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ABSTRACT

Efficacy trials with antidepressant drugs often fail to show significant treatment ef

fects even though efficacious treatments are investigated. This failure can, amongst

other factors, be attributed to the lack of sensitivity of the statistical methods and the

endpoints to pharmacological activity. For regulatory purposes the most widely used ef

ficacy endpoint is still the mean change in HAMD score at the end of the study, despite

evidence from literature showing that the HAMD scale might not be a sensitive tool to

assess drug effect and that changes from baseline at the end of treatment may not re

flect the extent of response. In the current study, we evaluate the prospect of applying

a Bayesian parametric cure rate model (CRM) to analyse antidepressant effect in efficacy

trials with paroxetine. The model is based on a survival approach, which allows for a

fraction of surviving patients indefinitely after completion of treatment.

Data was extracted from GlaxoSmithKline’s clinical database. Response was defined as

a 50% change from baseline HAMD at any assessment time after start of therapy. Survival

times were described by a lognormal distribution and drug effect was parameterised as a

covariate on the fraction of nonresponders.

The model was able to fit the data from different studies accurately and results show

that response to treatment does not lag for two weeks, as is mythically believed. In

conclusion, we demonstrate how parameterisation of a survival model can be used to

characterise treatment response in depression trials. The method contrasts with the long

established snapshot on changes from baseline, as it incorporates the time course of

response throughout treatment.

INTRODUCTION

The evaluation of the efficacy of new antidepressant compounds is an increasing chal

lenge. For every antidepressant drug on the market several large clinical trials had to be

conducted to obtain the minimum number of positive trials which are required for a suc

cessful registration. Indeed, it is currently assumed that up to 50% of the trials evaluating

an antidepressant drug with proven efficacy could fail to show statistically significant

separation of the active treatment from placebo (Khan et al., 2000). Numerous reasons

have been provided to explain this finding, ranging from large variability in placebo ef

fect to poor sensitivity of the clinical endpoint up to the difficulties in identifying and

enrolling patients who are truly sensitive to treatment (Montgomery, 1999; Thase, 2002).

Regardless of the reasons, the consequence of such a high failure rate is that several large

clinical studies are required in the early stage of clinical development to allow conclusive

evaluation of the potential antidepressant activity of a new compound.

The Hamilton depression rating scale (Hamilton, 1960) (HAMD) is the gold standard

in depression research. Currently, the analysis of depression studies is based on the

difference between placebo and active treatment at the end of the study (usually 612
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weeks) corrected for baseline HAMD. This approach neglects information yielded during

the course of treatment. Furthermore, strong evidence exists that the variability in the

HAMD is large and that some of its dimensions are nonspecific to treatment response.

Whilst it is a wellestablished means to describe disease condition, the HAMD scale can

not accurately capture the dynamics of state changes that occur during the course of

treatment. In a previous investigation, we have shown that the use of subscales from the

HAMD17, consisting only of items that were identified as sensitive to changes in response

over time, improves the assessment of drug effect, as compared to the full scale (chapter

3).

In the current study, we propose the use of a time to event approach to characterise

in each single patient the time required to reach a clinical response level which reflects

the transition between clinically identifiable states, rather than relying on changes in the

HAMD scores following a fixed treatment period. Despite the apparent dichotomisation

of the clinical scale, assessing whether a patient has had at least a 50% decrease in the 17

item HAMD score from baseline reflects how response to treatment is evaluated clinically.

In fact, the survivalanalytic approach has previously been advocated for the analysis of

treatment response in depression (Montgomery et al., 2002). In the past years, numerous

modifications to survival analysis have been proposed to address methodological require

ments. The addition of a cure rate in a nonparametric sense has been suggested for the

determination of onset of response (Laska and Siegel, 1995) and the use of sustained re

sponse instead of immediate response has also been recommended (Stassen et al., 1993).

In order to account for the presence of nonresponders in a study, i.e., patients who

are refractory to treatment within the overall patient population, we advocate the use of

a socalled cure rate model (CRM). The CRM provides a parametrical description of the

survival process with an asymptote that encompasses the fraction of nonresponders.

Advantages of the use of a parametric model as opposed to a nonparametric approach in

general include the possibility to extend beyond the range of observations and narrower

confidence intervals. In the specific case of the presence of a cured fraction, a parametric

approach has been shown to be more appropriate (Gamel and Vogel, 1997).

In our approach, model parameterisation is performed within a Bayesian context. The

advantages of the Bayesian statistics over classical methods include the incorporation of

prior knowledge and the possibility to make direct probability statements, both of which

are required for the purposes of estimating and predicting response to treatment during

an efficacy trial.

METHODS

Study data

Response data from 1286 patients from two double blind, placebocontrolled studies in

Major Depressive Disorder (MDD) was available. In study 1, paroxetine and fluoxetine were
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compared over a 12week treatment period. The 17item HAMD was measured at weeks 0,

1, 2, 3, 4, 6, 9 and 12. The randomisation ratio between placebo, paroxetine and fluoxetine

was 1:2.5:2.5. Further details about this study can be found at GlaxoSmithKline’s clinical

trial register (CTR), http://ctr.gsk.co.uk (protocol PAR128).

Study 2 involved the comparison of two doses of paroxetine in a modified release

formulation during the course of an 8week treatment period. The HAMD17 was measured

at weeks 0, 1, 2, 3, 4, 6 and 8. Details about this study have been described by Trivedi

et al. (2004). In addition, a historical data set was constructed consisting of 850 placebo

treated patients from published and unpublished trials in unipolar depression (DeVeaugh

Geiss et al., 2000; Dunner and Dunbar, 1992; Golden et al., 2002; Rapaport et al., 2003).

Information on the placebo response was incorporated into the analysis as informative

priors on the model parameters of the distribution of the response times.

Clinical response

Treatment effect was evaluated at each scheduled visit. HAMD scores from individual

patients were converted into survival data. Time of response was defined as the first oc

casion at which a decrease of at least 50% from baseline HAMD score was observed. Since

the clinical visits occurred on a weekly basis, it is conceivable that treatment response

might effectively have taken place at an earlier time point, prior to the visit. Such a poten

tial censoring effect has not been factored in the current analysis, as it is assumed not to

be clinically relevant.

Model

The CRM is a modified survival model with a residual surviving fraction. A Bayesian

adaptation to the standard mixture model is used, as proposed by Chen et al. (1999). The

fraction of subjects not responding at time t is given by equation 1:

Spop(t) = π + (1−π)S
∗(t) (1)

Where Spop represents the population survival function, π is the fraction of non

responders, and S∗(t) is the proper survival function for the responders, defined as:

S∗(t) =
πF(t) −π

1−π
(2)

Here, F(t) is a cumulative distribution function of choice. It is important to note that

the cure rate parameter π does not only determine the fraction of nonresponders, but

also exerts influence on the shape of the curve due to the cumulative distribution function,

as can be seen from equation 2.
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Bayesian framework

In Bayesian hierarchical modelling, all parameters are defined as random variables and

their conditional independence can be represented by directed acyclic graphs. Figure 1

summarises the parameterisation for the cure rate model.

Priors

To integrate existing prior knowledge of survival rates, historical placebo data was used

to specify a strong informative prior on the treatmentindependent parameters. This in

formative prior was determined by fitting the model to the historical data only and sum

marising the posterior distributions for treatmentindependent parameters using normal

and lognormal distributions. Subsequently, we have established that the parametric form

of the resulting posterior distribution did not influence model results. A normal distri

bution was therefore used as informative prior in the final model. Although different

prior distributions for variance were specified in these fits (inverse gamma, uniform, half

normal), they had little effect on the resulting posterior estimates. Noninformative flat

normal priors were used for the treatmentspecific parameter (fraction of nonresponders,

see below).

Goodness of fit & modelling diagnostics

Data fitting was performed in WinBUGS (version 1.4.1) (Lunn et al., 2000). Appropriateness

of parametric distributions and drug model was assessed using the deviance information

criterion (DIC) as a measure of the goodnessoffit (Spiegelhalter et al., 2002). For all runs

µ

j

Historical
data

Patient i

yi

Treatment j

Figure 1. A directed acyclic graph (DAG) representing the conditional independence between random

variables in the cure rate model. The historical data is used as an informative prior on the distribution of

the log survival times, namely the mean (µ) and standard deviation (σ ). Treatment effect is described by

the proportion of nonresponders π . Yi indicates the observed individual response variable.
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presented in this paper, 50,000 burnin iterations were performed followed by 100,000

iterations. The number of iterations was deliberately chosen this high to exclude any

residual correlation. Convergence was determined using the GelmanRubin test statis

tic (Brooks and Gelman, 1998; Gelman and Rubin, 1992) and visually using history and

autocorrelation plots.

Optimisation of model structure

Study 2 was used for model optimisation. The lognormal, Weibull, exponential, normal

and loglogistic distributions were fitted to the data using the cure rate model. Although

the DIC was similar for most distributions, the lognormal distribution was selected since

it showed the lowest value. Parameterisation of drug effect was explored by evaluating

its influence on the mean and/or variance of the distribution of survival times and on

the cure rate (i.e., fraction of nonresponders). According to the DIC, the latter approach

was the most appropriate one to incorporate drug effect into the model. Therefore, for

the remainder of this paper, drug action will be assumed to be mediated only through a

change in the fraction of nonresponders.

Differences in treatment effect

Treatment effect was estimated by computing the posterior distribution for the difference

in the fraction of nonresponders between active treatment(s) and placebo or between ac

tive treatment and comparator. If the 95% credible interval of this distribution included

zero, the treatment difference was not considered statistically significant. This was fur

ther summarised in the posterior probability of superiority (PPS), which is a measure of

the probability that the drug is superior to placebo or comparator treatment, i.e., the sur

face of the posterior distribution of the difference between treatments which favours the

drug. It offers the possibility to capture drug effect in a single number, enhancing the

clarity in the interpretation of the findings. For comparison purposes, pvalues for differ

ences in treatment effect were also calculated using the Cox proportional hazards model

(COXPH), the mixed model for repeated measures (MMRM) (Mallinckrodt et al., 2004) with

baselinetime and treatmenttime interactions as fixed effects and last observation carried

forward (LOCF) imputation followed by a standard ttest.

RESULTS

Model fits

The model fits for data from both clinical studies are shown in figure 2. As indicated

by the prediction lines, the model can accurately describe the KaplanMeier curve. It is

important to note that discrepancies between data and prediction are partially due to the

sampling frequency (weekly visit).
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An overview of the goodnessoffit is presented in figure 3. The diagnostic plots display

the observed versus modelpredicted surviving fractions and the corresponding residual

fractions over time. For model predictions, a response assessment was simulated every 5

days.

The final parameter estimates and 95% credible intervals are summarised in table 1.
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Figure 2. Fits of the cure rate model to data from study 1 and 2. Crooked lines show KaplanMeier plots

whereas the corresponding mode fits are represented by smooth lines

Table 1. Median and 95% credible intervals for estimated parameters in study 1 and 2. µ and σ are the

mean and standard deviation of the log survival times. π represents the percentage of nonresponders

for each treatment

Study Parameter median 95% Credible interval

1 µ 4.115 3.954.30

σ 0.931 0.8601.01

πplacebo 17.8 10.427.2

πparoxetine 8.3 4.613.0

πfluoxetine 6.5 3.510.5

2 µ 3.96 3.764.18

σ 0.923 0.8381.01

πplacebo 13.7 7.022.5

πparoxetine 12.5 mg 11.3 5.519.0

πparoxetine 25 mg 5.9 2.311.8
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Observed survival
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(b) Residuals versus time for study 1
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Figure 3. Goodnessoffit plots of the fit for both studies.

Treatment effect

The estimates for the posterior probability of significance (PPS) for the differences be

tween treatments are shown in table 2. The statistical significance levels for the same

treatment comparisons are also presented for the COXPH, MMRM and LOCF methods.

Further evidence of the significance level of treatment differences is provided in figure 4

by graphical representation of posterior probability distribution.

The density plots for study 1 illustrate that both active treatments are superior to

placebo. In study 2, the density plots reveal that paroxetine CR formulation (25 mg) is

clearly a better treatment than placebo, and also that it seems to differ from the 12.5 mg
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dose. Such a separation was not detectable by the COXPH, MMRM or LOCF methods (table

2). In this study, the 12.5 mg dose is found not to be statistically different from placebo

by any statistical endpoint.

Table 2. Significance level of the treatment effects for different study arms using the cure rate model

(CRM), the Cox proportional hazard (COXPH) model, the mixed model for repeated measures (MMRM)

and a ttest based on last observation carried forward imputation (LOCF). pvalues are given for the

COXPH, MMRM and LOCF models, whilst posterior probabilities of superiority (PPS) and the complemen

tary Bayesian onesided "pvalues" (1PPS) are presented for the CRM. Usually the threshold for statistical

significance in clinical trials is set at p<0.05. Treatment comparisons for which statistical significance

was not reached are shown in bold.

Study Comparison PPS Survival data HAMD data

CRM (1PPS) Cox MMRM LOCF

1 placeboparoxetine 0.9975 0.0025 0.0067 0.0022 0.0162

placebofluoxetine 0.9999 0.0001 0.0006 0.0009 0.0046

paroxetinefluoxetine 0.8420 0.1580 0.34 0.7592 0.5232

2 placebo12.5 mg paroxetine 0.7303 0.2697 0.540 0.0703 0.0713

placebo25 mg paroxetine 0.9914 0.0086 0.016 0.0006 0.0018

12.5 mg25 mg paroxetine 0.9640 0.0360 0.07 0.0831 0.1647
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Figure 4. Graphical representation of the posterior probability distribution. The density plots for study

1 illustrate that both active treatments are superior to placebo. In study 2, the density plots reveal that

paroxetine CR formulation (25 mg) is clearly a better treatment than placebo, and also that it differs from

the 12.5 mg doses. In this study, the 12.5 mg dose is not statistically different from placebo.
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DISCUSSION

This paper shows the first application of the Bayesian cure rate model on clinical data

from depression studies. In contrast to nonparametric methods, which are usually de

scriptive in nature, the choice for a parametric approach to characterise time to response

was driven by the need to estimate and predict the rate and variability in placebo response

during the course of treatment.

Variable placebo response remains one of the major causes of failure in demonstrating

statistically significant differences in clinical studies with antidepressant drugs. A model

based approach that takes into account historical evidence as well as allows for updates in

prior information may enable accurate prediction of treatment effect size and anticipate

deviations of response from estimated distributions. In addition, parameterisation of

drug effect on the fraction of nonresponders is particularly appealing, as it creates a

possibility to evaluate drug effect independently of the mechanism of action. This aspect

has been highlighted previously in modelling research in different therapeutic areas, in

which parameterisation attempts aim at identifying and separating drug and system

related parameters (Maas et al., 2006). Such an approach envisages better estimation of

treatment effect under nonstationary conditions.

Numerous reviews are available discussing different methodologies to analyse unipolar

and bipolar depression trial data (Hennen, 2003; Montgomery et al., 2002). The necessity

for improvement in this area is outlined in a summary document of the ECNP consensus

meeting (Montgomery, 1999). Although this meeting took place in 1997, the playing field

does not appear to have changed much since then. In fact, regulatory authorities still re

quest last observation carried forward (LOCF)adjusted analyses, where the change from

baseline at the end of the trial is compared between treatment and placebo, disregarding

all data obtained between the first and last visit for each subject. A second method of anal

ysis, the mixed model for repeated measures (MMRM) (Mallinckrodt et al., 2004) uses all

available longitudinal data, but treats the change from baseline as a continuous variable.

However, evidence exists that the HAMD scale is multidimensional and it is therefore not

plausible to treat it as a continuous response variable (Bech and Rafaelsen, 1980; Moller,

2001). In addition, we have demonstrated in a previous investigation (chapter 3) that the

HAMD may not be suitable for this purpose, due to the varying sensitivity of the individual

items to treatment response. The use of a subscale is proposed to overcome this problem.

Since the HAMD was originally intended as a marker of disease state (Hamilton, 1960), an

other approach would be to dichotomise the HAMD into response and nonresponse.

A third possible method for analysis of longitudinal data from depression trials is a

survivalanalytic approach, which is proposed in this paper. This approach makes use

of all data until either response occurs or a subject is censored due to dropout or end of

followup. As argued above, dichotomising the HAMD is defendable and a loss of informa

tion is not necessarily expected. Several reviews indeed advocate this approach as a valid

and statistically sound alternative (Hennen, 2003; Montgomery et al., 2002; Thase, 2001).
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Furthermore, the use of a parametric model prevents the constraints of proportionality

in hazards imposed by nonparametric approaches. Based on a preliminary evaluation,

we have also found out that the CRM enables prediction of trial outcome with reasonable

accuracy well before trial completion. These findings have prompted us to investigate

how to optimally implement the cure rate model within an interim analysis.

The consequences of differences in the sensitivity of a statistical method (i.e., false

negative rate and study power) become evident when comparing the results obtained by

the COXPH, MMRM and LOCF methods (table 2). Whilst all 4 methods provide evidence

of significant differences between active treatment and placebo in study 1, this is not

observed for the comparison between the two dose levels of paroxetine in study 2. Even

though the 12.5 mg paroxetine dose group does not show separation from the higher dose

group according to the standard statistical methods, the survival model seems to indicate

that the two treatment arms are different. It is also clear from figure 2 that a survival

model will not find any degree of separation between the 12.5 mg treatment arm and

placebo. Such discrepancies between methods are not unexpected since the data used in

the analyses varies from survival data to continuous longitudinal data. These differences

highlight however the need to judge the relevance of a statistical method for the clinical

research question under scrutiny.

From a statistical perspective, it is worth providing the reader with further consider

ations about the use of lognormal distribution for the survival times, the parameterisa

tion of drug effect on the fraction of nonresponders and model implementation within

a Bayesian framework. The choices were made on practical and clinical grounds. The

lognormal distribution has been used in other areas where survival times are modelled

parametrically, see for example Tai et al. (2005). The percentage of responders is often

defined in clinical study protocols as an important measure of drug effect at completion

of treatment. This figure is also reported when studies are cited by nonscientific articles

and by the general media. In contrast to the observed fraction of (non)responders, the

modelbased asymptote proposed in this paper reflects the response rate beyond comple

tion of the clinical trial.

Advantages

Modelling in a Bayesian context has various advantages:

(1) Estimated probabilities can be interpreted more directly. For example, in table

2, the posterior probability of significance is shown to be comparable to the pvalues

determined using a Cox proportional hazard model. However, the interpretation of these

quantities is very different. The PPS has a direct interpretation, i.e., the probability that

the drug is superior to placebo is 99%. Although a pvalue is often interpreted in a similar

manner, its interpretation is more cumbersome, i.e., ’assuming no difference between

placebo and active treatment, the probability of observing the current data is 0.1%’.

(2) Incorporation of historical data is straightforward. In this case, we have imple

mented an informative prior on two of the three parameters of the model. This means
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that less data is required to estimate the third parameter accurately. Another important

aspect is the possibility to compare historical placebo response with the placebo effect in

the current study. This comparison may flag an unusually large placebo effect. In fact, it

has been claimed that a clear trend in placebo effect over time exists (Walsh et al., 2002).

This change may be caused by a change in expectancy by the population and the fact that

most patients in a trial have already been treated with an antidepressant. Interestingly,

we did not find such an effect in the limited dataset included in this analysis using the

cure rate model (8 placeboarms from studies dating from 1985 to 2002).

(3) The advantages also include the possibility of introducing drug effect on the pro

portion of nonresponders and, as in all survival models, the possibility to incorporate

censored data without resorting to last observation carried forward (LOCF) approaches.

Potential limitations

(1) We chose not to use the definition of sustained response (Stassen et al., 1993) as

a criterion for response because this work was considered in the context of the search

for a new methodology for interim analysis of efficacy trials. The time constraints that

are imposed in the definition of sustained response may be difficult to implement with

interim data (e.g., patients may be changing from responder to nonresponder because of

consecutive measurements).

(2) With drug effect only on the asymptotic proportion of nonresponders, differences

in the onset of effect may be missed. Even though the antidepressant drugs (SSRIs and

TCAs) analysed thus far with this model do not appear to differ in terms of the timing of

the onset of action, it is conceivable that novel targets may show a faster onset of action.

Therefore it would be advisable to test the most appropriate parameterisation of drug

effect when antidepressants with new mechanisms of action are included in a trial.

(3) The impact of different randomisation ratios has not been investigated. For in

stance, the inclusion of fewer placebo patients may decrease the precision of the esti

mated percentage of nonresponders in the placebo arm and therefore decrease the power

to detect statistical differences in treatment effect. As a matter of fact, randomisation ra

tio and stratification rules must be considered carefully in any statistical analysis.

(4) Another issue in the analysis of antidepressant trials is whether fixed or titrated

dose regimens are applied or a placebo runin phase is used. The informative prior used

on the distribution of response times leaves enough flexibility to account for small dif

ferences in onset of effect due to titrated study designs. A metaanalysis has shown that

the effect size of trials with a placebo runin phase did not differ significantly from trials

without such a phase (Lee et al., 2004) and should no longer be applied (Montgomery,

1999). The change in the endpoint is merely postponed and starts when investigator and

subject know the placebo runin has ended. The priors on the distribution of the response

times can accommodate this possible delay.

(5) Much computational power is required for the analysis. In order to incorporate

historical information on placebo response two methods were evaluated. First the his
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torical data was added to the current study data as an extra study arm. This approach

allows direct hypothesis testing on differences between the current placebo arm and the

historical placebo arm with regard to the asymptotic fraction of nonresponders. The ad

dition of 850 patients to the model did, however, slow the MCMC algorithm considerably.

Historical information was therefore summarised as described in the methods section.

The results were practically indistinguishable from the pooling method, and run times

were reduced by 50% (to approximately 3 h for 150,000 iterations with 3 chains on a fast

Pentium IV computer).

(6) Any survival analysis depends upon the criterion used for response. In the current

investigation, we have applied a clinically accepted definition of treatment response. It

was not our objective to explore model sensitivity to varying degrees of change in HAMD

score over time.

In conclusion, our results show how a parametric Bayesian approach can be used to

describe time to response in depression trials and overcome one of the main limitations

of current methodology for the analysis of longitudinal data. Moreover, we show how his

torical data can be integrated into the statistical analysis to improve estimation and pre

diction of placebo response. Future research into the application of the cure rate model

encompasses its use as an interim analysis tool, which may allow for early termination of

unsuccessful trials.

REFERENCES

Bech P and Rafaelsen OJ (1980) The use of ratingscales exemplified by a comparison of the

Hamilton and the BechRafaelsen melancholia scale. Acta Psychiatr Scand 62:128–132.

Brooks SP and Gelman A (1998) General methods for monitoring convergence of iterative simula

tions. J Comput Graph Stat 7:434–455.

Chen MH, Ibrahim JG, and Sinha D (1999) A new Bayesian model for survival data with a surviving

fraction. J Am Stat Assoc 94:909–919.

DeVeaughGeiss J, Ascher J, and Brook S (2000) Safety and tolerability of lamotrigine in controlled

monotherapy trials in mood disorders, in 39th ACNP Annual meeting, San Juan, Puerto Rico.

Dunner DL and Dunbar GC (1992) Optimal dose regimen for paroxetine. J Clin Psychiatry 53:21–

26.

Gamel JW and Vogel RL (1997) Comparison of parametric and nonparametric survival methods

using simulated clinical data. Stat Med 16:1629–1643.

Gelman A and Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat

Sci 7:457–511.

Golden RN, Nemeroff CB, McSorley P, Pitts CD, and Dube EM (2002) Efficacy and tolerability of

controlledrelease and immediaterelease paroxetine in the treatment of depression. J Clin Psy-

chiatry 63:577–584.

Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62.

Hennen J (2003) Statistical methods for longitudinal research on bipolar disorders. Bipolar Disord

5:156–168.

Khan A, Warner HA, and Brown WA (2000) Symptom reduction and suicide risk in patients treated

with placebo in antidepressant clinical trials  an analysis of the food and drug administration

database. Arch Gen Psychiatry 57:311–317.



110 Chapter 6

Laska EM and Siegel C (1995) Characterizing onset in psychopharmacological clinicaltrials. Psy-

chopharmacol Bull 31:29–35.

Lee S, Walker JR, Jakul L, and Sexton K (2004) Does elimination of placebo responders in a placebo

runin increase the treatment effect in randomized clinical trials? A metaanalytic evaluation.

Depress Anxiety 19:10–19.

Lunn DJ, Thomas A, Best N, and Spiegelhalter D (2000) WinBUGS  A Bayesian modelling frame

work: Concepts, structure, and extensibility. Stat Comput 10:325–337.

Maas HJ, Danhof M, and Pasqua OED (2006) Prediction of headache response in migraine treat

ment. Cephalalgia 26:416–422.

Mallinckrodt C, Kaiser C, Watkin J, Molenberghs G, and Carroll R (2004) The effect of correlation

structure on treatment contrasts estimated from incomplete clinical trial data with likelihood

based repeated measures compared with last observation carried forward ANOVA. Clin Trials

1:477–489.

Moller H (2001) Methodological aspects in the assessment of severity of depression by the Hamil

ton depression scale. Eur Arch Psychiatry Clin Neurosci 251 Suppl 2:II13–II20.

Montgomery S (1999) The failure of placebocontrolled studies. ECNP consensus meeting, Septem

ber 13, 1997, Vienna. European College of Neuropsychopharmacology. Eur Neuropsychophar-

macol 9:271–276.

Montgomery SA, Bech P, Blier P, Moller HJ, Nierenberg AA, Pinder RM, Quitkin FM, Reimitz PE,

Rosenbaum JF, Rush AJ, Stassen HH, and Thase ME (2002) Selecting methodologies for the eval

uation of differences in time to response between antidepressants. J Clin Psychiatry 63:694–

699.

Rapaport MH, Schneider LS, Dunner DL, Davies JT, and Pitts CD (2003) Efficacy of controlled

release paroxetine in the treatment of latelife depression. J Clin Psychiatry 64:1065–1074.

Spiegelhalter DJ, Best NG, Carlin BR, and van der Linde A (2002) Bayesian measures of model

complexity and fit. J R Stat Soc Ser B-Methodol 64:583–616.

Stassen HH, DeliniStula A, and Angst J (1993) Time course of improvement under antidepressant

treatment: a survivalanalytical approach. Eur Neuropsychopharmacol 3:127–135.

Tai P, Yu EW, Cserni G, Vlastos G, Royce M, Kunkler I, and VinhHung V (2005) Minimum followup

time required for the estimation of statistical cure of cancer patients: verification using data

from 42 cancer sites in the SEER database. BMC Cancer 5.

Thase ME (2001) Methodology to measure onset of action. J Clin Psychiatry 62:18–21.

Thase ME (2002) Studying new antidepressants: If there were a light at the end of the tunnel,

could we see it? J Clin Psychiatry 63:24–28.

Trivedi MH, Pigott TA, Perera P, Dillingham KE, Carfagno ML, and Pitts CD (2004) Effectiveness

of low doses of paroxetine controlled release in the treatment of major depressive disorder. J

Clin Psychiatry 65:1356–1364.

Walsh BT, Seidman SN, Sysko R, and Gould M (2002) Placebo response in studies of major depres

sion  Variable, substantial, and growing. JAMA 287:1840–1847.


