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Abstract

Theory predicts that senescence should inevitably evolve because selection pressure de-
clines with age. Yet, data show that senescence is not a universal phenomenon. How
can these observations peacefully coexist? Evolution of any trait hinges on its impact
on fitness. A complete mathematical description of change in fitness, the total fitness
differential, involves selection pressure along with a perturbation function that describes
how the vital rates, mortality and fecundity, are affected across ages. We propose that
the perturbation function can be used to model trade-offs when vital rates are perturbed
in different directions and magnitude at different ages. We find that for every trade-off
we can identify parameter values for which senescence does evolve and others for which
it does not. We argue that this reconciles the apparent contradiction between data and
theory. The total fitness differential is also instrumental in deriving mathematical rela-
tionships between alternative indicators of selection pressure. We show examples and
highlight that any indicator combined with the right perturbation function can be used to
parameterize a specific biological change. Biological considerations should motivate what
perturbation functions are used. We interpret the relevance of Hamilton’s finding that se-
lection pressure declines for the evolution of senescence: declining selection pressure is
a necessary but not a sufficient condition.
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Introduction

Higher ages are of less evolutionary importance than younger ages. As organisms go
through their life course, more and more offspring are born, so more and more of the
organism’s contributions to the gene pool come to lie in the past. Since earlier contribu-
tions cannot be affected by later events, death of older individuals incurs less of a penalty
to evolutionary fitness than death of younger individuals. In a nutshell, this declining se-
lection pressure is the basis of evolutionary explanations of senescence, the deterioration
of an organism’s vital rates due to changes in its state as the organism gets chronologically
older [1-3]. Selection pressure declines for any pattern of fecundity and survival [3], even
for organisms that initially exhibit ‘sustenance’, unchanging rates of reproduction and sur-
vival with age (sensu [4]), or organisms that show ‘negative senescence’, defined by rising
rates of reproduction declining rates of mortality with age (sensu [5]).

If declining selection pressure were a sufficient condition for the evolution of senes-
cence, then evolution should mold any life course, even those that initially exhibit no or
negative senescence, to the senescent phenotype after sufficient evolutionary time. Yet,
patterns of sustenance and negative senescence can be observed in nature [5,6]. There-
fore declining selection pressure alone cannot be the decisive argument, and something
else must be at play [6].

Selection pressure expresses the sensitivity of fitness to some standard unit of
change in a vital rate, mortality and fecundity, at a specific age. To know how fitness
changes as a result of some real biological perturbation, it is necessary to know which vital
rate(s) are affected, at which ages, and how strongly. These changes can be captured in a
perturbation function, which describes the effects on mortality and fecundity as a func-
tion of age. The perturbation function completes the total fitness differential, which is the
full and general analytical description of how fitness changes if mortality and/or fecundity
change(s) [7,8]. Any effect on fitness can only be known if the total fitness differential is
considered.

To find an appropriate perturbation function, one has to consider the underlying
biology: if mortality is perturbed at one age, what would happen biologically at other ages,
and what does that mean for the perturbation function? The complex causal pathways
leading to changed gene expression, the accumulation of damage, loss of physiological
control, but also growth and learning (all of which affect mortality and fecundity patterns),
are likely to be tied in some more or less continuous trajectory of change. These cannot
be reduced to independent age-specific changes [9,10]. Here, the perturbation function
is helpful, since it describes such age-patterns.

The combination of selection pressure and perturbation is commonly studied in
age-structured models [11,12], matrix population models [13, §9.1.6 of 14], and quantita-
tive genetics [15]. Yet, studies of senescence typically invoke standard-unit changes at
particular ages (or age-ranges), drawing conclusions from verbal comparison of ‘early’ (low
ages) versus ‘late’ (high ages) [e.g. 1-3,16-18]. In the same vein, conclusions about the evo-
lution of senescence are frequently drawn directly from patterns of selection pressure [e.g
19-24]. We exemplify biologically realistic perturbation functions and use those in combi-
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nation with the associated selection pressure, thus completing the evolutionary analysis.
This leads to results that are not evident from models based on selection pressure alone.
Mathematical relationships between alternative indicators of selection pressure are clari-
fied using the perturbation function. We conclude with showing that Hamilton’s finding is
a necessary but not a sufficient cause for the evolution of senescence.

Fitness consequences of changes in vital rates

Hamilton [3] used the intrinsic rate of increase ’r’ as a measure of fitness, defined as the
unique real root of the Euler-Lotka equation, within the framework of stable population
theory [11,14,25]: ∫

∞

0
e−rx`(x)m(x)dx = 1 (5.1)

In this equation `(x) denotes survival up to age x, and m(x) denotes age-specific fecundity.
Survival is related to the instantaneous mortality rate µ(x):

`(x) = e−
∫ x

0 µ(t)dt (5.2)

By implicit differentiation of r with respect to an additive perturbation of mortality
and fecundity respectively, Hamilton [3] derived indicators of selection pressure on age-
specific additive perturbations of mortality and fecundity. These indicators are:

dr
dFa

=
e−ra`(a)

T
(5.3)

dr
d∆a

= −
∫

∞

a e−rx`(x)m(x)dx
T

(5.4)

where
T =

∫
∞

0
xe−rx `(x)m(x) dx (5.5)

which is the average age at reproduction in a population, i.e. generation time [11]. Further-
more, d∆a = dµ(a)da, an infinitesimal additive change in mortality multiplied by an in-
finitesimal neighborhood of the age at which this change takes place, and dFa = dm(a)da,
an infinitesimal additive change in fecundity multiplied by an infinitesimal neighborhood
of the age at which this change takes place.

Using functional calculus, Arthur [7] derived a general analytical expression for the
sensitivity of r to changes in the patterns (rather than age-specific values) of fecundity and
survival, writing r in its differential form:

dr =
1
T

[∫
∞

0
e−rad`(a)m(a)da+

∫
∞

0
e−ra`(a)dm(a)da

]
(5.6)

If the perturbation of survival is considered at the mortality level, the two being related
through equation (5.2), applying the product rule to d`(a) and integrating by parts, this
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expression can be rewritten as:

dr
dε

=
∫

∞

0

[
e−ra`(a)

T
dm
dε

(a, ·)−
∫

∞

a e−rx`(x)m(x)dx
T

dµ

dε
(a, ·)

]
da (5.7)

Perturbation parameter ε captures small perturbations in fecundity (dm/dε(a, ·)) and mor-
tality (dµ/dε(a, ·)). These perturbations can be functions of age, and possibly other pa-
rameters, indicated by the dot. The two other elements can be recognized as Hamilton’s
indicators of selection pressure, equations (5.3) and (5.4). Writing H∗ and H† for Hamil-
ton’s indicators of selection pressure on additive changes in fecundity and mortality rate
respectively, the general equation for change in r is:

dr
dε

=
∫

∞

0

[
H∗(a)

dm
dε

(a, ·)+H†(a)
dµ

dε
(a, ·)

]
da (5.8)

At every age, the effect of change in mortality and fertility on fitness is given by
the product of fitness sensitivity (H∗ or H†) and the perturbation in the vital rate (dm/dε

and dµ/dε ). Integration over all ages then yields the full fitness consequences. As an ex-
ample of a perturbation function, mortality µ could equal some constant c in the baseline
scenario, while perturbed mortality could be given by

µ(a,ε) = c+ ε(a− p)s (5.9)

where age p is the one age at which the perturbed mortality function crosses the baseline
(constant) mortality, ε ≥ 0 is a perturbation parameter, while parameter s > 0 models
the strength of the trade-off. Both s and ε are given in units of time−1. Except for its
dimensionality, parameter s is redundant in this case, but not in other perturbations (see
below), and is included here for consistency. The perturbation function expresses how
strongly mortality gets to deviate from the baseline scenario, which in the case of equation
(5.9) is

dµ

dε
= (a− p)s (5.10)

Notice that this perturbation function involves changes at all ages.

Invasion study

Expression (5.8) can be analyzed for any perturbation functions
dm/dε(a, ·) and dµ/dε(a, ·) of interest, in the context of the life histories of a resident
phenotype, which determine H∗ and H†. Notice that selection pressure is "situational" (pg
34 of [26]): as soon as vital rates actually do change, selection pressure changes with them.
As a result, the fitness differential can be used to indicate an initial direction of change, but
for real-life, non-infinitesimal changes, it provides only a linear approximation (see [27-
29] for methods to improve on this limitation). We need therefore to choose a phenotype
for the resident population to be able to derive exact expressions for selection pressure.
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We choose a sustenant resident phenotype. Although it is not evident that early organisms
were sustenant, this assumption avoids presuming that senescence has evolved before
explaining that very phenomenon, and has therefore often been taking as a starting point
in previous approaches [e.g. 1,2,12,13,30].

The perturbation function, we propose, can be used to mimic trade-offs, since this
function can express different direction and magnitude of perturbation of vital rates at
each age, which is what happens under a trade-off. The perturbation functions are as-
sumed to pertain to all organisms in a population. The environment is assumed to be
constant.

Having thus obtained the ingredients for the fitness differential, the latter can be
evaluated to determine whether invasion is possible. If and only if a positive fitness dif-
ferential exists, i.e. dr/dε > 0, improvement is possible locally, so that invasion will take
place if the necessary variation exists. If dr/dε = 0, there is no advantage of one pheno-
type over the other (neutral change can occur), while if dr/dε < 0, improvement is not
possible.

For a sustenant phenotype the life history is characterized by constant fecundity
(m0) and constant mortality (c). Solving equation (5.1) with m(x) = m0 and µ(x) = c yields
r = m0− c. Substitution of this result in equations (5.3) and (5.4), accounting for equation
(5.2), and integrating by parts gives the following results:

H∗ = m0e−m0a (5.11)

H† = −m0e−m0a (5.12)

In a sustenant phenotype, selection pressure is an exponentially declining function of age.
These are the indicators of the force of selection on an age-specific additive change of
mortality and fecundity respectively that determine whether a mutant phenotype can
invade a resident sustenant phenotype under the trade-off of interest (similar to equation
(6) in [12]).

Substitution of the results in equations (5.11) and (5.12) in equation (5.8) yields:

dr
dε

= m0

∫
∞

0
e−m0a

(
dm
dε

(a, ·)− dµ

dε
(a, ·)

)
da (5.13)

This equation can be evaluated for alternative perturbation functions. First, to demon-
strate the principle, we consider a linear trade-off within the mortality function, such that
the mortality rate is initially reduced, but increases linearly with age. Second, because this
trade-off has received considerable attention, we evaluate a trade-off that involves both
mortality and fecundity. In the disposable soma theory [30,31], fecundity is increased at a
cost to repair. The perturbation function associated with this trade-off could be such that
mortality increases linearly with age while reproductive rate is increased by a constant at
all ages. Third, illustrating a case when negative senescence can evolve, we evaluate an
exponential trade-off within mortality, such that the mortality rate is reduced at low ages
but increases exponentially with age or vice versa.
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Linear trade-off within mortality

This trade-off is characterized by perturbation function (5.10). Substitution in equation
(5.13) yields:

dr
dε

=−m0s
∫

∞

0
(a− p)e−m0ada (5.14)

Rearranging and integrating by parts gives:

dr
dε

=−m0s
(

1
m2

0
− p

m0

)
= s
(

p− 1
m0

)
(5.15)

Whether the derivative in equation (5.15) is greater than zero, so that the senescent
phenotype can invade, depends on parameter p: the higher age p, the longer the mor-
tality rate stays below its original constant level. Thus, high values of p should promote
the evolution of senescence, while low values should not. Age p0 marks the boundary
between trade-offs that do (greater p) or do not (smaller p) favor the evolution of senes-
cence. Substituting p0 for p in equation (5.15), setting dr/dε = 0, and solving for p0 yields:

p0 =
1

m0
(5.16)

Interestingly, p0 = 1/m0 = T . Thus, for all p greater than generation time T the senescent
phenotype can invade, while for smaller values it cannot. Notice that this result holds only
in a specific resident life history under a specific perturbation function.

Linear trade-off involving both mortality and fecundity

Another possibility is that a trade-off results in a linear increase in mortality and a higher
constant reproductive rate. Mortality and fecundity then become:

µ(a,ε) = c+ εas (5.17)

m(ε) = m0 + ε (5.18)

For mortality this is the same perturbation as in section 3.1 with p= 0. Whether the senes-
cent phenotype can invade or not is now not a function of p (since p≡ 0 from the nature
of the trade-off), but of the rate at which mortality increases with some increase in re-
productive rate, modeled by parameter s. Substituting dµ/dε = as and dm/dε = 1 (from
equations (5.17) and (5.18) respectively) in equation (5.13) gives:

dr
dε

= m0

∫
∞

0
e−m0ada−m0s

∫
∞

0
ae−m0ada = 1− s/m0 (5.19)

If dr/dε > 0 the senescent phenotype can invade, which is the case if s < m0. For
greater values of s (when mortality increases faster for the same m) the senescent pheno-
type cannot invade.
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Exponential trade-off within mortality

In the previous paragraph we evaluated whether a senescence phenotype could invade.
Of equal interest is the question whether a negatively senescent phenotype, with im-
proving vital rates over its adult lifespan, can invade the sustenant resident phenotype.
The study of negative senescence versus sustenance requires care, since many functional
forms of the perturbation function are biologically intractable. For instance, a continuous
additive decline in mortality or fecundity would lead to negative mortality and fecundity
at high ages, which is not biologically possible. There are two conceivable solutions to this
problem. The first is to calculate dr/dε on some interval on which mortality and fecun-
dity take strictly positive values. If the vital rates on that interval are biologically plausible,
and dr/dε takes a negative value on that interval, it could well be argued that the neg-
atively senescent, ‘negasent’, phenotype could invade. However, in this method implicit
assumptions about vital rates after the interval of investigation are made, so that the vital
rates remain strictly non-negative. A more elegant method is to limit the study of nega-
tive senescence to perturbations that do not lead to negative mortality and fecundity on
the entire positive real domain, as in the following case.

Consider an exponential perturbation of the mortality function:

µ(a,ε) = c+ ε(es(a−p)−1) (5.20)

This gives dµ/dε = es(a−p)− 1. As before, p is the age at which there is no perturbation
of mortality, while the farther away from p, the greater the perturbation is, but now in an
exponential fashion. The strength of exponential increase is modeled by s. The greater s
is, the more the mortality rate is reduced before age p, and the more it is increased after
age p. Substitution of dµ/dε from equation (5.20) in expression (5.13) yields:

dr
dε

= −m0

∫
∞

0

(
es(a−p)−1

)
e−m0ada (5.21)

= −m0

[∫
∞

0
es(a−p)−m0ada− 1

m0

]
(5.22)

Since it is required that dr/dε > 0 for the senescent phenotype to be able to invade,
it is also required that: ∫

∞

0
e(s−m0)ada <

esp

m0
(5.23)

The integral in inequality (5.23) does not converge if s ≥ m0, irrespective of p, so that the
inequality does not hold. The interpretation of this is that if, as the result of the trade-off,
mortality increases faster than selection pressure declines, there is a growing, negative
effect at higher ages, and the net effect on fitness will be deleterious. If s<m0, the integral
does converge and takes the value 1

m0−s . Just as in the linear case, it is possible to find a
p0(s), so that for p > p0 the senescent phenotype can invade, while for p < p0 it cannot.
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This is done by substituting p0 for p in equation (5.23), setting dr/dε = 0, and solving for
p0:

p0 =
ln( m0

m0−s )

s
(5.24)

The exponential trade-off also facilitates an exponential decline in mortality from a higher
initial level, while mortality takes strictly positive values, in which case we allow i < 0. The
negasent phenotype can invade if p < p0, with p0 as in equation (5.24).

Alternative indicators of selection pressure

The perturbation function given by equation (5.7) can be used to show relationships be-
tween alternative indicators of selection pressure. Baudisch [32] derived several alterna-
tive indicators of selection pressure, for instance the sensitivity of fitness to an age-specific
proportional perturbation of mortality. All these indicators [32,p.8264] consist of one of
Hamilton’s elementary indicators, expressions (5.4) and (5.3), scaled by some factor that
depends on the actual value of mortality or fecundity. Considering Baudisch’s alternative
indicators, the same result can be derived by using Hamilton’s elementary indicators, while
scaling the perturbation function by the same mortality- or fecundity-dependent factor
that is used to obtain the alternative indicator.

Hamilton [3] also derived the sensitivity of fitness to an additive perturbation of
mortality from some age onwards (as opposed to at some age):

dr
d∆a...∞

=−
∫

∞

a (x−a)e−rx`(x)m(x)dx
T

(5.25)

In a thorough discussion on the difference between dr/d∆a and dr/d∆a...∞,
Abrams [33] argued that a senescent change is best characterized by dr/d∆a...∞, because
an intrinsic deterioration (senescence) at age a will last throughout life, and will thus con-
tinue to affect mortality and fecundity.

If senescence is characterized as Abrams [33] argued, so that at some age mortality
is increased for the rest of the lifespan of an organism, then the corresponding perturba-
tion for dr/d∆a is:

dµ

dε
(x) =

{
0 if x < a

1 if x≥ a
(5.26)

Substitution of this perturbation in equation (5.7) gives

dr
dε

=− 1
T

∫
∞

a

∫
∞

z
e−rx`(x)m(x)dxdz (5.27)

Using differentiation by parts, it can be shown that expression (5.27) equals dr/d∆a...∞

(equation (5.25)).
A biological change has a unique fitness effect. The biological change is expressed

in the combination of perturbation function and indicator of selection pressure, i.e. the
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parameterization of the fitness differential. If the same perturbation function is combined
with a different indicator of selection pressure, a different biological change is expressed.
Any two parameterizations that express the same biological change always give the same
result.

Discussion

If it is argued verbally that fitness increases under some trade-off given a (declining) pat-
tern of selection pressure [e.g. 2,3,16,17], this is equivalent to the mathematical statement
that under the trade-off there exists a positive fitness differential, i.e. dr > 0. Going be-
yond the verbal argument, we formally evaluate this fitness differential. The fitness dif-
ferential depends on the indicators of selection pressure, defined by the life history of a
resident phenotype, and on the perturbation function, defined by physiological mecha-
nisms. So what are biologically realistic perturbation functions? Abrams [33] considered
a stepwise perturbation that remains over the rest of the lifespan. He motivated this per-
turbation by considering a trade-off that results in increased fecundity at age a, at the cost
of unrepaired molecular damage originating at age a. The resulting deteriorated state of
the organism will remain, and will continue to affect mortality throughout the organism’s
lifespan. On the other hand, Wensink et al. [34] discuss the possibility that it may be evo-
lutionary beneficial for an organism to grow to a state that is simply unmaintainable with
the resources that it has at its disposal. In that case, other than in the case of resource
allocation taking place at each age, attaining such a state at some age puts the organism
on a trajectory of deterioration for the rest of its life. Thus, an initial improvement of vital
rates results in further deterioration of these vital rates at all subsequent ages. A similar
trajectory of accelerating deterioration rather than a stepwise increase may be expected
if senescence is the result of dysregulation with age, or of loss of robustness [35]. There
is evidence that suggests that the accumulation of damage with senescence may some-
times be a matter of correlation without causation [36,37], although damage accumula-
tion will no doubt play a role. In both examples above, one inside and one outside the
paradigm of senescence being caused by damage accumulation, the senescent change is
not a one-time increase, but rather a continuous deterioration.

For the evolution of negative senescence, Vaupel et al. [5] hypothesize that organ-
isms that do not stop growing upon reaching maturity may exhibit negative senescence,
since for many species (for instance fish), growth results in higher fertility and lower mor-
tality. If growth or learning are considered decisions taken at every age (whether to grow
or not, whether to learn or not), they could be characterized by a perturbation that models
a one-time improvement from some age onwards. If, on the other hand, negative senes-
cence is characterized by continuous improvement (growth and learning is a character
that is either part of the phenotype across ages, or not), there is a trajectory of improve-
ment rather than a one-time increase, parameterized by a perturbation function such that
mortality decreases monotonously and fecundity increases monotonously.

As briefly mentioned in the introduction to section 3, indicators of selection pres-
sure are situational. Results obtained from indicators of selection pressure, i.e. the fitness
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differential, indicate the initial direction of evolution, which is bound to change as the res-
ident phenotype evolves. Hence, the results apply only locally; a global optimum is not
demonstrated. This is a general limitation of such approaches [e.g. 16-24]. Still our point
remains valid that perturbation functions can always be found which for some range of pa-
rameters lead to senescence and for another lead to negative senescence, which clarifies
the relation between direct optimization models and models of selection pressure. Direct
optimization models maximize fitness under a set of constraints defined at all ages. These
models do not contain Hamilton’s indicators of selection pressure explicitly, and can pre-
dict absence of senescence or even negative senescence to evolve [4,5,38-40]. Models
of selection pressure calculate fitness sensitivities to changes in vital rates at specific ages
and explore how the pattern of decline of selection pressure is affected by varying model
parameters. No formal equation automatically ties together changes at particular ages,
and the (pattern of) decline is often taken to directly predict the outcome of evolution
[2,3,16-24]. Evaluating the fitness differential, this deficiency is fixed. Changes at partic-
ular ages are tied together by the perturbation function, and it turns out that the finding
of sustenance or negative senescence as possible outcomes of evolution is not a pecu-
liarity of optimization models: this result can equally well be derived from the calculus of
selection pressure when the full fitness differential is considered, in line with the result of
Charlesworth that quantitative genetics and optimization models should in principle lead
to similar results [41].

The view that trade-offs only determine specifics of the pattern of senescence,
while the evolution of senescence itself is inevitable because of declining selection pres-
sure, needs to be adjusted. Trade-offs do more than just determine the details of senes-
cence: they co-determine whether senescence evolves at all. If trade-off perturbation
functions that promote sustenance or negative senescence capture biologically realistic
conditions, then it follows that the evolution of senescence is not inevitable.

Why is it that some biological mechanisms (perturbation functions) defy the in-
evitability of senescence, and how does this work out mathematically? At high ages se-
lection pressure may be low, but perturbations that grow over ages may have become
large. An organism will have had a lot of time to learn and grow, so that improvement
(higher fecundity, lower mortality) may be considerable. There exists no mathematical
reason why improvement of vital rates would have a limit: mortality can continue to de-
cline asymptotically to zero, while fecundity can continue to go up. In addition, the bene-
fits of sustenance or even negative senescence remain over a potentially unlimited range
of ages: there is no age beyond which survival is impossible a priori, and with dropping
mortality, very high ages may be attained. As a result, possible loss of fitness by senes-
cence is limited by fitness itself, but the possible gain in fitness by negative senescence
has no mathematical limit.

In contrast to trade-off perturbations, the theory of mutation accumulation invokes
perturbations with very small effects that are only deleterious. In the mutation accumu-
lation theory, mutations with a late-acting deleterious effect on fitness are not removed
by natural selection because their overall effect on fitness is small. As a result, such muta-
tions accumulate over evolutionary time. The later the age at which they act, the less likely
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they will be removed [1,3,11]. As trade-offs and mutation accumulation are not mutually
exclusive, would it not be true that even if trade-offs lead to negative senescence, senes-
cence still evolves because selection pressure declines, giving way to ‘loss-only’ processes
under the mutation accumulation theory?

We do not think so. First, existing life histories will be a combination of both types
of perturbations. The question would then be which process dominates, mutation ac-
cumulation or trade-offs [42]. If trade-offs lead to significant negative senescence, this
could offset deterioration by mutation accumulation. Which process dominates the de-
mographics is not necessarily the same at all ages. Perhaps the two effects together could
explain why organisms that show protracted negative senescence throughout their lifes-
pan could still show a little upswing in their mortality function at very high ages [5]. Sec-
ond, since the mechanisms of senescence are likely to lead to sustained or increasing de-
terioration rather than age-specific effects, the costs of senescence are much higher than
Hamilton’s age-specific indicators may suggest (see also [9,33]). Consequently the evo-
lution of senescence by mutation accumulation may be rare. In any event, the empirical
finding of protracted improvement during adult lifespan is strongly suggestive of trade-
offs playing an important if not decisive role in the evolution of senescence[6].

Then what, if not the inevitability of senescence, does Hamilton’s finding that se-
lection pressure universally declines really mean? If selection pressure did not decline,
any cost of senescence would be infinite, i.e. equation (5.8) would not converge, so that
senescence could not possibly evolve. We propose that declining selection pressure is a
necessary but not a sufficient condition for the evolution of senescence.

Conclusion

To study selection pressure alone does not suffice for drawing conclusions about the evo-
lution of senescence; the actual perturbation needs to be considered as well. This com-
pletes the total fitness differential, which is the full description of change in fitness. Dif-
ferent combinations of alternative indicators of selection pressure and perturbation func-
tions (parameterizations of the total fitness differential) can capture the same pattern of
change in vital rates, predicting the exact same effect on fitness. At high ages selection
pressure may be low, but perturbations that grow over ages may have become large, de-
fying the inevitability of the evolution of senescence. For a complete understanding of
aging, we recommend including the total fitness differential in discussions of senescence,
rather than Hamilton’s indicators of selection pressure alone.
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