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ABSTRACT

A
number of issues related to the design and analysis of clinical studies contribute to

the high failure rate observed in the evaluation of antidepressant drugs. In contrast

to statistical methods in which response is determined by differences relative to placebo

at completion of treatment, increasing evidence exists that treatment effect may be better

characterised by individual longitudinal data. Longitudinal models offer many advantages

as they provide information about individual patients in the trial. These models can be

especially useful for simulation purposes, but require attention with regard to dropout.

Based on the results of a functional principal component analysis, we propose the use of

a dual random effects model (DREM) that accounts for the presence of different dropout

scenarios. The objective of this investigation was to compare the analysis of efficacy

data and evaluate the impact of dropout on type I error and power using the DREM, the

mixed model for repeated measures (MMRM) and last observation carried forward (LOCF)

methods.

Historical data from clinical trials in depression was used for model fitting. The

goodness­of­fit of all models was compared using graphical and statistical approaches.

Individual HAMD scores over time were simulated using the DREM. The effect of dropout

was investigated according to seven different scenarios under the assumption of missing­

ness completely at random (MCAR), missingness at random (MAR) and missingness not

at random (MNAR). Subsequent data fitting included the interactions treatment­time and

baseline­time as fixed effects for the DREM and MMRM model.

Diagnostic plots reveal that the DREM describes individual patient data better than the

MMRM or a single random effects model. In addition, simulations show that there is little

difference between the DREM and MMRM with respect to the fixed effect estimates in all

scenarios. The DREM was found to outperform the MMRM with regard to type I error and

power. As expected, LOCF showed higher type I errors or reduced power under various

scenarios.

A considerable improvement in the goodness­of­fit is observed for the DREM, as com­

pared to the MMRM. Although this difference represents only a minor variation in type I

error and power, we recommend the use of DREM, especially for the purpose of simula­

tions in clinical trial design. The main advantages include its simplicity and parameter­

isation, which may facilitate the interpretation of model estimates by the non­statistical

community. The use of LOCF is strongly discouraged since the estimates may be biased

under likely dropout scenarios.

INTRODUCTION

The analysis of treatment efficacy in chronic diseases, such as depression, ought to con­

sider the time course of response rather than be based merely upon the differences from

baseline at a specific time point. A considerable number of publications have shown that
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the latter method misrepresents the true treatment effect (Mazumdar et al., 1999; Wood

et al., 2005; Huson et al., 2007). This possible bias is further increased by the use of

intent­to­treat (ITT) analysis, which requires that all subjects randomised to a treatment

arm should be included in the analysis. A shift in the paradigm for statistical analysis

of longitudinal data demands, therefore, better understanding of the natural history of

disease and appropriate consideration about the phenomenon of dropout and data cen­

soring.

In depression, it is an established fact that up to half of clinical trials fail in spite of

adequate active treatment (Khan et al., 2002). One of the possible reasons for this failure

is the high dropout rate observed in these studies. The percentage of patients completing

the trial after at least one efficacy measurement is as low as 50% in some cases, with

percentages higher than 70% being the exception rather than the rule. The consequence

of these high dropout rates is that methodologies which take missingness adequately into

account will improve the quality of the analysis of depression trials, and may decrease this

high failure rate.

Up to a few years ago, last observation carried forward (LOCF) imputation was the

standard method to handle missing data. It has been demonstrated that LOCF imputation

provides an unbiased estimate of the effect of a drug in the presence of dropout accord­

ing to missingness completely at random (MCAR, not attributable to any specific cause)

only when the dropout rate in all treatment arms is the same (Molenberghs et al., 2004).

Further bias is expected in the presence of dropout according to missingness at random

(MAR, depending on observed data) and missingness not at random (MNAR, depending

on censored data). Although this is well­accepted it is commonly believed that this bias

is of a conservative nature and it is still often used in regulatory submissions, in spite of

the efforts to change this (Mallinckrodt, 2006).

More advanced methodologies to deal with censored data are becoming available as

a result of elaborate software packages and faster computers. The era in which statisti­

cians were forced to resort to LOCF imputation because of constraints other than regula­

tory requirements, is now over. In recent years, the mixed model for repeated measures

(MMRM) (Mallinckrodt et al., 2001a), a marginal linear mixed model (Verbeke and Molen­

berghs, 2000; Laird and Ware, 1982) has gained considerable popularity because of its

ability to use all obtained data during a trial to provide unbiased estimates of drug effect

in the presence of both MCAR and MAR dropout mechanisms (Mallinckrodt et al., 2004a;

Kinon et al., 2006; Thase et al., 2006; Davis et al., 2005). Several simulation studies have

shown the robustness of the MMRM in these situations (Mallinckrodt et al., 2001b, 2004b),

and a recent simulation study (Lane, 2008) has shown that the MMRM performs much bet­

ter than LOCF over a range of scenarios of missingness. However, none of these studies

have questioned whether the MMRM fits individual data accurately.

Elsewhere, we have applied functional principal component analysis to individual cur­

ves from patients in anti­depressant trials (chapter 7). Rather than focusing on the average

behaviour of patients, as in standard longitudinal data analysis, functional data analysis
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investigates the differences between patients instead. Information about the nature and

extent of inter­individual variability may lead to more appropriate models as well as model

parameterisations. In that investigation, it was found that the first principal component

from the functional data analysis corresponds to an additive random effect. In hierarchi­

cal linear mixed models such an additive random effect is commonly included. Given the

presence of a second component, which was found to describe a random slope effect, the

current manuscript proposes the use of a model with two random effects, a dual random

effects model (DREM) to fit depression data. Taking into account the high dropout rate

observed in clinical trials, it is anticipated that the combination of random effects will

provide a more accurate description of individual patient data.

An extension to the hierarchical linear mixed­effects model can be used to implement

such a model. As mentioned above, this approach generally assumes that a random

(subject­specific) effect exists which is additive, i.e., a subject is expected to have measure­

ments which are predominantly above or below the population average. Even though this

parameterisation leads to issues with respect to methods based on maximum likelihood

theory (Molenberghs and Verbeke, 2004), we believe that such issues may be overcome

within the Bayesian context. Two important advantages of the use of Bayesian statis­

tics include the possibility of the computation of the posterior predictive distribution,

instead of a single point estimate as measure of treatment effect, as well as the explicit

calculation and interpretation of probabilities in general. Bayesian statistics is gaining

in popularity due to the fact that flexible software exists such as WinBUGS (Lunn et al.,

2000) which implements Markov chain Monte Carlo (MCMC) sampling from the posterior

distribution. In the current investigation, both the model with one additive random effect

(random effect model, REM) and its extension, the DREM, are implemented in WinBUGS.

After a comparison of the MMRM, REM and DREM with respect to their ability to describe

individual data, simulations based upon the DREM will be performed to investigate the

power and bias of the MMRM, DREM and LOCF methods under seven different scenarios

of dropout according to MCAR, MAR and MNAR (Lane, 2008). False positive rates (type I

error) will be investigated through simulation of a hypothetical treatment arm which has

no treatment effect and as many patients as the active treatment arms. Moreover, the cur­

rent investigation focuses on exploring whether the DREM is the most appropriate model

for the simulation of new data. The use of simulated patient data is a powerful tool for

the evaluation of study characteristics before the implementation of a study protocol. It

is also essential for the optimisation of adaptive designs and interim analyses.

METHODS

Study data

Data from two double­blind, placebo­controlled randomised clinical trials of patients with

major depression were retrieved from GSK’s clinical trial database. These studies are rep­

resentative of trials in depression and correspond to a typical trial outcome, including
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treatment arms which show a clear separation from placebo (positive control) and treat­

ment arms which do not yield significant separation from placebo (negative control). Our

investigation was restricted to two studies due to limitations in computational power.

Study 1 (Trivedi et al., 2004) was a randomised placebo­controlled trial in which two

doses (12.5 and 25 mg) of a controlled release (CR) formulation of paroxetine were tested

for efficacy. The 17­item Hamilton depression rating scale (HAMD) (Hamilton, 1967) was

measured at weeks 1, 2, 3, 4, 6 and 8 after start of treatment. A total of 459 patients with

major depression were evenly enrolled across the treatment arms.

Study 2 (unpublished, see http://ctr.gsk.co.uk, protocol number 128) was a random­

ised placebo­controlled trial in which paroxetine and fluoxetine were compared. The

HAMD was measured at weeks 1, 2, 3, 4, 6, 9 and 12 after start of treatment. 140 Pa­

tients were enrolled in the placebo arm, and 350 patients were enrolled in both active

treatment arms.

All data manipulation and graphs were performed in R, the language and environment

for statistical computing (R Development Core Team, 2007).

Data fitting and parameter estimation

First, the mixed model for repeated measures (MMRM), a hierarchical random effects

model (REM) and the dual random effects model (DREM) were fitted to the data. The fixed

effects in these models were the interactions between time and treatment, and between

time and baseline. The MMRM was implemented using proc mixed in PC SAS (v9.1 for Win­

dows, SAS Institute, Cary, NC, USA). The REM and DREM were implemented in WinBUGS

version 1.4.1 (Lunn et al., 2000). The equations describing each model are given below.

Throughout the Bayesian analyses flat normal priors with little precision were used for

the fixed effects, and uniform priors on the scale of the standard deviation, since these

are generally assumed not to influence the posterior distributions of the parameters of

interest, and therefore the inference.

The mixed model for repeated measures is represented by equation 1:

Yij = BASi · βj + θz,j + ǫij (1)

where BASi is the baseline for individual i, βj is the baseline­time interaction at time j,

θz,j represents the effect of treatment z at time j. A further assumption is that the fixed

effects are drawn from a multivariate distribution with the same unstructured covariance

matrix for all individuals.

The random effects model is represented by equation 2:

Yij = BASi · βj + θz,j + η1i + ǫij (2)

where BASi is the baseline for individual i, βj is the baseline­time interaction at time j,

θz,j represents the effect of treatment z at time j. η1i is the random effect of individual i

(normally distributed with mean 0 and unknown variance) and ǫ is the measurement error

(normally distributed with mean 0 and unknown variance).



132 Chapter 8

The dual random effects model is represented by equation 3:

Yij = BASi · βj + θz,j + η1i + η2i · j + ǫij (3)

where BASi is the baseline for individual i, βj is the baseline­time interaction at time j, θz,j

represents the effect of treatment z at time j. η1i and η2i are the random effects of indi­

vidual i (from a multivariate distribution with means 0 and unknown variance­covariance

matrix) and ǫ is the measurement error (normally distributed with mean 0 and unknown

variance). The second random effect η2 is multiplied by the observation number, which

corresponds to the random slope effect identified in the functional principal component

analysis (chapter 7).

Comparison of the models

The performance of the MMRM, REM and DREM are compared using two graphical ap­

proaches. First, model predicted HAMD scores will be plotted against the observed HAMD

scores. Second, the time course of individual response profiles and corresponding model

fits will be compared between the three models. Since our main objective is to evaluate

model performance for the purposes of simulation, it was deemed appropriate to apply

a statistical diagnostic measure which focuses on the simulation abilities of a model. Re­

cently, normalised prediction discrepancy errors (NPDE) have been proposed by Brendel

et al. (2006). Briefly, this method determines whether simulated datasets are exchange­

able with the original dataset using graphical diagnostics and statistical tests. Since the

maximum likelihood estimates of the MMRM and the REM are the same for normally dis­

tributed data, model comparison will be limited to the REM and DREM.

Simulations

The next part of the manuscript investigates the operational characteristics (type I and

II error) of all models under various scenarios of dropout. As the DREM is considered

the most appropriate model to generate new data, it is used to simulate new patients.

Subsequently, dropout is introduced according to seven scenarios, followed by a fit of

all models to the simulated datasets. A more detailed description of these procedures is

provided below.

New trials were simulated in R based on the means of the posterior distributions of the

parameters estimated in the DREM. First, baseline values for all patients were simulated

using a normal distribution (mean 20, standard deviation 4) truncated between 19 and 40.

These values were based on observed patient data in the historical trials. The simulated

baseline values were subsequently multiplied by the baseline­time fixed effect for each

time point, yielding individual response time profiles. Fixed treatment effects were then

added to the simulated individual response profiles. The random subject­specific effects

were simulated from a multivariate normal distribution based on the parameters fitted

from the data. Finally, measurement error was introduced by sampling from a normal

distribution. The resulting HAM­D17 values were then rounded to the nearest integer to
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represent the discrete nature of the endpoint.

In a second stage, the simulated data was exposed to seven different dropout mecha­

nisms, as described in detail elsewhere (Lane, 2008). In brief, the dropout rate was fixed

at a 3.5% per week, with the total dropout at the end of the trial being approximately the

same as in the original studies. The choice for the dropout rate was based on an analysis

of data from 8 clinical studies which was available to us, which showed no reproducible

time­dependency of the dropout rate over time. For MCAR, a completely random dropout

mechanism was used. For MAR and MNAR, 3 different scenarios each were used. For all

scenarios the patients in each treatment arm were divided into 9 equally sized dropout

cohorts. For MAR, the preceding observation was used to determine the probability of

dropout, whereas for MNAR the value of the current (to be censored) observation was

used to determine this probability. The probabilities of dropout were calculated according

to the following steps: In scenario A (MAR1/MNAR1) the likelihood of dropout increased

linearly with severity of depression. In scenario B (MAR2/MNAR2) only patients in the

4 most severely depressed categories were subject to dropout, again increasing linearly

with the severity of depression. In scenario C (MAR3/MNAR3) dropout was present only

in the most severely depressed patient population. The slope for the linear increase was

calculated to result in a dropout percentage of 3.5% per week. Note that the dropout per­

centage of 3.5% was applied per week rather than per visit, as this corresponds to the total

dropout rates observed in the two trials which have different trial durations (8 versus 12

weeks). Furthermore, like Lane (2008), we have investigated the consequences of unequal

dropout between treatment arms. Therefore, dropout rates were varied in ratios of 1:1,

1:2 and 2:1 for placebo and active treatment respectively, with the resulting dropout rate

of 3.5% per week.

For unequal dropout this resulted in problems for the simulation of scenario C if the

interval between measurements was longer than two weeks. In this case, the dropout rate

in a treatment arm with the higher dropout rate would have to be >11% in order to result

in a total dropout rate of 3.5% per week. However, because only the 100%/9 cohorts = 11%

most severely depressed patients are subject to dropout in scenario C, this dropout rate

could not be achieved. In these circumstances all patients in the most severely depressed

group were dropped from the trial.

The resulting datasets were fitted using the DREM, MMRM and LOCF. LOCF was imple­

mented by carrying the last observation forward to the last occasion when a subject was

removed from the study, followed by a t­test for the differences between the treatment

arms and placebo as suggested by Molenberghs et al. (2004). This simulation­missingness­

fitting procedure was repeated 100 times for the calculation of bias and type II error (pos­

itive treatments) and 1000 times for the type I error (false positive rates) since the latter

were generally low.

To summarise the results, box­plots of the bias of the estimate of the treatment effect

at the last observation were created. In addition, graphs were used to report the power to

detect a statistically significant difference (equal to 100­type II error) and the type I error.
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For the type I error, we only take into account cases in which p<0.05 and where active

treatment outperforms placebo. This results in one­sided type I error rates which have an

expected value of 2.5%.

RESULTS

Model fitting & diagnostics

The parameter estimates for the fixed effects were similar, irrespective whether the DREM,

MMRM, or REM was used (data not shown). Figure 1A shows a plot of the individual

predicted HAMD scores versus the observed scores and figure 1B shows the time course

of the HAMD and the model fits for 49 subjects.

Since the maximum likelihood estimates of the MMRM and the REM are the same for

normally distributed data and the MMRM does not produce individual predictions be­

cause of its parameterisation, the focus in figure 1A should be on the comparison of the

REM and the DREM. Clearly, the second random effect in the DREM diminishes the bias

observed in the REM for the prediction of low and high HAMD values. This is further illus­

trated by the fact that the observed total number of responders (more than 50% decrease

from baseline HAMD) in the original dataset was 119 and this same number based on the

individual predicted HAMD values for the REM amounted to only 87. If the number of

responders was computed based on the individual HAMD predictions of the DREM how­

ever, it equalled 109. The MMRM does not allow this sort of calculation because it does

not provide individual predicted values. From figure 1B it is clear that the DREM provides

a slightly better description of the data than the REM in some cases.

Figure 2 shows the normalised prediction discrepancy errors (NPDE) for the REM and

DREM. The NPDE for the DREM follow a standard normal distribution, whereas the NPDE

for the REM show that the variability in the data is lower in the simulated datasets than in

the original data. The mean and variance of the distribution of the NPDE were tested for

being different from their expected values using a Wilcoxon signed rank test for the mean

and a Fisher test for the variance. The Wilcoxon test showed that the mean of the NPDE

for both models did not differ significantly from 0. The Fisher test however showed that

the variance of the NPDE for the REM differed significantly from 1 (p<0.001), but did not

reveal such a discrepancy for the DREM.

Simulation outcome

Based on the aforementioned results, simulations of individual patient data were per­

formed according to the DREM. The means of the posterior distributions of all parameters

which were used for the subsequent simulations are shown in table 1.

Study 1: Estimated Bias

Box­plots of the bias of the estimates of the treatment effect at week 8 (n=100 simulations)

under the seven dropout scenarios for the various dropout ratios are shown in figure 3.
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Individual predictions of HAMD
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MMRM

(a) observed HAMD versus predicted HAMD

(b) individual model fits

Figure 1. (a) Observed HAMD scores versus individual predicted HAMD scores for the three models. The

black line is the line of unity and the grey line is a smoothing function. (b) Individual HAMD time

profiles for 49 patients. Observations are represented by dots

These simulations were based on study 1, in which 150 patients were included in each

treatment arm and a total dropout rate of 25% was achieved. The bias of the estimates of

the DREM and MMRM are very similar under all dropout scenarios. The LOCF method is

consistently biased when placebo and active dropout rates are not equal. The estimates

obtained using the DREM and MMRM are unbiased when the dropout mechanism is MCAR

or MAR, but the more extreme scenarios of MNAR do yield biased estimates when placebo

and active dropout rates are not the same. The bias for treatment 1 is consistently more

variable than that for treatment 2, which can be explained by the higher treatment effect

size for this treatment arm.
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Figure 2. Distribution of the normalised prediction discrepancy errors. As a reference, the density

function of the standard normal distribution (mean 0, variance 1) is shown

Table 1. Parameter values used for the simulations. The 2x2 variance­covariance matrix is given under

the I.I.V. and σ/I.I.V. headings

Study Treatment
Baseline parameters (placebo)

or treatment effect per week
I.I.V. σ/I.I.V.

1 2 3 4 6 8 9 12

1 placebo 0.81 0.73 0.66 0.61 0.59 0.53 ­ ­ ­ 3.2
paroxetine

(12.5 mg)
0.1 0.7 1.4 1.7 2.4 1.5 ­ ­ 23.1 ­1.73

paroxetine

(25 mg)
0.0 1.4 1.8 2.3 3.9 2.9 ­ ­ ­1.73 1.22

2 placebo 0.85 0.75 0.70 0.63 0.61 ­ 0.59 0.54 ­ 3.64
paroxetine

(max 50 mg)
0.1 0.1 0.5 0.7 1.4 ­ 2.2 2.2 19.8 ­2.0

fluoxetine

(max 80 mg)
0.0 0.8 1.1 0.7 1.8 ­ 2.8 2.0 ­2.0 1.1

Study 1: Type I error and power

The false positive rates (n=1,000 simulations) and the power (1 ­ type II error, n=100

simulations) for paroxetine CR 12.5 mg are summarised in figure 4. Since the type I error

is one­sided, its expected level is 2.5%. Based on MCAR scenario with equal dropout rates,

the predicted power of the treatment arm was estimated to be 40%.

It is apparent that the type I error can inflate under various dropout scenarios. LOCF

has inflated one­sided type I errors of up to 6.2% (> 2 times the nominal level) when

dropout under placebo is higher than under active treatment. The MMRM and DREM

control the type I error under MAR (except when active dropout is higher than placebo

dropout), but the most extreme MNAR scenarios lead to an inflated type I error (18.9%)

when dropout under active treatment is higher than under placebo. The power to detect
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Figure 3. Box­plots of the bias for each treatment arm of study 1 versus the dropout scenarios for the

MMRM, DREM and LOCF methods (100 simulations). PRX = paroxetine CR
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Figure 4. Power and type I error associated with the dropout scenarios, based on study 1. Different

panels represent the models (horizontally) and the dropout ratios (vertically)

a significant treatment effect was generally the same for MMRM and DREM, and worse for

LOCF (except when the anti­conservative bias led to a higher power).

Study 2: Estimated bias

Box­plots of the bias of the estimates of the treatment effect at week 12 (n=100 simula­

tions) under the seven dropout scenarios and various dropout ratios are shown in figure

5. These simulations were based on study 2, in which 140 patients were included in
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Figure 5. Box­plots of the bias for each treatment arm of study 2 versus the dropout scenarios for the

MMRM, DREM and LOCF methods (100 simulations)

the placebo arm and 350 in each active treatment arm. A total dropout rate of 35% was

simulated in this trial.

The bias of the estimates based on study 2 is clearly larger than the bias observed in

the simulations based on study 1 (figure 3). This may be due to the increased dropout

rate, caused by the difference in duration between the two studies. Again, the DREM and

MMRM methods are indistinguishable, and a bias is observed in the case of equal dropout

only under the more extreme MNAR scenario. When the dropout rates are unequal, es­

timates under the less extreme MNAR scenarios are also biased. For LOCF the situation

is considerably worse, especially in the unequal dropout scenarios. The bias caused by

LOCF is mostly conservative but becomes anti­conservative when the placebo dropout

rate is twice the active dropout rate.

Study 2: Type I error and power

The false positive rates (type I error, n=1,000 simulations) and the power (1 ­ type II error,

n=100 simulations) for fluoxetine are summarised in figure 6. Since the type I error is

one­sided, its expected level is 2.5%. Based on MCAR scenario with equal dropout rates,

the predicted power of the treatment arm was estimated to be 70%.

The type I error in study 2 is considerably higher than in study 1 (figure 4). When

the dropout rates are equal between treatments or higher for placebo, the type I error is

controlled except for the most extreme MNAR scenario. For the case in which the dropout

rate is twice as high in placebo treatment, LOCF analysis shows inflated one­sided type I

error (up to 13.3 %) except for the most extreme MAR mechanism. The MMRM and DREM

yield type I error which is acceptable for most scenarios, except for the two more extreme
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Figure 6. Power and type I error associated with the dropout scenarios, based on study 2. Different

panels represent the models (horizontally) and the dropout ratios (vertically)

MNAR scenarios. The power to detect a significant treatment effect was similar for the

MMRM and DREM, although differences of up to 11% were observed which were mostly in

favour of the DREM. The LOCF had considerably less power to detect a treatment effect in

those cases where its bias was conservative.

DISCUSSION

The availability of longitudinal models which describe individual response profiles is es­

sential to ensure accurate estimation of treatment effect. Our results show the relevance

of the DREM as statistical analysis method for the evaluation of longitudinal clinical trial

data in depression. These findings are particularly important for study design optimisa­

tion (clinical trial simulations), as well as for the implementation of adaptive study designs

and interim analyses.

Relevance of longitudinal models in depression trials

At present, the analysis of clinical data often relies on flawed statistical methods, which

measure treatment as a change relative to placebo or control group at the completion of

treatment. Of particular concern is the use of last observation carried forward (LOCF)

imputation (Wood et al., 2004). It has been shown that results from any analysis under

this imputation method may be biased, depending on the underlying dropout mechanism

and whether dropout rates are equal across treatment groups (Molenberghs et al., 2004).

The intent­to­treat (ITT) paradigm increases the bias under LOCF because patients with

only a single efficacy measurement are also included in the analysis. The application of

LOCF is an anachronism, caused by the reluctance of some statisticians and investigators
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to use methodologies which are more appropriate from a statistical point of view. Despite

numerous examples from the Food and Drug Administration in which alternative statis­

tical methodologies other than LOCF are applied, false beliefs about the conservatism

of LOCF in a regulatory context seem to enhance this reluctance to adopt novel statisti­

cal approaches. Recent statistical developments, such as the MMRM, have provided the

means to deal with missing data. A reduction of the bias minimising dropout in clini­

cal trials (Wisniewski et al., 2006) seems less realistic and is likely to yield inconsistent

results.

Based on a functional principal component analysis (chapter 7) a dual­random effects

model (DREM) was suggested to analyse longitudinal depression data. As dropout is a

major concern in this area, we have also evaluated the robustness of the DREM, MMRM

and LOCF models against various dropout scenarios. Of the three models which have

been compared, the mixed model for repeated measures is gaining increasing popular­

ity, although LOCF methods are still frequently used. The relatively poor uptake of the

MMRM may be partly due to the way such statistical models summarise results. Tradi­

tionally, clinical researchers seem to prefer to assess the quality of a statistical analysis

by reviewing the fit of the model to the data, a process which is visualised graphically

by goodness­of­fit and fits for individual patients as in figure 1. Although the MMRM

provides unbiased treatment effect estimates in the presence of MAR, it is not possible

to produce goodness­of­fit plots based on individual predictions. This is due to model

parameterisation, which prevents prediction of individual observations.

Causes of dropout in depression

Patient dropout may be caused by several factors. First, absence of effect may lead to

the decision to quit a trial. Second, occurrence of adverse events or even serious adverse

events may have a similar consequence. Third, dropout can be caused by completely

trial­unrelated factors, such as patients moving to another town.

The dropout mechanisms that were chosen in our investigation cover a range of situa­

tions. In general, dropout is assumed to be higher in those patients who are more severely

depressed. This was accommodated for in the 3 scenarios MAR and MNAR. Moreover,

placebo dropout may be higher because of interactions between the treating physician

and the patient. The first may recognise the absence of characteristic side effects and

treatment effect, and inadvertently direct the patient towards quitting the trial. Another

possibility is that dropout in the active arm is higher, caused by the additional burden

of side effects. However, it is important to realise that any difference in dropout rate

between active and placebo arms is observed and subsequent simulation­based investi­

gations can reveal whether these observed differences could lead to biased estimates of

treatment effect. If dropout mechanisms are not taken into account, or wrong assump­

tions are made about its nature, a significant reduction in power or inflated type I error

may occur, as shown in figures 4 and 6.

A limitation of the current simulations is that only dropout scenarios depending on
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the severity of depression (and a completely random scenario) are investigated. In reality,

multiple reasons will cause dropout in any given study, with some patients dropping

out because of lack of efficacy (i.e., severely depressed patients) and some dropping out

because of adverse events. A realistic clinical trial simulation must therefore consider a

combination of dropout mechanisms.

Goodness of fit for longitudinal models

As demonstrated by our analysis, the DREM provides the closest fit to actual patient data,

especially for high and low HAMD values. Furthermore, the normalised prediction dis­

crepancy errors (NPDE) show that it is more appropriate to simulate data from this model

than from the REM, given that variability is underestimated by the latter. Since one of the

frequently used outcome parameters is the percentage of responders (decrease of 50%

from baseline HAMD) and the percentage of remitters (HAMD≤7), it is also noteworthy

that the percentage of responders is closely resembled by the DREM. The model with a

single random effect clearly does not capture this information well. This indicates that

the DREM will provide more realistic results than the REM if data analysis of simulated

data is based on the percentage responders.

The implementation of the DREM was based on a functional principal component anal­

ysis (FPCA), which indicated that such a model may be able to provide a better description

of individual patient data. The use of tools provided by this exploratory field may, as

shown here, enable the evaluation of more appropriate statistical models. It is important

to realise that to be effective, novel statistical methods must account for the variability

between patients, which is high and may differ across clinical trials.

LOCF - a statistical blunder

The main finding from the simulations is that LOCF is often biased even under mild

dropout scenarios, leading to either inflated type I errors or reduced power, depending

on the directionality of the bias. The MMRM/DREM in contrast only show severely inflated

type I error under extreme MNAR assumptions, especially when the dropout rate under

placebo is higher than under active treatment. The differences between the results of the

simulations based on the two studies underline that the risk of increasing type I error

increases with higher and unequal dropout rates.

The present simulations show that the assumption that any bias on the part of LOCF

is conservative is not justified. Specifically, anti­conservative biases (i.e., favouring active

treatment) appear when placebo dropout is higher than the dropout rate under active

treatment (figures 3 and 5). An important learning from this exercise is that the direction

of the bias is not always predictable, especially under MNAR assumptions. This feature

has also been reported elsewhere (Molenberghs et al., 2004; Lane, 2008).

Other authors have used simulations to investigate the bias and type I error of the

MMRM and LOCF methods in the presence of various dropout scenarios (Lane, 2008;

Mallinckrodt et al., 2001a,b, 2004b). The data in these simulations studies was simulated
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base on the MMRM, and not using the DREM, which we have shown to be more appropri­

ate. Furthermore, one author did not investigate the type I error (Lane, 2008) and only

showed the power and mean bias, obscuring the actual variability of the bias, whereas

others simulated small trials and used parameters that were not based on actual clinical

studies (Mallinckrodt et al., 2001b, 2004b). We believe that the methodology used in this

paper is more appropriate, as the simulations are based on existing studies and the DREM

which provides an adequate description of the data and is more appropriate to simulate

from.

A limitation of our approach is that we have not discussed any methods that deal

with MNAR patterns. Although methods are available for this problem (Mazumdar et al.,

2007), they are not suitable for primary analysis, but may rather provide guidance as to

how sensitive results are to the MAR assumptions. We have therefore excluded these

methods from our investigations. Yet, they should be used in the context of sensitivity

analyses in the analysis of clinical trials (Molenberghs et al., 2004).

Advantages of hierarchical models in a Bayesian framework

The most important advantage of hierarchical models is that individual patient predic­

tions can easily be obtained. Therefore it is easily shown whether or not a model provides

a good fit to the data, which may increase the uptake of the model. Also, the availability

of individual fits allows for straightforward inclusion of covariates on the subject­level,

since correlations between random effects and covariates can be readily explored.

An interesting aspect of the application of the DREM in a Bayesian framework is that

the interpretation of the results is straightforward. Rather than a p­value, a Bayesian anal­

ysis may be summarised in a posterior probability of inferiority (PPI), i.e., the probability

that placebo is more effective than an active treatment. This use of Bayesian methodology

is even more interesting because approximation of the denominator degrees of freedom

is not required as in the frequentist framework. Lastly, the hierarchical nature of the pa­

rameterisation of the DREM is easily accommodated in a Bayesian context. Since future

work will encompass the investigation into the feasibility of the application of the model

for interim analyses, the availability of the posterior predictive distribution was another

important factor in the choice for a Bayesian framework.

A much disputed feature of Bayesian analyses is the obligatory inclusion of prior dis­

tributions on each parameter. In the current work, prior distributions have been chosen

to be non­informative, such that little information is added to the likelihood of the data.

However, especially in the context of interim analyses, it is conceivable that in earlier

phases of clinical development informative priors based on historical data are included,

allowing prior information to influence the analysis of present studies. In a regulatory

context, however, analyses will need to be performed based on data from pivotal trials

only.

A disadvantage of the use of MCMC methods is the time it takes to reach conver­

gence and the difficulties that sometimes arise in assessing whether convergence has been
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reached. The current model takes approximately two minutes on a standard workstation.

Convergence was not an issue in this simple model. We assessed convergence after 8,000

iterations and compared parameter estimates to estimates obtained after 15,000 itera­

tions. Since no difference was observed, 8,000 iterations were considered sufficient and

used throughout the simulations.

Conclusions

We strongly advise clinical investigators not to use LOCF analysis for clinical trials in

depression. LOCF has either reduced power or an inflated type I error, especially when

dropout rates are unequal for active and placebo treatment and total dropout rate is high

(as in study 2). The MMRM and DREM control these factors well, as long as the dropout

scenario is not extreme. Although there is little difference in bias between the MMRM and

the DREM, the latter is preferable because of its ability to describe the data (and especially

the variability in the data). In addition, model parameterisation in terms of interindividual

variability ensures easier explanation of findings to clinicians and other non­statisticians,

who generally make decisions based on statistical analysis.

We have also shown that implementation of the DREM in a Bayesian framework allows

straightforward interpretation of the parameters. In future investigations, we will perform

clinical trial simulations based on the DREM to explore the relevance of several design

factors, and implement the posterior predictive distributions in an interim analysis in the

context of adaptive study designs.
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