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SECTION IV

CLINICAL TRIAL SIMULATION
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ABSTRACT

C linical trial simulation (CTS) is a model­based approach which allows the investiga­

tion of the influence of design characteristics on important aspects of clinical trials

such as power and type I error.

The objective of this investigation is to evaluate in an integrated manner the impact

of (a) sample size (number of patients), (b) randomisation ratio across treatment arms,

(c) frequency of assessments (number of visits), (d) dropout mechanisms, (e) clinical end­

point, (f) statistical method for the analysis of treatment effect and (g) interim analysis

on the outcome of clinical trials with antidepressant drugs. Based on current research

practice, we have explored how varying scenarios affect the results and the conclusions

about the relevance and statistical significance of treatment effect.

A dual random effects model (DREM) was used to simulate clinical trial data with var­

ious combinations of baseline conditions and study design characteristics. For compara­

tive purposes, the simulated data was subsequently analysed using the DREM, the mixed

model for repeated measures (MMRM), last observation carried forward (LOCF) and the

Fisher exact test based on the percentage of responders/remitters. In addition to the

analysis of a complete trial, the influence of interim evaluations was explored using pos­

terior predictive distributions under the assumption of an enrolment rate of one patient

per treatment arm per day.

The clinical trial simulations yielded evidence for the following facts: (1) Increasing the

frequency of visits, and hence the number of assessments per patient does not increase

the power to detect a treatment effect. (2) A skewed randomisation often used to reduce

the number of patients on a placebo or comparator arm may lead to reduced statistical

power. (3) Analysis of the percentage of responders leads to greatly reduced power com­

pared to the linear mixed models. (4) An interim analysis is proposed to stop inefficacious

treatment arms early, whilst preventing premature termination of effective treatments.

CTS is an important tool in optimising the design of clinical trials with antidepressants.

Thus far, no other statistical approach has provided such comprehensive, integrated eval­

uation of the various factors contributing to failure in clinical research in depression. Our

findings also strongly support the use of interim analyses as best practice in early clinical

development of novel antidepressants.

INTRODUCTION

Drug discovery and drug development in major depressive disorder and other subtypes

of depression are notoriously difficult. The nature of the disease and the lack of under­

standing of the key mechanistic pathways contribute to the problems encountered in drug

discovery. Yet new hypotheses in the past years have led to drugs with innovative mecha­

nisms of action which may be effective in the treatment of depression (Kramer et al., 2004;

Nielsen, 2006). However, even when an antidepressant with known efficacy is compared
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to placebo in a clinical trial, historical evidence suggests that the likelihood of a success­

ful trial is only 50% (Khan et al., 2002). Clearly, drug development in depression is equally

difficult. This is partly due to the nature of the disease itself, particularly through factors

such as high heterogeneity between patients, the inherent large variability in the placebo

effect, the high placebo response rate and the difficulties in measuring the severity of the

disease in an objective and meaningful manner. Rather than inspiring innovative clinical

trial designs, these difficulties seem to have led to a very conservative approach.

In fact, clinical beliefs have dominated trial practices, which are not corroborated by

increasing scientific evidence about the compounding effect of different factors in the

assessment of efficacy. Although some papers have suggested interesting innovative trial

designs (Fava et al., 2003), these have not yet been implemented. Indeed, the majority

of clinical trials are conducted according to a fixed protocol, copied from one study to

the next. Among the reasons for this conservatism, one should consider the high costs

involved in these trials, which limits the willingness to experiment with trial designs and

the fear of blame for the potential failure of a study, which could be assigned to the

differences from the traditional study design.

In other fields, where similar concerns regarding the uncertainty about the relevance

of confounding and design factors as well as costs play a role, the use of clinical trial sim­

ulation (CTS) has been advocated. This technique determines all possible outcomes under

candidate trial designs, allowing such trial designs to be compared in a strictly quan­

titative and objective manner. In depression, numerous simulation studies have been

performed to compare statistical models with respect to their type I and II errors (Lane,

2008; Mallinckrodt et al., 2001a,b, 2004a,b), but none of these studies included an inte­

grated evaluation of all relevant design factors.

It is important to stress that CTS allows investigation of factors that cannot be scru­

tinised by meta­analysis. First, designs which have not been implemented cannot be in­

cluded in a meta­analysis. Second, it is difficult to separate the influence of multiple

design factors, whereas CTS allows evaluation of a single factor at a time. Although meta­

analyses can provide important information about differences in patient populations and

treatment response, it is unfortunate that some investigators consider it sufficient to

gather evidence on the impact of design factors from overall reviews, as often suggested

in the discussion and interpretation of the findings of a meta­analysis.

In general, CTS utilises two types of models (Girard, 2005; de Ridder, 2005). The first

type of model, the drug­action model, describes the effect that a drug has on an indi­

vidual, taking into account the pharmacokinetics (PK) of the drug and the interaction

between the drug and its target (pharmacodynamics, PD). Traditional PKPD models as­

sume that the biological system does not change. However, in chronic diseases (which

often involve long term studies) changes in the biological system due to disease progres­

sion cannot be discerned and must be taken into account. Such a time­related change or

so­called time­dependency in response can be evaluated by dynamical or disease systems

analysis (Danhof et al., 2007; Post et al., 2005).
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The second type of model involved in CTS is the trial execution model. These models

simulate other important aspects of the trial, such as dropout, compliance and proto­

col deviations. Probabilistic models are often used in these applications, ensuring that

implementation factors are accounted for in the simulation of clinical studies.

Traditional power calculations only take a point estimate of the variability of the clini­

cal endpoint into account, whilst neglecting the influence of disease progression and trial

design factors and trial execution factors, such as dropout. Advanced CTS models have

been applied to trials in oncology (Veyrat­Follet et al., 2000), neuropathy (Lockwood et al.,

2003), Alzheimer’s disease (Lockwood et al., 2006), angina pectoris (Chabaud et al., 2002),

schizophrenia (Kimko et al., 2000) and juvenile rheumatoid arthritis (Yim et al., 2005). Un­

fortunately, the lack of knowledge about the mechanisms underlying treatment response

as well as the difficulties in measuring depression severity have rendered the develop­

ment of mechanistic PKPD models for this indication very difficult. Some attempts in this

direction have been reported in the literature, but these models have either identifiability

issues (Gruwez et al., 2007) or their parameters lack direct clinical interpretation (Gomeni

and Merlo­Pich, 2007), which complicates the development of meaningful simulation sce­

narios.

On the other hand, a variety of flexible statistical models is available for the analy­

sis of longitudinal data from clinical trials, among which the mixed model for repeated

measures (MMRM) is probably the best known (Mallinckrodt et al., 2004a). In a previ­

ous investigation, we have shown that a dual random effects model (DREM) can describe

and simulate depression data more adequately than the MMRM especially for the high

and low HAMD scores (Hamilton, 1960, chapter 8). These models do not account for

the concentration­effect relationship of drugs or for pharmacokinetic differences between

subjects, which limits their use for predicting optimal doses and dosing regimens. Nev­

ertheless, they offer an important advantage in that any conclusions made from simula­

tions using these models will hold for any trial or experiment with a longitudinal endpoint

which is normally distributed.

The objective of the current work is to demonstrate the value of CTS in the evaluation

of clinical trial designs for antidepressant drugs. We also show that the results of CTS

allow appropriate inferences for the implementation of clinical trials, irrespective of the

assumptions about the dose­response relationship of the investigational drugs. Using his­

torical clinical trial data, we evaluate in an integrated manner the impact of (a) sample size

(number of patients), (b) randomisation ratio across treatment arms, (c) frequency of as­

sessments (number of visits), (d) dropout mechanisms, (e) clinical endpoint, (f) statistical

method as well as the relevance of (g) interim analysis in the evaluation of treatment ef­

fect. The results of these simulations are summarised as recommendations for the design

of new clinical trials in depression.
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METHODS

Study data

The simulations were based on two studies in major depression, which were extracted

from GlaxoSmithKline’s (GSK) clinical trial database. These studies are representative of

trials in depression and correspond to a typical trial outcome, including treatment arms

which show a clear separation from placebo (positive control) and treatment arms which

do not yield significant separation from placebo (negative control). Our investigation was

restricted to two studies due to limitations in computational power.

Study 1 (Trivedi et al., 2004) was a randomised placebo­controlled trial in which two

doses (12.5 and 25 mg) of a controlled release (CR) formulation of paroxetine were tested

for efficacy. The HAM­D17 (Hamilton, 1967) was used as clinical endpoint and measured

at weeks 1, 2, 3, 4, 6 and 8 after start of treatment. A total of 459 patients was evenly

enrolled across the treatment arms. Further details can be found in the original publica­

tion (Trivedi et al., 2004).

Study 2 (unpublished) was a randomised placebo­controlled trial in which paroxetine

and fluoxetine were compared according to a dose­escalation design. The HAM­D17 (Hamil­

ton, 1967) was measured at weeks 1, 2, 3, 4, 6, 9 and 12 after start of treatment. 140

Patients were enrolled in the placebo arm, and a total of 350 patients was enrolled in both

active treatment arms. Further details can be found in the GlaxoSmithKline clinical trial

register (http://ctr.gsk.co.uk, protocol number 128)

Whilst the performance of a given trial design versus another trial design is assumed

to be independent of treatment effect size, the statistical power achieved under a partic­

ular design is dependent on treatment effect and cannot be determined beforehand when

investigational drugs are being evaluated prospectively. Therefore, a hypothetical drug

(’wonder drug’ in table 1) showing significantly larger effect size has also been included

in the simulation scenarios.

Model

The data from these studies were fit using the dual random effects model (DREM) de­

scribed in detail elsewhere (chapter 8). Equation 1 describes the model parameterisation,

as implemented in WinBUGS 1.4.1 (Lunn et al., 2000). WinBUGS is a Bayesian statistical

program that uses Markov chain Monte Carlo (MCMC) methods to determine the posterior

distribution.

Yij = BASi · βj + θz,j + η1i + η2i · j + ǫij (1)

where BASi is the baseline for individual i, βj is the baseline­time interaction at time j,

θz,j represents the effect of treatment z at time j. η1i and η2i are the random effects

of individual i (from a multivariate distribution with means 0 and unknown variance­

covariance matrix) and ǫ is the measurement error (normally distributed with mean 0 and
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unknown variance).

Mean parameter estimates for all model parameters are shown in table 1.

Simulation of patient data

To mimic the typical demographics of patients enrolled into clinical studies, baseline

values for the primary endpoint were simulated using a normal distribution with mean 20

and standard deviation 4, truncated between the inclusion criterion (19 or 25) as a lower

boundary and 40 as a higher boundary. The resulting distribution reflected the observed

baselines for patients in actual studies. No other patient covariates, such as age, gender

or disease history were considered for the purposes of this first evaluation.

Starting from the selected baseline values, the time course of individual HAMD scores

at each visit was simulated by including subject­specific random effects and residual error,

as estimated from the posterior distributions (table 1) obtained from the model fitting

described in the previous section. HAMD values were rounded to the nearest integer to

mimic the real­life assessment.

Dropout model

The impact of dropout on the analysis of treatment effect is highly dependent on the

nature and cause of dropout. Different dropout patterns exist that may or may not intro­

duce bias in the analysis of treatment effect; missingness completely at random (MCAR) is

completely random dropout, independent of any measured data. Missingness at random

(MAR) is dropout related to observed data, whereas missingness not at random (MNAR) is

dropout related to unobserved data. Rather than using extreme hypothetical or unrealis­

Table 1. Parameter values used for the simulations. The 2x2 variance­covariance matrix is given under

the I.I.V. and σ/I.I.V. headings. The ’wonder drug’ is defined as a drug with a 50% higher treatment effect

than the best performing drug in that study

Study Treatment
Baseline parameters (placebo)

or treatment effect per week
I.I.V. σ/I.I.V.

1 2 3 4 6 8 9 12

1 placebo 0.81 0.73 0.66 0.61 0.59 0.53 ­ ­ ­ 3.2
paroxetine
(12.5 mg) 0.1 0.7 1.4 1.7 2.4 1.5 ­ ­ Var/covar

paroxetine
(25 mg) 0.0 1.4 1.8 2.3 3.9 2.9 ­ ­ 23.1 ­1.73

’wonderdrug’ 0.1 2.2 2.8 3.6 5.9 4.6 ­ ­ ­1.73 1.22

2 placebo 0.85 0.75 0.70 0.63 0.61 ­ 0.59 0.54 ­ 3.64
paroxetine
(max 50 mg) 0.1 0.1 0.5 0.7 1.4 ­ 2.2 2.2 Var/covar

fluoxetine
(max 80 mg) 0.0 0.8 1.1 0.7 1.8 ­ 2.8 2.0 19.8 ­2.0

’wonderdrug’ 0.1 0.2 0.8 1.1 1.4 ­ 3.3 3.3 ­2.0 1.1
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tic scenarios to investigate the role of dropout in depression trials, a historical database

of 11 clinical trials in major depressive disorder was used to explore dropout patterns.

This analysis revealed that the dropout rate was not consistently higher or lower in the

placebo­treated group. Also, dropout rates seemed to be constant over time. Figure 1

shows the probability of dropout against the depression severity, as indicated by HAMD

quartiles. We found that for the first three weeks dropout seemed to adhere to a missing

completely at random (MCAR) pattern. After week 3, however, the probability for dropout

was clearly higher in the severely depressed patients, suggesting missingness at random

(MAR). There did not seem to be any difference due to treatment type.

We have also considered another approach for the evaluation of dropout, which is

based on the common notion among psychiatrists that dropout is mostly likely to occur

because of the lack of effect in the placebo group (MAR) and because of side effects in the

active treatment arms (MCAR).

Based on the aforementioned considerations, we have explored the following scenarios

for evaluating the role of dropout on treatment effect:

(1) Drop out according to psychiatrists’ current belief: For placebo dropout MCAR and

MAR (with increasing probability of dropout as severity of depression increases) in the

ratio 1:3. For the active treatment, MCAR en MAR were used in the ratio 3:1, as dropout

was assumed to be dependent on the severity of side effects (MCAR in the absence of drug
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Figure 1. Probability of dropout versus depression severity. Panels depict the dropout rate at each weekly

visit. Patients were split into 4 equally sized quartiles per treatment type (placebo, positive active and

negative active) based on their HAMD score. Patients in group 1 had the lowest HAMD scores, patients in

group 4 the highest (i.e., were most depressed)
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concentration data).

(2) Drop out according to the findings from the aforementioned graphical evaluation:

MCAR dropout in the first 3 weeks for placebo and active treatment arms. From week 4

onwards, dropout in the ratio 3:1 were used assuming MCAR and MAR (only patients in

the highest quartile show significant probability of dropout)

(3) Drop out according to the findings from previous graphical evaluation, but replac­

ing the MAR pattern by missingness not at random (MNAR).

For all schedules the dropout rate was set at 4% per week.

Investigated design characteristics

1. Treatment effect size

The treatment effects that were used in the simulations were based on those observed in

study 1 and 2. Additionally, a treatment arm with 50% more effect than the best perform­

ing treatment arm in each study (the so­called ’wonder drug’) and a treatment arm with

no effect were included to investigate type I errors.

2. Number of patients

Assessment of the population size was performed using an equal randomisation ratio

across treatment arms with 100, 125, 150 and 175 patients per arm. A commonly used

2:1 active:placebo unequal randomisation ratio was also evaluated. This scenario corre­

sponded in total number of enrolled patients to the scenario with 125 patients assuming

3 treatment arms (75:150:150).

3. Duration of the study/frequency of visits

Trials in depression usually have a duration of 6, 8 or 12 weeks. Most recent studies,

however, have an 8­week duration. The frequency of visits is mostly weekly at the start

of the trial to enable detection of early drug effect, and may take place once in every 2 or

3 weeks at the end of the trial. In the current simulation we will investigate the effect of

study duration, which depends on the time course of treatment effect, and the impact of

the frequency of visits on trial outcome. The investigated designs are shown in table 2.

4. Endpoints

As extensively discussed in a previous investigation (chapter 3), the poor sensitivity of

endpoints may prevent finding evidence for treatment effect in trials with limited pop­

ulation size. Therefore, simulations were performed using the full HAM­D17 and the

response­based subscale HAM­D7 (chapter 3). Data simulation for the subscale was per­

formed in the same way as described above for the full HAM­D17. In contrast to the full

HAM­D17, baseline values for this subscale were simulated under the assumption of a

normal distribution with a mean of 13 and standard deviation 3, truncated between the

inclusion criterion (11 or 15) and a maximum of 35. These values were selected as they

mirrored the observed baseline distributions in the clinical studies used for model fitting.
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Table 2. Visits, total number of visits and trial duration for the tested designs)

Design Visits (week) Number of visits Total duration (weeks)

A 2,6 2 6

B 2,4,6 3 6

C 2,4,8 3 8

D 2,4,9 3 9

E 2,4,12 3 12

F 2,4,6,8 4 6

G 2,4,6,9 4 9

H 2,4,9,12 4 12

I 1,2,4,6,9 5 9

J 1,2,3,4,5,6,8 6 8

K 1,2,3,4,6,9,12 7 12

5. Inclusion criteria

As described previously, the inclusion criteria used for entry into the trial had boundaries

defined for the HAM­D17 of 19 or 25. For the HAM­D7 subscale the entry boundaries were

11 or 15. These inclusion criteria had an effect on the baseline­time interaction term that

was present in the model. Since a baseline­treatment effect interaction could not be found

in the original data, it was not included in the model.

6. (Primary) statistical analysis

The analysis of treatment effect in the simulated studies was based on the following

methods:

• The dual random effects model (DREM). Fitting and estimation was performed in

WinBUGS 1.4.1 (Lunn et al., 2000)

• The mixed model for repeated measures (MMRM). Fitting and estimation were per­

formed in PC SAS (v9.1 for Windows, SAS Institute, Cary, NC, USA)

• T­tests using LOCF imputation (LOCF)

• Fisher exact­tests on the number of responders/remitters

The latter two methods were implemented in the language and environment for statistical

computing R (version 2.5.1 for Windows) (R Development Core Team, 2007). For the

Fisher exact test, response was defined as a ≥50% reduction in HAMD on the last visit,

relative to baseline. For remission a HAMD of ≤7 had to be measured at the last visit.

For the HAM­D7, the assessment of response was handled using the same definition, with

remission being constrained to HAM­D7 values of ≤3.
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Practical implementation of the CTS

Combinations of all possible scenarios were simulated. This amounted to 780 scenarios:

5 (different numbers of patients) * 13 (different visit schemes) * 2 (different baseline

inclusion criteria) * 2 (primary endpoints) * 3 (different dropout patterns).

All scenarios were subsequently analysed by four different statistical models. Each

scenario was simulated and fitted 100 times. The scenarios were compared to each other

with respect to power (% of simulations resulting in a statistically significant effect) and

type I error (% of false positive results). Unfortunately, a super computer was not available

for the purposes of our investigation. To cope with computing processing time in an

effective manner, simulations were distributed over 20 PCs and integrated through the

language and environment for statistical computing R (R Development Core Team, 2007).

Reduction in the frequency of scheduled visits

Preliminary investigations showed that a reduction of the frequency of visits was pos­

sible without loss in statistical power. Clearly, the consequences of a reduction in the

frequency of visits depend on the dropout mechanism. Thus, the dropout mechanisms

based on actual data that we have used in the simulations may be partly responsible for

this outcome. We decided to investigate the consequences of a reduction of visits from 7

to 3 under more extreme dropout scenarios, as described in detail elsewhere (Lane, 2008,

chapter 8). In brief, 3 scenarios for MAR and MNAR mechanisms were conceived. The first

scenario assumes a gradual increase in dropout probability for 9 equally sized depression

severity groups, the second scenario assumes gradual increase only for the most severe 4

categories and the third scenario assumes dropout only for the most severely depressed

group of patients.

Interim analysis

In addition to accounting for confounders, CTS enables the evaluation of the requirements

for optimally estimating treatment effect during the course of the trial using interim anal­

yses. The implementation of the DREM in a Bayesian framework allows for the use of the

posterior predictive distribution. This distribution takes into account all uncertainty in

the parameters and is therefore suitable for an interim analysis. The following methodol­

ogy was used to implement this interim analysis (figure 2).

First, an enrolment rate of 1 patient/treatment arm/day was assumed. Then, for each

scenario, arbitrary time points of 75 and 100 days after start of enrolment were selected

for an interim analysis. At each of the timings, all data acquired up to that point was

included and analysed using the DREM. The last 1000 iterations of all parameters were

imported into R, where 1000 trials were simulated with the expected number of patients.

The results of the simulations were subsequently subjected to a t­test to investigate how

many of these trials would result in a statistically significant outcome (p<0.05). The frac­

tion of statistically significant results corresponds to the posterior predictive probability
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All data acquired until interim analysis time t

Posterior distributions are 
used to simulate 1000 new 
trials and compute % positive 
trials

Posterior predictive power: ..%

11

22

33

Data analysis 
in WinBUGS

Posterior distributions of treatment effect, inter-individual 
variability and residual variability are transferred to R

Figure 2. Computation of the posterior predictive power. (1) Data acquired until the interim analysis

time t is analysed using WinBUGS, (2) the posterior distributions are used to simulate 1,000 new trials

based on the posterior distribution, (3) the percentage of successful trials is summarised as the posterior

predictive power

of success in a typical Bayesian framework, or the ’posterior predictive power (PPP)’.

In the current analysis a decision criterion of 40% was used for the PPP. Thus, all

interim analyses resulting in a PPP<40% resulted in a stopping decision.

The objective of an interim analysis is to stop treatment arms which are not likely to

separate from placebo. A side effect is that the power to detect a significant difference

for effective arms will decrease, since there is a possibility that these may be dropped

prematurely. The impact of an interim analysis will therefore be reported as the statistical

power to stop a futile (inefficacious) treatment arm and as the reduction in statistical

power for efficacious treatment arms.
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RESULTS

Differences between statistical endpoints

The sensitivity of the statistical techniques and the consequences of different population

sizes on power to detect treatment effect are shown in figure 3. Clearly, from the different

statistical approaches, the DREM and MMRM perform best, followed closely by the LOCF

method. The Fisher exact tests based on either the percentage of remitters or the percent­

age of responders results in a much lower statistical power to detect treatment effect. On

the other hand, figure 3 shows, as expected, that an increase in population size results in

an increase in power.

Naturally, the statistical power is influenced by the dropout­mechanisms. The effects

of sample size, frequency of visits and statistical endpoint however were qualitatively the

same under the other two dropout scenarios (data not shown). Therefore only results

from simulations under the second dropout scenario are reported.

Another important element is the evaluation of the false positive rate (type I error).

As shown in figure 4 the type I error rates are well controlled under most scenarios. Al­

though the statistical power of the tests based on the percentage of responders/remitters

is considerably lower, the type I error is still comparable. In case of an unequal enrolment

ratio (125u) the type I error of the Fisher exact test based on the percentage of responders
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Figure 3. Power versus number of patients for the dual random effects model (DREM), mixed model

for repeated measures (MMRM), LOCF and the Fisher exact test based on responders and remitters for

treatment arm 1 in study 1 and study 2. Panels depict the different visit schemes. Panels on each row

have the same duration and have increasing numbers of visits. Each point represents the summary of

100 simulated clinical trials. HAMD was used as clinical endpoint with a minimal inclusion criterion of

19. ’125e’ denotes the scenario with 125 patients evenly enrolled over all treatment arms, ’125u’ denotes

the scenario with twice the number of patients in the active treatment groups as in the placebo group
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is significantly inflated. Furthermore, when fewer than 150 patients are included, LOCF

has a slightly inflated type I error.

Enrolment ratio

Figure 3 also allows investigation of the consequences of differences in randomisation ra­

tio on study power by comparing the scenario equal and unequal enrolment (125e versus

125u), since the total number of enrolled patients is the same (n=375). The simulations

show that the difference in power may be as much as 10%, in favour of equal randomisa­

tion. Although statistical power is an important characteristic of a clinical trial design, a

comparison of bias may reveal more subtle effects of differences in study design features.

Box­plots of the bias of the estimate of treatment effect after equal and unequal en­

rolment resulting from 100 simulated datasets under all different observation schemes

for treatment arm 2 in study 1 and 2 are shown in figure 5. The variability in the bias re­

sulting from trials with unequal enrolment is consistently larger than those in trials with

an equal randomisation ratio for each treatment arm. As indicated above, even if such

differences are not very large, they may have implications for the statistical power of a

trial.
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Figure 4. Type I error versus number of patients for the dual random effects model (DREM), mixed model

for repeated measures (MMRM), LOCF and the Fisher exact test based on responders and remitters in

study 1 and study 2. Panels depict the different visit schemes. Panels on each row have the same duration

and have increasing numbers of visits. Each point represents the summary of 100 simulated clinical trials.

HAMD was used as clinical endpoint with a minimal inclusion criterion of 19. ’125e’ denotes the scenario

with 125 patients evenly enrolled over all treatment arms, ’125u’ denotes the scenario with twice the

number of patients in the active treatment groups
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Figure 5. Box­plots of the bias for the estimates of the effect of treatment arm 2 for the even (’125e’) and

uneven (’125u’) randomisation ratios for study 1 and study 2. Different panels are shown for the study

designs. HAMD was used as endpoint with a minimal inclusion criterion of 19

Frequency of scheduled visits

Another important aspect that can be scrutinised in figure 3 is the effect of a reduction of

the number of scheduled visits on the statistical power. The finding that treatment sched­

ules terminating at week 6 (study 1) and week 9 (study 2) have a higher power to detect

treatment effect than those terminating at the last visit in the original schedule (weeks

8 and 12 respectively) is explained by the larger treatment effect estimated at weeks 6

and 9 (table 1). More importantly, the effect of fewer measurements on statistical power

appears to be negligible. Indeed, obtaining as few as two or three HAMD observations per

patient yield a similar statistical power as in the case of a traditional sampling schedule

(e.g., six or seven measurements).

To demonstrate the consequences of fewer measurements, the bias resulting from

different schedules or visit schemes is shown in figure 6. Only scenarios including the last

visit in the original observation scheme (weeks 9 and 12 respectively) are shown, ensuring

the same absolute treatment effect so that these scenarios are comparable. These box­

plots confirm that the number of scheduled visits does not influence the variability or the

mean of the bias in the estimation of treatment effect. This was also the case for other

dropout scenarios and simulated treatment effects (data not shown).
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Figure 6. Consequences of the reduction of the number of measurements. The bias of the estimates of

the effect of treatment arm 2 is shown for those study designs that include the last observation. Different

panels are for the different number of enrolled patients. HAMD was used as endpoint with a minimal

inclusion criterion of 19

Clinical endpoints and inclusion criteria

The consequences of using the HAM­D7 subscale instead of the full HAM­D17 as clinical

endpoint and of using a more stringent inclusion criterion are shown in figure 7 for study

2. The power to detect a significant treatment effect increases substantially with the use

of the subscale as clinical endpoint. This difference between endpoints was not observed

in study 1 (data not shown). The impact of using stringent inclusion criteria appears to be

limited, most likely because the model did not take into account a differential treatment

effect dependent on baseline severity.

Reduction in the frequency of scheduled visits

We have compared the results from simulated data in chapter 8 under the assumption

that measurements were only made at weeks 2, 4 and 12 and under the full visit schedule

(weeks 1, 2, 3, 4, 6, 9 and 12) (figure 8). As observed in figure 8, the bias in the estimate

of the treatment effect with only 3 measurements is moderately larger only under more

extreme dropout scenarios. Type I error rates increased only under unequal dropout

scenarios (data not shown), confirming that a reduction of samples is possible without

risking severely inflated type I and II errors.
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Figure 7. Influence of clinical endpoint and inclusion criterion on the estimated treatment effect of

treatment arm 1 in study 2, analysed with the DREM. The power is plotted versus the number of patients,

with different panels for visit schemes

Interim Analysis

The results of the interim analysis are presented as the power to stop a futile treatment

arm and as the reduction in power to detect an effect caused by premature termination of

an efficacious treatment arm. For the purposes of our evaluation, an analysis was assumed

to take place after 75 and 100 days from the start of enrolment (figure 9). Consequently,

enrolment was complete at the interim analysis planned on day 100 for the study en­

rolling 100 patients per treatment arm. The first column (futility) shows the probability

of terminating the treatment arm with no drug effect. The interim analysis at 100 days

has a power of 70% to terminate the inefficacious treatment arm. This percentage in­

creases as the number of patients and study duration decrease. Indeed, when the 6­week

and 8­week measurement schemes are compared it is striking to see that the 8­week mea­

surement schemes clearly have gathered less information after 75 days (∼20 completed

patients per treatment arm) than the 6­week measurement schemes (∼30 completed pa­

tients per treatment arm), resulting in fewer decisions to stop for futility (differences of

up to 20%).

The remaining columns show the power conditional on the implementation of an in­

terim analysis, which may lead to termination of efficacious arms for futility. To put this

into perspective, the power of detecting a treatment effect without performing an interim

analysis is also shown.
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Figure 9. Results from the interim analysis based on study 1. The probability of early termination of

an inefficacious treatment arm (in %) is shown in the first column versus the number of patients. Each

row represents a different study design, the number of visits and the duration of the study protocol is

specified. The remaining columns show the power to detect a treatment effect without interim analysis

and the power conditional on an interim analysis at 75 days or 100 days. HAMD was used as endpoint as

well as an inclusion criterion of 19

The findings observed for study 1 were repeated using simulations based on study 2

(data not shown). Here it was also found that the use of shorter studies and reduced sam­

pling frequency (6 and 9 weeks) performed significantly better than studies with longer

duration (12 weeks).
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DISCUSSION

There are numerous factors contributing to drug response and variability. The success

of clinical trials in demonstrating significant treatment effect of novel compounds relies

on our ability in understanding how each of these factors influence outcome. Clinical evi­

dence from failure and attrition shows how intricate the interaction between these factors

can be, which renders the planning, design and implementation of investigational studies

difficult. Optimisation of clinical trials depends therefore on unravelling relevant factors,

quantifying their impact and excluding those which result in noise or nuisance to signal

detection. In this manuscript we illustrate how clinical trial simulations, a model­based

approach, can be used to make inferences, test hypotheses and evaluate the performance

of varying designs and conditions.

Simulation results

Most importantly perhaps is the realisation that limiting the number of visits per patient

does not necessarily reduce statistical power. Even the reduction from 7 to 3 measure­

ments did not lead to an important reduction in the ability to detect treatment effect. Not

only does a reduction in the frequency of visits decrease costs, it also eases the burden on

patients considerably. Another possible advantage is that the placebo effect may diminish

due to the limited contact between investigators and patient, although these simulations

do not allow us to investigate this. The limited impact of the frequency of scheduled vis­

its on study power can be explained by the ratio between interindividual variability and

residual variability. Since the variability between patients is larger than the error in mea­

suring the HAMD, enrolling more patients is a more efficient manner of increasing power

than increasing the frequency of assessments per patient.

A second valuable result from the simulations was that analysis of the percentage of

responders or remitters using a Fisher exact tests results in reduced power. Furthermore,

false positive (type I error) rates were higher, leading to even more concern, given that

the percentage of responders is often reported as an outcome in clinical trials. Other au­

thors have suggested than the percentage of patients in different stages of the disease is

perhaps a better outcome than the analysis of the continuous HAMD (Bech et al., 1984).

We cannot dispute this recommendation using the results from a trial simulation, but a

simple analysis of the number of responders or remitters based on the HAMD is clearly a

far less sensitive measures than the use of a linear mixed model. Indeed, recently it has

been shown that it may inflate drug­placebo differences dramatically (Kirsch and Mon­

crieff, 2007). This may seem contradictory, but the results presented here strengthen

their conclusion that presenting a dichotomised endpoint based on an originally contin­

uous endpoint may lead to false conclusions either way and should be discouraged. In

contrast, we have previously shown that a survival analysis of depression data is feasi­

ble with similar sensitivity to detect treatment effect as compared to longitudinal models
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(chapter 6). Survival analysis does not only dichotomise data, but takes the time dimen­

sion into account as well.

The third finding was that skewed enrolment in favour of an active treatment leads to

a less precise estimate of the treatment effect (bias is more variable) and this may result

in a reduction in power of up to 10%. This may be explained by a less precise estimation

of the placebo effect, due to a reduced number of patients in this treatment arm. Since

the outcome measure is the difference between treatment groups, this also reduces the

precision of the estimates of drug effect. From an ethical perspective skewed enrolment

may be desirable, since fewer patients are exposed to placebo treatment. However, the

increase in the probability of failure may outweigh this. In any case, we do recommend

simulations (with perhaps larger numbers than n=100) if a new clinical trial is to be de­

signed, so that the consequences of the different options can be quantified and informed

decisions can be reached, balancing ethical and statistical considerations.

The influence of the use of the HAM­D7 rather than the HAM­D17 was also investigated.

This subscale was found to be more sensitivity to treatment effect in a previous investi­

gation (chapter 3). For study 1, the difference between the full HAMD and the response­

based subscale was negligible. The similarity between the scales can be explained in this

case by the effect size. Signal from a sufficiently large treatment effect may be equally de­

tected irrespective of differences in the sensitivity of the endpoint. For study 2, however,

an important difference was found. In this study the effect size is considerably smaller

than study 1.

Demanding stricter inclusion criteria or enrolling only patients with higher HAMD

scores at baseline did not seem to affect outcome. This is explained by the fact that no

differential drug effect was included in the model for patients with high and low baseline,

as no such effect was found in the data analysis. In a separate evaluation, in which the

study population was divided into groups according to HAMD baseline, i.e., ≥23 and <23

(the median baseline), data were fitted with a model that included baseline as covariate.

However, no improvement was observed in model fitting. Baseline HAMD was therefore

not included as covariate in this analysis.

The interim analysis scenarios we propose in this paper prevented the progression of

a futile treatment arm in 80% of the cases, whilst limiting the consequences for effective

treatment arms. Future work will demonstrate the practical implementation of an adap­

tive trial design, in which the DREM is applied during an interim analysis using historical

data. More than just adapting sample size, it is our interest to explore how adaptations

can be made to optimise decision criteria as well as the actual timing of an interim analy­

sis.

Limitations

Conclusions from clinical trial simulations are heavily dependent on the drug­action mo­

del and the trial execution model. The drug­action model we use does not take into

account the mechanism of the interaction between the drug and its receptor or pharma­
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cological target, nor does it consider pharmacokinetic factors. Clearly, incorporation of

these elements would lead to an increased inferential value of our simulations, allow­

ing for the investigation of a variety of additional trial design elements, such as dose,

dosing interval and compliance. Because drug concentrations were not measured in the

datasets which were at our disposal, these factors could not be included in the model.

It is well known that steady state concentrations of paroxetine are highly variable (Kaye

et al., 1989). In fact, Cmax ranged from 8.6 to 105 µg/ml, and the area under the curve

(AUC) from 86.7 to 1911 µg/l*h. Such large differences in pharmacokinetics may par­

tially explain the variability in treatment response that is commonly observed between

patients. Moreover, investigations into the expression of the serotonin­receptor on blood­

platelets have led to speculations that genetic influences at the receptor­level may also

play an important role in the variability in responses. To investigate the consequences on

study power if pharmacokinetic factors and exposure were taken into account, additional

simulations were performed under the assumption of an exposure­response relationship

according to an indirect response model. Results of these simulations indicated that the

power of an analysis accounting for this relationship may be as high is 92%, whereas a

standard t­test in the same scenario resulted in a power of 58% only (data not shown).

Naturally, the feasibility of reducing the frequency of scheduled visits per patient de­

pends on the dropout scenarios that are present in a given clinical trial. We have investi­

gated dropout scenarios that are sufficiently representative of those observed in clinical

trials. In fact, we believe that the methodology presented in these simulations is more

relevant to clinical practice than the assumption of a range of unlikely scenarios. Visu­

alisation of the dropout of the different cohorts and each visit (figure 1) is a powerful

manner of exploring the presence of dropout mechanisms. On the other hand, it is possi­

ble that dropout is due to some non­random non­observed mechanisms, which is why we

have tested the robustness of a design with fewer measurements against more extreme

dropout scenarios, such as those used in in Lane (2008) and chapter 8. The results of

these investigations (figure 8) show that the bias in the estimate with a lower frequency

of visits even under extreme assumptions of MNAR is only marginally higher.

Conclusions regarding study duration depend on the time course of drug effect, which

was specified in the simulations. However, a reliable treatment effect is observed after

6 weeks in most studies (Montgomery, 2006). Furthermore, we argue that a drug which

takes longer to demonstrate efficacy is not of interest to the treatment of depression.

Advantages of short trial duration are numerous, including lower dropout, reduced costs,

and increased usefulness of the interim analysis. Lower dropout is especially important

since this means that dropout mechanisms will have less influence on study results.

The results of the CTS performed in this investigation depend on the parameters se­

lected for the simulations. It is therefore interesting to consider whether the current

results can be extrapolated to other populations, or even other disease areas. Especially

the ratio between the inter­individual and residual variability plays a major part in this re­

spect. Except for the baseline HAMD simulations, no assumptions were made considering
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the population type.

The suggested changes may not be as inventive as those suggested by Fava et al. (2003).

It was not possible to include this design in this exercise, because it requires the individ­

ual behaviour of patients to be captured, which is not feasible with the current state of

knowledge. However, we hope that these simple adjustments may prove beneficial and

can easily be implemented. As discussed elsewhere (Holbrook and Goldsmith, 2003), large

changes in clinical trial design are unlikely to occur instantaneously due to the high finan­

cial stakes and patient time. Indeed, we hope that CTS will spur changes and perhaps

create awareness in the field that change is necessary and not necessarily dangerous.

Recommendations

The following guidelines for the design of new clinical trials in depression can be derived

from the wide range of simulated scenarios:

1. Use the HAM­D7 as primary endpoint

2. Limit the study duration to a maximum of 6 to 8 weeks

3. Apply equal enrolment ratio across treatment arms. Alternatively, perform clinical

trial simulations to investigate the consequences of unequal enrolment

4. Reduce the frequency of visits for the assessment of primary endpoint to only 2 to

3 times per patient (excluding baseline)

5. Use the DREM as statistical model for the analysis of the primary endpoint

6. Consider the relevance of an interim analysis for early termination of futile treat­

ment arms without compromising positive treatment arms

Most importantly, assess drug exposure and possibly the phenotype of patients for drug

metabolism and pharmacodynamics. The availability of such data enables characteri­

sation of exposure­response relationships and subsequent optimisation of dosing reg­

imens (Danhof et al., 2007). Although the exposure­response relationship of SSRIs in

general and paroxetine in particular have remained obscure, it is hard to believe that

psychiatrists still do not conceive such a relationship. Elucidation of the PKPD relation­

ships of novel antidepressants will only be possible if sampling of pharmacokinetic and

pharmacodynamic data is considered in the design of a clinical trial.

In conclusion, we have shown that CTS is a valuable tool to integrate and quantify

the impact of multiple trial design factors. Such clear­cut results could not have been

obtained by traditional meta­analysis, as confounding factors cannot be dissected inde­

pendently. In an analogy to the impact of differential diagnostic tools following the ad­

vancements in laboratory technologies during the last century, research physicians must

become aware that CTS is the instrument for differential diagnosis in clinical drug devel­

opment. Differential diagnosis of clinical trials is the only alternative to trial and error.
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