

Complex processes in simple ices : laboratory and observational studies of gas-grain interactions during star formation Öberg, K.I.

Citation

Öberg, K. I. (2009, September 16). *Complex processes in simple ices : laboratory and observational studies of gas-grain interactions during star formation*. Retrieved from https://hdl.handle.net/1887/13995

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded
from:https://hdl.handle.net/1887/13995

Note: To cite this publication please use the final published version (if applicable).

ii		
	Promotiecommisie	
	Promotores:	Prof. dr. E. F. van Dishoeck Prof. dr. H. V. J. Linnartz
	Overige leden:	Prof. dr. A. G. G. M. Tielens Prof. dr. E. Bergin (University of Michigan) Prof. dr. Th. Henning (Max-Planck-Institut für Astronomie) Prof. dr. E. Herbst (Ohio State University) Prof. dr. K. Kuijken

Till Pappa och Mamma

ma li elementi che tu hai nomati e quelle cose che di lor si fanno da creata virtu' sono informati.

Creata fu la materia ch'elli hanno; creata fu la virtu' informante in queste stelle che 'ntorno a lor vanno

ma vostra vita sanza mezzo spira la somma beninanza, e la innamora di se' si' che poi sempre la disira.

La Divina Commedia di Dante: Paradiso, Canto VII lines 85–90, 94–96

TABLE OF CONTENTS

1	Intre	ODUCTION	1		
	1.1	The first molecule	2		
	1.2	Stellar birth, life and death	3		
	1.3	Ices in star forming regions	6		
		1.3.1 Ice observations and infrared spectroscopy	6		
		1.3.2 The first ices	9		
		1.3.3 A complex ice chemistry?	11		
		1.3.4 Observations of evaporated ices in the gas phase	12		
	1.4	Ices in the laboratory	13		
		1.4.1 The need for laboratory experiments	13		
		1.4.2 Spectroscopy of astrophysical ice equivalents	14		
		1.4.3 Ice dynamics – mixing, segregation and desorption	16		
		1.4.4 Ice chemistry	18		
		145 CRYOPAD	19		
	15	This thesis	20		
	1.5	Summary of main discoveries	20		
	1.0		24		
2	The	c2d Spitzer legacy: ice formation in star-forming regions	25		
	2.1	Introduction	26		
	2.2	Observations and spectral analysis	29		
	2.3	Results	32		
		2.3.1 Abundance variations of different ices	32		
		2.3.2 Protostars versus background stars	37		
		2.3.3 Heating (in)dependencies	37		
		2.3.4 Ice maps of the Oph-F core	38		
		2.3.5 XCN ice abundance correlations	40		
		2.3.6 Principal component analysis and ice abundance correlations .	41		
	2.4	4 Discussion			
		2.4.1 The XCN feature and other unidentified ice bands	44		
		2.4.2 Early versus late ice formation during low-mass star formation	46		
		2.4.3 Ice formation in low-mass versus high-mass protostars	48		
	2.5	Conclusions	49		
	_				
3	THE	$c2d$ Spitzer spectroscopic survey of CH_4 ice around low-mass young stellar	~ .		
	OBJE	CTS	51		
	3.1		52		
	3.2	Source sample selection, observations and data reduction	53		
	3.3	Results	56		
			V		
			v		

Contents

		3.3.1 CH, column densities 50	6
		2.2.2 Upper limits of colid CH	0
		2.2.2 Malagular completions	1
		3.3.5 Molecular correlations	1
	2.4	5.5.4 Spanar liends	Э Л
	5.4	2.4.1 Low we high mass VSOs	+ 1
		2.4.2 Example in assessing	+ 5
		3.4.2 Formation scenarios	3 6
		3.4.5 Differences between clouds	D 6
	25	3.4.4 Comparison with models	5
	3.5	Conclusions	5
4	Effe	CTS OF CO_2 on H_2O band profiles and band strengths in mixed H_2O : CO_2 ices 69	9
	4.1	Introduction	0
		4.1.1 Previous laboratory data	1
	4.2	Experiment and data analysis	2
		4.2.1 Experiment	2
		4.2.2 Data analysis	3
	4.3	Results	6
		4.3.1 Changes in H ₂ O band strengths and profiles with mixture compo-	
		sition	6
		4.3.2 Temperature dependence	9
		4.3.3 Dependence on additional parameters: deposition temperature and	
		ice thickness	2
	4.4	Discussion	3
		4.4.1 Ice structure	3
		4.4.2 Astrophysical implications	7
	4.5	Conclusions	0
5	Quai	NTIFICATION OF SEGREGATION DYNAMICS IN ICE MIXTURES 93	3
	5.1	Introduction	4
	5.2	Experiments	6
	5.3	Monte Carlo simulations	7
	5.4	Results and analysis	1
		5.4.1 UHV CO_2 ice mixture experiments	1
		5.4.2 HV CO_2 ice mixture experiments	7
		5.4.3 UHV CO ice mixture experiments	8
		5.4.4 Monte Carlo simulations	0
	5.5	Discussion	1
		5.5.1 Comparison with previous experiments	2
		5.5.2 Segregation mechanisms	3
		5.5.3 Astrophysical implications	4
	5.6	Conclusions	6
vi			

Contents 6 ENTRAPMENT AND DESORPTION OF VOLATILE SPECIES DURING WARM-UP OF ICE MIXTURES 117 6.1 6.2 6.3 6.4 6.4.2 6.4.3 65 6.5.1 6.5.2 6.5.3 6.5.4 6.6 7 PHOTODESORPTION OF CO ICE 135 7.2 74 7.4.1 7.4.2 Photodesorption of CO, $N_2 \mbox{ and } CO_2 \mbox{ ices}$ 8 143 81 8.2 8.2.1 8.2.2 8.3 8.3.2 8.4 8.4.1 8.4.2 8.4.3 8.5 9 Photodesorption of H_2O and D_2O ices 169 9.2 9.2.2 9.3 vii

		9.3.2	Yield dependencies on temperature, fluence, ice thickness, flux
	94	Discus	sion 181
).т	9 4 1	The H ₂ O photodesorption mechanism 181
		942	Comparison with previous experiments 183
		943	Astrophysical consequences 183
	9.5	Conclu	sions
10	Form	IATION R	ates of complex organics in UV irradiated CH_2OH -rich ices 189
10	10.1	Introdu	iction 190
	10.2	Experi	ments and analysis
	10.3	Experi	mental results
		10.3.1	The CH ₃ OH UV photolysis cross-section $\dots \dots \dots$
		10.3.2	CH_3OH photodesorption vields
		10.3.3	Dependence of photo-product spectra on experimental
			variables
		10.3.4	Reference RAIR spectra and TPD experiments of pure complex
			ices
		10.3.5	Identification of CH ₃ OH ice UV photoproducts
		10.3.6	Abundance determinations of photoproducts
		10.3.7	Ice formation and destruction during warm-up following irradiation221
		10.3.8	Dependence of ice products on physical conditions
	10.4	Discus	sion
		10.4.1	Comparison with previous experiments
		10.4.2	Dependence of complex chemistry on experimental variables 226
		10.4.3	A CH ₃ OH photochemistry reaction scheme $\ldots \ldots \ldots \ldots 227$
		10.4.4	CH ₃ OH photo-dissociation branching ratios
		10.4.5	Diffusion of radicals
	10.5	Astrop	hysical implications
		10.5.1	Potential importance of photochemistry around protostars 231
		10.5.2	Abundance ratios as formation condition diagnostics
		10.5.3	Comparison with astrophysical sources
	10.6	Conclu	sions
	10.7	Append	dix
		10.7.1	Photoproduct growth curves during UV-irradiation
		10.7.2	Formation and destruction curves during warm-up
		10.7.3	Formation rate parameters
11	Рнот	OCHEMIS	TRY IN $H_2O:CO_2:NH_3:CH_4$ ice mixtures 251
	11.1	Introdu	uction
	11.2	Experim	mental
	11.3	Photoc	hemistry in pure ices and binary ice mixtures
		11.3.1	CH_4 , NH_3 and CH_4 : NH_3 ice photolysis
		11.3.2	$CH_4:H_2O$ ice mixture photolysis

	С	ONTENT
	11.3.3 Pure CO_2 and $CH_4:CO_2$ ice photolysis	26
	11.3.4 CO_2 :NH ₃ ice mixture photolysis	26
	11.3.5 The effect of H_2O at different concentrations	26
	11.3.6 NH_3 ice photodesorption	26
	11.3.7 NH_3 and CH_4 photodestruction	26
11.4	Testing complex ice formation in astrophysical ice equivalents	27
	11.4.1 Quantification of photolysis through RAIRS	27
	11.4.2 TPD experiments	27
11.5		28
	11.5.1 Importance of acid-base chemistry in NH_3 :X ice mixtures	28
	11.5.2 Photodissociation branching ratios	28
	11.5.3 Radical diffusion: dependence on H_2O content	28
	11.5.4 Radical-radical versus radical-molecule reactions	28
	11.5.5 Routes to complex organics in space	28
11.6	11.5.6 Future experiments	28
11.6		28
12 Cole	O GAS AS AN ICE DIAGNOSTIC TOWARDS LOW MASS PROTOSTARS	28
12.1	Introduction	28
12.2	Source selection	28
12.3	Observations	28
12.4	Results	28
12.5	Discussion	29
Bibliogr	АРНУ	29
Nederla	NDSE SAMENVATTING	30
Curricu	lum Vitae	31
Afterwo	DRD	31
n i Lawa		

