · · · , α!, β!) for some
l ≥ 1 and αj , βj ∈ ∆∗, for all 1 ≤ j ≤ ", then

ρk+1 =






(α1, β1, α2, β2, . . . , α!uk+1, vk+1) if β! = λ,
(α1, β1, α2, β2, . . . , α!, β!vk+1) if β! (= λ and uk+1 = λ, and
(α1, β1, α2, β2, . . . , α!, β!, uk+1, vk+1) if β! (= λ and uk+1 (= λ.

The representation ρk+1 is thus obtained by adding the words uk+1 and
vk+1 to ρk. They are added to ρk in such a way that only the first and the
last element of ρk+1 are allowed to equal λ. As a result in the representa-
tion ρk+1 of the prefix u1v1u2v2 · · ·uk+1vk+1 all intermediate λ’s have been
omitted. Formally, the representations thus constructed possess the follow-
ing properties that we use in this proof. Let ρk = (α1, β1, α2, β2, . . . , α!, β!)
for some l ≥ 1 and αj , βj ∈ ∆∗, for all j ∈ ["]. Then α1, β! ∈ ∆∗,
αj ∈ ∆+, for all 1 < j ≤ ", and βj ∈ ∆+, for all 1 ≤ j < ". Further-
more, α1β1α2β2 · · ·α!β! = u1v1u2v2 · · ·ukvk, α1α2 · · ·α! = u1u2 · · ·uk, and
β1β2 · · ·β! = v1v2 · · · vk. We now turn to the actual proof.

First consider the case that u, v ∈ ∆∗. Since w is an infinite alternation of
ui, vi ∈ ∆∗, there must exist an m ≥ 1 such that for all n > m, un = vn = λ.
Then ρm = (α1, β1, α2, β2, . . . , α!, β!) is such that α1β1α2β2 · · ·α!β! = w,
α1, β! ∈ ∆∗, and β1, α2, β2, α3, . . . , β!−1, α! ∈ ∆+. Hence w ∈ u ||| v.

Next consider the case that u ∈ ∆∗ and v ∈ ∆ω. Hence there must
exist an m ≥ 1 such that for all n > m, un = λ. Then with ρm =
(α1, β1, α2, β2, . . . , α!, β!) we obtain that for all k ≥ 1, ρm+k = (α1, β1,
α2, β2, . . . , α!, β!vm+1vm+2 · · · vm+k), where α1, β!vm+1vm+2 · · · vm+k ∈ ∆∗,
αj ∈ ∆+, for all 1 < j ≤ ", βj ∈ ∆+, for all 1 ≤ j < ", and
w = α1β1α2β2 · · ·α!β!vm+1vm+2 · · · . Hence w ∈ u ||| v.

Now consider the case that u ∈ ∆ω and v ∈ ∆∗. Let m ≥ 1 be the
smallest index such that um (= λ and for all n ≥ m, vn = λ. Then with ρm =
(α1, β1, α2, β2, . . . , α!, β!), where β! = λ we obtain that for all k ≥ 1, ρm+k =
(α1, β1, α2, β2, . . . , α!um+1um+2 · · ·um+k, λ), where α1 ∈ ∆∗, αj ∈ ∆+, for
all 1 < j < ", α!um+1um+2 · · ·um+k ∈ ∆+, βj ∈ ∆+, for all 1 ≤ j < ", and
w = α1β1α2β2 · · ·β!−1α!um+1um+2 · · · . Hence w ∈ u ||| v.

Finally, consider the case that u, v ∈ ∆ω. For every finite prefix w′ =
u1v1u2v2 · · ·umvm ∈ pref (w), for some m ≥ 1, we know that ρm =
(α1, β1, α2, β2, . . . , α!, β!) is such that α1, β! ∈ ∆∗, αj ∈ ∆+, for all 1 < j ≤ ",
and βj ∈ ∆+, for all 1 ≤ j < ". We obtain that lim

!→∞
α1β1α2β2 · · ·α!β! =

lim
m→∞

u1v1u2v2 · · ·umvm = w. Hence w ∈ u ||| v.

(2) By using Lemma 6.3.4(3) this follows from (1). -.



186 6. Behavior of Team Automata

Lemma 6.3.7 thus serves as an alternative definition of a shuffle of two (possi-
bly infinite) words. With this alternative definition, commutativity of (fairly)
shuffling two (possibly infinite) words follows immediately.

Theorem 6.3.8. Let u, v ∈ ∆∞. Then

(1) u ||| v = v ||| u and

(2) u || v = v || u.

Proof. (1) By symmetry it suffices to prove that u ||| v ⊆ v ||| u. Let w ∈
u ||| v. By Lemma 6.3.7(1), w = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1,
u = u1u2 · · · , and v = v1v2 · · · . Clearly we can also write w as v0u1v1u2v2 · · · ,
with v0 = λ. Lemma 6.3.7(1) then implies that w ∈ v ||| u.

(2) Analogous. -.

This theorem implies that also the (fair) shuffle of two (infinitary) languages
is commutative.

Theorem 6.3.9. Let L1, L2 ⊆ ∆∞. Then

(1) L1 ||| L2 = L2 ||| L1 and

(2) L1 || L2 = L2 || L1.

Proof. (1) By symmetry it suffices to prove that L1 ||| L2 ⊆ L2 ||| L1. Let
w ∈ L1 ||| L2. Then there exist a u ∈ L1 and a v ∈ L2 such that w ∈ u ||| v.
By Theorem 6.3.8(1) it now follows that w ∈ v ||| u and hence w ∈ L2 ||| L1.

(2) Analogous. -.

Recall from Lemma 6.3.4(1) that in case of finite words there is no need
to distinguish shuffles from fair shuffles. The following results also follow
immediately from Definition 6.3.1.

Lemma 6.3.10. Let u, v ∈ ∆∗ and let w ∈ u || v. Then

(1) alph(w) = alph(u) ∪ alph(v) and

(2) |w| = |u|+ |v|. -.

Note that in case u or v (or both) are infinite words, then a word w from the
shuffle u || v does not necessarily contain all letters that are contained in u
and v, unless the shuffle is fair.

Lemma 6.3.10 immediately implies that the language formed by the shuf-
fles of two finite words is finite.
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Corollary 6.3.11. Let u, v ∈ ∆∗. Then

#(u || v) ≤ (#(alph(u) ∪ alph(v)))|u|+|v| and hence u || v is finite. -.

Next we wonder whether the language formed by the (fair) shuffles of two
possibly infinite words can be finite. It turns out that this is the case. In fact,
the series of results below leads to an exact formulation (cf. Theorem 6.3.26)
of the conditions that guarantee this.

Lemma 6.3.12. Let u, v ∈ ∆∞ and let z ∈ ∆∗. Then

(1) {z}(u ||| v) ⊆ zu ||| v and

(2) {z}(u || v) ⊆ zu || v.

Proof. (1) Let w ∈ {z}(u ||| v). Then w = zw′ for some w′ ∈ u ||| v. By
Lemma 6.3.7(1), w′ = u1v1u2v2 · · · for some ui, vi ∈ ∆∗ for all i ≥ 1, u =
u1u2 · · · , and v = v1v2 · · · . Thus w = zw′ = zu1v1u2v2 · · · with zu1u2 · · · =
zu. Hence w ∈ zu ||| v.

(2) Analogous. -.

Lemma 6.3.13. Let u, v ∈ ∆∞ and let a, b ∈ ∆. Then

(1) au ||| bv = {a}(u ||| bv) ∪ {b}(au ||| v) and

(2) au || bv = {a}(u || bv) ∪ {b}(au || v).

Proof. (1) From Lemma 6.3.12(1) it follows that {a}(u ||| bv) ⊆ au ||| bv and
by Theorem 6.3.8(1) also {b}(au ||| v) = {b}(v ||| au) ⊆ bv ||| au = au ||| bv.
Thus we are left with proving the inclusions in the statement from left to
right. Let w ∈ au ||| bv.

By Lemma 6.3.7(1), w = u1v1u2v2 · · · for some ui, vi ∈ ∆∗ for all i ≥ 1,
u1u2 · · · = au, and v1v2 · · · = bv. We can distinguish the following two cases.

First let k ≥ 1 be such that uk = au′
k and for all 1 ≤ j < k, uj = vj = λ.

In this case w ∈ {a}(u ||| bv).
Secondly, let k ≥ 1 be such that uk = λ, vk = bv′k, and for all 1 ≤ j < k,

uj = vj = λ. In this case w ∈ {b}(au ||| v).
Hence we conclude that w ∈ {a}(u ||| bv) ∪ {b}(au ||| v).

(2) Analogous. -.

Lemma 6.3.14. Let u1, v1 ∈ ∆∗ and let u2, v2 ∈ ∆∞. Then

(1) (u1 || v1)(u2 ||| v2) ⊆ u1u2 ||| v1v2 and

(2) (u1 || v1)(u2 || v2) ⊆ u1u2 || v1v2.
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Proof. (1) First assume that u1 = λ. Then u1 || v1 = {v1} by Lemma 6.3.6.
Moreover, by the commutativity of ||| and Lemma 6.3.12(1), we have that
{v1}(u2 ||| v2) ⊆ u2 ||| v1v2. The case that v1 = λ is symmetric.

Next we proceed by induction on |u1|+ |v1|. The cases |u1|+ |v1| = 0 and
|u1|+ |v1| = 1 have already been dealt with. Thus assume that |u1|+ |v1| ≥ 2
with u1 = au′

1 and v1 = bv′1 for some a, b ∈ ∆ and some u′
1, v

′
1 ∈

∆∗. Then by Lemma 6.3.13(2), u1 || v1 = au′
1 || bv′1 = {a}(u′

1 || bv′1) ∪
{b}(au′

1 || v′1). This yields (u1 || v1)(u2 ||| v2) = {a}(u′
1 || bv′1)(u2 ||| v2) ∪

{b} (au′
1 || v′1) (u2 ||| v2) ⊆ {a} (u′

1u2 ||| bv′1v2) ∪ {b} (au′
1u2 ||| v′1v2) ⊆

(au′
1u2 ||| bv′1v2) ∪ (au′

1u2 ||| bv′1v2) = (u1u2 ||| v1v2) by applying the induc-
tion hypothesis and Lemma 6.3.13 twice.

(2) Analogous. -.

In the following example we show that the inclusions of this lemma can be
proper.

Example 6.3.15. Let ∆ = {a, b}. Let u = v = ab ∈ ∆∗. Then u || v ⊇
(a || a)(b || b) by Lemma 6.3.14(2). Since abab ∈ u || v and (a || a)(b || b) =
a2b2, this inclusion is proper. -.

Lemma 6.3.14 has the following direct consequences.

Corollary 6.3.16. Let u = u1u2 · · ·un and v = v1v2 · · · vn be such that
ui, vi ∈ ∆∗, with 1 ≤ i < n, and un, vn ∈ ∆∞. Then

(1) (u1 || v1)(u2 || v2) · · · (un−1 || vn−1)(un ||| vn) ⊆ u ||| v and

(2) (u1 || v1)(u2 || v2) · · · (un || vn) ⊆ u || v. -.

Corollary 6.3.17. Let u, v ∈ ∆∞. Then

pref (u) || pref (v) ⊆ pref (u ||| v). -.

The statement of this corollary holds also the other way around. This will be
stated below as part of a more general equality. First we lift the statement
of this corollary to languages.

Corollary 6.3.18. Let K,L ⊆ ∆∞. Then

pref (K) || pref (L) ⊆ pref (K ||| L).

Proof. Let x ∈ pref (K) || pref (L). Then by definition there exist a u ∈ K
and a v ∈ L such that x ∈ pref (u) || pref (v), which according to Corol-
lary 6.3.17 implies that x ∈ pref (u ||| v). Consequently, by definition x ∈
pref (K ||| L). -.
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Consequently, we obtain the following result and its extension to languages.

Lemma 6.3.19. Let u, v ∈ ∆∞. Then

(1) pref (u ||| v) ⊆ pref (u) ||| pref (v) and

(2) pref (u || v) ⊆ pref (u) || pref (v).

Proof. (1) Let z ∈ pref (u ||| v). Then there exist u1, u2, . . . , un, v1, v2, . . . , vn,
and x such that z = u1v1u2v2 · · ·un−1vn−1x, where u1 ∈ ∆∗, u2, u3, . . . , un−1,
v1, v2, . . . , vn−1 ∈ ∆+, and x ∈ ∆∗ are such that x ∈ pref (unvn), with
un, vn ∈ ∆∗, u1u2 · · ·un ∈ pref (u), and v1v2 · · · vn ∈ pref (v). Hence z ∈
pref (u) ||| pref (v).

(2) Analogous. -.

Lemma 6.3.20. Let K,L ⊆ ∆∞. Then

(1) pref (K ||| L) ⊆ pref (K) ||| pref (L) and

(2) pref (K || L) ⊆ pref (K) || pref (L).

Proof. (1) Let x ∈ pref (K ||| L). Then by definition there exist a u ∈ K and
a v ∈ L such that x ∈ pref (u ||| v). Consequently, Lemma 6.3.19(1) implies
that x ∈ pref (u) ||| pref (v). Hence, by definition, x ∈ pref (K) ||| pref (L).

(2) Analogous. -.

Now we are ready to present the aforementioned equality and its exten-
sion to languages, including the converses of the statements of Corollar-
ies 6.3.17 and 6.3.18.

Theorem 6.3.21. Let u, v ∈ ∆∞ and let K,L ⊆ ∆∞. Then

(1) pref (u ||| v) = pref (u) ||| pref (v) = pref (u) || pref (v) = pref (u || v) and

(2) pref (K |||L) = pref (K) ||| pref (L) = pref (K) || pref (L) = pref (K ||L).

Proof. (1) By Lemmata 6.3.19(1) and 6.3.3(2), Corollary 6.3.17, and Lem-
mata 6.3.3(2) and 6.3.19(2) we obtain pref (u ||| v) ⊆ pref (u) ||| pref (v) ⊆
pref (u) || pref (v) ⊆ pref (u ||| v) ⊆ pref (u || v) ⊆ pref (u) || pref (v), which
proves the statement.

(2) Analogous by Lemmata 6.3.20(1) and 6.3.3(2), Corollary 6.3.18, and
Lemmata 6.3.3(2) and 6.3.20(2). -.
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We now continue our quest for a precise formulation of the conditions under
which the language formed by the (fair) shuffles of two possibly infinite words
can be finite.

We begin by isolating the case that u and v are words over the unary
alphabet {a}. Recall from Lemma 6.3.10 that whenever u = ak and v = a!,
for some k, " ∈ N, then u || v = {ak+!}. However, if u = aω, then u || v =
u ||| v = {u}.

Lemma 6.3.22. Let w ∈ ∆∗, let a ∈ ∆, and let k ≥ 0. Then

(1) waω ||| ak = (w ||| ak){aω} and

(2) waω || ak = (w || ak){aω}.

Proof. First observe that {aω} = aω ||| λ = aω || λ. Then by Lemma 6.3.14
we have (w ||| ak){aω} = (w || ak)(aω ||| λ) ⊆ waω ||| ak and (w || ak){aω} =
(w || ak)(aω || λ) ⊆ waω || ak. Hence we are done once we have proven that
waω || ak ⊆ (w ||| ak){aω}.

Let x ∈ waω || ak. This means that there exist n ≥ 1, v1 ∈ ∆∗,
v2, v3, . . . , vn, u1, u2, . . . , un−1 ∈ ∆+, and un ∈ ∆ω such that v1v2 · · · vn = a!

for some " ≤ k, u1u2 · · ·un = waω, and x = v1u1v2u2 · · · vnun. Without loss
of generality we may assume that v1v2 · · · vn = ak. This can be seen as fol-
lows. If v1v2 · · · vn = a! and " < k, then since un = w2aω for some suffix w2

of w we have x = v1u1v2u2 · · · vnw2ak−!aω.
In case w2 (= λ we have x = v1u1v2u2 · · · vnu′

nvn+1un+1 with u′
n = w2,

vn+1 = ak−!, and un+1 = aω.
In case w2 = λ we have x = v1u1v2u2 · · ·un−1v′nun with v′n = vnak−!.
Hence from here we assume that x = v1u1v2u2 · · · vnun with u1u2 · · ·un =
waω and v1v2 · · · vn = ak.

Suppose that u1u2 · · ·un−1 ∈ pref (w). Then for some suffix w2 of w
we have u1u2 · · ·un−1w2 = w and un = w2aω. Consequently, we thus have
v1u1v2u2 · · · vn−1un−1vnw2 ∈ ak ||| w = w ||| ak and thus x ∈ (w ||| ak){aω}.

In the case that u1u2 · · ·un−1 /∈ pref (w) we have u1u2 · · ·un−1 ∈ w{a}∗.
Let m = min {1 ≤ j ≤ n − 1 | u1u2 · · ·uj ∈ w{a}∗}, where min ap-
plied to a set of positive integers selects the smallest number among this
set of integers. Thus um = um,1um,2 with u1u2 · · ·um−1um,1 = w and
um,2 = {a}∗. Hence with v1v2 · · · vm = a! for some " ≤ k we have
um,2vm+1um+1vm+2 · · ·un−1vn = ap for some p ≥ k − l.

Now we have x = v1u1v2u2 · · · vmum,1apaω = v1u1v2u2 · · · vmum,1ak−!aω

and thus x ∈ (ak ||| w){aω} = (w ||| ak){aω}. -.

Whenever two nonempty words yield only one word as their shuffle, then it
must be the case that those words are words over the same unary alphabet.
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Lemma 6.3.23. Let u, v ∈ ∆∞ be such that both u (= λ and v (= λ. Then

(1) if u ||| v = {w}, for some w ∈ ∆∞, then u, v ∈ {a}∞, for some a ∈ ∆,
and

(2) if u || v = {w}, for some w ∈ ∆∞, then u, v ∈ {a}∞, for some a ∈ ∆.

Proof. (1) We prove the statement by contradiction, i.e. we assume that
alph(u) ∪ alph(v) contains at least two elements.

First consider the case that alph(u) \ alph(v) (= ∅. Let b ∈ alph(u) \
alph(v). Hence u = u1bu2 where u1 ∈ (∆\{b})∗ and u2 ∈ ∆∞. Let v = cz for
some c ∈ ∆ \ {b} and z ∈ (∆ \ {b})∞. Consider w1 = u1bcy and w2 = u1cby ,
where y ∈ u2 ||| z. Since u1bc ∈ u1b ||| c, Lemma 6.3.14(1) implies that
w1 ∈ u ||| v. Similarly w2 ∈ u ||| v because u1cb ∈ u1b ||| c. However, b (= c
and thus w1 (= w2, a contradiction.

Next consider the case that alph(u) = alph(v). Hence u = u1abu2 for
some a, b ∈ ∆, a (= b, u1 ∈ {a}∗, and u2 ∈ ∆∞. Let v = cz for some c ∈ ∆
and z ∈ ∆∞. Consider w1 = u1abcy and w2 = cu1aby , where y ∈ u2 ||| z. As
above both w1, w2 ∈ u ||| v but w1 (= w2, a contradiction.

Both cases thus lead to a contradiction and hence #(alph(u)∪alph(v)) =
1, i.e. u, v ∈ {a}∞ for some a ∈ ∆.

(2) This follows from (1) and Lemma 6.3.3(1) combined with the fact that
u ||| v (= ∅. -.

In fact, by Lemmata 6.3.6 and 6.3.23 it now follows that the (fair) shuffles of
two words form a singleton language if and only if either one of those original
words is empty, or both are words over the same unary alphabet.

Corollary 6.3.24. Let u, v ∈ ∆∞. Then

(1) u ||| v = {w}, for some w ∈ ∆∞, if and only if either u = λ, or v = λ,
or u, v ∈ {a}∞, for some a ∈ ∆, and

(2) u || v = {w}, for some w ∈ ∆∞, if and only if either u = λ, or v = λ,
or u, v ∈ {a}∞, for some a ∈ ∆. -.

Next we state the conditions under which the (fair) shuffles of an infinite and
a second (possibly infinite) word form a finite language.

Lemma 6.3.25. Let u ∈ ∆ω and let v ∈ ∆∞ \ {λ}. Then

(1) u ||| v is finite if and only if either u = waω and v ∈ {a}∗, or u = v = aω,
for some w ∈ ∆∗ and a ∈ ∆, and



192 6. Behavior of Team Automata

(2) u || v is finite if and only if either u = waω and v ∈ {a}∗, or u = v = aω,
for some w ∈ ∆∗ and a ∈ ∆.

Proof. (1) (If) Follows directly from Lemma 6.3.22(1).
(Only if) Let u ||| v be a finite set and let u = b1b2 · · · with bi ∈ ∆

for all i ≥ 1. Suppose first that alph(v) \ alph(u) (= ∅. Then v = v1cv2
for some v1 ∈ ∆∗, c ∈ ∆ \ alph(u), and v2 ∈ ∆∞. Now set, for all i ≥ 0,
Wi = v1b1b2 · · · bic(bi+1bi+2 · · · ||| v2). Since v1b1b2 · · · bic ∈ b1b2 · · · bi ||| v1c,
Lemma 6.3.14(1) implies that Wi ⊆ u ||| v for all i ≥ 0. For each i ≥ 0, all
words in Wi have a c at position |v1| + i + 1 and for all k > i, all words in
Wk have bi at position |v1| + i + 1. Since c (= bi for all i ≥ 1, this implies
that the Wi are mutually disjoint. Since they are not empty this implies that⋃

i≥0 Wi is infinite and hence u ||| v is infinite, a contradiction.
Hence it must be the case that alph(v) ⊆ alph(u). Now suppose that there

exist x ∈ ∆∗ and y ∈ ∆ω such that u = xy and alph(v) \ alph(y) (= ∅. Then
by the same reasoning as given above we know that y ||| v is infinite and
since by Lemma 6.3.12(1) x(y ||| v) ⊆ xy ||| v = u ||| v it follows that u ||| v
is infinite, again a contradiction.

Hence every symbol in v occurs infinitely often in u. Suppose that there
are (at least) two different symbols occurring infinitely often in u. Thus for all
N ∈ N there exists a kN ≥ N such that bkN (= c, where c is the first symbol of
v. Thus we have v = cv′ with c ∈ ∆ and v′ ∈ ∆∞. Let uN ∈ ∆ω be such that
u = b1b2 · · · bkNuN . Set for all N ≥ 0, WN = b1b2 · · · bkN−1cbkN (uN ||| v′).
Since b1b2 · · · bkN−1cbkN ∈ b1b2 · · · bkN−1bkN ||| c, Lemma 6.3.14(1) implies
that WN ⊆ u ||| v for all N ≥ 0. For each N ≥ 0, all words in WN have
c at position kN and for all N ′ such that kN ′ > kN , all words in WN ′

have bkN at position kN . Since c (= bkN this implies that WN ∩ WN ′ = ∅
whenever kN ′ > kN . Since (kN , N ≥ 0) contains an infinite strictly increasing
subsequence kN1 > kN2 > · · · this implies that

⋃
N∈N

WN is infinite and
hence u ||| v is infinite, a contradiction once again.

Thus it must be the case that at most one symbol occurs infinitely often
in u. Combining this with the already established fact that every symbol in v
occurs infinitely often in u, we obtain that u = waω for some w ∈ ∆∗, a ∈ ∆
and v ∈ {a}∞.

Finally assume that alph(w) \ {a} (= ∅ and suppose that v = aω. then
aiwaω (= ajwaω if i (= j, but aiwaω ⊆ u ||| v for all i ≥ 0. Thus also in this
case u ||| v is infinite, a contradiction. Hence if v = aω, then u = aω and
u ||| v = {aω}. If v (= aω, then v = ak for some k ≥ 1 and u = waω. In this
case u ||| v = (w ||| ak){aω} by Lemma 6.3.22(1) and thus u ||| v is finite.

(2) (If) Follows directly from Lemma 6.3.22(2).
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(Only if) If u || v is a finite set, then by Lemma 6.3.3(1) also u ||| v is a
finite set and the statement follows from (1). -.

As a summary of the results obtained in Corollaries 6.3.11 and 6.3.24 and
Lemma 6.3.25 we can now formulate the conditions under which the (fair)
shuffles of two words form a finite language.

Theorem 6.3.26. Let u, v ∈ ∆∞. Then

(1) u ||| v is finite if and only if either u, v ∈ ∆∗, or u = λ, or v = λ, or
there exists an a ∈ ∆ such that u, v ∈ {a}∞, or there exists a w ∈ ∆∗

such that either u = waω and v ∈ {a}∗, or v = waω and u ∈ {a}∗, and

(2) u || v is finite if and only if either u, v ∈ ∆∗, or u = λ, or v = λ, or
there exists an a ∈ ∆ such that u, v ∈ {a}∞, or there exists a w ∈ ∆∗

such that either u = waω and v ∈ {a}∗, or v = waω and u ∈ {a}∗. -.

6.3.3 Commutativity and Associativity

For later use of shuffles in the context of team automata, it is important to
know that shuffles are commutative and associative. In Subsection 6.3.2 we
showed the commutativity of the (fair) shuffles in Theorems 6.3.8 and 6.3.9
via the alternative definition of (fair) shuffles presented in Lemma 6.3.7. Be-
fore we deal with associativity we first present two lemmata that together
provide a result (cf. Theorem 6.3.29) that has Theorem 6.3.8(1) as a direct
corollary. This result actually is yet another alternative definition for the fair
shuffle of two (possibly infinite) words. It sheds light on the particular char-
acteristics of fair shuffles and it plays an important role in the remainder of
this section.

First we need some auxiliary definitions. Let ∆ be an alphabet. For each
i ∈ N and a ∈ ∆ we let [a, i] be a distinct symbol. Let [∆, i] = {[a, i] | a ∈ ∆}.
Thus for all i, j ∈ N such that i (= j, [∆, i] and [∆, j] are disjoint. We moreover
assume, for all i ∈ N, that ∆ and [∆, i] are disjoint. Let i ∈ N. We define the
homomorphisms βi : ∆∗ → [∆, i]∗ and βi : [∆, i]∗ → ∆∗ by βi(a) = [a, i] and
βi([a, i]) = a, respectively. Note that βi and βi are bijections. Intuitively, βi

is used to uniquely label every symbol in a word before this word is used in
a shuffle, after which βi can be used to remove this label again.

In addition we define the following homomorphisms. Let i ∈ N and let
J ⊆ N be such that i /∈ J . The homomorphism ϕi,J : (

⋃
{[∆, j] | j ∈ {i} ∪

J})∗ → ∆∗ is defined by ϕi,J ([a, i]) = a and ϕi,J ([a, j]) = λ, for all j ∈ J ,
whereas the homomorphism ψJ : (

⋃
{[∆, j] | j ∈ J})∗ → ∆∗ is defined by

ψJ ([a, j]) = a, for all j ∈ J . Note that ϕi,∅ = βi and ψ{j} = βj . Intuitively,
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ϕi,J is used to remove the label i from every symbol in a word that is labeled
by i and to erase every other symbol from that word, whereas ψJ simply
removes all labels in J from every symbol in a word that is labeled by such
a label from J .

Lemma 6.3.27. Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i (= j,

u ||| v ⊆ ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)).

Proof. Without loss of generality we assume that i = 1 and j = 2. Moreover,
we prove only the case that u ∈ ∆∗ and v ∈ ∆∞. The proofs of the other
cases are analogous.

Let w ∈ u ||| v. Hence w = u1v1u2v2 · · ·unvn with n ≥ 1, u1 ∈ ∆∗,
u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆ω, u = u1u2 · · ·un, and v =
v1v2 · · · vn. Now consider w = β1(u1)β2(v1)β1(u2)β2(v2) · · ·β1(un)β2(vn). Re-
call from the definitions of β1, β2, ϕ1,{2}, and ϕ2,{1} that for all a ∈ ∆,
ϕ1,{2}(β1(a)) = a and ϕ1,{2}(β2(a)) = λ. Hence it follows immediately that
ϕ1,{2}(w) = u. Likewise, ϕ2,{1}(w) = v. Hence w ∈ ϕ−1

1,{2}(u) ∩ ϕ−1
2,{1}(v).

From the definitions of β1, β2, and ψ{1,2} we recall that for all a ∈ ∆,
ψ{1,2}(β1(a)) = a and ψ{1,2}(β2(a)) = a. This implies that ψ{1,2}(w) = w
and we are done. -.

Lemma 6.3.28. Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i (= j,

ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)) ⊆ u ||| v.

Proof. Without loss of generality we again assume that i = 1 and j = 2.
Furthermore we again proof only the case that u ∈ ∆∗ and v ∈ ∆∞. The
proofs of the other cases are analogous.

Let w ∈ ψ{1,2}(ϕ
−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)) and let w ∈ ϕ−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)
be such that ψ{1,2}(w) = w. Since ϕ1,{2}(w) = u there exist m ≥ 0,
x1, x2, . . . , xm ∈ ∆∗, xm+1 ∈ ∆∞, and u1, u2, . . . , um ∈ ∆+ such that w =
β2(x1)β1(u1)β2(x2)β1(u2) · · ·β2(xm)β1(um)β2(xm+1) and u = u1u2 · · ·um.
Observe that the situation that m = 0 corresponds to the case that u = λ.
Similarly, ϕ2,{1}(w) = v and the fact that v (= λ imply that there exist n ≥ 1,
y1, y2, . . . , yn ∈ ∆∗, v1, v2, . . . , vn−1 ∈ ∆+, and vn ∈ ∆ω such that w =
β1(y1)β2(v1)β1(y2)β2(v2) · · ·β1(yn)β2(vn) and v = v1v2 · · · vn. We thus have
the situation that β2(x1)β1(u1)β2(x2)β1(u2) · · ·β2(xm)β1(um)β2(xm+1) =
β1(y1)β2(v1)β1(y2)β2(v2) · · ·β1(yn)β2(vn). Since [∆, 1] ∩ [∆, 2] = ∅ it must
be the case that either β2(x1) = λ or β1(y1) = λ.

First assume that β2(x1) = λ, i.e. x1 = λ. Now v ∈ ∆ω implies thatm (= 0.
Thus we have that β1(u1)β2(x2)β1(u2)β2(x3) · · ·β2(xm)β1(um)β2(xm+1) =
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β1(y1)β2(v1)β1(y2)β2(v2) · · ·β1(yn)β2(vn). Again by [∆, 1] ∩ [∆, 2] = ∅ and
from the fact that ui ∈ ∆+ for all 1 ≤ i ≤ m, vj ∈ ∆+ for all 1 ≤ j ≤ n− 1,
and vn ∈ ∆ω , we know that m = n and, for all 1 ≤ i ≤ n, β1(ui) = β2(yi)
and β2(vi) = β2(xi+1). Consequently w = ψ{1,2}(w) = u1v1u2v2 · · ·unvn ∈
u ||| v.

Next assume that β1(y1) = λ, i.e. y1 = λ. In this case we thus have
the situation that β2(x1)β1(u1)β2(x2)β1(u2) · · ·β2(xm)β1(um)β2(xm+1) =
β2(v1)β1(y2)β2(v2)β1(y3) · · ·β1(yn)β2(vn). Again by [∆, 1] ∩ [∆, 2] = ∅ and
from the fact that ui ∈ ∆+ for all 1 ≤ i ≤ m, vj ∈ ∆+ for all 1 ≤ j ≤ n− 1,
and vn ∈ ∆ω, we know that n = m+1, β1(ui) = β1(yi+1) and β2(vi) = β2(xi),
for all 1 ≤ i ≤ m, and β2(vm+1) = β2(xm+1). Consequently w = ψ{1,2}(w) =
v1u1v2u2 · · · vmumvm+1 ∈ u ||| v. -.

We now combine the two directly preceding lemmata to indeed obtain yet an-
other alternative definition of the fair shuffle of two (possibly infinite) words.
Note that since these lemmata use inverse homomorphisms based on the
complete two words being shuffled. It therefore serves only as an alternative
definition of the fair shuffle of these two words.

Theorem 6.3.29. Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i (= j,

u ||| v = ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)). -.

This theorem now provides a different — rather elegant — proof of The-
orem 6.3.8(1) since we know that intersection is commutative and thus
u ||| v = ψ{i,j}(ϕ

−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)) = ψ{i,j}(ϕ
−1
j,{i}(v) ∩ ϕ−1

i,{j}(u)) = v ||| u.
The fair shuffle of two words can thus be obtained by applying a combination
of (inverse) homomorphisms and intersection to those two words.

Example 6.3.30. (Example 6.3.2 continued) Note that we have ϕ−1
1,{2}(u) =

{β2(x1)β1(a)β2(x2)β1(b)β2(x3)β1(c)β2(x4) | xi ∈ ∆∗, i ∈ [3], x4 ∈ ∆∞} =
{β2(x1)[a, 1]β2(x2)[b, 1]β2(x3)[c, 1]β2(x4) | xi ∈ ∆∗, i ∈ [3], x4 ∈ ∆∞}
and ϕ−1

2,{1}(v) = {β1(y1)β2(c)β1(y2)β2(d)β1(y3) | yi ∈ ∆∗, i ∈ [2], y3 ∈
∆∞} = {β1(y1)[c, 2]β1(y2)[d, 2]β1(y3) | yi ∈ ∆∗, i ∈ [2], y3 ∈ ∆∞}. Thus,
e.g., [a, 1][c, 2][b, 1][d, 2][c, 1] ∈ ϕ−1

1,{2}(u)∩ ϕ−1
2,{1}(v) and hence we now obtain

that ψ{1,2}([a, 1][c, 2][b, 1][d, 2][c, 1]) = acbdc ∈ ψ{1,2}(ϕ
−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)).
Finally, note that in Example 6.3.2 we have seen that indeed acbdc ∈
u ||| v. -.

This example shows why the construction ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)), with
u, v ∈ ∆∞ and i (= j ∈ N, in general does not equal u || v: the inverse
homomorphisms are “fair” in the sense that they take only complete words
as input.
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It remains to prove that (fairly) shuffling is associative. The remainder of
this subsection is devoted to this. The setup is as follows. We first use Theo-
rem 6.3.29 to prove the associativity of fairly shuffling (cf. Theorem 6.3.32).
Lemma 6.3.4(1) then implies that associativity remains to be proven only
in case infinite words are involved. To this aim we subsequently relate the
shuffles of possibly infinite words to the shuffles of the finite prefixes of those
possibly infinite words (cf. Theorem 6.3.49). We then conclude by using this
result to prove associativity (cf. Theorem 6.3.51).

The following lemma streamlines the proof of the result succeeding it,
which states that fairly shuffling is associative.

Lemma 6.3.31. Let u, v, w ∈ ∆∞. Let i1, i2, i3 ∈ N be three different inte-
gers and let j ∈ N be different from i1. Then

ψ{i1, j} (ϕ
−1
i1, {j}

(u ) ∩ ϕ−1
j, {i1}

(ψ{i2, i3} (ϕ
−1
i2, {i3}

( v ) ∩ ϕ−1
i3, {i2}

(w ) ) ) ) =

ψ{i1,i2,i3}(ϕ
−1
i1,{i2,i3}

(u) ∩ ϕ−1
i2,{i1,i3}

(v) ∩ ϕ−1
i3,{i1,i2}

(w)).

Proof. Without loss of generality we assume that i1 = 1, i2 = 2, i3 = 3, and
j (= 1.

(⊆) Let z ∈ ψ{j,1}(ϕ
−1
1,{j}(u)∩ϕ

−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v)∩ϕ

−1
3,{2}(w)))) and let

z ∈ ϕ−1
1,{j}(u)∩ϕ

−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v)∩ϕ

−1
3,{2}(w))) be such that ψ{j,1}(z) = z.

Let x ∈ ψ{2,3}(ϕ
−1
2,{3}(v)∩ϕ

−1
3,{2}(w)) be such that z ∈ ϕ−1

1,{j}(u)∩ϕ
−1
j,{1}(x). Let

x ∈ ϕ−1
2,{3}(v) ∩ ϕ−1

3,{2}(w) be such that ψ{2,3}(x) = x. Hence x is of the form
x = b1c1b2c2 · · · such that for all i ≥ 1, bi ∈ [∆, 2]∪{λ} and ci ∈ [∆, 3]∪{λ},
β2(b1b2 · · · ) = v, and β3(c1c2 · · · ) = w. Furthermore z is of the form
z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ} and bi, ci ∈
[∆, j] ∪ {λ}, β1(a1a2 · · · ) = u, and βj(b1c1b2c2 · · · ) = ψ{2,3}(b1c1b2c2 · · · ) is
such that βj(b1b2 · · · ) = β2(b1b2 · · · ) = v and βj(c1c2 · · · ) = β3(c1c2 · · · ) =
w. Now consider z = a1β2(βj(b1))β3(βj(c1))a2β2(βj(b2))β3(βj(c2)) · · · . Since
β1(a1a2 · · · ) = u, β2(β2(βj(b1))β2(βj(b2)) · · · ) = βj(b1b2 · · · ) = v, and
β3(β3(βj(c1))β3(βj(c2)) · · · ) = βj(c1c2 · · · ) = w, we know that ϕ1,{2,3}(z) =
u, ϕ2,{1,3}(z) = v, and ϕ3,{1,2}(z) = w. Hence z ∈ ϕ−1

1,{2,3}(u) ∩ ϕ−1
2,{1,3}(v) ∩

ϕ−1
3,{1,2}(w) and ψ{1,2,3}(z) = ψ{j,1}(z) = z.

(⊇) Let z ∈ ψ{1,2,3}(ϕ
−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w)) and let z ∈

ϕ−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w) be such that ψ{1,2,3}(z) = z. Hence z

is of the form z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ},
bi ∈ [∆, 2] ∪ {λ}, and ci ∈ [∆, 3] ∪ {λ}, β1(a1a2 · · · ) = u, β2(b1b2 · · · ) = v,
and β3(c1c2 · · · ) = w. Let u = a1α1a2α2 · · · , with αi ∈ ([∆, j] ∪ {λ})∗, be
such that for all i ≥ 1, βj(αi) = ψ{2,3}(bici). Then clearly u ∈ ϕ−1

1,{j}(u).

Next let x = b1c1b2c2 · · · . Then x ∈ ϕ−1
2,{3}(v)∩ ϕ−1

3,{2}(w). Since for all i ≥ 1,

ϕj,{1}(αi) = βj(αi) = ψ{2,3}(bici) and ai ∈ [∆, 1] ∪ {λ}, it follows that



6.3 Shuffles 197

u ∈ ϕ−1
j,{1}(ψ{2,3}(x)). Thus u ∈ ϕ−1

1,{j}(u) ∩ ϕ−1
j,{1}(ψ{2,3}(x)). Finally, the

fact that for all i ≥ 1, βj(αi) = ψ{2,3}(bici) now implies that ψ{j,1}(u) =
ψ{1,2,3}(z) = z. -.

Theorem 6.3.32. Let u, v, w ∈ ∆∞ and let L1, L2, L3 ⊆ ∆∞. Then

(1) {u} ||| (v ||| w) = (u ||| v) ||| {w} and

(2) L1 ||| (L2 ||| L3) = (L1 ||| L2) ||| L3.

Proof. (1) From Definition 6.3.1, Theorem 6.3.29, and Lemma 6.3.31 we ob-
tain that {u} ||| (v ||| w) = {x | ∃y ∈ v ||| w : x ∈ u ||| y} = {x | ∃y ∈
ψ{k,!}(ϕ

−1
k,{!}(v) ∩ ϕ−1

!,{k}(w)) : x ∈ ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(y)), i, j, k, " ∈

N, i (= j, k (= "} = {x | x ∈ ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(ψ{k,!}(ϕ
−1
k,{!}(u) ∩

ϕ−1
!,{k}(v)))), i, j, k, " ∈ N, i (= j, k (= "} = {x | x ∈ ψ{i,k,!}(ϕ

−1
i,{k,!}(u) ∩

ϕ−1
k,{i,!}(v) ∩ ϕ−1

!,{i,k}(w)), i, k, " ∈ N, i (= k, k (= ", " (= i} = {x | x ∈

ψ{j,!}(ϕ
−1
j,{!}(ψ{i,k}(ϕ

−1
i,{k}(u) ∩ ϕ−1

k,{i}(v))) ∩ ϕ−1
!,{j}(w), i, j, k, " ∈ N, i (=

k, j (= "} = {x | ∃z ∈ ψ{i,k}(ϕ
−1
i,{k}(u) ∩ ϕ−1

k,{i}(v)) : x ∈ ψ{j,!}(ϕ
−1
j,{!}(z) ∩

ϕ−1
!,{j}(w), i, j, k, " ∈ N, i (= k, j (= "} = {x | ∃z ∈ u ||| v : z ∈ z ||| w} =

(u ||| v) ||| {w}.
(2) By definition and (1) we obtain L1 ||| (L2 ||| L3) = {x ∈ u ||| y | u ∈

L1, y ∈ L2 ||| L3} = {x ∈ {u} ||| (v ||| w) | u ∈ L1, v ∈ L2, w ∈ L3} =
{x ∈ (u ||| v) ||| {w} | u ∈ L1, v ∈ L2, w ∈ L3} = {x ∈ z ||| w | z ∈
L1 ||| L2, w ∈ L3} = (L1 ||| L2) ||| L3. -.

Due to Lemma 6.3.4(1) this result implies that also in the special case that
we deal with finite words (finitary languages) only, shuffling is associative.

Corollary 6.3.33. Let u, v, w ∈ ∆∗ and let L1, L2, L3 ⊆ ∆∗. Then

(1) {u} || (v || w) = (u || v) || {w} and

(2) L1 || (L2 || L3) = (L1 || L2) || L3. -.

Hence what remains is the case that infinite words are involved. To this aim
we now seek to express the shuffles of possibly infinite words in terms of
shuffles of their finite prefixes, which obviously are fair shuffles.

We begin by defining (u, v)-decompositions as a way to interleave the
finite words u and v by alternating sequences from u and v. The construction
of these (u, v)-decompositions resembles a construction used in the proof of
Lemma 6.3.7.

Definition 6.3.34. Let w ∈ ∆∗. Then
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a decomposition of w is a sequence d = (u1, v1, u2, v2, . . . , un, vn) such
that n ≥ 1, u1 ∈ ∆∗, u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆∗, and
w = u1v1u2v2 · · ·unvn.

If u1u2 · · ·un = u and v1v2 · · · vn = v, then d is also called a (u, v)-
decomposition of w. -.

Together with Definition 6.3.1(1) this leads to the following result.

Lemma 6.3.35. Let u, v, w ∈ ∆∗. Then

there exists a (u, v)-decomposition of w if and only if w ∈ u || v. -.

Note that a shuffle w ∈ u || v may have several decompositions.

Example 6.3.36. Let ∆ = {a, b, c}. Let u, v ∈ ∆∗ be such that u = aba and
v = babc. Clearly w = abababc ∈ u || v. Note that both d1 = (a, ba, ba, bc)
and d2 = (aba, babc) are (u, v)-decompositions of w. Hence w does not have
a unique decomposition.

Note that also w′ = babcaba ∈ u || v. It is however easy to see that in this
case (λ, babc, aba, λ) is the unique (u, v)-decomposition of w′. -.

If d = (u1, v1, u2, v2, . . . , unvn) is a (u, v)-decomposition of a word z, then n
intuitively is the number of alternations of sequences from u and v that form
z = u1v1u2v2 · · ·unvn.

Definition 6.3.37. Let d = (u1, v1, u2, v2, . . . , un, vn), for some n ∈ N, be a
(u, v)-decomposition. Then

n is the norm of d, denoted by || d ||. -.

Definition 6.3.38. Let d = (x1, y1, x2, y2, . . . , xk, yk), for some k ∈ N, and
d′ = (u1, v1, u2, v2, . . . , un, vn), for some n ∈ N, be two decompositions of two
words over an alphabet ∆. Then

(1) d directly precedes d′ if k ≤ n and for all 1 ≤ j ≤ k − 1, xj = uj and
yj = vj , and, moreover, one of the following three cases holds. Either

(a) k = n, xk = uk, and yka = vk, for some a ∈ ∆, or

(b) k = n, yk = vk = λ, and xka = uk, for some a ∈ ∆, or

(c) k = n− 1, yk (= λ, vk+1 = λ, and uk+1 = a, for some a ∈ ∆, and

(2) d precedes d′ if there exist decompositions d0, d1, . . . , d! such that " ≥ 0,
d = d0, d′ = d!, and for all 0 ≤ j ≤ " − 1, dj directly precedes dj+1. -.
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Note that if d and d′ are two decompositions such that d directly precedes
d′, then || d′|| = || d || or || d′|| = || d || + 1. Hence if d precedes d′, then
|| d′|| ≥ || d ||.

It is not difficult to see that whenever a decomposition d precedes a de-
composition d′, then d decomposes a prefix of the word that d′ decomposes.
In fact, we have the following result.

Lemma 6.3.39. Let d = (x1, y1, x2, y2, . . . , xk, yk), for some k ∈ N, and
d′ = (u1, v1, u2, v2, . . . , un, vn), for some n ∈ N, be two decompositions — of
two words over an alphabet ∆ — such that d precedes d′. Then

x1x2 · · ·xk ∈ pref (u1u2 · · ·un), y1y2 · · · yk ∈ pref (v1v2 · · · vn), and
x1y1x2y2 · · ·xkyk ∈ pref (u1v1u2v2 · · ·unvn).

Proof. If d = d′ there is nothing to prove, so let us assume that d (= d′. From
Definition 6.3.38 it is clear that the statement holds in case d immediately
precedes d′.

If d precedes d′, then there exist (sj , tj)-decompositions dj of words wj ∈
∆∗ with 0 ≤ j ≤ ", for some " ≥ 1, such that d0 = d, d! = d′, and dj
immediately precedes dj+1, for all 0 ≤ j < ". Thus, for all 0 ≤ j < "− 1, sj ∈
pref (sj+1), tj ∈ pref (tj+1), and wj ∈ pref (wj+1). Hence s0 = x1x2 · · ·xk ∈
pref (s!) = pref (u1u2 · · ·un), t0 = y1y2 · · · yk ∈ pref (t!) = pref (v1v2 · · · vn),
and w0 = x1y1x2y2 · · ·xkyk ∈ pref (w!) = pref (u1v1u2v2 · · ·unvn). -.

A sequence of decompositions — of words wi into words ui and words vi,
with i ≥ 0 — preceding each other, uniquely defines the limit of the words
wi as an element of the shuffle of the limits of the words ui and the words vi.

Lemma 6.3.40. For all i ≥ 0, let di be a (ui, vi)-decomposition — of a word
wi over ∆ — such that di precedes di+1. Then

u = lim
i→∞

ui, v = lim
i→∞

vi, and w = lim
i→∞

wi exist, and w ∈ u || v.

Proof. By Lemma 6.3.39 it follows that ui ≤ ui+1, vi ≤ vi+1, and wi ≤ wi+1,
for all i ≥ 0, so indeed u, v, and w exist and we only have to prove that
w ∈ u || v. We distinguish two cases.

First we consider the case that there exists an N ∈ N such that
|| di|| = || dN || for all i ≥ N . Let N0 ∈ N be such an N . Again we dis-
tinguish two cases.
Let us assume first that, for all i ≥ N0, if di = (x1, y1, x2, y2, . . . , xn, yn),
then yn = λ. Consequently, for all i ≥ N0, vi = vN0 . From ui ≤ ui+1,
for all i ≥ 0, we infer that for all i > N0 there exist zi ∈ ∆∗ such
that ui+1 = uizi. Observe that u = lim

i→∞
ui = uN0 lim

i→∞
z1z2 · · · zi−N0 . Thus
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we obtain that for all i > N0 we have wi = wN0z1z2 · · · zi−N0 . Since
wN0 ∈ uN0 || vN0 by Lemma 6.3.35, we conclude that w = lim

i→∞
wi ∈

(uN0 || vN0) lim
i→∞

z1z2 · · · zi−N0 = (uN0 || vN0) ( lim
i→∞

z1z2 · · · zi−N0 || λ) ⊆

u || vN0 ⊆ u || v by Lemma 6.3.14(2) and the definition of u.
Next assume there exist an i ≥ N0 such that di = (x1, y1, x2, y2, . . . , xn, yn)
with yn (= λ. Let "0 be the smallest such i. Thus, for all i ≥ "0, ui = u!0 .
From vi ≤ vi+1, for all i ≥ 0, we infer that for all i > "0 there exist zi ∈ ∆∗

such that vi+1 = vizi. Observe that v = lim
i→∞

vi = v!0 lim
i→∞

z1z2 · · · zi−v0 .

Thus for all i > "0 we have wi = w!0z1z2 · · · zi−!0 . Since w!0 ∈ u!0 || v!0 by
Lemma 6.3.35, we conclude that w = lim

i→∞
wi ∈ (u!0 || v!0) lim

i→∞
z1z2 · · · zi−!0 =

(u!0 || v!0)(λ || lim
i→∞

z1z2 · · · zi−!0) ⊆ u!0 || v ⊆ u || v by Lemma 6.3.14(2) and

the definition of u.
Now we move to the case that for all N ∈ N there exists a k ∈ N such that

|| dk|| ≥ N . Let j1, j2, . . . ∈ N be the (unique) infinite sequence of integers
such that for all i ∈ N, || dji || < || dji+1 || and || d!|| = || dji || for all ji ≤ " <
ji+1. Since || d0|| ≤ || d1|| ≤ · · · is an unbounded sequence of integers we
know that the ji as just described exist. Since each dji precedes dji+1 , Defini-
tion 6.3.38 implies that there exist x1, x2, . . . , y1, y2, . . . , s1, s2, . . . , t1, t2, · · · ∈
∆∗ such that dji = (x1, y1, x2, y2, . . . , x|| dji

||−1, y||dji
||−1, si, ti), for all i ≥ 1.

According to Lemma 6.3.39, uji = x1x2 · · ·x|| dji
||−1si ∈ pref (uji+1) =

pref (x1x2 · · ·x|| dji+1 ||−1si+1), for all i ≥ 1, and thus u = lim
n→∞

x1x2 · · ·xn.

Analogously we get v = lim
n→∞

y1y2 · · · yn, and w = lim
n→∞

x1y1x2y2 · · ·xnyn.

Thus w = x1y1x2y2 · · · with x1 ∈ ∆∗, xi ∈ ∆+ for all i ≥ 2, yi ∈ ∆+ for all
i ≥ 1, u = x1x2 · · · , and v = y1y2 · · · . Hence w ∈ u || v. -.

The preceding two lemmata allow us to conclude that whenever the prefixes
of an infinite word w are included in the shuffle of the prefixes of two words
u and v that do not share a single letter, then w is a shuffle of u and v.

Lemma 6.3.41. Let u, v ∈ ∆∞ be such that alph(u) ∩ alph(v) = ∅ and let
w ∈ ∆ω. Then

if pref (w) ⊆ pref (u) || pref (v), then w ∈ u || v.

Proof. Let pref (w) ⊆ pref (u) || pref (v). Now consider two arbitrary consec-
utive prefixes of w. Thus for some n ≥ 0 we have w[n] and w[n+ 1] = w[n]a
such that a ∈ alph(u) or a ∈ alph(v). Since pref (w) ⊆ pref (u) || pref (v),
there are prefixes un and un+1 of u, and prefixes vn and vn+1 of v such that
w[n] ∈ un || vn and w[n + 1] ∈ un+1 || vn+1. Observe that #a(w[n + 1]) =
#a(w[n]) + 1. Moreover, for all b ∈ alph(u) and for all c ∈ alph(v) such that
b (= a and c (= a we have #b(w[n]) = #b(un) = #b(w[n+1]) = #b(un+1) and
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#c(w[n]) = #c(vn) = #c(w[n + 1]) = #c(vn+1) because w[n + 1] = w[n]a
and alph(u) ∩ alph(v) = ∅.

Consequently, using the fact that un+1 and un are both prefixes of u,
and vn+1 and vn are both prefixes of v we conclude that un+1 = una and
vn+1 = vn if a ∈ alph(u), and vn+1 = vna and un+1 = un if a ∈ alph(v).

Now let dn be a (un, vn)-decomposition of w[n]. Then we have dn =
(x1, y1, x2, y2, . . . , xk, yk), with k ≥ 0. We define a (un+1, vn+1)-decomposition
of w[n+ 1] as follows.

First let a ∈ alph(u). If yk = λ, then dn+1 = (x1, y1, x2, y2, . . . , xka, yk),
whereas if yk (= λ, then we set dn+1 = (x1, y1, x2, y2, . . . , xk, yk, a, λ). In
both cases we have x1x2 · · ·xka = una = un+1 and y1y2 · · · yk = vn = vn+1.
Moreover x1y1x2y2 · · ·xkyka = w[n]a = w[n+1]. Thus dn+1 is a (un+1, vn+1)-
decomposition of w[n+ 1] and dn precedes dn+1.

Next we let a ∈ alph(v). Now dn+1 = (x1, y1, x2, y2, . . . , xk, yka). Since
x1x2 · · ·xk = un = un+1 and y1y2 · · · yka = vna = vn+1 are such that
x1y1x2y2 · · ·xkyka = w[n]a = w[n + 1] we thus know that dn+1 is a
(un+1, vn+1)-decomposition of w[n+ 1], which is preceded by dn.

Observe that the only decomposition of w[0] = λ is d0 = (λ, λ). Hence
we have defined an infinite (and unique) sequence of (ui, vi)-decompositions
di of w[i], i ≥ 0, such that di precedes di+1 for all i ≥ 0. Hence from Lem-
mata 6.3.40 it follows that w = lim

n→∞
w[n] ∈ lim

n→∞
un || lim

n→∞
vn = u || v. -.

This result implies that in order to determine whether or not an infinite word
is a shuffle of two (possibly infinite) words that do not share a single letter, it
suffices to consider only the (finite!) prefixes of those words. Unfortunately,
however, condition alph(u) ∩ alph(v) = ∅ of Lemma 6.3.41 is necessary to
prove that each prefix of w has a unique decomposition into prefixes of u and
v. This is illustrated in the following example. We moreover show that there
exist an infinite number of prefixes w[n] with a decomposition that does not
precede any decomposition of w[n+ 1].

Example 6.3.42. Let ∆ = {a, b}. Let u, v ∈ ∆ω be such that u = (a3b)ω and
v = bω. Clearly {a3, a3b} ⊆ pref (u), {b2, b3} ⊆ pref (v), and w = a3b3 ∈
pref (u) || pref (v). We thus note that d1 = (a3, b3) and d2 = (a3b, b2) are
decompositions of w.

Note that also w′ = wa = a3b3a ∈ pref (u) || pref (v). The only decom-
positions of w′ based on prefixes of u and v are d′ = (a3b, b2, a, λ) and
d′′ = (a3, b2, ba, λ). It is clear that d1 does not precede d′ nor does it precede
d′′. Hence w and w′ = wa are such that there exists a decomposition d1 of
w that does not precede any decomposition of w′. Note, however, that d′ is
preceded by d2.
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Let j ≥ 0 and let uj = a3(ba3)
j
∈ pref (u) and vj = b3(b3)

j
∈

pref (v). Then clearly both wj = (a3b4)
j
a3b3 ∈ pref (u) || pref (v) and

w′
j = wja = (a3b4)

j
a3b3a ∈ pref (u) || pref (v). Now note that dj =

(x0, y0, x1, y1, . . . , xj , yj, a3, b3), where xi = a3b and yi = b3 for all 0 ≤ i ≤ j,
is a (uj , vj)-decomposition of wj . By the same reasoning as for the case j = 0
above it is however easy to see that there does not exist a decomposition of
w′

j based on prefixes of u and v that is preceded by dj . -.

In order to generalize Lemma 6.3.41 by dropping the condition alph(u) ∩
alph(v) (= ∅ we need to be able to guarantee the following: if u, v ∈ ∆∞, w ∈
∆ω , and pref (w) ⊆ pref (u) || pref (v), then there exists an infinite sequence
of (un, vn)-decompositions of w[n], with n ≥ 0, preceding each other. With
this in mind we now recall König’s Lemma.

Lemma 6.3.43. (König’s Lemma) If G is an infinite finitely-branching root-
ed tree, then there exists an infinite path through G, starting in the root. -.

The subsequent definition of limit-closed languages allows us to first general-
ize Lemma 6.3.41 to languages and then to infer that the condition alph(u)∩
alph(v) (= ∅ can — after all — indeed be dropped from Lemma 6.3.41.

Definition 6.3.44. Let K ⊆ ∆∞. Then

K is limit closed if for all words w1 ≤ w2 ≤ · · · ∈ pref (K), lim
n→∞

wn ∈

K ∪ pref (K). -.

Example 6.3.45. All singleton languages {u} are limit closed. Also all finitary
languages L = {λ, a, . . . , an | n ≥ 1} over a unary alphabet are limit closed,
whereas a∗ is not limit closed due to the fact that lim

n→∞
an = aω /∈ a∗ ∪ L.

However, a∗ ∪ aω and aω are limit closed. -.

Lemma 6.3.46. Let K,L ⊆ ∆∞ be limit closed and let w ∈ ∆ω. Then

if pref (w) ⊆ pref (K) || pref (L), then w ∈ K || L.

Proof. Let pref (w) ⊆ pref (K) || pref (L).
For n ≥ 0, let Vn = {d | d is a (un, vn)-decomposition of w[n], un ∈

pref (K), and vn ∈ pref (L)} be the set of all possible decompositions of
the prefixes w[n] of w. Note that V0 = {(λ, λ)} consists of the (λ, λ)-
decomposition of w[0] = λ. Note furthermore that each Vn is finite, for n ≥ 0,
and that Vn ∩ Vn′ = ∅, for all n > n′ ≥ 0.

Consider the directly precedes relation E = {(d, d′) | d directly precedes
d′}. Thus E ⊆

⋃
n≥1(Vn−1 × Vn). Note that G = (

⋃
n≥0 Vn, E) is a directed

acyclic graph. It is sketched in Figure 6.7.
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Except for (λ, λ), every vertex of G has precisely one incoming edge.
This can be seen as follows. The fact that pref (w) ⊆ pref (K) || pref (L)
implies that every vertex has at least one incoming edge, whereas the fact
that for every decomposition of a prefix w[n], n ≥ 1, we can immediately
distinguish the unique last symbol of w[n], implies that every vertex has
at most one incoming edge. Furthermore, from Definition 6.3.38 it follows
that every vertex has at most two outgoing edges, depending on whether the
symbol added to w[n], n ≥ 0, to obtain w[n + 1] “belongs” to a prefix from
K or to a prefix from L. Hence G is an infinite finitely-branching rooted tree
with root (λ, λ).

We can thus use König’s Lemma to conclude that there exists an infinite
path π through G, starting in the root (λ, λ). Let π = (d0, d1, . . . ). Then
for all n ≥ 0, dn is a (un, vn)-decomposition of w[n] and (dn, dn+1) ∈ E.
Hence from Lemma 6.3.40 it follows that u = lim

n→∞
un, v = lim

n→∞
vn, and

w = lim
n→∞

wn exist, and w ∈ u || v. Since K and L are limit closed this

implies that w ∈ K || L. -.

The statement of this lemma in general does not hold when K or L are not
limit closed, as is shown next.

Example 6.3.47. Let ∆ = {a} and let w = aω ∈ ∆ω. Let K = a∗ ⊆ ∆∞

and let L = {λ} ⊆ ∆∞. Then clearly pref (w) = a∗ = pref (K) || pref (L),
whereas w = aω /∈ a∗ = K || L. -.

Since all singleton languages are limit closed, we immediately obtain the
following result.

Corollary 6.3.48. Let u, v ∈ ∆∞ and let w ∈ ∆ω. Then

if pref (w) ⊆ pref (u) || pref (v), then w ∈ u || v. -.

Together with Theorem 6.3.21, this corollary and its preceding lemma imply
the following result.

Theorem 6.3.49. Let u, v ∈ ∆∞, let K,L ⊆ ∆∞ be limit closed, and let
w ∈ ∆ω. Then

(1) w ∈ u || v if and only if pref (w) ⊆ pref (u) || pref (v), and

(2) w ∈ K || L if and only if pref (w) ⊆ pref (K) || pref (L). -.

We have thus been able to express the shuffles of possibly infinite words in
terms of the shuffles of finite prefixes of those possibly infinite words. One
more result now suffices to prove the associativity of shuffling.
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Corollary 6.3.50. Let v, w ∈ ∆∞. Then

v || w is limit closed.

Proof. Let y1 ≤ y2 ≤ · · · ∈ pref (v || w) and let y = lim
n→∞

yn. Since for all x ∈

pref (y), there exists an i ≥ 0 such that x ∈ pref (yi) ∈ pref (pref (v || w)) =
pref (v || w), it follows that pref (y) ⊆ pref (v || w). Consequently, we distin-
guish two cases.

If y ∈ ∆∗, then y ∈ pref (v || w).
If y ∈ ∆ω, then by Theorem 6.3.49(1), y ∈ v || w.

Hence y ∈ v || w ∪ pref (v || w) and v || w is thus limit closed. -.

Theorem 6.3.51. Let u, v, w ∈ ∆∞ and let L1, L2, L3 ⊆ ∆∞. Then

(1) {u} || (v || w) = (u || v) || {w} and

(2) L1 || (L2 || L3) = (L1 || L2) || L3.

Proof. (1) Let x ∈ {u} || (v || w).
If x ∈ ∆∗, then Definition 6.3.1 implies that u, v, w ∈ ∆∗. Consequently,

by Corollary 6.3.33(1), x ∈ (u || v) || {w}.
If x ∈ ∆ω, then since we know that {u} and v || w are limit closed, The-

orem 6.3.49(2) implies that pref (x) ⊆ pref ({u}) || pref (v || w). Hence, by
Theorem 6.3.21(1), pref (x) ⊆ pref ({u}) || (pref (v) || pref (w)). Then Corol-
lary 6.3.33(2) implies that pref (x) ⊆ (pref (u) || pref (v)) || pref ({w}) and
from Theorem 6.3.21(1) we obtain pref (x) ⊆ pref (u || v) || pref ({w}). Fi-
nally, using the fact that u || v and {w} are limit closed, Theorem 6.3.49(2)
implies that x ∈ (u || v) || {w}.

(2) Analogous to the proof of Theorem 6.3.32(2). -.

6.3.4 Conclusion

The associativity of (fairly) shuffling (cf. Theorems 6.3.32 and 6.3.51) directly
implies that the order in which we (fairly) shuffle a number of languages is
irrelevant, i.e. L1 ||| L2 ||| · · · ||| Ln and L1 || L2 || · · · || Ln unambiguously
define the fair shuffle and shuffle, respectively, of the languages L1, L2, . . . ,
Ln, for an n ≥ 1. It is thus not necessary to put any brackets in these
expressions and we will henceforth refrain from doing so. Using also the com-
mutativity of (fairly) shuffling, we may introduce the following shorthand
notations for such n-ary (fair) shuffles .

Notation 12. We denote the fair shuffle L1 ||| L2 ||| · · · ||| Ln and the shuf-
fle L1 || L2 || · · · || Ln of the languages L1, L2, . . . , Ln, for an n ≥ 1, by
||| i∈[n] Li and || i∈[n] Li, respectively. -.
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6.4 Synchronized Shuffles

In this section we generalize the basic shuffle by defining synchronized shuf-
fles . Rather than freely interleaving the occurrences of the letters in the words
being shuffled, some letters may now be subject to “synchronization”. This
means that occurrences of those letters in different words are now combined
into one occurrence. The resulting word thus has a “backbone” consisting of
occurrences of synchronized letters. As a preliminary example, consider the
words wev and ave. If we assume that the letter v needs to be synchronized,
then weave is a synchronized shuffle on v of wev and ave. Its backbone con-
sists of only one element, viz. v. We see that those letters occurring on the
left (right) side of v in the original words occur on the left (right) side of v
in weave as well. Note that weave is not an ordinary shuffle of wev and ave.

As was the case for shuffles, also the idea underlying synchronized shuffles
is not new. Instead, it appears in numerous disguises throughout the com-
puter science literature. The oldest reference — once again to the best of our
knowledge — to this idea is the concurrent composition P ⊕Q of synchroniz-
ing processes P and Q defined in [Kim76]. Within formal language theory, a
slightly adapted version of the idea was introduced in [DeS84] as the ‘produit
de mixage’ K -- L of two languages K and L. This operation was renamed
synchronized shuffle in [LR99]. In the context of process algebra, finally, two
further slightly adapted versions of the idea were introduced in [vdS85] as the
weave T w U of two words T and U , and in [Ros97] as the alphabetized par-
allel composition P

X
||

Y
Q of processes P and Q given alphabets X and Y .

We will soon see, however, that the synchronized shuffles we define here are
more general than any of these operations from the literature. In particular,
we define two variants of synchronized shuffles: the fully synchronized shuffle
and the relaxed synchronized shuffle, both obtained by varying the alphabet
of letters to be synchronized.

Given two words over two given (possibly different) alphabets, a fully
synchronized shuffle requires all letters in the intersection of these two alpha-
bets to be synchronized, while a relaxed synchronized shuffle requires only a
specified subset of the letters in this intersection to be synchronized. Both
synchronized shuffles are thus defined with respect to two alphabets. We con-
tinue our example by again considering the words wev and ave. Assume that
wev is a word over the alphabet {w, e, v} and that ave is a word over the
alphabet {a, v, e}. Then a fully synchronized shuffle of wev and ave w.r.t.
{w, e, v} and {a, v, e} does not exist due to the fact that e and v cannot form
one backbone respecting both the order ev from wev and the order ve from
ave. However, a relaxed synchronized shuffle on {e} of wev and ave w.r.t.
{w, e, v} and {a, v, e} does exist and contains, e.g., wavev .
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We begin by formally defining the most general synchronized shuffle, in
terms of which we consequently define the two variants just discussed —
complete with more elaborate examples. Along the way we will compare
our synchronized shuffles to the ones from the literature. Subsequently we
present a few of their basic properties. Since synchronized shuffles are defined
on the basis of the ordinary shuffle, many observations from the previous
section continue to hold (with trivial adaptions). We will not draw all such
implications, but rather provide a series of connections between the various
types of (synchronized) shuffles. Finally, we prove that all three types of
synchronized shuffles satisfy notions of commutativity and associativity.

6.4.1 Definitions

We start by defining synchronized shuffles as a generalization of the shuffles
of the previous section. Given an alphabet Γ and two words u and v, in a syn-
chronized shuffle u and v synchronize on letters from Γ , while all occurrences
of other letters are shuffled.

Definition 6.4.1. Let u, v ∈ ∆∞ and let Γ be an alphabet. Then

a word w ∈ ∆∞ is a synchronized shuffle (S-shuffle for short) on Γ of u and
v if one of the following two cases holds. Either

(1) w ∈ (u1 || v1)x1(u2 || v2)x2 · · ·xn−1(un || vn), where for some n ≥ 1,
u1, u2, . . . , un−1, v1, v2, . . . , vn−1 ∈ (∆ \ Γ )∗, un, vn ∈ (∆ \ Γ )∞, and
x1, x2, . . . , xn−1 ∈ Γ are such that u = u1x1u2x2 · · ·xn−1un and v =
v1x1v2x2 · · ·xn−1vn, or

(2) w ∈ (u1 || v1)x1(u2 || v2)x2 · · · , where u1, u2, . . . , v1, v2, · · · ∈ (∆ \ Γ )∗,
and x1, x2, · · · ∈ Γ are such that u = u1x1u2x2 · · · and v = v1x1v2x2 · · · .

This S-shuffle w on Γ is called fair if in case (1) (un || vn) is fair or if case
(2) holds. -.

The sequence presΓ (w) is called the backbone of w. Note that in case (1) the
S-shuffle w has a finite backbone x1x2 · · ·xn−1, while in case (2) it has an
infinite backbone x1x2 · · · .

For u, v ∈ ∆∞ the language consisting of all (fair) S-shuffles on Γ
of u and v is denoted by u ||Γ v (u |||Γ v) and is defined as u ||Γ v =
{w ∈ ∆∞ | w is an S-shuffle on Γ of u and v} and u |||Γ v = {w ∈ ∆∞ |
w is a fair S-shuffle on Γ of u and v}, respectively.

For L1, L2 ⊆ ∆∞ the (fair) S-shuffle on Γ of L1 and L2 is denoted by
L1 ||Γ L2 (L1 |||Γ L2) and is defined as the language consisting of all (fair)
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S-shuffles on Γ of a word from L1 and a word from L2. Thus L1 ||Γ L2 =
{w ∈ u ||Γ v | u ∈ L1, v ∈ L2} =

⋃
u∈L1, v∈L2

(u ||Γ v) and L1 |||Γ L2 =⋃
u∈L1, v∈L2

(u |||Γ v), respectively.

Example 6.4.2. (Example 6.3.2 continued) Recall that u = abc and v = cd .
Now u ||{c} v = u |||{c} v = {abcd}, whereas u ||{b,c} v = u |||{b,c} v = ∅.

Recall that w1 = aω. Now w1 ||{a} a = w1 |||{a} a = ∅ and w1 ||{a} w1 =
w1 |||{a} w1 = {aω}.

Finally, recall that ∆ = {a, b, c, d}. Let w12 = (ab)ω ∈ ∆ω and let
w21 = (ba)ω ∈ ∆ω. Then we have w12 ||{a} w21 = w12 |||{a} w21 = {(bab)ω},
whereas w12 ||{a,b} w21 = w12 |||{a,b} w21 = ∅. -.

From Definition 6.4.1 we furthermore obtain that the fair S-shuffle on an
alphabet Γ of languages is included in the S-shuffle on Γ of these languages.

We now show that S-shuffles are indeed a generalization of both the con-
current composition as defined in [Kim76] and the ‘produit de mixage’ as
defined in [DeS84] (and later renamed synchronized shuffle in [LR99]). If we
syntactically restrict an S-shuffle on an alphabet Γ of languages L1, L2 ⊆ ∆∗

to the case that Γ ⊆ ∆, then we obtain exactly the concurrent composition
operation defined in [Kim76]. If, on the other hand, we define the alphabet
alph(L) of a language L as alph(L) =

⋃
w∈L alph(w) and allow infinite words

in L1 and L2, then L1 |||alph(L1)∩alph(L2) L2 is exactly the ‘produit de mixage’
of L1 and L2 as defined in [DeS84] (which in [LR99] is restricted to finitary
languages and renamed synchonized shuffle).

We proceed by defining the fully synchronized shuffle as a special case
of the synchronized shuffle. Given a word u over ∆1 and a word v over ∆2,
in a fully synchronized shuffle u and v synchronize on letters from ∆1 ∩∆2,
while all occurrences of other letters are again shuffled. Limited to finite
words, the fully synchronized shuffle is exactly the weave operation defined
in [vdS85] in the context of process algebra. By allowing infinite words, the
fully synchronized shuffle is thus more general than the weave operation.

Definition 6.4.3. Let u ∈ ∆∞
1 and let v ∈ ∆∞

2 . Then

a word w ∈ (∆1 ∪ ∆2)∞ is a fully synchronized shuffle (fS-shuffle for
short) of u and v w.r.t. ∆1 and ∆2 if w is an S-shuffle on ∆1 ∩∆2 of u
and v.

This fS-shuffle of u and v w.r.t. ∆1 and ∆2 is called fair if w is a fair S-
shuffle on ∆1 ∩∆2 of u and v. -.

For u ∈ ∆∞
1 and v ∈ ∆∞

2 the language consisting of all (fair) fS-shuffles of u
and v w.r.t. ∆1 and ∆2 is denoted by u

∆1
||

∆2
v (u

∆1
|||

∆2
v) and is defined
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as u ∆1
||∆2

v = {w ∈ (∆1 ∪ ∆2)∞ | w is an fS-shuffle of u and v w.r.t. ∆1

and ∆2} and u
∆1

|||
∆2

v = {w ∈ (∆1 ∪∆2)∞ | w is a fair fS-shuffle of u and
v w.r.t. ∆1 and ∆2}, respectively.

For L1 ⊆ ∆∞
1 and L2 ⊆ ∆∞ the (fair) fS-shuffle of L1 and

L2 w.r.t. ∆1 and ∆2 is denoted by L1 ∆1
||

∆2
L2 (L1 ∆1

|||
∆2

L2) and is
defined as the language consisting of all (fair) fS-shuffles of a word from
L1 and a word from L2 w.r.t. ∆1 and ∆2. Thus L1 ∆1

||
∆2

L2 = {w ∈
u

∆1
||

∆2
v | u ∈ L1, v ∈ L2} =

⋃
u∈L1, v∈L2

(u
∆1

||
∆2

v) and L1 ∆1
|||

∆2
L2 =⋃

u∈L1, v∈L2
(u

∆1
|||

∆2
v), respectively.

Example 6.4.4. (Example 6.4.2 continued) Now u
∆
||

∆
v = u

∆
|||

∆
v = ∅.

Next let ∆1 = {a, b, c} and let ∆2 = {c, d}. Consequently, let u = abc ∈ ∆∗
1

and let v = cd ∈ ∆∗
2. Then u

∆1
||

∆2
v = u

∆1
|||

∆2
v = {abcd} = u |||{c} v =

u ||{c} v.
We moreover have w1 ∆

||
∆

a = w1 ∆
|||

∆
a = ∅, with a ∈ ∆∗, and

w1 ∆
||

∆
w1 = w1 ∆

|||
∆

w1 = {aω} = w1 |||{a} w1 = w1 ||{a} w1. Recall
that w2 = bω ∈ ∆∞ and hence w1 ∆

||
∆

w2 = w1 ∆
|||

∆
w2 = ∅. Next let

∆a = {a} and let ∆b = {b}. Consequently, let w1 = aω ∈ ∆∞
a and let w2 =

bω ∈ ∆∞
b . Then w1 ∆a

||∆b
w2 = w1 || w2 and w1 ∆a

|||∆b
w2 = w1 ||| w2.

Finally, w12 ∆
||

∆
w21 = w12 ∆

|||
∆

w21 = ∅. -.

Finally we define also the relaxed synchronized shuffle as a special case of the
synchronized shuffle. Given an alphabet Γ , a word u over ∆1, and a word v
over ∆2, in a relaxed synchronized shuffle u and v synchronize on letters from
Γ ∩∆1 ∩∆2, while all occurrences of other letters are once again shuffled.

Definition 6.4.5. Let u ∈ ∆∞
1 , let v ∈ ∆∞

2 , and let Γ be an alphabet. Then

a word w ∈ (∆1 ∪ ∆2)∞ is a relaxed synchronized shuffle (rS-shuffle
for short) on Γ of u and v w.r.t. ∆1 and ∆2 if w is an S-shuffle on
Γ ∩∆1 ∩∆2 of u and v.

This rS-shuffle on Γ of u and v w.r.t. ∆1 and ∆2 is called fair if w is a fair
S-shuffle on Γ ∩∆1 ∩∆2 of u and v. -.

For u ∈ ∆∞
1 and v ∈ ∆∞

2 the language consisting of all (fair) rS-shuffles on Γ
of u and v w.r.t. ∆1 and ∆2 is denoted by u ∆1

||Γ∆2
v (u ∆1

|||Γ∆2
v) and is de-

fined as u
∆1

||Γ
∆2

v = {w ∈ (∆1 ∪∆2)∞ | w is an rS-shuffle on Γ of u and v

w.r.t. ∆1 and ∆2} and u
∆1

|||Γ
∆2

v = {w ∈ (∆1 ∪∆2)∞ | w is a fair rS-shuffle
on Γ of u and v w.r.t. ∆1 and ∆2}, respectively.

For L1 ⊆ ∆∞
1 and L2 ⊆ ∆∞ the (fair) rS-shuffle on Γ of L1 and L2

w.r.t. ∆1 and ∆2 is denoted by L1 ∆1
||Γ∆2

L2 (L1 ∆1
|||Γ∆2

L2) and is de-
fined as the language consisting of all (fair) rS-shuffles on Γ of a word
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from L1 and a word from L2 w.r.t. ∆1 and ∆2. Thus L1 ∆1
||Γ∆2

L2 =

{w ∈ u
∆1

||Γ
∆2

v | u ∈ L1, v ∈ L2} =
⋃

u∈L1, v∈L2
(u

∆1
||Γ

∆2
v) and

L1 ∆1
|||Γ

∆2
L2 =

⋃
u∈L1, v∈L2

(u
∆1

|||Γ
∆2

v), respectively.

Example 6.4.6. (Example 6.4.4 continued) Now u ∆ ||{c}∆ v = u ∆ |||
{c}
∆ v =

{abcd}, whereas u ∆ ||
{b,c}
∆ v = u ∆ |||{b,c}∆ v = ∅. Furthermore, u ∆1

||{c}∆2
v =

u ∆1
|||{c}∆2

v = u ∆1
|||{b,c}∆2

v = u ∆1
||{b,c}∆2

v = {abcd} = u ∆1
||∆2

v =

u
∆1

|||
∆2

v = u |||{c} v = u ||{c} v.

We moreover have w1 ∆
||{a}

∆
a = w1 ∆

|||{a}
∆

a = ∅, with a ∈ ∆∗, and

w1 ∆
||{a}

∆
w1 = w1 ∆

|||{a}
∆

w1 = {aω} = w1 ∆
||

∆
w1 = w1 ∆

|||
∆

w1 =

w1 |||{a} w1 = w1 ||{a} w1. We also have w1 ∆
||{a}

∆
w2 = w1 ∆

|||{a}
∆

w2 = ∅,

w1 ∆a
||{a}

∆b
w2 = w1 || w2, and w1 ∆a

|||{a}
∆b

w2 = w1 ||| w2.

Finally, here w12 ∆
||{a}

∆
w21 = w12 ∆

|||{a}
∆

w21 = {(bab)ω}, whereas

w12 ∆
||{a,b}

∆
w21 = w12 ∆

|||{a,b}
∆

w21 = ∅. -.

We now take a closer look at the three synchronized shuffles just introduced.
We immediately note that the rS-shuffle can be considered to lie inbetween
the S-shuffle and the fS-shuffle. In fact, the following results follow directly
from Definitions 6.4.1, 6.4.3, and 6.4.5.

Lemma 6.4.7. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Let K ⊆ ∆∞
1 and L ⊆ ∆∞

2 . Let
Γ be an alphabet. Then

(1) if Γ ⊆ ∆1 ∩ ∆2, then u
∆1

|||Γ
∆2

v = u |||Γ v, u
∆1

||Γ
∆2

v = u ||Γ v,

K
∆1

|||Γ
∆2

L = K |||Γ L, and K
∆1

||Γ
∆2

L = K ||Γ L, and

(2) if Γ ⊇∆1 ∩∆2, then u
∆1

|||Γ
∆2

v = u
∆1

|||
∆2

v, u
∆1

||Γ
∆2

v = u
∆1

||
∆2

v,

K
∆1

|||Γ
∆2

L = K
∆1

|||
∆2

L, and K
∆1

||Γ
∆2

L = K
∆1

||
∆2

L. -.

We continue by pointing out that for arbitrary alphabets ∆1, ∆2, and Γ ,
both u

∆1
||Γ

∆2
v and u

∆1
||

∆2
v are undefined if either u /∈ ∆∞

1 or v /∈ ∆∞
2 .

Finally, we show how this section’s synchronized shuffles are related to the
shuffle of the previous section. From Definition 6.4.1 we immediately obtain
that the S-shuffle is indeed a generalization of the shuffle.

Lemma 6.4.8. Let u, v ∈ ∆∞ and let K,L ⊆ ∆∞. Then

(1) u |||∅ v = u ||| v and u ||∅ v = u || v, and

(2) K |||∅ L = K ||| L and K ||∅ L = K || L. -.
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Together with Example 6.3.2, this lemma implies that the inclusions of the
fair S-shuffle on an alphabet Γ of languages in the S-shuffle on Γ of these
languages may be proper. Furthermore, an S-shuffle on an alphabet Γ of
languages is always fair in case both languages are finitary.

Moreover, the rS-shuffle degenerates to the shuffle if there are no letters
to synchronize on.

Lemma 6.4.9. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Let K ⊆ ∆∞
1 and L ⊆ ∆∞

2 . Then

(1) u
∆1

|||∅
∆2

v = u |||∅ v = u ||| v and u
∆1

||∅
∆2

v = u ||∅ v = u || v, and

(2) K
∆1

|||∅
∆2

L = K |||∅ L = K ||| L and K
∆1

||∅
∆2

L = K |||∅ L =
K || L. -.

Similarly, the fS-shuffle is a generalization of the shuffle in case of disjoint
alphabets.

Lemma 6.4.10. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Let K ⊆ ∆∞
1 and L ⊆ ∆∞

2 . Let
∆1 ∩∆2 = ∅. Then

(1) u ∆1
|||∆2

v = u |||∅ v = u ||| v and u ∆1
||∆2

v = u ||∅ v = u || v, and

(2) K
∆1

|||
∆2

L = K |||∅ L = K ||| L and K
∆1

||
∆2

L = K ||∅ L =
K || L. -.

6.4.2 Basic Observations

We have seen that a (fair) shuffle of two words always exists. From Exam-
ple 6.4.2 we however conclude that a (fair) S-shuffle of two nonempty words
need not exist. In fact, we have the following result.

Lemma 6.4.11. Let u, v ∈ ∆∞ and let Γ be an alphabet. Then

(1) for all w ∈ u ||Γ v, presΓ (w) = presΓ (u) = presΓ (v), and

(2) u ||Γ v = ∅ if and only if presΓ (u) (= presΓ (v).

Proof. (1) This follows immediately from Definition 6.4.1.
(2) (If) Let u ||Γ v (= ∅. Then (1) implies that presΓ (u) = presΓ (v).
(Only if) Let presΓ (u) = presΓ (v) = w. According to Definition 6.4.1 we

thus need to distinguish two cases.
If there exists an n ≥ 0 such that w = x1x2 · · ·xn, with xi ∈ Γ for

all i ∈ [n], then it must be the case that u = u1x1u2x2 · · ·xnun+1 and
v = v1x1v2x2 · · ·xnvn+1, with ui, vi ∈ (∆\Γ )∗ for all i ∈ [n] and un+1, vn+1 ∈
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(∆ \ Γ )∞. Hence u ||Γ v = (u1 || v1)x1(u2 || v2)x2 · · ·xn(un+1 || vn+1) (= ∅
because for all i ∈ [n+ 1], ui || vi (= ∅.

If w = x1x2 · · · , with xi ∈ Γ for all i ≥ 1, then it must be the case
that u = u1x1u2x2 · · · and v = v1x1v2x2 · · · , with ui, vi ∈ (∆ \ Γ )∗ for all
i ≥ 1. Hence u ||Γ v = (u1 || v1)x1(u2 || v2)x2 · · · (= ∅ because for all i ≥ 1,
ui || vi (= ∅. -.

We have also seen that the only (fair) shuffle of an arbitrary word and the
empty word is the given word itself. Due to the requirement of a matching
backbone, we immediately conclude that this in general does not hold when
any of the (fair) synchronized shuffles is considered.

In Lemma 6.3.10, finally, we have seen that the length of every word in
the shuffle of two finite words equals the sum of the lengths of those two
words. Any synchronized shuffle of two finite words, however, may be a word
of length less than the sum of the lengths of those two words. This is due
to the fact that each letter from the synchronization alphabet must occur in
both words being shuffled, while it occurs only once in the backbone of each
synchronized shuffle of those words.

In the remainder of this subsection we seek to express the S-shuffles of
possibly infinite words in terms of the S-shuffles of their finite prefixes. We
begin by considering the case in which two words that are S-shuffled share
a finite backbone (cf. Definition 6.4.1(1)). In such words u and v we can
thus distinguish initial prefixes u1 and v1 ending with the last letter of the
finite backbone, and suffixes u2 and v2 containing no more letters from the
alphabet of the backbone. It is clear that elements of the S-shuffle of u and v
then consist of a prefix that is part of the S-shuffle of u1 and v1 and a suffix
that is part of the shuffle of u2 and v2. This leads to the following result.

Lemma 6.4.12. Let Γ be an alphabet, let u1, v1 ∈ ((∆ \ Γ )∗Γ )∗, and let
u2, v2 ∈ (∆ \ Γ )∞. Then

(1) (u1 |||Γ v1)(u2 ||| v2) = u1u2 |||Γ v1v2 and

(2) (u1 ||Γ v1)(u2 || v2) = u1u2 ||Γ v1v2. -.

Note that this lemma resembles Lemma 6.3.14. The main difference between
the two lemmata is the fact that the statements of Lemma 6.4.12 consist of
equalities rather than inclusions from left to right only. The reason lies in
the fact that the application of Lemma 6.4.12 is limited to prefixes which
end at a predetermined position, viz. at the end of the backbone (which thus
dictates the structure of all S-shuffles).

Lemma 6.4.12 consequently allows us to conclude that whenever the pre-
fixes of an infinite word w are included in the S-shuffle of the prefixes of two
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words u and v sharing a finite backbone, then w is an element of the S-shuffle
of u and v. In fact we prove a more general statement, immediately for pre-
fixes of limited-closed languages (cf. Corollary 6.3.48 and Theorem 6.3.49).

Lemma 6.4.13. Let K,L ⊆ ∆∞ be limit closed, let Γ be an alphabet, and
let w = w1w2 be such that w1 ∈ ((∆ \ Γ )∗Γ )∗ and w2 ∈ (∆ \ Γ )ω. Then

if pref (w) ⊆ pref (K) ||Γ pref (L), then w ∈ K ||Γ L.

Proof. Let pref (w) ⊆ pref (K) ||Γ pref (L). Then there exist an n ≥ 1, ui ∈
pref (K) and vi ∈ pref (L) such that w1 ∈ ui ||Γ vi, for all i ∈ [n]. Note that
according to Definition 6.4.1, all ui, vi ∈ ((∆ \ Γ )∗Γ )∗. For all i ∈ [n], let
Kui = {u ∈ (∆ \ Γ )∗ | uiu ∈ K} and let Lvi = {v ∈ (∆ \ Γ )∗ | viv ∈ L}.

Let z∈pref (w2) and consider the wordw1z. Thus w1z∈pref (K)||Γpref (L)
because w1z ∈ pref (w). Hence there exist u ∈ pref (K) and v ∈ pref (L) such
that w1z ∈ u ||Γ v. Again by Definition 6.4.1 we know that u = u′u′′ and
v = v′v′′, with u′, v′ ∈ ((∆\Γ )∗Γ )∗ and u′′, v′′ ∈ (∆\Γ )∗, and w1 ∈ u′ ||Γ v′.
Hence there exists an i ∈ [n] such that u′ = ui and v′ = vi. This implies
that w1z ∈ uipref (Kui) ||

Γ vipref (Kvi). Consequently, by Lemma 6.4.12(2),
pref (w2) ⊆

⋃
i∈[n](pref (Kui) ||

Γ pref (Lvi)) =
⋃

i∈[n](pref (Kui) || pref (Lvi))
(the equality follows because pref (Kui) and pref (Lvi), with i ∈ [n], do not
contain letters from Γ ).

Since the number of pairs ui and vi, with i ∈ [n], is finite, it must be the
case that there exists a j ∈ [n] such that for each z ∈ pref (w2) there exists a
prefix z′ of w2 such that z < z′ and for which z′ ∈ pref (Kuj ) || pref (Lvj ) and
thus z ∈ pref (Kuj ) || pref (Lvj ). Hence pref (w2) ⊆ pref (Kuj ) || pref (Lvj ).
Since K and L are limit closed, so are Kuj and Lvj . Lemma 6.3.46 then
implies that w2 ∈ Kuj || Lvj . Hence with Lemma 6.4.12(2) we obtain w =
w1w2 ∈ (uj ||Γ vj)(Kuj || Lvj ) = ujKuj ||Γ vjLvj ⊆ K ||Γ L. -.

A similar statement can be proven for infinite words.

Lemma 6.4.14. Let K,L ⊆ ∆∞ be limit closed, let Γ be an alphabet, and
let w ∈ ((∆ \ Γ )∗Γ )ω. Then

if pref (w) ⊆ pref (K) ||Γ pref (L), then w ∈ K ||Γ L.

Proof. Let pref (w) ⊆ pref (K) ||Γ pref (L). Let w1, w2, . . . ∈ (∆ \ Γ )∗ and
x1, x2, . . . ∈ Γ be such that w = w1x1w2x2 · · · .

Since pref (w) ⊆ pref (K) ||Γ pref (L) we know that for all n ≥ 1 there
exists a sequence ρ = (u1, v1, u2, v2, . . . , un, vn), with ui, vi ∈ (∆ \ Γ )∗ for
all i ∈ [n], and such that u1x1u2x2 · · ·unxn ∈ pref (K), v1x1v2x2 · · · vnxn ∈
pref (L), and wi ∈ (ui || vi) for all i ∈ [n]. That is, w1x1w2x2 · · ·wnxn ∈
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(u1||v1)x1(u2||v2)x2 · · · (un||vn)xn = u1x1u2x2 · · ·unxn||Γ v1x1v2x2 · · · vnxn.
We will refer to w1x1w2x2 · · ·wnxn as w(n) and to ρ as a (K ||Γ L)-deco
of w(n).

We say that a (K ||Γ L)-deco ρ = (u1, v1, u2, v2, . . . , un, vn) of w(n) di-
rectly precedes a (K ||Γ L)-deco ρ′ of w(n+1) if ρ′ = (u1, v1, u2, v2, . . . , un, vn,
un+1, vn+1). We furthermore add a trivial ρλ which by definition directly pre-
cedes every (K ||Γ L)-deco of w(1).

For n ≥ 1, let Vn = {ρ | ρ is a (K ||Γ L)-deco of w(n)} be the set con-
taining every possible (K ||Γ L)-deco of w(n). Let V0 = {ρλ}. Note that each
Vn is finite, for n ≥ 0, and that Vn∩Vn′ = ∅, for all n > n′ ≥ 0. Furthermore,
let E = {(ρ, ρ′) | ρ directly precedes ρ′}. Thus E ⊆

⋃
n≥1(Vn−1 × Vn). Note

that G = (
⋃

n≥0 Vn, E) is a directed acyclic graph. In fact, G is an infinite
finitely-branching rooted tree with root ρλ. This can be seen as follows. Ex-
cept for ρλ, every vertex ρ = (u1, v1, u2, v2, . . . , uk+1, vk+1) has exactly one
incoming edge, viz. from ρλ if k = 0 and from (u1, v1, u2, v2, . . . , uk, vk) if
k ≥ 1. Note that this (u1, v1, u2, v2, . . . , uk, vk) is indeed a (K ||Γ L)-deco of
w(k). Since each wi, with i ∈ [n], is a finite word, every vertex moreover has
a finite number of outgoing edges. Finally, the graph is infinite since it has
at least one distinct vertex for every prefix w(n) of w.

We can thus use König’s Lemma to conclude that there exists an infi-
nite path π through G, starting in the root ρλ. Let π = (ρλ, ρ1, ρ2, . . . ),
with ρn = (u1, v1, u2, v2, . . . , un, vn) for all n ≥ 1. Then by definition
u1x1u2x2 · · ·unxn ∈ pref (K) and v1x1v2x2 · · · vnxn ∈ pref (L). Since K and
L are limit closed this implies that u = lim

n→∞
u1x1u2x2 · · ·unxn ∈ K and

v = lim
n→∞

v1x1v2x2 · · · vnxn ∈ L. By the definition of the (K ||Γ L)-deco of

w(n) we thus obtain that w = w1x1w2x2 · · · ∈ (u1 ||| v1)x1(u2 ||| v2)x2 · · · =
u ||Γ v. Hence w ∈ K ||Γ L. -.

The preceding two lemmata allow us to express — as we did for the shuffle
in Theorem 6.3.49(2) — the S-shuffle of possibly infinite words in terms of
the S-shuffle of finite prefixes of those possibly infinite words.

Theorem 6.4.15. Let K,L ⊆ ∆∞ be limit closed, let w ∈ ∆ω, and let Γ be
an alphabet. Then

w ∈ K ||Γ L if and only if pref (w) ⊆ pref (K) ||Γ pref (L).

Proof. (If) Let pref (w) ⊆ pref (K) ||Γ pref (L). Then by Definition 6.4.1 and
Lemmata 6.4.13 and 6.4.14 it follows that w ∈ K ||Γ L.

(Only if) Let w ∈ K ||Γ L. Then according to Definition 6.4.1 one of the
following two cases holds.
Either w = (u1 || v1)x1(u2 || v2)x2 · · ·xn−1(un || vn) for some n ≥ 1, ui, vi ∈
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(∆ \ Γ )∗ for all i ∈ [n− 1], un, vn ∈ (∆ \ Γ )∞, and xi ∈ Γ for all i ∈ [n− 1],
and such that u = u1x1u2x2 · · ·xnun+1 and v = v1x1v2x2 · · ·xnvn+1.
Or else w = (u1 || v1)x1(u2 || v2)x2 · · · for some n ≥ 1, ui, vi ∈ (∆ \ Γ )∗ for
all i ≥ 1, and xi ∈ Γ for all i ≥ 1, and such that u = u1x1u2x2 · · ·xnun+1

and v = v1x1v2x2 · · ·xnvn+1.
Consequently we consider a prefix y ∈ pref (w). Then in both cases

y = (u1 || v1)x1(u2 || v2)x2 · · ·xk−1x for some k ≥ 1 and x ∈ pref (uk || vk).
Immediately from Definition 6.4.1 and Theorem 6.3.21(1) it then follows that
y ∈ u1x1u2x2 · · · uk−1xk−1pref (uk) ||Γ v1x1v2x2 · · · vk−1xk−1pref (vk) ⊆
pref (u) ||Γ pref (v). Hence y ∈ pref (K) ||Γ pref (L). -.

Since all singleton languages are limit closed, we immediately obtain the
following result.

Theorem 6.4.16. Let u, v ∈ ∆∞, let w ∈ ∆ω, and let Γ be an alphabet.
Then

w ∈ u ||Γ v if and only if pref (w) ⊆ pref (u) ||Γ pref (v). -.

6.4.3 Commutativity and Associativity

In order to use the (fair) synchronized shuffles in the context of team au-
tomata, it is important to establish certain commutativity and associativity
properties.

The (fair) S-shuffle is defined on the basis of the (fair) shuffle, which is
commutative. Hence the commutativity of the (fair) S-shuffle is a direct con-
sequence of the commutativity of the (fair) shuffle, as stated in Theorem 6.3.8.

Theorem 6.4.17. Let u, v ∈ ∆∞ and let Γ be an alphabet. Then

(1) u |||Γ v = v |||Γ u and u ||Γ v = v ||Γ u, and

(2) L1 |||Γ L2 = L2 |||Γ L1 and L1 ||Γ L2 = L2 ||Γ L1. -.

Recall that both rS-shuffles and fS-shuffles are defined in terms of S-shuffles.
Consequently, also these synchronized shuffles may be considered commuta-
tive in the following sense.

Corollary 6.4.18. Let u, v ∈ ∆∞, let L1, L2 ⊆ ∆∞, and let Γ be an alpha-
bet. Then

(1) u
∆1

|||Γ
∆2

v = v
∆2

|||Γ
∆1

u and u
∆1

||Γ
∆2

v = v
∆2

||Γ
∆1

u, and

(2) L1 ∆1
|||Γ

∆2
L2 = L2 ∆2

|||Γ
∆1

L1 and L1 ∆1
||Γ

∆2
L2 = L2 ∆2

||Γ
∆1

L1. -.
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Corollary 6.4.19. Let u, v ∈ ∆∞ and let L1, L2 ⊆ ∆∞. Then

(1) u ∆1
|||∆2

v = v ∆2
|||∆1

u and u ∆1
||∆2

v = v ∆2
||∆1

u, and

(2) L1 ∆1
|||∆2

L2 = L2 ∆2
|||∆1

L1 and L1 ∆1
||∆2

L2 = L2 ∆2
||∆1

L1. -.

It remains to prove that also in case of synchronized shuffles a notion of asso-
ciativity can be upheld. In case of S-shuffles, associativity is easily understood.
S-shuffling is associative because {u} ||Γ (v ||Γ w) equals (u ||Γ v) ||Γ {w},
for words u, v, and w, and an alphabet Γ , and likewise for the fair case. To
prove this statement we use the associativity of (fair) shuffling.

Theorem 6.4.20. Let u, v, w ∈ ∆∞ and let Γ be an alphabet. Then

(1) {u} |||Γ (v |||Γ w) = (u |||Γ v) |||Γ {w} and

(2) {u} ||Γ (v ||Γ w) = (u ||Γ v) ||Γ {w}.

Proof. (1) Let x ∈ {u} |||Γ (v |||Γ w). Then by Lemma 6.4.11, presΓ (x) =
presΓ (u) = presΓ (v) = presΓ (w). Now let y = presΓ (x). We distinguish two
cases.

First consider that y ∈ Γ ∗. Then there exists an n ≥ 0 such that
y = y1y2 · · · yn with yi ∈ Γ , for all i ∈ [n]. Consequently there ex-
ist x1, x2, . . . , xn, u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn ∈ Γ ∗ and xn+1,
un+1, vn+1, wn+1∈Γ∞ such that x=x1y1x2y2 · · ·xnynxn+1, u=u1y1u2y2 · · ·
unynun+1, v = v1y1v2y2 · · · vnynvn+1, and w = w1y1w2y2 · · ·wnynwn+1.
By Definition 6.4.1, xi ∈ {ui} || (vi || wi), for all i ∈ [n], and xn+1 ∈
{un+1} ||| (vn+1 ||| wn+1). Now by Theorem 6.3.51(1), {ui} || (vi || wi) =
(ui || vi) || {wi}, for all i ∈ [n], and according to Theorem 6.3.32(1),
{un+1} ||| (vn+1 ||| wn+1) = (un+1 ||| vn+1) ||| {wn+1}. This implies, again
by Definition 6.4.1, that x ∈ (u |||Γ v) |||Γ {w}.

Secondly, the case that y ∈ Γ∞ is analogous.
(2) Analogous. -.

Theorem 6.4.21. Let L1, L2, L3 ⊆ ∆∞ and let Γ be an alphabet. Then

(1) L1 |||Γ (L2 |||Γ L3) = (L1 |||Γ L2) |||Γ L3 and

(2) L1 ||Γ (L2 ||Γ L3) = (L1 ||Γ L2) ||Γ L3.

Proof. Analogous to the proof of Theorem 6.3.32(2). -.

The statements of the preceding two theorems do not hold when the syn-
chronization alphabet Γ may vary. Given w1, w2, w3 ∈ ∆∗ and two dis-
tinct alphabets Γ and Γ ′, e.g., (w1 ||Γ w2) ||Γ

′

w3 in general does not equal
w1 ||Γ (w2 ||Γ

′
w3). This is shown in the following example.
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Example 6.4.22. Let L1 = {a}, let L2 = {a, b}, and let L3 = {ab}. Then
(L1 ||{a} L2) ||{b} L3 = {a} ||{b} {ab} = ∅, whereas L1 ||{a} (L2 ||{b} L3) =
{a} ||{a} {ab} = {ab}. -.

It is worthwhile to notice here that the synchronized shuffle as studied in
[DeS84] and [LR99] is not associative, as is noted in [LR99] and shown in the
following example. Recall that the ‘produit de mixage’ or synchonized shuffle
of L1, L2 ⊆ ∆∞ is defined as L1 |||alph(L1)∩alph(L2) L2, where alph(L) — for
an alphabet L — is defined as alph(L) =

⋃
w∈L alph(w).

Example 6.4.23. (Example 6.4.22 continued) Now L1 ||alph(L1)∩alph(L2) L2 =
{a} ||{a} {a, b} = {a} and thus {a} ||alph({a})∩alph(L3) L3 = {a} ||{a} {ab} =
{ab}, while on the other hand L2 ||alph(L2)∩alph(L3) L3 = {a, b} ||{a,b} {ab} =
∅ and thus L1 ||alph(L1)∩alph({ab}) ∅ = {a} ||{a} ∅ = ∅. -.

In [vdS85] it is noted that the weave operation studied there is on purpose not
defined as the synchronized shuffle operation of [DeS84] and [LR99] because
in that case it would no longer have been associative.

Contrary to the case of the S-shuffle, the synchronization alphabet of an
fS-shuffle or an rS-shuffle depends on the alphabets involved. Hence it is not
immediately clear how associativity should be formalized. A natural approach
would be to consider fS-shuffling associative if {u}

∆1
||

∆2∪∆3
(v

∆2
||

∆3
w)

equals (u
∆1

||
∆2

v)
∆1∪∆2

||
∆3

{w} for all words u ∈ ∆∞
1 , v ∈ ∆∞

2 , and w ∈
∆∞

3 , and similarly rS-shuffling and the fair cases.
We now present an example to illustrate this idea.

Example 6.4.24. (Example 6.4.4 continued) Recall that we have set ∆1 =
{a, b, c}, ∆2 = {c, d}, u = abc ∈ ∆∗

1, and v = cd ∈ ∆∗
2. Now we let

∆3 = {b, c, e} and we let w = bce ∈ ∆∗
3. Then it follows immediately that

{u}
∆1

||
∆2∪∆3

(v
∆2

||
∆3

w) = {abc}
{a,b,c}

||
{b,c,d,e}

(cd
{c,d}

||
{b,c,e}

bce) =
{abc}

{a,b,c}
||

{b,c,d,e}
{bcde,bced} = {abcde,abced} = abcd

{a,b,c,d}
||

{b,c,e}
bce =

(abc
{a,b,c}

||
{c,d}

cd)
{a,b,c,d}

||
{b,c,e}

{bce} = (u
∆1

||
∆2

v)
∆1∪∆2

||
∆3

{w}.
Next we let Γ = {b, c}. Consequently, it follows immediately that

{u} ∆1
||Γ∆2∪∆3

(v ∆2
||Γ∆3

w) = {abc}
{a,b,c}

||{b, c}
{b,c,d,e}

(cd
{c,d}

||{b, c}
{b,c,e}

bce) =

{abc}
{a,b,c}

||{b, c}
{b,c,d,e}

{bcde,bced} = {abcde,abced} = abcd
{a,b,c,d}

||{b, c}
{b,c,e}

bce =

(abc
{a,b,c}

||{b, c}
{c,d}

cd)
{a,b,c,d}

||{b, c}
{b,c,e}

{bce} = (u∆1
||Γ∆2

v) ∆1∪∆2
||Γ∆3

{w}. -.

This example dealt with finite words and hence fair fS-shuffles and fair rS-
shuffles. Before turning to the general case we now prove that indeed fair
fS-shuffling and fair rS-shuffling are associative in the sense just discussed.
The following characterization of the fair shuffles of two words over disjoint
alphabets in terms of preserving homomorphisms turns out to be very useful.
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We give here a full direct proof, but the statement can also be proven by
modification of Theorem 6.3.29 and its proof (using pres−1

∆1
and pres−1

∆2
instead

of the inverse homomorphisms ϕ−1
i,{j} and ϕ−1

j,{i}).

Lemma 6.4.25. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 be such that ∆1 ∩∆2 = ∅. Then

u ||| v = {w ∈ (∆1 ∪∆2)∞ | pres∆1
(w) = u, pres∆2

(w) = v}.

Proof. (⊆) Let w ∈ u ||| v. Since ∆1 ∩ ∆2 = ∅ it follows immediately by
Lemma 6.3.7(1) that pres∆1

(w) = u and pres∆2
(w) = v.

(⊇) Let w ∈ (∆1 ∪∆2)∞ be such that pres∆1
(w) = u and pres∆2

(w) = v.
We distinguish three cases.

First consider that u ∈ ∆∗
1. Since pres∆1

(w) = u there exist an n ≥ 0 and
a1, a2, . . . , an ∈ ∆1 such that u = a1a2 · · · an and w = α0a1α1a2 · · · anαn,
where α0, α1, . . . , αn−1 ∈ ∆∗

2 and αn ∈ ∆∞
2 . Since pres∆2

(w) = v and ∆1 ∩
∆2 = ∅, we have v = α0α1 · · ·αn. Now let αn = lim

m→∞
γ1γ2 · · · γm with

γi ∈ ∆∗
2, for all i ≥ 1. Hence w = α0a1α1a2 · · ·αn−1anγ1λγ2λ · · · with u =

a1a2 · · · an and v = α1α2 · · ·αn−1γ1γ2 · · · and thus, again by Lemma 6.3.7(1),
w ∈ u ||| v.

The case that v ∈ ∆∗
2 is analogous.

Finally, consider that u ∈ ∆ω
1 and v ∈ ∆ω

2 . Hence w ∈ (∆1∪∆2)ω . Let w =
c1c2 · · · = lim

n→∞
c1c2 · · · cn with ci ∈ ∆1∪∆2, for all i ≥ 1. By the definition of

homomorphisms on infinite words, pres∆1
(w) = lim

n→∞
pres∆1

(c1c2 · · · cn) = u

and pres∆2
(w) = lim

n→∞
pres∆2

(c1c2 · · · cn) = v. Now denote pres∆1
(c1c2 · · · cn)

by un and pres∆2
(c1c2 · · · cn) by vn. From the first two cases it then follows

that for all n ≥ 1, c1c2 · · · cn ∈ un ||| vn. Hence pref (w) ⊆ pref (u) ||| pref (v),
which implies that w ∈ u || v by Corollary 6.3.48. Since ∆1 ∩ ∆2 = ∅ and
u and v are both infinite words, w satisfies subcase (c) of case (4) of Defini-
tion 6.3.1 and thus w ∈ u ||| v. -.

This result implies that also the fair S-shuffles and the fair fS-shuffles can be
described in terms of preserving homomorphisms, provided that there is no
confusion about the non-synchronizing symbols.

Theorem 6.4.26. Let Γ be an alphabet and let u ∈ ∆∞
1 and v ∈ ∆∞

2 be
such that (∆1 \ Γ ) ∩ (∆2 \ Γ ) = ∅. Then

u |||Γ v= {w∈ (∆1∪∆2)∞ | presΓ (w)=presΓ (u)=presΓ (v), pres∆1
(w)=

u, pres∆2
(w) = v}.

Proof. (⊆) Let w ∈ u |||Γ v. As by Lemma 6.4.11(1), presΓ (w) = presΓ (u) =
presΓ (v), we only have to prove that pres∆1

(w) = u and pres∆2
(w) = v.

According to Definition 6.4.1 we can distinguish two cases.
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First consider that w = w1y1w2y2 · · · ynwn+1, where for some n ≥ 1,
w1, w2, . . . , wn ∈ ((∆1∪∆2)\Γ )∗, wn+1 ∈ ((∆1∪∆2)\Γ )∞, y1, y2, . . . , yn ∈ Γ ,
u = u1y1u2y2 · · · ynun+1, with u1, u2, . . . , un ∈ (∆1 \ Γ )∗ and un+1 ∈
(∆1 \ Γ )∞, and v = v1y1v2y2 · · · ynvn+1, with v1, v2, . . . , vn ∈ (∆2 \ Γ )∗

and vn+1 ∈ (∆2 \ Γ )∞, are such that for all i ∈ [n + 1], wi ∈ ui ||| vi.
Since (∆1 \ Γ ) ∩ (∆2 \ Γ ) = ∅, it follows from Lemma 6.4.25 that for all
i ∈ [n + 1], pres∆1

(wi) = ui and pres∆2
(wi) = vi. Hence pres∆1

(w) =
pres∆1

(w1) pres∆1
(y1) pres∆1

(w2) pres∆1
(y2) · · · pres∆1

(yn) pres∆1
(wn+1) =

u1y1u2y2 · · · ynun+1=u and, analogously,pres∆2
(w)=v1y1v2y2 · · · ynvn+1=v.

Secondly, consider that w = w1y1w2y2 · · · , where w1, w2, . . . ∈ ((∆1 ∪
∆2) \ Γ )∗, y1, y2, . . . ∈ Γ , u = u1y1u2y2 · · · , with u1, u2, . . . ∈ (∆1 \ Γ )∗, and
v = v1y1v2y2 · · · , with v1, v2, . . . ∈ (∆2 \ Γ )∗, are such that for all i ≥ 1,
wi ∈ ui ||| vi. Since (∆1 \ Γ ) ∩ (∆2 \ Γ ) = ∅, Lemma 6.4.25 implies that
for all i ≥ 1, pres∆1

(wi) = ui and pres∆2
(wi) = vi. Hence, by the definition

of homomorphisms on infinite words, pres∆1
(w) = u1y1u2y2 · · · = u and

pres∆2
(w) = v1y1v2y2 · · · = v.

(⊇) Let w ∈ (∆1 ∪∆2)∞ be such that presΓ (w) = presΓ (u) = presΓ (v),
pres∆1

(w) = u, and pres∆2
(w) = v. Observe that (∆1 \ Γ ) ∩ (∆2 \ Γ ) =

∅ implies that ∆1 ∩ ∆2 ⊆ Γ . Hence, by Lemma 6.4.7(2), u
∆1

|||Γ
∆2

v =

u
∆1

|||
∆2

v. Moreover, since presΓ (u) = presΓ (v), we have w ∈ u
∆1

|||Γ
∆2

v
if and only if w ∈ u |||Γ v. Thus it suffices to prove that w ∈ u

∆1
|||

∆2
v. We

distinguish two cases.
First consider that pres∆1∩∆2

(w) ∈ (∆1 ∪ ∆2)∗. Then there exists an
n ≥ 1 such that w = w1y1w2y2 · · · ynwn+1, where for all i ∈ [n], wi ∈
((∆1\∆2)∪(∆2\∆1))∗ and yi ∈ ∆1∩∆2, and wn+1 ∈ ((∆1\∆2)∪(∆2\∆1))∞.
Moreover, pres∆1

(w) = pres∆1
(w1)y1pres∆1

(w2)y2 · · · ynpres∆1
(wn+1) = u

and pres∆2
(w) = pres∆2

(w1)y1pres∆2
(w2)y2 · · · ynpres∆2

(wn+1) = v. Hence
u = u1y1u2y2 · · · ynun+1, with ui = pres∆1\∆2

(wi), for all i ∈ [n + 1], and
v = v1y1v2y2 · · · ynvn+1, with vi = pres∆2\∆1

(wi), for all i ∈ [n+1]. Since for
all i ∈ [n+1], ui ∈ (∆1 \∆2)∞, vi ∈ (∆2 \∆1)∞, and (∆1 \∆2)∩ (∆2 \∆1) =
∅, Lemma 6.4.25 implies that for all i ∈ [n], wi ∈ ui ||| vi = ui || vi, and
wn+1 ∈ un+1 ||| vn+1 ⊆ un+1 || vn+1. Definition 6.4.1(1) now implies that
w ∈ u |||∆1∩∆2 v, which by Definition 6.4.3 means that w ∈ u

∆1
|||

∆2
v.

Next consider that pres∆1∩∆2
(w) ∈ (∆1 ∪∆2)ω. Then w = w1y1w2y2 · · · ,

where for all i ≥ 1, wi ∈ ((∆1 \ ∆2) ∪ (∆2 \ ∆1))∗ and yi ∈ ∆1 ∩ ∆2.
Moreover, pres∆1

(w) = pres∆1
(w1)y1pres∆1

(w2)y2 · · · = u and pres∆2
(w) =

pres∆2
(w1)y1pres∆2

(w2)y2 · · · = v. Hence u = u1y1u2y2 · · · , with ui =
pres∆1\∆2

(wi), for all i ≥ 1, and v = v1y1v2y2 · · · , with vi = pres∆2\∆1
(wi),

for all i ≥ 1. Since for all i ≥ 1, ui ∈ (∆1 \ ∆2)∗, vi ∈ (∆2 \ ∆1)∗, and
(∆1 \ ∆2) ∩ (∆2 \ ∆1) = ∅, Lemma 6.4.25 implies that for all i ≥ 1,
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wi ∈ ui ||| vi = ui || vi. Definition 6.4.1(2) now implies that w ∈ u |||∆1∩∆2 v,
which by Definition 6.4.3 means that w ∈ u

∆1
|||

∆2
v. -.

Finally, we obtain from this result a characterization of fair fS-shuffling.

Corollary 6.4.27. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Then

u
∆1

|||
∆2

v = {w ∈ (∆1 ∪∆2)∞ | pres∆1
(w) = u, pres∆2

(w) = v}.

Proof. By Definition 6.4.3, u
∆1

|||
∆2

v = u |||∆1∩∆2 v and (∆1 \(∆1∩∆2))∩
(∆2 \ (∆1 ∩ ∆2)) = ∅. Moreover, if pres∆1

(w) = u and pres∆2
(w) = v,

then pres∆1∩∆2
(w) = pres∆1

(pres∆2
(pres∆2

(w))) = pres∆1
(pres∆2

(v)) =
pres∆1∩∆2

(v). Similarly, pres∆1∩∆2
(w) = pres∆1∩∆2

(u). Hence, by Theo-
rem 6.4.26, u

∆1
|||

∆2
v = u |||∆1∩∆2 v = {w ∈ (∆1∪∆2)∞ | pres∆1∩∆2

(w) =
pres∆1∩∆2

(u) = pres∆1∩∆2
(v), pres∆1

(w) = u, pres∆2
(w) = v} = {w ∈

(∆1 ∪∆2)∞ | pres∆1
(w) = u, pres∆2

(w) = v}. -.

Now we can prove the associativity of fair fS-shuffling.

Theorem 6.4.28. Let u ∈ ∆∞
1 , let v ∈ ∆∞

2 , and let w ∈ ∆∞
3 . Then

{u}
∆1

|||
∆2∪∆3

(v
∆2

|||
∆3

w) = (u
∆1

|||
∆2

v)
∆1∪∆2

|||
∆3

{w}.

Proof. (⊆) Let x ∈ {u}
∆1

|||
∆2∪∆3

(v
∆2

|||
∆3

w) and let y ∈ v
∆2

|||
∆3

w
be such that x ∈

∆1
|||

∆2∪∆3
y. Hence, according to Corollary 6.4.27,

pres∆1
(w) = u and pres∆2∪∆3

(w) = y. Moreover, pres∆2
(y) = v and

pres∆3
(y) = w. Now let z = pres∆1∪∆2

(x). By repeatedly applying Corol-
lary 6.4.27 and by using the properties of preserving homomorphisms, we
obtain that pres∆3

(x) = pres∆3
(pres∆2∪∆3

(x)) = pres∆3
(y) = w, and thus

x ∈ z ∆1∪∆2
|||∆3

w. Furthermore, pres∆1
(z) = pres∆1

(pres∆1∪∆2
(x)) =

pres∆1
(x) = u and pres∆2

(z) = pres∆2
(pres∆1∪∆2

(x)) = pres∆2
(x) =

pres∆2
(pres∆2∪∆3

(x)) = pres∆2
(y) = v. Hence z ∈ u

∆1
|||

∆2
v and thus

we have proven that x ∈ (u
∆1

|||
∆2

v)
∆1∪∆2

|||
∆3

{w}.
(⊇) By Corollary 6.4.19 and (⊆) we immediately obtain that (u

∆1
|||

∆2
v)

∆1∪∆2
|||∆3

{w}={w} ∆3
|||∆1∪∆2

(u ∆1
|||∆2

v)={w} ∆3
|||∆1∪∆2

(v ∆2
|||∆1

u)⊆
(w

∆3
|||

∆2
v)

∆2∪∆3
|||

∆1
{u} = (v

∆2
|||

∆3
w)

∆2∪∆3
|||

∆1
{u} = {u}

∆1
|||

∆2∪∆3

(v
∆2

|||
∆3

w). -.

This result can be lifted to languages.

Theorem 6.4.29. Let L1 ⊆ ∆∞
1 , let L2 ⊆ ∆∞

2 , and let L3 ⊆ ∆∞
3 . Then

L1 ∆1
|||

∆2∪∆3
(L2 ∆2

|||
∆3

L3) = (L1 ∆1
|||

∆2
L2) ∆1∪∆2

|||
∆3

L3.
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Proof. Analogous to the proof of Theorem 6.3.32(2). -.

The fact that the rS-shuffle is defined in terms of the S-shuffle, together with
the associativity of fair fS-shuffling, now allows us to prove that also fair
rS-shuffling is associative.

Theorem 6.4.30. Let u ∈ ∆∞
1 , let v ∈ ∆∞

2 , let w ∈ ∆∞
3 , and let Γ be an

alphabet. Then

{u} ∆1
|||Γ∆2∪∆3

(v ∆2
|||Γ∆3

w) = (u ∆1
|||Γ∆2

v) ∆1∪∆2
|||Γ∆3

{w}.

Proof. Since fair rS-shuffles are defined in terms of fair S-shuffles, it is
clear that it suffices to prove that {u} |||Γ∩(∆1∩(∆2∪∆3)) (v |||Γ∩∆2∩∆3 w) =
(u |||Γ∩∆1∩∆2 v) |||Γ∩(∆1∪∆2)∩∆3 {w}.

Let ∆! = {a! | a ∈ ∆}, for all " ∈ {[123], [12], [13], [23], [1], [2], [3]}.
Consequently, we consider the homomorphism ϕ : (∆1 ∪ ∆2 ∪ ∆3)∞ →
(∆[123] ∪ ∆[12] ∪ ∆[13] ∪ ∆[23] ∪ ∆[1] ∪ ∆[2] ∪ ∆[3])∞, which we use to label
each letter from u, v, and w in a specific way: those letters that appear in Γ
and in at least two of the alphabets ∆1, ∆2, or ∆3, are labeled by subscripts
indicating all of the alphabets from ∆1, ∆2, or ∆3 that they appear in, while
all other letters are labeled by subscripts indicating the unique alphabet from
∆1, ∆2, or ∆3 that they appear in. Formally, ϕ is defined as follows.

ϕ(a) =






a[123] if a ∈ Γ ∩∆1 ∩∆2 ∩∆3,
a[12] if a ∈ (Γ ∩∆1 ∩∆2) \∆3,
a[13] if a ∈ (Γ ∩∆1 ∩∆3) \∆2,
a[23] if a ∈ (Γ ∩∆2 ∩∆3) \∆1,
a[1] if a ∈ (∆1 \ Γ ) ∪ ((Γ ∩∆1) \ (∆2 ∪∆3)),
a[2] if a ∈ (∆2 \ Γ ) ∪ ((Γ ∩∆2) \ (∆1 ∪∆3)), and
a[3] if a ∈ (∆3 \ Γ ) ∪ ((Γ ∩∆3) \ (∆1 ∪∆2)).

Now let ∆̂1 = ∆[123]∪∆[12]∪∆[13]∪∆[1], let ∆̂2 = ∆[123]∪∆[12]∪∆[23]∪∆[2],
and let ∆̂3 = ∆[123] ∪ ∆[13] ∪ ∆[23] ∪ ∆[3]. Hence ϕ(u) ∈ ∆̂∞

1 , ϕ(v) ∈ ∆̂∞
2 ,

and ϕ(w) ∈ ∆̂∞
3 . From the way we have labeled the alphabets we ob-

tain that a ∈ Γ ∩ (∆1 ∩ (∆2 ∪ ∆3)) if and only if a ∈ (Γ ∩ ∆1 ∩
∆2 ∩ ∆3) ∪ ((Γ ∩ ∆1 ∩ ∆2) \ ∆3) ∪ ((Γ ∩ ∆1 ∩ ∆3) \ ∆2) if and only
if ϕ(a) ∈ ∆[123] ∪ ∆[12] ∪ ∆[13] if and only if ϕ(a) ∈ ∆̂1 ∩ (∆̂2 ∪ ∆̂3)
and similarly for the other (potential) synchronization symbols. Since ϕ
is injective, it thus follows that {u} |||Γ∩(∆1∩(∆2∪∆3)) (v |||Γ∩∆2∩∆3 w) =
ϕ−1(ϕ(u) |||∆̂1∩(∆̂2∪∆̂3) (ϕ(v) |||∆̂2∩∆̂3 ϕ(w))), which by the associativity of
Theorem 6.4.28 is equal to ϕ−1((ϕ(u) |||∆̂1∩∆̂2 ϕ(v)) |||(∆̂1∪∆̂2)∩∆̂3 ϕ(w))
and this, once again by the labeling of the alphabets, equals (u |||Γ∩∆1∩∆2 v)
|||Γ∩(∆1∪∆2)∩∆3 {w}. -.
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The associativity of fair rS-shuffling can also be proven for languages.

Theorem 6.4.31. Let L1 ⊆ ∆∞
1 , let L2 ⊆ ∆∞

2 , let L3 ⊆ ∆∞
3 , and let Γ be

an alphabet. Then

L1 ∆1
|||Γ

∆2∪∆3
(L2 ∆2

|||Γ
∆3

L3) = (L1 ∆1
|||Γ

∆2
L2) ∆1∪∆2

|||Γ
∆3

L3.

Proof. Analogous to the proof of Theorem 6.3.32(2). -.

As was the case for the associativity of S-shuffling, also the statements of
the preceding two theorems do not hold when Γ may vary. Given wi ∈
∆∗

i , with i ∈ [3], and two distinct alphabets Γ and Γ ′, e.g., in general

(w1 ∆1
|||Γ

∆2
w2)∆1∪∆2

|||Γ
′

∆3
w3 does not equal w1 ∆1

|||Γ
∆2∪∆3

(w2 ∆2
|||Γ

′

∆3
w3).

This is shown in the following example.

Example 6.4.32. Let ∆1 = {a}, let ∆2 = {b}, and let ∆3 = {a, b}. Then
clearly (a

∆1
|||{a}

∆2
b)

∆1∪∆2
|||{b}

∆3
{ab} = (a

{a}
|||{a}

{b}
b)

{a,b}
|||{b}

{a,b}
{ab} =

{ab, ba}
{a,b}

||{b}
{a,b}

{ab} = {aab, aba}, while {a}
∆1

|||{a}
∆2∪∆3

(b
∆2

|||{b}
∆3

ab) =

{a}
{a}

|||{a}
{a,b}

(b
{b}

|||{b}
{a,b}

ab) = a
{a}

|||{a}
{a,b}

ab = {ab}. -.

In case of “unfair” fS-shuffling (and thus also in case of “unfair” rS-shuffling)
the associativity at the level of words which we have established for the fair
case (and for S-shuffling) does not hold. As the following example shows,
unfair fS-shuffling with an infinite word may lead to the abortion of its finite
partner and thus destroy the associativity.

Example 6.4.33. Let ∆1 = {a, b}, let ∆2 = {b}, and let ∆3 = {c}. Then
clearly a

∆1
||

∆2
b = ∅ and thus (a

∆1
||

∆2
b)

∆1∪∆2
||

∆3
{cω} = ∅. However,

{a}
∆1

||
∆2∪∆3

(b
∆2

||
∆3

cω) = {a}
{a,b}

||
{b,c}

(b
{b}

||
{c}

cω) = {a}
{a,b}

||
{b,c}

({cnbcω | n ≥ 0} ∪ {cω}) = {cnacω | n ≥ 0} ∪ {cω}. -.

At first sight, adding λ to represent possible abortion appears to be a solution.
For this example, adding λ indeed solves the problem, as is shown in the
following example.

Example 6.4.34. (Example 6.4.33 continued) We show how adding λ to a, b,
and cω may solve the problem, viz. ({λ, a}

∆1
||

∆2
{λ, b})

∆1∪∆2
||

∆3
{λ, cω} =

({λ, a}
{a,b}

||
{b}

{λ, b})
{a,b}

||
{c}

{λ, cω}= {λ, a}
{a,b}

||
{c}

{λ, cω}= {λ, a, cω}∪
{cnacω | n ≥ 0} = {λ, a}

{a,b}
||

{b,c}
({λ, b, cω} ∪ {cnbcω | n ≥ 0}) =

{λ, a}
{a,b}

||
{b,c}

({λ, b}
{b}

||
{c}

{λ, cω}) = {λ, a}
∆1

||
∆2∪∆3

({λ, b}
∆2

||
∆3

{λ, cω}). -.
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In this example the aborted word consists of one symbol only and thus has
λ as its only proper prefix, whereas in general infinite words when unfairly
shuffled may still tolerate arbitrary prefixes, in which case adding λ is not a
solution. This is shown in the following example.

Example 6.4.35. Note ({λ, aω}
{a}

||
{b}

{λ, b2})
{a,b}

||
{b}

{λ, b}=({λ, b2, aω}∪
{ambanbaω, anbaω | m,n ≥ 0})

{a,b}
||

{b}
{λ, b} = {λ, aω} ∪ {anbaω | n ≥ 0}.

However, {λ, aω}
{a}

||
{b}

({λ, b2}
{b}

||
{b}

{λ, b}) = {λ, aω}
{a}

||
{b}

{λ} =
{λ, aω}. -.

Hence we propose to add not just λ, but all prefixes of the words involved.
In the following example we show that this solves the problems encountered
in the previous examples.

Example 6.4.36. (Examples 6.4.33 and 6.4.35 continued) The problem we
met in Example 6.4.33 is indeed solved in this way, viz. ({λ, a}

{a,b}
||

{b}
{λ, b})

{a,b}
||

{c}
({cn | n ≥ 0} ∪ {cω}) = ({λ, a}

{a,b}
||

{c}
({cn | n ≥ 0} ∪ {cω}) =

{cnacω, cmacn, cn | m,n ≥ 0} ∪ {cω} = {λ, a}
{a,b}

||
{b,c}

({cnbcω, cmbcn, cn |
m,n ≥ 0} ∪ {cω}) = {λ, a}

{a,b}
||

{b,c}
({λ, b}

{b}
||

{c}
({cn | n ≥ 0} ∪ {cω})).

Moreover, also the problem we met in Example 6.4.35 is indeed solved
in this way, viz. (({an | n ≥ 0} ∪ {aω})

{a}
||

{b}
{λ, b, b2})

{a,b}
||

{b}
{λ, b} =

({ambanbaω, ambanbap, anbaω, amban, an |m,n, p≥0} ∪ {aω})
{a,b}

||
{b}

{λ, b}=
{anbaω, amban, an | n ≥ 0} ∪ {aω} = ({an | n ≥ 0} ∪ {aω})

{a}
||

{b}
{λ, b} =

({an | n ≥ 0} ∪ {aω})
{a}

||
{b}

({λ, b, b2}
{b}

||
{b}

{λ, b}). -.

This provides us with enough motivation to set out and prove associativity
of (general, unfair) fS-shuffling and rS-shuffling at the level of prefix-closed
languages. It is relevant to recall at this point that the behavior of a team
automaton and that of its constituting component automata are prefix closed.
Hence we can still apply this higher-level notion of associativity to behavior
of team automata.

First we express (general) S-shuffles in terms of fair S-shuffles and prefixes
(cf. Lemma 6.3.4).

Lemma 6.4.37. Let Γ be an alphabet. Then

(1) if u ∈ ∆∗
1 and v ∈ ∆∗

2, then u ||Γ v = u |||Γ v,

(2) if u∈∆∗
1 and v∈∆ω

2 , then u ||Γ v =
⋃

u′∈pref(u), presΓ (u′)=presΓ (u) (u
′ |||Γ v),

and

(3) if u∈∆ω
1 and v∈∆ω

2 , then u ||Γ v =
⋃

u′∈pref(u), presΓ (u′)=presΓ (u)(u
′ |||Γ v)∪

⋃
v′∈pref(v), presΓ (v′)=presΓ (v)(u |||Γ v′) ∪ u |||Γ v.
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Proof. (1) Trivial.
(2) Let u ∈ ∆∗

1 and let v ∈ ∆ω
2 .

(⊆) Let w ∈ u ||Γ v. By Definition 6.4.1, there exists an n ≥ 1 such that
w ∈ (u1 || v1)x1(u2 || v2)x2 · · ·xn−1(un || vn), where u1, u2, . . . , un ∈ (∆1 \
Γ )∗, v1, v2, . . . , vn−1 ∈ (∆2 \ Γ )∗, vn ∈ (∆2 \ Γ )ω, u = u1x1u2x2 · · ·xn−1un,
and v = v1x1v2x2 · · ·xn−1vn. Then, according to Lemma 6.3.4(2), un || vn =⋃

u′∈pref(un)
(u′ ||| v) and hence we obtain w ∈ (u1 || v1)x1(u2 || v2)x2 · · ·

xn−1(un || vn) =
⋃

u′∈pref(un)
((u1 || v1)x1(u2 || v2)x2 · · ·xn−1(u′ || vn)) =⋃

u′ ∈ pref (un)
(u1x1u2x2 · · · un−1xn−1u′ |||Γ v1x1v2x2 · · · vn−1xn−1vn) =⋃

ū∈pref(u), presΓ (ū)=presΓ (u)(ū |||Γ v).
(⊇) This follows immediately from Definitions 6.3.1 and 6.4.1.
(3) Analogous to (2) but now using Lemma 6.3.4(3). -.

As a consequence we obtain a characterization of fS-shuffling in terms of
prefixes and preserving homomorphisms.

Corollary 6.4.38. (1) If u ∈ ∆∗
1 and v ∈ ∆∗

2, then u
∆1

||
∆2

v = {w ∈
(∆1 ∪∆2)∗ | pres∆1

(w) = u, pres∆2
(w) = v},

(2) if u ∈ ∆∗
1 and v ∈ ∆ω

2 , then u
∆1

||
∆2

v = {w ∈ (∆1 ∪ ∆2)∞ | ∃u′ ∈
pref (u) : pres∆2

(u′) = pres∆2
(u), pres∆1

(w) = u′, pres∆2
(w) = v}, and

(3) if u ∈ ∆ω
1 and v ∈ ∆ω

2 , then u
∆1

||
∆2

v = {w ∈ (∆1 ∪ ∆2)∞ |
pres∆1

(w) = u, pres∆2
(w) = v} ∪ {w ∈ (∆1 ∪ ∆2)∞ | ∃u′ ∈ pref (u) :

pres∆2
(u′) = pres∆2

(u), pres∆1
(w) = u′, pres∆2

(w) = v} ∪ {w ∈
(∆1 ∪ ∆2)∞ | ∃ v′ ∈ pref (v) : pres∆1

(v′) = pres∆1
(v), pres∆1

(w) =
u, pres∆2

(w) = v′}.

Proof. By Definition 6.4.3, u
∆1

||
∆2

v = u ||∆1∩∆2 v and u
∆1

|||
∆2

v =
u |||∆1∩∆2 v whenever u ∈ ∆∞

1 and v ∈ ∆∞
2 . Moreover, for x ∈ ∆∞

1 ,
pres∆1∩∆2

(x) = pres∆2
(x) and, for x ∈ ∆∞

2 , pres∆1∩∆2
(x) = pres∆1

(x). The
statements now follow by combining Corollary 6.4.27 and Lemma 6.4.37, with
Γ = ∆1 ∩∆2. -.

With this corollary we can now prove a result similar to Corollary 6.4.27,
which was used to prove the associativity of fair fS-shuffling. In this case,
however, we (have to) deal with words together with their prefixes.

Lemma 6.4.39. If u ∈ ∆∞
1 and v ∈ ∆∞

2 , then ({u}∪pref (u))
∆1

||
∆2

({v}∪
pref (v)) = {w ∈ (∆1 ∪ ∆2)∞ | pres∆1

(w) ∈ {u} ∪ pref (u), pres∆2
(w) ∈

{v} ∪ pref (v)}.
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Proof. Let u ∈ ∆∞
1 and let v ∈ ∆∞

2 . We distinguish three cases.
(1) If u ∈ ∆∗

1 and v ∈ ∆∗
2, then by Corollary 6.4.38(1), ({u} ∪ pref (u))

∆1
||

∆2
({v} ∪ pref (v)) = {w ∈ (∆1 ∪ ∆2)∗ | pres∆1

(w) ∈ {u} ∪ pref (u),
pres∆2

(w) ∈ {v} ∪ pref (v)}.
(2) If u ∈ ∆∗

1 and v ∈ ∆ω
2 , then the fact that u ∈ pref (u) implies that

({u} ∪ pref (u)) ∆1
||∆2

({v} ∪ pref (v)) = pref (u) ∆1
||∆2

({v} ∪ pref (v)) =
(pref (u)

∆1
||

∆2
pref (v)) ∪ (pref (u)

∆1
||

∆2
{v}). By Corollary 6.4.38(2),

pref (u)
∆1

||
∆2

{v} = {w ∈ (∆1 ∪ ∆2)∞ | ∃u′ ∈ pref (u), u′′ ∈ pref (u′) :
pres∆2

(u′) = pres∆2
(u′′), pres∆1

(w) = u′′, pres∆2
(w) = v} = {w ∈

(∆1 ∪∆2)∞ | ∃u′′ ∈ pref (u) : pres∆1
(w) = u′′, pres∆2

(w) = v}. Combining
this with (1), we obtain pref (u) ∆1

||∆2
({v}∪pref (v)) = {w ∈ (∆1 ∪∆2)∞ |

pres∆1
(w) ∈ pref (u), pres∆2

(w) ∈ {v} ∪ pref (v)}.
(3) If u ∈ ∆ω

1 and v ∈ ∆ω
2 , then ({u} ∪ pref (u))

∆1
||

∆2
({v} ∪ pref (v)) =

L1 ∪ L2 ∪ L3, with L1, L2, and L3 as follows.
L1 = pref (u)

∆1
||

∆2
({v} ∪ pref (v)) = {w ∈ (∆1 ∪ ∆2)∞ | pres∆1

(w) ∈
pref (u), pres∆2

(w) ∈ {v} ∪ pref (v)} by (2).
L2 = ({u} ∪ pref (u))

∆1
||

∆2
pref (v) = {w ∈ (∆1 ∪ ∆2)∞ | pres∆1

(w) ∈
{u} ∪ pref (u), pres∆2

(w) ∈ pref (v)} by (2) and the commutativity of fS-
shuffling.
L3 = u

∆1
||

∆2
v = {w ∈ (∆1 ∪∆2)ω | pres∆1

(w) = u, pres∆2
(w) = v}∪L′

1∪
L′
2, with L′

1 ⊆ L1 and L′
2 ⊆ L2, by Corollary 6.4.38(3).

Consequently, ({u}∪pref (u))
∆1

||
∆2

({v}∪pref (v)) = {w ∈ (∆1∪∆2)∞ |
pres∆1

(w) ∈ {u} ∪ pref (u), pres∆2
(w) ∈ {v} ∪ pref (v)}. -.

We have thus found a characterization of fS-shuffling that is insensitive to
the order of application.

Theorem 6.4.40. Let ui ∈ ∆∞
i , for all i ∈ [3]. Then

({u1} ∪ pref (u1))∆1
||

∆2∪∆3
(({u2} ∪ pref (u2))∆2

||
∆3

({u3} ∪ pref (u3))) =
{w ∈ (∆1 ∪∆2 ∪∆3)∞ | ∀ i ∈ [3] : pres∆i

(w) ∈ {ui} ∪ pref (ui)}.

Proof. (⊆) Let w ∈ ({u1} ∪ pref (u1)) ∆1
||

∆2∪∆3
(({u2} ∪ pref (u2)) ∆2

||
∆3

({u3} ∪ pref (u3))). By Lemma 6.4.39, pres∆1
(w) ∈ {u1} ∪ pref (u1) and

there exists a y ∈ ({u2} ∪ pref (u2)) ∆2
||

∆3
({u3} ∪ pref (u3)) such that

pres∆2∪∆3
(w) = y. Consequently, pres∆2

(w) = pres∆2
(pres∆2∪∆3

(w)) =
pres∆2

(y), which by Lemma 6.4.39 is included in {u2} ∪ pref (u2), and
pres∆3

(w) = pres∆3
(pres∆2∪∆3

(w)) = pres∆3
(y), which by Lemma 6.4.39

is included in {u3} ∪ pref (u3).
(⊇) Let w ∈ (∆1 ∪∆2 ∪∆3)∞ be such that pres∆i

(w) ∈ {ui} ∪ pref (ui),
for all i ∈ [3]. Now let z = pres∆2∪∆3

(w). Hence pres∆2
(z) = pres∆2

(w) and
pres∆3

(z) = pres∆3
(w). By Corollary 6.4.27, z ∈ pres∆2

(w)
∆2

|||
∆3

pres∆3
(w)
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and w ∈ pres∆1
(w) ∆1

||| ∆2∪∆3
z ⊆ pres∆1

(w) ∆1
|||∆2∪∆3

(pres∆2
(w) ∆2

|||∆3

pres∆3
(w)) ⊆ ({u1}∪pref (u1)) ∆1

|||
∆2∪∆3

(({u2}∪pref (u2)) ∆2
|||

∆3
({u3}∪

pref (u3))) ⊆ ({u1} ∪ pref (u1)) ∆1
||

∆2∪∆3
(({u2} ∪ pref (u2)) ∆2

||
∆3

({u3} ∪
pref (u3))). -.

It is worth noticing that the proof of this theorem shows how unfair fS-
shuffling can be translated into fair fS-shuffling by including prefixes. The
associativity of fS-shuffling of prefix-closed languages now follows immedi-
ately.

Theorem 6.4.41. Let u ∈ ∆∞
1 , v ∈ ∆∞

2 , and w ∈ ∆∞
3 . Then

({u} ∪ pref (u))
∆1

||
∆2∪∆3

(({v} ∪ pref (v))
∆2

||
∆3

({w} ∪ pref (w))) =
(({u} ∪ pref (u)) ∆1

||∆2
({v} ∪ pref (v))) ∆1∪∆2

||∆3
({w} ∪ pref (w)).

Proof. This follows directly from Theorem 6.4.40 and the commutativity of
fS-shuffling. -.

Theorem 6.4.42. Let Li ⊆ ∆∞
i , for all i ∈ [3], be prefix closed. Then

L1 ∆1
||

∆2∪∆3
(L2 ∆2

||
∆3

L3) = (L1 ∆1
||

∆2
L2) ∆1∪∆2

||
∆3

L3.

Proof. (⊆) Let w ∈ L1 ∆1
||

∆2∪∆3
(L2 ∆2

||
∆3

L3). Then by definition there
exist words u1 ∈ L1, u2 ∈ L2, and u3 ∈ L3 such that w ∈ ({u1} ∪
pref (u1))∆1

||∆2∪∆3
(({u2}∪pref (u2))∆2

||∆3
({u3}∪pref (u3))). Consequently,

by Theorem 6.4.41,w ∈ (({u1}∪pref (u1)) ∆1
||

∆2
({u2}∪pref (u2))) ∆1∪∆2

||
∆3

({u3}∪pref (u3)) ⊆ (L1 ∆1
||

∆2
L2) ∆1∪∆2

||
∆3

L3 by the fact that L1, L2, and
L3 are prefix closed.

(⊇) This follows from (1) and the commutativity of fS-shuffling. -.

As before in the case of fair rS-shuffling, the fact that the rS-shuffle is defined
in terms of the S-shuffle, together with the associativity of fS-shuffling, allows
us to conclude that also rS-shuffling of prefix-closed languages is associative.

Theorem 6.4.43. Let Γ be an alphabet and let ui ∈ ∆∞
i , for all i ∈ [3].

Then

({u1}∪pref (u1))∆1
||Γ∆2∪∆3

(({u2}∪pref (u2))∆2
||Γ∆3

({u3}∪pref (u3))) =

(({u1}∪pref (u1)) ∆1
||Γ∆2

({u2}∪pref (u2))) ∆1∪∆2
||Γ∆3

({u3}∪pref (u3)).

Proof. Similar to the proof of Theorem 6.4.30 by renaming the symbols, but
now using Theorem 6.4.41. -.

Theorem 6.4.44. Let Γ be an alphabet and let Li ⊆ ∆∞
i , for all i ∈ [3], be

prefix closed. Then

L1 ∆1
||Γ∆2∪∆3

(L2 ∆2
||Γ∆3

L3) = (L1 ∆1
||Γ∆2

L2) ∆1∪∆2
||Γ∆3

L3.

Proof. Analogous to the proof of Theorem 6.4.42. -.
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6.4.4 Conclusion

The commutativity and associativity of the S-shuffle (cf. Theorems 6.4.17 and
6.4.21) directly imply that the order in which we (fair) S-shuffle — on an al-
phabet Γ — a number of languages, is irrelevant, i.e. L1 |||Γ L2 |||Γ · · · |||Γ Ln

and L1 ||Γ L2 ||Γ · · · ||Γ Ln unambiguously define the fair S-shuffle and the
S-shuffle, respectively, on Γ of languages L1, L2, . . . , Ln, for an n ≥ 1. We
introduce some shorthand notations for such n-ary (fair) S-shuffles .

Notation 13. We denote the fair S-shuffle L1 |||Γ L2 |||Γ · · · |||Γ Ln and
the S-shuffle L1 ||Γ L2 ||Γ · · · ||Γ Ln, for an n ≥ 1, by |||Γi∈[n] Li and

||Γi∈[n] Li, respectively. -.

Note that contrary to the (fair) shuffle and the (fair) S-shuffle, it is currently
impossible to write either the (fair) fS-shuffle or the (fair) rS-shuffle — on an
alphabet Γ — of languages L1, L2, . . . , Ln, for an n ≥ 3, without brackets
since the order in which they are applied determines the synchronization
symbols. We now present an example to illustrate this.

Example 6.4.45. Let L1 ⊆ ∆∗
1, L2 ⊆ ∆∗

2, L3 ⊆ ∆∗
3, and L4 ⊆ ∆∗

4. Then
by Theorem 6.4.29, ((L1 ∆1

|||∆2
L2) ∆1∪∆2

|||∆3
L3) ∆1∪∆2∪∆3

|||∆4
L4 =

(L1∆1
|||

∆2
L2)∆1∪∆2

|||
∆3∪∆4

(L3∆3
|||

∆4
L4) = L1 ∆1

|||
∆2∪∆3∪∆4

(L2 ∆2
|||

∆3∪∆4

(L3 ∆3
|||

∆4
L4)).

Now we let Γ be an alphabet. Then ((L1 ∆1
|||Γ

∆2
L2) ∆1∪∆2

|||Γ
∆3

L3)

∆1∪∆2∪∆3
|||Γ

∆4
L4 = (L1 ∆1

|||Γ
∆2

L2) ∆1∪∆2
|||Γ

∆3∪∆4
(L3 ∆3

|||Γ
∆4

L4) =

L1 ∆1
|||Γ

∆2∪∆3∪∆4
(L2 ∆2

|||Γ
∆3∪∆4

(L3 ∆3
|||Γ

∆4
L4)) by Theorem 6.4.31. -.

There are various ways of writing the n-ary (fair) fS-shuffles and (fair) rS-
shuffles, for an n ≥ 3, which by Theorems 6.4.29, 6.4.31, 6.4.42, and 6.4.44,
are equivalent — provided that in the unfair case the languages are prefix
closed. We choose the left-associative variants as standard representants of
these classes.

Notation 14. Let n ≥ 1.
The fair fS-shuffle of languages L1, L2, . . . , Ln, with respect to ∆1,

∆2, . . . , ∆n, is (· · · (L1 ∆1
|||

∆2
L2) ∆1∪∆2

|||
∆3

· · · ) ⋃

i∈[n−1] ∆i
|||

∆n
Ln and

the fS-shuffle of L1, L2, . . . , Ln, with respect to ∆1, ∆2, . . . , ∆n, is
(· · · (L1 ∆1

||
∆2

L2) ∆1∪∆2
||

∆3
· · · ) ⋃

i∈[n−1] ∆i
||

∆n
Ln.

The fair rS-shuffle on an alphabet Γ of L1, L2, . . . , Ln, with respect to
∆1, ∆2, . . . , ∆n, is (· · · (L1 ∆1

|||Γ
∆2

L2) ∆1∪∆2
|||Γ

∆3
· · · ) ⋃

i∈[n−1] ∆i
|||Γ

∆n
Ln

and the rS-shuffle on Γ of L1, L2, . . . , Ln, with respect to ∆1, ∆2, . . . , ∆n,
is (· · · (L1 ∆1

||Γ
∆2

L2) ∆1∪∆2
||Γ

∆3
· · · ) ⋃

i∈[n−1] ∆i
||Γ

∆n
Ln. -.
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We now introduce some shorthand notations for these n-ary (fair) fS-shuffles
and n-ary (fair) rS-shuffles .

Notation 15. Let n ≥ 1.
We denote the fair fS-shuffle and the fS-shuffle of languages L1, L2, . . . ,

Ln, with respect to ∆1, ∆2, . . . , ∆n, by |||
{∆i|i∈[n]}

Li and ||
{∆i|i∈[n]}

Li,
respectively.

We denote the fair rS-shuffle and the rS-shuffle on an alphabet Γ of
L1, L2, . . . , Ln, with respect to ∆1, ∆2, . . . , ∆n, by |||Γ

{∆i|i∈[n]}
Li and

||Γ
{∆i|i∈[n]}

Li, respectively. -.

For the next section it is convenient to reformulate some results on the asso-
ciativity of (fair) fS-shuffling using the new notations.

Theorem 6.4.46. (1) If wi ∈ ∆∞
i , for all i ∈ [n], then |||

{∆i|i∈[n]}
{wi} =

{w ∈ (
⋃

i∈[n] ∆i)∞ | ∀ i ∈ [n] : pres∆i
(w) = wi}, and

(2) if Li ⊆ ∆∞
i , for all i ∈ [n], are prefix closed, then ||

{∆i|i∈[n]}
Li = {w ∈

(
⋃

i∈[n] ∆i)∞ | ∀ i ∈ [n] : pres∆i
(w) ∈ Li}.

Proof. (1) This follows from the repeated application of Corollary 6.4.27 and
the observation that for all i, j ∈ [n] and x ∈ ∆∞

i , pres∆i
(pres∆i∪∆j

(x)) =
pres∆i

(x).
(2) This follows from Theorem 6.4.40 and its proof. -.

6.5 Team Automata Satisfying Compositionality

In this section we combine the relations between the behavior of team au-
tomata and that of their constituting component automata — as developed
in Section 6.2 — and the (synchronized) shuffles from Sections 6.3 and 6.4.

In our general setup team automata may have an infinite set of component
automata. In the context of compositionality, however, it is more realistic to
consider team automata composed over a finite set of component automata.

Notation 16. For the remainder of this chapter we assume that our fixed
composable system S is finite, viz. I is a finite subset of N. -.

Each ai synchronization in a team automaton requires the participation of all
its constituting component automata sharing the action being synchronized.
This is reflected in the following result, which shows that the behavior of the
maximal-ai team automaton, in which no ai synchronizations are excluded,
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can be described as the fS-shuffle of the behavior of its constituting compo-
nent automata. Corresponding versions of this result have been formulated
for other automata-based specification models with composition based on the
ai principle (see, e.g., [Tut87] and [Jon87]).

Theorem 6.5.1. Let T be the Rai -team automaton over S. Then

BΣ,∞
T = ||

{Σi|i∈I}
BΣi,∞

Ci
.

Proof. (⊆) This follows immediately from Theorem 6.2.9, the prefix closure
of the behavior of component automata, and Theorem 6.4.46(2).

(⊇) Let w ∈ ||
{Σi|i∈I}

BΣi,∞
Ci

. Note that each BΣi,∞
Ci

is prefix closed.

Hence, according to Theorem 6.4.46(2), presΣi
(w) ∈ BΣi,∞

Ci
, for all i ∈ I.

Consequently, by definition there exist αi ∈ C∞
Ci

such that presΣi
(αi) =

presΣi
(w), for all i ∈ I. Hence

∏
i∈I αi ∈

∏
i∈I C

∞
Ci
. Since w ∈ Σ∞ is such

that presΣi
(w) = presΣi

(αi), for all i ∈ I, Corollary 6.2.15 implies that there
exists a β ∈ C∞

T such that presΣ(β) = w. Hence w ∈ BΣ,∞
T . -.

Example 6.5.2. (Example 6.2.12 continued) Recall the Rai -team automaton
T ai over {C1, C2}, depicted in Figure 6.4(b).

Indeed we see that we getBΣ,∞
T ai = {λ, a} = ({bn | n ≥ 0}∪{bna | n ≥ 0}∪

{bω})
{a,b}

||
{a,b}

({λ} ∪ {abn | n ≥ 0} ∪ {abω}) = BΣ1,∞
C1 Σ1

||
Σ2

BΣ2,∞
C2

=

(||
Σ1

BΣ1,∞
C1

)
Σ1

||
Σ2

BΣ2,∞
C2

= ||
{Σi|i∈[2]}

BΣi,∞
Ci

.
Now recall the team automaton T over {C1, C2}, depicted in Figure 6.3(a).

Note that while ba /∈ {λ, a} = ||
{Σi|i∈[2]}

BΣi,∞
Ci

, clearly ba ∈ BΣ,∞
T -.

Each free synchronization in a team automaton is such that only one of its
component automata participates — under the assumption that a loop on
the action being synchronized is always executed. Hence, if we require S to
be loop limited, then the behavior of the maximal-free team automaton over
S equals the shuffle of the behavior of the component automata from S.
Actually we prove a more general result, viz. that the behavior of a specific
heterogeneous team automaton that is composed according to a mixture of
maximal-free and maximal-ai synchronizations equals the rS-shuffle of the
behavior of its constituting component automata.

Theorem 6.5.3. Let Γ̄ = Σ\Γ and let T be the {Rai
a | a ∈ Σ∩Γ}∪{Rfree

a |
a ∈ Γ̄}-team automaton over S. Then

if S is Γ̄ -loop limited, then BΣ,∞
T = ||Γ

{Σi|i∈I}
BΣi,∞

Ci
.
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Proof. Let T ′ be the team automaton that is obtained from T by attaching
a label to each action from Γ̄ depending on the component automaton exe-
cuting that action, i.e. T ′ = (Q,Σ′, δ′, I) with Σ′ = {[a, i] | a ∈ Γ̄ ∩Σi, i ∈
I} ∪ (Σ ∩ Γ ) and δ′ = {(q, [a, i], q′) | a ∈ Γ̄ , (q, a, q′) ∈ δ, proji

[2](q, q′) ∈
δi,a, i ∈ I} ∪ (δ ∩ (Q × Γ × Q)). Since all actions from Γ̄ are free in T ,
the behavior of T is an encoding of the behavior of T ′. Let ψ : (Σ′)∗ → Σ∗

be the homomorphism defined by ψ([a, i]) = a and ψ(a) = a. Then clearly
BΣ,∞

T = ψ(BΣ′,∞
T ′ ).

For all i ∈ I, let C′
i be the component automaton that is obtained from

Ci by labeling each of its actions from Γ̄ with i, i.e. C′
i = (Qi, Σ′

i, δ
′
i, Ii)

with Σ′
i = {[a, i] | a ∈ Γ̄ ∩ Σi} ∪ (Γ ∩ Σi) and δ′i = {(q, [a, i], q′) | a ∈

Γ̄ , (q, a, q′) ∈ δi} ∪ (δi ∩ (Qi × Γ ×Qi)). Obviously, BΣi,∞
Ci

= ψ(B
Σ′

i,∞
C′
i

), for

all i ∈ I. Let S ′ = {C′
i | i ∈ I}. Since S is Γ̄ -loop limited it thus follows

that (δ′)[a,i] = Rfree
[a,i](S

′), for all a ∈ Γ̄ and for all i ∈ I. Hence T ′ is the

{Rai
a | a ∈ (Σ∩Γ )}∪{Rfree

a | a ∈ Σ′\Γ}-team automaton over S ′. Moreover,
since the component automata from S ′ can share actions from Σ ∩ Γ but
not from Σ′ \ Γ , it follows that for all K ⊆ I,

⋂
k∈K Σ′

k =
⋂

k∈K Σk ∩ Γ .
Hence Theorem 4.5.5 implies that T ′ is the maximal-ai team automaton
over S ′ as well. Subsequently, Theorem 6.5.1 and Lemma 6.4.7(2) imply that

BΣ,∞
T =ψ(BΣ′,∞

T ′ )=ψ(||
{Σ′

i
|i∈I}

B
Σ′

i,∞
C′
i

)=ψ(||Γ
{Σ′

i
|i∈I}

B
Σ′

i,∞
C′
i

), which equals

||Γ
{ψ(Σ′

i
)|i∈I}

ψ(B
Σ′

i,∞
C′
i

) = ||Γ
{Σi|i∈I}

BΣi,∞
Ci

because ψ(Σ′ \ Γ ) ∩ Γ = ∅. -.

Example 6.5.4. (Example 6.2.1 continued) The Rfree
a ∪Rai

b -team automaton
over {C1, C2} is defined as T fa =({(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}, {a, b}, δ

fa ,
{(q1, q2)}), where δfa = {((q1, q2), a, (q1, q′2)), ((q1, q2), a, (q

′
1, q2)), ((q1, q

′
2), b,

(q1, q′2)), ((q1, q
′
2), a, (q

′
1, q

′
2)), ((q

′
1, q2), a, (q

′
1, q

′
2))} and it is depicted in Fig-

ure 6.6(b).
Clearly {C1, C2} is {a}-loop limited and indeed we see that BΣ,∞

T fa =

||{b}
{Σi|i∈[2]}

BΣi,∞
Ci

. -.

The behavior of the maximal-free team automaton over a loop limited com-
posable system thus equals the shuffle of the behavior of its constituting
component automata.

Theorem 6.5.5. Let T be the Rfree-team automaton over S. Then

if S is loop limited, then BΣ,∞
T = || i∈I BΣi,∞

Ci
.

Proof. This follows immediately from Theorem 6.5.3 with Σ ∩ Γ = ∅. -.

Example 6.5.6. (Examples 6.2.22 and 6.5.4 continued) Recall the Rfree -team
automaton T free over {C1, C2}, depicted in Figure 6.6(a). Recall also that
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{C1, C2} is {a}-loop limited. Indeed B{a},∞
T free = {λ, a, aa} = {λ, a} || {λ, a} =

B{a},∞
C1

|| B{a},∞
C2

= (|| i∈[1] B
{a},∞
C1

) || B{a},∞
C2

= || i∈[2] B
{a},∞
Ci

.
Since {C1, C2} however is not loop limited, it is no surprise that ab /∈

BΣ,∞
T free , whereas ab ∈ || i∈[2] B

Σi,∞
Ci

. -.

Summarizing, we have thus been able to describe the behavior of three types
of team automata in terms of the behavior of their constituting component
automata (cf. Theorems 6.5.1, 6.5.3, and 6.5.5). However, we needed the con-
dition of loop limitedness to avoid ambiguity with respect to the participation
of component automata in case of loops. The reason is — once again — the
maximal interpretation adopted in Section 4.2. In the next chapter we will
show how to circumvent this problem by switching to vectors of actions.

The results of this section provide a semantic equivalent of the syn-
tactic hierarchical results presented in Sections 4.3 and 5.2. Recall from
those sections that every iterated team automaton over S can be consid-
ered as a team automaton directly composed over S. Hence, if we construct
only maximal-ai team automata, then the fact that fS-shuffling is associa-
tive for prefix-closed languages implies that the behavior of each such (it-
erated) maximal-ai team automaton equals the fS-shuffle of the behavior
of its constituting component automata from S. Such (iterated) maximal-ai
team automata thus satisfy compositionality. A similar reasoning can be ap-
plied in case we consider (iterated) maximal-free team automata or (iterated)
{Rai

a | a ∈ Σ ∩ Γ} ∪ {Rfree
a | a ∈ Σ \ Γ}-team automata over S, where Γ is

an alphabet. These satisfy compositonality in the sense that their behavior
equals the shuffle or rS-shuffle, respectively, of the behavior of their consti-
tuting component automata from S. We now illustrate this exposition by an
example. Note that the fact that the distinction of input, output, and inter-
nal actions is irrelevant here allows us to deal with synchronized automata
rather than team automata in this example.

Example 6.5.7. (Example 4.3.1 continued) Assume that all synchronized au-
tomata composed in Example 4.3.1 are maximal-ai synchronized automata.

Theorem 6.5.1 then implies that BΣ,∞
T1−7

= ||
{Σi|i∈[7]}

BΣi,∞
Ai

.
Consequently, together with the commutativity of fS-shuffling (cf. Corol-

lary 6.4.19) and the associativity of fS-shuffling for prefix closed languages
(cf. Theorems 6.4.29 and 6.4.42) Theorem 6.5.1 furthermore implies that
BΓ ′′,∞

T ′′ = BΓ ′,∞
T ′ ⋃

i∈[6] Σi
||

Σ7
BΣ7,∞

A7
= ( BΓ1,∞

T{2,4,6}
⋃

i∈{2,4,6} Σi
|| ⋃

i∈{1,3,5} Σi

BΓ2,∞
T{1,3,5}

)
(
⋃

i∈{2,4,6} Σi) ∪ (
⋃

i∈{1,3,5} Σi)
||

Σ7
BΣ7,∞

A7
= ( ( ||

{Σi|i∈{2,4,6}}
BΣi,∞

Ai
)

⋃

i∈{2,4,6} Σi
|| ⋃

i∈{1,3,5} Σi
(||

{Σi|i∈{1,3,5}}
BΣi,∞

Ai
))

(
⋃

i∈{2,4,6} Σi) ∪ (
⋃

i∈{1,3,5} Σi)
||

Σ7

BΣ7,∞
A7

= ( ||
{Σi|i∈[6]}

BΣi,∞
Ai

⋃

i∈[6] Σi
|| Σ7

BΣ7,∞
A7

= ||
{Σi|i∈[7]}

BΣi,∞
Ai

=

BΣ,∞
T1−7

. -.
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We close this chapter with an observation on si synchronizations. From a
behavioral point of view, si synchronizations are very different from both ai
and free synchronizations. While an ai synchronization of an action requires
the participation of every component automaton with that action, a free syn-
chronization of an action requires the participation of only and exactly one
component automaton with that action. Whether an action of a component
automaton is required to participate in an si synchronization of that action,
however, cannot be decided without information on its current local state. A
shuffle that would describe the behavior of a maximal-si team automaton in
terms of the behavior of its constituting component automata should thus be
a type of synchronized shuffle that — depending on local states of the compo-
nent automata — is able to decide which actions of the component automata
must be interleaved and which must be synchronized. This, however, seems
impossible due to the simple fact that the behavior of component automata
is stripped from all state information.



7. Team Automata, I/O Automata, Petri Nets

In the Introduction we have discussed team automata in the context of re-
lated models from the literature. In this chapter we provide a more detailed
comparison of team automata with two specific models, viz. Input/Output
automata (I/O automata for short) and (labeled) Petri nets .

In [Ell97] the model of I/O automata underlies the considerations which
led to the introduction of team automata. Here we show how indeed I/O
automata fit formally within the framework of team automata.

Next we study how team automata relate to Individual Token Net Con-
trollers (ITNCs for short) — a particular model of vector labeled Petri nets
from the theory of Vector Controlled Concurrent Systems (VCCSs for short)
developed in [Kee96]. To this aim, we introduce the intermediate model of
vector team automata which execute vectors of actions rather than ordinary
actions. For a subclass of vector team automata we subsequently provide a
translation into ITNCs which shows how team automata can be viewed as
fitting in the VCCS framework.

Notation 17. In this chapter we again assume a fixed, but arbitrary and pos-
sibly infinite index set I ⊆ N, which we will use to index the component au-
tomata involved. For each i ∈ I, we again let Ci = (Qi, (Σi,inp, Σi,out, Σi,int),
δi, Ii) be a fixed component automaton and we use Σi to denote its set of
actions Σi,inp ∪ Σi,out ∪ Σi,int. Moreover, we again let S = {Ci | i ∈ I}
be a fixed composable system and we let T = (Q, (Σinp, Σout, Σint), δ, I) be
a fixed team automaton over S. We furthermore use Σ to denote its set of
actions Σinp ∪Σout ∪Σint, we use Σext to denote its set of external actions
Σinp ∪ Σout,and we use Σloc to denote its set of locally-controlled actions
Σout ∪Σint. Recall that I ⊆ N implies that I is ordered by the usual ≤ rela-
tion on N, thus inducing an ordering on S, and that the Ci are not necessarily
different. Finally, we again let Θ be an arbitrary but fixed alphabet disjoint
from Q. -.
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7.1 I/O Automata

Team automata were defined to be an extension of I/O automata. In this
section we show how I/O automata fit into the framework of team automata.

Originally I/O automata are defined in terms of automata, together with
an associated equivalence relation over the set of actions used to define so-
called fair computations. In [Tut87], I/O automata without such equivalence
relations are called safe I/O automata and in [GSSL94] they are referred
to as unfair. Here we are not concerned with fairness in the context of I/O
automata and we only consider safe or unfair I/O automata, which we will
simply refer to as I/O automata.

7.1.1 Definitions

An I/O automaton is an automaton together with a classification of its actions
as input, output, and internal actions. Input and output actions form the
interface between the automaton and its environment, including other I/O
automata, whereas internal actions cannot be observed by the environment.
With these considerations in mind, I/O automata are formally defined as
component automata, but with the additional condition that they should be
reactive, i.e. input enabling. This means that whatever the current state of
the automaton, it is always capable of receiving any of its potential inputs.

Definition 7.1.1. An Input/Output automaton (I/O automaton for short)
is a component automaton C = (Q, (Σinp, Σout, Σint), δ, I) such that

C is Σinp-enabling. -.

From a given set of I/O automata, a new I/O automaton may be constructed
provided that this set satisfies two conditions. These conditions only relate
to the role of the actions and do not use the property of input enabling.

First the I/O automata should form a composable system. Hence, as for
the definition of a team automaton, it is required that the internal actions of
any of the I/O automata belong uniquely to that I/O automaton.

Secondly, there is the idea that two I/O automata cannot be expected
to synchronize on an action which is output for both of them. Rather than
complicating the notion of composition itself, this is prohibited by the re-
quirement that the output actions of the I/O automata should be disjoint.
This means that every external action can be output in at most one of the
I/O automata.

Definition 7.1.2. The composable system S is a compatible system if for
all i ∈ I,
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Σi,out ∩
⋃

j∈I\{i} Σj,out = ∅. -.

Note that every subset of a compatible system is again a compatible system.
The composition of I/O automata into a new I/O automaton is defined

by requiring those I/O automata sharing an action a to perform this a simul-
taneously (i.e. synchronize on a). The intention is that such a simultaneous
execution models a communication from the I/O automaton of which a is an
output action to the I/O automata of which a is an input action. In fact,
the execution of an input action is thought of as the notification of the ar-
rival of output either from within the new I/O automaton (i.e. from another
I/O automaton) or from the environment. In terms of our framework this
means that a team automaton is constructed in which every action is ai .
Furthermore — although this is only implicit in the explanation — all syn-
chronizations which do not violate this condition have to be included, which
matches our maximality principle. Hence the constructed team automaton is
unique.

Definition 7.1.3. T is the team I/O automaton over S if

(1) S is compatible,

(2) each Ci, i ∈ I, is an I/O automaton, and

(3) for all a ∈ Σext,

δa = Rai
a (S). -.

We thus note that, given a compatible system S of I/O automata, the unique
team I/O automaton over S is the maximal-ai team automaton over S.

Note that the condition that each of the component automata Ci in a
compatible system S is input enabling (i.e. Σi,inp-enabling) guarantees that S
is input enabling (i.e. Σinp-enabling). Theorem 4.6.8 then implies that for all
a ∈ Σinp, every a-transition in every component automaton Ci is omnipresent
in T , after which Theorem 5.5.9 implies that the maximal-ai team automaton
T over S is Σinp ∩Σi-enabling, for all i ∈ I. Hence T is Σinp-enabling. The
composition of the maximal-ai team automaton over a compatible system
of input-enabling component automata thus preserves input enabling, from
which it follows that every team I/O automaton is again an I/O automaton.

Theorem 7.1.4. Every team I/O automaton is an I/O automaton. -.

It must be noted that the maximal-ai team automaton over a composable
system which is not compatible may still be an I/O automaton, even though
the team I/O automaton over such a composable system does not exist.
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Surprisingly enough, the following example shows that not every subteam
determined by some J ⊆ I of a team I/O automaton over S is an I/O
automaton, let alone the team I/O automaton over {Cj | j ∈ J}.

Example 7.1.5. The I/O automata C1 = ({p}, ({a},∅,∅), {(p, a, p)}, {p})
and C2 = ({q}, (∅, {a},∅),∅, {q}) obviously form a compatible system. The
team I/O automaton over {C1, C2} is T = ({(p, q)}, (∅, {a},∅),∅, {(p, q)})
and its subteam determined by {1} is SUB{1} = ({(p)}, ({a},∅,∅),∅, {(p)}),
which clearly is not an I/O automaton. -.

An auxiliary condition is thus needed to guarantee that the subteam deter-
mined by some J ⊆ I of a team I/O automaton T over S is the team I/O
automaton over {Cj | j ∈ J}. As we show next, it suffices to require that in
all component automata from S, all output actions that are actions for the
subteam have at least one transition.1

Theorem 7.1.6. Let S be a compatible system of I/O automata and let T
be the team I/O automaton over S. Let J ⊆ I. Then

if for all a ∈ Σout and for all j such that a ∈ Σj,out, δj,a (= ∅, then
SUBJ (T ) is the team I/O automaton over {Cj | j ∈ J}.

Proof. By Theorem 5.1.10, SUBJ(T ) is a team automaton over {Cj | j ∈ J},
so we only have to prove that the three requirements of Definition 7.1.3 hold.

(1) This follows from the observation that every subset of a compatible
system is again a compatible system.

(2) This follows from the fact that each of the component automata Cj ,
with j ∈ J , is an I/O automaton.

(3) For all a ∈ Σout and for all j such that a ∈ Σj,out, let δj,a (= ∅. Then
we have to prove that for all a ∈ ΣJ,ext, (δJ)a = Rai

a ({Cj | j ∈ J}). Now
let a ∈ ΣJ,ext. Since T is the team I/O automaton over S, we know that
δa = Rai

a (S). We distinguish two cases.
If a ∈ Σinp, then the fact that S is Σinp-enabling, together with the fact

that δa = Rai
a (S), implies that δa (= ∅.

If a ∈ Σout, then the fact that for all j such that a ∈ Σj,out, we know that
δj,a (= ∅, together with the fact that δa = Rai

a (S), implies that δa (= ∅.
It now follows by Theorem 4.7.5(2) that (δJ )a = Rai

a ({Cj | j ∈ J}). -.

1 In [BEKR01a] and [BEKR03] we erroneously did not include this condition.
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7.1.2 Iterated Composition

By Theorem 7.1.4, every team I/O automaton is an I/O automaton and
hence can be used to iteratively define higher-level team I/O automata. This
allows us to continue the considerations of Sections 4.3 and 5.2, but now for
team I/O automata rather than synchronized automata and team automata,
respectively. In particular we thus have to take into account that team I/O
automata can only be formed over compatible systems of I/O automata.

Notation 18. For the rest of this section we let S be a compatible system of
I/O automata. -.

We begin by showing that compatibility is preserved when iteratively forming
team I/O automata.

Lemma 7.1.7. Let {Ij | j ∈ J }, where J ⊆ N, form a partition of I. Let,
for each j ∈ J , Tj be the team I/O automaton over Sj = {Ci | i ∈ Ij}. Then

{Tj | j ∈ J } is a compatible system.

Proof. Denote for each Tj , j ∈ J , by Γj its set of actions, by Γj,out its
output alphabet, and by Γj,int its internal alphabet. By definition Γj,out =⋃

i∈Ij
Σi,out, Γj,int =

⋃
i∈Ij

Σi,int, and Γj =
⋃

i∈Ij
Σi, for all j ∈ J . Then

the compatibility of S implies that for all i ∈ I, Σi,int ∩
⋃
!∈I\{i} Σ! =

∅ and Σi,out ∩
⋃
!∈I\{i} Σ!,out = ∅. Since the Ij are mutually disjoint it

now follows immediately that for all j ∈ J , Γj,int ∩
⋃
!∈J\{j} Γ! = ∅ and

Γi,out ∩
⋃
!∈J\{j} Γ!,out = ∅. Hence {Tj | j ∈ J } is a compatible system. -.

Given the compatible system S, we can iteratively form team I/O automata
until after a finite number of iterations all I/O automata in S have been used
once. During the iteration, compatibility is preserved by the previous lemma,
while Theorem 7.1.4 guarantees that all intermediate team I/O automata are
I/O automata. Hence we can speak of an iterated team I/O automaton over
S similar to the notion of an iterated team automaton over some composable
system, as defined in Definition 5.2.2.

Definition 7.1.8. T is an iterated team I/O automaton over S if either

(1) T is the team I/O automaton over S, or

(2) T is the team I/O automaton over {Tj | j ∈ J }, where each Tj is an
iterated team I/O automaton over the compatible system {Ci | i ∈ Ij},
for some Ij ⊆ I, and {Ij | j ∈ J } forms a partition of I. -.
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The fact that team I/O automata are constructed according to the maximal-
ai principle (cf. Definition 7.1.3(3)) guarantees that no transitions are lost
during the iteration process. Therefore any iterated team I/O automaton over
S coincides — upto a reordering — with the team I/O automaton over S.

Theorem 7.1.9. Let T be the team I/O automaton over S and let T̂ be an
iterated team I/O automaton over S. Then

〈〈T̂ 〉〉S = T .

Proof. If T̂ is directly obtained from S, i.e. without iteration, then 〈〈T̂ 〉〉S =
T̂ . Since T is the unique team I/O automaton over S, it then follows that
〈〈T̂ 〉〉S = T̂ = T .

Now let {Ij | j ∈ J } be a partition of I, for some J ⊆ N, and assume
that T̂ is the team I/O automaton over {Tj | j ∈ J }, with each Tj an iterated
team I/O automaton over the compatible system Sj = {Ci | i ∈ Ij}. With an
inductive argument we assume that 〈〈Tj〉〉Sj is the team I/O automaton over
Sj . Consequently, we can use Theorem 5.2.6(1) to conclude that there exists a
team automaton T ′ over {Tj | j ∈ J } such that 〈〈T ′〉〉S = T . Hence T ′ = T̂
follows once we have shown that T ′ is the maximal-ai team automaton over
{Tj | j ∈ J }.

We first observe that T ′ and T have — upto a reordering — the same
transitions, since 〈〈T ′〉〉S = T .

Now assume that some external action a of T ′ is not ai in T ′ with respect
to {Tj | j ∈ J }. Then T ′ has an a-transition in which some Tj is not involved
even though a belongs to the external alphabet of that Tj . This action a then
also belongs to the external alphabet of one of the component automata Ci ∈
Sj , while this component automaton is not involved in the given transition.
Consequently, the external action a of T is not ai in T with respect to
Sj = {Ci | i ∈ I}, a contradiction.

Next assume that T ′ misses, for some external action a, an a-transition
(q, q′) ∈ Rai

a ({Tj | j ∈ J }). By Theorem 7.1.6, for each j ∈ J , 〈〈Tj〉〉Sj =
SUBIj(T ) is the maximal-ai team automaton over Sj = {Ci | i ∈ Ij}. Since
T is moreover the maximal-ai team automaton over S = {Ci | i ∈ I}, it
follows that this a-transition (q, q′) — after reordering — belongs to Rai

a (S),
the set of all a-transitions of T , a contradiction with 〈〈T ′〉〉S = T .

Hence T ′ is the maximal-ai team automaton over {Tj | j ∈ J }, which
implies that T ′ = T̂ . Consequently 〈〈T̂ 〉〉S = 〈〈T ′〉〉S = T , as required. -.

From this theorem it follows that any team I/O automaton over a compatible
system can be constructed iteratively in any order from the given component
automata. The only difference between the directly constructed team I/O
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automaton and an iteratively constructed version may be in the ordering
and grouping of the state space and the transition space. This implies in
particular that — upto a reordering — there exists only one (iterated) team
I/O automaton over any given compatible system of component automata.

7.1.3 Synchronizations

We have seen above that the unique team I/O automaton over a compatible
system S of I/O automata is the maximal-ai team automaton over S. This
means that the knowledge on maximal-ai team automata we have acquired
so far, can now be applied to team I/O automata.

Notation 19. For the rest of this section we let T be the unique team I/O
automaton over S. -.

The fact that T is the maximal-ai team automaton over S implies that all of
its actions are thus ai by Theorem 4.5.3(2). This provides a formal description
of the idea we set out with in Subsection 7.1.1, viz. that output actions of
an I/O automaton are always received by those I/O automata that have its
input counterpart as an action. Since I/O automata are input-enabled, it is
even the case that the I/O automaton in which an action a is output never
has to wait until those I/O automata in which a is input are ready for the
communication. It may however be the case that an external action appears
only as an input action in S. Then it is again an input action of T and can
be used as such in a higher-level team I/O automaton.

By combining Theorem 5.3.15, Corollary 5.3.19, and Theorem 5.3.20 with
the fact that all actions of T are ai , we moreover obtain that all input actions
of T are sipp and wipp, while all its output actions are sopp, wopp, ms ,
sms , and wms . This provides a formal description of the fact that indeed —
as mentioned in the Introduction — peer-to-peer and master-slave types of
synchronization cannot be distinguished in (team) I/O automata: all of their
output actions are by definition sopp and sms (and thus also wopp, wms ,
and ms).

7.1.4 Behavior

In Chapter 6 we have presented some results on the behavior of finite com-
ponent automata. One of the conclusions was that the distinction of the set
of actions into input, output, and internal actions has no influence on the
behavior of finite component automata. Here we investigate whether that
situation changes as a result of the extra requirement that input actions need
to be input enabling.
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We denote IOCA={BΓ
C |Γ is an alphabet and C is a finite input-enabling

component automaton with full alphabet Γ}. Then Lemma 6.1.1 and Defini-
tion 7.1.1 immediately yield IOCA ⊆ CA = pREG. As was the case for the
inclusion pREG ⊆ CA, the inclusion pREG ⊆ IOCA can be proven by choosing
any distribution of the alphabet of an automaton over input, output, and
internal alphabets, but now input enabling should be guaranteed. Thus au-
tomaton A = (P, Γ, γ, J) such that P and Γ are finite can be viewed as a
component automaton C = (P, (Γ1, Γ2, Γ3), γ, J) such that Γ1 ∪ Γ2 ∪ Γ3 = Γ ,
with BΓ

C = BΓ
A. Obviously, C is input enabling whenever Γ1 = ∅. Hence we

have the following result.

Lemma 7.1.10. pREG = CA = IOCA. -.

From Lemma 6.1.2 we now conclude that all languages in IOCA can also be
obtained as input, output, internal, external, and locally-controlled behavior
of component automata.

We denote IOCAalph={Balph
C |C is a finite input-enabling component au-

tomaton}, with alph ∈ {inp, out , int , ext , loc}. Since all languages in IOCAalph

are the images under a weak coding of languages in IOCA = pREG, using the
closure of pREG under weak codings we immediately obtain the following
extension of Lemma 6.1.3.

Lemma 7.1.11. Let alph ∈ {inp, out , int , ext , loc}. Then

IOCAalph ⊆ pREG. -.

Recall the component automata [C, out] = (P, (∅, Γ,∅), γ, J) and [C, int ] =
(P, (∅,∅, Γ ), γ, J) as variants of an arbitrary component automaton C =
(P, (Γinp, Γout, Γint), γ, J) with Γ = Γinp ∪ Γout ∪ Γint. Then we obtain the
following result by combining Lemma 7.1.11 with Lemmata 7.1.10 and 6.1.2
and the observation that [C, out ] and [C, int ] trivially are input enabling.

Theorem 7.1.12. pREG = CA = CAinp = CAout = CAint = CAext =
CAloc = IOCA = IOCAout = IOCAint = IOCAext = IOCAloc. -.

Thus what remains to be done is to compare IOCAinp and IOCA (or, equiv-
alently, IOCAinp and pREG). From Lemma 7.1.11 we already know that
IOCAinp ⊆ pREG. That this inclusion is proper follows immediately from
the following lemma.

Lemma 7.1.13. Let C=(P, (Γinp, Γout, Γint), γ, J) be a finite input-enabling
component automaton such that J (= ∅. Then

Binp
C = Γ ∗

inp.
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Proof. Binp
C ⊆ Γ ∗

inp is trivial, while Γ ∗
inp ⊆ Binp

C follows directly from the fact
that C is input enabling, i.e. for all states p ∈ P and for all input actions
a ∈ Γinp there exists a transition (p, a, p′) ∈ γ. -.

Theorem 7.1.14. IOCAinp ⊂ pREG. -.

Finally, since T is the maximal-ai team automaton over S, Theorem 6.5.1
immediately implies that its behavior equals the fS-shuffle of the behavior of
its constituting I/O automata provided that S is finite.

Theorem 7.1.15. If I is finite, then BΣ,∞
T = ||

{Σi|i∈I}
BΣi,∞

Ci
. -.

A corresponding version of this result has been formulated for I/O automata
(see, e.g., [Tut87]).

7.1.5 Conclusion

We have seen that from a structural viewpoint the I/O automaton model
fits seamlessly in the framework of team automata. Results and notions from
team automata thus become available for I/O automata. In particular, a
framework is provided in which the underlying concepts of I/O automata
can be given a broader perspective and compared with other ideas. For in-
stance, the possibility to define the language of a team I/O automaton di-
rectly — without actually considering the team — from the languages of its
components (cf. Theorem 7.1.15) is an important property in the theory of
I/O automata. The results presented in Subsection 6.5 now show that —
while sufficient — composition based on maximal-ai synchronizations is not
necessary to guarantee this property. Furthermore, the idea of subteams and
iterative construction only marginally investigated for I/O automata, is now
immediately available from the team automata framework.

Team automata allow more types of synchronization than I/O automata,
however, which is very convenient when formally designing a system. In fact,
for some designs it may be a disadvantage that the composition of I/O au-
tomata implies that output actions can always be traced back to a unique
sender. In [Tut87], Tuttle writes “For instance [...] suppose that we construct
automata modeling humans, and an automaton modeling a vending machine.
Humans can insert coins into the vending machine (output from humans and
input to the vending machine). Since we require that the output actions of
automata in a composition be disjoint, if we compose a collection of humans
with the vending machine, each human’s output action of inserting a coin
must be tagged with an identifier. Thus, the vending machine is effectively
able to determine which human is inserting a coin, which is not necessarily
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a realistic model of this simple interaction. It might be interesting to study
other notions of composition that would avoid this problem.”

We conclude this section by demonstrating how the problem sketched by
Tuttle can be avoided by using team automata rather than I/O automata.
The more general framework of team automata allows us to profit from the
freedom to consider a composable system that is not compatible (i.e. com-
ponent automata may share output actions) and to choose the transition
relation when constructing a team automaton.

Example 7.1.16. (Example 5.1.7 continued) Let A′ = ({s′, t′}, ({c}, {$},∅),
{(s′, $, t′), (t′, c, s′)}, {s′}) be a component automaton modeling yet another
coffee addict. It is essentially a copy of our coffee addict A depicted in Fig-
ure 5.2. Note that {C,A,A′} is a composable system.

We now show how our two coffee addicts can both obtain coffee from our
vending machine by forming a team automaton T ′ over {C,A,A′}. As before
we only have to choose the transition relation of T ′. Our vending machine
is very simple and handles one customer at a time. When one of our addicts
throws in a dollar our vending machine gives him or her a coffee. This can
be repeated ad infinitum.
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Fig. 7.1. Team automaton T ′ over {C,A,A′}.

Formally, T ′ is defined as T ′ = (Q′, (∅, {$, c},∅), δ′, {(e, s, s′)}), where
Q′ = {(e, s, s′), (e, s, t′), (e, t, s′), (e, t, t′), (f, s, s′), (f, s, t′), (f, t, s′), (f, t, t′)}
and δ′ = {((e, s, s′), $, (f, t, s′)), ((f, t, s′), c, (e, s, s′)), ((e, s, s′), $, (f, s, t′)),
((f, s, t′), c, (e, s, s′))}. It is depicted in Figure 7.1.

We see that the fact that the output actions of component automata need
not be disjoint when constructing a team automaton allows us to equip both
coffee addicts with the same output action $ of inserting a coin. The freedom
to choose a team automaton’s transition relation moreover allows us to still
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model the action of one of the coffee addicts inserting a coin as different
from the action of the other coffee addict inserting a coin. This contrasts
with composition as defined for I/O automata, in which case the action $
of inserting a coin would be modeled as a synchronized action of both coffee
addicts. This surely would be highly unrealistic, as none of the coffee vending
machines we have ever taken our coffee from allows the simultaneous insertion
of two coins!

Note, finally, that the behavior of the vending machine in T ′ contains $c,
from which cannot be deduced whether it was coffee addict A or rather coffee
addict A′ that inserted a coin and was served a coffee. As noted by Tuttle
himself, in case of I/O automata the vending machine would display either
$1c or $2c, in which case the identifiers thus indicate which coffee addict was
served a coffee. -.

7.2 Petri Nets

We now turn to a comparison of team automata with (labeled) Petri nets .
Petri nets were introduced in [Pet62] as a framework for modeling dis-

tributed systems. Since then they have been studied extensively (for an
overview see, e.g., [RR98a] and [RR98b]). They occupy a central place in
the study of distributed systems and are often used as a yardstick for other
models.

Actually, “Petri net” is a generic name for a whole class of net-based
models, consisting of an underlying structure (a net) together with rules de-
scribing its dynamics. Within a net one distinguishes places (which represent
local aspects of the global states) and transitions (representing actions). To
avoid confusion with the transitions of automata, we will from here on re-
fer to Petri net transitions as events. Events are connected to places and
places to events. Thus a net is a bipartite directed graph. In some models,
certain elements may be labeled. The dynamics of a net is given in the form
of rules defining when (in which states) an event can occur and its effect on
the current state if it occurs. It is fundamental to Petri net theory that both
the conditions allowing an event to occur and the effect of an occurrence on
the global state, are local in the sense that they only involve places in the
immediate neighborhood of (adjacent to) the event.

Team automata model distributed systems composed of component au-
tomata which work together by synchronizing their transitions. A synchro-
nization describes the effect of a global (team) action on a global state of
the system in terms of the local state changes of the component automata



244 7. Team Automata, I/O Automata, Petri Nets

simultaneously executing that action. Component automata not involved in
a synchronization remain idle and their current state is not affected.

Team automata thus resemble a (labeled) Petri net model with the local
states as places and the synchronizations as labeled events. In a team au-
tomaton, executing an action (as the occurrence of a labeled transition) has
a local effect, restricted to the local states of those component automata that
are actually involved in executing that action. However, the synchronizations
in a team automaton are selected from the complete transition spaces of their
actions, which implies that the enabling of an action in the team automaton
depends on the current global state as a whole rather than just on the local
states of the component automata that are about to execute that action. This
concept is called state sharing in [EG02], in which team automata are com-
pared with UML statecharts (see, e.g. [UML99]) as used in object-oriented
modeling. Moreover, due to the loop problem it is not always clear which
component automata exactly take part in a synchronization.

In this section we first turn to the latter problem and propose a switch
from (team) actions to vectors of (component) actions from which the partic-
ipation of a component automaton in a synchronization can be seen immedi-
ately. This switch then makes it possible to view (vector) team automata as
Vector Controlled Concurrent Systems (VCCSs for short) and, in particular,
to relate a subclass of (vector) team automata to Individual Token Net Con-
trollers (ITNCs for short) — a model of vector labeled Petri nets developed
within the VCCS framework.

7.2.1 Vector Actions and Vector Team Automata

By the definition of team automata, each transition of T is of the form
(q, a, q′) with a ∈ Σ and q, q′ ∈

∏
i∈IQi. We now switch from transitions

(q, a, q′) to vector transitions (q, a, q′), where a is an element of
∏

i∈I{a, λ},
i.e. a is a vector action, with for each component automaton a corresponding
entry which is either a or λ. If an entry of a is a, then this indicates that the
corresponding component automaton takes part in the synchronization on a,
while if it is λ, then that component automaton is not involved.

This switch to vector transitions and vector actions is feasible since for
each transition (q, a, q′) the global state change from q to q′, caused by the
occurrence of this transition, is described in terms of changes in the local
states of the component automata involved. Let j ∈ I. If projj(q) (= projj(q

′),

then projj
[2](q, q′) ∈ δj,a and the j-th component automaton is involved. In

that case we set projj(a) = a. If projj(q) = projj(q
′) and projj

[2](q, q′) (∈ δj,a,
then the j-th component automaton is not involved and we set projj(a) = λ.
There is however — again — the problem of loops. If projj(q) = projj(q

′)



7.2 Petri Nets 245

and projj
[2](q, q′) ∈ δj,a, then it is unclear whether or not the j-th component

automaton is involved. Following the maximal interpretation as adopted in
Section 4.2 we assume it is and thus set projj(a) = a.

Following the above procedure we can now transform an “ordinary” team
automaton (over S) into a vector team automaton (over S), which thus has
vector transitions and vector actions rather than “flat” transitions and “flat”
actions.

On the other hand, one may also directly define a vector team automaton
over S by describing the required synchronizations straight away as tran-
sitions with vectors as labels. In that case, for each action a, one chooses
vector transitions from the complete vector transition space ∆v

a(S) of a in S
describing all possible vector transitions for a.

Definition 7.2.1. Let a ∈ Σ. Then the complete vector transition space of
a in S is denoted by ∆v

a(S) and is defined as

∆v
a(S) = {(q, a, q′) | (q, q′) ∈ ∆a(S) ∧ a ∈

∏
i∈I{a, λ} ∧ (∃i ∈ I :

proji(a) (= λ) ∧ (∀i ∈ I : [proji(a) = a]⇒ [proji
[2](q, q′) ∈ δi,a]∧

[proji(a) = λ]⇒ [proji(q) = proji(q
′)])}. -.

If (q, a, q′) ∈ ∆v
a(S), then a is called a vector representation of a in S or a

vector action of S. Observe that due to the fact that S is composable, every
internal action has at most one vector representation and this representation
has exactly one entry which is not λ. Furthermore, all vector representations
of external actions have at least one entry which is not λ.

A vector team automaton over S is now defined exactly as an ordinary
team automaton over S, except that its transition relation consists of vector
transitions defining state changes caused by vector actions.

Definition 7.2.2. A vector team automaton over S is a construct T v =
(Q, (Σinp, Σout, Σint), δv, I), where

δv ⊆
⋃

a∈Σ ∆v
a(S) and moreover ∆v

a(S) ⊆ δv if a ∈ Σint. -.

We call δv the set of (labeled) vector transitions of T v and we define δva =
{(q, q′) | (q, a, q′) ∈ δv} as the set of vector a-transitions of T v.

Completely analogous to the way we extracted subteams from team au-
tomata, we can distinguish a subteam within T v by focusing on a subset of S.
Its vector actions and vector transitions are restrictions of the vector actions
and vector transitions of T v to the component automata in the subteam.

Definition 7.2.3. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team
automaton over S and let J ⊆ I. Then the subteam of T v determined by J
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is denoted by SUBJ(T v) and is defined as SUBJ(T v) = (QJ , (ΣJ,inp, ΣJ,out,
ΣJ,int), δvJ , IJ ), where

QJ =
∏

j∈J Qj,
ΣJ,inp = (

⋃
j∈J Σj,inp) \

⋃
j∈J Σj,out,

ΣJ,out =
⋃

j∈J Σj,out,
ΣJ,int =

⋃
j∈J Σj,int,

δvJ ={(projJ(q), projJ (a), projJ(q
′))∈∆v

a({Cj |j∈J}) | (q, a, q
′)∈δv}, and

IJ =
∏

j∈J Ij. -.

It is not hard to see that a subteam of a vector team automaton satisfies the
requirements of a vector team automaton.

Theorem 7.2.4. Let T v be a vector team automaton over S and let J ⊆ I.
Then

SUBJ (T v) is a vector team automaton over {Cj | j ∈ J}.

Proof. Analogous to the proof of Theorem 5.1.10. -.

The definition of (finite and infinite) computations of vector team automata
can be carried over from (team) automata in the obvious way. This we will
do later in this section, when we will also propose definitions for the behav-
ior of vector team automata. We first concentrate on the structure of the
synchronizations of vector team automata.

Before illustrating some of the notions introduced above, we make the fol-
lowing two remarks. First note that whenever the distinction of the alphabet
into input, output, and internal actions is irrelevant, then a synchronized au-
tomaton can be seen as a team automaton. As a matter of fact, in examples
in this chapter we will often refer to synchronized automata defined in ear-
lier chapters as team automata. Secondly, recall that vectors may be written
vertically as well as horizontally. In figures we will more often write them
vertically, even though in the text they are more often written horizontally.

Example 7.2.5. (Example 4.2.1 continued) Consider vector team automata
T v
1 = (Q, (∅, {a},∅), δv1 , {(p, q, r)}) and T v

2 = (Q, (∅, {a},∅), δv2 , {(p, q, r)}),
in which Q = { (p, q, r), (p, q, r′) } and δv1 = { ((p, q, r), (λ, λ, a), (p, q, r′)),
((p, q, r′), (λ, a, λ), (p, q, r′)) }, whereas δv2 = { ((p, q, r), (λ, a, a), (p, q, r′)),
((p, q, r′), (λ, a, λ), (p, q, r′))}, over the composable system {C1, C2, C3} ob-
tained by turning the automata A1, A2, and A3 into component automata
with output actions only. T v

1 and T v
2 are depicted in Figure 7.2.

Note that in both vector team automata for each vector transition it is
clear which component automata participate. This contrasts with the team
automaton T depicted in Figure 4.6(b).
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T v
1 :

(p, q, r)

(p, q, r′)

(λ, λ, a)

(λ, a, λ)

T v
2 :

(p, q, r)

(p, q, r′)

(λ, a, a)

(λ, a, λ)

Fig. 7.2. Vector team automata T v
1 and T v

2 .

Finally, it is clear that the subteam SUB{1}(T v
1 ) = SUB{1}(T v

2 ) =
({(p)}, (∅,∅,∅),∅, {(p)}) has the same structure as A1, depicted in Fig-
ure 4.6(a), whereas the subteam SUB{2,3}(T

v
1 ) = ({(q, r), (q, r′)}, (∅, {a},∅),

{((q, r), (λ, a), (q, r′)), ((q, r′), (a, λ), (q, r′))}, {(q, r)}) is depicted in Fig-
ure 7.3. -.

(

q

r′

)

(

a

λ

)

(

λ

a

)

(

q

r

)

SUB{2,3}(T v
1 ):

Fig. 7.3. Subteam SUB{2,3}(T
v
1 ) of vector team automaton T v

1 .

By replacing each transition (q, a, q′) of a vector team automaton T v by the
flat transition (q, a, q′) whenever a is a vector representation of the action a,
one obtains the flattened version of T v.

Definition 7.2.6. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team
automaton. Then the flattened version of T v is denoted by T v

F and is defined
as T v

F = (Q, (Σinp, Σout, Σint), δvF , I), where

δvF = {(q, a, q′) | ∃ a ∈
∏

i∈I{a, λ} : (q, a, q′) ∈ δv}. -.

The flattened version of a vector team automaton is an ordinary team au-
tomaton with essentially the same synchronizations as the vector team au-
tomaton.



248 7. Team Automata, I/O Automata, Petri Nets

Lemma 7.2.7. The flattened version of a vector team automaton over S is
a team automaton (over S).

Proof. Follows directly from Definitions 5.1.6, 7.2.2, and 7.2.6. -.

Note that whereas each vector team automaton has a single flattened version,
many vector team automata may define the same flattened version.

Example 7.2.8. (Example 7.2.5 continued) Both vector team automaton T v
1

and vector team automaton T v
2 have team automaton T , as depicted in Fig-

ure 4.6(b), as their flattened version. -.

Due to flattening, the explicit information on the execution of loops is lost.
In this sense vector team automata thus have more modeling power than
ordinary team automata.

We now present a more elaborate example that illustrates the advantage
of vector actions as regards modeling explicit information on loops.

Example 7.2.9. (Example 5.3.2 continued) We show how to form a vector
team automaton from W1 and W2. Let T v

{1,2} be the vector team automaton
T v
{1,2} = ({(s1, s2), (s1, t2), (t1, s2), (t1, t2)}, (∅, {a, b},∅), δv{1,2}, {(s1, s2)}),

where δv{1,2} = { ( (s1, s2), (b, b), (s1, s2) ), ( (s1, s2), (a, a), (t1, t2) ), ( (t1, t2),
(a, a), (t1, t2)), ((t1, t2), (b, b), (s1, s2))}, over {W1,W2}. It is depicted in Fig-
ure 7.4.

T v
{1,2}:

(

t1
s2

)
(

s1
t2

)

(

s1
s2

)

(

a

a

)

(

b

b

)

(

t1
t2

)

(

a

a

)(

b

b

)

Fig. 7.4. Vector team automaton T v
{1,2}.

Clearly its flattened version (T v
{1,2})F equals the team automaton T{1,2},

depicted in Figure 4.1(a). Note however that T v
{1,2} contains explicit in-

formation on loops that (T v
{1,2})F = T{1,2} lacks. Consider, e.g., vector a-

transition ((t1, t2), (a, a), (t1, t2)) ∈ T v
{1,2}. One immediately sees that both
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(t1, a, t1) and (t2, a, t2) were executed. From the corresponding a-transition
((t1, t2), a, (t1, t2)) ∈ (T v

{1,2})F , however, one can only conclude that at least
one of the a-transitions (t1, a, t1) and (t2, a, t2) was executed and under the
maximal interpretation we do assume that both wheels participate in this
acceleration.

If we assume that a flat tire is modeled by disabled acceleration, then
the vector transition ((t1, t2), (a, λ), (t1, t2)) models the fact that wheel W2

does not participate in this acceleration, i.e. the axle contains a flat tire.
This information is lost by flattening as this transforms the vector transition
((t1, t2), (a, λ), (t1, t2)) into ((t1, t2), a, (t1, t2)), which is also the result of flat-
tening ((t1, t2), (a, a), (t1, t2)) in T v

{1,2}. -.

7.2.2 Effect of Vector Synchronizations

The lack of explicit information on loops in ordinary team automata led us to
adopt a maximal interpretation of the involvement of component automata
in team transitions. In fact, the definitions of free, ai , and si actions in
Section 4.4 are based on this maximal interpretation.

Recall that intuitively an action a is a free action of T if in each a-
transition of T only one component automaton participates. Hence — as a
consequence of the maximal interpretation — in Definition 4.4.1 the set of
free actions of T is defined as Free(T ) = {a ∈ Σ | (q, q′) ∈ δa ⇒ #{i ∈ I |
a ∈ Σi ∧ proji

[2](q, q′) ∈ δi,a} = 1}, i.e. a is a free action of T if in each
a-transition of T only one component automaton is able to participate in
this execution of a.

Example 7.2.10. For i ∈ {1, 2}, let Ci = ({qi}, (∅, {a},∅), {(qi, a, qi)}, {qi})
be two component automata. They are depicted in Figure 7.5(a).

Ci: T v:

(b)

(

q1
q2

)

(

a

λ

)

(

q1
q2

)

T v
F :

a

(a) (c)

qi

a

Fig. 7.5. Component automata C1 and C2, vector team automaton T v, and its
flattened version T v

F .

Clearly {C1, C2} is a composable system. Consider the vector team au-
tomaton T v = ({(q1, q2)}, (∅, {a},∅), {((q1, q2), (a, λ), (q1, q2))}, {(q1, q2)})
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over {C1, C2}, depicted in Figure 7.5(b), and its flattened version T v
F =

({(q1, q2)}, (∅, {a},∅), {((q1, q2), a, (q1, q2))}, {(q1, q2)}), which is depicted in
Figure 7.5(c).

According to the definition, a is not free in T v
F . This is due to the fact

that both component automata are able to participate in the a-transition of
T v
F . In T v, however, action a is a free action in the sense that only component

automaton C1 participates in the execution of a. -.

Also the definitions of ai and si actions are based on the maximal interpre-
tation. Intuitively, an action a is an ai (si) action of T if in each a-transition
of T every component automaton participates which has a in its alphabet
(provided that a is currently enabled in that component automaton). For-
mally, the set of ai actions of T is defined as AI (T ) = {a ∈ Σ | ∀i ∈ I : (a ∈
Σi ∧ (q, q′) ∈ δa)⇒ proji

[2](q, q′) ∈ δi,a} and the set of si actions of T is de-
fined as SI (T ) = {a ∈ Σ | ∀i ∈ I : (a ∈ Σi ∧ (q, q′) ∈ δa ∧ a en Ci proji(q))⇒
proji

[2](q, q′) ∈ δi,a}. Hence, these definitions use the assumption that loops
are executed, i.e. the maximal interpretation. Note that as a consequence, to
determine whether or not an action a is ai (si) it suffices to consider for each
a-transition of the team automaton only those component automata that do
not have an a-loop at their current local state and check if they participate.

Example 7.2.11. (Example 7.2.10 continued) Action a is ai (and thus si) in
T v
F since (qi, qi) ∈ δi,a, for all i ∈ [2]. On the contrary, in T v we would not see

a as an si action and (thus) neither as an ai action, since in C2 a is enabled
at q2 but C2 is not involved in ((q1, q2), (a, λ), (q1, q2)). -.

We now define when we consider a vector action to be free, ai , and si in a
vector team automaton.

Definition 7.2.12. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team
automaton over S. Then

(1) the set of truly free actions of T v is denoted by tFree(T v) and is defined
as

tFree(T v) = {a ∈ Σ | (q, q′) ∈ δva ⇒ #{i ∈ I | proji(a) = a} = 1},

(2) the set of truly ai actions of T v is denoted by tAI (T v) and is defined as

tAI (T v) = {a ∈ Σ | ∀i ∈ I : (a ∈ Σi ∧ (q, q′) ∈ δva)⇒ proji(a) = a}, and

(3) the set of truly si actions of T v is denoted by tSI (T v) and is defined as

tSI (T v) = {a ∈ Σ | ∀i ∈ I : (a ∈ Σi ∧ (q, q′) ∈ δva∧
a en Ci proji(q))⇒ proji(a) = a}. -.
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From this definition it follows immediately that every action that is truly ai
in a vector team automaton is also truly si . Moreover, internal actions are
always both truly free and truly ai . This reflects the properties of free, ai ,
and si in team automata as formulated in Lemmata 4.4.7 and 5.3.12.

Lemma 7.2.13. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team au-
tomaton. Then

(1) tAI (T v) ⊆ tSI (T v) and

(2) Σint ⊆ tFree(T v) ∩ tAI (T v). -.

Actions which are free in the flattened version of a vector team automaton
are — due to the maximal interpretation — always truly free in that vector
team automaton. The converse in general does not hold, as can be concluded
from Example 7.2.10. For (truly) ai and si actions the situation is reversed.
Actions which are truly ai (truly si) in a vector team automaton are always
ai (si) in its flattened version. The converse in not true in general, as can
be concluded from Example 7.2.11. The reason resides in the fact that the
vector team automaton is not necessarily defined on basis of the maximal
interpretation used for its flattened version.

Lemma 7.2.14. Let T v be a vector team automaton. Then

(1) Free(T v
F ) ⊆ tFree(T v),

(2) tAI (T v) ⊆ AI (T v
F ), and

(3) tSI (T v) ⊆ SI (T v
F ). -.

We have thus demonstrated with free, ai , and si as examples, how to inter-
pret notions related to synchronizations in team automata for vector team
automata. This would be a first step when developing a theory for synchro-
nizations in vector team automata. In the rest of this section we continue our
investigation of the relation between team automata and Petri nets, using
vector team automata as the more general representatives within which the
participation of component automata in synchronizations is made explicit.

7.2.3 Vector Controlled Concurrent Systems

The framework of VCCSs — originally introduced in [KKR90] and [KKR91]
and further developed in [Kee96] — can be used to model concurrent systems
consisting of a finite number of sequential components working together by
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synchronizing their actions. The basic idea is to use vectors both to specify
the elementary synchronizations within a system and to describe its behav-
ior. The approach has been inspired by the vector firing sequence semantics
of path expressions and COSY (see, e.g., [Shi79] and [JL92]). It is related
to the work of Arnold and Nivat (see, e.g. [Arn82]) and to the coordina-
tion of cooperating automata by synchronization on multisets as studied in
[BDQT99].

A VCCS is specified by a description of (the sequential computations or
behavior of) its constituting components and a control mechanism. The lat-
ter determines which combinations of sequential computations are allowed as
the (concurrent) system’s computations. To this aim, synchronization vec-
tors specify which combinations of — possibly different — actions from the
components may occur together. In addition, the control mechanism pre-
scribes which and when synchronizations are available during the evolution
of a system’s computation.

It is immediate from the definitions that the synchronizations which can
take place during a computation of a (vector) team automaton depend on
the current state of the system. Hence (vector) team automata appear to
fit in the VCCS framework. Before going into the details, we fix first some
terminology and notation regarding vectors.

Let J ⊆ N be a finite and nonempty set of integers. Let n = #J be
the cardinality of J . Let, for each j ∈ J , ∆j be an alphabet. A vector v ∈∏

j∈J ∆∗
j is called an (n-dimensional) word vector (over {∆j | j ∈ J}). We

let Λ = (λ, . . . , λ) ∈
∏

j∈J ∆∗
j be the (n-dimensional) empty word vector , its

dimension being clear from the context. A set of word vectors (over {∆j | j ∈
J}) is called an (n-dimensional) vector language (over {∆j | j ∈ J}).

A vector w ∈
∏

j∈J (∆j ∪ {λ}) \ {Λ} is called an (n-dimensional) vector
letter (over {∆j | j ∈ J}). The set of all vector letters over {∆j | j ∈ J} is
denoted by tot ({∆j | j ∈ J}) and it is called the total vector alphabet over
{∆j | j ∈ J}. An n-dimensional vector alphabet (over {∆j | j ∈ J}) is a
subset of tot ({∆j | j ∈ J}). For a vector alphabet ∆ ⊆ tot ({∆j | j ∈ J})
we let ∆u denote its subset of uniform vector letters over {∆j | j ∈ J},
i.e. ∆u = {a ∈ ∆ | a ∈

∏
j∈J{a, λ}, a ∈

⋃
j∈J ∆j}. Since vector alphabets are

alphabets, all terminology and notation for alphabets, words, and languages
is carried over.

The component-wise concatenation of two n-dimensional vector letters
v =

∏
j∈J vj and w =

∏
j∈J wj is defined by v ◦w =

∏
j∈J vjwj . For a vector

alphabet ∆ ⊆ tot ({∆j | j ∈ J}) we define the homomorphism coll∆ : ∆∗ →∏
j∈J ∆∗

j by coll∆(v1v2 · · · vk) = v1 ◦ v2 ◦ · · · ◦ vk, with k ≥ 0. Thus, e.g.,
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coll (

(
λ
a

)(
b
c

)(
d
λ

)
) =

(
λ
a

)
◦

(
b
c

)
◦

(
d
λ

)
=

(
bd
ac

)
. This is the collapse

of a sequence of vector letters from ∆ into a word vector. The subscript ∆ is
omitted if it is clear from the context.

We now have the necessary terminology available to define the (finite and
infinite) computations and the (finitary and infinitary) (vector) behavior of
vector team automata. However, our vector letters and vector languages are
of finite dimension.

Notation 20. For the rest of this chapter we assume that S is a finite and
nonempty composable system, i.e. I is a finite subset of N. -.

Consequently we define und(T v) = (Q, tot ({Σi | i ∈ I}), δv, I) to be the
underlying vector automaton of T v.

For a given vector team automaton T v, its set of (finite and infinite)
computations and its (finitary and infinitary) behavior are now defined as
carried over from Definitions 3.1.2 and 3.1.7 through its underlying vector
automaton und(T v). This means that we have, e.g., CT v = Cund(T v) and
BΣ

T v = BΣ
und(T v) = prestot ({Σi|i∈I})(CT v ).

Due to the fact that vector team automata have vectors as actions it is
possible to define also the (finitary and infinitary) vector behavior of a vector
team automaton T v as the collapse of the sequences of vector letters forming
its (finitary and infinitary) behavior.

Definition 7.2.15. Let T v be a vector team automaton. Then

(1) the finitary vector behavior of T v is denoted by VT v and is defined as
VT v = coll (BΣ

T v),

(2) the infinitary vector behavior of T v is denoted by Vω
T v and is defined as

Vω
T v = coll (BΣ,ω

T v ), and

(3) the vector behavior of T v is denoted by V∞
T v and is defined as V∞

T v =
coll (BΣ,∞

T v ) = VT v ∪Vω
T v . -.

We now conclude that by Theorem 3.1.6 the finite computations of a vector
team automaton determine its set of infinite computations and, by Theo-
rem 3.1.5 and Corollary 3.1.11, also its (finitary and infinitary) behavior.
Consequently, statements involving infinite computations and (finitary and
infinitary) behavior of vector team automata can be proven by considering
finite computations only.
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7.2.4 Individual Token Net Controllers

Within the framework of VCCS, ITNCs have been defined as a particular
type of control mechanism with an operational motivation. They are (finite)
Petri nets, designed to follow and control the progress of the components
of a system using individual tokens, one for each component. These tokens
are distributed over the places, thus indicating the local state of each of
the components. The global states of the net are then vectors of places,
with each entry corresponding to a component. These distributions of the
individual tokens over the places will be called markings here. The events of
an ITNC model synchronizations between components. To be able to occur,
an event needs certain individual tokens as input from its adjacent places and
when it occurs it produces the same tokens as output in (in general) other
places. In this way, the individual tokens used by an event determine which
components take part in the synchronization. The events are labeled with
vector letters with an entry for each component. Such an entry is empty if and
only if the corresponding component does not take part in the synchronization
(label-consistency). If it is not empty, then the corresponding component
participates by executing the action mentioned. Note that these vector letters
are not necessarily uniform. As will become clear, an ITNC can be interpreted
as being built from a finite number of finite automata, each determined by
one of the individual tokens. It is precisely this property that we will use in
our translation of a subclass of (finite) vector team automata into ITNCs.
We begin by formalizing the intuitive description given above.

Notation 21. For the rest of this chapter we let n ≥ 1. -.

An (n-dimensional) Individual Token Net Controller (n-ITNC or ITNC for
short) consists of an underlying (n-dimensional) Vector Labeled Individual
Token Net (n-VLITN or VLITN for short) together with a complete set of
initial markings and a complete set of final markings . Such an n-VLITN is
a labeled net with a specified set of n individual tokens.

Definition 7.2.16. An n-VLITN is a construct N = (P, T,O, F, V, "), where

P is the finite set of places of N ,
T is the finite set of events of N such that P ∩ T = ∅,
O ⊆ N is a finite and nonempty set of n integers, called the set of tokens

of N ,
F : (P × T )∪ (T ×P )→ {o | o ⊆ O} is the flow function of N assigning

subsets of O to elements of (P ×T )∪(T ×P ) such that for all j ∈ O
and for all t ∈ T ,
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(1) #{p ∈ P | j ∈ F (p, t)} = #{p ∈ P | j ∈ F (t, p)} ≤ 1,

V ⊆ tot ({Vj | j ∈ O}), where each Vj is a finite alphabet, is the n-dimen-
sional vector alphabet of vector labels of N , and

" : T → V is the event labeling homomorphism of N such that for all
j ∈ O and for all t ∈ T ,

(2) projj("(t)) (= λ if and only if j ∈
⋃

p∈P (F (p, t) ∪ F (t, p)). -.

For each event t of N we denote the set
⋃

p∈P (F (p, t)∪F (t, p)) of tokens used
by t by use (t).

A VLITN N = (P, T,O, F, V, ") is represented graphically by drawing its
places as circles, its events as rectangles, and an arc from place (event) x to
event (place) y whenever F (x, y) (= ∅. Events are drawn together with their
label and the arcs (x, y) are labeled with the elements constituting F (x, y)
(cf. Figure 7.6).

To define the dynamic behavior of a VLITN, we use the notion of marking
to describe states defined by the locations of the individual tokens. These
markings are (total) functions that assign a place to each of the tokens. Thus
each token appears exactly once. A marking is graphically represented by
drawing each token in the place in which it is present according to that
marking.

At a certain marking of a VLITN, an event t is enabled (can occur) if in
that marking each place p for which F (p, t) (= ∅ contains at least the tokens
specified in F (p, t). When t consequently fires (occurs) all those tokens are
removed and each place p for which F (t, p) (= ∅ receives the tokens specified
in F (t, p).

Condition (1) in Definition 7.2.16 guarantees that every VLITN is 1-
throughput: for each event t, the tokens in

⋃
p∈P F (p, t) are exactly those in⋃

p∈P F (t, p). Hence use (t) =
⋃

p∈P F (p, t) =
⋃

p∈P F (t, p). This condition
furthermore guarantees that after an event has fired, no individual tokens
have been added to or have disappeared from the VLITN, i.e. the resulting
token distribution is again a marking of the VLITN.

Condition (2) in Definition 7.2.16 guarantees that every VLITN is label
consistent: for each event t, the nonempty entries in its vector label corre-
spond to the tokens actually used by t. Moreover, since Λ is not a vector
letter, each event uses at least one token.

Definition 7.2.17. Let N = (P, T,O, F, V, ") be a VLITN. Then

(1) the set of all markings of N is denoted by MN and is defined as MN =
{µ | µ : O → P},
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(2) an event t is enabled at a marking µ ∈ MN , denoted by µ[t〉N , if
F (p, t) ⊆ {j ∈ O | µ(j) = p} for all p ∈ P ,

(3) an event t fires from a marking µ ∈MN to a marking ν ∈MN , denoted
by µ[t〉N ν, if t is enabled at marking µ and ν is defined by ν(j) = p if
j ∈ F (t, p), for a p ∈ P , and ν(j) = µ(j) otherwise, and

(4) if t1, t2, . . . , tm ∈ T , with m ≥ 0, and µ0 ∈MN are such that there exist
µ1, µ2, . . . , µm ∈MN with µi−1[ti〉Nµi, for all i ∈ [m], then t1t2 · · · tm is
a firing sequence of N starting from µ0 (and leading to µm) denoted by
µ0[t1t2 · · · tm〉N (µ0[t1t2 · · · tm〉Nµm), and

(5) if t1, t2, . . . ∈ T and µ0 ∈MN are such that there exist µ1, µ2, . . . ∈MN

with µi−1[ti〉Nµi, for all i ≥ 1, then t1t2 · · · is an infinite firing sequence
of N starting from µ0 denoted by µ0[t1t2 · · · 〉N . -.

Note that µ[λ〉Nµ, for all µ ∈MN . Note furthermore that all prefixes of an
infinite firing sequence starting from a marking are (finite) firing sequences
starting from that marking.

To define an ITNC we add initial and final markings to a VLITN. With
each individual token we associate initial (final) local states and any combi-
nation of initial (final) places for each of the tokens is a possible initial (final)
marking. We thus require the sets of initial and final markings to be com-
plete. Formally, any marking µ : O → P of a VLITN N = (P, T,O, F, V, ")
can be viewed as a vector µ =

∏
j∈O µ(j) of places. Hence projj(µ) = µ(j),

for all j ∈ O. Each set M ⊆ MN of markings of N satisfies the property
that M ⊆

∏
j∈O projj(M). We say that M is complete if this inclusion is

an equality: M =
∏

j∈O projj(M). Complete sets of markings are thus char-
acterized by the property that they can be specified by just giving for each
token j its own set of places Pj . Then the intended set of markings is simply∏

j∈O Pj .

Definition 7.2.18. An n-ITNC is a construct K = (N ,M0,Mf ), where

N is an n-VLITN,
M0 ⊆MN is a complete set of initial markings of K, and
Mf ⊆MN is a complete set of final markings of K. -.

For an n-ITNC K = (N ,M0,Mf ), the n-VLITN N is called the underlying
n-VLITN of K and it is denoted by und(K).

The dynamic behavior of an ITNC K now is made up of firing sequences
of its underlying VLITN und(K) that start in an initial marking of K and
that end in a final marking of K.
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Definition 7.2.19. Let K = (N ,M0,Mf ), with N = (P, T,O, F, V, "), be
an ITNC. Then

(1) the set of all firing sequences of K is denoted by FSK and is defined as
FSK = {u ∈ T ∗ | µ0[u〉N ν, µ0 ∈M0, ν ∈Mf},

(2) the set of all reachable markings of K is denoted by MK and is defined
as MK = {ν ∈MN | µ0[u〉N ν, µ0 ∈M0, u ∈ T ∗},

(3) the behavior of K is denoted by BK and is defined as BK = {"(u) ∈ V ∗ |
u ∈ FSK}, and

(4) the vector behavior of K is denoted by VK and is defined as VK =
coll (BK). -.

Note that the firing sequences of an ITNC are defined in terms of those of
its underlying VLITN. When this VLITN N is clear from the context, then
we may also write µ[u〉ν rather than µ[u〉N ν, where µ, ν are markings and u
is a sequence of events.

Note furthermore that any (successful) firing sequence of an ITNC leads
from an initial marking to a final marking and is thus finite. Due to the
finite number of tokens and places, each ITNC moreover has a finite set of
reachable markings, i.e. a finite state space. Hence an ITNC is a finite-state
system with a sequential behavior defined by its firing sequences.

Theorem 7.2.20. Let K be an ITNC. Then

FSK ∈ REG. -.

However, in contrast to a finite automaton an ITNC also allows concurrent
behavior, as events may be enabled independent of one another. We call two
events t and t′ are independent if use (t) ∩ use (t′) = ∅, i.e. t and t′ use
different tokens. Consequently, whenever two independent events are simul-
taneously enabled at some marking of an ITNC, then they can fire in any
order. This leads to an independence relation over the vector labels of the
ITNC, similar to the independence relation used in trace theory (see, e.g.
[Maz89] and [DR95]). In fact, as discussed in [KK97], (generalized) ITNCs
are closely related to the well-known model of finite asynchronous automata,
an automata model for (recognizable) trace languages (see, e.g., [Zie87] and
[DR95]).

In the following example we illustrate the notion of an ITNC with an
example derived from the Introduction of [Kee96].

Example 7.2.21. Two computers A and B share a single printer. A critical
section is necessary to prohibit access to the printer for both computers at
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the same time. To model this with a 3-ITNC, we define the following actions
for the computers and the printer. A computer can calculate or print, in which
case the printer indicates which computer is printing a job: ja for computer
A and jb for computer B. Next to printing, the printer can also be idle. These
are all possible actions. However, some of these actions are synchronized. In
this way, when the computer is printing, the printer indicates which one by
synchronizing p with either ja or jb.

Let K = (N ,M0,Mf ), where N = (P, T,O, F, V, "), be a 3-ITNC. Its set
of places P is {p1, p2, . . . , p5}, its set of events T is {t1, t2, . . . , t8}, its set of
tokens O is [3] (represented as 1, 2, and 3 in Figure 7.6), its flow function
F is as represented in Figure 7.6, its vector alphabet V consists of vector
labels (c, λ, λ), (λ, c, λ), (p, λ, ja), (λ, p, jb), (c, λ, i), and (λ, c, i), its vector
labeling homomorphism " is as represented in Figure 7.6, its complete set
of initial markings is {(p1, p2, p5)}, and its complete set of final markings is
{p1, p3} × {p2, p4} × {p3, p4, p5}.

From the initial marking, both computers can (concurrently) calculate
by firing t7 and/or t8, or one of them can print by firing t1 or t2. In case
one of them starts printing, token 3 becomes unavailable for the other.
The printing computer can then either continue printing (t3 or t4) or re-
turn to calculating (t5 or t6), in which case the printer becomes idle and
token 3 becomes available for both computers again. Concurrently with the
printing computer, the other can calculate (t7 or t8) but not print. These
processes can be repeated and printing can be interchanged between both
computers. Thus t8t7t1t3t8t5t7t2 is a firing sequence of K. Since {t8, t7},
{t3, t8}, and {t7, t2} are pairs of events that can fire concurrently, also
u = t7t8t1t8t3t5t2t7 ∈ FSK. As part of the behavior of K we thus have "(u) =


c
λ
λ








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 and coll (l(u)) =


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cppcc
ccp

jajaijb





is part of the vector behavior of K. -.

From this example it also becomes clear that ITNCs are a particular kind
of state machine decomposable nets (see, e.g., [BC92] and [JL92]). Each in-
dividual token uniquely determines a sequential subnet (a state machine or
automaton with labeled transitions), every event represents a synchroniza-
tion of transitions from these state machines, and the vector labeling such an
event has a nonempty component for precisely those state machines involved
in the synchronization. The initial (final) markings are any combination of
initial (final) states of each of the state machines. Our translation of vector
team automata into ITNCs follows this pattern by using the fact that also
vector team automata are composed of automata connected by synchroniza-
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tions. Recall that we have assumed already that S is a finite composable
system.

Notation 22. For the remainder of this chapter we moreover require that
each of the component automata in S is finite, i.e. has a finite set of states
and a finite alphabet. -.

To translate a given vector team automaton T v into an ITNC that we will
denote by PN (T v), we use the construction sketched in Figure 7.7.
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µ[t〉ν, "(t) = (a, λ, a)

µ(1) = [q1, 1] ν(1) = [q′1, 1]
µ(3) = [q3, 3] ν(3) = [q′3, 3]

PN (T v):T v:

Fig. 7.7. Sketch of the construction of PN (T v).

The individual tokens of PN (T v) correspond to the component automata
in S. Hence the set of tokens O of PN (T v) equals I. The (local) states of
the component automata correspond to places of PN (T v). Since the Qi,
with i ∈ I, are not necessarily pairwise disjoint, we distinguish them by
indexing them. If state q belongs to both Qi and Qj , with i, j ∈ I, then
PN (T v) will thus have places [q, i] and [q, j]. The transitions of T v will be
the labeled events of PN (T v). For a transition (q, a, q′) ∈ δv, PN (T v) will
thus have the event [q, a, q′] labelled by a. Moreover, this event uses exactly
those tokens which correspond to the component automata taking part in the
synchronization (q, a, q′). Let us call the set of indices of those component
automata that participate in the execution of a vector action the carrier of
that vector action. Hence, for a vector action a, the carrier of a is denoted
by carrier (a) and is defined as carrier (a) = {i ∈ I | proji(a) (= λ}. The flow
function F of PN (T v) now enforces that each event [q, a, q′] uses exactly
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the tokens corresponding to the component automata taking part in a and,
moreover, that these tokens are in the correct places (local states): whenever
proji(a) (= λ, then F ([proji(q), i], [q, a, q

′]) = F ([q, a, q′], [proji(q
′), i]) = {i},

while for all other places p of PN (T v), i /∈ F (p, [q, a, q′]) ∪ F ([q, a, q′], p).
Let us say that a marking µ of PN (T v) corresponds to a state q of

T v if µ puts token i in the place associated to the i-th element of q,
i.e. µ =

∏
i∈I [proji(q), i]. Observe that for every state q of T v there is a

unique corresponding marking, which we will denote by µq. Conversely, ev-
ery marking µ of PN (T v) corresponds to a state of T v provided that each
token i is assigned to a place indexed with i.

The initial markings of PN (T v) will correspond to the initial states of
T v, i.e. if q ∈ Ii, with i ∈ I, then [q, i] will be an initial place for token i.
The set of initial markings then consists of all combinations of initial places
for each of the tokens (which yields a complete set).

Vector team automaton T v obviously has no final states, and we now have
two options. Either we allow every marking of PN (T v) as a final marking
(which yields a complete set) or we allow as final markings all markings of
PN (T v) that correspond to a state of T v (again yielding a complete set).
Since we will see that the reachable markings of PN (T v) all correspond to
states of T v, which option we choose is irrelevant (cf. the remarks directly
succeeding Lemma 7.2.30).

Formally, the construction of PN (T v) is defined as follows.

Definition 7.2.22. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team
automaton over S. Then PN (T v) is defined as the construct PN (T v) =
(N ,M0,Mf), where

N = (P, T,O, F, V, "), with
P =

⋃
i∈I{[q, i] | q ∈ Qi},

T = {[q, a, q′] | (q, a, q′) ∈ δv},
O = I,
F : (P × T ) ∪ (T × P ) → J is defined by F ([proji(q), i], [q, a, q

′]) =
F ([q, a, q′], [proji(q

′), i]) = {i} ∩ carrier (a),
V = {a | (q, a, q′) ∈ δv for some q, q′ ∈ Q}, and
" : T → V is defined by "([q, a, q′]) = a,

M0 = {µq | q ∈ I}, and
Mf = {µq | q ∈ Q}. -.

In order to clarify the construction presented in this definition, we now apply
it to two vector team automata from earlier examples.



262 7. Team Automata, I/O Automata, Petri Nets

Example 7.2.23. (Example 7.2.5 continued) In Figure 7.8, PN (T v
2 ) as ob-

tained by applying the construction of Definition 7.2.22 to vector team au-
tomaton T v

2 , depicted in Figure 7.2, is given.

3 3

2 2

2

2

(λ, a, a)

[r′, 3]

(λ, a, λ)[q, 2]
PN (T v

2 ):

[r, 3]

[p, 1]

t2

t1

3

1 2

Fig. 7.8. PN (T v
2 ).

This PN (T v
2 ) has places [p, 1], [q, 2], [r, 3], and [r′, 3], events t1 =

[(p, q, r′), (λ, a, λ), (p, q, r′)] and t2 = [(p, q, r), (λ, a, a), (p, q, r′)], tokens 1, 2,
and 3, flow function F as represented in Figure 7.8, vector labels (λ, a, λ)
and (λ, a, a) forming its vector alphabet, vector labeling homomorphism " as
represented in Figure 7.8, set of initial markings {([p, 1], [q, 2], [r, 3])}, and set
of final markings {([p, 1], [q, 2], [r, 3]), ([p, 1], [q, 2], [r′, 3])}. -.

Example 7.2.24. (Example 7.2.9 continued) We now apply the construction
of Definition 7.2.22 to T v

{1,2}. This results in the 2-ITNC PN (T v
{1,2}) =

({[s1, 1], [s2, 2], [t1, 1], [t2, 2]}, {[(s1, s2), (b, b), (s1, s2)], [(s1, s2), (a, a), (t1, t2)],
[ (t1, t2), (a, a), (t1, t2) ], [ (t1, t2), (b, b), (s1, s2) ] }, [ 2 ], F, { (a, a), (b, b) }, " ),
{([s1, 1], [s2, 2])}, {[s1, 1], [t1, 1]}× {[s2, 2], [t2, 2]}), where F and " are as rep-
resented in Figure 7.9.

Note that we have used some abbreviations in Figure 7.9, viz. si = [si, i]
and ti = [ti, i], for i ∈ [2], u1 = [(t1, t2), (b, b), (s1, s2)], u2 = [(s1, s2), (b, b),
(s1, s2)], u3 = [(s1, s2), (a, a), (t1, t2)], and u4 = [(t1, t2), (a, a), (t1, t2)]. -.

Since PN (T v) is an ITNC, our goal of translating vector team automata into
ITNCs has been achieved by the construction given in Definition 7.2.22.

Lemma 7.2.25. Let T v be a vector team automaton over S. Then

PN (T v) is an ITNC.
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Fig. 7.9. ITNC PN (T v
{1,2}).

Proof. It is straightforward to verify that PN (T v) as specified in Defini-
tion 7.2.22 satisfies the definition of an ITNC, in particularN is 1-throughput
and label consistent, and M0 and Mf are complete sets of markings. -.

Note that the set of ITNCs that can be obtained by applying the construction
of Definition 7.2.22 to vector team automata forms a proper subclass of the
complete set of ITNCs. It is not difficult to see that, e.g., the 3-ITNC K of
Example 7.2.21 (depicted in Figure 7.6) cannot be obtained by applying the
construction of Definition 7.2.22 to some vector team automaton. In fact, this
example neatly illustrates three properties of ITNCs that are not inherited
by its subclass obtained by applying the construction of Definition 7.2.22
to vector team automata. First, ITNCs may have pluriform synchronizations
(cf. the Introduction). Secondly, ITNCs may have arcs labeled with subsets of
tokens having a cardinality larger than one. Thirdly, ITNCs may have places
that do not “belong” to specifically one component. This latter property
should be understood in the sense that places of an ITNC may be part of the
two (or more) different state machines that are determined by two (or more)
different individual tokens.

At this point one might be inclined to conclude that the finite computa-
tions of a vector team automaton T v are in a one-to-one correspondence with
the firing sequences of the ITNC PN (T v) such that both constructs exhibit



264 7. Team Automata, I/O Automata, Petri Nets

the same (finitary) behavior. In the following two examples we however show
that this in general is not the case.

Example 7.2.26. Let the component automata C1 = ({q1, q′1}, (∅, {a},∅),
{(q1, a, q′1)}, {q1}) and C2 = ({q2, q′2}, (∅, {b},∅), {(q2, b, q′2)}, {q2}) be as de-
picted in Figure 7.10.

q1 q′1
a

C1:

q2 q′2
b

C2:

Fig. 7.10. Component automata C1 and C2.

Clearly, {C1, C2} is a composable system. Consider the vector team au-
tomaton T v

1 = (Q, (∅, {a, b},∅), δv1 , {(q1, q2)}), where Q = {(q1, q2), (q1, q′2),
(q′1, q2), (q

′
1, q

′
2)} and δv1 = {((q1, q2), (a, λ), (q′1, q2)), ((q

′
1, q2), (λ, b), (q

′
1, q

′
2))},

over {C1, C2}. It is depicted in Figure 7.11(a).
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Fig. 7.11. Vector team automata T v
1 and T v

2 .

In Figure 7.12 the ITNC PN (T v
1 ) = (P, {t1, t2}, [2], F1, V, "1,M0,Mf ),

with P = {[q1, 1], [q′1, 1], [q2, 2], [q
′
2, 2]}, t1 = [(q1, q2), (a, λ), (q′1, q2)], t2 =

[(q′1, q2), (λ, b), (q
′
1, q

′
2)], V = {(a, λ), (λ, b)}, M0 = {([q1, 1], [q2, 2])}, and

Mf = {[q1, 1], [q′1, 1]} × {[q2, 2], [q′2, 2]}, is depicted.
Since use (t1) ∩ use (t2) = ∅, we know that t1 and t2 are independent

events. Indeed, as both are enabled in the initial marking of PN (T v
1 ) they
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t2
2 2

2

(λ, b)[q2, 2] [q′2, 2]

PN (T v
1 ):

(a, λ)

1
11

[q1, 1] [q′1, 1]

t1

Fig. 7.12. ITNC PN (T v
1 ).

can thus be fired in any order. In fact, it is easy to see that BPN (T v
1 ) =

{λ, (a, λ), (λ, b), (a, λ)(λ, b), (λ, b)(a, λ)}. Note, however, that any nontrivial
computation of T v

1 starts with the execution of the vector action (a, λ)
through the transition ((q1, q2), (a, λ), (q′1, q2)) corresponding with t1. In fact,
we immediately see that BT v

1
= {λ, (a, λ), (a, λ)(λ, b)} ⊂ BPN (T v

1 ). -.

This example shows that independent events that are enabled in the ITNC
PN (T v) obtained from the vector team automaton T v can be fired in any
order, even if the vector actions of their corresponding transitions in T v

cannot be executed in any order. More generally, as the following example
shows, in an ITNC an enabled event can fire regardless of the whereabouts
of any token it does not use.

Example 7.2.27. (Example 7.2.23 continued) Note that since token 2 ∈
use (t1) ∩ use (t2), events t1 and t2 are not independent. Both events are
enabled in the initial marking of PN (T v

2 ) and they can clearly be fired in any
order, i.e. {(λ, a, λ)(λ, a, a), (λ, a, a)(λ, a, λ)} ⊆ BPN (T v

2 ). In fact, whether or
not t1 can fire can be decided regardless of the whereabouts of the tokens
1 and 3. In T v

2 , however, it is obvious that the vector action (λ, a, λ) can
only be executed — through the transition ((p, q, r′), (λ, a, λ), (p, q, r′)) cor-
responding to t1 — when the third component automaton is in local state r′,
i.e. after the vector action (λ, a, a) has been executed through the transition
((p, q, r), (λ, a, a), (p, q, r′)) corresponding to t2. -.

Summarizing we note that whereas ITNCs allow independent events to fire
in any order, the vector transitions of vector team automata that involve
disjoint sets of component automata in general cannot be executed in any
order. As in ordinary team automata, transitions take place from selected
combinations of local states from its component automata. The execution
of an action in a given local state might thus depend on the states that
other component automata are in. This is the concept coined state sharing
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in [EG02], as already mentioned in the beginning of this section. As shown
in Example 7.2.27, ITNCs could be called non-state-sharing.

We now define non-state-sharing vector team automata as a class of vector
team automata with the characteristic that whether or not a synchronization
can take place only depends on the local states of the component automata
actively involved in that synchronization.

Definition 7.2.28. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team
automaton over S. Then

T v is non-state-sharing if whenever (p, a, p′) ∈ δv, then for all q ∈ Q such
that for all i ∈ carrier (a), proji(q) = proji(p), we have (q, a, q′) ∈ δv with
proji(q

′) = proji(p
′) for all i ∈ carrier (a), and proji(q

′) = proji(q) for all
other i. -.

As a consequence, synchronizations involving disjoint sets of component au-
tomata are independent and hence non-state-sharing vector team automata
would allow a concurrent semantics.

Example 7.2.29. (Example 7.2.26 continued) Here we consider the vector
team automaton T v

2 = (Q, (∅, {a, b},∅), δv2 , {(q1, q2)}), in which δv2 = δv1 ∪
{((q1, q2), (λ, b), (q1, q′2)), ((q1, q

′
2), (a, λ), (q

′
1, q

′
2))}, over {C1, C2}. It is depicted

in Figure 7.11(b). Note that T v
2 is a non-state-sharing vector team automa-

ton.
In Figure 7.13 the ITNC PN (T v

2 ) = (P, {t1, t2, t3, t4}, [2], F2, V, "2,M0,
Mf ), with t1 = [(q1, q2), (a, λ), (q′1, q2)], t2 = [(q1, q′2), (a, λ), (q

′
1, q

′
2)], t3 =

[(q1, q2), (λ, b), (q1, q′2)], and t4 = [(q′1, q2), (λ, b), (q
′
1, q

′
2)], is depicted.

We immediately see that BT v
2
= BPN (T v

2 ) = BPN (T v
1 ). -.

We can now show that the finitary (vector) behavior of a non-state-sharing
vector team automaton T v equals the (vector) behavior of the ITNC PN (T v).
This is a direct consequence of the fact that every finite computation of T v

can be simulated by a firing sequence in PN (T v), and vice versa.
To prove this latter statement we first observe that the occurrence of any

transition (p, a, p′) of T v in a computation of T v can be simulated by the
event [p, a, p′] firing from marking µp to marking µp′ . Here we do not need that
T v is a non-state-sharing vector team automaton. To prove the relationship
the other way around, it would be convenient if µ[t〉ν in PN (T v), for some
t = [p, a, p′], would imply that µ = µp and ν = µp′ , where µp and µp′ are
the unique markings corresponding to p and p′, respectively. This, however,
is in general not the case. Even if µ = µq, for some q ∈ Q, then p and q may
still differ. This is due to the property of ITNCs that for the occurrence of an
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1

[q1, 1] [q′1, 1]

PN (T v
2 ):

2

[q2, 2] [q′2, 2]

t4

(λ, b)

t3

2 2

2 2

t2

(a, λ)

t1

1 1

1 1

(λ, b)

(a, λ)

Fig. 7.13. ITNC PN (T v
2 ).

event the whereabouts of the tokens it does not use is irrelevant. Since T v is a
non-state-sharing vector team automaton, we do know that PN (T v) also has
an event t′ = [q, a, q′] such that proji(q

′) = proji(p
′), for all i ∈ carrier (a).

The occurrence of t can now be simulated by µq[t′〉ν, with ν = µq′ in turn
corresponding with the occurrence of the transition (q, a, q′) in a computation
of T v. The described situation is illustrated in Figure 7.14.

q

µq [ [q, a, q′] 〉 µq′

T v: q′
a

!([q, a, q′]) = aPN (T v):
!([p, a, p′]) = aµq [ [p, a, p′] 〉 ν

Fig. 7.14. Sketch of the idea underlying the simulation.

A more concrete example of the described situation occurs in the ITNC
PN (T v

2 ) depicted in Figure 7.13, where ([q1, 1], [q′2, 2])[t1〉([q
′
1, 1], [q

′
2, 2]) with

t1 = [(q1, q2), (a, λ), (q′1, q2)]. However, PN (T v
2 ) also has the event t2 =

[(q1, q′2), (a, λ), (q
′
1, q

′
2)] that can be used to simulate the occurrence of t1 at

µ(q1,q′2)
= ([q1, 1], [q′2, 2]) and also leads to µ(q′1,q

′
2)

= ([q′1, 1], [q
′
2, 2]). When-
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ever ([q1, 1], [q′2, 2])[t1〉([q
′
1, 1], [q

′
2, 2]) appears in a firing sequence of PN (T v

2 )
we may thus use the transition ((q1, q′2), (a, λ), (q

′
1, q

′
2)) in the corresponding

computation of T v.
To avoid cumbersome descriptions, two transitions (p, a, p′), (q, a, q′) ∈

∆v
a(S) are said to be clones whenever proji

[2](p, p′) = proji
[2](q, q′), for all

i ∈ carrier (a). In the vector team automaton T v
2 depicted in Figure 7.11(b),

e.g., ((q1, q2), (a, λ), (q′1, q2)) and ((q1, q′2), (a, λ), (q
′
1, q

′
2)) are clones because

proj1
[2]((q1, q2), (q′1, q2)) = (q1, q′1) = proj1

[2]((q1, q′2), (q
′
1, q

′
2)). Since T v is a

non-state-sharing vector team automaton it follows that whenever (p, a, p′) ∈
δv, then all clones of (p, a, p′) are also transitions of T v.

Lemma 7.2.30. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team au-
tomaton over S and let PN (T v) = (N ,M0,Mf), with N = (P, T, I, F, V, ").
Then

(1) if (p, a, p′) ∈ δv, then µp[[p, a, p′]〉µp′ in PN (T v), and

(2) if µq[[p, a, p′]〉ν in PN (T v), with p, p′, q ∈ P and a ∈ tot ({Σi | i ∈ I}),
then ν = µq′ , where q′ ∈ Q is the unique state such that (q, a, q′) and
(p, a, p′) are clones.

Proof. (1) Let (p, a, p′) ∈ δv. Then [p, a, p′] is an event of PN (T v). That
[p, a, p′] is enabled at µp is easily seen as follows. By the construction of
PN (T v), in order to be able to fire [p, a, p′] needs for all i ∈ carrier (a),
token i in place [proji(p), i]. This requirement is satisfied at µp because by
definition µp(i) = [proji(p), i], for all i ∈ carrier (a). Now let ν be the marking
such that µp[[p, a, p′]〉ν in PN (T v). Then, again by the construction, ν(i) =
[proji(p

′), i], for all i ∈ carrier (a), and ν(i) = µ(i) = [proji(p), i], for all i ∈ I
for which proji(a) = λ. Hence ν = µp′ .

(2) Let µq[[p, a, p′]〉ν in PN (T v), with p, p′, q ∈ P and a ∈ tot ({Σi |
i ∈ I}). Then for all i ∈ carrier (a), µq(i) = [proji(p), i]. Since by definition
µq(i) = [proji(q), i], for all i ∈ I, it follows that proji(p) = proji(q), for all
i ∈ carrier (a). Recall that if q′ ∈ Q is the unique state such that (q, a, q′)
and (p, a, p′) are clones, then proji(q

′) = proji(p
′), for all i ∈ carrier (a) and

proji(q
′) = proji(q), for all i ∈ I such that proji(a) = λ. Given µq[[p, a, p′]〉ν

in PN (T v), the definition of F implies that ν(i) = [proji(p
′), i], for all i ∈

carrier (a), and ν(i) = µq(i) = [proji(q), i], for all i ∈ I such that proji(a) =
λ. Consequently, ν = µq′ . -.

Note that from Lemma 7.2.30(2) it immediately follows that µp[t〉ν in
PN (T v) implies that there exists a state p′ in T v such that ν = µp′ . Hence
even when T v is not a non-state-sharing vector team automaton, each reach-
able marking of PN (T v) corresponds with a state of T v.
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Theorem 7.2.31. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a non-state-
sharing vector team automaton over S and let PN (T v) = (N ,M0,Mf),
with N = (P, T, I, F, V, "). Let m ≥ 1 and let (qj−1, aj , qj) ∈ δv, for all
1 ≤ j ≤ m. Then

[q0, a1, q1][q1, a2, q2] · · · [qm−1, am, qm] ∈ FSPN (T v) if and only if for all
1 ≤ j ≤ m, there exists a clone (pj−1, aj , pj) of (qj−1, aj , qj) such that
p0a1p1a2p2 · · · pm−1ampm ∈ CT v .

Proof. (If) Let p0a1p1a2p2 · · · pm−1ampm ∈ CT v be such that (pj−1, a, pj)
is a clone of (qj−1, aj , qj), for all 1 ≤ j ≤ m. Then the definition of
CT v implies that p0 ∈ I. Furthermore, (pj−1, aj , pj) ∈ δv, for all 1 ≤
j ≤ m. From Lemma 7.2.30(1) we obtain that µpj−1 [[pj−1, aj , pj ]〉µpj in
PN (T v), for all 1 ≤ j ≤ m. Since (pj−1, aj , pj) and (qj−1, aj , qj) are
clones for all 1 ≤ j ≤ m, it follows immediately that for all places s of
PN (T v), F (s, [pj−1, aj , pj]) = F (s, [qj−1, aj , qj ]) and F ([pj−1, aj , pj], s) =
F ([qj−1, aj , qj ], s), for all 1 ≤ j ≤ m. Thus we conclude from the above
that µpj−1 [[qj−1, aj , qj ]〉µpj in PN (T v), for all 1 ≤ j ≤ m. This implies that
µp0 [[q0, a1, q1]〉µp1 [[q1, a2, q2]〉µp2 · · ·µpm−1 [[qm−1, am, qm]〉µpm in PN (T v). As
p0 ∈ I, we have µp0 ∈ M0. Moreover, µpm is by definition a final marking of
PN (T v) and we may conclude that [q0, a1, q1][q1, a2, q2] · · · [qm−1, am, qm] ∈
FSPN (T v).

(Only if) Let [q0, a1, q1][q1, a2, q2] · · · [qm−1, am, qm] ∈ FSPN (T v) and let,
for 0 ≤ j ≤ m, µj be markings such that µj−1[[qj−1, aj , qj ]〉µj in PN (T v),
for all 1 ≤ j ≤ m. Moreover, without loss of generality we may assume
that µ0 is an initial marking of PN (T v). Let p0 ∈ I be the initial state of
T v such that µ0 = µp0 . Combining Lemma 7.2.30(2) with the fact that
T v is a non-state-sharing vector team automaton now yields that both
µp0 [[q0, a1, q1]〉µp1 and µp0 [[p0, a1, p1]〉µp1 in PN (T v), with (q0, a1, q1) and
(p0, a1, p1) being clones of each other. By repeatedly using this argumen-
tation, we can conclude that for each 1 ≤ j ≤ m, there exists a pj ∈ Q
such that µpj−1 [[qj−1, aj , qj ]〉µpj and µpj−1 [[pj−1, aj , pj ]〉µpj in PN (T v), with
(qj−1, aj , qj) and (pj−1, aj , pj) being clones of each other. Consequently, T v

has transitions (p0, a1, p1), (p1, a2, p2), . . . , (pm−1, am, pm) and since p0 ∈ I,
it follows that p0a1p1a2p2 · · · pm−1ampm ∈ CT v . -.

The labeling of the events of PN (T v) is in agreement with the vector labels
of the corresponding transitions of the vector team automaton T v. Conse-
quently, the (finitary) behavior of a vector team automaton T v coincides with
the behavior of PN (T v) insofar it is based on nontrivial computations and
nonempty firing sequences. In addition we observe that λ ∈ FSPN (T v) if and
only if the set of initial markings of PN (T v) (= ∅ if and only if the set of
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initial states of T v (= ∅ if and only if T v has a trivial computation. We thus
have the following result.

Theorem 7.2.32. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a non-state-
sharing vector team automaton over S. Then

(1) BPN (T v) = BT v and

(2) VPN (T v) = VT v . -.

Recall that we have equiped ITNCs with final markings and thus with finitary
behavior. By ignoring these final markings and by using the fact that we have
seen that every prefix of an infinite firing sequence starting from an initial
marking is a (finite) firing sequence starting from that marking, we could
define the infinitary behavior of an ITNC as obtained from infinite firing
sequences, which are limits of finite firing sequences. As we have seen in
Theorem 7.2.31, the finite computations of a non-state-sharing vector team
automaton T v correspond to the finite firing sequences of the ITNC PN (T v).
Hence we can use the fact that the infinitary behavior of T v can be fully
determined by its finite computations (cf. Theorems 3.1.6 and 3.1.10) to
conclude that T v and PN (T v) exhibit also the same infinitary behavior.

We now conclude this chapter with an observation relating the ITNC
obtained by applying the construction of Definition 7.2.22 to the subteam
determined by J of a vector team automaton T v with a rather straightforward
type of subnet of the ITNC PN (T v). Mirroring the way we defined subteams
of (vector) team automata, a subnet of an ITNC can be obtained by focusing
on a subset of its set of individual tokens.

Recall that the restriction of a function f : A → A′ to a subset C of its
domain A is denoted by f ! C and is defined as the function C → A′ defined
by (f ! C)(c) = f(c), for all c ∈ C.

Definition 7.2.33. Let T v be a vector team automaton over S and let K =
(N ,M0,Mf), with N = (P, T, I, F, V, "), be the ITNC PN (T v). Let J ⊆ I.
Then the subnet of K determined by J is denoted by SUBJ(K) and is defined
as SUBJ(K) = (NJ , (M0)J , (Mf )J ), where

NJ = (PJ , TJ , J, FJ , VJ , "J), in which
PJ = {[q, j] | q ∈ Qj , j ∈ J},
TJ = {[projJ (q), projJ (a), projJ (q

′)] | [q, a, q′] ∈ T for some q, q′ ∈ Q
and J ∩ carrier (a) (= ∅},

FJ : (PJ × TJ) ∪ (TJ × PJ) → J is defined by FJ ( [proji(q), i],
[projJ(q),projJ(a),projJ(q

′)]) = FJ ([projJ(q),projJ(a),projJ(q
′)],

[proji(q
′), i]) = {i} ∩ carrier (a),
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VJ = {b | [p, b, p′] ∈ TJ for some p, p′ ∈ projJ(Q)}, and
"J : TJ → VJ is defined by "J([p, b, p′]) = b,

(M0)J = {µ ! J | µ ∈M0}, and
(Mf )J = {ν ! J | ν ∈ Mf}. -.

Note that a subnet SUBJ(PN (T v)) of an ITNC PN (T v) — both as specified
in Definition 7.2.33 — is not simply defined by a local operation on the
elements of the ITNC, but rather by a (syntactical) operation that refers to
the transitions of T v underlying the events of PN (T v) and which is based
on the actual participation of the component automata forming the subteam
SUBJ(T v). As a consequence, each event t of the subnet comprises all events
[q, a, q′] in the full net such that [projJ(q), projJ(a), projJ (q

′)] = t. By the
definition of the flow function F , whenever two events [q, a, q′], [p, a, p′] ∈ T
are such that [projJ(q), projJ(a), projJ(q

′)] = [projJ (p), projJ (a), projJ(p
′)],

then their neighborhoods when restricted to arcs with labels from J are the
same. The definition of the flow function FJ then guarantees that also the
labeled arcs connecting t with places [p, j] in SUBJ(PN (T v)) correspond to
the labeled arcs connecting the original events [q, a, q′] with [p, j] in PN (T v).

Since the set of places PJ of SUBJ (PN (T v)) is a subset of P , the set of
places of PN (T v), the flow function FJ may be viewed as a restriction of the
flow function F to (PJ×TJ)∪(TJ×PJ) once T has been transformed into TJ .
Since VJ and "J agree with V and " after projection, respectively, and since
(M0)J and (Mf )J are the restrictions of M0 and Mf to J , respectively, it
is appropriate to refer to SUBJ(PN (T v)) as a subnet of the ITNC PN (T v).

Example 7.2.34. (Example 7.2.29 continued) In Figure 7.15 the subnet de-
termined by {1} of PN (T v

2 ) is depicted.

SUB{1}(PN (T v
2 )) :

1

[q1, 1] [(q1), (a), (q
′
1)]

(a)

[q′1, 1]

1 1

Fig. 7.15. ITNC SUB{1}(PN (T v
2 )).

We immediately see that the events t1 = [(q1, q2), (a, λ), (q′1, q2)] and t2 =
[(q1, q′2), (a, λ), (q

′
1, q

′
2)] of PN (T v

2 ) have resulted in one and the same event
[proj1((q1, q2)), proj1((a, λ)), proj1((q

′
1, q2))] = [proj1((q1, q

′
2)), proj1((a, λ)),

proj1((q
′
1, q

′
2))] = [(q1), (a), (q′1)] in SUB{1}(PN (T v

2 )). This reflects the fact
that the dynamics of SUB{1}(PN (T v

2 )) is based on the actual participation
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of C1 — as the only component automaton forming SUB{1}(T v
2 ) depicted in

Figure 7.16 — in the transitions of T v
2 that underlie the events of PN (T v

2 ).

(a)
(q′1)

SUB{1}(T v
2 ):

(q1)

Fig. 7.16. Subteam SUB{1}(T
v
2 ).

Analogously, we note that the transitions ((q1, q2), (a, λ), (q′1, q2)) and
((q1, q′2), (a, λ), (q

′
1, q

′
2)) of T v

2 have resulted in one and the same transition
((q1), (a), (q′1)) in SUB{1}(T v

2 ). -.

It is not hard to see that a subnet of an ITNC PN (T v) obtained by applying
the construction of Definition 7.2.22 to a vector team automaton T v is indeed
an ITNC.

Theorem 7.2.35. Let T v be a vector team automaton over S and let K =
PN (T v). Let J ⊆ I. Then

SUBJ (K) is an ITNC.

Proof. It is straightforward to verify that the subnet SUBJ(K) as specified
in Definition 7.2.33 satisfies the definition of an ITNC, in particular NJ is
1-throughput and label-consistent, and (M0)J and (Mf )J are both complete
sets of markings. -.

Example 7.2.36. (Example 7.2.24 continued) In Figure 7.17, the underlying
VLITNs und(SUB{1}(PN (T v

{1,2}))) and und(SUB{2}(PN (T v
{1,2}))) of subnets

SUB{1}(PN (T v
{1,2})) and SUB{2}(PN (T v

{1,2})), respectively, are depicted.
Note that we have used some abbreviations in Figure 7.17, viz. si = [si, i]

and ti = [ti, i], for i ∈ [2], v1 = [(t1), (b), (s1)], v2 = [(s1), (b), (s1)], v3 =
[(s1), (a), (t1)], v4 = [(t1), (a), (t1)], w1 = [(t2), (b), (s2)], w2 = [(s2), (b), (s2)],
w3 = [(s2), (a), (t2)], and w4 = [(t2), (a), (t2)]

Subnet SUB{1}(PN (T v
{1,2})) has {[s1, 1]} as its set of initial markings and

{[s1, 1], [t1, 1]} as its set of final markings. Subnet SUB{2}(PN (T v
{1,2})) has

set of initial markings {[s2, 2]} and set of final markings {[s2, 2], [t2, 2]}. -.

Definition 7.2.33 provides us with a notion of subnet for those ITNCs that
result from applying the construction of Definition 7.2.22 to a vector team
automaton. This definition of a subnet explicitly uses the relation to the
original vector team automaton and is based on the participation of those
automata forming the subteam in its transitions (and hence in the events of
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und(SUB{1}(PN (T v
{1,2}))):

und(SUB{2}(PN (T v
{1,2}))):

1

1

1

1

1

1

1
s1

t1

1

(a)(b)

2

2 2

2

s22

t2

2

2

(a)

2

(b) (a)(b)

(b) (a)v1 v2 v3 v4

w1 w2 w3 w4

Fig. 7.17. VLITNs und(SUB{1}(PN (T v
{1,2}))) and und(SUB{2}(PN (T v

{1,2}))).

the subnet). As the following theorem shows, this notion of a subnet is correct
in the sense that first constructing a net for a given vector team automaton
and then extracting a subnet always yields the ITNC that results when first
restricting the vector team automaton to a subteam and then constructing
its net.

Theorem 7.2.37. Let T v = (Q, (Σinp, Σout, Σint), δv, I) be a vector team
automaton over S and let J ⊆ I. Then

SUBJ (PN (T v)) = PN (SUBJ (T v)).

Proof. By inspecting Definitions 7.2.22 and 7.2.33 on the one hand and
Definitions 7.2.3 and 7.2.22 on the other hand, we show element-wise that
SUBJ(PN (T v)) = PN (SUBJ(T v)). To this aim, let SUBJ(PN (T v)) = (N1,
(M0)1, (Mf )1), with N1 = (P1, T1, J, F1, V1, "1), and let PN (SUBJ(T v)) =
(N2, (M0)2, (Mf )2), with N2 = (P2, T2, J, F2, V2, "2).
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It is immediate that P1 = P2 =
⋃

j∈J{[q, j] | q ∈ Qj}, i.e. the set of places
of SUBJ (PN (T v)) and that of PN (SUBJ(T v)) are identical.

It is also clear that T1 = {[projJ(q), projJ(a), projJ (q
′)] | [q, a, q′] ∈ T for

some q, q′ ∈ Q and J ∩ carrier (a) (= ∅} = {[projJ (q), projJ (a), projJ (q
′)] |

(q, a, q′) ∈ δv and projJ(a) (= Λ } = { [ projJ(q), projJ(a), projJ(q
′) ] |

(projJ(q), projJ(a), projJ(q
′)) ∈ ∆v

a({Cj | j ∈ J}) and (q, a, q′) ∈ δv} = T2,
i.e. the set of events of SUBJ (PN (T v)) and that of PN (SUBJ(T v)) are
identical.

Let p ∈ P1 = P2 and let t ∈ T1 = T2. Let i ∈ J . Then i ∈ F1(p, t) if and
only if there exist q, q′ ∈ Q and an a ∈ VJ such that t = [projJ(q), a, projJ(q

′)]
and i ∈ carrier (a), and moreover p = [proji(q), i]. This is equivalent
with i ∈ F2(p, t). We thus conclude that F1(p, t) = F2(p, t). Likewise,
F1(t, p) = F2(t, p) and hence the flow function of SUBJ (PN (T v)) and that
of PN (SUBJ (T v)) are identical.

Since T1 = T2 = {[q, a, q′] | (q, a, q′) ∈ δvJ}, it follows immediately
that V1 = {b | [p, b, p′] ∈ T1 for some p, p′ ∈ projJ(Q)} = {b | (p, b, p′) ∈
δvJ for some p, p′ ∈ QJ} = V2 and that "1([r, c, r′]) = "2([r, c, r′]) = c ∈
V1 = V2, for all [r, c, r′] ∈ T1 = T2, i.e. the vector alphabet of vector la-
bels and the vector labeling homomorphism of SUBJ(PN (T v)) and those of
PN (SUBJ(T v)), respectively, are identical.

Finally, we immediately see that (M0)1 = {µq ! J | q ∈ I} = {µprojJ (q)
|

projJ (q) ∈ IJ} = (M0)2 and (Mf )1 = {µq ! J | q ∈ Q} = {µprojJ (q)
|

projJ (q) ∈ QJ} = (Mf )2, i.e. SUBJ(PN (T v)) and PN (SUBJ (T v)) have
the same set of initial markings as well as the same set of final markings.

Hence we have proven that SUBJ(PN (T v)) = PN (SUBJ (T v)). -.

Example 7.2.38. (Example 7.2.34 continued) From Theorem 7.2.37 we now
conclude that the ITNC SUB{1}(PN (T v

2 )) depicted in Figure 7.15 is identical
to the ITNC obtained by applying the construction of Definition 7.2.22 to
SUB{1}(T v

2 ), i.e. SUB{1}(PN (T v
2 )) = PN (SUB{1}(T v

2 )). -.

Example 7.2.39. (Example 7.2.36 continued) From Theorem 7.2.37 we now
conclude that the underlying VLITNs und(PN (SUB{1}(T v

{1,2})))
and und(PN (SUB{2}(T v

{1,2}))) of the ITNCs PN (SUB{1}(T v
{1,2})) and

PN (SUB{2}(T v
{1,2})), respectively, are depicted in Figure 7.17 (obviously with

the abbreviations spelled out in Example 7.2.36). -.

7.2.5 Conclusion

In this section we have introduced vector team automata by switching from
(team) actions to vectors of (component) actions. By inspecting the vector
actions of vector team automata we were able to obtain precise information
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as to which component automata participate in which synchronizations. We
have used this knowledge to formalize the notions of free, ai , and si actions
in vector team automata based on information unavailable in ordinary team
automata.

This transfer from actions to vector actions moreover made explicit the
concurrency inherent to team automata, which allowed us to view (vector)
team automata as VCCSs. In particular, we were able to relate a subclass
of (vector) team automata to ITNCs, a model of vector labeled Petri nets
developed within the VCCS framework. Though related, a number of impor-
tant differences remain between both models, especially concerning the type
of synchronizations that can be modeled. Whereas all vector letters of vector
team automata are uniform, this does not hold in case of ITNCs. In this
respect, ITNCs thus allow the modeling of more types of synchronization
than (vector) team automata do. However, ITNCs are not concerned with
the distinction of actions into input, output, and internal actions, which we
have seen to be a crucial modeling feature of team automata. Furthermore,
ITNCs are finite-state systems, whereas (vector) team automata may have an
infinite number of states (and are thus more powerful from a computational
point of view).

Finally, vector team automata — like team automata (cf. Section 5.2)
but contrary to ITNCs — allow the construction of hierarchical systems in a
natural way, viz. by iteratively composing vector team automata over vector
team automata. Theorem 7.2.32 moreover provides a relation between finite
non-state-sharing vector team automata and the subclass of ITNCs obtained
by applying the construction of Definition 7.2.22 to finite vector team au-
tomata. For this particular subclass of ITNCs, Theorems 7.2.32 and 7.2.37
thus hint at a way around this limitation of ITNCs. However, since we have no
characterization of this particular subclass of ITNCs, in Figure 7.18 no more
than a hint towards iteratively composing a subclass of ITNCs is sketched.

PN (T v)T v

SUB2(T
v) SUB1(PN (T v)) =SUB1(T

v) SUB2(PN (T v)) =
PN (SUB1(T

v)) PN (SUB2(T
v))

Fig. 7.18. Sketch of iteratively composing ITNCs.



276 7. Team Automata, I/O Automata, Petri Nets

Here T v is a nontrivial finite vector team automaton with subteams
SUB1(T v) and SUB2(T v). From Theorem 7.2.32 we know that PN (T v),
PN (SUB1(T v)) and PN (SUB2(T v)) have the same (vector) behavior as
T v, SUB1(T v) and SUB2(T v), respectively. Moreover, from Theorem 7.2.37
we know that SUB1(PN (T v)) = PN (SUB1(T v)) and SUB2(PN (T v)) =
PN (SUB2(T v)). Hence PN (T v) might be seen as an ITNC iteratively com-
posed over the ITNCs PN (SUB1(T v)) and PN (SUB2(T v)).



8. Applying Team Automata

In this chapter we give an impression of how team automata may be applied.
We do this by presenting — in a varying degree of detail — three examples,
each of which shows the usefulness of team automata in the early phases of
system design. Additionally, we would like to mention that in [BLP03] we
have initiated the use of team automata for the security analysis of multicast
and broadcast communication. To this aim, team automata were used to
model an instance of a particular stream signature protocol, while a well-
established theory for defining and verifying a variety of security properties
was reformulated in terms of team automata.

First we show — at a high level of abstraction — how to model a spe-
cific groupware architecture by team automata. To this aim we explain how
team automata can be used as building blocks by internalizing certain ex-
ternal actions in order to prohibit their further use on a higher level of the
construction (without changing the behavior of course).

Secondly, we show how team automata can be employed to model collab-
oration between teams of developers engaged in the development of models of
complex (software) systems. This thus provides an example of using team au-
tomata for modeling interaction between humans. However, we still abstract
from any social aspects and informal unstructured activity between humans.
The team automata model solely the collaboration between humans.

Thirdly, we present a more detailed example demonstrating the potential
of team automata for capturing information security and protection struc-
tures, and critical coordinations between these structures. On the basis of a
spatial access metaphor, various known access control strategies are formally
specified in terms of synchronizations in team automata. In [BB03] we have
initiated an attempt to validate some of the resulting specifications with the
model checker SPIN (see, e.g., [Hol91], [Hol97], and [Hol03]).
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8.1 Groupware Architectures

In this section we show how team automata can be employed to model group-
ware architectures. To this aim we first introduce some notions and operations
that are particularly useful when team automata are used for component-
based system design. Consequently we use these operations to model a spe-
cific groupware architecture.

Notation 23. Within this section we once again assume a fixed, but arbitrary
and possibly infinite index set I ⊆ N, which we will use to index the compo-
nent automata involved. For each i ∈ I, we let Ci = (Qi, (Σi,inp, Σi,out, Σi,int),
δi, Ii) be a fixed component automaton and we use Σi,ext to denote its set of
external actions Σi,inp ∪Σi,out. Moreover, we once again let S = {Ci | i ∈ I}
be a fixed composable system and we let T = (Q, (Σinp, Σout, Σint), δ, I) be
a fixed team automaton over S. Furthermore, we use Σ to denote the set
of actions Σinp ∪ Σout ∪ Σint and we use Σext to denote the set of external
actions Σinp∪Σout of any team automaton over S. Recall that I ⊆ N implies
that I is ordered by the usual ≤ relation on N, thus inducing an ordering on
S, and that the Ci are not necessarily different. -.

8.1.1 Team Automata as Architectural Building Blocks

As we have seen, a team automaton over a composable system is itself a
component automaton that can be used in further constructions of team au-
tomata. Team automata can thus be used as building blocks. Before a team
automaton is used as a building block, however, it may be necessary to in-
ternalize certain external actions in order to prohibit their further use on
a higher level of the construction. The operation of hiding makes certain
external actions of a component automaton invisible to other component au-
tomata by turning these external actions into internal actions. This operation
has also been defined for I/O automata (see, e.g., [Tut87]).

Definition 8.1.1. Let C = (P, (Γinp, Γout, Γint), γ, J) be a component au-
tomaton and let ∆ be an alphabet disjoint from P . Then

the ∆-hiding version of C is denoted by C∆H and is defined as C∆H =
(P, (Γinp \∆,Γout \∆,Γint ∪∆), γ, J). -.

Composability is in general not preserved by the operation of hiding since
composability requires the internal actions of the component automata to
belong to one component automaton only, whereas external actions are not
subject to such a restriction. The ∆-hiding version of a team automaton
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thus need not be a team automaton over the ∆-hiding versions of its original
constituting component automata. For our composable system S and subsets
∆i ⊆ Σi,ext, for all i ∈ I, the system S ′ = {(Ci)

∆i

H | i ∈ I} is composable if
and only if for all i ∈ I, ∆i ∩

⋃
j∈I\{i} Σj,ext = ∅.

The external actions that are to be hidden are those that are only used
for communications between certain component automata and that should
not be available for communication with other component automata.

Definition 8.1.2. A pair Ci, Cj, with i, j ∈ I, is communicating (in S) if
there exists an a ∈ (Σi,ext ∪Σj,ext) such that

a ∈ (Σi,inp ∩Σj,out) ∪ (Σj,inp ∩Σi,out).

Such an a is called a communicating action (in S). By Σcom we denote the
set of all communicating actions (in S). -.

Note that the communicating relation between component automata, i.e. the
set of all pairs of communicating component automata over component au-
tomata, is symmetric and irreflexive. Note furthermore that the fact that
an action is communicating does not imply that a team automaton over S
will actually have a synchronization involving this action as a communica-
tion, i.e. in its two roles of input and output. The communicating property
is based solely on alphabets and is thus by no means related to transition
relations.

With the hide operation we can internalize all communicating actions of
a team automaton, before this team automaton is used to build a higher-level
team automaton. The result is a team automaton that is closed with respect
to its communications to the outside world.

Definition 8.1.3. The (communication) closed version of T is denoted by
T and is defined as

T = T Σcom
H . -.

Rather than the team automaton itself we may now use its closed version in
a new construction. If we do this, then only those output (input) actions that
do not have a matching input (output) action within the team automaton are
external actions of the closed version of the team automaton. The remaining
external actions have been reclassified as internal actions.

In practice one often wants to work with several copies of a component
automaton. In our model, however, more than one copy of a component
automaton in a set of component automata in general means that this set does
not satisfy composability. An operation renaming the actions of a component
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automaton solves this problem. Modulo renaming, these copies all have the
same computations (and thus exhibit the same behavior). The operation of
renaming has also been defined for I/O automata (see, e.g., [Tut87]).

Recall that a function f : A→ A′ is a bijection if it is injective (f(a1) (=
f(a2) whenever a1 (= a2) and surjective (for every a′ ∈ A′ there exists an
a ∈ A such that f(a) = a′).

Definition 8.1.4. Let C = (P, (Γinp, Γout, Γint), γ, J) be a component au-
tomaton, let ∆ be an alphabet disjoint from P , and let h : (Γinp∪Γout∪Γint)→
∆ be a bijection. Then

the h-renamed version of C is denoted by Ch
N and is defined as Ch

N =
(P, (h(Γinp), h(Γout), h(Γint)), {(q, h(a), q′) | (q, a, q′) ∈ γ}, J). -.

In practice, an h-renamed version of a component automaton might best be
defined to generate new names which are disjoint from the domain set, e.g. by
requiring ∆ to be disjoint from its alphabet.

It is clear that, apart from the use of new names, certain properties of
team automata continue to hold for their h-renamed versions.

Lemma 8.1.5. Let h be a bijection such that T h
N is the h-renamed version

of T . Then

(1) C∞
T h
N

= ĥ(C∞
T ), where ĥ is the extension of h to Σ∪Q defined by ĥ(q) = q,

for all q ∈ Q,

(2) BΣ,∞
T h
N

= h(BΣ,∞
T ), and

(3) if an action a is free (ai, si, sipp, wipp, sopp, wopp, ms, sms, wms) in
T , then h(a) is free (ai, si, sipp, wipp, sopp, wopp, ms, sms, wms) in
T h
N . -.

In the next subsection we show how to apply the operations introduced here.

8.1.2 GROVE Document Editor Architecture

In [Ell97] the distributed architecture of the GROVE document editor (see,
e.g., [EGR90]) — depicted here in Figure 8.1 — is discussed. In this section
we show how to model this architecture using a formal description in terms
of team automata. In the process we point out where the notions introduced
in the previous subsection come into play.

We are given a user interface automaton C1, a keeper automaton C2, an
application automaton C3, and a coordination automaton C4. These together
form a composable system S = {Ci | i ∈ [4]}. Only the pairs Ci, Ci+1, i ∈ [3],
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Fig. 8.1. The GROVE document editor architecture.

are communicating. All external actions of C2 and C3 are communicating in
S. C1 has external actions that are not communicating in S, but intended to
be used solely for interaction with the users. C4 has external actions to be
used for communication with the communication automaton C5, which is to
be added in a later stage. However, the non-communicating actions of C1 are
different from those of C4.

The architecture requires all components in S to synchronize on all com-
munications, thus we construct the maximal-ai-team automaton T over S.
Then this team automaton T is closed, resulting in its closed version T .
Now all communicating external actions are internal in T . In this way we
prohibit further synchronizations involving a component of S. The only re-
maining external actions are those of C1 and those of C4.

Next we introduce several renamed versions of T satisfying the following
two conditions.

First, the sets of actions of the renamed versions should be mutually dis-
joint in order to avoid undesired synchronizations of their user interfaces,
and of actions to be used for the interaction with the communication au-
tomaton C5. Note that this condition ensures that these renamed versions
form a composable system S ′.

Secondly, the external actions of T originating from the coordination
automaton C4 should be renamed in such a way that they will communicate
with actions from C5.
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Finally, to obtain the desired team automaton modeling the GROVE
document editor architecture we define a team automaton over S ′′ = {C5} ∪
S ′. Since we want C5 to communicate with all renamed versions of T we
construct the maximal-ai-team automaton over S ′′, which thus results in all
communicating actions being synchronized.

It is clear that the iterated way in which we have constructed this fi-
nal team automaton guarantees that no undesired synchronizations between,
e.g., a keeper automaton and the communication automaton can take place.
Not only all communication between the communication automaton and any
of the renamed versions of T takes place via their coordination automata,
but also there are no interactions between the renamed versions of T . This is
conveniently modeled by the communication closure. Moreover, the explicit
construction used to form the final team automaton makes all communica-
tions mandatory.

8.1.3 Conclusion

In this section we have seen how team automata can be used to model both
the conceptual and the architectural level of groupware systems. Actually,
many of the concepts and techniques of computer science, such as concurrency
control, user interfaces, and distributed databases, need to be rethought in the
groupware domain. Team automata are thus helpful for this rethinking. The
team automata framework allows one to separately specify the components
of a groupware system and to describe their interactions. It is thus neither
a message-passing model nor a shared-memory model, but a shared-action
model. In particular, we have seen that team automata provide us with tools
allowing formal and precise definitions of various basic groupware notions.

One way of viewing the team automaton framework is as having a two-
way mechanism to model a spectrum of group interactions. On the one hand
we have peer-to-peer types of synchronization, in which all participants are
considered equal. They model the group collaboration aspect that frequently
occurs in synchronous groupware. On the other hand there are master-slave
types of synchronization, in which output as a master may force the concur-
rent execution of a corresponding input action. They can be used to model
asynchronous cooperation, as in workflow systems to enact certain modules
(see, e.g., [EN93]).

Team automata thus fit nicely with the needs and the philosophy of group-
ware and thanks to the formal setup, theorems and methodologies from au-
tomata theory can be applied.
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8.2 Team-Based Model Development

Software configuration management is a subfield of software engineering that
deals with organizing and controlling evolving software systems throughout
their life cycle (see, e.g., [IEEE93]). Through software configuration manage-
ment models, technical and administrative direction and surveillance over the
life cycle of software systems is given in order to identify the functional and
physical characteristics of modules and their assemblies, to control releases
and changes, to record the product status, and to validate the completeness,
consistency, and conformance to specifications of the product. Incorporated
are also areas such as construction management, process management, and
team work control (see, e.g., [Dar91]).

Since software systems are becoming more and more complex, it is in-
evitable to parallelize the development of models for these systems in such a
way that several teams of developers must work in parallel on (parts of) the
model under design. At some point in time the efforts of these teams however
need to be integrated and this, more often than not, leads to conflicts. Obvi-
ously, these conflicts need to be resolved. However, most of the time they are
difficult and time consuming to resolve and furthermore they often require
manual modeler intervention.

8.2.1 A Conflict-Free Cooperation Strategy

Software configuration management models use a cooperation strategy to en-
sure that changes are coordinated such that one change does not — unwill-
ingly — undo or conflict with the effects of another change. A conservative
cooperation strategy prevents conflicting changes by using a simple locking
scheme: developers working on a specific module version or configuration can
lock it against further changes, and while a version or configuration is locked
other developers are excluded from creating new versions. On the contrary,
in an optimistic cooperation strategy each developer is active in his or her
own workspace and various versions of the same module can be created.

Both conservative and optimistic cooperation strategies eventually need
to merge parallel changes. Existing approaches of merges often lack early
conflict detection, which results in conflicts becoming apparent only during
the actual merges. These conflicts then have to be resolved, which is very time
consuming. A conservative cooperation strategy does reduce the potential
number of conflicts, since each part of a model may only be changed by one
team at a time (the situation where two or more teams are working at cross
purposes is avoided). However, a change to one part can affect all dependent
parts and unfortunately thus still lead to conflicts during merge.
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We note that problems during merge are avoided if we have a precise
definition of when a change to a part is local, i.e. when the change only
affects that part and not the rest of the model. When using an optimistic
strategy, each part is edited in its own workspace by one unique team of
developers. If we thus require each team to make local changes only to its
own part, then integration becomes straightforward and, in fact, can be done
automatically due to the absence of conflicts. We call this a conflict-free
(cooperation) strategy.

We now illustrate our conflict-free strategy for the development of an
object-oriented model. As parts of the model we use packages of classes,
which are commonly used to structure a model (see, e.g., [RBP+91] and
[UML99]). A notion of local change can, e.g., be defined through invariancy
of the services offered through the interface of the package. The interface is
then the contract of the package with the rest of the model ([Mey92]).

Bank

office

accounts loans

savings

Fig. 8.2. The departments of a bank.

In Figure 8.2 we present part of a model in which a package Bank models a
real-life bank (the figure is drawn using the notation of [UML99]). Four of its
departments are modeled as subpackages. Bank can be developed in parallel
by four teams where each team separately develops one of the departments.
The changes made to each department are local and the merge to form the
modified bank is straightforward. Note that these packages can be developed
in entirely different geographic locations. Each team has its own workspace
to make its changes and is only dependent on the other teams during merge.
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We use an optimistic strategy, but we constrain the changes in each
workspace to prevent conflicts during merge. A model is split into several
views for individual development and later merge. In this case we however
block changes to the views which cause conflict during merge. In any real-
istic project, however, the connections between the parts (packages) of the
model cannot stay the same during the complete life cycle of the model.
Modifications requiring non-local changes of packages (thus invalidating the
conflict-free strategy) need to occur and hence a conflict-free merge cannot be
guaranteed. These changes can however be localized by (temporarily) adding
a new package, which contains those original packages between which changes
have to be made. These changes are then local with respect to the newly
added package and thus allow for the conflict-free strategy to be applied to
the model with the extra package. This is illustrated in Figure 8.3.

P3 P4P2P1

New

P2 P3 P4

New

P2 P4P3P1

P1

DISTRIBUTE

MERGE

Fig. 8.3. A package is added.

The packages P1 to P4 are edited using the conflict-free strategy. However,
non-local changes are required between packages P2 and P3. The work under
development is merged and a temporary package New is added to group
these two wayward parts. Note that because up to now the changes to the
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packages of the model have been local, the merge is without conflicts. The
model is consequently redistributed with the new structure and work can
continue under the conflict-free strategy, since changes are once again local.
The extra package can be removed once the new connections between the
wayward packages are stable.

Note that in practice it may not be necessary to merge all the packages
under development. It may be sufficient only to merge the packages for which
the non-local changes are required to form a partial model, e.g., if each pack-
age is at most once the subject of such a temporary merge before a complete
intermediary model is produced.

The architecture of a model thus is initially determined by top-down
decomposition. This architecture can however be adapted to suit the need of
our strategy. We call this part of the conflict-free strategy the renegotiation
phase. Too many of such phases during the model’s life cycle are inconvenient.
They however indicate that the high-level architecture of the model is not
yet stable, or even that the model is as yet too premature to be developed
in a distributed fashion. Ideally, the initial breakdown of the model into
packages should only be done by experienced modelers, thereby reducing the
number of renegotiation phases as much as possible. The initial model should
consequently be developed in one workspace until there is enough confidence
that a right choice has been made for a stable enough architecture, after
which the conflict-free strategy can be applied to it. The same considerations
hold when one of the packages used in the conflic-free strategy is further split
up into two or more subpackages for further parallel development.

8.2.2 Teams in the Conflict-Free Strategy

The decomposition of a model into packages is also used to dictate the struc-
ture of the team of developers working on the model. Each such team works
on a distinct package of the model, i.e. for n packages we will have n teams
working in parallel under the conflict-free strategy, each on one of these dis-
tinct packages. Packages can be hierarchical, i.e. a package can contain other
packages. We have seen an example of this in Figure 8.2. We use this hier-
archical structuring of a package to likewise structure the teams working on
the model under the conflict-free strategy. Teams, in our approach, can be
hierarchical and the hierarchical decomposition of a package naturally leads
to the decomposition of the team working on the package into subteams.

Consider the hierarchical package P as sketched in Figure 8.4. It contains
the subpackages P1,1 and P1,2 and each of these subpackages is further split up
into two smaller subpackages (P2,1 and P2,2, and P2,3 and P2,4, respectively).
A team T is working (exclusively) on package P , as indicated by the dotted
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arrow from P to T . This team T is split up into two teams that work on the
two subpackages of P , and one of these teams is further split up, as dictated
by the package architecture. The conflict-free strategy is thus used to manage
the efforts of T together with the other teams working on the other packages.
The same strategy is also used within the hierarchical package P to internally
structure the efforts of team T using subteams. Note that this is not required:
we have not further split up team T1,2 because we have chosen to keep one
large team to work on the entire package P1,2. The conflict-free strategy can
thus be used to parallelize the development of the model into parts, up to
the number of packages that exist in a model at the deepest level of nesting.
The choice of packages then partially dictates the structure of the teams.

TP

T2,2P2,4P2,3P2,2

T1,2T1,1P1,1

T2,1P2,1

P1,2

Fig. 8.4. Hierarchical teams.

Note that during a renegotiation phase the team structure is affected to
reflect the new distribution of packages. In Figure 8.3, we (temporarily) merge
the teams working on packages P2 and P3 in order to reflect the fact that they
are now working together to determine the new interactions between these
packages. Hence, the initial team structure is determined by the architecture
of the initial model and is adapted dynamically due to renegotiation. In the
example of Figure 8.3, the wayward packages P2 and P3, which are edited
by the teams T2 and T3, respectively, are temporarily placed in a package
New during renegotiation. These two teams together are then responsible for
modifying this new package, as sketched in Figure 8.5.

The structure of the model and the structure of the teams are thus tightly
coupled. The initial model determines how the teams can be distributed over
the packages for parallel development. On the other hand, desired non-local
changes of one of the teams can lead to a (temporary) change in architec-
ture. The model itself is “actively” involved in the development process. This
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Fig. 8.5. Merging teams.

contrasts with many workflow or software process models, where the model
under development is not really relevant (see, e.g., [KB95] and [DKW99]).
They focus more on the documents to be produced, and their timing. The
contents of these documents however do not play an explicit role.

In our approach, the activities of the teams can be divided into two cat-
egories: those which are internal to a team and those which involve other
teams (due to renegotiation). The management of the teams in the conflict-
free strategy can be divided along these lines. On the one hand, management
can be localized and is only concerned with coordinating the changes to one
package by one team. Here the focus is on coordinating a relatively small
group in a well-defined context. On the other hand, the structure of the
teams can be a separate management concern. The management of the hier-
archical structure of the model and of the teams as given in Figure 8.4 can
become an issue in its own right. This is a relatively more complex job than
“just” managing one team. Seniority and experience can come into play when
determining which role is played by which individual. Relatively unexperi-
enced individuals should manage relatively small teams such as T2,1, while
a more experienced manager should lead the more complex team T1,1. The
most experienced manager can decide whether changes leading to renegotia-
tion fit within the direction the model should be heading in order to match
its specification.

Note that we do not discuss how teams should be led. We postulate a
group of people who together perform a common editing of one package.
We do not claim that they should coordinate their work in any specific way.
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We just define the extent of their possible changes by only allowing local
changes. We also do not discuss how two separate teams, when integrated,
should coordinate their efforts. This is a nontrivial task, especially if the
two teams previously worked according to different philosophies. We just
constrain the extent of their possible actions as a new, larger team. This is
a topic of research with strong sociological impact, which is however outside
the scope of this thesis, but naturally fits well within CSCW. The conflict-free
strategy does provide a context within which knowledge about how people
work can be embedded.

8.2.3 Teams Modeled by Team Automata

We now sketch how a hierarchical team structure, as induced by the struc-
ture of the model under development in the way described in the previous
subsections, can be modeled in terms of team automata. We interpret actions
as operations or changes of (a package of) the model. Since internal actions
of a component automaton cannot be observed by any other component au-
tomaton, these actions are ideally suited for representing a local change to
a package using the conflict-free strategy. The external actions, on the other
hand, are ideal for modeling the collaboration between packages.

In Figure 8.6 we represent our example teams T2 and T3 by two quite
trivial component automata T2 and T3, respectively. The states of T2 are p1,
p2, and p3, whereas q1 and q2 are the states of T3. The wavy arcs indicate the
initial states p1 and q1 of T2 and T3, respectively. T2 has no input actions,
output actions a and d, and internal actions b and c, while T3 only has
output actions, viz. a and d. Their transition relations are as depicted in
Figure 8.6. Now a possible scenario could be as follows. First T2 and T3
execute output action a in parallel. Consequently T2 executes a number of
internal actions (i.e. local changes to its package without consulting the other
teams). Eventually both component automata can execute output action d
in parallel, after which this procedure can be repeated. Naturally we could
imagine also T3 having some internal actions (i.e. local changes) to execute
once in a while.

Note that {T2, T3} is a composable system. In Figure 8.7, the state-reduced
version (T2,3)S of a team automaton T2,3 over {T2, T3} is given. Note that
output actions a and d are sopp in T2,3, requiring both T2 and T3 to change
state, whereas only T2 is changing state when internal actions b or c are
executed. The behavior of both T2 and T3 is thus reflected in the behavior
of T2,3. In our interpretation, such peer-to-peer types of synchronization can
represent changes which affect two or more packages, i.e. non-local changes.
The external actions of T2,3 thus represent the shared operations on the
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Fig. 8.6. Component automata T2 and T3.

merged packages P2 and P3. Note that we could also use master-slave types
of synchronization to model boss-employee relations in which employees have
to follow orders from their bosses.
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Fig. 8.7. State-reduced team automaton (T2,3)S over {T2, T3}.

The external actions of T2,3 consequently can be hidden in order to obtain
a team automaton with only internal actions, i.e. with only local operations
on its packages. The resulting team automaton can then be used as a com-
ponent automaton in a larger team automaton. In this way, subteams and
hierarchical team structures can be modeled. In Figure 8.8, e.g., team au-
tomaton T is defined as a composition of team automaton T2,3 with certain
component automata T1 and T4. As such, team automata are well suited for
modeling (the actions of) the hierarchical teams in the conflict-free strategy.

T2 T3 T4

T2,3

T

T1

Fig. 8.8. A team automaton T over T1, T2,3, and T4.
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8.2.4 Conclusion

In this section we have discussed a conflict-free strategy for the development
of a model by several teams of developers working in parallel on distinct pack-
ages of the model. We guided the changes made by each team so as to ensure
no conflicts occur during the merge of the produced efforts. This approach
is scalable as each package can be developed in a similar fashion by splitting
the package up further. We have moreover shown how packages under de-
velopment can (temporarily) be merged during a renegotiation phase, if we
need changes to a package that would invalidate the conflict-free strategy.

Additionally, we have discussed how the hierarchical structure of the
model in packages can be used to structure the teams working on the model.
The top-down decomposition of a model into packages guides the decompo-
sition of the people working on the model into similarly structured teams.
The renegotiation phase, when packages are temporarily merged, then gives
heuristics on how the teams should further cooperate to implement changes
without generating conflicts. We have sketched how this can formally be
modeled by team automata.

The conflict-free strategy, along with the explicit discussion on the team
structure and its actions, brings the worlds of CSCW, software engineer-
ing, software configuration management, and process modeling very close to-
gether. We have discussed how a large model can be developed and how the
work between the people doing the actual work can be coordinated. Special
to the approach is that the subject of the work, the model under develop-
ment, is used to structure the work and thus plays an active part in deciding
which changes are possible.

8.3 Spatial Access Control

As the complexity of reactive (computer) systems continues to increase, ab-
stractions tend to be especially useful. For this reason, computer science often
introduces and studies various models of computation that allow enhanced
understanding and analysis. Computer science has also created a number of
interesting metaphors (e.g., the desktop metaphor) that aid in end user un-
derstanding of computing phenomena. This section is concerned with a model
and a metaphor. The model is team automata and the metaphor is spatial
access control , which is based upon current notions of virtual reality, and
helps demystify concepts of access control matrices and capability structures
for the end user ([BB99]).
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Our aim here is to connect the metaphor of spatial access control to the
framework of team automata, and to show through examples how this com-
bination facilitates the identification and unambiguous description of some
key issues of access control. The rigorous setup of the framework of team
automata allows one to formulate, verify, and analyze general and specific
logical properties of various control mechanisms in a mathematically precise
way. In realistically large (computer) systems, security is a big issue, and
team automata allow formal proofs of correctness of its design. Moreover, a
formal approach as provided by the team automata framework forces one to
unambiguously describe control policies and it may suggest new approaches
not seen otherwise. There is a large body of literature concerning topics like
security, protection, and awareness in (computer) systems. Although team
automata are potentially applicable also to these areas, we are currently not
concerned with issues outside of spatial access control. We will conclude with
a discussion of some variations and extensions of our setup.

We now begin by discussing the spatial access control metaphor by means
of an example and subsequently we show how certain spatial access control
mechanisms can be made precise and given a formal description using team
automata. We first introduce information access modeling by granting and
revoking access rights, and show how immediate versus delayed revocation
can be formulated. Subsequently we extend our study to the more complex
issue of meta access control and, finally, we show how team automata can
deal with deep versus shallow revocation.

8.3.1 Access Control

A vital component of any (computer) system or environment is security and
information access control , but this is sometimes done in a rather ad hoc
or inadequate fashion with no underlying rigorous, formal model. In typical
electronic file systems, access rights such as read-access and write-access are
allocated to users on some basis such as “need to know”, ownership, or ad
hoc lists of accessors. Within groupware systems, there are typically needs for
more refined access rights, such as the right to scroll a document that is being
synchronously edited by a group in real time. Furthermore, the granularity of
access must sometimes be more fine grained and flexible, as within a software
development team. Moreover, it is important to control access meta rights.
For example, it may be useful for an author to grant another teammember the
right to grant document access to other non-team members (i.e. delegation).
Various models have been proposed to meet such requirements (see, e.g.,
[SD92], [Rod96], and [Sik97]).
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We use a spatial access metaphor based upon work of Bullock and col-
leagues in [BB97] and [BB99]. There, access control is governed by the rooms,
or spaces, in which subjects and objects reside, and the ability of a subject to
traverse space in order to get close to an object. Bullock also implemented a
system called SPACE to test out some of these ideas ([Bul98]). A basic tenet
of the SPACE access model is that a fundamental component of any collabo-
rative environment is the environment itself (i.e. the space). It is the shared
territory within which information is accessed and interaction takes place.
Often this shared space is divided into numerous regions that segment the
space. This allows decomposition of a very large space into smaller ones for
manageability. It also allows cognitive differentiation (i.e. different concerns,
memories, and thoughts associated with different regions), and distributed
implementation (i.e. different servers for different regions).

By adopting a spatial approach to access control, the SPACE metaphor
exploits a natural part of the environment, making it possible to hide explicit
technical security mechanisms from end users through the natural spatial
makeup of the environment. These users can then make use of their knowledge
of the environment to understand the implicit security policies. Users can
thus avoid understanding technical concepts such as so-called access matrices,
which helps to avoid misunderstandings.

We consider here a virtual reality, in which a user can traverse from room
to room by using keyboard keys, the mouse, or fancier devices. It is a natural
and simple extension to assume that access control checking happens at the
boundaries (doors) between spaces (rooms) when a user attempts to move
from one room to another. If the access is OK, then the user can enter and
use the resources associated with the newly entered room.

To illustrate the various concepts throughout this section, we present a
simple running example which is concerned with read and write access to
a file F by a user Kwaku. This file might be any data or document that is
stored electronically within a typical file system. The file system keeps track
of which users have which access rights to the file F . Three types of access
rights are possible for a file F : null access (implying the user can neither read
nor write the file), read access (implying the user cannot write the file), and
full access (implying the user can read and write — i.e. edit — the file).

In security literature, authentication deals with verification that the user
is truly the person represented, whereas authorization deals with validation
that the user has access to the given resource. Assume that when Kwaku logs
into the system, there is an authentication check. Then whenever he tries to
read or write F , authorization checking occurs, and Kwaku is either allowed
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the access, or not. Using the SPACE metaphor, the above three types of access
rights can be associated with three rooms as shown in Figure 8.9.

Room B: read access room

Room A: null access room

Room C: full access room

Fig. 8.9. A rooms metaphor for access control.

Room A is associated with no access to the document, room B is asso-
ciated with read access, and room C models full access. Suppose Kwaku is
in room B, the reading room. Presence in this room means that any time
Kwaku decides to read F , he can do so. However, if he attempts to make
changes to F , then he will fail because he does not have write access in room
B. There are doors between rooms, implying that user access rights can be
dynamically changed by changing rooms. We discuss this dynamic change in
more detail later in this section.

This access mechanism satisfies a number of end user friendly proper-
ties: it is simple, understandable by non-computer people, relatively natural
and unobtrusive, and elegant. Later we show how modeling this type of ac-
cess metaphor via team automata adds precision, mathematical rigor, and
analytic capabilities.

We now show how to model our access control example in the team au-
tomata framework. The component automaton CC depicted in Figure 8.10(a)
corresponds to room C of Figure 8.9, as it models full access to file F . The
states of CC are Ce modeling an empty room, Cn modeling F is not accessed,
Cr modeling F is being read, and Cw modeling F is being written (edited).
The wavy arc in Figure 8.10(a) denotes the initial state Ce. The actions of CC

are eBC (enter room), eCB (exit room), rC (begin reading), rC (end reading),
wC (begin writing), and wC (end writing).

CC thus has the transitions (Ce, eBC , Cn), (Cn, eCB , Ce), (Cn, rC , Cr),
(Cr , rC , Cn), (Cr , wC , Cw), and (Cw , wC , Cr). Now transition (Ce, eBC , Cn),
e.g., shows that in CC we can go from state Ce to Cn by executing action
eBC . We also see that transitioning directly from Cn to Cw is not possible.
Furthermore, entering and exiting room C may only occur via state Cn. We
choose to specify actions rC , rC , wC , and wC as internal actions of CC , and
eBC and eCB as external actions of CC . Both eBC and eCB clearly should
be externally visible and therefore cannot be internal. For the moment we
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Fig. 8.10. Component automata CC , CB, and CA: rooms C, B, and A.

choose them to be output actions. These two external actions are candidates
for being synchronized with actions of the same name in other component
automata when forming a team automaton over CC and the two component
automata described next.

Component automata CB and CA corresponding to rooms B and A, re-
spectively, are somewhat similar to CC . However, write access is denied in
rooms B and A and read access is denied in room A. Component automata
CB and CA are depicted in Figure 8.10(b,c). Note that CA has initial state An

(hence initially room A is not empty) and that both CB and CA have states
unreachable from the initial state. Actions rB and rB are internal, while the
rest of the actions of CB and CA are external (output) actions.

Now we want to combine CC , CB, and CA into one team automaton
reflecting a given access policy. They clearly form a composable system
{CC , CB, CA} and we combine them into a team automaton T CBA as fol-
lows. Since each state of T CBA is a combination of a state from CC , a state
from CB, and a state from CA, T CBA has 43 = 64 states. Initially T CBA is in
state (An, Be, Ce), which means one starts in room A, while rooms B and C
are empty.

Assuming that one can have only one kind of access rights at a time,
two of the rooms should be empty at any moment in time. This means that
T CBA should be defined in such a way that in each of its reachable states
two of the three component automata are always in state “empty”. We let
the component automata synchronize on the external actions eAB , eBA, eBC ,
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and eCB . Each such synchronized external action of T CBA corresponds to
exiting a room while entering another. Synchronization of action eAB , e.g.,
models a move from room A to room B. This move is represented by the
transition ((An, Be, Ce), eAB , (Ae, Bn, Ce)) showing that in component au-
tomaton CA we exit room A, in automaton CB we enter room B, and in
component automaton CC we do nothing (i.e. remain idle). This represents a
change in access rights from null access (in room A) to read access (in room
B). We do not include, e.g., the transition ((An, Be, Ce), eAB , (Ae, Be, Ce))
which would let the user exit room A but never enter room B. Furthermore,
the user could be in more than one room at a time if we would allow transi-
tions like ((An, Be, Ce), eAB , (An, Bn, Ce)). In TCBA we include only the four
transitions representing the synchronized changing of rooms. In each of these
transitions, one component automaton is idle. Since all internal (read and
write related) actions are maintained, in each of these only that component
automaton is involved to which such an action belongs.

The state-reduced version T CBA
S of the thus defined team automaton

T CBA over {CC , CB, CA} is depicted in Figure 8.11.
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Fig. 8.11. State-reduced team automaton T CBA
S over {CC , CB, CA}.
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Recall that T CBA is not the only team automaton over {CC , CB, CA}. Also
recall that the decision to consider eAB , eBA, eBC , and eCB as output actions
in all component automata of T CBA was made more or less arbitrarily. In
fact, it depends on how one views the action of entering and exiting a room
within the team automaton T CBA. By choosing all of those actions to be
output (and thus of the same type), exiting one room and entering another
is seen as a sopp action. Recall that, on the other hand, master-slave types of
synchronization occur when input actions can only occur as a response (slave)
to output actions. In our example, assume that one views the changing of
rooms as an action initiated by leaving a room and forcing the room that is
entered to accept the entrance. Then one would name, e.g., eAB an output
action of CA and an input action of CB, and eBA an output action of CB and
an input action of CA. This causes both eAB (with master CA and slave CB)
and eBA (with master CB and slave CA) to be sms . Likewise for the other
actions.

In addition, Section 5.4 defines strategies that lead specifically to uniquely
defined combinations of peer-to-peer and master-slave types of synchroniza-
tion within team automata. The team automata framework allows one to
model many other features useful in virtual reality environments. A door,
e.g., can be extended to join more than two rooms since any number of com-
ponent automata can participate in an output action. Furthermore, as said
before, a user could be in more than one room at a time.

8.3.2 Authorization and Revocation

We continue our running example by adding Kwaku, a user whose access
rights to file F will be checked by the access control system T CBA. Kwaku
is represented by component automaton CU , depicted in Figure 8.12. This
extension complicates our example in the sense that Kwaku’s read and write
access rights can be changed independently of his whereabouts. Only to enter
a room he has to be authorized. Thus access rights are no longer equivalent
with being in a room, but rather with the possibility to enter a room. To add
this to the team automaton formalization, we will use the feature of itera-
tively constructing team automata with team automata as their constituting
component automata.

Kwaku starts in state Un with no access rights. The actions m(r), m(r),
m(w), and m(w) model the (meta) operations of “being granted read access”,
“being revoked read access”, “being granted write access”, and “being re-
voked write access”, respectively. Since these clearly are passive actions from
Kwaku’s point of view, we choose all of them to be input actions. Note that
Kwaku can end up in state Uw if and only if he was granted access rights
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CU :
Uw

m(r) m(w)

Un Ur

m(r) m(w)

Fig. 8.12. Component automaton CU : user Kwaku.

to read and to write, i.e. actions m(r) and m(w) have taken place. When
Kwaku’s write access is consequently revoked by transition (Uw,m(w), Ur),
he ends up in state Ur.

Now suppose that we want to model Kwaku’s options for editing file F ,
which is protected by the access control system T CBA. Then we would like
to compose a team automaton over T CBA and CU . To do so, first note that
{T CBA, CU} is a composable system. Next we choose a transition relation,
i.e. for each action a subset from its complete transition space in {T CBA, CU}
is selected, thereby formally fixing an access control policy for Kwaku under
the constraints imposed by T CBA.

The initial state of any team over {T CBA, CU} is (An, Be, Ce, Un), i.e.
Kwaku is not yet editing F and is in the virtual room A without access
rights. Now imagine the access rights to be keys. Hence Kwaku needs the
right key to enter reading room B, i.e. action m(r) must take place be-
fore action eAB becomes enabled. This action m(r) leads us from the ini-
tial state to (An, Be, Ce, Ur). Now Kwaku has the key to enter room B
by ((An, Be, Ce, Ur), eAB , (Ae, Bn, Ce, Ur)). This transition models the ac-
ceptance of Kwaku’s entrance of room B, i.e. this action is the autho-
rization activity mentioned earlier. Hence our choice of the transition re-
lation fixes the way we deal with authorization. If we would include, e.g.,
((An, Be, Ce, Un), eAB , (Ae, Bn, Ce, Un)) in the transition relation, this would
mean that Kwaku can enter room B without having read access rights for F .
Note however that since transitions involving internal actions of either T CBA

or CU by definition cannot be pre-empted in any team over {T CBA, CU},
our transition relation must contain ((Ae, Bn, Ce, Un), rB , (Ae, Br, Ce, Un)).
Hence Kwaku, once in room B, can always begin reading file F . By not in-
cluding ((An, Be, Ce, Un), eAB , (Ae, Bn, Ce, Un)) in our transition relation we
avoid that Kwaku can read F without ever having been granted read access.
This leads to the question of the revocation of access rights.

As argued, (Ae, Bn, Ce, Ur) — meaning that Kwaku is in room B with
reading rights — will be a reachable state. Now imagine that while in this
state Kwaku’s reading rights are revoked by m(r). To which state should
this action lead, i.e. in what way do we handle revocation of access rights?
We could opt for modeling immediate revocation or delayed revocation. The
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latter is what we have chosen to model first. Thus our answer to the question
above is to include ((Ae, Bn, Ce, Ur),m(r), (Ae, Bn, Ce, Un)). The result is
that Kwaku can pursue his activities in room B, but cannot re-enter the
room once he has left it (unless his read access has been restored). He is thus
still able to read (browse) F , but the moment he decides to re-open the file
this fails. Likewise, if Kwaku is writing F when his writing right is revoked,
then he can continue editing (typing in) F , but he cannot re-enter room C
as long as his write access right has not been restored. On this side of the
revocation spectrum, a user can thus continue his or her current activity even
when his or her rights have been revoked. He or she can do so until he or
she wants to restart this activity, at which moment an authorization check
is done to decide if he or she has the right to restart this activity. In some
applications, this may be an intolerable delay.

Immediate revocation, on the other hand, means the following. If a user
is reading when his or her reading right is revoked, then the file immediately
disappears from view, while if a user is writing when his or her writing right
is revoked, then the edit is interrupted and writing is terminated in the mid-
dle of the current activity. In some applications, this is overly disruptive and
unfriendly. If we would want to incorporate immediate revocation into our ex-
ample we would have to adapt our distribution of actions a bit. As said before,
since rB is an internal action we cannot disallow action rB to take place after
((Ae, Bn, Ce, Ur),m(r), (Ae, Bn, Ce, Un)) has revoked Kwaku’s reading rights.
If we instead choose rB to be an external action, we are given the freedom not
to include ((Ae, Bn, Ce, Un), rB , (Ae, Br, Ce, Un)) in our transition relation.
The result is that as long as Kwaku is not being granted read access by ac-
tion m(r), the only way left to proceed for Kwaku in state (Ae, Bn, Ce, Un) is
to exit room B by ((Ae, Bn, Ce, Un), eBA, (An, Be, Ce, Un)). Modeling imme-
diate revocation thus requires that actions such as rB are visible, since in that
way we can choose them not to be enabled in certain states. Immediate revo-
cation also implies that we still want Kwaku to be able to stop reading and
leave state (Ae, Br, Ce, Un) by ((Ae, Br, Ce, Un), rB , (Ae, Bn, Ce, Un)). Action
rB can thus remain internal.

This finishes the description of a part of a team automaton T over {T CBA,
CU}. In Figure 8.13 the state-reduced version TS of T (for delayed revocation)
is depicted.

Recall that team automata are intended to be used to model (logical)
design issues. An action can take place provided certain preconditions hold,
and affects only states of those component automata involved in that action.
Hence at this level there is no notion of time and no means are provided to
give one action priority over another. A result of the lack of a notion of time
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Fig. 8.13. Team automaton TS over {T CBA, CU}.

is, e.g., that nothing can be said about how long it takes before Kwaku has
left reading room B after his reading access right has been revoked. However,
time and priorities may be added to the basic model as extra features.

Again, T is not the unique team automaton over {T CBA, CU}, but it is a
team automaton one obtains by choosing a specific transition relation with
a specific protocol in mind. Once again this shows that the freedom of the
team automata model to choose transition relations offers the flexibility to
distinguish even the smallest nuances in the meaning of one’s design. An-
other interesting feature of the team automata framework is shown by the
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following application of the results proven in Section 5.2 to our running ex-
ample. In whatever order one chooses to construct a team automaton over
the component automata CC , CB, CA, and CU , we know that it will always
be possible to construct the team T discussed above. This means that in-
stead of first constructing T CBA over {CC , CB, CA}, and then adding CU , we
could just as well have constructed an iterated team by, e.g., starting from
the user component automaton CU and adding successively the component
automata CC , CB, and CA modeling the access rights that can be exercised.
Moreover, independent of the way a team automaton over CC , CB, CA, and
CU is constructed, more component automata can be added.

As an example, suppose that Kwaku has other interests than the file F .
Hence imagine a component automaton T NBA in which he can transition into
a state in which he plays some basketball. Then we may construct a team
over the team automaton T just described and the component automaton
T NBA modeling when Kwaku is entitled — or perhaps even forced — to
have a break (which is of some importance in these times of RSI). In general,
new component automata can be added to a given team automaton at any
moment of time, without affecting the possibilities of any new additions. We
thus conclude once again that the team automata framework scores high on
scalability. We will come back to this shortly.

8.3.3 Meta Access Control

Until now we have seen how team automata can be used to describe the con-
trol of a user’s access to a file depending on his or her rights. Here we further
elaborate on the granting and revoking of access rights and we consider meta
access control . This means that privileges such as granting and revoking of
rights can themselves be granted and revoked. The complicated (recursive)
situations that may arise in this fashion depend on the chosen (meta) ac-
cess control policy and we demonstrate how they can unambiguously and
concisely be defined in terms of team automata.

Figure 8.14 shows a component automaton C0 that models a building with
three levels — A, B, and C — corresponding to null access, read access, and
full access, respectively. This component automaton shows the same access
structure as the three rooms of Figure 8.10. Now, however, the status of the
user directly determines the level he or she operates on and the granting and
revoking of access rights is identified with changing levels. This differs from
the previous example where the status of the user only determined his or her
rights to enter a room.

Consequently, in C0 the user moves in two dimensions: vertically between
levels A, B, and C — indicating the dynamic change in access rights Kwaku
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Fig. 8.14. Component automaton C0: the access building.

has for F — and horizontally between the states “null”, “reading”, and “writ-
ing” — indicating the current activities of Kwaku with respect to F . Notice
that in C0, e.g., the state Bw meaning that Kwaku is writing while having
read access but no write access, can only be reached from Cw by an action
m(w) or from Aw by an action m(r). Hence this state Bw can be entered only
when Kwaku is writing while his status changes. There is no transition to Bw

at level B. A similar remark holds for states Ar and Aw, which can be entered
only from level B by the read access revocation action m(r). States such as
Ar, Aw, and Bw are called irregular states because they are not reachable at
their own level.

To model meta access control, we assume the existence of a system ad-
ministrator, Abena, who can change Kwaku’s rights. Hence Abena has the
right to grant and revoke access by Kwaku to F . For this reason we have
chosen all actions of granting and revoking access rights in C0 to be input
actions, while all actions of reading and writing are output actions. The right
to grant and revoke are legitimate rights, but they are not directly applied
to F . They are in fact meta operations — hence m(r) and m(w) — and the
rights to apply these meta operations are meta rights. Similarly, if there is
a creator, Kwesi, who can allow (and disallow) Abena to grant and revoke,
then Kwesi has meta meta rights. Kwesi has the meta meta right to grant
and revoke Abena’s meta rights to grant and revoke Kwaku’s access rights to
F . A typical action of Kwesi is m2(w), which revokes Abena’s right to grant
and revoke write access to Kwaku.
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The notion of meta clearly extends to arbitrary layers. An example of
such a multi-layered structure of meta can be seen in the journal refereeing
process. The creator of a document may delegate publication responsibilities
to co-authors who may select a journal and grant m2(r) rights to the editor-
in-chief. The editor-in-chief may grant m(r) rights to assistant editors who
can then grant and revoke read access to reviewers. An interesting question
now arises as to the effect of revocation: should revocation of a meta right also
revoke the rights that were passed on to others? This is the issue of shallow
revocation versus deep revocation. Shallow revocation means that a revoke
action does not revoke any of the rights that were previously passed on to
others, whereas deep revocation means that a revoke action does revoke all
rights previously passed on. Team automata can be used to model shallow,
deep, or even hybrid revocation. Shallow revocation is often the easiest to
model, whereas deep revocation is known as a big challenge to model and
implement ([DS98]). We now show how deep revocation can be modeled using
team automata.

Figure 8.15 shows a component automaton capturing one layer (layer k)
of a multi-layer meta access specification for our example of read and write
access. We have already seen layer 0, viz. component automaton C0. For
each value of k ≥ 1 there are corresponding component automata that are
directly related to layer k (viz. Ck−1 at layer k − 1 and Ck+1 at layer k + 1).
For each such component automaton Ck, the horizontal actionsmk(r), mk(r),
mk(w), and mk(w) are output actions, whereas the vertical actions mk+1(r),
mk+1(r), mk+1(w), and mk+1(w) are input actions. For k = 0 we identify
r with m0(r), r with m0(r), w with m0(w), and w with m0(w). Similarly,
m(r) = m1(r), m(r) = m1(r), m(w) = m1(w), and m(w) = m1(w).

We can now define a multi-layered structure by recursively composing
a team automaton over C0, C1, . . . , and Cn, for some n ≥ k. Note that
{C0, C1, . . . , Cn} is a composable system. As mentioned before we can also
build this team automaton in an iterated way starting from, e.g., a team over
any two component automata Ck and Ck+1. In Figure 8.16, the state-reduced
version (T k

k−1)S of a team automaton T k
k−1 over Ck−1 and Ck, representing

layer k − 1 and layer k of this layered structure, is depicted.
The transition relation of this team T k

k−1 is chosen with the modeling
of deep revocation in mind. Finally, note that in Figure 8.16 we have added
superscripts to distinguish the states in Ck from the states in Ck−1, e.g., state
Br of Ck from state Br of Ck−1.

In our example, C2 represents the actions of the supervisor Kwesi and
C1 those of Abena. Now consider Kwesi in state B2

r . Then Figure 8.16 tells
us that Abena must be in one of the three states B1

n, B
1
r , or B1

w. Assume
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Fig. 8.15. Component automaton Ck: meta access at layer k.

that Kwesi reached this state B2
r by performing action m2(r) from B2

n, while
Abena was in state A1

n having no rights to grant and revoke reading rights.
Action m2(r) is an output action of C2 and an input action of C1, and our
transition relation forces C1 to transition from A1

n to B1
n. The interpretation

is that Kwesi granted Abena the right to do read grants and revokes (to user
Kwaku for file F ).

Similarly, component automaton Ck can revoke the right to grant and
to revoke read access from Ck−1 at any time by performing output action
mk(r), and thus forcing Ck−1 to perform this action — this time as an input
action — as well. Continuing our example, this means that while in state
B2

r , Kwesi’s read granting right may be revoked by action m3(r) at any time.
If this happens, Kwesi is forced into the irregular state A2

r , which has only
one possible output action, viz. m2(r), leading to A2

n. Whenever that action
m2(r) occurs it revokes Abena’s right to change Kwaku’s read access.

We thus observe two general rules of activity in such a team automa-
ton over {C0, C1, . . . , Cn}, with each component automaton of the form de-
picted in Figure 8.15. First, when a “master” component automaton Ck where
1 ≤ k ≤ n, transitions right (grant) or left (revoke), then the “slave” compo-
nent automaton Ck−1 must transition upward (gaining some access right) or
downward (losing some access right). Secondly, the slave Ck−1 may be forced
to transition downward into an irregular state, in which case it will eventually
transition to the left. Ck−1 is itself a master and thus this transition to the
left again forces a downward transition of Ck−2, and so on until C0 on layer
0. Hence, as promised, we indeed model deep revocation.



8.3 Spatial Access Control 305

B
k
−
1

w

A
k r

B
k
−
1

w

B
k r

B
k
−
1

w

C
k r

B
k r

B
k
−
1

r

B
k
−
1

n

A
k r

B
k
−
1

n

B
k r

A
k
−
1

w

A
k n

A
k
−
1

w

B
k n

A
k
−
1

w

C
k n

B
k n

A
k
−
1

r

A
k
−
1

n

A
k n

A
k
−
1

n

B
k n

C
k
−
1

w

A
k w

C
k
−
1

w

B
k w

C
k
−
1

w

C
k w

B
k w

C
k
−
1

r

C
k
−
1

n

A
k w

C
k
−
1

n

B
k w

A
k
−
1

n

C
k n

C
k n

B
k
−
1

n

C
k r

B
k
−
1

r

C
k r

A
k n

B
k
−
1

r

A
k r

C
k
−
1

r

A
k w

A
k
−
1

r

A
k
−
1

r

m
k
(r
)

m
k
(r
)

m
k
+
1 (
w
)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1 (
w
)

m
k
+
1 (
w
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
+
1
(r
)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
+
1
(r
)

m
k
(r
)

m
k
+
1
(r
)

m
k
+
1
(r
)

m
k
+
1 (
r)

m
k
+
1
(w

)

m
k
+
1 (
r)

m
k
+
1
(r
)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(r
)

m
k
+
1 (
r)

m
k
+
1
(r
)

m
k
+
1
(r
)

m
k
+
1
(r
)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
+
1
(w

)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
−
1
(w

)

m
k
−
1
(r
)

m
k
−
1
(w

)

m
k
−
1
(r
)

m
k
−
1
(w

)

m
k
−
1
(r
)

m
k
−
1 (
r)

m
k
−
1 (
r)

m
k
−
1 (
r)

m
k
−
1
(r
)

m
k
−
1
(r
)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1 (
r)

m
k
−
1 (
r)

m
k
−
1
(r
)

m
k
−
1
(r
)

m
k
−
1
(r
)

m
k
−
1 (
r)

(T
k k
−

1
) S

:

C
k
−
1

r

C
k w

C
k
−
1

n

C
k w

m
k
−
1
(r
)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)
m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

F
ig
.
8
.1
6
.
S
ta
te
-r
ed

u
ce
d
te
am

au
to
m
at
on

(T
k k
−
1
) S

ov
er

C
k
−
1
an

d
C
k
.



306 8. Applying Team Automata

8.3.4 Conclusion

In this section we have demonstrated by means of examples how team
automata can be used for modeling access control mechanisms presented
through the metaphor of spatial access. The combination of the formal frame-
work of team automata and the spatial access metaphor leads to a powerful
abstraction well suited for a precise description of (at least some of the)
key issues of access control. The team automata framework supports the
design of distributed systems and protocols, by making explicit the role of
actions and the choice of transitions governing the communication, coordina-
tion, cooperation, and collaboration. Examples include, e.g., peer-to-peer and
master-slave types of synchronization, or heterogenous combinations thereof.
Moreover, the formal setup and the possibility of a modular design provide
analytic tools for the verification of desired properties of complex (computer)
systems. Team automata are thus a fitting companion to the virtual spaces
metaphor used in virtual reality systems that supports notions of rooms and
buildings. Each space is represented by a component automaton, dynamic ac-
cess changes are represented by joint external actions, while resource accesses
within a space can be represented by internal actions.

Obviously there are numerous other possible examples as well as variations
of the example we have considered above. For one, the assumption that write
access can only be granted if read access has been granted can easily be
dropped. Similarly, grant and revoke rights can be coupled more loosely.
Read and write operations are specified here at the file level, but could also
have been specified at the page level, object level, or record level, to name but
a few. This might mean that delayed revocation is precisely the right choice.
At the file level, the r and r actions might be seen at the user interface as
open and close file. The w and w actions might be edit and save operations.
When dealing with a transaction system, combinations of these operations
might correspond to begin transaction and end transaction.

The team automata framework handles group decision making well and
therefore allows convenient implementations of distributed access control . Dis-
tributed access control means that the supervisory work of granting and re-
voking access rights is administered by multiple agents. Thus Kwaku could
have two administrative supervisors who must agree on any change of access
rights. This can be modeled as an action of two masters and one slave: the ac-
tions would be output for both supervisors, requiring both to participate, and
input for the slave. Alternatively, by including transitions with one supervisor
being inactive, we can model the case of approval being required by either
one of the two supervisors. Hybrids between pure master-slave and pure peer-
to-peer types of synchronization, as in heterogenous team automata, are also
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useful. All these variations are due to the fact that the choice of a transition
relation is the crucial modeling issue of the team automata framework.

Recall that team automata model the logical architecture of a design.
They abstract from concrete data, configurations, and actions, and only de-
scribe behavior in terms of a state-action diagram (structure), the role of
actions (input, output, or internal), and synchronizations (shared actions).
It is not feasible (nor necessary) to have a distinct component automaton
for each individual, and for each file in an organization. In many situations,
categories and roles are used rather than individuals. Any implementation
would have the team automaton as a class entity, and an activation record
for each person, containing their current state. Similarly, by keeping a status
of the files one can model the criterion “only one person can write a file at a
time, but many readers is OK”. The model cast in the spirit of component
automata depicting roles rather than individuals becomes much more useful
and general, and avoids some notational problems of exponential growth.

As observed earlier, time and priorities are not incorporated in neither
the spatial access metaphor nor the team automata model as discussed here.
However, similar to the Petri net model one may consider to extend team
automata with time and priorities (see, e.g., [ABC+95], which focuses on
performance analysis). When time and/or priorities are part of access control
this would allow the designer to control the sojourn times in the local states
and to control the resolution of conflicting actions.

Using team automata for modeling (spatial) access control forces one to
make explicit and unambiguous design choices and at the same time provides
the possibility of mathematically precise analysis tools for proving crucial
design properties, without first having to implement one’s design.





9. Discussion

In this chapter we summarize the main contributions of this thesis and point
out some topics worth further investigation. We moreover indicate how —
in theory — team automata can be used for system design and where — in
practice — they have actually been used.

Contributions of the Thesis

In this thesis we have formally presented team automata as a model for
component-based system design. Team automata are based on the well-known
method for modeling collaboration between system components by synchro-
nizations of actions or transitions. A distinguishing feature of team automata
is the freedom to choose on which actions and when their constituting com-
ponent automata synchronize. In addition, there is the distinction of a team
automaton’s alphabet into input, output, and internal actions.

Through the classification of a broad range of ways to synchronize ac-
tions in team automata, a systematic study of the role that synchronizations
play when modeling collaboration between system components has been con-
ducted. To begin with, we have studied their effect on the inheritance of
various automata-theoretic properties from team automata to their consti-
tuting component automata and subteams, and vice versa. We have further-
more studied their effect on the inheritance of various automata-theoretic
properties from team automata to their constituting component automata
and subteams, and vice versa. These studies are not complete and thus offer
interesting pointers for further investigation.

The relation between team automata and two related models, viz. I/O
automata and Petri nets, has been investigated in considerable detail. This
has shown that I/O automata fit into the framework of team automata,
whereas so-called non-state-sharing vector team automata can be translated
into ITNCs — a model of vector-labeled Petri nets. Vector team automata are
team automata in which the (team) actions have been replaced by vectors of
(component) actions, from which the participation of a component automaton
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in a synchronization can thus be seen immediately. Consequently, non-state-
sharing vector team automata are the subclass of vector team automata with
the characteristic that whether or not a synchronization can take place only
depends on the local states of the component automata actively involved in
that synchronization. As a result, synchronizations involving disjoint sets of
component automata are independent, which would thus allow a concurrent
semantics for non-state-sharing vector team automata. This is a point worth
further investigation.

Team automata are naturally suited for component-based system design
due to the fact that they can themselves be used as component automata
of higher-level team automata. This allows the iterative composition of team
automata. We have been able to show that iterated composition does not
lead to an increase of the number of possibilities for synchronization. Every
iterated team automaton over a composable system can be interpreted as a
team automaton over that composable system, by reordering its state space
and transition space. We have moreover been able to show that every team
automaton can be iteratively composed over its subteams.

We have studied the computations and behavior of team automata in re-
lation to those of their constituting component automata. Several types of
team automata that satisfy compositionality could be identified. To describe
the compositionality of team automata, we have had to develop an extensive
theory of (synchronized) shuffles. An examiniation of the compositionality
of further types of team automata is certainly a topic worth further investi-
gation. This might very well require the introduction and analysis of more
sophisticated types of shuffles.

Using Team Automata

Modeling a system as a team automaton in the early phases of design for-
ces one to identify the active components of the system and to consider the
intended communications and synchronizations in detail, which is bound to
lead to a better understanding of system functionality and to explicit and
unambiguous design choices. This forms the basis of further design and im-
plementation, while at the same time the mathematically rigorous definitions
provide the possibility of formal analysis tools for proving crucial design prop-
erties, without first having to implement the design.

In Theory

To model a system as a team automaton, first the components have to be
identified. Each of them should be given a description in the form of an au-
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tomaton — an easy to understand model that moreover forms the basis for
system descriptions in a number of model-checking tools (see, e.g., [Hol91],
[Kur94], [Hol97], and [Hol03]). Based on the idea of synchronizations of com-
mon actions, these components can be connected in order to collaborate.
Within each component, a distinction has to be made between internal ac-
tions — which are not available for synchronization with other components —
and external actions — which can be used to synchronize components and
may be subject to synchronization restrictions. By assigning such different
roles to actions it is possible to describe many types of collaboration.

Consequently, for each external action separately, a decision is made as to
how and when the components should synchronize on this action. If the action
is supposed to be a passive action that may not be under the component’s
local control, then it can be designated as an input action of that component,
otherwise as an output action. If such a distinction between the roles of
an external action is not necessary, then the choice is arbitrary. A natural
option would be to make it an output action in all components in which it
occurs. Once the synchronization constraints for each external action have
been determined, one may apply, e.g., a maximality principle to construct a
unique team automaton satisfying all constraints.

The team automata framework thus supports component-based system
design by making explicit the role of actions and the choice of transitions
that govern the collaboration between components. The crucial feature is the
freedom of choice for the synchronizations collected in the transition relation
of a team automaton. This is indeed one of the main reasons given in [Ell97]
for introducing team automata to model groupware systems rather than using
I/O automata for that purpose. Another important reason is that, in order for
a team automaton to be capable of modeling various types of collaboration
between its components by synchronizations of common actions, synchro-
nizations between output actions of its components should not be excluded a
priori. As a matter of fact, the peer-to-peer types of synchronization explic-
itly use the possibility to synchronize on output actions. Finally, no matter
how convenient input enabling may be when modeling reactive systems, it
does hinder a realistic modeling of collaborations that involve humans — in
fact, Tuttle himself was the first to acknowledge this when he introduced I/O
automata in [Tut87] (cf. Section 7.1) — while modeling such collaborations
was one of the main reasons for the introduction of team automata.

In Practice

An increasing number of papers bears witness to the usefulness of team
automata in the early design phase of reactive systems in general, and of
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groupware systems in particular. Moreover, these examples are not limited
to modeling within CSCW (see, e.g., [Ell97], [EK00], [Lav00], [BEKR01a],
[BEKR01b], and [BB03]) but extend to areas such as software engineering
(see, e.g., [HB00], [Hoe01], and [EG02]) and — most recently — security (see,
e.g., [BLP03]). In fact, a spectrum from hardware components to protocols
for interacting groups of people has been modeled by team automata. There
is still quite some work left to do, though. For one, the components of a team
currently cannot exchange any information, i.e. they have no private memory.
In order to be useful also in later stages of the design of groupware systems (or
to model, e.g., workflow systems) team automata should thus — among other
things — be extended with the flow of information between components. An
initial attempt in this direction was recently undertaken in [BCM03]. Fur-
thermore, team automata are currently inappropriate for capturing aspects
of group activity such as social aspects and informal unstructured activity.

We now close this Discussion with an initial observation on the potential
of team automata within a process model recently introduced in the field of
CSCW. In [Dew01], Dewan claims that traditional software process models
such as the waterfall model and the spiral model — while efficient for de-
scribing the different phases in the life cycle of software in general — lack too
many “collaboration-specific details” to be efficient for “collaborative sys-
tems”. These are software systems including “both general infrastructures
and specific applications for supporting collaboration”. Therefore, Dewan
proposes a new process model well suited for collaborative systems.

The initial phase of Dewan’s model consists of decomposing the function-
ality of collaborative systems into smaller subfunctions, which can be worked
upon more-or-less independently. Examples of such collaboration functions
are listed in [DCS94] and [Dew01]. Among them are merging and access con-
trol . Merging combines independent versions into a single object, whereas
access control determines the operations a user is authorized to perform. In
Section 8.2 we showed how team automata could be applied — in a conflict-
free strategy — to merge previously distributed packages back together. In
Section 8.3 we consequently showed how access control mechanisms could be
made precise and given a formal description using team automata. Team au-
tomata thus seem promising for modeling these two subfunctions of Dewan’s
process model.
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Samenvatting

De Nederlandse titel van dit proefschrift is “Teamautomaten: een formele
benadering van het modelleren van samenwerking tussen systeemcomponen-
ten”. Dit proefschrift gaat dus over teamautomaten, een wiskundig model
voor de beschrijving van het gedrag van reactieve en gedistribueerde syste-
men. Een reactief systeem is een systeem dat een voortdurende wisselwerking
met zijn omgeving vereist — zoals een koffieautomaat. Een gedistribueerd sys-
teem is een systeem dat uit verschillende en vaak fysiek verspreide componen-
ten bestaat, maar dat middels een hechte samenwerking naar de buitenwereld
toe wel degelijk de indruk geeft een samenhangend geheel te zijn — zoals het
Internet. Een teamautomaat bestaat dan ook uit componenten die zelf ook
weer automaten zijn en die op een bepaalde manier samenwerken.

Teamautomaten zijn in 1997 informeel gëıntroduceerd door C.A. Ellis,
met als belangrijkste motivatie het beschrijven en analyseren van groupware-
systemen. Dit zijn zowel software- als hardwaresystemen, die tot doel hebben
groepen mensen in hun onderlinge samenwerking te ondersteunen — zoals
email. Deze systemen zijn daardoor vaak reactief en gedistribueerd, maar
bestaande modellen voor de beschrijving van zulk soort systemen werden door
C.A. Ellis ontoereikend bevonden voor de specifieke vormen van samenwer-
king zoals die binnen groupwaresystemen plaatsvinden. Hierop besloot hij
tot de introductie van teamautomaten als uitbreiding op de ‘Input/Output’-
automaten die in 1987 door M.R. Tuttle en N. Lynch gëıntroduceerd zijn.

De voornaamste doelen van dit proefschrift zijn (a) het wiskundig precies
definiëren van teamautomaten, (b) het bepalen van de voorwaarden waaron-
der teamautomaten aan bepaalde eigenschappen voldoen, (c) het vergelijken
van teamautomaten met verwante modellen uit de literatuur en (d) een aanzet
geven tot het toepassen van teamautomaten in de praktijk.

Achtergrond

Automaten zijn toestandsovergangsmodellen die in de informatica veelvuldig
gebruikt worden voor de beschrijving van het dynamische gedrag van (com-
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puter)systemen. Zo’n automaat bevindt zich op ieder moment in één bepaalde
toestand. Wanneer er een verandering plaatsvindt in het systeem dat door
de automaat beschreven wordt, dan wordt dit in de automaat weergegeven
door de uitvoering van een actie die deze verandering symboliseert, met als
gevolg dat de automaat zich in een nieuwe toestand begeeft. Naast computers
komen er in het dagelijks leven nog vele andere systemen voor die goed door
een automaat kunnen worden beschreven. Zoals het nu volgende voorbeeld
laat zien kan hierbij gedacht worden aan koffieautomaten.

K:
C––

leeg

koffie

vol

Bovenstaande automaat K geeft een hele simpele koffieautomaat weer.
Deze koffieautomaat produceert een koffie na inwerping van een euro. De au-
tomaat K onderscheidt hiervoor twee mogelijke toestanden, leeg en vol , die
aangeven of er wel of geen euro is ingeworpen. Initieel is er geen euro inge-
worpen en leeg is dan ook de begintoestand van K, wat is aangegeven middels
een kronkelend pijltje. Het inwerpen van een euro wordt in K beschreven door
het uitvoeren van de actie C–– , met als resultaat dat K zich in de toestand vol
begeeft. Pas nu kan de koffieautomaat een koffie procuderen, wat in K wordt
beschreven door het uitvoeren van de actie koffie. Dit procédé kan vervolgens
eindeloos herhaald worden.

Het op een formele, wiskundige manier beschrijven en vervolgens analy-
seren van (computer)systemen vormt een belangrijk deelgebied van de in-
formatica. Onderzoek in dit gebied heeft een groot aantal modellen en tech-
nieken voortgebracht, waaronder vele soorten automaten — inclusief teamau-
tomaten. Het specifieke voordeel van het teamautomatenmodel is de flexi-
biliteit die het biedt met betrekking tot het beschrijven van verschillende
soorten samenwerking tussen (componenten van) systemen.

Het Model

Een teamautomaat is een compositie van componentautomaten. Een compo-
nentautomaat is een automaat die drie soorten acties onderscheidt, namelijk
invoer, uitvoer en interne acties. Invoer en uitvoer acties vormen tezamen
de externe acties en zij kunnen worden gebruikt om allerlei vormen van
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samenwerking tussen de componentautomaten te modelleren. Welke vorm
van samenwerking ook gekozen wordt, de resulterende teamautomaat zal
technisch gezien weer een componentautomaat zijn. Dit maakt het mogelijk
om teamautomaten te maken met teamautomaten als componenten.

De samenwerking tussen componentautomaten binnen een teamautomaat
bestaat uit het simultaan uitvoeren (ook wel synchroniseren genoemd) van
gemeenschappelijke acties. Gebaseerd op de gekozen vorm van samenwerking
worden er in dit proefschrift verschillende soorten (synchronisaties van) ac-
ties gedefinieerd. Zo worden acties die nooit door meer dan één componentau-
tomaat tegelijk worden uitgevoerd, vrij genoemd. Acties die altijd worden uit-
gevoerd als synchronisaties waaraan alle componentautomaten die de bewuste
actie hebben meedoen, worden actie-onmisbaar (‘action-indispensable’) ge-
noemd. Wanneer deze eis tot deelname wordt beperkt tot die componentau-
tomaten die zich in een toestand bevinden waarin zij de bewuste actie kunnen
uitvoeren, dan spreken we van toestand-onmisbare (‘state-indispensable’) ac-
ties. Door vervolgens rekening te houden met de verschillende rollen die ac-
ties kunnen hebben in componentautomaten, kunnen complexere vormen van
synchronisatie worden benoemd. Zo worden in dit proefschrift ‘peer-to-peer’
synchronisaties — van acties van hetzelfde soort — en meester-slaaf syn-
chronisaties — met uitvoer acties als meesters en invoer acties als slaven —
gedefinieerd.

Resultaten

Hieronder volgt een handvol van de meest aansprekende resultaten van dit
proefschrift. Deze hebben met elkaar gemeen hebben dat ze weinig of geen
aanvullende uitleg behoeven om te kunnen worden gewaardeerd en laten bo-
vendien zien dat de voornaamste doelen van dit proefschrift bereikt worden.

Zoals al eerder opgemerkt kan elke teamautomaat zelf weer gebruikt wor-
den als component in de samenstelling van een nieuwe teamautomaat. In
dit proefschrift wordt bewezen dat dit gëıtereerd samenstellen van team-
automaten niet leidt tot een vergroting van het aantal mogelijkheden tot
synchronisatie van de acties van de componentautomaten waaruit zij zijn
samengesteld.

De verzameling van alle rijtjes van acties die door een teamautomaat
vanuit een begintoestand achter elkaar kunnen worden uitgevoerd, vormen
tezamen het gedrag (de taal) van deze teamautomaat. In dit proefschrift
wordt bewezen dat een aantal van de in dit proefschrift gedefinieerde soorten
synchronisatie zodanig is, dat het gedrag van elke teamautomaat die volgens
zo’n soort synchronisatie is samengesteld bepaald kan worden zonder te weten
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hoe deze teamautomaat er precies uit ziet. Om deze vorm van compositiona-
liteit te bewijzen wordt een uitgebreide wiskundige theorie ontwikkeld over
het op bepaalde manieren inéénrijgen (‘to shuffle’) van rijtjes van acties.

Bovenstaande resultaten met betrekking tot iteratie en compositionaliteit
maken teamautomaten zeer geschikt om een abstracte hoog-niveau beschrij-
ving van een systeem middels het stap voor stap vervangen van onderdelen
van de huidige beschrijving door meer gedetailleerde beschrijvingen, te de-
componeren in een meer concrete laag-niveau beschrijving. Dit is een in de
informatica veelvuldig toegepaste techniek om complexe systemen toeganke-
lijker te maken voor analysedoeleinden.

In de Introductie van dit proefschrift wordt kort bij overeenkomsten
en verschillen tussen teamautomaten en verwante modellen stilgestaan. In
een later hoofdstuk volgt een meer gedetailleerde vergelijking van teamau-
tomaten met twee van deze modellen, namelijk het al eerder genoemde
‘Input/Output’-automatenmodel en een model gebaseerd op Petri-netten.
Er wordt bewezen dat ‘safe Input/Output’-automaten (ook wel ‘unfaire
Input/Output’-automaten genoemd) ook formeel een deelmodel van teamau-
tomaten zijn. Voor de vergelijking met Petri-netten wordt eerst overgestapt
op een versie van teamautomaten genaamd vectorteamautomaten, waarin
vectoren van acties in plaats van acties worden uitgevoerd. Vervolgens wordt
bewezen dat een deelmodel van deze vectorteamautomaten vertaald kan wor-
den in een Petri-netmodel genaamd ‘Individual Token Net Controllers’, dat in
1990 is gëıntroduceerd door N.W. Keesmaat, H.C.M. Kleijn en G. Rozenberg.

De verscheidenheid aan vormen van samenwerking tussen de compo-
nenten van een teamautomaat maken het teamautomatenmodel bij uit-
stek geschikt voor het formeel beschrijven en analyseren van (componen-
ten van) groupwaresystemen en hun interacties. Nadat C.A. Ellis dit al
meteen bij de introductie van teamautomaten heeft gëıllustreerd, wordt dit
in dit proefschrift nogmaals duidelijk gemaakt door (onderdelen van) een
gedistribueerde groupwarearchitectuur formeel te beschrijven als een teamau-
tomaat. Tevens wordt een voorzichtig begin gemaakt met het analyseren van
groupwaresystemen. Hieruit kan worden geconcludeerd dat het nuttig zou zijn
om een computerprogramma (een ‘tool’) te ontwikkelen waarmee teamauto-
maten op een eenvoudige manier ontworpen kunnen worden en op bepaalde
(gedrags)eigenschappen geanalyseerd kunnen worden. Dit verdient zonder
twijfel nadere bestudering in de toekomst.
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