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Preface

Stress is an undeniable fact within modern societies. Our 24/7 economy challenge us 

with increasing social and professional pressures. Already in 2003, the World Health 

Organization declared “stress” as a major cause of health problems. Prolonged periods 

of stress that are out of control for the individual can lead to the development of mood 

disorders like depression. Patients are seriously hampered in day-to-day activities. As a 

consequence, this costs the society billions in terms of loss of productivity and health 

assurance costs. Discovery of new drug targets is a necessity.

A fundamental question for the neurobiology of mental health is how adaptation 

to both acute and chronic stress can become impaired and capable to precipitate 

emotional and cognitive disturbances characteristic for mood and anxiety disorders. 

The glucocorticoids, cortisol and corticosterone (CORT), are secreted from the adrenal 

glands by activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis in response to 

stress, as well as in a circadian fashion. They are powerful hormonal neuroendocrine 

mediators of environmental influences on brain and body. Changes in the functionality 

of this glucocorticoid regulated stress system, supports the general believe that chronic 

stress leads to an altered hormonal secretion pattern, and is considered a central player 

in the development of mood disorders. Animal models for stress-related mood disorders 

are urgently needed for further development of new drugs.

In order to develop an animal model with altered functionality of the 

glucocorticoid regulated stress system we applied repeated exposure of mice to 

psychosocial stress, i.e., the presence of a rat. Studying mice in a familiar and novel 

environment(s) revealed a phenotype characteristic for chronic stress: emotional, 

cognitive processes were associated with dynamic changes in circadian patterns of 

neuroendocrine and behavioral activity during, and following the exposure to the 

chronic psychosocial stressor.

Our experimental designs allowed us to detect a differential contribution 

of brain systems to memory formation under stress. We found that a change in the 

sensitivity of the reward system contributes to cognitive impairments, which can 

be partially normalized by additional reward. Stress induced in mice by the chronic 

stress paradigm and stress in humans, induced a similar finding namely a shift to more 

rigid stimulus response learning. This indicates that our animal model can be used to 

study overlapping brain processes between the two species. The findings open a new 

perspective for the treatment of stress-related mood disorders like depression.



10

Outline General Introduction

1. Introduction

2. 	 Activity of the Hypothalamic-Pituitary-Adrenal axis

2.1.	 Stress system activation

2.2.	 Circadian pattern of HPA axis activity

2.3.	 Mineralo- and Glucocorticoid receptors

2.4.	 Hypotheses of glucocorticoid action and cognition

2.5.	 Stress, learning and memory 

2.5.1 	 Memory systems

2.6.	 Depression: emotional and cognitive disturbances 

2.6.1 	 Treatment of depression 

2.6.2. 	Effects of GR antagonism

3. 	 Rodent models of depression

3.1.	 Environmental stress paradigms

3.1.1. 	Social stress paradigm with physical contact 

3.1.2. 	Social stress paradigm without physical contact 

3.2. 	 Home cage observations

3.3. 	 How to measure anhedonia in animal models?

4. 	 Scope and outline of the thesis

4.1. 	 Rationale and objectives

4.2. 	 Experimental approach and outline



General Introduction

11

Ch
ap

te
r 

1

Chapter 1

General Introduction



12

Chapter 1

Chapter 1

1.	 Introduction

Mood disorders such as major depressive- and bipolar disorder, share several 

characteristics (de Kloet et al. 2005): emotional changes related to approach/avoidance 

behavior, loss of interest or pleasure in daily activities (i.e. anhedonia), impairment 

of cognitive functions, reduced motor activity and alterations in the circadian pattern 

of physiological-, neuroendocrine- and behavioral responses (Endo and Shiraki 2000; 

Volkers et al. 2002; Keller et al. 2006). Chronic stress, specifically a dysregulation of the 

glucocorticoid system, is thought to be a precipitating factor in the etiology of depression. 

The main objective of this thesis is to develop a mouse model that expresses signs 

and symptoms as seen with patients that suffer from depression, with special focus on 

the expression of anhedonia as the common denominator. Cognitive and emotional 

consequences of chronic psychosocial stress are studied with emphasis on changes in 

the responsiveness to positive stimuli. In addition, circadian patterns of neuroendocrine 

and behavioral activity are monitored in response to novelty, and within the familiar 

environment of the mouse’s home cage.

The experiments are divided into three categories addressing:

1. Methodological optimization: since timing, context and duration of a stressor 

determine the experimental results, interference by unintentional stressors resulting 

from the experimental procedures has to be controlled and minimized. For example, 

separation of the stress effects induced by an injection from the action of the drug, and 

reduction in the adversity of the learning environment. We designed and optimized drug 

administration methods, and behavioral tests that minimized unwanted stress system 

activation (Chapters 3, 4 and 5).

2. Longitudinal studies in the home cages of mice, and in novel environments: these were 

conducted to measure circadian neuroendocrine activity, behavioral patterns, learning 

and memory, and emotional processes. Combined, the measurements will indicate 

whether anhedonia is expressed in our chronic stress model (Chapters 2, 5, 6 and 7).

3. Translational approach: chronically stressed mice, and chronically stressed healthy 

humans are subjected to comparable experimental designs that allow to test the use of 

distinct memory systems (Chapter 8). 
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1Glucocorticoid functionality in mice was manipulated using two approaches:

1. Environmental challenges mimicking chronic psychological and psychosocial stress 

conditions in humans, namely: repeated, unpredictable and uncontrollable exposure of 

mice to rats (chronic ‘rat stress’). 

2. Pharmacological intervention that compromises the functionality of the glucocorticoid 

receptor via repeated administration of the glucocorticoid receptor antagonist RU38486, 

also known as mifepristone (MIF). 

The goal of the research described in this thesis is to characterize behavioral and 

neuroendocrine features in mice during, and in response to our chronic psychosocial 

stressor (‘rat stress’), and during and after pharmacologically-induced dysfunction of the 

glucocorticoid receptor. We expect that the results will contribute to the understanding 

of the etiology of depression. Especially on the processes possibly underlying the 

expression of anhedonia, and may provide leads for alternative therapeutic approaches 

in humans.
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2. 	� Stress: Activity of the Hypothalamic-Pituitary-
Adrenal axis

The original term stress was first used by Hans Selye for the biological phenomenon of 

a disrupted homeostasis (Selye 1937; Selye 1950). Since the 1950s, the definition of 

the term stress has evolved. Box 1 describes the definition of stress against which the 

experimental designs in this thesis were created.

Box 1: Concept of stress

For operational use of the stress concept we favour the view of one of the pioneers 

in stress research, the late Seymour (Gig) Levine who defined ‘stress’ as a composite, 

multidimensional construct, in which three components interact: (i) input, when 

the stressor is perceived and appraised, (ii) processing of stressful information and 

(iii) output or stress response. The three components interact via complex self-

regulating feedback loops with the goal to restore homeostasis through behavioral 

and physiological adaptations. These adaptations need to be coordinated in brain 

and body. The major communication systems, the autonomic nervous system and 

the HPA axis, are extremely important in this respect (Levine 2005). 

Stressors that are of psychological nature occur due to uncertainty, lack of 

information and lack of control, and elicit the most profound neuroendocrine 

and behavioral responses. The ability to cope with such a psychological stressor is 

dependent on experience- and gene-related factors, and is affected by cognitive, 

non-cognitive and environmental inputs. Moreover, coping resources rely on the 

context in which the stressor is experienced. Powerful determinants of context 

are psychosocial factors such as social position, social support or attachment to 

a care giver. If any of these factors is disrupted - e.g., loss of control in a social 

environment, expulsion from social support, homelessness or deprivation of 

(maternal) care – an acute stressor may exceed the coping resources and produce 

strong emotional reactions, which ultimately may lead to a condition of chronic 

stress, exhaustion or burnout and enhanced vulnerability to mental diseases such 

as depression or anxiety disorders.
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1These modulations of the stress response have been defined by McEwen and 

Wingfield (McEwen and Wingfield 2003; McEwen and Wingfield 2010) as variations 

in an allostatic state that cumulatively strive towards homeostasis. Allostasis is 

defined as the process of achieving stability, or homeostasis, through physiological 

or behavioral change. In principle these changing allostatic states are adaptive, self-

preservative and short-lasting. In terms of communication, successful allostasis (in 

establishing homeostasis) would mean that e.g., the HPA axis hormones involved are 

turned on rapidly when needed, and turned off efficiently when homeostasis has 

been achieved. The hormonal responses however may be inadequate, or excessive 

and prolonged and the cost to maintain homeostasis may become high. This leads to 

wear and tear, or allostatic load, ultimately enhancing the vulnerability to disease. 

Depression may be interpreted as a consequence of sustained hyperactivity of HPA 

axis activity resulting in excess circulating glucocorticoids.

The stress hormones cortisol and corticosterone (from here on abbreviated as ‘CORT’ 

respectively) follow a rhythmic secretion pattern. They are secreted in hourly pulses, 

exhibit a circadian pattern and can be induced by stressors superimposed on the rhythmic 

secretion (De Kloet et al. 1998; Windle et al. 1998b). These modes of CORT secretion 

are regulated by inputs from the suprachiasmatic nucleus, paraventricular nucleus of 

the hypothalamus, prefrontal cortex, amygdala, and hippocampus, among others. Both 

stress-induced changes in CORT levels and circadian patterns of CORT will be addressed 

in this thesis. Following, the concentration of CORT will be our marker indicating stress 

system activation as a result of our experimental procedures, which is controlled by the 

Hypothalamic-Pituitary-Adrenal (HPA) axis (see Figure 1 in section 2.1).

2.1. 	 Stress system activation

To efficiently cope with threatening situations, the organism requires a set of emotional, 

behavioral and neuroendocrine responses, summarized as the stress response. The 

stress response is an essential component of the natural defense/response mechanism, 

providing energy resources in order to react in the most efficient way for the organism. 

Ultimately, the stress response allows the organism to integrate new with previously 

learned response strategies, often leading to a new set point of psychological and 

biological reactivity. However, stress, especially chronic stress, is predominantly 
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associated with a negative emotional state. As will be described in the following sections, 

a period of stress may become deleterious when it remains uncontrollable. 

The origin of stressors can be systemic, directly disturbing physiological 

integrity (e.g., infections, temperature or blood volume changes) and psychological 

or psychosocial (e.g., social conflict, traumatic life event); both able to disturb mental 

integrity. Exposure to a demanding, threatening event either real or imagined will result 

in a freeze, fight or flight stress response. This response is governed by two main systems 

that process the perceived information into a reaction. First, the rapid activation of the 

sympathetic nervous system increases the release of catecholamines: adrenaline and 

noradrenaline. These catecholamines stimulate the peripheral organs and increase the 

blood flow to the central nervous system and muscles within seconds. This allows the 

organism to promptly respond to the stressor with heightened arousal and attention. 

The second, slower regulatory response is activation of the HPA axis, characterized by 

secretion of the glucocorticoid hormones (mainly cortisol in humans, corticosterone in 

rats and mice (De Kloet et al. 1998; de Kloet et al. 2005). 

Activation of the HPA axis by a stressor (see Figure 1) rapidly induces the 

parvocellular neurons of the paraventricular nucleus of the hypothalamus (PVN), 

to secrete corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP) 

in the portal vessel system; the portal system being the vascular link between the 
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1hypothalamus and the anterior pituitary. Within the anterior pituitary, CRH stimulates 

cells to synthesize adrenocorticotrophin hormone (ACTH) from its precursor pro-

opiomelanocortin (POMC). AVP potentiates the effect of CRH, leading to more release of 

ACTH. Subsequent increases in circulating ACTH then drive synthesis in and secretion of 

CORT from the adrenal cortex into the blood. 

CORT serves a wide variety of functions in the body. They enhance catabolism, 

mobilizing lipid and glucose reserves, suppress the immune system and increase 

the cardiovascular tone (Munck and Naray-Fejes-Toth 1994; De Kloet et al. 1998). In 

addition, CORT regulates their own secretion by facilitating recovery and inhibiting HPA 

axis activity. This negative feedback is exerted at several levels of the HPA axis that are 

activated by the given stressor, thereby normalizing the activity of the stress system and 

preventing it from overshooting. HPA axis activation enables the organism to respond 

with the required energy resources to meet the demands of the event. 

Prominent in the brain’s stress circuitry are the amygdala nuclei for regulation 

of emotional responses (McGaugh 2004; Phelps and LeDoux 2005), the hippocampus 

(which defines context in terms of time and place) for learning and memory processes 

(Sanders et al. 2003) and prefrontal cortex regions for planning and control of actions. 

Depending on the magnitude of CORT signaling i.e., non-stressed, acute- or chronic 

stress, the functionality of these brain systems will be affected and thereby alter 

neuroendocrine-, as well as emotional and cognitive processes (Quirk and Beer 2006; 

Oitzl et al. 2010), while also changing the circadian pattern of HPA axis activity. The latter 

will be addressed in the next section. 

2.2. 	 Circadian pattern of HPA axis activity 

The daily pulses in glucocorticoid concentration follow a circadian rhythm in blood 

plasma. This rhythm is characterized by peak concentrations of CORT and ACTH at the 

start of the active period, which is early in the morning for diurnal animals like humans 

(Krieger et al. 1971; Steiger 2003), and at the onset of darkness for nocturnal animals 

like rats and mice (Windle et al. 1998a; Windle et al. 1998b; Barriga et al. 2001); lower 

concentrations occur during the course of the day/night.

Depending on when a stressor is applied during the phase of the rhythm, the 

amplitude and duration of the stress response differs (Young et al. 2004). Underlying the 

circadian rhythm, CORT secretion exhibits an ultradian rhythm which is characterized by 

approximately hourly bursts (de Kloet and Sarabdjitsingh 2008; de Kloet 2009). These 

circadian and ultradian rhythms of CORT are also expressed in the brain (Droste et al. 

2009), and aimed to prepare the organism for environmental changes ahead, i.e., light-
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dark cycle and foraging activity. Daily variations in CORT secretion are thought to be 

fundamental for the maintenance of physiology and well being. Disturbances in the 

normal secretion pattern, for instance due to chronic stress, are considered to enhance 

vulnerability to stress-related disorders (Young et al. 2004; de Kloet et al. 2005). 

Dramatic changes in circadian patterns of glucocorticoids hormones have been 

described in aging and psychiatric disorders like depression and Alzheimer’s disease 

(Hatfield et al. 2004; Peeters et al. 2004). The excessive activity of the HPA axis is 

generally associated with impaired mental and physical health (Sapolsky 1999; Lupien 

and Wan 2004) and characterized by increased basal and/or stress-induced levels of 

glucocorticoids and ACTH (Van Eekelen et al. 1995; Herman et al. 2001). 

Although mouse models for a wide range of human stress-related disorders have 

been developed, surprisingly little is known about the impact of age, chronic stress, and 

repeated blockade of glucocorticoid receptors on basal regulation subserving circadian 

activity of the HPA axis in mice. All this factors are of importance to further understand 

how chronic stress can precipitate the development of stress-related disorders, like 

depression. In this thesis, we will focus on the circadian patterns of neuroendocrine and 

behavioral activity during and after chronic stress, in mice. In the following sections the 

role of the glucocorticoid receptors in stress system regulation is introduced.

2.3. 	 Mineralo- and Glucocorticoid receptors 

The actions exerted by CORT depend on the functionality of two brain nuclear receptors: 

the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The 

pharmacological properties, distribution pattern, and function are distinct for MR and 

GR (De Kloet et al. 1991; Veldhuis et al. 1992; McEwen 1996; De Kloet et al. 1998; Oitzl 

et al. 2010). 

MR has a 10-fold higher affinity for the naturally occurring CORT than GR (Kd = 

0.5 and 5.0 nM, respectively (De Kloet and Reul 1987). Consequently, MR is almost fully 

saturated at low circulating levels of CORT, whereas GR becomes occupied at increasing 

levels of CORT as seen during stress and the circadian peak. MR expression in the brain 

is more restricted to certain areas, with the highest density in hippocampus, and to a 

lesser extent in the amygdala, septum, PVN and brain stem. GR is expressed throughout 

the brain (De Kloet et al. 1998), with high expression in the hippocampus, septum and 

parvocellular part of the PVN of the hypothalamus, brain stem; moderate levels are 

reported in the central amygdala.

Upon binding of CORT to MR and GR a complex is formed. The corticosteroid-

receptor-complex dissociates from a large protein-complex and translocates from 
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1the cytosol to the nucleus as homodimers (MR/MR) or heterodimers (MR/GR). In the 

nucleus, the dimers bind to glucocorticoid response elements (GREs) in the promotor 

areas of genes, where they recruit components of transcriptional machinery and activate 

transcription (McEwen et al. 1986; De Kloet et al. 1991; Morsink et al. 2007). MR and GR 

can enhance (transactivation) or repress (transrepression) gene expression (Truss and 

Beato 1993; Beato et al. 1996), and thus influence target genes that are involved in the 

emotional, behavioral and neuroendocrine response.

MR and GR mediate different aspects of CORT signaling. Studies have emphasized 

the critical functionality of MR in the sensitivity and feedback of neuroendocrine 

responses at all stages: (i) primarily the binding of CORT to MR controls the release of 

ACTH during both the circadian trough and peak (Dallman et al. 1989; Ratka et al. 1989; 

Bradbury et al. 1994); (ii) blockade of MR by a specific antagonist increases the level of 

circulating CORT under basal, resting conditions and in response to novelty stress (Ratka 

et al. 1989). It was concluded that one of the MR-mediated effects of CORT is the initial 

constraint of HPA axis activity (Oitzl et al. 1995). After acute stress, MR mRNA is quickly 

upregulated via CRH which is associated with increased inhibition of HPA axis activity, 

leading to normalization of the disturbance (Hugin-Flores et al. 2003). In hippocampus, 

MR activation maintains excitability, while GR occupancy suppresses excitability, which 

is transiently raised by excitatory stimuli. MR and GR distinctively mediate the actions 

of CORT secretion and its effects throughout the day. Thus, MR activation by CORT 

maintains basal activity of the HPA axis and controls the sensitivity or threshold of the 

system’s stress response, known as the “proactive” mode. MR promotes coordination 

of circadian events (e.g., sleep/wake cycle, food intake) and is involved in processes 

underlying selective attention, integration of sensory information and response selection 

(Oitzl and de Kloet 1992; Oitzl et al. 1995). 

In the second “reactive” mode, when CORT concentrations increase as a result 

of circadian rhythm and stress, GR becomes activated. GR activation will terminate HPA 

axis activation via negative feedback leading to reduction in CORT concentration. GR 

feedback takes place in different brain sites including the pituitary and PVN (Dallman 

et al. 1987; Levin et al. 1988). GR activation enables an organism to incorporate the 

neuroendocrine and behavioral responses deployed by facilitating learning and memory 

processes (De Kloet et al. 1998). 

As described, MR and GR are expressed in brain regions involved in emotional, 

cognitive and neuroendocrine regulation. The receptors mediate rapid mono-genomic 

CORT actions within seconds to minutes, until the slow and long lasting genomic actions 

start after an hour lasting hours to days. In this thesis, we set out to alter HPA axis activity 
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by activation or blockade of the corticosteroid receptors, using either an environmental 

stressor and/or pharmacological manipulation with a GR blocker. Subsequently, we 

expect to find alterations in emotional, cognitive and neuroendocrine regulation as 

indicators of symptoms as seen with depression. Next, the role of MR and GR in the 

domain of emotional and cognitive processes is discussed. 

2.4. 	 Hypotheses of glucocorticoid action and cognition

Aberrant CORT concentrations as seen during periods of chronic stress are causally 

related with hippocampal, prefrontal cortex and amygdala dysfunction. However, the 

underlying mechanism is still unclear. Next, we will describe two hypotheses that provide 

clues to the underlying mechanisms. 

The glucocorticoid cascade hypothesis (Sapolsky 1992; Sapolsky 1999): The elevated 

CORT is believed to arise from a GR dysfunction. When GR function is normal, the rise 

in CORT concentrations is terminated following GR activation. However, in patients that 

suffer from a mood disorder like psychotic major depression where CORT levels remain 

elevated, reduced GR expression in brain (Webster et al. 2002) and in peripheral tissue 

(Gormley et al. 1985; Pariante 2006) is found. The GR reduction weakens the negative 

feedback action and induces CORT resistance (De Kloet et al. 1997; Pariante et al. 2004; 

Ridder et al. 2005). As a result of decreased GR expression or function, circulating levels 

of CORT are elevated as a compensatory reaction to overcome the CORT resistance at 

the GR (Sapolsky et al. 1986; Pariante 2003). Prolonged hypersecretion of CORT damages 

brain structures essential for HPA axis functioning e.g., hippocampus, prefrontal cortex 

and amygdala. Following, the reduced functioning of brain structures leads to a feed-

forward circuit in which ongoing stressors drive overproduction of CORT. 

An important role for GR in control of aberrant CORT concentrations is apparent. 

However, next to GR the existence of another corticosteroid receptor was proven: the 

MR (Reul and de Kloet 1985). 

The MR-GR balance hypothesis is based on (dys)functioning of either one or both 

receptors, creating an imbalance in MR-GR activation in context with the event. Whereas 

MR operates in pro-active mode to prevent homeostatic disturbance, additional GR 

activation promotes the reactive recovery after stress and following circadian peaks 

(Oitzl and de Kloet 1992; de Kloet et al. 1993a). MR and GR activation in the context of an 

event facilitate learning and memory, whilst MR and GR activation out of context impair 

memory (Joels et al. 2006). Studies with transgenic MR and GR mouse models show that 
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1overexpression or inactivation of either two receptors seriously impair physiological and 

psychological responses to stress (Gass et al. 2001).

MR and GR are co-expressed in most cells of the hippocampus (van Steensel et 

al. 1996). The hippocampus is a key structure for learning and memory processes, and 

stress response regulation in general. Processing of spatial information can be specifically 

modified depending on activation of MR and GR. GR facilitates consolidation of the 

employed behavioral response. It is evident that dysfunction of MR and GR signaling 

may have profound effects on emotional, behavioral and neuroendocrine responses. 

Blockade of MR activation with antagonist or genetic deletion of forebrain MR, 

interfered with memory formation (Zhou et al. 2010), and also chronic MR activation 

impairs spatial memory (Douma et al. 1998; Yau et al. 1999). Furthermore, MR affects 

emotional behavior. Predominant MR activation alters the behavioral response in novel 

situations and subsequent explorative search patterns, influencing what is learned and 

memorized (Oitzl and de Kloet 1992; Zhou et al. 2010). Blockade of MR results in an 

increased exploration on the elevated plus-maze (time spent in open arms indicates that 

animal is less anxious), which can be interpreted as an anxiolytic effect (Korte et al. 1996; 

Smythe et al. 1997; Bitran et al. 1998). 

GR promotes memory processes and facilitates consolidation of a learned 

behavioral response. Mice with alterations in GR functionality, either by a mutation of 

the GR (e.g., GR-knockout, GR dim/dim mice) or by pharmacological intervention (treated 

with a GR antagonist intracerobroventricularly), showed impaired spatial memory. 

In addition, GR activation affects anxiety related behavior, with reduced anxiety in 

conditions of decreased GR functionality (Tronche et al. 1999; Jakovcevski et al. 2008). 

Since GR blockade interferes with anxiety motivated behavior, this can be considered an 

anxiolytic effect, as demonstrated by Korte and colleagues (Korte et al. 1996).

An imbalance in MR or GR activation, due to genetic, environmental, and/or 

pharmacological intervention is thus suggested to underlie the emotional, behavioral 

and neuroendocrine disturbances that make the organism more vulnerable for stress 

related mood disorders like depression (De Kloet et al. 1998; Brinks et al. 2007c; Oitzl et 

al. 2010). 

The experiments described in this thesis aimed to modulate the activity of the 

glucocorticoid stress system, thereby changing the pattern of MR and GR activation. 

The psychoneuroendocrine effects were assessed before, during and after onset of 

chronic stress, and following GR antagonist administration. 
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2.5. 	 Stress, learning and memory 

Memory formation is modulated by task-inherent appetitive and aversive characteristics. 

Other stimuli occurring in close context with the task can impair or enhance memory 

(Dawson and McGaugh 1971; McGaugh et al. 1972). These stimuli can be either negative 

stressors or positively rewarding. The learning and memory process can be described 

as follows. When a situation is encountered, gain of information (acquisition) about 

the event takes place. During and directly after the event (Joels et al. 2006), a memory 

trace of the gathered information and response selection is created and stabilized 

(consolidation). Upon return to a similar situation the previously acquired response 

selection is retrieved and either used to deal with the situation at hand, or the response 

is modified as a result of environmental and cognitive stimuli (retrieval).

The impact of stress on learning and memory processes is described as being 

impairing, improving or even apparently ineffective (see for extensive review: (Joels et 

al. 2006; de Quervain et al. 2009; Conrad 2010). Several parameters are important to 

notice: (i) context – close association between the stress and the learning task facilitates 

performance. Extremely low or high CORT concentrations in close-context impair 

performance, demonstrating the inverted U-shaped dose-effect curve of CORT; (ii) 

convergence in time - stress hormones present around the time of learning and retrieval, 

i.e., during the actual performance of the behavioral task, can facilitate learning. However, 

high concentrations of stress hormones before or after learning impair performance; (iii) 

stressor specificity – different stressors activate different and overlapping brain regions. 

Whereas physical stressors activate lower brain regions and ascending pathways into 

the forebrain (e.g., regions involved in pain responses), psychological stressors activate 

the higher brain regions (hippocampus, prefrontal cortex, amygdala); (iv) frequency of 

stressor occurrence – single or repeated exposure to a stressor. Characteristics of the 

stressor, context, timing, memory phases (acquisition, consolidation, retention) during 

which stress is experienced are important variables contributing to the effect of stress on 

cognition. In addition, age and gender effects are known. Moreover, there is considerable 

individual variation in the effects of stress due to genetic background and life history.

Stress can shape the memory trace and subsequent response during future 

encounters by modifying learning and memory processes that occur before, during 

and after an initial event. These effects exerted by stress operate in brain circuits that 

primarily were pronounced by genetic and experience-related factors in preparation of 

upcoming events.

In order to study the full range of stress effects on learning and memory 

processes, we designed and optimized learning and memory tasks (Chapter 5). In 
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1addition, we were able to perform a unique translational study from mouse to human 

(Chapter 8), where we tested the impact of chronic stress on the use of different memory 

systems. The following section will give a short impression on different memory systems.

2.5.1. 	 Memory systems

Memory systems differ regarding the kind of information they process, the performed 

operations and the underlying neural structures (Gabrieli 1998; Squire 2004b). 

Researchers predominantly focused on the stressor and its impact on memory, but have 

rather neglected that memory consists of multiple systems processing information in 

parallel (Squire 2004a; Squire et al. 2004b). For example, changing catecholaminergic 

activity in the amygdala, a brain structure involved in emotional memory, (Cahill et al. 

1995) can modify hippocampal spatial memory (de Quervain et al. 2009; Roozendaal et 

al. 2009). 

Interactions between memory systems are most evident in situations in which 

multiple memory systems can support behavioral performance. The well-known water 

maze (Morris 1984) task where rodents navigate to find a platform provides an example. 

When the platform is visible and in a fixed location, the performance can rely on both 

hippocampus-dependent spatial (‘‘cognitive’’) and neostriatum-dependent stimulus-

response (stimulus-response: S-R; ‘‘habit’’) memory. In an elegant study, Kim et al (Kim 

et al. 2001) demonstrated in rats that stress prior to training facilitated the use of an S-R 

strategy and reduced the use of a spatial strategy to find the platform. Spatial memory, 

which is considered to rely on more complex processes than S-R memory, supports 

the acquisition of flexible, consciously accessible knowledge (such as the event of your 

birthday) that is particularly ascribed to the hippocampus (Scoville and Milner 1957; 

Eichenbaum 2004). Non-spatial S-R learning process associations, such as ‘‘stop your 

car when the traffic lights are red”, are not necessarily accessible to consciousness and 

relies on the caudate nucleus (Knowlton et al. 1996; Jog et al. 1999). The two memory 

systems can work in parallel and process information simultaneously. Cognitive tasks 

can be designed that allow a differential use of spatial and non-spatial memory systems.

Acute stress prior to training in a task that could be acquired by a hippocampus-

based spatial, and a caudate-based non-spatial S-R strategy resulted in predominantly 

caudate-based learning both in rodents and humans (Kim et al. 2001; Packard and 

Wingard 2004; Schwabe et al. 2007). This stress-induced modulation of hippocampus-

based and caudate-based learning and memory systems is assumed to be influenced by 

the amygdala as well (Packard and Wingard 2004). Emotional components (including 

anxiety, punishment, reward) are included in the majority of behavioral tasks for rodents. 



24

Chapter 1

Chapter 1

Stress before the learning task affects the performance, which might be due 

to the differential use of memory systems. Psychosocial stress before training in an 

instrumental task rendered the participants’ behavior insensitive to the change in the 

value of a reward: i.e., stress led to habit non-spatial performance at the expense of 

goal-directed spatial performance in humans (Schwabe and Wolf 2009). This study 

proves that the recognition of change in the rewarding values of stimuli is differentially 

perceived under stress.

The modulation of non-spatial habit, and spatial cognitive memory systems by 

stress has attracted a lot of scientific attention the past decade (Kim et al. 2001; Packard 

and Wingard 2004; Schwabe et al. 2007; Dias-Ferreira et al. 2009). However, the effects 

of prolonged or repeated periods of stress on the modulation of these two memory 

systems have not been described. In this thesis we determined the impact of chronic 

stress in both mice and humans. The results could indicate the underlying processes that 

drive behavioral alterations as seen in patients that suffer from depression.

2.6. 	 Depression: emotional and cognitive disturbances

Depression is characterized by several symptoms (see Box 2).

Box 2: Symptoms of depression

The Diagnostic and Statistical Manual of Mental Disorders 4th edition (DSM-IV-TR), 

describes that at least five of the following signs and symptoms must be present 

for at least 2 weeks as to be characterized as a depressive disorder: (1) anhedonia: 

loss of interest for or inability to experience pleasurable emotions from normally 

pleasurable life events, (2) appetite/weight disturbances, (3) sleep disturbance 

/ circadian activity pattern, (4) psychomotor retardation, (5) loss of energy, (6) 

feelings of depressed mood, (7) worthlessness/guilt, (8) concentration difficulties/

indecisiveness and (9) thoughts of death/suicide. It is recognized that the latter five 

symptoms are typical human characteristics and cannot be modeled in mice. Our 

experimental setup described in this thesis aimed to induce symptoms (1), (2), (3), 

(4) and (8) using our ‘rat stress’ paradigm in mice.
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1The core symptom of depression is anhedonia, which is defined as the inability 

to experience pleasure (Ribot 1897). Anhedonia is indicative for alterations in the 

perception of emotional and other environmental stimuli, which in turn affects cognitive 

processing, and vice versa. In psychopathology disturbances in the detection, response 

to, and interpretation of emotions are common, and can produce altered emotional 

responses. 

Patients suffering from psychotic major depression show reduced emotional 

reactivity. More specifically, a deficit in processing of positive stimuli is evident, while 

a bias towards the perception of negative stimuli exists. This imbalance in emotional 

processing results in depressed mood and anhedonia (Phillips et al. 2003; Leppanen 2006; 

Bermpohl et al. 2009). However, the neural substrates for mood disorders are poorly 

understood. Next to disturbances in limbic and prefrontal brain regions, alterations in 

the brain reward mechanism (the mesolimbic dopamine system) are likely. Neuroimaging 

studies show reduction in hippocampal volume, and alterations in prefrontal cortex, 

amygdala and brain regions associated with the mesolimbic dopamine system (i.e., 

nucleus accumbens and the ventral tegmental area; (Nestler and Carlezon 2006; Martin-

Soelch 2009). Studies in depressed patients revealed a decrease in reward sensitivity 

toward positive stimuli (Shankman et al. 2007) and altered reward-related decision 

making (Forbes et al. 2007) functions are restored following classic antidepressant 

treatment in a subset of patients (Drevets 2000). Disturbances in emotional processing 

affect cognitive processing, like memory formation (Stiedl et al. 2000) which in turn 

affects the emotional response to stimuli (Blair et al. 2007). Depending on the CORT 

concentration, and subsequent binding to MR and GR, emotional and cognitive processes 

can be modulated (Brinks et al. 2007b).

Patients suffering from depression exhibit hyperactivity of the HPA axis even 

before the onset of clinical symptoms. The CORT concentrations are elevated during the 

circadian cycle (Keck and Holsboer 2001). Remarkably, patients with a severe form of 

depression (psychotic major depression) appear to be relieved of symptoms following 

treatment with the GR antagonist MIF (Belanoff et al. 2001a; DeBattista and Belanoff 

2006). Diagnostic and Statistical Manual of Mental Disorders 4th edition (DSM-IV-TR), 

describes that at least five of the signs and symptoms referred to in Box 2 must be present 

for at least 2 weeks as to be characterized as a depressive disorder. It is recognized that 

symptoms (5), (6), (7) and (9) are typical human characteristics and cannot be modeled 

in mice. Our experimental setup described in this thesis aimed to induce signs and 

symptoms (1), (2), (3), (4) and (8), using our ‘rat stress’ paradigm in mice.
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2.6.1. 	 Treatment of depression 

The classic antidepressants (e.g., tricyclic antidepressants; Serotonin and Noradrenaline 

Reuptake Inhibitors: SSRI, SNRI) have shown therapeutic effect. However, the 

therapeutic effect may take weeks before being expressed, with increased risk for the 

patient to experience unwanted side effects, and the increased likelihood that the risk 

on suicide remains high during the first weeks of treatment (Schatzberg 2002). Hence, 

new antidepressants are warranted. We know that the classic antidepressants affect MR 

and GR expression in brain, and normalize CORT secretion patterns (Reul et al. 1993). 

The normalization was thought to be partly due to restoring the negative feedback 

mechanism at the level of GR (Ribeiro et al. 1993; Heuser et al. 1996; Pariante and Miller 

2001). Thus, targeting the receptors that mediate CORT secretion, MR and GR, might 

open up potential new drug treatment for patients that suffer from depression. 

Indeed, clinical trials revealed that high doses (600 - 1200mg/day) of the GR 

antagonist mifepristone (i.e., RU38486) show therapeutic efficacy for the most severe 

form of depression, psychotic major depression (Murphy et al. 1993; Belanoff et 

al. 2001a; DeBattista et al. 2006). Treatment for several days only, already improved 

emotional and cognitive processes, together with restoration of aberrant levels of 

CORT. The ‘antidepressant’ effect is thought to arise via the following pathway: GR 

antagonism leads to increased amplitude in pulsatile and circadian CORT levels, which 

induce a resetting of the HPA axis activity, with a subsequent change in GR sensitivity, 

and a distinct action via MR by CORT (Sartor and Cutler 1996; De Kloet et al. 1998). The 

rhythmicity of the circadian activity is enhanced (van Haarst et al. 1996). In addition, GR 

resistance could be compensated via increased MR expression (Wodarz et al. 1992; Calfa 

et al. 2003). 

Additional evidence for GR dysfunction comes from depressed patients that 

received the GR agonist dexamethasone. These patients showed non-suppression of 

ACTH and CORT (Nemeroff 1996; DeBattista et al. 2006), suggestive for an impaired 

negative feedback at the level of GR. It has become clear that GR dysfunction is associated 

with stress-related psychiatric disorders. This shift in the balance of MR and GR activation 

renders the organism more vulnerable to diseases (Holsboer 2000; de Kloet et al. 2005). 

2.6.2. 	 Effects of GR antagonism

The role of GR has been studied specifically by pharmacological modulation, using the 

GR antagonist RU38486 (Roussel-Uclaf 38486; first synthesized in 1981) also known as 

mifepristone or in short RU486. It has both antiglucocorticoid and antiprogesterone 
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1activity. The latter is utilized in early termination of pregnancy. RU38486 is readily absorbed 

via the oral route in humans and rodents. The α1-acid glycoprotein binds RU38486 in 

humans, increasing its bioavailability (Agarwal 1996). However, the bioavailability of 

RU38486 in rodent is 40% partly because the rodent’s α1-acid glycoprotein does not 

bind RU38486 explaining the low levels in plasma and fast plasma clearance (Philibert 

and Teutsch 1990). RU38486 is distributed to all tissues, thereby exerting a generalized 

antiglucocorticoid activity (Heikinheimo and Kekkonen 1993). Intracerebroventricular 

(ICV) administration of RU38486 was performed. GR antagonism does not interfere 

with basal resting activity of the HPA axis at the trough of circadian activity. However, 

RU38486 increases the circadian peak secretion of CORT and prolongs stress induced 

activity (Gaillard et al. 1984; Ratka et al. 1989; van Haarst et al. 1996). 

GR antagonism has been shown to protect mice and rats against the negative 

impact of high CORT and chronic stress on hippocampal functioning. Mice with 

streptozotocin-induced type I diabetes and high CORT for eleven days showed hippocampal 

alterations; treatment with mifepristone for 4 days during the early phase of diabetes 

attenuated the morphological signs and protected the mice from cognitive deficits (Revsin 

et al. 2009). Neurogenesis was normalized in rats that underwent a chronic stress paradigm 

for 21 days, and were treated with mifepristone during the last 4 days (Mayer et al. 2006; 

Oomen et al. 2007). The protecting, and therapeutic efficacy of GR antagonism is most 

pronounced in conditions of high CORT levels. Although CORT concentration increases 

due to GR antagonism, there is no receptor to act on. It thus appears that the resulting 

shift in MR-GR activation is responsible for the positive effects of GR antagonism.

Taken together, the GR antagonist mifepristone (MIF) increases HPA axis 

responsiveness and resilience in humans (Lamberts et al. 1991). Similar effects are found 

in rats (van Haarst et al. 1996). Whereas much is already known on GR functioning, the 

mechanism underlying the apparent therapeutic efficacy of GR antagonism is unclear. 

Before we would study the impact of GR antagonism in our chronic stress model we 

will determine the effects of GR antagonism in naive mice. We will collect data related 

to circadian HPA axis activity, emotional, behavioral and neuroendocrine responses 

(Chapter 4). This data will provide parameters that can show whether in stressed mice 

similar processes are affected and the possible protecting/normalizing effects of MIF on 

those processes. 
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3. 	 Rodent models of depression

Animal models of depression can be of genetic origin, induced by (social-) environmental 

challenges (usually exposure of rodents to various types of stressors) or via 

pharmacological modulation. The resulting neuroendocrine and behavioral changes are 

indicative for certain signs and symptoms (Willner 1990; Willner et al. 1992; Willner 

1995). Chronic stress is believed to render the organism more vulnerable to the 

development of stress related psychiatric disorders. Therefore, most animal models use 

long-term manipulations of the stress system to model the predisposition to depression 

(Willner and Mitchell 2002). Although the subtypes of depression are typical human 

disorders, a subset of human characteristics can be assessed in animal models; see Table 

1. 

Table 1: Symptoms associated with depression in humans and reference to Chapters in the thesis 

that determined the expression of the human-like symptoms in our mouse model for depression.

Symptoms of depression* Measurable in 
animal models?

Determined in 
Chapter

Anhedonia Yes 6 and 7
Weight changes Yes 6
Sleep disturbances/circadian activity pattern Yes 6 and 7
Psychomotor retardation Yes 6 and 7
Fatigue/loss of energy Yes not determined
Depressed mood No n.a.
Feelings of worthlessness/guilt No n.a.
Diminished ability to think/make decisions Yes 6, 7 and 8
Thoughts of death/suicide No n.a.

*Source: Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV, American Psychiatric 

Association 1994.

Table 1 indicates which human characteristics were determined in our chronic stress 

model. A valid model of depression would ask for multiple symptoms to be induced and 

measured (see also Box 3). Preferably, multiple behavioral tests need to be performed to 

approximate the characteristic mood symptoms (Anisman and Matheson 2005).

First, a brief introduction to rodent models for human stress, primarily targeting 

GR and MR is provided, followed by a description of our chronic ‘rat stress‘ paradigm in 

more detail. 
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1The pivotal role of GR for survival has been shown in mice with a total deletion 

of GR (GRnull/null). Ninety-five percent of these mice died shortly after birth because of 

impaired lung development (Cole et al. 1995; Reichardt and Schutz 1996). The remaining 

5% survived because of an incomplete knockout of the GR. However, partial inactivation of 

the GR produced depression-like changes in behavior and a mild HPA axis dysregulation. 

Anxiety-associated locomotor activity was increased and adrenal responsiveness was 

augmented. This occurred in GR heterozygous mice (GR+/- with a 50% reduction of 

GR; (Ridder et al. 2005; Chourbaji and Gass 2008) and in mice with postnatally induced 

deficiency of GR in the forebrain (Boyle et al. 2005; Boyle et al. 2006). A reference to the 

variety of genetically modified GR mouse models can be found in (Muller et al. 2002; 

Urani and Gass 2003; Kolber et al. 2008).

Box 3: A model is defined as any experimental preparation serving the purpose of 

studying a condition in the same or different species. In developing and assessing 

an animal model, it is critical to consider the explicit purpose intended for the 

model, to determine the criteria required to establish its validity. Validation of 

models for psychiatric disorders include consideration of the following: construct 

validity (theoretical rationale for designing the model based on clinical expression 

of the disorder); face validity (phenomological similarity between the model and 

the disorder); predictive validity (the correspondence between drug actions in the 

model and the clinical setting; (Willner 1997; Bloom and Kupfer 2001). It depends 

on the scientific question addressed which animal model is to be used (e.g., social 

stress paradigms with or without physical contact). 

Numerous animal models of ‘depression’ are available that predominantly 

focus on the expression of negative emotions. We set out to develop a chronic stress 

paradigm that would allow investigation of immediate and long-term consequences for 

emotional and cognitive responses, in relation to positive rewarding stimuli and stress 

system activity patterns. In addition, behavioral measurements were designed to cover 

a wide range of effects. 

We aimed to disturb the MR-GR balance in two ways, using (1) an environmental 

challenge –chronic ’rat stress’ - to modulate the activity of the stress system over a longer 
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period, and (2) pharmacological modulation of GR activity using the GR antagonist 

mifepristone. Neuroendocrine, emotional, cognitive and behavioral patterns were 

assessed. The next section provides more detail on the features of our chronic stress 

model.

3.1. 	 Environmental stress paradigms

One of the precipitating factors in the development of depression is a disturbed reactivity 

to novel situations. This reactivity is a combination between genetic predisposition and 

past learning experiences. In humans, chronic psychological stress during adulthood 

can precipitate psychiatric disorders (Corcoran et al. 2003). Central features of chronic 

psychological and psychosocial stressors in humans are repeated, unpredictable and 

uncontrollable exposure to (or imagination of) threatening situations. To mimic these 

central features, animal models are based on social confrontations with or without 

physical contact (Apfelbach et al. 2005). To clarify the difference between a stressor 

with- and without the ability of physical contact, an example for each is described below.

3.1.1. 	 Social stress paradigm with physical contact 

Chronic stress in mice can be induced by social defeat. A mouse is rendered subordinate 

by repeated exposures and defeat by a dominant mouse during several weeks. 

Consequences are: decreased locomotor and exploratory activity, increased anxiety. 

HPA axis activity is affected as indicated by low body weight, elevated CORT and ACTH 

concentrations, and low hippocampal MR mRNA expression (Koolhaas et al. 1997) 

(Koolhaas et al. 1997; Veenema et al. 2003). Schmidt et al., developed a chronic social 

stress paradigm where mice are exposed to different cage members every 3 - 4 days, 

which creates an unstable social hierarchy; an unavoidable stressor. The consequences 

are expressed by increased adrenal and reduced thymus weight, flattened circulating 

circadian CORT concentrations patterns, reduced mRNA expression of hippocampal 

MR and GR, increased expression of AVP in the PVN, increased anxiety and lower 

responsivity to a sucrose solution (Schmidt et al. 2007; Schmidt et al. 2008; Sterlemann 

et al. 2008). However, these stress paradigms are a mix of physical and psychological 

stressors. Whereas physical stressors affect predominantly lower brain areas (e.g., brain 

stem) that subsequently affect the forebrain, psychological stressors are processed in 

higher brain areas (e.g., prefrontal cortex, amygdala, and hippocampus). 

Psychological and psychosocial stressors are ethologically more relevant 

compared to physical stressors, and resemble the kind of stress that is related to 
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1depression in humans (Calvo-Torrent et al. 1999; Apfelbach et al. 2005; Beekman et 

al. 2005). In rodents, the behavioral effect of predator exposure becomes manifested 

in the defeated subject as increased anxiety-like behavior, risk-assessment in novel 

environments and learning and memory impairments (Calvo-Torrent et al. 1999; 

Grootendorst et al. 2001a; Grootendorst et al. 2001b; Adamec et al. 2004; Diamond 

et al. 2006). For our stress model we induce chronic psychosocial stress by means of 

exposing mice to the presence of a rat, without physical contact.

3.1.2. 	 Social stress paradigm without physical contact 

Already sensory stimuli (visual, auditory and olfactory) are sufficient to activate the 

stress system associated with the release of CORT (Blanchard et al. 1998; Diamond et 

al. 1999; Linthorst et al. 2000; Beekman et al. 2005). In nature, mice and rats avoid each 

other and it was shown that exposure of mice to rats in a laboratory setting increased 

CORT concentrations in blood plasma and in the extracellular fluid of the mouse brain, 

as measured using microdialysis (Linthorst et al. 2000). Previously, our group created a 

chronic stress model for mice by exposing mice repeatedly to the presence of a rat, a 

procedure referred to as chronic ‘rat stress’ (Figure 2A). 

Mice and rats could hear, see and smell each other, without physical contact 

(Grootendorst et al. 2001a; Grootendorst et al. 2001b). Acute and some long-term 

effects on neuroendocrine and behavioral responses are evident in the mice during 

chronic ’rat stress’. Using two distinct spatial learning tasks, we showed that chronic ’rat 

stress’ impaired learning and memory performance in C57BL/6J mice. More specifically, 
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stressed mice used a different strategy to locate the escape platform (water maze; 

Figure 2B) or exit hole (circular hole board; Figure 2C) in either two tasks. In addition, 

immediately after the 9th rat exposure and one week after the last rat exposure, the 

plasma CORT concentration was increased. Interestingly, three months after cessation of 

the stressor, stressed mice displayed a different behavioral response after being placed 

in the dark compartment of the light-dark box. Stressed mice were more active in the 

light compartment. This is opposite to their natural preference namely, seeking shelter in 

the dark area of the environment (Grootendorst et al. 2001a; Grootendorst et al. 2001b). 

The effects of chronic stress in animal models are mainly assessed in short-

lasting test-situations involving additional novelty stress. Less is known about the 

consequences of stress for the daily organization of behavior in a familiar environment 

where the animal (and the human) spends most of its time: the home cage (at home for 

humans).

3.2. 	 Home cage observations

For patients that suffer from depression, the negative effects extend to both novel 

and familiar environments (Volkers et al. 2002; Keller et al. 2006). Animal models of 

depression have predominately assessed behavioral alterations in novel environments. 

In addition, the tests are short-lasting, and limited in the readout of the behavioral 

patterns. The few studies that address changes in circadian activity in mouse models 

include “chronic mild stress” and electric shocks which decreased the amplitude of 

circadian locomotor activity and food-intake (Willner 1984; Desan et al. 1988; Stewart et 

al. 1990; Gorka et al. 1996; Meerlo et al. 1999). To our knowledge, long-lasting analysis 

of activity patterns in the familiar environment of the home cage before, during and 

after a psychological stressor have not been described in mice. 

Previous studies have shown that long term automatic recordings of the mouse 

in its home cage, allows detailed observations on dynamic changes in locomotor activity 

over days, with minimal human intervention (de Visser et al. 2005; de Visser et al. 2006) 

see Figure 3 for apparatus). 

In addition, subtle changes in spontaneous behaviors under baseline conditions 

may reveal themselves more easily in the home cage than under conditions where the 

animal is prompted to explore or face a strong challenge. Chapter 6 of this thesis will 

describe the daily organization of behavior in the familiar environment of the mouse’s 

home cage before, during and after chronic ’rat stress’. 
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We studied the impact of our chronic stress paradigm on undisturbed and 

novelty induced emotional, behavioral, cognitive and neuroendocrine responses that 

could underlie the expression of anhedonia in mice (Chapters 6 and 7). 

3.3. 	 How to measure anhedonia in an animal model?

To measure a diminished interest or responsiveness to positive stimuli, several 

methodological tools are available. In this thesis, we will use three tools: the sucrose 

consumption and preference test (Chapters 6 and 7), analysis of exploration patterns 

(Chapter 6, 7 and 8), and reward modulating effects on memory (Chapters 5 and 7).

An alteration in reward sensitivity can be measured using the sucrose task, 

where the consumption and preference for a sweet solution is determined. Depending 

on the experimental design, rodents are food and/or water deprived before testing takes 

place. However, as deprivation can induce stress, our experimental design did not use 

deprivation. Instead, during testing two bottles were presented for 24h. Allowing ample 

time for the mice to get ‘used’ to this new situation and drink when preferred. One 

bottle contains water, the other contains a sweet solution (5% sucrose: see Pothion et 

al. 2004); the bottles are weighed before and after a fixed time. The weight difference 

is a measure for fluid intake of both solutions, and the preference for either solution is 

calculated. 

Novel stimuli may signal danger, but also possible rewards. During novelty 

exploration, activation of the avoidance-approach system occurs. Depending on the 

dominance of either system, exploration of the environment will be more or less 

intense. The hippocampus detects novel stimuli and is critical for the memory formation 

Figure 3
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of the novel event or environment. The novelty signal is also a major input to the brain 

reward mechanism, involving the neurotransmitter dopamine (Wittmann et al. 2007). 

Human fMRI studies show that joint activation of hippocampus and brain reward 

regions is crucial for the development of long term memories (Schott et al. 2006b). Thus, 

exploration patterns of a novel environment might provide leads to the emotional state 

of the animal (File 2001; Kalueff et al. 2006). Exploration is considered as self-rewarding 

behavior, involving the expectation of potential rewards, e.g., food, mates, a hiding 

place. While the inhibition of exploration is generally related to anxiety, it might also 

indicate the loss of hedonic responses, as suggested by Bevins and colleagues (Bevins 

and Besheer 2005). 

Reward has been shown to affect the strength of memory (Huston and 

Mondadori 1977; Huston and Oitzl 1989; Messier 2004). We aimed to demonstrate 

that post-training access to sugar (the reward) will facilitate spatial memory of mice. 

This experimental set-up might allow to study whether exposure of mice to the chronic 

stress paradigm changes the perception of the emotional quality of the stimulus. The 

performance in the learning and memory task could reflect anhedonia. Consequently, 

we expect the loss of the memory facilitating effect of post-trial sugar administration in 

stressed mice. 

The three tools that can measure the expression of anhedonia are part of the design of 

the experiments described in this thesis. We believe that multiple read-outs for loss of 

interest or pleasure, will underline the strength of our chronic stress model to induce 

anhedonia, and its relevance as an animal model of depression, a stress-related mood 

disorder.
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14. 	 Scope and outline of the thesis

4.1. 	 Rationale and objectives

Chronic stress, defined as a hyper- or hypoactivity of the stress-system, in concordance with 

alterations in neuroendocrine-, emotional- and cognitive responses, are characteristics 

described for mood disorders like depression. To mimic these characteristics animal 

models are widely used. The overall aim of this thesis is to work towards a mouse model 

that expresses a wide range of signs and symptoms as seen with patients that suffer 

from depression, with special focus on the processes that underlie the expression of 

anhedonia.

The specific aims of the studies described in this thesis address methodological issues, 

home cage observations, activity patterns, emotional-, and learning and memory 

processes, with the objective to achieve translation of chronic stress effects in mice to 

humans by:

(i)	 Determining the circadian pattern of HPA axis activity and its molecular markers 

in the brain of naïve (non-stressed) mice at different ages. 

(ii)	 Development of a stress-free method for oral drug delivery in mice, which 

allows to more specifically study the effect of the drug under study (i.e., CORT 

or mifepristone). 

(iii)	 Characterization of learning and memory processes of mice in two distinct 

spatial learning tasks. The possibilities of either two tasks to measure a wide 

range of processes, will determine which spatial task will be used during 

subsequent behavioral testing. 

(iv)	 Assessment of recurrent glucocorticoid receptor (GR) blockade effects on 

stress-system activity and behavior in novel environments, in naive mice.  

(v)	 Characterization of the chronic ’rat stress’ model by assessment of the 

neuroendocrine and behavioral responses in novel environments, i.e. learning 

tasks. In addition, investigation of the daily organization of behavior in the 

familiar environment of the home cage, before, during and following chronic 

‘rat stress’. The results will indicate whether anhedonia is expressed in our 

chronic stress model of depression.

(vi)	 Assessment of learning and memory in mice and humans with a history of 

chronic stress: translational study. 
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4.2. 	 Experimental approach and outline

The experiments that are conducted can be divided in three categories addressing: 

1. Methodological optimization: To design new, and optimize existing neuroendocrine 

and behavioral measurements to closely control the activation of the stress system, 

induced by the experimental procedures. Since timing, context and duration of a stressor 

determine the outcome of the experiments, interference by unintentional stressors has 

to be controlled and minimized (Chapters 3 and 4).

2. Longitudinal measurements: Home cage observations and novelty exposure are 

used to measure circadian behavioral and neuroendocrine activity patterns, as well as 

emotional responses and learning and memory performance. These measurements are 

combined with tests of anhedonia (Chapters 2, 5, 6 and 7).

3. Translational approach: Humans and mice that experience a period of chronic stress 

are subjected to comparable experimental designs which allow to test the use of distinct 

memory systems between the two species (Chapter 8). 

For all experiments described in this thesis male mice from the C57BL/6J strain were 

used. There is abundant knowledge on the phenotype of C57BL/6J mice. Less is known 

about the circadian stress system activity in undisturbed conditions. In Chapter 2, the 

circadian activity of several HPA axis markers, with special focus on the 24h secretion 

pattern of CORT, is described for mice aged 3, 9 and 16 months. The results will be used 

as reference for comparison with the expected impact of chronic stress on circadian HPA 

axis activity (Chapters 6 and 7).

Next, we aim to optimize methodological procedures related to drug delivery 

and behavioral testing. Stress and CORT are known to affect memory processes. 

Experimental manipulation of mice, such as an injection, already induces stress-system 

activation, which most likely interferes with neuroendocrine and behavioral testing. In 

Chapter 3 we set out to develop a non-invasive, stress free method of drug delivery via 

oats in mice. We will measure CORT in blood plasma in response to conventional drug 

delivery methods (intraperitoneal i.p., per os p.o.) and drug-delivery via oats. The latter 

method will allow close-context delivery of corticosteroids (and other drugs) prior to and 

directly after behavioral testing. Also, administration of CORT to mice in the undisturbed 

environment of the home cage, allows to study the effect of GR blockade on circadian 

HPA axis and behavioral activity (Chapters 4 and 6). We will investigate the effects of 
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patterns and behavioral responses in Chapter 4. 

Learning and memory abilities can be assessed using a behavioral task. The 

choice of the task is based on task-inherent appetitive and aversive characteristics, 

amongst others. In Chapter 5 we compare the behavior of mice tested in two spatial 

learning tasks that were originally designed for rats: the Morris water maze and the 

circular hole board (dry-land maze). Depending on the variability of the parameters 

that can be assessed by either behavioral task, further experiments described in this 

thesis would make use of one of the two spatial learning tasks to assess the impact of 

chronic stress on the novelty exposure and learning and memory processes (Chapters 

6, 7 and 8). Memory can be modulated by positive and negative reinforcers delivered 

in close-context to the learning task. We will provide naïve mice with post-trial free 

access to sugar as positive reinforcer. This proof of concept is further used to determine 

whether mice exposed to our chronic stress paradigm display an alteration in learning 

and memory modulation by a reward (Chapters 7 and 8). 

The effects of chronic stress in animal models are mainly assessed in short-

lasting test-situations that have task-inherent features of novelty and sometimes even 

include exposure to a physical stressor. The experimental design described in Chapter 

6 is aimed to monitor in a longitudinal set-up, the daily organization of behavior in 

the familiar environment of the home cage before, during and following exposure 

to our chronic stress paradigm. Mice are repeatedly, and during unpredictable and 

uncontrollable times exposed to rats (without physical contact). In addition, we will test 

changes in the consumption of and preference for a sweet solution (sucrose = dissolved 

table sugar). The result could be indicative for changes in the reward system: loss of 

interest in pleasurable activities or diminished response to positive stimuli, also known 

as anhedonia.

In Chapter 7 we combine methodologies as described in the previous chapters 

to reveal the effects of chronic ’rat stress’ on learning and memory assessed in the 

circular hole board, and the memory modulating effects of a post-trial positive reinforcer. 

In addition, sucrose consumption and preference, exploration patterns during novel 

environment exposure, behavior in the light/dark box, and the pattern of CORT secretion 

is measured on several days after cessation of the stressor. The results from Chapters 

6 and 7 will additionally (together with Chapter 5) indicate whether our chronic stress 

paradigm induces the expression of anhedonia.

Multiple memory systems guide behavior. Acute stress modulates the 

contribution of memory systems to behavior in favor of caudate nucleus-dependent 
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stimulus response learning and memory, at the expense of hippocampus-dependent 

spatial learning and memory. In Chapter 8 we examined whether chronic stress has 

similar consequences in mice and humans on the use of memory systems, as described 

for acute stress. The circular hole board task was modified to mimic the characteristics 

of the human task, allowing stimulus-response as well as spatial learning.

A general discussion of the findings is presented in Chapter 9, followed by a 

summary in Chapter 10. 
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Abstract

As there is little known about age related changes in the hypothalamic-pituitary-adrenal 

(HPA) axis of mice, we determined the daily patterns of corticosterone secretion every 

2h, together with adrenocorticotrophic hormone (ACTH) release and central HPA axis 

markers in the morning and evening in 3, 9 and 16 months old male C57BL/6J mice. 

We observed that: (i) corticosterone secretion showed a distinct age related 

circadian pattern. During the light period this was expressed by relative hypercorticism 

in 9 months old mice and relative hypocorticism in 16 months old mice. ACTH was 

elevated at 16 months of age; (ii) mineralocorticoid- (MR) and glucocorticoid receptor 

(GR) mRNA expression in the hippocampus were significantly decreased in 9 months 

old mice, whereas in 16 months old mice, expression was similar to young animals. 

Circadian variation was modest in all age groups; (iii) the parvocellular hypothalamic 

paraventricular nucleus (PVN) expressed very high vasopressin mRNA, which was subject 

to circadian variation in 3 and 9 months-old mice. Furthermore, significant levels of MR 

mRNA were expressed in PVN.

In conclusion, basal HPA axis activity and expression of its central regulatory 

markers are age dependent in mice. This suggests that the capacity to adjust to 

environmental demands is either a function of age, or depends on different dynamics of 

the HPA axis.
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Introduction

Corticosteroid hormones are potent modulators of neuronal functions. Circulating 

concentrations of cortisol and corticosterone are regulated by the Hypothalamic-

Pituitary-Adrenal (HPA) axis, with argenine-vasopressin (AVP) and corticotrophin-

releasing hormone (CRH) as the two main driving hormones from the hypothalamus 

(Dallman 2000). The central sensors of HPA axis activity in the regulation of feedback 

and other functions are embodied by the mineralocorticoid- and glucocorticoid receptor 

(MR and GR), which are expressed in discrete brain regions and in pituitary corticotrophs 

(Reul and de Kloet 1985).

The secretion of corticosteroid hormones exhibits a circadian pattern and can be 

induced by stressors (Akana et al. 1986; De Kloet et al. 1998; Windle et al. 1998b). These 

modes of corticosteroid secretion are regulated by inputs from the suprachiasmatic 

nucleus (Buijs et al. 1993), prefrontal cortex, amygdala and hippocampus, among 

others (Spencer et al. 1993). The latter region is an important target for corticosteroid 

hormones because it expresses high amounts of both MR and GR (De Kloet et al. 1998). 

Dramatic changes in circadian patterns of corticosteroid hormones have been described 

in aging and psychiatric diseases like depression and Alzheimer’s disease (Hatfield et al. 

2004; Peeters et al. 2004). The excessive activity of the HPA axis is generally associated 

with impaired mental and physical health (Sapolsky 1999; Lupien and Wan 2004) 

and characterized by increased basal and/or stress-induced levels of corticosteroid 

hormones and adrenocorticotrophic hormone (ACTH; Van Eekelen et al. 1995; Herman 

et al. 2001). Although numerous mouse models for a wide range of human stress related 

disorders have been developed, surprisingly little is known about the impact of age on 

basal regulation subserving circadian activity of the HPA axis in mice. 

In the rat it is known that adjustments of the HPA axis occur in the course of 

life, that include changes in MR and/or GR protein and mRNA expression (Cai and Wise 

1996; Bizon et al. 2001), as well as changes in secretagogue expression, and in adrenal 

sensitivity to ACTH. Accordingly, we expect to detect also in mice alterations in HPA axis 

activity that relate to normal life history. These changes may show individual and strain-

specific differences as has been reported previously (Bazhanova et al. 2000; Workel et 

al. 2001). 

In this study we have focused on the age dependent changes in circadian HPA 

axis activity of male C57BL/6J mice, aged 3-, 9- and 16 months. C57BL/6J is the most 

commonly used inbred mouse strain in research, and the preferential background strain 

for transgenic mouse models. We estimated corticosterone in blood plasma every 2 hours 
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to increase the likelihood to detect shifts or irregularities in the circadian pattern. At time 

points that were expected to coincide with circadian trough and peak concentrations 

of corticosterone in these mice (Grootendorst et al. 2004), we assessed plasma ACTH 

concentrations as well as mRNA expression of MR and GR in the hippocampus, and of 

MR, GR, CRH and AVP in the paraventricular nucleus (PVN) of the hypothalamus.

Materials and Methods

Animals

Male C57BL/6J mice were purchased from Janvier France at the age of 8 weeks. Upon 

arrival, mice were housed in groups of 8 mice per cage under SPF conditions (TNO, 

Leiden, The Netherlands). At the age of 3, 9 and 16 months (n = 16/group) they were 

transported to the animals facilities of the Sylvius Laboratories (Leiden, The Netherlands), 

acclimatized in a temperature (21 ± 1°C) and humidity (55 ± 5%) controlled room for two 

weeks. We chose 16 months as oldest age group, as it was reported that thereafter the 

survival rate might decrease (Talan and Ingram 1986). All groups were studied at the 

same time and at the same location, ruling out any differential environmental stimuli 

at the time of testing. Access to food and water was ad libitum; lights were on from 

0700 - 1900h (12-12h light-dark cycle). To minimize HPA axis activation, mice were single 

housed from one day before blood sampling until the end of the experiment. They were 

also repeatedly handled. Experiments were approved by the Local Committee for Animal 

Health, Ethics and Research of the University of Leiden. Animal care was conducted in 

accordance with the EC Council Directive of 24 November 1986 (86/609/EEC).

Experimental design

The circadian secretion of corticosterone was determined in blood samples collected via 

tail-incision every 2 hours for 24 hours. All age groups were divided in three sub-groups 

of 5 to 6 animals. As previously described (Durschlag et al. 1996), a small incision at the 

base of the tail with a razor blade allowed the collection of 50µl blood, within 90s after 

opening of the animal’s cage. From each mouse, one blood sample was taken every 6 

hours. Thus, each time point (with a 2 hour interval) consisted of 5 to 6 mice per group. 

During the dark period, blood sampling took place under red light conditions.

One week later, mice of each age group were distributed randomly over two 

groups: decapitation in the morning, 2 hours after lights turned on (0900h) and in the 
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evening, 2 hours before lights turned off (1700h). Decapitation took place within 15s of 

opening the animal’s cage. Plasma concentrations of corticosterone were determined 

again as well as plasma ACTH. In the brains we determined the expression levels of 

molecular markers of HPA axis activity (n = 8 mice/time/age). Brains were snap frozen in 

isopentane pre-cooled on dry ice/ethanol and stored at –80°C until further use.

Hormone assays

Blood obtained via tail sampling and decapitation was collected individually in capillaries 

(coated with potassium-EDTA, Sarstedt, Germany), stored on ice and centrifuged with 

13000 rpm at 4°C for 10 min. Blood plasma was stored at –20°C. Plasma corticosterone 

and ACTH concentrations were determined (in 10µl and 100µl plasma respectively) using 

commercially available radio immunoassay kits with 125I-corticosterone and 125I-ACTH 

(MP Biomedicals Inc., CA; USA; sensitivity 3ng/ml and 10pg/ml, respectively).

In situ hybridization

Brains were sectioned at –20°C in a cryostat microtome at 10µm in the coronal plane 

through the level of the olfactory bulb, piriform cortex, hypothalamic paraventricular 

nucleus (PVN) and dorsal hippocampus. Sections were thaw-mounted on poly-L-lysine 

coated slides (0.001%), air dried and kept at –80°C until further use.

In situ hybridizations using 35S-labeled ribonucleotide probes (MR, GR, CRH, 

AVP) were performed as described previously (Schmidt et al. 2003). Briefly, sections 

were fixed in 4% paraformaldehyde and acetylated in 0.25% acetic anhydride in 0.1M 

triethanolamine/HCl. Subsequently, brain sections were dehydrated in increasing 

concentrations of ethanol. The antisense RNA probes were transcribed from linearised 

plasmids containing exon 2 of mouse MR and GR, the full length coding regions of CRH 

(rat) and exon C of the rat AVP gene (with 92% homology to mouse). Tissue sections 

(3 – 4 / slide) were saturated with 100µl hybridization buffer containing 20mM Tris-HCl 

(pH 7.4), 50% formamide, 300mM NaCl, 1mM EDTA (pH 8.0), 1x Denhardt’s, 250µg/

ml yeast transfer RNA, 250µl/ml total RNA, 10mg/ml salmon sperm DNA, 10% dextran 

sulfate, 100mM dithiothreitol, 0.1% SDS, 0.1% sodium thiosulfate and supplemented 

with approximately 1.5 x 106 cpm 35S-labeled riboprobe. Brain sections were cover 

slipped and incubated overnight at 55°C. The next day sections were rinsed in 2 x SSC, 

treated with RNaseA (20mg/ml) and washed in increasingly stringent SSC solutions at 

room temperature. Finally, sections were washed in 0.1 x SSC at 65°C for 30 min and 

dehydrated through increasing concentrations of ethanol. All age groups were assayed 
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together. Films were apposed to Kodak Biomax MR film (Eastman Kodak Co., Rochester, 

NY) and developed. For AVP, slides were dipped in Kodak NTB2 emulsion (Eastman Kodak 

Co., Rochester, NY) and exposed at 4°C for 5 days. Slides were developed, counterstained 

with Toluidine Blue and examined with a light microscope using both bright and dark 

field condensers.

Autoradiographs were digitized, and optical density (O.D.) of the areas of 

interest was quantified using image analysis computer software (analySIS 3.1, Soft 

Imaging System GmbH). The average density of 4 - 8 measurements for each animal 

was calculated. For AVP measurement, the area of the parvocellular part of the PVN 

was determined by light microscopy and the number of radioactive labeled cells was 

counted.

Statistical analysis

Data are presented as mean ± S.E.M. The circadian profile of corticosterone was analyzed 

by analysis of variance (ANOVA; factor: age) with repeated measurements followed by 

LSD post-hoc test. Total corticosterone (AUC: area under the curve) over 24 hours, as 

well as separately for light and dark periods, were subjected to ANOVA, with age (3, 9 

and 16 months) and time of the day (day and night) as fixed factors. Corticosterone and 

ACTH concentrations and mRNA expression of the various HPA markers collected in the 

morning and evening were analyzed by ANOVA with age and time of the day (morning, 

evening) as fixed factors. Significance was accepted at p < 0.05.

Results 

Circadian rhythm of corticosterone

Mice of all ages showed a circadian rhythm of corticosterone (Figure 1; time F(11,165)=33.32, 

p < 0.05) with age dependent characteristics (age F(2,15)=4.64, p < 0.05). Corticosterone 

secretion increased from 1400h onwards in all groups with peak values at the end of the 

light phase and the beginning of the dark phase (between 1600 and 2200h). Interestingly, 

the course of the circadian rhythm was age dependent (age * time F(22,165)=3.78, p < 0.05). 

Corticosterone of 3 months old mice was low during the early light phase (0800 - 1200h; 

± 20ng/ml), increased during the late light phase (1800h) followed by a clear peak at 

2000h (± 100ng/ml). Thereafter, corticosterone reached baseline resting levels (± 20ng/

ml) within 2 hours and remained low during the remainder of the dark period. 
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The circadian profile of 9 months old mice showed elevated corticosterone 

already during the early light phase, reached peak corticosterone secretion earlier (at 

1600h) than the other two age groups with a prolonged duration (1600 - 2000h). Although 

corticosterone returned to basal within 2 hours, irregular peaks of corticosterone were 

found during the dark and early light phase (2200 - 0800h).

The 16 months old mice had low corticosterone levels during the early light 

phase (0800 - 1200h; ± 10ng/ml), reaching peak concentrations from 1800 to 2000h 

(± 75ng/ml), however, it was at a lower level than the other two age groups. Although 

corticosterone had decreased at 2200h, it remained elevated during the following period 

(until 0400h) and dropped at the beginning of the light period to levels below the other 

two age groups.

Corticosterone: total amount 

The total amount of corticosterone changed with age (AUC: age F(2,18)=8.93, p = 0.003). 

AUC-values over 24 hours were significantly increased in 9 months old mice (58.0 ± 2.0 x 

103) compared to 3 (49.2 ± 2.8 x 103; p < 0.01) and 16 months old mice (45.8 ± 1.3 x 103; 

p < 0.001). Separate calculations for the light and dark phase revealed for the dark phase 

an age-independent corticosterone AUC value. However, age groups differed during the 

light phase (F(2,18)=36.45, p < 0.0001): corticosterone was lowest for the 16 months old 

mice (19.3 ± 0.9 x 103), highest at 9 months (31.0 ± 0.9 x 103) and intermediate at 3 

months of age (25.4 ± 1.1 x 103) with significant differences between all groups (p < 

0.001).

Chapter 2 – Figure 1 
S. Dalm (2012) 
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Figure 1

Circadian secretion of corticosterone 

in ng/ml (mean ± S.E.M.), measured 

every 2 hours in blood plasma of 3, 

9 and 16 months old male C57BL/6J 

mice, entrained in a 12-12h light-dark 

cycle (dark phase from 1900 to 0700h 

represented by the gray shaded area). 

P-value < 0.05: * 3 vs. 9 months; $ 3 vs. 

16 months; # 9 vs. 16 months.
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HPA axis activity in the morning and evening

To gain more insight in the regulation of the HPA axis we decapitated the animals at two 

time points during the day and harvested blood and brain for the detection of hormones 

and expression of selected mRNAs.

Corticosterone and ACTH 

Plasma corticosterone and ACTH concentrations (Table 1) were measured in blood 

samples, collected by decapitation in the morning (0900h) and towards the evening 

(1700h). Morning corticosterone was age dependent (F(2,50)=12.77, p < 0.001) as it was 

significantly lower in 16 months old mice (p < 0.05 vs. 3 and 9 months). All age groups 

showed increased evening corticosterone (F(2,24)=8.03, p < 0.002), which was highest at 9 

months of age (p < 0.05 vs. 3 and 16 months), confirming the circadian measurements. For 

ACTH, morning and evening values were comparable, but affected by age (F(2,42)=13.06, 

p < 0.001); while ACTH was similar in 3 and 9 months old mice, it was increased at 16 

months of age at both times (p < 0.05; vs. 3 and 9 months).

Table 1: 

Basal morning and evening concentrations of corticosterone (ng/ml), ACTH (pg/ml), and 

expressions of MR, GR, CRH mRNA in the paraventricular nucleus (PVN) of the hypothalamus 

(arbitrary units of optical density) in 3, 9 and 16 months old C57BL/6J mice.

	 Morning	 Evening

3 9 16 3 9 16

Corticosterone 16.1 ± 2.2 20.5 ± 1.0       9.0 ± 0.8 # $  52.2 ± 4.6†     84.7 ± 8.6* # †   55.4 ± 4.4 †

ACTH 63.7 ± 8.2   76.4 ± 14.9   156.8 ± 26.6#$ 63.0 ± 3.0   79.1 ± 14.3     134.8 ± 15.7 # $

MR 21.7 ± 0.7 17.8 ± 2.1 16.9 ± 1.4  25.1 ± 1.5+  22.5 ± 2.1+  20.7 ± 1.4+

GR 61.8 ± 5.8 57.0 ± 5.8 57.5 ± 3.2 65.7 ± 5.5 54.4 ± 2.8 58.4 ± 9.7

CRH 27.2 ± 4.2 31.1 ± 2.1 27.2 ± 3.9 24.0 ± 6.2 33.8 ± 4.4 29.3 ± 4.8

Bold numbers indicate statistically significant differences. Data are presented as mean ± S.E.M. 

P-value < 0.05:  * 3 vs. 9 months; # 9 vs. 16 months; $ 3 vs. 16 months; + morning vs. evening 

MR and GR mRNA expression in the hippocampus

Overall hippocampal MR mRNA expression was differentially affected by age and time 

(Figure 2; age F(8,60)=3.44, p = 0.003; time F(4,30)=12.16, p = 0.001). Differences between 
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groups were in the range of 10 to 15%. The age effect was significant for all subfields 

(CA1: F(2,33)=7.755, p = 0.002; CA2: F(2,33)=7.17, p = 0.003; CA3: F(2,33)=5.42, p = 0.009; DG: 

F(2,33)=9.21, p = 0.001). In the morning, 3 months old mice had the highest MR mRNA 

expression (3 vs. 9 months: all subfields p < 0.05; 3 vs. 16 months: DG - p < 0.05). Nine-

months old mice had the lowest MR mRNA expression compared to the other two age 

groups. In the dentate gyrus (DG), we found an interaction between age and time (DG: 

F(2,33)=6.07, p = 0.006): in the evening, MR mRNA was lower in 3 months old mice, but 

increased in 16 months old mice, with no change at 9 months of age. While MR mRNA 

showed no circadian variation in other subregions of the hippocampus in 3 and 9 months 

old mice, it was increased in the CA1 in the evening at 16 month of age.

Expression of GR mRNA was about 20 to 30% lower in 9 months old mice (Figure 

3; age F(6,66)=2.57, p = 0.027), compared to 16 months old mice in CA1, CA3 and DG (all p 

< 0.05). Expression of GR mRNA was similar at 3 and 16 months of age. Time of the day 

did not affect GR mRNA expression.
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Figure 2

Expression of MR mRNA in the hippocampal subfields CA1, CA2, CA3 and dentate gyrus (DG) of 

3, 9 and 16 months old C57BL/6J mice, in the morning and evening hours. (A) mean ± S.E.M. (B) 

Representative photomicrographs; bar = 1 mm; bregma –1.70 mm. P-value < 0.05: * vs. 3 months; 
# 9 vs. 3 and 16 months; + morning vs. evening. 

(A) (B)
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MR, GR, CRH and AVP mRNA expression in the PVN of the hypothalamus

Expression of MR mRNA in the PVN was not affected by age, but was higher in the 

evening at all ages (time F(1,32)=6.26, p = 0.02; Table 1). No differences in GR and CRH 

mRNA expression were found (Table 1).

The strong mango- as well as parvocellular paraventricular expression of AVP 

mRNA was not affected by age, but by time of the day (Figure 4; F(1,43)=9.39, p = 0.004), 

in both the magno- (F(1,41)=7.71, p = 0.009) and parvocellular part of the PVN (F(1,41)=6.08, 

p = 0.022). In both subregions, AVP mRNA was lower in the evening than in the morning 

of 3 and 9 months old mice (p < 0.05), while it was comparable for 16 months old mice.

MR and GR mRNA expression in other brain areas 

MR and GR mRNA are also expressed in other brain areas, which are not known to be 

involved in circadian HPA axis regulation. Therefore, we decided post hoc to screen 

the olfactory bulb for MR mRNA and the piriform cortex for both MR and GR mRNA 

expression, to detect age- and possible brain-site specific changes of MR and GR mRNA. 
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Figure 3

Expression of GR mRNA in the hippocampal subfields CA1, CA3 and dentate gyrus (DG) of 3, 

9 and 16 months old C57BL/6J mice, in the morning and evening hours. (A) mean ± S.E.M. (B) 

Representative photomicrographs; bar = 1 mm; bregma –1.70 mm. P-value < 0.05: # 9 vs. 16 

months.

(A) (B)
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No significant differences for age or time of the day were detected in any of these brain 

areas (data not shown).

Bodyweight

Bodyweight showed the expected age related increase (F(2,49)=205.61, p < 0.001; in gram 

- mean ± S.E.M: 3 months 26.3 ± 0.2; 9 months 31.3 ± 0.4; 16 months 37.6 ± 0.3; p < 

0.001 between all groups). 
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Figure 4

Expression of AVP mRNA in the magno- and parvocellular part of the paraventricular nucleus 

(PVN) of the hypothalamus of 3, 9 and 16 months old C57BL/6J mice, measured in the morning 

and evening. (A) mean ± S.E.M. grains/cell. (B) Darkfield photomicrographs of AVP mRNA in the 

morning (left) and evening (right); lines indicate partition between magno- and parvocellular part 

of the PVN; bar = 0.1 mm. Note the strong expression of AVP mRNA in both the magno- and 

parvocellular PVN. P-value < 0.05: + morning vs. evening.

(A) (B)
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Discussion

We have characterized several novel elements of HPA axis activity in 3, 9 and 16 months 

old male C57BL/6J mice during a circadian 12-12h light-dark cycle. Age associated 

changes notably consisted of shifts in time, amplitude and regularity of corticosterone 

secretion over time, and elevated ACTH levels in 16 months old mice only. Aging was also 

reflected in a clearly differential pattern of hippocampal MR and GR mRNA expression, 

with lowest GR mRNA expression present in the intermediate age group. In the PVN, no 

age related changes were detected for MR, GR, CRH and AVP mRNA, while MR and AVP 

mRNA expression showed circadian variation. 

Age and circadian variations of hormones

High concentrations of cortisol and corticosterone, interpreted as hypercorticism are 

frequently reported in aged humans and rats, particularly when determined in blood 

samples collected during the active period (Meaney et al. 1992; Lupien and Wan 2004). 

In the present study, we found corticosterone to be highest for the 9 months old and 

lowest for the 16 months old mice during the light, inactive period with no differences 

in total AUC corticosterone over the dark, active period. However, if the time course 

during the active period is taken into account, the prolonged elevation of corticosterone 

after the peak indicates a transient relative excess of corticosterone at 16 months of 

age. At this age, a subsequent period of low corticosterone follows, resulting in a total 

daily exposure of corticosterone similar to that observed in 3 months old mice. These 

findings suggest that, particularly in the oldest group of mice the total daily exposure of 

the organism to corticosterone is tightly controlled. 

Corticosterone secretion from the adrenals is stimulated by ACTH. Whereas 

corticosterone showed a clear circadian pattern, we were unable to detect circadian 

variation of ACTH during the light period. The preferred method of sampling for ACTH 

would be via intravenous cannulation, but even then, variations in ACTH during the light 

period have been reported to be marginal in rats (Atkinson and Waddell 1997; Watts 

et al. 2004). For practical reasons, we had to collect blood via decapitation, which also 

can be used to detect variations in ACTH (Bradbury et al. 1994; Watts et al. 2004). We 

guaranteed low basal HPA axis activation via single housing and repeated handling 

before the start of decapitation similar to Atkinson et al. (Atkinson and Waddell 1997). 

We previously observed that single housing is necessary to obtain low plasma ACTH 

measurements from decapitated mice (S. Dalm and O.C. Meijer; unpublished data). We 
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interpret the low variability of the ACTH levels in combination with the clear significant 

increase in 16 months old mice as an argument for the basal character of the ACTH 

levels.

The sensitivity of the adrenals to ACTH is part of the mechanism underlying 

the regulation of circadian corticosterone secretion (Akana et al. 1986). Adequate 

corticosteroid production is associated with successful aging in rats and humans 

(Workel et al. 2001; Lupien and Wan 2004), while excessive corticosteroids impair 

mental and physical health (Sapolsky 1999). In contrast to the reports on age dependent 

hypercorticism, numerous studies indicate an apparent reduction in the sensitivity of 

the adrenals to ACTH stimulation, concomitant with ‘normocorticism’ (Carnes et al. 

1994; Van Eekelen et al. 1995; Magri et al. 1997; Workel et al. 2001). Increased morning 

and evening ACTH of 16 months old mice confirm those findings in humans and certain 

rat strains. The adrenals of 16 months old mice appear to be hyposensitive, since more 

ACTH is required to induce either lower or similar corticosterone secretion during 

the morning and evening compared to 3 months old mice. This suggests that in older 

animals a minimum corticosteroid level is maintained via an adaptation in the sensitivity 

of the adrenals towards ACTH. In contrast, at 9 months of age ACTH and corticosterone 

concentrations point to an adrenal hypersensitivity as was previously observed in the rat 

(Akana et al. 1986). 

Central markers of HPA axis activity

The changes in hormone levels with age were accompanied by variations in central 

markers of HPA axis activity. We are aware that these mRNA markers provide only an 

estimate of functional changes across age and the circadian cycle without defining the 

physiological impact, but they do allow comparison with other studies in mouse and rat. 

Like in rats (van Eekelen et al. 1991; Van Eekelen et al. 1995; De Kloet et al. 

1998; Sapolsky 1999), hippocampal MR mRNA expression of mice modestly decreased 

with age but whereas in 9 months old mice expression was decreased by 10 - 15% both 

in the morning and evening, signal intensity was increased in 16 months old mice up to 

the level of 3 months old mice during the evening. Similar to young rats (Spencer et al. 

1993; Holmes et al. 1997), MR mRNA was decreased in the dentate gyrus of 3 months 

old mice in the evening. In 9 months old mice, hippocampal GR mRNA expression was 

decreased by 20 - 30%. No circadian changes were observed. Apparently MR and GR 

mRNA expression in the hippocampus oscillates as a function of age, with more circadian 

changes at the level of MR.
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Unexpectedly and in contrast to findings in rats (Cizza et al. 1995; Workel et al. 

2001) the expression of MR and GR mRNA in the PVN was independent of age. Compared 

to the hippocampus, MR mRNA expression was lower in the PVN, but clearly detectable. 

It showed a pronounced circadian rhythm, with increased levels in the evening at all 

ages. This emphasizes that expression profiles of hippocampal corticosteroid receptor 

mRNA cannot be generalized to other brain structures nor are they predictive for age 

related alterations. 

CRH is generally considered the principal neural signal controlling (stress-

induced) ACTH release whereas AVP is considered to weakly stimulate ACTH release on 

its own but to markedly amplify the effect of CRH (Kalsbeek et al. 2002; Watts et al. 2004). 

Both CRH and AVP mRNA expression in the PVN did not change with age. Interestingly, 

AVP mRNA decreased in the evening in 3 and 9 months old mice but was constant over 

the day at 16 months of age, which also showed highest ACTH plasma levels. Elevated 

AVP has been reported in aged humans and rats (Zhou and Swaab 1999; Keck et al. 

2000), but although our data may suggest elevated evening levels of AVP mRNA, ANOVA 

indicated no significant age effect. Novel, and in contrast to rats (Keck et al. 2000; Itoi et 

al. 2004), is the finding that AVP mRNA is expressed in similar amounts in both parvo- 

and magnocellular neurons of C57BL/6J mice. Up to now only certain conditions like 

adrenalectomy in rats are known to induce AVP mRNA in the parvocellular part of the 

PVN (Grillo et al. 1998; Itoi et al. 2004). 

Corticosterone is a regulator of MR, GR (Spencer et al. 1993; Herman and 

Spencer 1998; Spencer et al. 1998) and CRH and AVP (Sawchenko 1987; Kovacs et al. 

2000) mRNA expression. Reciprocally, MR mediates the action of corticosterone on basal 

HPA axis activity, while GR is mainly involved in the stress-related actions (Ratka et al. 

1989; de Kloet et al. 1993b). The reduced hippocampal MR and GR mRNA, therefore, 

could be either consequence or (part of the) cause of the elevated and irregular secretion 

pattern of corticosterone in the 9 months old mice. Correlative studies in rat suggest 

that decreased hippocampal GR expression does not necessarily depend on elevated 

glucocorticoids, but might be a consequence of aging per se (Murphy et al. 2002).

Basal levels of CRH and AVP are under feedback inhibition by corticosterone 

(Ma and Aguilera 1999). The circadian rise of corticosterone might be associated with the 

decreased AVP mRNA of 3 and 9 months old mice in the evening. However, at 16 months 

of age, AVP mRNA remained high in the face of the increased evening corticosterone, 

together with elevated ACTH. Presumably, the elevated AVP mRNA amplifies the 

CRH effect on ACTH, thus subserving appropriate corticosterone production from a 

hyposensitive adrenal. Although the discussion of regulatory mechanisms is challenging 
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and could be elaborated, it remains speculative, as we did not attempt to perform 

experimental manipulations of the HPA axis. 

Some features of the HPA axis showed remarkable changes during the life of C57BL/6J 

mice. However, the consequences of these changes in circadian and age dependent 

patterns of HPA axis activity for the regulation of the stress response and other brain 

functions like cognitive processes (de Kloet et al. 1999), remain to be elucidated. We and 

others have shown in rats that early life stress due to maternal deprivation changes HPA 

axis activity, stress reactivity and cognitive performance throughout life, underlining the 

importance of an undisturbed development of the HPA axis (Oitzl et al. 2000; Workel et 

al. 2001). Only if the HPA axis fails to adapt during the aging process, physiological and 

behavioral processes may be compromised (Everitt and Meites 1989; Meijer et al. 2005).

Concluding, measurement of the aging circadian HPA axis activity in the mouse reveals 

adaptations at various levels. It appears that there are oscillations in the activity of 

the various components of the HPA axis rather than linear progressive functional 

changes. Similar as has been shown in the aged rat, high ACTH was accompanied by low 

corticosterone secretion. We propose that the adaptive changes in adrenal sensitivity 

and brain corticosteroid receptor mRNA preserve homeostasis in corticosteroid exposure 

throughout life. 
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Abstract 

Most drug delivery procedures induce stress which might interfere with the 

pharmacological action of the drug and behavior. Stress is deduced from high and 

long-lasting elevations of the hormone corticosterone. We set out to develop a non-

invasive, stress-free method of drug delivery in mice. Validation consisted of delivery of 

glucocorticoid ligands via oats to male C57BL/6J mice. 

Oat consumption induced a small increase in corticosterone concentrations 

after 15 min (< 50ng/ml) that returned to low resting levels at t=30 (< 10ng/ml). Gavage 

and intraperitoneal vehicle injections resulted in long-lasting corticosterone elevations 

(> 100ng/ml at t=30 and ~ 50ng/ml at t=60 min after delivery). Adding corticosterone to 

oats resulted in 3-fold higher plasma corticosterone in the 15.0mg/kg-group (± 250ng/

ml) compared to the 4.5mg/kg-group at t=30 and t=90. Application of the glucocorticoid 

receptor antagonist RU38486 (200mg/kg) elevated the plasma corticosterone levels 

for at least eight hours. Additional swimming increased corticosterone even further. 

Presumably, already the small oat-consumption-induced increase of corticosterone 

requires negative feedback via glucocorticoid receptors.

 In conclusion, the context-dependent and dose-controlled application of drugs 

via oats avoids confounding strong stress system activation and makes it suitable for 

studies on learning and memory processes. 
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Introduction

Assessment of pharmacological drug profiles, but also studies on mechanisms underlying 

cognition and behavior, require the controlled application of drugs. Most procedures 

related to administration of drugs to small laboratory animals like mice, require invasive 

methods. Already hand-restraint will lead to a concomitant, non-controlled and unwanted 

activation of the stress system (Balcombe et al. 2004). By definition, any kind of stress, 

even a mild stressor, is a potential confounding factor of drug effects. Specifically, in 

relation to the well known effects of stress on cognitive processes (Lupien and McEwen 

1997; Joels et al. 2006) a non-invasive, stress-free and dose- and time-controllable drug-

delivery is of crucial importance, but often disregarded or discarded as neglible. 

The stress response in humans and rodents is controlled by the Hypothalamic-

Pituitary-Adrenal (HPA) axis. In mice and rats, corticosterone is the glucocorticoid 

hormone secreted from the adrenals in response to stress, i.e., any event that disturbs 

the psychological and physiological homeostasis of the organism. The effects of 

corticosterone are mediated in the brain by two nuclear receptors: the high affinity 

mineralocorticoid receptor (MR) and the low affinity glucocorticoid receptor (GR). 

Neuroendocrine regulation via MR controls basal HPA axis activity and sensitivity to a 

stressor. GR is activated after high circulating corticosterone levels, exerting negative 

feedback and facilitation of the essential recovery from the stress response (De Kloet 

et al. 1998). Measurement of circulating plasma corticosterone concentrations is an 

accepted tool to assess stress-induced activation of the HPA axis. 

Drug-delivery via food or drinking water is an easy to perform, non-invasive 

procedure for mice, however lacking dose- and time-controlled deliveries (Ruzek et 

al. 1999). Although the route of administration (per os) fits a stress-free application 

form, dose- and time-control has to be accomplished differently. Therefore, we address 

the potential of using a treat or bait to deliver drugs. This has previously been shown 

effective in other species like birds, where mealworms injected with corticosterone 

were supplied in close context with the requested behavioral response (Breuner et al. 

1998). As a treat, we decided to use oats as mice like to eat them and the structure 

of oats facilitates the soak up of solutions. To validate the method, we administered 

glucocorticosteroids ligands to manipulate HPA axis activity and subsequently measured 

blood plasma corticosterone concentrations. 

The aim of the experiments was to devise a non-invasive stress-free, dose- 

and time-controlled procedure for effective delivery of glucocorticoid agonists and 

-antagonists to mice. In context with the procedures of drug administration, corticosterone 
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concentrations were measured in blood plasma at various time points. First, we tested 

the hypothesis that mice would readily consume the oats, without concomitant increase 

in endogenous corticosterone levels. Vehicle applied via a gavage or intraperitoneal 

injection was expected to result in higher corticosterone concentrations. Second, we 

investigated the dose- and time-dependency of corticosterone treatment in oats. Finally, 

the effect of the GR antagonist RU38486 was determined. 

Materials and Methods

Animals and housing

Ten weeks old male C57BL/6J mice were purchased from Janvier Bioservices (Netherlands). 

Upon arrival, the mice were single housed with food and water ad libitum and allowed 

to acclimatize for two weeks to the testing room. The room was temperature (19 – 21 

°C) and humidity (50 - 60%) controlled; lights on from 0700 to 1900h (12-12h light-dark 

cycle). Animals were repeatedly handled, weighed and tested between 0900 and 1400h. 

The experiments were approved by the Local Committee for Animal Health, Ethics and 

Research of the University of Leiden. Animal care was conducted in accordance with the 

EC Council Directive of 24 November 1986 (86/609/EEC).

Familiarization to oat administration

One week prior to the start of the experiments, a feeding-cup (2.3cm diameter x 

2.5cm high; Figure 1A) was glued to the floor in a corner of the home cage, opposite 

the nest location. For familiarization, three flakes of oats (Speltvlokken, Biologische 

teelt, Graanpletterij de Halm, Netherlands; ± 140mg) were placed in the cup on three 

consecutive days, every other day at 0900h. The grid of the cage was lifted and the 

sawdust was removed from the cup using an air puff generated with a pipette. Next, the 

oats were placed into the cup using forceps to minimize human odor transfer. Thereafter, 

the cage was closed and the mouse was allowed to eat the oats undisturbed. All the oats 

were consumed within 10 min (Figure 1B/C). 

Drugs

Oat delivery: One day prior to the experiment, three flakes of oats were placed in a 

glass vial and the solutions containing corticosterone, GR antagonist or dissolvent 

were applied. The glass vials containing the oats were kept at room temperature over 
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night. Within 16 hours, the solution was absorbed by the oats and they were dry when 

presented to the mice. 

Corticosterone was dissolved in CORT-HBC complex (Sigma-Aldrich Cole; 

Germany) in 5.6 and 18.7ng/ml and 0.9% NaCl-HBC as vehicle (VEH). From these 

solutions 20µl was applied to three oats resulting in a corticosterone dose of 4.5 and 

15.0mg/kg for the treatment groups (Ruzek et al. 1999).

The GR antagonist RU38486 (100mg/ml; kindly provided by Corcept 

Pharmaceuticals, CA, U.S.A.) was dissolved in 1ml 0.9% NaCl containing 0.25% 

carboxymethylcellulose and 0.2% Tween20 (VEH). From this solution 50µl was applied 

to the oats (mice received 200mg/kg RU38486).

Gavage injection: The mouse was hand restraint and a gastric feeding needle 

(length = 3cm; 19 gauge = 1mm diameter; BioService, Belgium) was used to apply a 

volume of 200µl/25g bodyweight per os. 

Intraperitoneal (i.p.) injection: The mouse was hand restraint and kept on its 

back within the palm of the hand. The injection (needle: 25 gauge = 0.5mm) was given in 

the lateral aspect of the lower left quadrant of the belly. 

Adrenalectomy 

To start surgery with low stress system activity, mice were transported to the operation 

room two hours earlier. Between 0900 to 1400h adrenalectomy (ADX) was performed 

using the dorsal approach under isoflurane anesthesia. The percentage of isoflurane 

used to induce anesthesia was 4%, and was decreased to 2% at the moment of surgery. 

The adrenals were removed and surgery was completed within 5 min. Mice received 
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Chapter  3  – Figure 1 
S. Dalm (2012) 

Figure 1

Tools for drug administration via oats 

and subsequent blood sampling via tail 

incision. (A) prerequisites used during 

preparation: 1) oats, 2) glass vial, 3) 

pipette, 4) feeding cup; and ruler giving 

the size of the objects in cm; (B) three 

flakes of oats are placed with forceps in 

a feeding cup in the home cage of the 

mouse; (C) mouse eats oats; (D) incision 

of the tail with a razor blade to allow (E) 

blood sampling.

(A)
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(D) (E)
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two bottles, one containing 0.9% saline, and the other containing water, upon return to 

their home cage.

 

Blood sampling and corticosterone assay

Corticosterone concentrations were measured in blood samples obtained via tail incision 

(Figure 1D/E). Briefly, a small incision with a razor blade at the base of the tail allowed 

collection of < 50µl blood within 60s after opening of the animal’s cage (Durschlag et 

al. 1996; Dalm et al. 2005). We refined the method to minimize possible confounding 

factors of the incision procedures and concomitant blood volume reduction (Grassler et 

al. 1990). The mouse is only touched at the tail, not fixated in the hand (Figure 1D/E). 

Only a minute volume of blood was collected, i.e., < 50µl, with at least 60 min between 

two blood samples. To stop bleeding, the tail was gently pressed into the sawdust of the 

cage. Separate groups of mice are used for the time-course measurements. The entire 

procedure lasted less than 60s. Data on Oats+VEH treated mice in Figure 2 support 

the efficacy of our blood sampling method. We conclude that the blood sampling 

procedure did not significantly contribute to the observed pharmacological effects of 

our experimental design.
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Chapter  3  – Figure 2 
S. Dalm (2012) 

Figure 2

Dose-controlled delivery of corticosterone (CORT: 0, 4.5 and 15.0mg/kg bodyweight) via oats 

(indicated by arrow at 0900h) to adrenalectomized mice. Plasma corticosterone concentrations in 

ng/ml on the day before (basal), and t=30, 90, 180 and 300 min after oat consumption. Note that 

all corticosterone values of ADX mice are in the range of basal corticosterone secretion. Data are 

presented as mean ± S.E.M.; p < 0.05: * vs. other groups.
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At the end of the experiments, blood samples were taken from trunk blood. 

Blood was collected individually in capillaries, coated with potassium-EDTA (Sarstedt, 

Germany), stored on ice and centrifuged with 13000 rpm at 4°C for 10 min. Plasma 

was stored at –20°C. Corticosterone was analyzed using a commercially available radio 

immunoassay kit 125I-corticosterone (MP Biomedicals, Inc., NY, USA; sensitivity 3ng/ml).

Blood glucose levels in response to oat consumption 

In response to food consumption the blood glucose levels rise (Gagliardino et al. 1984). 

Basal glucose levels were determined one day before three flakes of oats (± 140mg) 

were presented in the feeding cup of the mice (two groups of mice (n = 8/group). Blood 

samples were taken after 5, 15 and 60 min after oat presentation (group 1) and after 10 

and 20 min (group 2). A droplet of blood was applied to a test strip and within seconds 

the glucose content of the blood was displayed in mmol/l (Accu-Chek Compact, Roche 

Diagnostics, GmbH, Mannheim, Germany). Then, the mouse was returned to its home 

cage (total duration < 15s). 

Experiment 1: Methods of drug-delivery and HPA axis activity 

To determine whether and to what extent the methods of drug-delivery (including 

moving the cage, eating oats, the vehicle, gavage and intraperitoneal injections) affect 

HPA axis activity, we estimated corticosterone concentrations at multiple time points. 

Oats procedure: One day before the experiment started, blood samples were 

taken to determine basal corticosterone concentrations. Mice were distributed randomly 

to three groups (n = 10 – 11/group): (1) Delivery control procedures: get the cage from 

the shelf, lift grid, touch feeding cup with forceps, close cage and return it to the shelf; (2) 

Consumption of pure oats; (3) Response to vehicle: consumption of oats with absorbed 

dissolvent used for the GR antagonist RU38486. Blood was collected from the same mice 

either at 30 or 60 min after the oat procedures on two consecutive days. 

Gavage injection: Two groups of mice (n = 8/group) were injected per os with 

200µl VEH (see above). 

Intraperitoneal injection: Two groups of mice (n = 8/group) were injected 

intraperitoneal with 200µl VEH.

Handling procedures related to gavage and intraperitoneal injections (mice, n 

= 8): get the cage from the shelf, lift grid, pick up the mouse from the cage at the base 

of the tail, place mouse on grid, restrain the mouse as preparation for either gavage and 

intraperitoneal injection for 5s, return mouse to cage. 
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Experiment 2: Dose-controlled corticosterone administration via oats

To differentiate the amount of exogenously administered corticosterone in the blood 

from the endogenously secreted hormone, mice were adrenalectomised (ADX). In 

contrast to rats, ADX-mice remain to secrete basal low concentrations of corticosterone 

from scattered cell groups in the vicinity of the adrenals (Hummel 1958). ADX mice 

lack the stress- or circadian-induced increase in corticosterone secretion, keeping a 

basal secretion of corticosterone between 5 and 25ng/ml. To verify the quality of ADX, 

basal blood samples were taken in the evening five days after surgery. Two days later 

at 0900h, mice (n = 8/group) received three flakes of oats containing 4.5 or 15.0mg/

kg corticosterone or vehicle. Blood samples were taken at t=30, 90, 180 and 300 min 

following oat consumption. 

Experiment 3: GR antagonist RU38486 delivery via oats

Activation of GR regulates the negative feedback on corticosterone secretion during 

the circadian peak and in response to stress (De Kloet et al. 1998). Blockade of the 

GR inhibits negative feedback. Consequently, corticosterone concentrations increase 

or remain elevated. Mice ate oats with the GR antagonist RU38486 or vehicle (factor: 

treatment). One hour later, half of the mice had to swim in a bucket filled with warm 

water (30cm diameter x 40cm high; 26 ± 1oC) for 1 minute, to activate the HPA axis 

(factor: condition). The mouse was removed from the water using a grid and returned to 

its home cage which was placed underneath a heating lamp (250Watt) for 3 min. Control 

mice remained in their home cage. We hypothesized that blockade of GR by RU38486 

would result in high concentrations of corticosterone in mice exposed to swim stress. 

According to treatment and condition, four groups were formed (n = 8/group): 

(1) Oats + RU38486 + swim; (2) Oats + VEH + swim; (3) Oats + RU38486 + no-swim; (4) 

Oats + VEH + no-swim. Basal corticosterone concentration was determined between 

0900 to 1000h, one day before the start of the experiment. The next day, mice received 

three flakes of oats containing 200mg/kg RU38486 or vehicle at 0900h. One hour after 

consumption at t=60 min, a blood sample was taken. Then, mice returned to their home 

cage or swam for 1 minute. Subsequent blood samples were taken at t=90, 120, 180 and 

240 min after swimming. Italic time points indicate separate groups of mice. Between 

blood sampling, mice remained in their home cage. 

Separate groups of mice were fed with Oats + RU38486 or Oats + VEH (n = 6/

treatment) and blood samples were collected: (1) 15 min after oat delivery to estimate a 

possible short-lasting rise in corticosterone secretion due to oat consumption; and (2) to 
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further assess the duration of GR antagonism: one day before (control) and 8 hours after 

oat delivery during the circadian evening surge (at 1700h, i.e., two hours before lights 

off, (Dalm et al. 2005), and 24 hours after oat delivery.

Statistical analysis

Data was analyzed by one- or two-way analysis of variance (ANOVA; factors: treatment 

and/or condition), when appropriate with repeated measurements followed by Tukey 

post-hoc test. Total corticosterone values (AUC: area under the curve) were compared 

by t-test. Data are presented as mean ± S.E.M. Significance was accepted at p < 0.05.

Results 

Experiment 1: Methods of drug-delivery and HPA axis activity

At baseline, corticosterone concentrations of all groups were in the range of low 

basal levels (Table 1: F(5,55)=0.649, p = 0.663). Depending on the applied procedure, 

corticosterone concentrations increased after 30 and 60 min (time*group: F(10,100)=11.406, 

p = 0.001). However, none of the procedures related to oat administration, nor eating 

of pure and vehicle-treated oats and procedures related to gavage and intraperitoneal 

delivery altered the plasma corticosterone concentration. 

Corticosterone secretion in response to the vehicle delivered via oats, gavage 

and intraperitoneal injection increased over time and depended on the method of 

delivery (time*group: F(4,18)=9.731, p = 0.001). While vehicle delivery via oats had 

Table 1: 

Basal morning resting and procedure-induced corticosterone concentrations (ng/ml) in blood 

plasma at 30 and 60 min after delivery. Data are presented as mean ± S.E.M.; p < 0.05: * bold vs. all 

other procedures and time points; italic vs. basal.

Delivery procedure basal 30 min 60 min

 pure oats  7.0 ± 0.8 8.8 ± 1.1 7.3 ± 1.1

 oats + vehicle 8.3 ± 1.2 9.3 ± 1.2 7.5 ± 2.3

 procedures – oats 6.3 ± 0.4 6.9 ± 0.6 5.4 ± 0.6

 i.p. injection (vehicle) 7.9 ± 0.9 115.8 ± 16.8* 90.1 ± 16.3

 gavage injection (vehicle) 7.8 ± 1.2 133.9 ± 36.8* 43.3 ± 9.8

 procedures gavage and i.p. 8.1 ± 0.9 25.0 ± 1.9 31.3 ± 14.2
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no effect, gavage and intraperitoneal injections resulted in significant elevations of 

corticosterone at 30 and 60 min (p = 0.001 and p = 0.005, respectively). 

Blood glucose levels in response to oat consumption 

Basal levels of blood glucose (8.53 ± 0.38mmol/l) were in the expected range for 

C57BL/6 mice at 10 weeks of age (Saravia et al. 2002). We observed that mice consumed 

the oats within 10 min after presentation. Blood glucose increased in response to oat 

consumption (t=5 and 10 min: 9.70 ± 0.30 and 11.46 ± 0.21mmol/l) and remained at 

the same level from 10 to 60 min after oat presentation (time: F(3,35)=20.700, p = 0.001). 

Experiment 2: Dose-controlled corticosterone administration via oats

Exogenous corticosterone delivered via oats dose-dependently increased plasma 

corticosterone concentrations (Figure 2: treatment (F(1,21)=97.941, p = 0.001). The 

significant time*treatment interaction effect (F(4,84)=20.865, p = 0.001) is due to the ADX 

group: ADX mice that received Oats + VEH had the expected low basal corticosterone 

concentrations of 5.90 + 1.22ng/ml over all time points (p > 0.05). Consumption of oats 

containing corticosterone resulted in elevated concentrations at 30 and 90 min (p < 0.05): 

the dose of 15mg/kg corticosterone resulted in a 3-fold higher plasma concentrations 

than 4.5mg/kg (p < 0.05). When compared to 4.5mg/kg corticosterone and vehicle, 

corticosterone levels after 15mg/kg corticosterone were still significantly elevated 3 

hours after consumption (p = 0.001).

Experiment 3: GR antagonist RU38486 delivery via oats  

Mice consumed oats containing RU38486 or vehicle (treatment), one hour before 

swimming or not swimming (condition). Figure 3 depicts that corticosterone 

concentrations were significantly affected by treatment (F(1,28)=701.424, p = 0.001) 

and condition (F(1,28)=10.463, p = 0.001). In all but the VEH no-swim group, plasma 

corticosterone concentrations increased over time (time effect: F(5,140)=65.825, p = 

0.001). Corticosterone was significantly higher in the RU38486 than in the VEH mice 

(treatment*time F(5,140)=57.058, p = 0.001) and significantly elevated by swimming 

(condition*time F(5,140)=2.453, p = 0.036). 

Swimming further potentiated the corticosterone concentrations (condition: 

F(1,14)=4.667, p = 0.049), also expressed by significantly higher AUC values (mean ± 

SEM mg/ml; swim: 69.18 ± 3.29 vs. no-swim: 58.16 ± 2.94; p = 0.026). Corticosterone 
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Figure 3

Plasma corticosterone in ng/ml before (day 1 at 0900 and 1700h) and after consumption of oat 

with the GR antagonist RU38486 or vehicle (indicated by arrow at 0900h) on days 2 and 3. Mice 

of both groups were (A) not exposed to a 1-min swim or (B) exposed to a 1-min swim stress 

(indicated by the arrow at 1000h), 60 min after consumption of the oats. Blood samples were 

taken from different groups of mice t=15, 60, 90, 120, 180, 240 and 540 minutes (1700h) after 

oat-consumption on day 2. On day 3, another sample was taken at 0900h. Data are presented as 

mean ± S.E.M.; p < 0.05: ~ t=15 vs. basal: t=0 day 1 at 0900h; # RU38486 vs. VEH; & day 2 vs. day 1: 

evening corticosterone at 1700h.
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concentrations before testing were low and comparable between the groups (data not 

shown; F(3,31)=0.560, p = 0.646). 

Already the consumption of RU38486 containing oats increased plasma 

corticosterone (Figure 3A; t=60 min after oat delivery; p < 0.05). The additional 15 min 

time point after oat consumption revealed a slight increase in corticosterone secretion 

in both RU38486 and VEH groups (vs. baseline: p = 0.001). Apparently preventing GR 

action at this time underlies the massive subsequent increase in plasma corticosterone 

in the RU38486 mice, while corticosterone returns to baseline values in the VEH group 

with intact GR function.

Swimming alone increased the total corticosterone values calculated as AUC 

(Figures 3A/B; vehicle groups: swim 7.41 ± 0.70 vs. no-swim 3.10 ± 0.27mg/ml; p = 

0.001). Interestingly, 180 min after swimming, corticosterone levels were even lower 

than in no-swim controls (p = 0.013), and comparable to controls at 240 min. 

RU38486 delivery via oats kept the levels of plasma corticosterone elevated for 

at least 8 hours as the evening concentrations (1700h) were still higher compared to VEH 

(p = 0.001) and the evening value one day before the oat delivery (p = 0.001). Comparably 

low resting corticosterone concentrations were found 24 hours after delivery of oats (p 

> 0.05). 

Discussion

We have devised a non-invasive stress-free method of drug delivery in mice by validation 

on the glucocorticoid stress-system activity. Here we demonstrate that (1) ligands of 

the glucocorticoid system can be delivered via oats, (2) the effects are not confounded 

by long-lasting stress system activation induced by the method of administration and 

thus allow (3) drug delivery in close context with a test situation, e.g., a behavioral 

task. Furthermore, the procedure is easy to perform which minimizes variability of drug 

effects induced by the researcher and drug-application technique.

Any disturbance in the homeostasis of the organism induces HPA axis activity, 

which is expressed as an increase in circulating concentrations of corticosterone in mice 

and rats (De Kloet et al. 1998). The magnitude and duration of HPA axis activation is an 

accepted indicator for the degree of stress applied. In the present study, procedures 

related to drug delivery via oats did result in a minute increase in corticosterone. In 

contrast, procedures related to both, gavage and intraperitoneal injections resulted in 

substantial and long-lasting increased corticosterone concentrations. Whereas high-long 



Non-invasive stress-free application of glucocorticoid ligands in mice

67

Ch
ap

te
r 

3

lasting increases of corticosterone are generally considered as “stressful”, we defined 

the minute increase in corticosterone as “stress free”. The devised method of drug 

delivery via oats reduced the magnitude and duration of stress system activation, could 

and should be used for other compounds as well.

Method of drug delivery

Non-invasive drug delivery in rodents can be realized via food or water. Mice are nocturnal 

animals, which mainly eat and drink during their behaviorally active (dark) period. Next 

to the fact that the dose of the drug delivered via free access to consumables cannot be 

controlled, most laboratories perform experiments during the inactive (light) period of 

the mice. To force dose- and time-controlled consumption, depriving mice of food and 

water is in itself a stressor (metabolic stress) with wide-spread consequences, also on 

HPA axis activity and disturbance of circadian activity patterns (Sommerville et al. 1988; 

Duclos et al. 2005). To avoid food deprivation-induced stress and to motivate eating 

during the light period, we selected oats as a treat. Mice like eating oats and readily 

overcome neophobia. Providing the oats at a fixed location in the home cage excluded 

stress induced otherwise by a novel environment or touch by a human experimenter. In 

the present study, all mice eat the oats containing the different glucocorticoid ligands 

within 10 min. The period of corticosterone and GR antagonist delivery via oats can be 

extended for at least one week (V. Brinks, S. Dalm, unpublished). However, drugs might 

have a bad taste or smell, such that mice might not eat the drug-containing oats (or only 

once). Hence, we recommend testing a possible neophobia or taste-aversion response 

to the oats + drug, like we have done, before the start of the experiment. 

Choosing the appropriate vehicle reduces masking of wanted effects of 

administered drugs of interest. The selection of the most appropriate vehicle is based 

on the properties of the substance under investigation. Brown and colleagues (Brown et 

al. 2000) tested several vehicles, including water, corn oil and 1% methylcellulose/0.2% 

Tween80. They demonstrated that gavage administration of corn oil at 20ml/

kg induced a stress response in a volume dependent fashion, whereas water and 

1% methylcellulose/0.2% Tween80 did not. We also showed that the dissolvent 

of the glucocorticoid antagonist RU38486 in oats did not influence corticosterone 

concentrations. 

To assure dose-controlled delivery via oats, mice are housed solitary. Housing 

conditions can significantly influence the behavior of mice, and this relates to enriched 

vs. poor environment, single vs. group housing, gender and strain effects (Ouagazzal et 

al. 2003; Chourbaji et al. 2005). Male mice, due to their territorial aggression should be 
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preferentially housed solitary with some environmental enrichment like paper towels 

(Van Loo et al. 2004). Social housing is the optimal way of housing female laboratory 

mice (Van Loo et al. 2007). To allow dose-controlled consumption of oats, introducing 

separations into the home cage of group-housed mice might be an option, but could 

induce stress due to disturbance of the home-environment as well. How feasible such a 

procedure is, has to be tested. 

Effects of glucocorticoid ligands

Corticosterone. Administration of different doses of corticosterone to adrenalectomised 

mice allowed us to mimic the natural surge of corticosterone that has been described 

in response to a novel cage (Grootendorst et al. 2001b). The higher dose of 15mg/kg 

induced an approximate 3- fold increase in blood corticosterone concentrations when 

compared to the lower dose of 4.5mg/kg. Interestingly, 5 hours after administration of 

both doses, plasma corticosterone concentrations were similar. These findings will allow 

to choose appropriate doses of corticosterone in future studies. Based on the action 

mechanism of corticosterone (De Kloet et al. 1998) we may assume that in adrenally 

intact mice the two doses of corticosterone will have activated GR to a different 

degree, leading to enhanced negative feedback. Here, in ADX mice we may conclude 

that corticosterone also initiated GR actions. The decrease in plasma concentrations, 

however, is due to clearance from the organism, for both doses of corticosterone within 

3 to 5 hours. 

Glucocorticoid antagonist. In the current study RU38486 was administrated 

systemically one hour before a 1 minute swim trial. Given the corticosterone response, 

swimming strongly activates the HPA axis and can be considered as a stressor (Figure 

3B). Mice that received RU38486 and swam for 1 minute, indeed showed the expected 

increase in corticosterone concentrations, lasting at least 8 hours, but less than 24 hours. 

Surprisingly, mice that consumed the RU38486-treated oats, but did not swim, also 

showed strongly increased corticosterone concentrations. This is in contrast to previous 

studies using intracerebral injections in rats showing that the effects of GR antagonism 

on corticosterone regulation occur in response to stress and at the peak of circadian 

corticosterone secretion, but not during the period of low basal corticosterone secretion 

(Ratka et al. 1989; van Haarst et al. 1996). Also systemic injections of GR antagonists 

in rats did not change basal corticosterone secretion (Spencer et al. 1998; Spiga et 

al. 2007). There are known species-dependent stress responses, and mice and rats 

habituate differently to laboratory handling and injections procedures (Balcombe et al. 

2004). We assumed that oat-consumption itself might have activated the HPA axis within 
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this 30 min time frame and verified this in a follow-up experiment. Indeed, 15 min after 

oat consumption corticosterone concentrations were slightly increased. The slightly 

elevated blood glucose within 10 min is in accordance with the post-prandial increase 

in plasma glucose seen after consumption of carbohydrate-rich food. Glucocorticoids 

and glucose strongly interact (Gagliardino et al. 1984; Peters et al. 2004). We suggest 

that already the rather slightly elevated corticosterone will activate some GR to regulate 

negative feedback and thereby controlling the oat-consumption-induced secretion of 

corticosterone. The systemic application of the GR antagonist RU38486 involves an 

effective GR blockade throughout the entire organism and corticosterone levels kept 

rising. We conclude that the loss of GR activation potentiated corticosterone secretion 

due to the combined actions of glucose and corticosterone. This and the question of a 

genomic or non-genomic (via nuclear or membrane receptors) action of the GR antagonist 

cannot be resolved at present and should be addressed in further studies. The fast time 

course (within 1h) might point to a non-genomic action, however Morsink et al. (Morsink 

et al. 2007) reported in hippocampal tissue of rats genomic actions of corticosteroids 

via GR. Relevant is the fact that the initially unexpected increase of corticosterone due 

to oat consumption now additionally proves the efficacy of RU38486 as GR antagonist.

The dose of 200mg/kg RU38486 used was 16-fold higher compared to the study 

of Ratka (Ratka et al. 1989) and might be considered as extremely high. However, high 

doses of RU38486 prove very successful in patients suffering from neuropsychiatric 

disorders (up to 2000mg/BW (DeBattista and Belanoff 2006). Furthermore, mice lack 

the a1-acid glycoprotein, which in humans binds about 95% of circulating RU38486 

(Heikinheimo et al. 1987; Heikinheimo et al. 1989). Thus in mice, low concentrations 

of RU38486 are rapidly cleared from the body. In order to understand the mechanism 

underlying the beneficial effects of long term GR antagonism on endocrine and behavioral 

regulation, high dose of RU38486 will increase the likelihood of GR antagonism and as a 

consequence disturb negative feedback. This is clearly demonstrated by the long-lasting 

elevation of endogenous corticosterone. While exogenous corticosterone is cleared 

from the system after 3 to 5 hours, corticosterone levels remain extremely high during 

this time domain. This is indicative for continuous secretion of corticosterone due to the 

blockade of negative feedback actions via GR (Dalm 2006).

With respect to the use of oats as a reward or carrier for drugs in studies 

on learning and memory, we have to keep in mind that glucose is also known to 

modulate cognitive functions (Messier 2004). However, to be effective, glucose has 

to be administered in much higher concentrations than induced by oat consumption. 
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Moreover, the number of oats could be reduced to minimize effects on corticosterone 

and glucose secretion. 

Drug delivery via oats has several advantages over other methods of application. 

It is (i) non-invasive; the short-lasting slight increase in plasma corticosterone after oat 

consumption, is not comparable to injection-induced effects, neither in quantity nor 

quality; (ii) easy to use; (iii) allows administration in close-context and can be used 

repeatedly; (iv) no food or water deprivation is needed (Mitev et al. 1993); (v) time of 

administration is not confined to the dark, behaviorally active period; (vi) the vehicle is 

inherent to the drug effects; (vii) it resembles more the conditions in human drug delivery. 

Of course, there are also arguments against this kind of peripheral drug delivery. First, 

the drug effect is not selective as it reaches the entire body and may not pass the blood-

brain-barrier. This holds true for other systemic methods of drug delivery and is also 

related to pharmacodynamic and –kinetic characteristics of the drug. Second, timing of 

drug-delivery will depend on the number of oats presented, but can be achieved within 

10 min or less. It might not be suitable to study fast drug effects, while it does allow 

to study drug effects in close-context to, for instance, behavioral performance. Third, 

administration via oats requires that mice are single housed, at least during the time of 

drug delivery. Separating mice with partitions in their home cage might be a possibility. 

However it is likely, that interference with the home cage environment will introduce 

an extra stress factor. It might be possible to adapt mice to such handling by a series of 

habituation trials. Fourth, taste and smell of the drug could influence its consumption, 

but these are aspects that have to be tested before the experiment. When to use this 

method of drug delivery via oats? One has to balance the pros and cons, but it is the 

scientific question that is central to the design of the experiment. 

Conclusions

We consider drug delivery via oats as method of choice as it allows to dissociate 

the effect of the administration procedure from the properties of a drug. Since we 

have demonstrated that intraperitoneal and gavage injections lead to long-lasting 

corticosterone exposure that most likely will affect memory processes (Sandi et al. 1995; 

Sandi et al. 1997), we specifically propose oats for context-dependent stress-free drug 

delivery. 
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Abstract 

The present study tests the hypothesis that repeated daily administration of the 

glucocorticoid receptor antagonist mifepristone (MIF) would lead to chronic disinhibition 

of the hypothalamic-pituitary-adrenal axis. Male C57BL/6J mice were offered 200 mg/

kg MIF per os in oats, either once (1xMIF) or daily for seven days (7xMIF), or vehicle. 

Plasma corticosterone levels were determined in blood samples obtained i) at various 

time points after MIF intake; ii),immediately following five min exploration of a circular 

hole board at 24h after the first and seventh administration. At that time the mice were 

sacrificed for quantification of mineralocorticoid (MR) and glucocorticoid receptor (GR) 

mRNA expression in the hippocampus and the paraventricular nucleus (PVN). 

After 1xMIF corticosterone levels were elevated for about 16h, and then 

decreased towards vehicle control levels at 24h, while showing a much higher 

corticosterone response to circular hole board exposure. Following 7xMIF the basal and 

stress-induced corticosterone patterns were comparable to vehicle. The 1xMIF mice 

showed behavioral hyperactivity during exploration of the circular hole board, while the 

7xMIF mice rather engaged in serial search patterns. MR mRNA was decreased in all 

hippocampal subregions of the 1xMIF group, and increased in the 7xMIF group only 

in the CA2 cell field. GR mRNA expression in hippocampus and PVN was not affected. 

Adrenal weights were increased in both MIF groups.

In conclusion, the data show that after recurrent blockade of GR the adrenal 

corticosterone secretion is downregulated rather than disinhibited because of 

intermittent glucocorticoid feedback, while MR-dependent characteristics become 

prominent in exploratory behavior.
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Introduction 

It has been reported that patients suffering from psychotic major depression benefit 

from a brief treatment with the glucocorticoid antagonist RU38486, also known as 

mifepristone (MIF; 600 – 1200mg/day, once a day for four to seven days). These high 

doses of the antiglucocorticoid improved emotional and cognitive abilities and restored 

aberrant levels of corticosteroids (Murphy et al. 1993; Belanoff et al. 2001a; DeBattista 

and Belanoff 2006; Flores et al. 2006; Blasey et al. 2009; Blasey et al. 2011). The fast 

amelioration of psychotic and depressive symptoms is thought to be at least in part 

due to restoration of glucocorticoid action to which untreated depressed patients are 

resistant, while the anti-progestin activity of MIF seems not implicated (Belanoff et al. 

2001a; Thomson and Craighead 2008). 

In the present study we asked how daily administration of MIF would affect 

the secretion of corticosterone. Recent studies have addressed this question but have 

provided different results. Wulsin et al. (Wulsin et al. 2010) using a daily dose of 10mg/

kg of MIF in rats found attenuated basal and stress-induced Hypothalamic-Pituitary-

Adrenal (HPA) axis activity and attenuated depression-like behavior. Bachman et al. 

(Bachmann et al. 2003) offered rats 20mg/kg/day of various GR antagonists added to 

food and observed episodic increases in HPA axis activity and a profound increase in 

hippocampal MR expression (see also Spencer et al. 1998; Oomen et al. 2007) gave twice 

a day MIF orally (50mg/kg rat) to chronically stressed rats and found that this treatment 

blocked the stress-induced reduction in neurogenesis. Revsin et al. (Revsin et al. 2009) 

also administered twice a day MIF orally (200mg/kg mouse) and observed elevated HPA 

axis activity. Finally, van Haarst et al. (van Haarst et al. 1996) infused MIF chronically 

100ng/hr intracerebroventricularly in rats and observed after 3 days infusion enhanced 

stress-induced and circadian rises in corticosterone secretion under conditions in which 

spatial memory was improved (Oitzl et al. 1998). Common to these studies was that 

adrenal weight and responsiveness to ACTH were increased indicating that the changes 

were due to MIF’s anti-glucocorticoid rather than anti-progestin activity. Based on these 

results we tested therefore the hypothesis that daily administration of a very high dose 

of MIF would disinhibit the HPA axis. 

In the current study we mimicked in naive male C57BL/6J mice the high dose 

regimen of MIF common for the patient studies. For this purpose we applied a previously 

devised non-invasive stress-free method for steroid delivery via oats (Dalm et al. 2008). 

After the first (1xMIF) and the seventh administration (7xMIF) of the glucocorticoid 

antagonist or vehicle we assessed (i) in 2h-intervals the circadian corticosterone secretion 
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pattern; (ii) 24h post-treatment the behavioral and corticosterone response to novelty 

during five min exploration of a circular hole board. Immediately thereafter mice were 

sacrificed and hippocampal and hypothalamic MR, GR and CRH mRNA expressions were 

measured in brain sections with in situ hybridization. The data demonstrated contrary 

to our hypothesis that recurrent GR blockade with MIF downregulates HPA axis activity, 

while altering the behavioral response to novelty. 

Materials and Methods

Animals

Male C57BL/6J mice, 8-10 weeks of age, were purchased from Janvier (France). Upon 

arrival at the animal facilities (Gorlaeus Laboratory, LACDR, University of Leiden, The 

Netherlands), mice were single housed in a temperature (21 ± 1˚C) and humidity (55 ± 

5%) controlled room, with food and water ad libitum; for ten days before the start of the 

experiment (12-12h light-dark cycle; lights on 0700 to 1900h). During this period mice 

were weighed and handled every other day. Experiments were approved by the Local 

Committee for Animal Health, Ethics and Research of the University of Leiden. Animal 

care was conducted in accordance with the EC Council Directive of 24 November 1986 

(86/609/EEC). 

Study design

The experiments were conducted with separate groups of mice. We measured: (1) the 

24h circadian corticosterone secretion, following single and repeated administration of 

MIF (200mg/kg; 1x/day for seven days). In addition, we collected blood samples around 

the time of the circadian corticosterone peak 32h after the last administration of MIF; 

(2) corticosterone concentrations before (basal) and after five min of novelty exposure 

to the circular hole board during which behavior was recorded for further analysis; 

(3) following behavioral testing, mice were decapitated and brains were prepared for 

measuring the expression levels of MR, GR and CRH mRNA in the hippocampus and 

paraventricular nucleus of the hypothalamus (PVN). 

Procedures

Familiarization of mice to oat administration and drug delivery procedures as described 

in (Dalm et al. 2008) are applicable to all experiments of this study. 
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Familiarization to oat administration 

One week prior to the start of the experiment a feeding-cup (2.3cm diameter x 2.5cm 

high) was taped to the floor in a corner of the home cage, opposite the nest location. 

For familiarization, three flakes of oats (Speltvlokken, Biologische teelt, Graanpletterij 

de Halm, Netherlands; ± 140mg) were placed in the cup on days 1, 3 and 5 of week 1, 2 

hours after lights on. The top of the home cage was lifted and the sawdust was removed 

from the cup using an air puff generated with a pipette. Next, the oats were placed 

into the cup using forceps to minimize human odor transfer. Thereafter, the home cage 

was closed and the mouse was allowed to eat the oats undisturbed. All the oats were 

consumed within 10 min. 

Drug delivery

Preparation of drug delivery via oats: One day prior to the experiment three flakes of 

oats were placed in a glass vial and the solutions containing GR antagonist or dissolvent 

(VEH) were applied. The glass vials containing the oats were kept at room temperature 

over night. Within 16h, the solution was absorbed by the oats and they were dry when 

presented to the mice. 

The GR antagonist mifepristone (MIF) (kindly provided by Corcept 

Pharmaceuticals, CA, U.S.A.) was dissolved in 1 ml 0.9% NaCl containing 0.25% 

carboxymethylcellulose and 0.2% Tween20 (VEH=dissolvent). From this solution 50µl 

was applied to the oats (mice received a dose of 200mg/kg MIF).

Hormone assays

The circadian corticosterone concentrations were measured in blood samples obtained 

via tail incision (Dalm et al. 2005). Briefly, a small incision with a razor blade at the base 

of the tail allowed collection of 50µl blood within 90s after opening of the animal’s cage. 

Following decapitation, trunk blood was collected individually in capillaries coated with 

potassium-EDTA (Sarstedt, Germany), stored on ice, and centrifuged with 13000 rpm 

at 4°C for 10 min. Plasma was stored at –20°C. Corticosterone concentrations were 

measured using commercially available radio immunoassay kits 125I-corticosterone (MP 

Biomedicals, Inc., NY, USA; sensitivity 3 ng/ml).
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Experiment 1: Effect of GR antagonism on corticosterone secretion

Animals

Mice (n = 54) were randomly assigned to three treatment groups (n = 18/group): (1) 

single mifepristone (1xMIF); (2) MIF once a day on seven consecutive days (7xMIF) or (3) 

VEH on seven consecutive days (VEH). Oats+MIF or Oats+VEH were placed in the feeding 

cup at 0900h, and consumed within 10 min. 

Experimental design 

The circadian corticosterone secretion was determined in blood samples collected via 

tail incision every two hour over a period of 24h. The first blood sample was taken at 

1100h, i.e., two hours after MIF or VEH was administrated, and the last at 0900h the next 

day. Subsequent blood samples were collected starting 32h after the last administration 

around the circadian corticosterone peak at 1700, 1900, 2100 and 2300h.

The three treatment groups were divided in three subgroups each, consisting of 

six mice. Thus, from each mouse, one blood sample was taken every six hours and each 

time point consisted of six mice per group. During the dark period, blood sampling took 

place under red light conditions.  

Experiment 2: Corticosterone and behavioral responses to the circular hole 

board

Animals

Mice (n = 24) were randomly assigned to three treatment groups (n = 8/group): (1) single 

mifepristone (1xMIF); (2) mifepristone once a day on seven consecutive days (7xMIF) 

or (3) VEH on seven consecutive days (VEH). Oats+MIF or Oats+VEH were placed in the 

feeding cup at 0900h, and consumed within 10 min. 

Experimental design

Twenty-four-hours after the last administration of MIF or VEH we took a blood sample 

via tail incision, and placed the mouse for 5 min on the circular hole board; the 

behavioral response was analyzed. Immediately following behavioral testing, mice were 

decapitated. Corticosterone concentrations were determined in trunk blood. Brains 

were snap frozen in isopentane, pre-cooled on dry ice/ethanol and stored at –80°C until 

further use, i.e. to determine MR, GR and CRH mRNA expression levels in brain tissue. 

Thymus and adrenals were removed and weighed. 
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Circular hole board

Apparatus: A grey round plate (Plexiglass; 110cm diameter) with 12 holes (5cm diameter, 

5cm deep) at equal distances from each other, and at a distance of 10cm from the rim 

of the hole to the rim of the plate, was situated one meter above the floor in a different 

experimental room then the housing room. Light conditions on the surface of the board 

were 120lux. To minimize, and distribute odour cues, the surface was cleaned with 1%HAc 

and the board was turned (randomly clock- and anticlockwise) before a mouse was 

tested. Behavior was recorded on videotape and analyzed with an automated tracking 

system (Ethovision 3.1, Noldus Information Technology, Wageningen, The Netherlands). 

The position of the mouse was sampled five times per second. To calculate the distance 

walked, we set the minimal distance between samples to 3cm. The following parameters 

related to general activity, exploratory strategies and possible anxiety-related behaviors 

were analyzed: distance walked (m) on the board (=total arena) and in specified zones 

defined as: start center = circle of 30cm diameter, rim zone = a ring of 4.5cm at the outer 

perimeter of the plate. Parameters: velocity (cm/s), number of holes visited; sequence 

of hole visits (serial: more than two holes in sequence; perseveration: repeatedly visiting 

the same hole or alternately visiting two neighbouring holes); latency (s) to leave the 

center; latency (s) to and time spent (s) in rim zone. 

In situ hybridization for MR, GR and CRH mRNA

Brains were sectioned at –20°C in a cryostat microtome at 10µm in the coronal plane 

through the level of the hypothalamic paraventricular nucleus (PVN) and dorsal 

hippocampus. Sections were thaw-mounted on poly-L-lysine coated slides (0.001%), air 

dried and kept at –80°C until further use.

In situ hybridizations using 35S-labeled ribonucleotide probes (MR, GR, CRH) 

were performed as described previously (Schmidt et al. 2003). Briefly, sections were 

fixed in 4% paraformaldehyde and acetylated in 0.25% acetic anhydride in 0.1M 

triethanolamine/HCl. Subsequently, brain sections were dehydrated in increasing 

concentrations of ethanol. The antisense RNA probes were transcribed from linearised 

plasmids containing exon-2 of mouse MR and GR, and the full length coding regions 

of CRH (rat). Tissue sections (3–4/slide) were saturated with 100µl hybridization buffer 

containing 20mM Tris-HCl (pH 7.4), 50% formamide, 300mM NaCl, 1mM EDTA (pH 8.0), 1x 

Denhardt’s, 250 µg/ml yeast transfer RNA, 250 µl/ml total RNA, 10mg/ml salmon sperm 

DNA, 10% dextran sulfate, 100mM dithiothreitol, 0.1% SDS, 0.1% sodium thiosulfate and 

supplemented with approximately 1.5 x 106cpm 35S-labeled riboprobe. Brain sections 
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were cover slipped and incubated overnight at 55°C. The next day sections were rinsed 

in 2xSSC, treated with RNaseA (20mg/ml) and washed in increasingly stringent SSC 

solutions at room temperature. Finally, sections were washed in 0.1xSSC at 65°C for 30 

min and dehydrated through increasing concentrations of ethanol. All age groups were 

assayed together. Films were opposed to Kodak Biomax MR film (Eastman Kodak Co., 

Rochester, NY) and developed. 

Autoradiographs were digitized, and optical density of the areas of interest was 

quantified using image analysis computer software (analySIS 3.1, Soft Imaging System 

GmbH). The average density of six measurements for each animal was calculated. 

Statistical analysis

The circadian profile of corticosterone was analyzed by analysis of variance (ANOVA - 

factor: treatment) with repeated measurements, followed by LSD post-hoc test. Total 

corticosterone (AUC: area under the curve) over 24h was calculated for light and dark 

periods of 12h, subjected to ANOVA, with treatment and time of the day as fixed factors. 

Body-, adrenal-, and thymus weights were analysed using one-way ANOVA followed by 

Bonferroni’s multiple comparison post hoc test. Data are presented as mean ± S.E.M. 

Statistical significance was accepted at p < 0.05.

Results

Experiment 1: Effect of GR antagonism on corticosterone secretion 

Circadian pattern of plasma corticosterone level 

Mice of all groups showed a circadian corticosterone rhythm (Figure 1A; time 

F(11,165)=35.051, p < 0.001) as previously described (Dalm et al. 2005). The corticosterone 

secretion of control mice increased from 1500h onwards, with peak levels (± 100ng/ml) at 

the end of the light phase and the beginning of the dark phase (between 1700 and 2100h). 

Interestingly, the frequency of MIF administration affected the course of the circadian 

rhythm (time*group: F(22,165)=15.992, p < 0.001). Corticosterone concentrations in 1xMIF-

mice were significantly higher from 1100 until 0100h (p < 0.01), reaching and maintaining 

peak levels from 1300 until 2300h (± 300ng/ml). Around 2300h, concentrations readily 

declined until there was no difference in corticosterone concentration at 0300h vs. 

control and 7xMIF-administrated mice. There was a sudden significant increase vs. 

controls (p = 0.001) and 7xMIF mice (p = 0.013), at 0500h. In contrast, repeated MIF 
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administration did not boost the concentrations of corticosterone as was observed for 

1xMIF administrated mice; the time course was similar to VEH mice. Overall, there was 

a main effect of treatment due to the high corticosterone concentrations in the 1xMIF 

mice (F(2,15)=550.923, p < 0.001). 

Total amount corticosterone 

The total amount of corticosterone calculated as area under the curve (AUC) over 24h 

showed a main effect of treatment (Figure 1B AUC: F(2,17)=392.094, p < 0.001). AUC 

corticosterone during the dark period (1900 to 0700h) was higher than during the light 

period (0700 to 1900h) in VEH and 7xMIF mice (paired t-test; both p < 0.01). 1xMIF 

mice had similar high AUC corticosterone levels during the light and dark periods, 

both significantly higher than VEH and 7xMIF mice. Interestingly, AUC corticosterone 

was lowest during the light period of 7xMIF mice (p < 0.039 vs. VEH) due to the low 

corticosterone concentrations measured from 1500 till 1700h. 

Figure 1 Dalm et al., 2012
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Figure 1

(A) Circadian secretion of corticosterone in ng/ml measured every 2 hours in blood plasma of male 

mice C57BL/6J that received RU38486 (MIF) once (1xMIF) or for seven days (7xMIF). Mice were 

entrained in a 12-12h light-dark cycle (dark phase from 1900 to 0700h represented by the gray 

shaded area). (B) Total corticosterone secretion in ng/ml during the light and dark period of the 

day, determined as Area Under the Curve (AUC); ng/ml. Data are presented as mean ± S.E.M; p < 

0.05 * vs. other groups, # within groups, ~ 7xMIF vs. VEH.

(A) (B)



82

Chapter 4

Chapter 4

Corticosterone around the circadian peak, 32h after mifepristone 

administration

Treatment effects were found around the time of the circadian peak (Figure 2, 1700 

to 2300h; F(2,15)=6.308, p =0.01). Thirty-two hours after the last administration, 1xMIF 

mice secreted less corticosterone than VEH (p = 0.007) and 7xMIF mice (p = 0.008). No 

statistical difference was found for corticosterone secretion patterns of VEH and 7xMIF 

groups.

Experiment 2: Corticosterone and behavioral responses to the circular hole 

board

Basal and novelty induced corticosterone secretion

Basal resting as well as novelty induced corticosterone were affected 24h after the 

last treatment (Figure 3; treatment F(2,44)=17.175, p < 0.0001; time F(1,44)=45.980, p < 

0.0001; treatment*time F(2,44)=17.626, p < 0.0001). Basal resting corticosterone differed 

Figure 2  Dalm et al., 2012 
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Corticosterone (ng/ml) secretion during 

the circadian peak in mice, 32h after last 

administration of RU38486 (MIF), 1xMIF, 

7xMIF or VEH (dark phase from 1900 to 
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Figure 3 Dalm et al., 2012 
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Figure 3

Basal and novelty (5 min exposure to the circular hole 

board) induced corticosterone (ng/ml) were determined 

in mice, 24h after last administration of VEH, 1xMIF or 

7xMIF. Data are presented as mean ± S.E.M.; p < 0.05 * 

vs. other groups, # within groups.
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significantly between the groups (F(2,23)=14.656, p < 0.001) and was lower in both MIF 

treated groups than in VEH mice (p < 0.001). Basal corticosterone of 1xMIF and 7xMIF mice 

was comparable. After 5 min on the circular hole board, corticosterone was increased 

in all groups compared to baseline, however to a different degree (F(2,23)=19.074, p < 

0.0001). Corticosterone levels in 1xMIF where 300% of the VEH group and 700% of the 

7xMIF group (both p < 0.0001); corticosterone of the VEH group was about twice as 

much as in the 7xMIF group (p < 0.05).

 

Expression of MR, GR, CRH mRNA in hippocampus and PVN

Hippocampal MR mRNA expression was differentially affected by treatment, 24h post-

administration, across all subfields (Figure 4; treatment – DG: F(2,23),=11.005, p = 0.001; 

CA1: F(2,23)=12.887, p = 0.001; CA2: F(2,23)=14.267, p = 0.001; CA3: F(2,23)=11.550, p = 0.001). 

MR mRNA expression was reduced across all subfields in 1xMIF-mice compared to VEH 

and 7xMIF-mice (p < 0.05). Repeated MIF administration increased MR mRNA expression 

in the CA2 specifically vs. VEH and 1xMIF-mice (p = 0.016 and p = 0.001, respectively).

Neither GR nor CRH mRNA expression in hippocampus and PVN were affected 

by treatment (data not shown). 

Exploration on the circular hole board

Twenty-four hours after administration the behavioral response differed during five 

min exploration on the circular hole board (Table 1: MANOVA: F(20,26)=3.772, p = 0.001). 

Following initial slower movement out of the central start position, 1xMIF mice showed 

hyperactivity: they walked longer distances, with a faster speed of moving, visited more 
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Figure 4

Expression of MR mRNA, 

measured as optical density 

(O.D.) in the hippocampal 

subfields dentate gyrus (DG), 

CA1, CA2 and CA3, 24h after 

last administration of VEH, 

1xMIF or 7xMIF. Data are 

presented as mean ± S.E.M.; 

p < 0.05 * vs. other groups, # 

within groups. 
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holes and made more rim dips (vs. VEH and 7xMIF-mice: p < 0.05). Interestingly, 7xMIF-

mice made more use of a serial search strategy (vs. VEH-mice: p = 0.05). 

Other physiological measures

Treatment did not influence body weight. Adrenal weight (F(3,34)=3.733, p = 0.035) was 

highest in both MIF-groups, but significantly higher in 7xMIF than in VEH (p = 0.005): 

adrenals in mg, mean ± SEM: VEH 23.5 ± 2.8; 1xMIF 31.3 ± 4.3; 7xMIF 39.3 ± 2.9. Thymus 

weight was lower in both MIF groups, but passed statistical significance (F(3,34)=3.100, p = 

0.059): thymus in mg, mean ± SEM: VEH 411.0 ± 38.9; 1xMIF 371.5 ± 15.1; 7xMIF 321.1 

± 23.6.

Discussion

The present study demonstrated that single delivery of a very high dose of MIF caused 

a profound increase in circulating corticosterone levels starting 2h first after ingestion 

and lasting 16h before reaching vehicle control levels at 24h. At that time exposure to 

a novelty stressor still triggered a profound corticosterone response. This disinhibitory 

Table 1: The behavioral response during five min circular hole board exposure, 24h after the last 

administration with RU38486 (MIF).

VEH 1xMIF 7xMIF
General activity
distance walked (m)   7.9 ± 0.7   15.0 ± 1.9*   7.5 ± 0.9
speed of moving (cm/s)   8.6 ± 0.4   11.6 ± 0.8*   9.9 ± 0.3
total hole visits 14.8 ± 2.1   24.8 ± 1.8* 17.0 ± 2.4
Search strategy
latency (s) from center   8.4 ± 1.4  14.0 ± 1.4# 11.8 ± 2.1
latency (s) first hole visit 13.9 ± 0.8 16.0 ± 2.6  18.4 ± 0.7#

%serial 16.5 ± 5.2 28.2 ± 3.6   36.6 ± 10.2#

%perseveration 48.6 ± 5.8 39.3 ± 5.2 52.1 ± 5.1
Anxiety-related
latency (s) to rim   63.0 ± 13.1   55.1 ± 12.4 69.9 ± 8.5
number of rim dips 12.8 ± 1.4   18.4 ± 2.0* 11.1 ± 1.2
number of boli   1.1 ± 0.7   0.8 ± 0.4   1.3 ± 0.8

Data are presented as mean ± S.E.M.; p < .05 * vs. other groups; # vs. VEH.

Bold italic indicates significant differences.
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effect exerted by the antagonist was in line with our expectation. We did not expect, 

however, that after one week of daily consumption of the same high dose of MIF the 

basal and stress-induced corticosterone levels were back to baseline concentrations 

not different from vehicle controls. Accordingly, the current data reject the hypothesis 

that daily repeated MIF administration would produce a state of hypercorticism. At the 

same time the weight of the adrenals was further increased, while the thymus weight 

progressively decreased towards significance. The increased adrenal weight suggests 

that in spite of the progressive downregulation of the HPA axis apparently still sufficient 

ACTH is released over the week to exert its corticotrophic action. 

How does the slow downregulatory adaptation of adrenal corticosterone 

secretion come about? One obvious explanation is related to the recurrent nature of 

daily GR blockade with the antagonist. MIF is rapidly cleared because the antagonist is 

not bound to albumin, a high capacity low affinity binder and not α1-acid glycoprotein, 

which is a low capacity high affinity binder, and rapidly metabolized (Heikinheimo and 

Kekkonen 1993). We found in another study that after a 50mg/kg rat dose orally, MIF 

is already depleted from the circulation in 90 min, while low amounts of the antagonist 

and its metabolites are retained in the brain for at least 3 hours (Karssen, Belanoff and 

de Kloet, unpublished observation). Corticosterone remained elevated though for 16 

hours, while the genomic effects will persist even longer. Our experimental design thus 

allowed us to study a recurrent pattern of GR-mediated actions including negative 

feedback which are transiently interrupted by daily application of the GR antagonist. 

We propose therefore that the HPA axis progressively adapts to this daily cycle of GR 

blockade and subsequent GR activation. Hence, during the seventh day of GR antagonist 

administration, the circadian and stress-induced corticosterone pattern had become 

similar to that observed in control mice. 

This slow adaptation of the HPA axis to MIF has been observed before. The 

elegant study by Wulsin et al (Wulsin et al. 2010) revealed that a twenty fold lower 

dose of MIF i.p. (10mg/kg rat) produced an attenuated HPA axis response to a forced 

swim stressor, after one week. Interestingly, this course of MIF treatment also evoked a 

differential pattern of activation and inhibition of central inputs to the PVN. The ventral 

subiculum of the hippocampus and all regions of the medial frontal cortex showed 

enhanced stress-induced c-Fos activity after daily GR blockade, while the c-Fos response 

was reduced, however, in other subregions of the hippocampus and in the amygdala. 

These data suggest that MIF enhanced inhibitory and suppressed excitatory inputs to 

the PVN that collectively may contribute to downregulation of HPA axis activity. 



86

Chapter 4

Chapter 4

Also the mode of MIF application is important. A previous study showed that if 

MIF was chronically infused in the cerebral ventricles using an Alzet minipump a constant 

blockade of all brain GR sites was achieved. After four days of infusion the amplitude in the 

circadian and stress-induced corticosterone patterns were gradually enhanced because 

the peak levels of corticosterone had become higher, while the troughs remained low 

and did not alter (van Haarst et al. 1996). In the present study using recurrent daily rather 

than chronic blockade of GR the opposite adaptation occurred: initially a large surge in 

circadian and stress-induced corticosterone secretion was observed which then subsided 

over the next days of GR antagonist oral administration. This finding is reminiscent to the 

behavioral dichotomy between repeated and chronic infusions of MIF. It was found that 

continuous blockade of brain GR facilitated spatial learning and memory of rats, while 

phasic blockade caused a deficit (Oitzl et al. 1998). It is conceivable that besides blocking 

feedback suppression in pituitary and PVN, the effect of MIF on limbic circuitry noted by 

Wulsin et al (Wulsin et al. 2010) underlies this opposite change in stress sensitivity and 

behavioral performance after phasic vs. continuous blockade of the GR.

The above noted dichotomy in behavior may develop because after phasic (one 

time per day) GR blockade by MIF the rebound corticosterone response exerts its effect 

including the feedback suppression of the HPA axis, while during continuous blockade 

such agonist corticosterone actions are excluded. It also seems that if the phasic 

blockade is stepped up to two times per day with a high dose of MIF the condition of 

continuous blockade is approached (Oomen et al. 2007; Revsin et al. 2009). However, 

irrespective of phasic or continuous GR blockade, corticosterone binding to the MR will 

always occur (Reul and de Kloet 1985; Wodarz et al. 1992; Calfa et al. 2003). MR is known 

to mediate control over appraisal processes, behavioral reactivity to novel experiences 

and the onset of HPA axis activity (De Kloet et al. 1998). The changes in corticosterone 

action via MR activation were reflected by the lower expression of hippocampal MR 

mRNA for the 1xMIF-group, whereas expression was increased in the CA2 region of the 

hippocampus for 7xMIF-group. Interestingly, GR blockade after MIF treatment per os 

for three weeks, increased total hippocampal MR mRNA expression by 1.5 compared 

to controls (Bachmann et al. 2003). Therefore, it would be of interest to determine 

longitudinal effects of repeated GR blockade on MR function, particularly since previous 

studies have clearly shown that MR and GR interact in the control of HPA axis activity 

(Herman and Spencer 1998; Spencer et al. 1998).

In the studies by Bachmann et al (Bachmann et al. 2003) and Wulsin et al. 

(Wulsin et al. 2010) chronic MIF affected forced swimming behavior in a similar manner 

to antidepressants. In another study by Oitzl et al (Oitzl et al. 1998) chronic MIF leaving 
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MR active improved memory performance. Studies with mouse mutants overexpressing 

MR in limbic forebrain revealed enhancement of memory (Ferguson and Sapolsky 2007; 

Lai et al. 2007), perseveration of learned behavior (Harris et al. 2012 under review) and 

reduction of anxiety (Korte et al. 1996). Previously, also the pharmacological blockade of 

MR had shown altered appraisal processes and selection of the appropriate behavioral 

response, i.e., search strategy (Oitzl and de Kloet 1992; Oitzl et al. 1994; Oitzl et al. 

1997a). In the current study twenty-four-hours following repeated GR antagonism, mice 

used the serial search strategy more often, compared to controls. This strategy increases 

the likelihood that the animals will visit all possible escape routes that the circular hole 

board provides (during the exploration trial all holes were closed). Indeed, the choice 

of applied strategy does affect performance in spatial learning trials (Dalm et al. 2000; 

Grootendorst et al. 2001a). In the current study following 1xMIF mice were initially 

slower to move away from the start center, and subsequently hyperactive on the circular 

hole board. This could indicate a change in the level of anxiety induced by previous GR 

antagonism. If so, then the effect is transient as repeated GR antagonism did not induce 

any of the above described features. 

In conclusion, based on the current findings the efficacy of GR antagonism in clinical 

studies could be due to the following factors: (1) The detrimental effects of high 

corticosteroid levels via GR activation are prevented by GR antagonism. This possibility 

is prominent during continuous or high frequency blockade of the GR. (2) If during 

daily cycles of MIF application, the blockade by the GR antagonist wanes, GR becomes 

activated by the high circulating corticosterone levels and shuts off its own secretion 

(Wodarz et al. 1992; De Kloet et al. 1998; Calfa et al. 2003). (3) As a result of GR blockade 

and the subsequent rise in corticosterone levels, the MR becomes strongly activated 

irrespective of phasic or continuous GR antagonism. 
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Abstract 

Spatial memory can be strengthened by adverse stimuli that activate the stress system, 

and administration of the stress hormone corticosterone in close-context with the 

learning task. Less is known about modulation of spatial memory by post-training 

positive reinforcers (reward). Cognitive performance was assessed in male C57BL/6J 

mice using two learning tasks: the water maze (WM) and circular hole board (CHB). 

Sugar was chosen as a post-training reinforcer. We expected that the free access to sugar 

immediately (0h) after training would facilitate spatial memory; delayed access to sugar 

(4h after training) or no sugar served as controls.

In both tasks, 0h-sugar mice showed superior performance, indicated by shorter 

latencies and distances to the trained spatial location. The memory facilitating effect of 

sugar became visible at distinct times during training: on the CHB from the first trial 

onwards, in the WM on training days 4 and 5. Sugar-rewarded mice kept their superior 

performance during the free exploration/swim trial, expressed by more persistent search 

strategies for the exit hole or platform. Post-training sugar reward in close-context with 

performance strengthens memory via modulation of consolidation. 

These findings supports the integrative theory of reinforcement and memory. 

We suggest that our experimental set-up will allow to differentiate between direct 

effects on memory and alterations in reward processes in animal models of stress-

related diseases. 
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Introduction

Memory formation is modulated by task inherent appetitive and aversive characteristics. 

Other stimuli occurring in close context with the task either impair or enhance memory 

(Dawson and McGaugh 1971; McGaugh and Herz 1972). Decades ago, Huston and 

colleagues presented a memory processing theory of reinforcement, proposing that 

the reinforcer acts on a memory of the response or of the stimulus-response contiguity 

(Huston et al. 1974; Huston and Mondadori 1977). It has provided a framework for 

studies that have demonstrated a close correspondence between memory promoting 

and reinforcing effects of natural reinforcers like food, but also of electrical and chemical 

stimulation of the brain (Huston and Oitzl 1989). 

Here we address the effect of a post-training natural reinforcer on cognitive 

performance in two spatial learning paradigms in mice: the well known and commonly 

used water maze (WM; Morris 1984), and the circular hole board (CHB; Barnes 1979). 

Both tasks have been originally designed for rats. Mice prefer dry-land over wet mazes 

(Whishaw 1995; Whishaw and Tomie 1996; Wotjak 2004). For mice, the degree of the 

task-inherent aversive characteristics differs largely (Wotjak 2004), in parallel with the 

activation of the stress system and secretion of glucocorticoid hormones (De Kloet et 

al. 1998; Joels et al. 2006). For example, increasing the aversiveness of the task, like 

lowering the water temperature in the water maze, increases the secretion of the stress-

hormone corticosterone and results in memory improvement in rats (Sandi et al. 1997; 

Akirav et al. 2001). Injections of corticosterone have comparable effects on memory 

(for review Joels et al. 2006). The WM is regarded as life-threatening while the CHB is 

considered to be less (or not) aversive, as the animal walks to locate a hole leading to its 

home cage. Thus, modulation of the adverse components of a task facilitates learning 

and memory processes (e.g., lowering water temperature, increasing strength of electric 

shock in fear conditioning paradigms (Sandi et al. 1992; Sandi et al. 1997). In contrast, 

memory facilitating effects of positive rewarding stimuli are less well studied. Using plain 

food as reinforcer, requires prior food deprivation of the subjects which is a stressor 

itself, known to change circadian corticosterone secretion and glucose levels (Makimura 

et al. 2003; Karami et al. 2006). Mice like sweets, so we decided to give the mice free 

access to glucose (sugar corns) as reinforcer.

It is well known that glucose facilitates cognitive performance and that 

peripheral glucose administration improves memory in aversive and appetitive tasks. In 

mice, glucose has always been administered via invasive techniques like intraperitoneal 

injections (Messier 2004). An intraperitoneal injection is an acute stressor, resulting in 
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increased heart rate, body temperature and elevated concentrations of corticosterone 

(Meijer et al. 2006; Dalm et al. 2008). As described above, stressors given in close context 

with a task have memory facilitating effects (Joels et al. 2006).

To dissect the rewarding properties of the post-training stimulus from 

interference with the stressful method of application, male C57BL/6J mice got free access 

to sugar in their home cage, either immediately post-training (0h) or 4h after the last 

training trial of the day. Separation of the rewarding stimulus in-time from the training 

event controls for general metabolic effects (Dawson and McGaugh 1971; McGaugh and 

Herz 1972). We expect that (1) post–training self-administration of glucose will reinforce 

memory resulting in superior cognitive performance and (2) the pattern of memory 

facilitation will be task-dependent.  

Materials and Methods

Animals

Male C57BL/6J mice (3 months; n = 44) were purchased from Charles-River laboratories. 

Upon arrival at the animal facilities (Sylvius Laboratory, LACDR, University of Leiden, The 

Netherlands), mice were single housed and transported to the experimental room to 

acclimatize for two weeks before the start of the experiment, in a temperature (21 ± 

1˚C) and humidity (55 ± 5%) controlled room; food and water ad libitum; 12-12h light-

dark cycle (lights on at 0700h). All experiments were performed between 0900 and 

1400h. Experiments were approved by the Local Committee for Animal Health, Ethics 

and Research of the University of Leiden. Animal care was conducted in accordance with 

the EC Council Directive of 24 November 1986 (86/609/EEC). 

Experimental design

Separate groups of mice were used in the two spatial learning tasks. Water maze (WM; 

n = 8/group): (1) post-training self administration of sugar in close context (0h-sugar), 

i.e., immediately upon return to their home cage; (2) post-training self administration 

of sugar out of context (4h-sugar), i.e. 4h after the last daily training trial in home cage 

as control for possible metabolic effects of sugar and (3) controls, i.e. no-sugar. The WM 

program started with a free swim trial, followed by 4 days of spatial training and finished 

with another free swim trial three days later. Circular Hole Board (CHB; n = 10/group): 

(1) post-training self administration of sugar in close context (0h-sugar) i.e. immediately 
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upon return to their home cage and (2) controls, i.e. no-sugar. The CHB program started 

with a free exploration trial, followed by four days of training and finished with another 

free exploration trial three days later.

Behavior was recorded on videotape and analyzed with Ethovision 1.97 (Noldus 

Information & Technology BV, Wageningen, The Netherlands). The software sampled the 

position of the mouse 5 times per second. To calculate the distance walked on the CHB, 

the minimal distance between samples was set at 3cm. 

Self administration of sugar

Mice were familiarized with the sugar corns before WM and CHB training started. A 

feeding cup (2.5cm x 2.3cm) was glued to the bottom of the home cage in the corner 

opposite to the nest. During the week before training started, mice got free access to 

sugar three times (30mg sugar corns; every other day). At 0900h, the grid of the cage 

was lifted, the sawdust was removed from the feeding cup, and sugar was placed in the 

cup. Mice consumed all the sugar within 10 min. Mice remained in their home cage 

and were not handled during the administration procedure. Following the last training 

trial of the day, mice had free access to sugar in their home cage either immediately 

(0h-sugar) or delayed (4h-sugar), after having located the platform in the WM or exit 

tunnel in the CHB, or when the maximum trial duration had expired. 

Water maze

Three days before spatial training started, the white pool (140cm diameter, side walls 

50cm high) was filled with 2cm of warm water (26 ± 1°C). This was the mouse’s first 

contact with water and it was allowed to walk around for 120s. 

Training trials: The pool was filled with warm water (26 ± 1°C; ± 25cm deep) 

and made opaque by the addition of chalk. A platform (8cm diameter) was situated 

0.5cm below the surface of the water, invisible for the mouse. The ratio between the 

surface area of the pool and the platform was 270:1. The mouse was placed in the water 

at one of four possible equally spaced release points. A maximum of 60s was allowed, 

during which the mouse had to find the platform and climb onto it. If the mouse did not 

find the platform itself it was guided there using a grid (20cm x 6cm). Mice remained 

on the platform for 15s. Animals were run sequentially with an inter-trial interval of 

approximately 10 min. After each trial, mice were placed under a red-light warming lamp 

for 3 min. A Free Swim Trial preceded and followed the spatial training trials (platform 

was absent: FST-before: 120s; FST-after: 60s). 
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Schedule and procedure: Day 1 started with FST-before, which allowed estimation 

of the swimming ability and to determine the pre-training exploratory strategy. One hour 

later, the first spatial training trial took place. On consecutive days, mice received four 

trials on days 2 and 3, followed by three training trials on days 4 and 5. Spatial training 

thus consisted of 15 trials over five consecutive days. Three days after the last spatial 

training trial, goal-directed search strategy was assessed in FST-after (day 8).  

Spatial training trails were analyzed for: latency (s) and distance swum (m) 

to climb on the platform, swim speed (cm/s), cumulative distance to platform (m). To 

allow comparison, both free swim trials were analyzed for the first 60s. General activity 

was represented by total distance swum (m) and velocity (cm/s). Swim patterns were 

quantified on time spent in platform quadrant (percentage), latency (s), crossings 

(number) and cumulative distance to former platform location, relative to other possible 

3 positions (Gallagher et al. 1993; Dalm et al. 2000). Thigmotaxis was expressed as time 

spent (%) close to the wall (RIM zone = 10cm). 

Circular hole board 

Apparatus: The Circular Hole Board (CHB) is a revolvable white Plexiglas plate (diameter: 

110cm) with twelve holes (diameter: 5cm) at equal distance to each other, 10cm from 

the rim. It was situated 1m above the floor. In the original circular hole board setup 

(Barnes 1979) bright light and loud noise were used as aversive stimuli to motivate the 

animals to search for the exit. We performed the task under dim light conditions (120lux 

on the surface of the board), in a quiet surrounding and with numerous distal cues in the 

room which allowed spatial orientation. The holes on the CHB could be closed by a lid 

at a depth of 5cm. Whether a hole was open or not could be recognized by the mouse if 

it put its head over the edge of the hole. If open, the hole provided access to the home 

cage of the mouse via an s-shaped 15cm long tunnel (diameter: 5cm). Mice were `pre-

trained’ to climb through the tunnel three times every other day. This was performed in 

the week preceding familiarization to sugar corns, during weighing of the mice.

Training trials: Before each trial started, the board was swept clean with 1%HAc. 

Next, the board was turned clock- or anti-clockwise until the randomly determined 

hole was at the fixed location of the exit (spatial training). The home cage was placed 

underneath the exit tunnel (not visible for the mouse), and the mouse was placed in a 

non-transparent cylinder (PVC, diameter 10cm, height 25cm) at the center of the board. 

After 10s the cylinder was lifted and the mouse could explore the board. There was just 

one open hole during spatial training trials which was at the same location in all trials. As 

a control for possible odor cues, we turned and cleaned the board between trials, and 
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placed the home cage underneath the tunnel, opposite to the exit hole, during the Free 

Exploration Trial after training (FET-after). A free exploration trial preceded and followed 

the spatial training trials (all holes closed; FET-before: 300s; FET-after: 120s).

Schedule and procedure: Day 1 started with FET-before, which allowed to 

determine the pre-training exploratory strategy. After 5 min of exploration the animals 

were guided using a grid (20cm × 6cm), to the exit tunnel that they would need to search 

for during spatial training. Upon entering their home cage, they had free access to sugar 

(30mg). Spatial training was given on days 2 to 5: one exit hole was accessible in a fixed 

position. Mice received two trials per day with an inter-trial-interval of 15 min. If the 

mouse did not find the exit hole within 120s, it was guided there by a grid. Three days 

after the last training, FET-after (exit hole closed) was performed to determine whether 

spatial learning had altered the exploration into a goal-directed search strategy. 

Spatial training trials were analyzed for latency (s), path length (m), velocity 

(cm/s) and time (s) before leaving the start area in the center (diameter 30cm). For the 

analysis of FET-before and FET-after, the CHB was divided into several zones of interest: 

(i) total arena: path length, velocity; (ii) start center, latency to leave center, percentage 

time spent; (iii) holes zone: latency hole area, hole visits, percentage time spent near 

exit and left/right adjacent hole; (iv) RIM zone: path length, velocity of moving, latency 

to RIM, percentage time spent. The latency (s) and path length (m) to the location of the 

hole used during spatial training were measured. The search strategies are described as 

perseveration: i.e. repeated visits of the same hole or alternately visiting two neighboring 

holes, and serial: i.e. more than two holes visited in sequence; calculated in relation to 

the total number of hole visits. A hole visit was detected if the animal had at least its 

nose over the rim of the hole. Detections by the image-analysis system were additionally 

cross-checked with manual protocols. To compare behavior during free exploration trials 

we analysed both trials 120s.

Statistical analysis

Data were subjected to ANOVA (factors: time, condition: 0h-sugar, 4h-sugar and no-

sugar), when appropriate with repeated measures followed by a post-hoc Tukey test. 

Time in quadrants and platform crossings of the free swim trials were analysed with 

Friedmans Analysis of Variance (FR: per group) and Wilcoxon test (W: within group). 

Other parameters were compared with Student’s T-test. We lost the data of the CHB 

4h-sugar group due to computer problems. Data are presented as mean ± S.E.M. 

Significance was accepted at p < 0.05. 
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Results 

Water maze: spatial training 
All mice learned to locate the platform as indicated by a decrease in latency (Figure 

1A) and path length (Figure 1B) to platform over days (latency: F(4,84)=52.508, p = 0.001; 

distance: F(4,84)=29.014, p = 0.001), with significant differences between the groups 

(latency: F(2,21)=5.145, p = 0.015; distance: F(2,21)=5.706; p = 0.01). Mice with post-training 

sugar administration in close context (0h-sugar) had the shortest latencies and distance 

to platform from day 4 onwards (compared to the 4h-sugar group on days 4, 5 and 8: p < 

0.01; no-sugar group on days 4 and 8: p = 0.01). After day 3, the course of performance in 

latency and distance differed significantly between the groups (F(8.84)=2.397, p = 0.022). 

While the latency and distance to platform continued to decrease in the 0h-sugar group, 

it remained at the same level in the other two groups. Swim speed remained constant 
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Chapter 5 – Figure 1ABC 
S. Dalm (2012) 

Figure 1

Water maze: (A) latency in seconds (s) and (B) 

distance swum in meters (m) to the platform 

during spatial training trials on day 1 (1 trial), 

days 2 and 3 (4 trials), days 4 and 5 (3 trials). 

For the free swim trial after training (FST-after; 

day 8), latency and distance are calculated 

based on the first visit of the former platform 

location. Mice consumed sugar in their home 

cage immediately after the last training trial 

of the day (0h-sugar) or 4h later (4h-sugar) 

or no-sugar. (C) Free swim trial after spatial 

training: Cumulative distance in meters to 

the former platform location (black bar) 

and virtual platform locations in adjacent 

and opposite quadrants (see inset). Less 

distance indicates more specificity towards 

the platform location. Data represent mean 

± S.E.M.; (A/B) p < 0.05 * 0h-sugar vs. 4h- 

and no-sugar groups; $ 0h-sugar vs. 4h-sugar 

group; # 0h-sugar vs. no-sugar group. (C) p 

< 0.05 * platform location vs. the 3 virtual 

platform locations; $ vs. left and opposite 

virtual platform locations.

(A)

(B)

(C)
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over the course of training and did not differ between the groups (data not shown). 

Interestingly, the latencies to platform of the first trial on days 4 and 5 were significantly 

lower in the 0h-sugar mice than in the 4h-sugar and no-sugar controls (Table 1). The 

performance in the other training trials of the day was variable. Performance in trials 

within one day (trial-to-trial performance) did not differ between the groups.

Water maze: Search strategies during free swim trials before and after spatial 

training

Before spatial training, mice of all groups behaved comparable regarding total distance 

swum, swim velocity and percentage time spent in RIM zone (Table 2A). After spatial 

training, on day 8, general activity between groups was again similar, but the 0h-sugar 

group was more active than before training (paired T-test: distance and velocity, p = 

0.033). All groups spent less time in the RIM zone of the pool, indicating a shift in their 

swim strategy towards the open area of the pool where the platform was positioned 

during spatial training. 

Spatial training altered the search strategy (Table 2B): Latency to the former 

platform location was shortest in 0h-sugar mice and their time spent in the platform 

quadrant was longer than in the other two groups. The number of platform crossings 

increased from FST-before to FST-after (paired T-test: p < 0.05), but did not differ 

between the groups. All groups directed their behavior towards the area of the platform 

location, but it was most specific for mice of the 0h-sugar group. They spent more time 

near the platform location, indicated by: (i) the lowest cumulative distance (Figure 1C; 

Friedman p < 0.05 vs. the virtual platform locations in the other three quadrants) and (ii) 

the increase in percentage of time spent in platform quadrant compared to FST-before 

(Friedman-Wilcoxon p < 0.05 vs. other quadrants). Also 4h-sugar mice had a significant 

lower cumulative distance to platform vs. the other three virtual locations. The no-sugar 

controls had a similar low cumulative distance to the platform and one virtual adjacent 

platform location, indicating less specificity of search patterns. 

Circular hole board: spatial training trials 

Latency and distance to the exit tunnel differed significantly between groups (Figure 2; 

main effect latency: F(1,18)=19.652, p = 0.001) with significantly shorter latencies for the 

0h-sugar group from days 2 to 5. In both groups, latency and path length decreased over 

days (latency: F(3,54)=36.148, p = 0.001; distance F(3,54)=4.053, p = 0.011), indicating learning 

of the task. Velocity of movement increased accordingly (F(3,54)=20.689, p = 0.001). 
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Mice left the start area faster. This was group dependent (interaction time*condition: 

F(3,54)=4.749, p = 0.005). On days 2 and 3 of training, mice of the 0h-sugar group had 

significantly shorter latencies to leave the start (p < 0.001) than no-sugar controls.

The slope and course of the learning curve for latency, path length and velocity 

over days was comparable between groups (interaction time*condition: latency, 

F(3,54)=0.370, p = 0.774; distance, F(3,54)=0.316, p = 0.814; velocity, F(3,54)=1.494, p = 0.226). 

Table 1: Latency to platform in seconds during the first trial of the day for the 0h-sugar, 4h-sugar 

and no-sugar groups 

Water maze: the first trial of the day 
day 2 day 3 day 4 day 5

0h-sugar 48.9 ± 7.2 25.3 ± 9.1     9.3 ± 2.9*   6.7 ± 1.9*
4h-sugar 45.1 ± 7.2 24.9 ± 6.1 21.6 ± 6.3 16.9 ± 5.1
no-sugar 46.3 ± 9.0 29.0 ± 8.4 22.1 ± 7.7 18.8 ± 6.4

Data are presented as mean ± S.E.M.; * p < 0.05 vs. other groups, same day

Table 2a General activity expressed as path length swum, swim speed and percentage of time 

spent along the wall (RIM) in the water maze during the free swim trials before and after spatial 

training. 

0h-sugar 4h-sugar no-sugar
before after before after before after

path length (m)   9.3 ± 0.4 10.1 ± 0.4#   9.4 ± 0.5 10.4 ± 0.9 10.2 ± 0.4 11.1 ± 0.6

swim speed (cm/s) 15.6 ± 0.7 16.8 ± 0.9# 16.3 ± 0.9 17.4 ± 0.9 17.1 ± 0.7 18.6 ± 1.0

%time in RIM 59.9 ± 4.4 31.1 ± 3.8# 58.0 ± 2.7 21.1 ± 2.8# 65.2 ± 4.7  33.1 ± 8.3#

Data are presented as mean ± S.E.M.; # p < 0.05 within group 

Table 2b Free swim trial after spatial training: latency to and crossing of the former platform 

position; increase in percentage of time spent in the platform quadrant (free swim trial before = 

100%). 

0h-sugar 4h-sugar no-sugar

latency (s) 11.8 ± 1.7* 22.7 ± 5.6 25.3 ± 6.6

crossings    3.6 ± 0.4$   2.9 ± 0.6   2.1 ± 0.5

% time spent in platform quadrant 236.3 ± 22.0*  124.1 ± 23.3 182.6 ± 16.0

Data are presented as mean ± S.E.M.; p < 0.05 * vs. other groups; $ vs. no-sugar
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Circular hole board: Spatial training trials  

In addition to the mean daily performance, trial-to-trial performance within the day 

(short-term/working memory) revealed distinct differences. The first trial of the day of 

the 0h-sugar mice had the shortest latencies to the exit tunnel (Figure 3A; trials with 

odd numbers: trial 1, p = 0.012; trial 3, p = 0.004; trial 5, p = 0.016; trial 7, p = 0.046). 

The second trial of the day was always comparable to the no-sugar control group. In the 

0h-sugar mice, time to leave the start center was significantly lower for trials 1 and 3 

(all p < 0.01; Figure 3B). While mice of the 0h-sugar group have similar velocities in the 

first and second daily trial and keep their velocity constant from trial 1 to 7, no-sugar 

mice have lower velocity in trials 1 and 3 (p < 0.05; Figure 3C) and increase their velocity 

during their second trial of the day above the 0h-sugar mice (p < 0.05, trials 4 and 6). 

Path length was not significantly different between the trials (Figure 3D). 

Circular hole board: General activity, exploration and search strategies

Before spatial training, the behavioral response, i.e., sum of analysed parameters, on 

the circular hole board was similar between groups (Table 3, MANOVA: F(14,5)=1.281, p = 

0.420). After spatial training, the behavioral response was not only different from before 

training, but also between groups (MANOVA: F(14,5)=6.635, p = 0.024). Now, both groups 

were more active (increase in path length, velocity, total hole visits) and left the start 
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S. Dalm (2012) 

Figure 2

Circular hole board: (A) latency in seconds (s) 

and (B) distance walked in meters (m) to the 

exit hole during spatial training trials on days 

2, 3, 4, 5 (2 trials per day) and during free 

exploration trials (FET) before (day1) and after 

(day 8) spatial training. Mice had received 

sugar in their home cage immediately after 

passing through the exit hole at the end of the 

FET-before and each day after the last training 

trial (0h-sugar) or no-sugar. Latency and 

path length during FET: FET-before indicates 

the distance walked during 120s; FET-after 

indicates the latency and distance to the first 

visit of the exit hole. Data represent mean ± 

S.E.M. * p < 0.05 between groups.

(A)

(B)
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centre quicker resulting in shorter latencies to the hole and RIM zones (all p < 0.05). The 

0h-sugar mice had the lower latencies to leave the start center (p = 0.002), to make the 

first hole visit (p = 0.002) and arrive at the RIM zone (p = 0.040). In both groups, the use 

of the perseveration strategy dropped dramatically from about 70% to 30%, while the 

use of the serial strategy increased from about 20% to 80% (both variables p < 0.01). In 

addition, time spent near the exit hole and adjacent holes increased specifically for the 

0h-sugar group from FET-before to FET-after (208.7 ± 21.4%; paired T-test, p = 0.001) and 

was significantly higher than in no-sugar controls (134.9 ± 20.6%; p = 0.023). 
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S. Dalm (2012) 

Figure 3

Circular hole board: Performance per 

trial during spatial training to locate 

the exit hole (days 2 – 5, i.e., trials 

1 to 8) for mice that received sugar 

immediately after training (0h-sugar) 

or no-sugar. Odd numbers present 

the first trial of the day. (A) latency in 

seconds (s) to the exit hole, (B) latency 

to leave the center; (C) velocity in cm/s 

and (D) distance walked in meters (m) 

to the exit hole. Data represent mean 

± S.E.M. * p < 0.05 between groups.

(A) (C)

(B) (D)
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Discussion

Post-training sugar reward facilitated the cognitive performance of mice in two spatial 

learning tasks: the Water Maze (WM) and the Circular Hole Board (CHB). The memory 

facilitating effects are expressed in a task-dependent pattern.

Post-training sugar reward and cognitive performance in the water maze and 

circular hole board

The WM and the CHB were originally designed for rats (Barnes 1979; Morris 1984). 

Studies comparing the behavior of rats and mice in the WM and CHB reported that 

the WM is less suited for testing spatial learning and memory in mice (Whishaw 1995; 

Whishaw and Tomie 1996; Wotjak 2004). Dry-land mazes like the CHB, take into account 

the predominant dry-land activity of mice and their aversion of water. Our data support 

that task-inherent properties differentially affect cognitive performance. For example, 

within-day performance largely varied for mice trained in the WM, while the exit hole 

was always faster located on the second trial of the day in the CHB task. Both tasks 

provide behavioral parameters related to general activity, and possible emotional and 

Table 3 General activity parameters measured on the circular hole board during the free exploration 

trials before and after spatial training

0h-sugar no-sugar

 Parameter before after before after

Total Path length (m)    4.2 ± 0.7     7.7 ± 0.3#   3.4 ± 0.4     6.7 ± 0.5#

Velocity (cm/s)    9.1 ± 0.7   13.2 ± 0.3#   7.3 ± 0.6   13.4 ± 0.5#

Center Latency to leave center (s)    3.7 ± 0.5     1.7 ± 0.1*#   4.7 ± 0.4     4.3 ± 0.7

% Time    3.5 ± 0.6     2.0 ± 0.3   5.0 ± 0.4     4.4 ± 0.9

Holes Latency to  hole area (s)   7.9  ± 0.7    3.4  ± 0.2*# 10.5 ± 1.7     6.3 ± 0.8#

Hole visits (number) 12.6  ± 1.6   28.7 ± 1.6#   9.3 ± 1.1   23.2 ± 2.4#

%time near exit and adjacent 
holes 100% 208.7 ± 21.4*# 100% 134.9 ± 20.6#

RIM Path length (m)    0.9 ± 0.3     0.7 ± 0.1   0.6 ± 0.2     0.5 ± 0.1

Velocity (cm/s)    7.0 ± 0.7   10.1 ± 0.6   5.4 ± 0.6     8.9 ± 0.9

% Time  23. 8 ± 4.3   11.3 ± 1.4# 28.1 ± 5.0   12.8 ± 1.6#

Latency (s)  23.0 ± 4.7   14.9 ± 2.9* 30.7 ± 8.0   27.0 ± 4.7

Search 
pattern % Serial hole visits  20.6 ± 6.7   80.4 ± 4.1# 21.0 ± 6.5   80.6 ± 5.4#

% Perseveration of hole visits  70.9 ± 4.4   30.9 ± 3.7# 63.8 ± 3.1   32.5 ± 5.6#

Data are presented as mean ± S.E.M.; p < 0.05, * between groups; # within group
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motivational states. However, the CHB contributes more data for short-term memory, 

emotional and motivational processes (Grootendorst et al. 2001b) than the WM 

paradigm. Of course, the choice of the spatial learning task should be hypothesis driven. 

Modulation of consolidation was achieved by allowing mice free access to sugar in the 

home cage after the last training trial of the day. As expected, sugar reward in close-

context with training (immediately, but not 4hrs later) facilitated memory in both spatial 

tasks, albeit within different time domains.

In the WM, the effect of sugar reward was expressed in latency and distance 

to platform from the fourth day of training onwards, i.e. after 12 trials, when 0h-sugar 

rewarded mice swam shorter distances to locate the exit platform during the first trial 

of the day. The superior performance was still expressed in the free swim trial three 

days following the last spatial training. These mice were more precise in navigating 

towards the previously learned location of the platform, spent most time around the 

former platform location, i.e. behavioral persistence. We may argue that memory for 

the platform location has been strengthened and/or it is less susceptible to extinction in 

the free swim trial. Swimming speed as indicator for increased motivation to reach the 

platform is less likely as it was comparable between groups. Out-of context rewarded 

mice (receiving sugar with a 4hrs delay) behaved more similar to no-sugar mice, further 

underlining the importance of close-context reward and its effect on consolidation. We 

conclude that post-training sugar in close-context results in improved performance via 

modulation of consolidation processes.

In the CHB task, memory improvement by sugar-reward was evident already 

on the first training day. How is this possible? The free exploration trial before training is 

actually the first sugar-rewarded trial. At the end of the free exploration trial, mice are 

guided to the exit hole, enter their home cage and get free access to sugar. The superior 

performance was maintained over the course of training. Whereas the learning curves 

for both groups run in parallel, sugar-rewarded mice reach their maximum performance 

on day 4, while control mice are still improving. Remarkably, sugar-rewarded mice had 

shorter latencies in the first trial of the day than control mice, while the second trial 

was comparable between groups. Parameters of the free exploration trial after training 

indicate that sugar-rewarded mice are more persistent in their search for the exit, 

spending more time in that area. We conclude that sugar in close-context to training 

affects long-term memory, but does not shift performance parameters in general. Mice 

of the no-sugar group require more training to reach a similar level of performance. 
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Emotion, motivation and memory

To differentiate effects on memory from motivational and emotional components, the 

CHB provides several parameters. For example, an increase in velocity to the exit hole 

might be indicative for motivational effects. Indeed, in the first trials on days 1 and 2, 

sugar-rewarded mice had shorter latencies to the exit holes and a higher velocity than 

no-sugar controls. However, on the following days short latencies remained in the face 

of comparable velocity in the first trial of the day. Moreover, in the second trial of the 

day velocity of sugar-rewarded mice was lower than in no-sugar controls. No-sugar mice 

moved faster on the second trial of the day. If velocity is an indicator for motivation, we 

have to consider a “trial-dependent” motivation that is apparent in the no-sugar control 

mice. 

Spending more time in the central, most unprotected area is generally accepted 

as reduced anxiety-like behavior (Archer 1973; Choleris et al. 2001). On the CHB this 

will increase the latency to the exit hole. Indeed, no-sugar mice remained longer in the 

center during the first trial of the day. In the second trial, latency to leave the center was 

comparable between groups. There is no argument that receiving sugar the day before 

will change anxiety-related behavior. It is more likely that no-sugar control mice take 

more time for orientation, than being less anxious. Anyhow, the shorter time in center 

contributes to, but does not explain the shorter latencies to the exit hole in the sugar-

rewarded mice. In relation to latencies and velocities, distance to exit hole indicates that 

sugar-rewarded mice move more goal directed than the no-sugar control mice. 

We conclude that post-training sugar-reward in the CHB affects memory 

consolidation, most clearly expressed in the performance of the first trial of the day. 

Motivational and emotional aspects play a minor role. 

Task-inherent activation of the stress system and glucose administration

Learning tasks present novelty to mice, with often rather aversive properties that activate 

the stress system, leading to the secretion of adrenal stress hormones: epinephrine and 

glucocorticoids. Facilitation of memory is a commonly reported effect, specifically when 

stress hormones are elevated in close-context with learning trials, i.e., during acquisition 

and specifically post-training (Gold 1986; De Kloet et al. 1998; McGaugh and Roozendaal 

2002). Dose-dependent manipulation of corticosterone concentrations during and after 

training, either by lowering the water temperature or injecting the hormone, facilitates 

spatial learning in rats (Sandi et al. 1997; De Kloet et al. 1998; Akirav et al. 2004; Joels 

et al. 2006). In a parallel study using the same training protocols for WM and CHB, we 
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found corticosterone concentrations 20 min after the start of spatial training on day five 

to be higher in WM than in CHB trained mice (± 100ng/ml and ± 30ng/ml respectively; 

own unpublished data). This task-dependent corticosterone response might affect the 

slope of the learning curve in the WM and CHB task, interacting with the effect of sugar-

reward. 

Studies on the effect of sugar reward and other drugs on learning include 

handling, restraining and injecting the animal and thereby, additionally increasing stress-

hormone secretion (Meijer et al. 2006). This task-independent activation of the stress 

system may contribute to the modulation of memory. Giving mice free access to sugar 

in close context with their performance in the learning task, we introduce a non-invasive 

method for sugar reward that is devoid of possible interfering effects of stress hormones 

on memory processes. 

Reinforcement of behavior or reinforcement of a memory trace

Traditional reinforcement theory considers memory as something that is somehow 

determined by reinforcement and, thus, takes place after reinforcement. Reinforcers are 

thought to increase the probability of behavioral responses. This separation between 

theories of memory and theories of reinforcement, had been challenged by Huston and 

colleagues (Huston et al. 1974; Huston and Mondadori 1977; Huston and Oitzl 1989) 

proposing an integrated theory of memory and reinforcement. After the performance 

of a learning task (i.e., during the post-trial, post-training period) memory remains 

susceptible to disruptive or facilitating treatments. Memory is still in a labile form prior 

to being fixed or consolidated in a more permanent form (McGaugh and Herz 1972). 

Consequently, positive reinforcers (reward; for a discussion on the difference between 

reward and reinforcement: see (White 1989) presented after the learning trial during 

periods of labile memory should also promote learning. In their first study (Huston et 

al. 1974), mice received an aversive electric footshock when stepping down from a 

platform. Should the reinforcer facilitate the behavioral response, mice are expected 

to step-down faster in the test trial. On the contrary, post-trial presentation of food 

facilitated inhibitory avoidance learning: the animals remained on the platform longer 

than controls. This finding and a series of studies using other aversive, but also appetitive 

tasks (summarized in (Huston and Oitzl 1989), support the theory that the reinforcer 

(food, electrical brain stimulation, substance P) acts on the central consequences of 

behavior, i.e. a memory trace; and not the behavioral response itself. 

In the present study, mice had access to sugar after the last training trial of the 

day. Long-term memory is improved by sugar-reward in both spatial tasks, expressed 
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as superior performance in the first trial of the following day. Whereas the memory 

facilitating effect in the CHB is observed already after the first contingency: location of 

and moving through the exit hole and sugar consumption, it takes several days until it 

is obvious in the WM. As suggested before, this time-related effect of the reinforcer 

is most likely due to task-inherent properties. However, common to both tasks is that 

goal-directed behavior during training trials and the persistence of the search pattern 

in the area of the platform and exit hole are strengthened. General activity and velocity 

as behavioral responses to the task are not reinforced. Thus, it is the memory trace 

of: how to locate the platform or exit hole that is strengthened by sugar reward. The 

memory facilitating effects of sugar are most obvious in the earlier phases of learning. 

We conclude that our findings substantiate the theory of an integrated reinforcement 

and memory process. 

Conclusion

Post-training sugar facilitates spatial memory in mice. The pattern of the memory 

facilitating effects depends on the task-inherent properties of the WM and CHB. In line 

with others (Whishaw 1995; Wotjak 2004), we consider the CHB better adapted to the 

species-specific needs of mice. Moreover, it allows to collect a broader set of variables 

related to motivation and emotional expression than the present WM paradigm. 

The limited number of training trials in the CHB task gives way to pharmacological 

interventions in close context with training events. The non-invasive administration 

method of sugar discarded the generally adverse effects related to the method of 

treatment. Post-training self-administration of sugar proved to be an exciting approach 

to reveal the effects of reinforcers on the formation of memories. Since changes in the 

reward processing system belong to the main symptoms of stress-related diseases like 

depression (e.g., anhedonia), we propose that our test-paradigm will be a valid tool to 

test reinforcement processes in animal models of such stress-related diseases.

Acknowledgements

This project was supported by the Netherlands Organization for Scientific Research (NWO 

015.01.076, 051.02.010, IRTG-DN95-420). We gratefully acknowledge the technical 

assistance of Alexander Spruijt and Marten Kampman. 





Repeated rat exposure inhibits the circadian activity patterns of C57BL/6J mice in the home cage

107

Ch
ap

te
r 

6

Chapter 6

Repeated rat exposure inhibits 

the circadian activity patterns of 

C57BL/6J mice in the home cage

Sergiu Dalm*

Leonie de Visser*

Berry M. Spruijt

Melly S. Oitzl

*authors contributed equally to the manuscript

Published in Behavioral Brain Research (2009) 196: 84 – 92



108

Chapter 6

Chapter 6

Abstract 

Exposing male C57BL/6J mice repeatedly, in an unpredictable and uncontrollable fashion 

to rats, alters their cognitive performance and the neuroendocrine stress response, 

weeks to months after the rat stress. Continuous observation of the behavioral activity 

of male C57BL/6J mice in their home cage before (baseline) and after rat exposure could 

reveal if repeated rat exposure leads to changes in circadian activity patterns, which is a 

key feature of chronic stress and stress-related disorders in humans. 

Rat stress (1) decreased exploratory and foraging activity as characterized by 

increased time spent in the shelter and less time in the open area; (2) reduced sucrose 

consumption and inhibited the development of sucrose preference, suggesting changes 

in the reward system and (3) the exploration pattern in a novel environment included 

more behavioral perseverations, but no change in general locomotor activity. Comparison 

to baseline activity pattern, i.e. before any intervention, revealed that already the 

control procedure to rat exposure (spending the same amount of time in another cage) 

disrupted the organization of behavioral activity patterns, albeit to a different and lesser 

degree than observed in rat stressed mice. 

While only the longitudinal design of the study allowed detecting these dynamic 

patterns of circadian activities, the distinct behavioral changes in foraging and explorative 

activities support our notion that repeated rat exposure might serve as mouse model of 

chronic stress. 
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Introduction

Chronic stress, specifically a dysregulation of the glucocorticoid system, is thought to 

be a precipitating factor in the etiology of affective disorders (de Kloet et al. 2005). 

These disorders share several characteristics: emotional changes related to approach/

avoidance behavior, loss of interest or pleasure in daily activities, impairment of 

cognitive functions, reduced motor activity and alterations in the circadian pattern of 

physiological, neuroendocrine and behavioral responses (Endo and Shiraki 2000; Volkers 

et al. 2002; Keller et al. 2006). The effects of chronic stress in animal models are mainly 

assessed in short-lasting test-situations involving additional novelty stress. Surprisingly 

little is known about the consequences of stress on the daily organization of behavior in 

a familiar environment where the animal spends most of its time: the home cage. This 

will be the focus of the present study.

Whereas all kinds of stressors induce behavioral alterations and concomitant 

changes in stress system regulation of the hypothalamic-pituitary-adrenal (HPA) axis 

(Endo and Shiraki 2000; Anisman and Matheson 2005), psychological stressors are 

ethologically relevant and resemble the kind of stress that is related to affective disorders 

in humans (Calvo-Torrent et al. 1999; Apfelbach et al. 2005; Beekman et al. 2005). Central 

features of chronic psychological stressors in humans are repeated, unpredictable and 

uncontrollable exposure to (or imagination of) threatening situations. Animal models 

make use of confrontations with territorial conspecifics and exposure to predators with 

or without physical confrontation (Apfelbach et al. 2005). Interestingly, already sensory 

stimuli (visual, auditory and olfactory) appear to be sufficient to activate the stress 

system associated with the release of glucocorticoids (Blanchard et al. 1998; Diamond et 

al. 1999; Linthorst et al. 2000a; Beekman et al. 2005). In rodents, the behavioral effect 

of predator exposure is manifested as increased anxiety-like behavior, risk-assessment in 

novel environments and learning and memory impairments (Calvo-Torrent et al. 1999; 

Grootendorst et al. 2001a; Grootendorst et al. 2001b; Adamec et al. 2004; Diamond et 

al. 2006). The amplitude of circadian locomotor activity and food-intake in rats decreases 

after social conflict, “chronic mild stress” or electric shocks (Willner 1984; Desan et al. 

1988; Stewart et al. 1990; Gorka et al. 1996; Meerlo et al. 1999). Resident/intruder pairs 

of mice living in continuous sensory contact and daily physically interaction reveal a 

variety of changes in behavior, autonomic and immune functions, HPA responses, brain 

cytokine expression and cardiac histology (Bartolomucci et al. 2005). To our knowledge, 

detailed patterns of activity in the home cage before, during and after a psychological 

stressor, without physical contact, have not been described in mice. 
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Previous studies have shown that, long term automatic recordings of the location of 

the mice in their home cage allows detailed observations on dynamic changes in 

locomotor activity over days, with minimal human intervention (de Visser et al. 2005; 

de Visser et al. 2006). In addition, the home cage is a familiar environment in which no 

specific behavior of the animal is elicited or challenged in some way. Subtle changes in 

spontaneous behaviors under base line conditions may reveal themselves more easily in 

the home cage than under conditions where the animal is prompted to explore or face 

a strong challenge. 

The aim of the present study was to investigate the daily behavioral organization 

of mice in the familiar environment of their home cage: before, during and after chronic 

‘rat stress’ exposure, which took place in a novel environment. 

Our chronic stress model makes use of the observation that mice and rats avoid 

each other in nature. Indeed, repeated, unpredictable and uncontrollable exposure of 

mice to rats strongly activates the HPA axis (Grootendorst et al. 2001a; Grootendorst 

et al. 2001b). To control the effect of rat exposure on HPA axis activation, blood plasma 

corticosterone concentrations were measured before and after the first rat exposure. 

Furthermore, we determined consumption of and preference for a sucrose solution as 

markers for altered consumatory behavior and anhedonic consequences of stress. To 

address behavioral changes to novelty, exploration patterns of mice in a novel environment 

(circular hole board) were assessed two days after the last rat exposure. Principal 

Component Analysis (PCA) was performed to determine the relationship between activity 

parameters in the home cage which may be indicative of underlying motivational systems. 

Materials and Methods

Animals 

Upon arrival at the animal facilities of Utrecht, male C57BL/6J mice (Janvier Bioservices, 

The Netherlands; n = 32; 8 weeks) were individually housed with food and water ad 

libitum in Macrolon Type II cages for one week. The room was temperature (19 - 21°C) 

and humidity (30 - 50%) controlled with a 12-12h light-dark cycle (lights on 0800-2000h). 

A shelter and nesting material (tissues, paper shreds) were provided. Thereafter, mice 

were housed individually in PhenoTyper cages. Male Long Evans hooded rats (Janvier, 

n = 8; 250 - 275g) were housed in pairs in a separate room, with food and water ad 

libitum. Experiments were approved by the Local Committee for Animal Health, Ethics 



Repeated rat exposure inhibits the circadian activity patterns of C57BL/6J mice in the home cage

111

Ch
ap

te
r 

6

and Research of the Universities of Leiden and Utrecht. Animal care was conducted in 

accordance with the EC Council Directive of 24 November 1986 (86/609/EEC) and the 

Principles of laboratory animal care (NIH publication No. 86-23, revised 1985).

Experimental design

Figure 1 depicts an overview of the experimental schedule. Mice were housed for one 

week in Macrolon Type II cages (days -6 to 0). These cages were kept with the original 

bedding but without nesting material, for rat stress and control procedures. Automated 

registration of activity and location of the mice took place in the PhenoTyper home 

cages every day for 24h from days 1 to 19, and was interrupted only by experimental 

procedures. Mice were subjected to two conditions (n = 16/condition); (i) stress: exposure 

to rats during 2 weeks and (ii) control: placement into their first housing Macrolon Type 

II cages at similar times and duration as the rat stress condition. On day 6, blood samples 

were collected via tail incision before and directly after the first rat exposure. Sucrose 

solutions were available for 24h on days 5, 13 and 17. The exploration strategy of a 

Day        Experimental manipulation 

-6 – 0        Housing in Macrolon Type II cages 

1        Baseline bodyweight  

2 

3 

4        Baseline home cage activity and location 

5        Baseline sucrose consumption/preference 

6        Rat exposures 1      and 2 

7        Rat exposures 3 and 4  

8        Rat exposures 5 and 6 

9        Rat exposure  7 

10        Rat exposures 8 and 9 

11          

12          

13        Sucrose consumption/preference 

14        Rat exposure 10 

15          

16        Rat exposure 11 

17        Sucrose consumption/preference 

18        Exploration on the circular hole board, 5 min 

19 - 
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Figure 1

Time line of the experiment. Data of 

home cage activities are presented from 

several days, shaded in gray (see Figures 

4, 5 and 6). Black squares at day 6 indicate 

time of blood sampling for determination 

of corticosterone concentrations.
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novel environment (the circular hole board), was assessed on day 18. Bodyweight was 

measured from the day of arrival until the end of the experiment on a daily basis. 

Home cage behavior 

Apparatus - Home cage behavior was automatically recorded by videotracking in 

specially designed cages for automated recordings (PhenoTyper®, Noldus Information 

Technology, Wageningen, The Netherlands, see Figure 2A). Each cage (30cm x 30cm x 

35cm) was equipped with a feeding station and two drinking bottles. A shelter (10cm x 

10cm x 5cm), bedding (sawdust) and nesting material (tissues) were provided. Hardware 

for videotracking is integrated in a unit on top of the cage, which also contains a built-in 

digital infrared-sensitive video camera and infrared lighting sources. The infrared sources 

provide a constant and even illumination of the cage to allow videotracking irrespective 

of light conditions in the experimental room. 

Videotracking - EthoVision 3.1 (Noldus IT, The Netherlands) was used as 

videotracking software. Within EthoVision, we designed several zones per cage to 

extract behavioral measures of duration and frequencies of visits per zone (see Figure 

2B): shelter, feeder, bottles 1 and 2. The open area covers the rest of the surface. The 

shelter was defined as a “hidden zone” allowing the program to distinguish the location 

of the mouse as being “in the shelter” or “on the shelter”. 

Videotracking was performed with the maximal sample rate of 12.5 samples/

second. The system is programmed to score changes in the location of the centre of 

gravity of the mouse as “movement”, only when the mouse moved at least with a 

velocity of 3.5cm/second, averaged over 12 samples. This excludes small movements of 

1 

5 

3 4 

2 

Chapter 6 – Figure 2AB 
SDalm -2012 

Figure 2

(A) Picture of the automated home cage 

observation system with two drinking 

bottles, shelter and feeding area. (B) 

Schematic overview of the different zones 

that were used for analysis of home cage 

behavior: 1=shelter; 2=feeder; 3=bottle 

1; 4=bottle 2; 5=open area. 

(A) (B)
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the animal caused by e.g., turning or moving around while staying in the same place. The 

number of stops was calculated using the frequency of ‘non-movement’ fragments, per 

unit distance movement. This yielded a measure that is independent of overall amount 

of activity (de Visser et al. 2006). Velocity was calculated only of ‘movement’ episodes, 

thus excluding periods of non-movement.

Dependent variables - Per zone, several parameters were calculated which 

were subjected to further analysis: duration (time spent in a specific zone), frequency 

(number of visits to and from a specific zone), cage floor movement (time spent moving 

in the open area in seconds), distance moved (distance travelled by the animal in the 

open area in cm), velocity (speed of moving in cm/s) and the number of stops (periods 

of non-movement per unit distance moved). All parameters were calculated in 1-hour 

intervals and subsequently summed for the 12-hours fragments of the dark and light 

period. For the nocturnal pattern of activity, we used the hourly values of the parameter 

cage floor movement during the dark period. 

Rat stress paradigm 

Exposure to a rat profoundly activates the Hypothalamic-Pituitary-Adrenal (HPA) 

axis of the mouse, resulting in elevated concentrations of corticosterone in brain 

lysate (Linthorst et al. 2000) and blood plasma (Grootendorst et al. 2001a). We have 

designed the “mouse-exposed to rat” procedure some years ago (Grootendorst et al. 

2001a; Grootendorst et al. 2001b), taking into account central features of a stressor: 

unpredictability, uncontrollability. The protocol uses repeated exposure to rats (i) either 

daily or with a break of one or several days; (ii) varying the duration and time of the rat 

exposure: 1 or 2h; once or twice a day; (iii) each time placing different rats on top of the 

mouse cage – and thus avoiding physical contact that might involve pain.

Several times between days 6 - 16, mice were exposed to a rat (Figure 1). During 

the first week (days 6 - 10) of the rat stress paradigm, mice were exposed to rats on 

5 consecutive days (one or two hours a day resulting in a total exposure time of nine 

hours). In the second week (days 13 - 16), two exposures took place: on Tuesday (1h) 

and Thursday (1h). On rat-exposure-days, mice were placed and transported in their first 

Macrolon Type II housing cages from the PhenoTyper to the adjacent rat stress room. 

One rat was placed on top of two mouse cages. Mice and rats were separated by a 

grid and could see, hear and smell, but not touch each other. Food and water was not 

available during rat exposure. The person who performed the rat stress procedure did 

not enter the housing room of the mice, as to avoid confrontation of control mice with 

the smell of rats. To keep time and duration of exposure unpredictable for the mice, the 



114

Chapter 6

Chapter 6

exposures took place at different times during the light period, lasting one or two hours, 

either once or twice a day. The location of the cages and the combination of the rat and 

the mouse were changed ad random. Rat stress thus consisted of transportation and the 

exposure of mice to rats. Control mice were placed into their previous Macrolon Type II 

cage for the same duration as mice exposed to rats, but were not transported to another 

room. Thus, in both conditions, mice were removed from the PhenoTyper home cage. To 

asses the effect of rat exposure on arousal, mice were weighed before and directly after 

the last rat exposure of the day. Weight loss was taken as a measure of defecation and 

urination. Similar time points were used for control mice.

Sucrose consumption

Throughout the experiment two drinking bottles were fixed to the home cage. To 

determine if mouse preferred to drink from one of the two water bottles, the bottles 

were weighed on days 1 and 4. During sucrose consumption/preference testing, water 

from the least preferred bottle was replaced with a 5% sucrose solution. Consumption 

of water and sucrose was determined one day before (baseline; day 5), two days after 

the ninth rat exposure (day 13) and one day after the last rat exposure (day 17). The 

bottles were weighed before placement and after removal 24h later. Water and sucrose 

consumption is expressed in ml. The preference for sucrose was calculated as percentage 

of consumed sucrose solution of the total amount of water and sucrose consumption. 

After sucrose testing, both bottles contained water. 

Blood sampling and corticosterone measurement

To determine the level of stress system activation in response to experimental procedures, 

blood was collected via tail incision (Dalm et al. 2005) before and after one hour of 

rat exposure (stress group) or placement in the Macrolon Type II home cage, on day 6. 

Blood was collected individually in capillaries (coated with potassium-EDTA, Sarstedt, 

Germany), kept on ice and centrifuged for 10 minutes with 13000 rpm at 4°C. Blood 

plasma was stored at –20°C. Plasma corticosterone was analyzed using a commercial 

available radio immunoassay kit 125I-corticosterone (MP Biomedicals CA; USA; sensitivity 

3ng/ml).

Circular hole board 

Apparatus: A grey round plate (Plexiglass; 110cm diameter) with 12 holes (5cm 

diameter, 5cm deep), at equal distances from each other and at a distance of 10cm 
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from the rim of the hole to the rim of the plate, was situated 1m above the floor in a 

different experimental room. Light conditions on the surface of the board were 120lux. 

To distribute odor cues, the surface was cleaned with 1%HAc and the board was turned 

(randomly clock- and anticlockwise) before a mouse was tested.

At day 18, two days after the last rat exposure, mice were taken from their home 

cage, transported in a Macrolon Type II cage, picked from the cage at the base of the tail, 

and placed in a grey cylinder (PVC, 10cm diameter; 25cm high) that was located in the 

center of the circular hole board. After 10s the cylinder was lifted and the mouse could 

start to explore the board for 5 min. Immediately thereafter, the mouse was transported 

back to the PhenoTyper home cage. Behavior was recorded on videotape and analyzed 

by EthoVision Windows 3.1 (Noldus Information and Technology BV, Wageningen, 

The Netherlands). The image analysis system sampled the position of the mouse 12.5 

samples/second. To calculate the distance moved, we set the system to score movement 

when the mouse moved at least with a velocity of 3.5cm/second, averaged over 12 

samples. The following parameters related to  general activity, exploratory strategies 

and possible anxiety-related behaviors were analyzed: distance walked (m) on the board 

and in specified zones: center, rim; velocity (cm/s), number of holes visited; sequence of 

hole visits (serial: more than two hole ins sequence; perseveration: repeatedly visiting 

the same hole or alternately visiting two neighbouring holes); latency (s) to leave the 

center; latency (s) to rim; time (s) in specified zones. The center is defined as a circle of 

30cm diameter; hole area: a ring of 15cm with the holes in the middle; rim area: a ring 

of 4.5cm at the outer perimeter of the plate. 

Additional experiment on sucrose consumption and novel cage in non-stressed 

mice

It has been shown that HPA axis activity and sucrose consumption are linked (Bell et al. 

2000; Laugero et al. 2001). To assess if sucrose consumption itself might affect locomotor 

activity in the dark period, we performed an additional experiment. We used a separate 

set of male C57BL/6J mice (n = 16) to assess the effect of sucrose consumption on 

activity patterns in the home cage. Some mice were also exposed for two hours to their 

previous housing cage. Mice were initially housed individually in Macrolon Type II cages 

for one week (lights off from 1400 to 0200h; these cages, including the soiled bedding 

were kept and used for “novel cage” exposure later on). Thereafter, mice were housed in 

the PhenoTyper home cages for 5 days, and assigned to three groups: (1) controls (n=4) 

undisturbed from days 5 - 8; (2) sucrose (n=6) received a bottle with sucrose solution on 

day 5 at 0900h for 24h and not disturbed on days 6, 7 and 8; (3) sucrose+NovelCage (n 
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= 6) also received a bottle with sucrose solution on day 5 for 24h; on day 6, mice were 

placed in their previous Macrolon Type II cage (from 0900 - 1000h and 1300 - 1400h), 

and left undisturbed thereafter on days 7 and 8. 

Statistical analysis

Home cage behavior: During the light period, activity was minimal and did not show any 

differences between groups or experimental days. Therefore, we limit the analysis to 

the dark period; i.e., the active period of mice, and selected the following experimental 

days (see Figure 1): day 4 (baseline), day 6 (after two exposures), day 10 (after nine 

exposures), day 14 (after 24hrs sucrose consumption and ten exposures) and day 19 

(three days after the last exposure). Differences between control and stress groups for 

each day were determined using a t-test; within groups between days were tested by 

a paired samples t-test with a Bonferroni-correction for the number of comparisons. 

We selected to present the following parameters: time spent in the shelter, near the 

feeder and bottles and the distance moved in the open area, in Figure 4A-D. To test for 

differences between groups and days in the diurnal pattern of cage floor movement, 

repeated measures ANOVA was performed, using the within-subjects factors “hour”, for 

the 12 hours of the dark period, and “day”, for the four experimental days (6, 10, 14 and 

17), and the between-subjects factor “group”, for control and stress groups. Post-hoc 

comparisons between days were done using repeated measures ANOVA with within-

factors “hour” and “day”. 

To investigate the interrelation of dependent variables measured in the home 

cage and to identify possible independent factors, we performed a Principal Component 

Analysis (PCA) with varimax rotation (Ferguson 1981; de Visser et al. 2006).Dependent 

variables that showed a loading >0.6 were regarded as being relevant for a specific factor. 

Factors with Eigenvalues >1 were retained for further analysis. To determine the factors, 

PCA was performed across individuals for baseline (day 4), thus before any manipulation 

had taken place. Then, based on this factor structure, factor scores were calculated for 

each animal on each day by multiplying the mean values of each 12-hour bin with the 

factor loadings to create new dependent variables. These new variables thus consist of 

the combined values of the dependent variables that belong to a given factor. These 

variables were further analyzed with a t-test to detect differences between control 

and stress groups and with a paired samples t-test to test for within-group differences 

between days. A Bonferroni-correction was used when multiple comparisons were 

made. 
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Data on bodyweight, blood plasma corticosterone, sucrose consumption and 

preference, are presented as mean ± S.E.M.; tested using repeated measures ANOVA, 

and post-hoc t-test when appropriate. Depending on the normality score obtained with 

Kolmogorov-Smirnov, parameters of circular hole board behavior were compared using 
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Figure 3

Home cage activity during the 12hrs lasting dark period: control (white bars) and stressed mice (black 

bars) on day 4 (baseline: before experimental manipulations start), day 6 (after two exposures), 

day 10 (after nine exposures), day 14 (after 24hrs sucrose consumption and ten exposures) and 

day 19 (three days after the last exposure and one day after circular hole board exploration). 

See Figure 1 for details on the experimental schedule. Home cage activity is represented by four 

dependent variables: (A) time in shelter, (B) time spent near the feeder, (C) time spent near the 

bottles and (D) distance moved in the open area. Data is presented as mean ± S.E.M. of the 12hrs 

dark period. Symbols indicate significant differences from baseline for control ($) and rat stress (#): 

paired samples t-test with Bonferroni correction p < 0.05; asterisks indicate significant differences 

between groups per experimental day: * p < 0.05, ** p < 0.01 (t-test).

(A)

(C)

(B)

(D)
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one way ANOVA or Mann-Whitney test. Data is presented as mean ± S.E.M. Significance 

was accepted at p < 0.05. 

Results

Home cage behavior

Mice were repeatedly exposed to rats (rat stress group) or placed in their previous 

housing cage in the same time schedule (control group). Rat stress had a distinctive 

influence on behavior of mice in the home cage (Figure 3A-D). These mice were less 

active than controls during the dark period. They spent less time at the feeder and the 

bottles and moved less (days 10 and 14, T-test, p < 0.05), but spent significantly more 

time in the shelter (day 10: T-test, p < 0.05). Three days after termination of the stress 

procedure, home cage behavior was comparable between control and stress groups for 

the parameters tested. 
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Figure 4

Hourly distribution of locomotor activity 

(cage floor movement), (A) control and 

(B) rat stress group, expressed as the time 

spent moving in the open area in seconds 

per hour (mean ± S.E.M.) during the dark 

period of day 4 (baseline), day 6 (after 2 

exposures), day 10 (after 9 exposures), day 

14 (after 10 exposures) and day 19 (three 

days after exposure). See Figure 1 for details 

on the experimental design. Shaded area 

represents mean activity on day 4. 

(A)

(B)
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Interestingly, also the control manipulation changed the level of nocturnal 

activity. Baseline measurements from day 4 allowed within-group analysis over days for 

control and stressed mice. Independent of group, significant differences from baseline 

were found for the time the mice spent in shelter (Figure 3A), near to the feeder (Figure 

3B), near the drinking bottles (Figure 3C) and the distance moved in the open area 

(Figure 3D). For all days analyzed, activity in the open area as well as activity at the 

feeding and drinking places was lower compared to baseline (all days, paired samples 

T-test, p < 0.05). The drop in activity was largest in response to the first experimental 

manipulations in control and stressed groups (day 6), followed by a gradual increase 

towards baseline levels from days 10 to 14. Notably, three days after termination of the 

stress procedure on day 19, activity was comparable to levels observed on day 6: again, 

more time in shelter, less near the feeder and bottle area and reduced locomotion. 

Nocturnal pattern of cage floor movement 

The nocturnal pattern of cage floor movement is presented per hour for control (Figure 

4A) and stressed mice (Figure 4B). As activity during the light period was minimal and 

did not show any group difference, it was decided to exclude these data from Figure 

4A-B. Characteristic for the nocturnal pattern at baseline are the peaks in activity at 

the beginning and end of the dark period. Compared to baseline, both groups showed 

a significant change in the activity pattern (repeated measures ANOVA, interaction 

between within-subjects factors “day” and “hour”, F(44,100)=2.471, p = 0.003). Post-hoc 

analysis revealed significant differences from baseline for all days (day 6, 10, 14 and 

19; p < 0.01). The difference was most pronounced during the first 3 hours of the dark 

period, expressed by the markedly reduced peak during and after the experimental 

manipulations. 

Principal Component Analysis of home cage behavior

The interrelation of variables measured in the home cage is represented by three factors, 

extracted by Principal Component Analysis (Table 1). The factors together accounted for 

70.59% of the variance. Factor 1 loads positively on variables that indicate exploration, 

like time spent on the shelter and distance moved in the open area. Factor 1 is labelled 

“exploratory activity”. Factor 2 consists of variables that indicate the activity directed 

towards the feeding and drinking areas, like time spent near the feeder and the bottles: 

Factor 2 is labelled “foraging activity”. The third factor consists of variables like time 

spent in the open area, velocity and the number of stops suggesting a specific aspect of 
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“velocity/stops”. 

To investigate the effects of the stress paradigm on the individual scores of each 

of the factors, the factor scores of each mouse were calculated for the dark period of 

days 6, 10, 14 and 19. Figure 5 presents the data for Factors 1 and 2; Factor 3: “velocity/

stops” was comparable between groups (data not shown). 

Factor 1: “exploratory activity” was significantly decreased with respect to 

baseline on days 4 and 19 in control and stressed mice (paired samples T-test, p < 0.05). 

Stressed mice showed a further decrease compared to control mice during the stress 

procedure (days 6: t = 2.399, df = 30, p = 0.023; day 10: t = 2.355, df = 30, p = 0.025), but 

not after termination of the stress procedure (day 19). For Factor 2:“foraging activity”, a 

decrease was found on all experimental days compared to baseline, both in control and 

stressed mice (paired samples T-test, p < 0.05). Furthermore, stressed mice scored less 

than controls during the stress procedure (days 6: t = 2.355, df = 30, p = 0.025; day 10: t 

= 4.581, df = 30, p < 0.001; day 14: t = 2.233, df = 30, p = 0.033). After termination of the 

stress procedure (day 19) factor scores were comparable between control and stressed 

mice.

Table 1: Principal Component Analysis 

Variable Factor 1 Factor 2 Factor 3

In shelter (frequency) .691
On shelter (frequency) .791
On shelter (duration) .819
Distance moved in open area .920
Cage floor movement .881

In shelter (duration) -.898
Feeder (duration)   .841
Bottles (frequency)   .654
Bottles (duration)   .775

Open area (duration)   .690
Velocity -.893
Number of stops   .619

% of variance explained 31.50 22.90 16.19
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In summary, removal from the home cage decreases both exploratory and 

foraging activity in control and stressed mice. However, there is a marked additive 

decreasing effect of rat exposure on exploratory activity and, more pronounced, on 

foraging activity.

Sucrose and water consumption and preference 

Data are presented in Table 2. Fluid consumption on day 5, the day before rat stress 

began, was taken as baseline (100%): sucrose 12.7 ± 0.6ml and water 2.4 ± 0.1ml. The 

pattern of sucrose intake changed over time (time: F(1,30)=47.646, p = 0.001) and was 

group dependent (group: F(1,30)=24.896, p = 0.001). While sucrose intake was increased 

in both groups (paired samples T-test: p < 0.05) from day 13 to 17, this increase was 

significantly higher in controls than stressed mice, 42.2 vs. 17.7%, respectively. On both 

Figure 5

Home cage activity represented by 

two factors extracted from Principal 

Component Analysis (PCA); (A) Factor 1 

indicates “exploratory activity”; (B) Factor 

2 indicates “foraging activity”. Factor 

scores were calculated for every mouse 

using factor loadings derived from PCA 

(see Table 1). Means per group for control 

(white bars) and rat stress (black bars) are 

presented for day 4 (baseline), day 6 (after 

two rat exposures), day 10 (after nine rat 

exposures), day 14 (after ten rat exposures) 

and day 19 (three days after the last rat 

exposure). See Figure 1 for details on the 

experimental design. Note that factor 

scores are relative measures and do not 

represent a specific measured variable. 

Data is presented as mean ± S.E.M. of the 

12hrs dark period. 

Symbol ($) indicate significant differences 

from baseline both groups (paired samples 

t-test with Bonferroni correction p < 0.05) asterisks (*) indicate significant differences between 

groups per experimental day: * p < 0.05, ** p < 0.01 (t-test). 
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testing days, stressed mice consumed less sucrose than controls (one way ANOVA, day 

13: F(1,30)=5.552, p = 0.025; day 17: F(1,31)=38.188, p = 0.001). The pattern of water intake 

also changed over time (time: F(1,30)=25.926, p = 0.001) and differed between groups 

(group: p = 0.001). Stressed mice had a significantly reduced water intake on day 13 

(one way ANOVA, F(1,31)=4.192, p = 0.049) which increased by 20% from day 13 to day 17 

(paired samples T-test; t = -5.956, p = 0.001).

The pattern of sucrose preference, changed over time (time: F(2,60)=26.996, p = 

0.001) and was group dependent (group: F(2,60)=13.753, p = 0.001). Stressed mice showed 

significantly less preference for sucrose than controls on day 17 (one way ANOVA, 

F(1,32)=9.837, p = 0.004). 

Novelty exploration - circular hole board 

The behavioral pattern on the circular hole board differs significantly between the groups 

(MANOVA: F(12,19)=3.521, p = 0.007; Table 3). Stressed mice had a longer latency to the first 

hole visit and hole dip (one way ANOVA, F(1,31)=4.339, p = 0.049; Mann-Whitney, df=32; p 

= 0.035), while the total number of hole visits did not differ. Interestingly, stressed mice 

more often used perseveration strategies to visit the holes (one way ANOVA F(1,31)=5.269, 

p = 0.029). Serial strategies, distance walked and velocity were comparable between 

groups.

Corticosterone response to rat exposure

Corticosterone concentrations before the first (rat) exposure on day 6 were comparable 

between groups. After rat exposure, higher corticosterone concentrations were 

Table 2: Sucrose and water consumption / preference in relation to baseline values. Baseline fluid 

intake: sucrose 12.7 ± 0.6 ml; water 2.4 ± 0.1 ml. 

Day 13 Day 17 
Two days after 9 exposures One day after 11 exposures

Fluid % intake (ml) preference (%) % intake (ml) preference (%)
Control Sucrose 102.5 ± 4.8 88.7 ± 0.4 144.2 ± 5.3 91.3 ± 0.3

Water  76.4  ± 3.7 11.2 ± 0.2   79.6 ± 4.9   8.7 ± 0.7
Rat stress Sucrose   87.0 ± 5.8* 87.0 ± 0.8 104.7 ± 4.9* 87.2 ± 0.2*

Water   68.1 ± 1.7* 12.9 ± 0.5   88.2 ± 3 11.9 ± 0.1

Data are expressed as mean ± S.E.M. 
* p < 0.05 rat stress vs. controls.
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measured as compared to novel cage exposure (baseline = 5.4ng/ml = 100%; t = 60 

min: stress: 895.9 ± 68.9 vs. control: 403.9 ± 25.2% increase vs. baseline; Mann-Whitney, 

df=32; p = 0.001).

Body weight

All mice gained weight over the course of the experiment (± 3% increase on day 19; day 

1 set to 100% bodyweight). Weight change in direct response to rat exposure or cage 

placement, was used as a marker for autonomous nervous system activation. Weight 

loss in stressed mice was significantly stronger (mean ± S.E.M. in mg; control: 43 ± 2 vs. 

stress: 59 ± 1; one way ANOVA, F(1,31)=39.894, p = 0.001).

Additional experiment: Sucrose consumption and cage exposure change activity 

pattern

Mice altered their activity pattern during the dark active period in response to sucrose 

and exposure to their previous Macrolon Type II housing cage (main effect of group: % 

time - in open area: F(2,33)=10.099, p = 0.0001; at feeder F(2,33)=3.624, p = 0.038) with a 

different time course over days: interaction day*group (open area F(6,99)=3.935, p = 0.001; 

at feeder F(6,99)=4.331, p = 0.001; data not shown). Sucrose consumption was comparable 

to the main study (between 10 and 15ml/mouse). Only on day 5, when sucrose was 

present, time spent near the bottles increased by 50%; time spent at the feeder and in 

the open area decreased (all p < 0.05). Following two cage exposures during the light-on 

Table 3: Behavioral parameters indicative for exploration of the circular hole board.

Behavioral parameter Control Rat stress
Distance (m) 17.5 ± 0.8 17.4 ± 1.4
Speed of moving (cm/s) 5.8 ± 0.3 5.8 ± 0.5
Stops (number) 4.0 ± 0.2 4.5 ± 0.5
Latency first hole visit (s) 9.3 ± 1.0 13.6 ± 1.8*

Latency first hole dip (s) 21.2 ± 3.1 31.6 ± 4.3*

Total hole visits (number) 25.5 ± 1.8 24.4 ± 2.1
% serial 45.8 ± 3.8 57.2 ± 5.0
% perseveration 15.5 ± 3.5 24.4 ± 2.3*

Latency first rim dip (s) 19.5 ± 1.8 25.6 ± 2.8
Rim dips (number) 12.8 ± 1.4 12.0 ± 1.4

Data are expressed as mean ± S.E.M. s: seconds; m: meter
* p < 0.05 rat stress vs. controls.
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hours on day 6, the time spent in shelter was increased during the next light-off period. 

Activity in the open area and at the feeder remained reduced on days 6, 7 and 8. Mice 

spent less time near the bottle and feeder, while more time was spent inside the shelter 

(all p < 0.05). Taken together, as long as sucrose was available, (foraging) activity was 

changed but returned to the level of undisturbed control mice thereafter. The removal 

of the mouse from the home cage PhenoTyper to the “previous housing cage”, which 

we used as control procedure for rat stress in the main experiment, had long-lasting 

consequences, suppressing the activity pattern of the mice for the next two days.  

Discussion

Longitudinal and continuous observation of behavioral activities of mice in their home 

cage resulted in two main findings: (1) During and after cessation of the rat stress 

paradigm exploration and foraging patterns changed; consumption of and preference for 

a sweet solution was less expressed than in control mice. Rat-stressed mice delayed the 

onset to explore the novel environment of the circular hole board and used perseverative 

exploration strategies. (2) The control procedure for rat stress, i.e. placing the mice 

for 1-2 hours in another cage, also resulted in a pronounced decrease and differential 

pattern of home cage activity. We conclude that experimental manipulations, which 

are generally considered as “minor”, reveal themselves as long-lasting changes in the 

daily activity pattern of mice. In addition, repeated rat exposure leads to further distinct 

alterations of behavior in the familiar environment of the home cage, extending even to 

behavior in novel situations. 

Effects of rat exposure on home cage behavior

Repeated, unpredictable and uncontrollable exposure of mice to rats can be considered 

as chronic psychological stress (Grootendorst et al. 2001a; Grootendorst et al. 2001b). 

Our results on reduced home cage activity in rat stressed mice are in line with findings 

from rat studies that reported reduced non-specific activity counts and running wheel 

activity in relation to stress procedures involving paired housing, food/water deprivation 

(Gorka et al. 1996), repeated social conflict (Meerlo et al. 1999) and inescapable electric 

shocks (Desan et al. 1988; Stewart et al. 1990). However, the current set-up allowed 

specification of the behavioral changes and their development over time. 
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Stressed mice spent more time in the shelter, spent less time and traveled less 

distance in the open area of the home cage than mice of the control group. Principal 

Component Analysis (PCA) revealed that exploration of the open area (Factor 1) is 

independent from activity related to foraging (Factor 2), i.e. time at the feeder and 

drinking bottles. Stressed mice showed a decrease in both exploratory and foraging 

activity. We interpreted these findings in the following way: once a stressed mouse 

leaves the shelter, its focus is on obtaining food and water, a primary life necessity, while 

suppressing exploratory activity that is not related to foraging. We conclude that stressed 

mice kept their actual food and water intake at the same level as control mice, but had 

adapted a faster collection of the consumables. Food might also have been transported 

to the shelter. While directly after the rat exposure mice had lost more weight than 

controls, the body weight remained comparable. This is another indication that stressed 

mice consumed as much or even more than controls. It might be the case that the food 

is metabolized differently, resulting in a differential distribution of fat and muscle tissue 

(Moles et al. 2006). 

The effects of stress revealed by the PCA are supported by theories on the 

economy of behavior. These predict that animal’s trade-off their foraging effort in 

relation to variation of predation risk (“predation risk allocation hypothesis”; (Lima 

and Bednekoff 1999). Rats are not actual predators of mice, but in nature, mice and 

rats avoid to share the same living environment. Animals need to forage for food to 

meet their energy demands, while at the same time they need to minimize the risk of 

being exposed to a life-threatening situation, i.e. the predator or the threat of a possible 

predator. We may argue that reduction of exploratory activity has an adaptive value by 

temporarily decreasing the risk of predation (Norrdahl and Korpimaki 1998).

In contrast to nature, consumables are available ad lib in the experimental setting. 

Moreover, the actual exposure to rats took place in a distinctly different environment. 

The change in nocturnal activity patterns reveals the long-lasting consequences of the 

“rat experience” and leaves the impression that also the familiar “safe” environment of 

the home cage became threatening. 

Observing the development of exploration and foraging over the course of rat 

exposures, we found that the initially lower exploratory activity returned to baseline 

levels after the tenth rat exposure. However, Factor 2 (foraging activities) remained 

lower, indicating that the effects of rat stress have distinct effects on the time pattern of 

behaviors. 
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Effect of rat stress on sucrose consumption and preference

Measurement of sucrose intake or preference is currently in widespread use in 

preclinical psychopharmacology for predicting sensitivity to rewards. Animal models of 

chronic stress in rats generally report a decrease in sucrose consumption as a measure 

for anhedonia (Dalm et al. 2000; Pothion et al. 2004; Strekalova et al. 2004; Anisman and 

Matheson 2005; Willner 2005). However, preference for the sweet solution seems to 

be a more appropriate marker for anhedonia. As expected, mice showed an impressive 

consumption of (12ml) and preference for (85%) the 5% sucrose solution. Control mice 

further increased their consumption (up to 144%) and preference over the course of the 

experiment. Stressed mice decreased the sucrose consumption in the initial phase of 

rat stress and baseline levels were reached one day after the cessation of rat exposures. 

Mice housed for 3 weeks with rats did not increase their sucrose consumption either 

(Calvo-Torrent et al. 1999). Although all mice preferred sucrose over water, the 

preference for sucrose increased in the course of the experiment only for control but 

not rat stressed mice. There is a clear time-dependent pattern in the development 

of increasing consumption of and preference for sucrose in the control mice which is 

absent in the rat stressed mice. During the stress paradigm (on days 6 and 10) stressed 

mice spent less time near the bottles than controls, which most likely reduced their fluid 

intake. However, since the preference of the stressed mice for sucrose did not change 

in the course of the experiment, and water intake was comparable to controls we feel 

confident that rat stress affected the hedonic properties of sucrose. Stressed mice did 

not increase their preference and consumption like controls. Consequently, we assume 

that the rat stress procedure affected the reward system, also somewhat counteracting 

the addictive properties of sucrose (Avena et al. 2008).

The volume overload of 300% due to sucrose drinking most likely affected 

the body’s fluid and energy balance. Sucrose by itself is rich in energy, which is utilized 

directly, stored in adipose tissue or secreted from the body (Peters et al. 2004). Drinking 

sucrose might have lowered stress-induced corticosterone secretion as shown by Bell 

and colleagues (Bell et al. 2000). Indeed, absolute corticosterone values in response to 

rat exposure were lower than measured in previous studies (Grootendorst et al. 2001a; 

Grootendorst et al. 2001b). Our additional experiment revealed, that the rat stress 

control procedure (placement in another cage) reduced the nocturnal activity for at 

least two days, while sucrose overload affected the activity pattern only on the day of 

consumption. Therefore, the reduced consumption and lesser preference for sucrose is 

a distinct feature of the rat stressed mice. 
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Exploration of a novel environment

Rat stressed and control mice showed similar locomotor activity (distance walked and 

velocity) on the circular hole board, while home cage activity patterns were lower in the 

stressed mice. Locomotor activity in response to a novel environment cannot be directly 

compared to activity in a familiar surrounding. In both conditions, a different type of 

activity is measured, next to the difference in duration and time of measurement. Instead 

in locomotor activity, the effect of stress was observed at a different level. Interestingly, 

the exploration pattern of mice on the circular hole board was changed. Stressed 

mice alternated more often between serial (sequential hole visits) and perseverative 

(repetitive visits of the same hole) search strategies. While control mice readily set out 

to explore, stressed mice were slower in starting to visit holes and performing rim dips, 

indicative for more anxiety-related behavior. Exploration of the holes and the border are 

important to locate possible routes of escape from the open, unprotected environment. 

We may assume that the exploration pattern of stressed mice decreases the possibility 

to locate an escape route. This might also relate to the impairment of cognitive abilities 

that have been observed in previous studies (Grootendorst et al. 2001b). 

Effects on home cage activity of the control mice 

The activity of mice before the intervention resembled the nocturnal pattern described 

in previous studies (de Visser et al. 2005; de Visser et al. 2006). Unexpectedly, the control 

procedure for rat stress, i.e. exposure to a ‘familiar’ cage for one to two hours reduced 

activity patterns, albeit to a lesser degree than in the rat stressed group. Others have 

shown in rats that even routine control procedures like placement into a clean cage, can 

induce stress system activation and affect behavior (Meerlo et al. 1996; Duke et al. 2001; 

Balcombe et al. 2004). Placing a rat in a novel cage for 1h in the same room, at the same 

time when another rat was defeated had a dramatic effect on the body temperature 

during the day and the activity during the night (Meerlo et al. 1996). Importantly, the 

results of our additional experiment support the long lasting reduced nocturnal activity 

of the mice. Exposing the mice to the circular hole board for 5 minutes during the light 

period of day 19, resulted again in a reduction of activity thereafter. Exploratory and 

foraging factors returned to the level of day 6, when the mice were exposed for two 

hours to a novel cage.

Like in our study, most laboratories conduct experiments during the light, 

inactive period of rodents. Others have shown that the effect of stressors on stress 

system activation depend on the kind of stress and time of day when applied (Akana et al. 
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1986; Retana-Marquez et al. 2003). The effects of experimental “control” manipulations 

and even a short-lasting behavioral test go unnoticed in most studies that compare 

treatment effects between groups. The longitudinal design of the present study revealed 

the strong impact of common handling procedures. 

Conclusions

The home cage PhenoTyper design includes the measurement of baseline behavior and 

thus, allowed in a longitudinal setting within and between group comparisons. We found 

evidence that already “basic” experimental manipulations like relocation of the mice 

to another cage, performing a short-lasting behavioral exploration task, have strong 

and long-lasting influences on the organization of circadian behavioral activity. We 

now know that the rat stress effect is a combination of rat exposure and accompanying 

experimental conditions like transport, handling, disturbance of the light phase resting 

and sleep behavior. Rat exposure resulted in (1) a stronger and differential inhibition 

of exploration and foraging activity in the home cage than the control procedure, (2) a 

decreased response to reward expressed by sucrose drinking and sucrose preference and 

(3) a specific exploration strategy in a novel environment. Behavioral and neuroendocrine 

changes might still be in the range of adaptive responses to stress. We conclude that 

our rat exposure design shows the potential for a mouse model of chronic stress and 

will allow to study and elucidate mechanisms underlying the inhibition of behavior in 

relation to stress system activation.   
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Abstract 

Reduced responsiveness to positive stimuli is a core symptom of depression, known 

as anhedonia. In the present study, we assessed the expression of anhedonia in our 

chronic stress mouse model using a subset of read-out parameters. In line with this, we 

investigated in how far chronic stress would affect the facilitating effect of post-training 

self-administration of sugar, as we previously observed in naïve mice. 

Male C57BL/6J mice were repeatedly and at unpredictable times exposed to rats 

(no physical contact) over the course of two weeks. Following novelty exploration, (non-) 

spatial learning and memory processes with and without post-training sugar acting as 

reinforcer, emotionality, reward sensitivity and corticosterone levels were determined. 

We found that (1) the effects of chronic stress persisted beyond the period 

of the actual rat exposure. (2) Post-training self-administration of sugar as reinforcer 

improved spatial performance in naïve mice, whereas (3) in stressed mice sugar partially 

“normalized” the impaired performance to the level of controls without sugar. Chronic 

stress (4) increased behavioral inhibition in response to novelty; (5) induced dynamic 

changes in the pattern of circadian corticosterone secretion during the first week after 

rat stress and (6) increased the intake of sucrose and water. (7) Chronic stress and sugar 

consumed during spatial training facilitated the memory for the location of the sucrose 

bottle weeks later. 

Concluding, our chronic stress paradigm induces the expression of anhedonia in 

mice, at different levels of behavior. The behavioral inhibition appears to be long lasting 

in stressed mice. Interestingly, sugar consumed in close context with spatial learning 

partially rescued the stress-induced emotional and cognitive impairments. This suggests 

that reward can ameliorate part of the negative consequences of chronic stress on 

memory.
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Introduction

Chronic stress is considered a vulnerability factor for psychiatric disorders like depression 

(De Kloet et al. 1998; de Kloet et al. 2005; McEwen 2005). One of the core symptoms 

of depression is anhedonia, i.e. the reduced reactivity to pleasurable stimuli or positive 

affect from events or activities that are normally rated as interesting or pleasant (DSM-

IV-TR 2000; Holsboer 2000; Bevins and Besheer 2005; Leppanen 2006). Anhedonia is 

considered to be the result of a disturbance in the detection of and response to positive 

emotional stimuli. The objective of the current study was to induce a disturbance in 

emotional processing by exposing mice to a chronic psychological stressor, and to 

investigate the reactivity to a rewarding stimulus. We measured emotional responsivity, 

cognitive performance and corticosterone secretion patterns. 

Previous studies have shown that repeated exposure of mice to rats, i.e., the ‘rat 

stress’ procedure, caused changes in the behavior of mice measured during and directly 

after ‘rat stress’ (Dalm et al. 2009a). The behavioral changes included (i) inhibition of 

circadian activity patterns in the home cage, (ii) reduced sucrose consumption and 

inhibition of sucrose preference development and (iii) perseveration of behavior in a 

novel environment without a change in general locomotor activity. The same ‘rat stress’ 

protocol revealed changes in endocrine parameters together with impaired performance 

in hippocampus-dependent learning tasks (Grootendorst et al. 2001a; Grootendorst et 

al. 2001b). Recently, we also reported that chronic stress shifted the use of learning 

strategies towards favoring stimulus response over hippocampus-dependent strategies 

in mice and man (Schwabe et al. 2008). 

To assess whether our chronic stress procedure would induce the expression 

of anhedonia, we first determined several indicators for anhedonia. For this purpose 

we exploited the finding that positive stimuli and reward can strengthen memory traces 

(Huston and Mondadori 1977; Huston and Oitzl 1989; Messier 2004). In line with the 

theory of reward-effects on memory we have demonstrated that post-training access to 

sugar facilitated spatial memory of mice in the water maze and the circular hole board 

task (Dalm et al. 2009b). In the current study we studied the effect of post-training sugar 

on spatial performance in stressed mice, as indicator for anhedonia. 

Another indicator for anhedonia is derived from the consumption of and 

preference for a sweet solution. We and others have observed inhibition of consumption 

and preference for a sweet solution in close proximity to stress (Strekalova et al. 2004; 

Willner 2005; Dalm et al. 2009a). In contrast, long-term effects of stress and elevated 

glucocorticoids were reported to increase the consumption of and even preference 



132

Chapter 7

Chapter 7

for sweet solutions (Dallman 2007; Dallman et al. 2007). Others have suggested that 

exploration patterns in a novel environment may provide leads to reveal the emotional 

state of the animal (File 2001; Kalueff et al. 2006). Exploration is considered a self-

rewarding behavior. While the inhibition of exploration is generally related to anxiety, 

less exploration might also indicate the loss of hedonic responses, as suggested by 

Bevins and colleagues (Bevins and Besheer 2005).

We examined the behavior of male C57BL/6J mice over the course of five 

weeks after cessation of the ‘rat stress’ procedure. During the first 4 weeks after stress, 

exploration patterns were determined in the novel environment of the circular hole 

board, in parallel with the measurement of spatial learning and memory performance, 

and reversal learning, with and without post-training sugar as reward. At 4 weeks after 

cessation of the ‘rat stress’ procedure, we measured the behavioral response to the light-

dark box as an indicator for emotion-related behavior. Consumption and preference for a 

sucrose solution were assessed before, and 5 weeks after ‘rat stress’. To substantiate the 

paradigm of repeated rat exposure as model for chronic stress, we measured circadian 

corticosterone secretion by taking blood samples three times per day, at one and six 

days after the last rat exposure.

We hypothesize that (i) chronic stress will impair spatial memory in mice and 

(ii) the memory facilitating effect of post-training sugar in stressed mice will be absent. 

Materials and Methods

Animals

Male C57BL/6J mice (n = 40, 10 weeks old) were purchased from Janvier (France). Upon 

arrival at the animal facilities (Gorlaeus laboratory, LACDR, University of Leiden, The 

Netherlands), mice were transported to the experimental room to acclimatize for two 

weeks before the start of the experiment (days 1 - 14). They were housed individually 

in a temperature (21 ± 1˚C) and humidity (55 ± 5%) controlled room, with food and 

water ad libitum; 12-12h light-dark cycle (lights on at 0700h). Behavioral testing was 

performed between 0900h and 1400h. Experiments were approved by the Local 

Committee for Animal Health, Ethics and Research of the University of Leiden. Animal 

care was conducted in accordance with the EC Council Directive of 24 November 1986 

(86/609/EEC). 
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Experimental design

Figure 1 depicts the timeline of the experiment. Mice were subjected to two conditions 

(n = 20/group; days 18 - 28); (i) stress: exposure to rats within a 2 week period and (ii) 

control: remaining undisturbed in the home cage. Endocrine (corticosterone), emotional 

and cognitive responses were assessed several times throughout the duration of the 

experiment. The corticosterone concentration was determined three times during the 

light period: baseline (day 17), and one- and six days after the last rat exposure (days 

29 and 34). On day 35, mice were exposed for 5 min to the novel environment of the 

circular hole board (CHB). The CHB was subsequently used to test acquisition of spatial 

learning (days 38 – 42) and reversal learning (days 46 – 48). Exploration strategies were 

assessed on days 35, 45 and 49, i.e., before, after spatial- and after reversal learning. 

Four weeks after cessation of the stressor (day 56), the behavioral response to the 

light-dark box environment was assessed. Immediately thereafter a blood sample was 

withdrawn to determine the novelty-induced corticosterone concentration. A sucrose 

solution was available for 24 h before (day 15) and after ‘rat stress’ (day 63). Bodyweight 

was measured daily from the day of arrival until the end of the experiment. 

Day  Experimental manipulation 

1 – 11  Single housing in separate control, and stress assigned 
rooms 

12 - 16 Tunnel-training in preparation of CHB training  

14 Sucrose / water consumption and preference: baseline 

17 Corticosterone 3 x during light period: baseline 

18-28 Rat stress paradigm 

29 Corticosterone 3 x during light period: 1 day post-stress  

30 – 33 Home cage 

34 Corticosterone 3 x during light period: 6 days post-stress 

35 FET-1 Novelty exposure to the CHB 

36 – 37 Home cage 
  

38 – 42 CHB spatial learning and memory 

43 – 44 Home cage 

45 FET-2  

46 – 48 CHB reversal learning and memory   

49 FET-3  

50-55 Home cage 

56 Light-dark box + corticosterone concentration  

63-64 Sucrose / water consumption and preference 

Chapter 7 – Figure 1 
S.Dalm - 2012 

Figure 1

The experimental design of the study. The grey 

box highlights the time of the chronic stress 

procedure. Abbreviations: CHB = Circular Hole 

Board; FET =Free Exploration Trial. 
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Behavior was recorded on videotape and analyzed using EthoVision Windows 

3.1 (Noldus Information and Technology BV, Wageningen, The Netherlands). The image 

analysis system sampled the position of the mouse 12.5 samples/second. To calculate 

the distance moved, we set the system to score movement when the mouse moved at 

least with a velocity of 3.5 cm/second, averaged over 12 samples.

‘Rat stress’ paradigm

Exposure to a rat profoundly activates the Hypothalamic-Pituitary-Adrenal (HPA) axis of 

the mouse, resulting in elevated corticosterone concentrations in brain lysate (Linthorst 

et al. 2000) and blood plasma (Grootendorst et al. 2001b). During the first week (days 18 

- 22) of the ‘rat stress’ paradigm, mice were exposed to rats on 5 consecutive days: one 

or two hours a day, either morning or afternoon, resulting in a total rat-exposure time of 

9h. In the second week (days 26 – 28), two exposures took place: on Tuesday (1h) and 

Thursday (1h; see also Dalm et al. 2009a).

One rat was placed on top of two mouse cages. Mice and rats were separated 

by a grid and could see, hear and smell, but not touch each other. Food and water were 

not available during rat exposure. To reduce predictability of the procedure for the mice, 

exposures took place at different times during the light phase. Furthermore, the location 

of the rat and the mouse cages were changed ad random within the experimental 

room. To avoid exposure to the smell of rats, the person who performed the rat stress 

procedure did not enter the separate housing room of the control mice. Control mice 

remained in their home cage. To assess the effect of rat exposure on arousal, mice were 

weighed before and directly after the last rat exposure of the day. Comparable time 

points were used for weighing the control mice.

Blood sampling and corticosterone measurement

To characterize the effect of the ‘rat stress’ paradigm at the endocrine level, we used the 

following procedure: The day before the start of the stress paradigm, and 1 and 6 days 

after the last rat exposure, a small blood sample was collected from the mice via tail-

incision three times during the light period at 0900h, 1300h and 1700h. Briefly, a small 

incision at the base of the tail with a razor blade allows collection of a < 50 µl blood, 

within 90 sec after opening of the animal’s cage (Dalm et al. 2005). Corticosterone was 

measured using a commercial 125I-corticosterone radioimmunoassay kit (MP Biomedicals, 

NY, USA; the intra-assay variability is 7.3%). 
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Circular hole board 

The apparatus is a grey round plate (PVC; diameter = 110cm) with 12 holes (diameter = 

5cm) at equal distances from each other and at a distance of 10cm from the rim of the 

hole to the rim of the plate, situated 1m above the floor. Light intensity on the board 

surface was 120 lux. All holes could be closed by a lid at a depth of 5cm. During learning 

trials one hole was open and connected to the home cage of the mouse by an s-shaped-

tunnel (diameter = 5cm x 15cm long). Only in close proximity to the hole (head into the 

hole) the mouse could see if it was open. Turning the board between trials, cleaning 

the surface before each mouse was placed on the board, and placing the home cage 

underneath the opposite exit hole during the free exploration trials, served to control 

odor cues (see for detailed description of the CHB apparatus and procedure (Dalm et al. 

2009a)). 

Before a trial commenced the board was cleaned with 1% HAc, followed by 

turning the board clock- or anticlockwise until a randomly determined open hole was 

at the fixed location of the exit. The location of the exit hole changed between spatial 

acquisition- and reversal learning. The home cage of the mouse was placed underneath 

the board and was connected to the exit hole with an s-shaped-tunnel; the home cage 

was invisible to the mouse on the board. A trial started by placing the mouse in a grey 

cylinder (PVC, diameter = 10cm; high = 25cm) at the center of the board. After 10s the 

cylinder was lifted and the mouse could explore the CHB.

Mice were ‘pre-trained’ three times to climb through the s-shaped-tunnel 

during the week preceding the ‘rat stress’ paradigm (days 12 – 16). All mice readily 

entered and climbed through the tunnel at the third time of ‘pre-training’. 

Schedule and procedure

Mice were run on the CHB between days 35 – 49. During free exploration trials (FET) all 

holes were closed by a lid; trials lasted 5 min: FET1: day 35 - novelty exposure; FET2: day 

45 – three days after spatial acquisition training; FET3: day 49 – one day after reversal 

learning. Training trials were divided in (i) spatial acquisition (days 38 – 42): learning the 

location of an exit hole; (ii) reversal: learning the location of a new exit hole (days 46 – 

48). A trial lasted 120s max, and two trials were run per day with an inter-trial-interval of 

15 min. If the mouse did not locate the exit hole, it was gently guided towards the exit 

hole using a grid (20cm × 6cm). A sub-group of control and stressed mice received post-

training sugar, upon arrival in their home cage (n = 10/condition).
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Overall, mice performed 16 learning trials (10 spatial acquisition and 6 reversals) 

and 3 FET’s. The following parameters were analyzed for the FET’s (i) general activity: 

path length (m), velocity (cm/s), number of holes visited; (ii) search strategies: sequence 

of hole visits (serial: more than two holes in sequence; perseveration: repeatedly visiting 

the same hole or alternately visiting two neighbouring holes), latency (s) and path length 

(m) to the exit holes as learned during spatial acquisition and reversal, number of visits 

to the exit holes, time spent in the zones (s) comprising of the hole adjacent left and right 

from the exit hole used during spatial- and reversal learning; (iii) anxiety related: latency 

(s) to leave the start center, latency (s) to the rim zone, number of rim dips, and number 

of boli. Training trials were analyzed for: latency (s) to leave the start center, latency (s) 

and path length (m) to exit hole, velocity (cm/s). 

Sugar administration

On the first day of single housing a feeding cup (2.5cm x 2.3cm) was taped to the 

bottom of the home cage in the corner opposite the nest (Dalm et al. 2008). All mice 

were familiarized with sugar on days 12 and 16 (i.e., before rat stress and CHB training 

commenced). The grid of the cage was lifted, the sawdust was removed from the feeding 

cup, and the sugar (30 mg) was added at 0900h. Mice ate all the sugar within 15 min. 

During the second spatial- and reversal training trials of the day, mice had free 

access to 30 mg sugar. All mice ate the sugar within 15 min after the trial, thus, in close 

context with the learning trial (Dalm et al. 2009b).

Light-dark box

On day 56 we determined the behavioral response of the mice to placement in the light 

compartment of the light-dark box and 5 min later blood samples were taken for the 

measurement of the corticosterone concentration. The plexiglas box was divided into a 

light- (30cm × 20cm × 25cm; lux = 480) and darker compartment (15cm × 20cm × 25cm; 

lux = 120). To start, mice were put in a grey cylinder (PVC, diameter = 10cm; height = 

25cm), which was always placed in the same corner of the light compartment. After 10s 

the cylinder was lifted and the mouse was left to explore for 5 min. Thereafter, the box 

was swept clean with 1% HAc.

As behavioral parameters the time spent (%) and distance moved (cm) in the 

light compartment were assessed as well as the latency (s) to enter the dark compartment 

and re-entry into the light compartment. 
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Sucrose consumption and preference

During sucrose testing mice had access to two bottles in their home cage: containing 

either water or a 5% sucrose solution. The first measurement of water and sucrose 

consumption and preference was determined from day 14 to day 15: bottles were 

weighed before (day 14 at 0900h) and after 24h (day 15 at 0900h). The reduction in weight 

of the bottles reflected the fluid consumption in ml; the difference in ml drunk from the 

water vs. the sucrose solution was calculated as percentage and reflects preference. 

These were taken as baseline values. The second sucrose testing was performed on 

day 63, which is 45 days after the last rat exposure. After both sucrose testing days, 

the bottle containing the 5% sucrose solution was replaced by a water bottle. To assess 

whether sucrose consumption would affect the preference to drink water from a bottle 

placed at the location of the previously sucrose-containing bottle, water consumption 

was measured following the second sucrose test, for 24h from day 64 to day 65.

Statistical analysis

Data were subjected to ANOVA (factors: group -controls and stress; treatment: no sugar, 

sugar, when appropriate with repeated measures followed by a post-hoc LSD test (SPSS 

15.0), and presented as mean ± S.E.M. Significance was accepted at p < 0.05.

Results

Circular hole board: novelty, exploration and search strategies

One week after ‘rat stress’, we found a dramatically altered behavioral response of mice 

exposed to CHB novelty, during (FET-1). Overall, behavior was suppressed in stressed 

mice, differing significantly between groups (F(14,23)=3.60, p = 0.001). General activity as 

expressed by path length in meters, velocity (cm/sec) and total number of hole visits 

(Figure 2A-C) was decreased (all p < 0.01). Anxiety related behavior (all p < 0.01) such as 

number of rim dips was decreased (Figure 2D) while latency to the rim area was twice 

as long (stress: 205 ± 25; control: 122 ± 10). Behavior related to search strategies (all p < 

0.01) such as time (s) to leave the center (stress: 12.2 ± 1.5; control: 6.5 ± 1.1) and latency 

to first hole visit (stress: 21.7 ± 4.7; control: 12.5 ± 1.8) were increased in stressed mice. 

Most remarkably, stressed mice explored the CHB favouring the use of perseveration 

over serial strategy (%perseveration vs. %serial; stress: 69.1 ± 7.3 vs. 31.3 ± 9.7; control: 

52.2 ± 5.9 vs. 40.9 ± 5.4; all p < 0.01). An example of the walking pattern of a control and a 
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stressed mouse is given in Figure 2E. Control and stressed mice were randomly assigned 

to sugar/no sugar subgroups during spatial training on the CHB. These subgroups were 

comparable in their behavioral response to novelty (data not shown).

Circular hole board: spatial training trials 1 to 10 

The learning curve, as expressed by the slope of latency and distance, decreased over 

trials (latency F(4,72)=54.67, p = 0.001; distance F(4,72)=6.08, p = 0.001); the pattern was 

different between control and stressed mice (trials*group: latency F(11,396)=3.15, p = 

0.001; distance; p = 0.001). Stressed mice displayed a smoother learning curve vs. a see-

saw pattern for controls. Walking velocity increased over trials (trials: F(6,216)=82.25, p = 

0.001). Path length was significantly shorter in stressed mice (trials*group: F(11,396)=5.03, 

p = 0.001; days 1, 2, 3; p < 0.05; data not shown). The shorter path length during the 

first days was paralleled by a slower walking velocity in stressed mice (trials*group: 

F(6,216)=4.41, p = 0.001). On training day 1 and in the first trial of day 2, stressed mice took 

significantly longer to find the exit hole than controls (p < 0.05; Figure 3).

Access to sugar after training resulted in a group-dependent effect on latency 

to reach the exit hole (Figure 3). Control mice that received sugar showed a smoother 

learning curve than no-sugar controls. The latter had a typical see-saw pattern, with the 

first trial of the day longer latencies than the last trial of the previous day. Remarkably, 

stressed mice showed the opposite: with post-training sugar the pattern of performance 
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Figure 2

Behavioral responses to 

the novel environment 

of the circular hole board 

were assessed one week 

after rat stress (5 min free 

exploration trial - FET-1); 

(A) Locomotor activity 

expressed as path length in 

meters; (B) velocity (cm/s); 

(C) number of hole visits; 

(D) number of rim dips; (E) 

typical exploration pattern 

of a control and a stressed 

mouse. Data represent 

mean ± S.E.M.; * p < 0.05 
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was comparable to no-sugar controls; without sugar stressed mice showed a smooth 

learning curve. Post-training sugar did not affect the path length and the walking velocity 

to the exit hole in either group (trial*group*treatment: F(11,396)=1.13, p > 0.05). 

Over the course of training trials, mice of both groups moved faster away 

from the start area (F(6,216)=69.25, p = 0.001; data not shown). However, stressed mice 

were significantly slower than controls to leave this area not only during FET-1 (before 

training p = 0.001), but also during training days 2, 3 and 5 (p < 0.05) and FET-2 (after 

training; p = 0.003). Post-training sugar did not affect the time to leave the start area 

(time*group*treatment: F(6,216)=0.56, p > 0.05). 

 

Circular hole board: reversal training trials 11 to 16

During reversal training the exit hole had been relocated from position 3 to 11. The pattern 

of reversal learning resembles the original learning pattern (Figure 3): long latencies for 

the first trial, shorter latencies for the second trial of the day. Over days, mice of both 

groups learned the location of the new exit hole shown by a decrease of latencies over 

trials (F(3,108)=37.66, p = 0.001; path length F(3,108)=9.60, p = 0.001; data not shown). There 

was no main effect of stress on reversal learning. Control mice showed an effect of post-

training sugar: controls with sugar took longer latencies in the first trial of the day (p < 
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Figure 3

Spatial performance on the CHB 

(mean of 2 trials/day) expressed 

as latency to find the exit hole for 

(A) control mice and (B) stressed 

mice, during spatial acquisition 

(training days D1-5) and reversal 

(training days D9-11). A subgroup 

of control and stressed mice had 

free access to sugar (30 mg/day) 

in their home cage daily after the 

last training trial. For FET-2 and 

FET-3, the latency and distance 

moved relate to the first exit 

hole visit. Data represent mean 

± S.E.M.; * p < 0.05 between 

groups.

(A)

(B)
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0.05). Walking velocity was group dependent (trial*group: F(3,108)=3.46, p = 0.019) and 

significantly lower for stressed mice on days 10 and 11 (p < 0.05). Time to leave the start 

area decreased group-dependently (trials*group: F(3,108)=3.70, p = 0.015): stressed mice 

were significantly slower to leave the start area than controls. Interestingly, post-training 

sugar had group-dependent effects on this parameter (group*treatment: F(3,108)=6.18, p 

= 0.018). Control mice with sugar were significantly slower to leave the start area than 

controls in the first trial on days 9, 10 and 11 (p < 0.05); also their latencies to the exit 

hole are longer. Stressed mice with sugar p = 0.041), however, the latencies to the exit 

hole are the same in both groups. 

Behavior during free exploration trials after training

During FET-2 and FET-3 all holes are closed. In comparison to the behavioral response 

during FET-1 before training, general activity of controls and stressed mice was increased, 

i.e., path length, speed of moving, and total hole visits. Goal directed behavior became 

more prominent. The search strategy shifted from perseveration to serial, the latency 

to the previous learning exit hole decreased, and mice visited the exit hole more often. 

Spatial acquisition training differentially affected the behavioral response of 

control and stressed mice observed in FET-2 (Table 1; MANOVA: F(14, 23)=4.54, p = 0.001). 

Stressed mice were slower than controls to leave the start area and to locate the exit 

hole. Controls with sugar had less rim dips and visits to the exit hole, yet, were faster in 

locating the exit tunnel than no-sugar controls. Similarly, stressed mice with sugar had 

less rim dips than stressed without sugar, while their number of visits to the exit hole 

was unaffected. The latency to the exit hole of stressed mice with sugar was twice as 

long as in the stressed no-sugar mice. 

The FET-3 following reversal learning revealed group differences in the 

behavioral response (Table 1: MANOVA; F(14,23)=2.11, p = 0.05). Stressed mice made more 

rim dips than controls, while general activity was similar between groups. Sugar had no 

effect in the control group. However, stressed mice with sugar had a significantly longer 

path length, faster walking velocity and more hole visits than stressed mice without 

sugar (all p < 0.05). Furthermore, stressed mice with sugar reached the rim of the board 

faster and made more rim dips. The search strategy employed was similar between 

groups. Perseveration was less expressed in stressed mice with sugar than stressed mice 

without sugar. 

Interestingly, memory related parameters differed according to group and 

treatment. Control mice visited the “new” exit (from the reversal training) about twice 

as much than the “old” exit (from the initial training); stressed mice visited the “new” 
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and “old” location comparably often (all p < 0.05). It took stressed mice with sugar one 

third of the time to locate the “old” exit hole compared to stressed mice without sugar 

(group*treatment: F(1,36)=7.37, p = 0.023). Also latencies to “new” and “old” exits were 

shortest in stressed mice with sugar.

Persistence of directed search following spatial training

During 5 days of spatial training mice learned to locate the exit hole. The persistence 

of search was defined by the percentage time spent in the area at the location of the 

previously accessible exit hole (15cm radius), during the 5 min of FET-2 (Figure 4). Stress 

and sugar affected the time spent close to the exit hole. Stressed mice remained longer 

in the exit area than controls (main effect of group F(1,36)=5.94, p = 0.020). The effect 

of sugar on control and stressed mice was opposite (group*treatment F(1,36)=11.30, p 

= 0.002): sugar during training increased the time in the exit area in control mice (p = 

0.018) whilst decreasing it in stressed mice (p = 0.029). Consequently, the persistence 

behavior of control mice with sugar was statistically comparable to stressed mice that 

had received sugar during training.

  

Behavior in the light-dark box 

Four weeks after the last rat exposure, mice were placed in the light compartment 

of the light-dark box, and tested for light-dark preference. Stressed and control mice 

responded differently (Table 2: MANOVA: group: F(5,32)=5.17, p = 0.001). Stressed mice 
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Figure 4 

Three days after the last spatial acquisition 

training trial, the percentage of time spent in 

the exit zone (15 cm radius) was determined 

during 5 min of free exploration trial 2 (FET-

2). Data represent mean ± S.E.M.; p < 0.05 * 

control vs. stress; ~ no-sugar vs. sugar.
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took more time to enter the dark compartment (F(1,36)=12.30, p = 0.001), spent more 

time in the light compartment (F(1,36)=16.58, p = 0.001) and had a longer path length 

(F(1,36)=11.04, p = 0.002) than controls. Walking velocity in the light compartment was 

comparable between groups.

Sugar had distinct effects on behavior of controls and stressed mice 

(group*treatment: F(5,32)=3.49, p = 0.013). Stressed mice with sugar had shorter latencies 

to the dark compartment and spent less time in the light compartment and their walking 

velocity was higher than in stressed mice without sugar (all p < 0.01). Control mice 

with sugar were faster to re-enter, and spent more time in the light compartment than 

controls without sugar (both p < 0.05); walking velocity was comparable.

Sucrose consumption and preference 

Control and stressed mice preferred sucrose solution over water to a comparable 

degree. We calculated the difference in fluid intake (5% sucrose-, water- and total fluid 

consumption in ml) between baseline (day 14; i.e., 4 days before the rat stress paradigm 

started) and 5 weeks after the last rat exposure (day 63, Table 3). Stressed mice drank 

more of the sucrose solution and water than controls (group: sucrose F(1,36)=9.02, p = 

0.005; water F(1,36)=4.71, p = 0.037), with a significantly higher total fluid consumption (p 

= 0.002). Sugar during CHB training had no effect on fluid consumption of controls and 

stressed mice.

Immediately following the 24h sucrose consumption test on day 63, the sucrose 

bottle was replaced by a water bottle. Water intake from both bottles was determined 24h 

later (day 64 - 65). The total water intake was similar, in the range of 10 ml in all groups.  

Table 2: Behavioral parameters expressed in the light area of the light-dark box during 5min 

exposure.

Control Stress
Behavioral parameters no-sugar sugar no-sugar sugar
Latency (s) to dark*   7.6 ± 1.3  6.6 ± 0.6 13.1 ± 1.4    9.7 ± 1.4#

Latency (s) to light 34.1 ± 4.2  21.6 ± 1.9# 29.3 ± 2.4 28.9 ± 3.4
Path length (m)   5.0 ± 0.3   5.0 ± 0.6   6.8 ± 1.3  6.2 ± 0.6
% Time spent * 25.7 ± 1.5 30.1 ± 2.7 42.2 ± 2.2 32.2 ± 2.8#

Speed of moving (cm/s)   6.2 ± 0.2   6.2 ± 0.2   5.4 ± 0.3   6.5 ± 0.3#

Data represent mean ± S.E.M.; p < 0.05 *between groups control vs. stress; # within groups.

Behavioral parameters that differ significantly are bold.
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However, stressed mice drank more from the water bottle which previously contained 

sucrose (group: F(1,36)=18.92, p = 0.001). Furthermore, stressed mice that had received 

sugar during CHB training had the highest preference for the water bottle previously 

containing sucrose (stress with sugar vs. all groups F(3,39)=10.85, p = 0.002). 

Effects of chronic rat stress on corticosterone and body weight

Circadian corticosterone secretion 

Rat stress changed the pattern of corticosterone secretion differentially, depending on 

the post-stress day of measurement (Figure 5A; time*group F(4,114)=4.53, p = 0.002). 

Corticosterone secretion increased over the day (time effect: F(2,114)=246.26, p = 0.001). 

One day post-stress, corticosterone concentrations were higher at 0900h and 1300h 

compared to the before-stress condition (p = 0.001), but lower at 1700h compared to 

before-stress and 6-days-post-stress conditions (p < 0.05). Remarkably, 6-days post-

stress, the overall circadian corticosterone surge during the light period was augmented 

(Figure 5B: Area_Under_Curve: one-way ANOVA F(2,59)=7.52, p = 0.020). In contrast, 

overall corticosterone concentration during the light period was similar between before-

stress and 1-day-post-stress conditions (p > 0.05). 

Body weight

All mice gained weight over the course of the experiment (about 13%; day 1: controls 

24.7 ± 0.2; mice that will be stressed 24.5 ± 0.2; end of experiment controls 27.2 ± 0.2; 

stressed 28.2 ± 0.3). 

Table 3: Consumption (ml) of and preference (%) for drinking a 5% sucrose solution and water 

during 24hrs. On day 63 one bottle contained sucrose, the other contained water. On day 64, both 

bottles contained water.

Consumption (ml) Preference (%)

 (day 14 baseline vs. day 63) day 63 day 64

group treatment sucrose* water* total* sucrose water -water-* -water-

Control no-sugar -1.6 ± 1.3 0.6 ± 0.2 -1.0 ± 1.2 88.0 ± 0.6 11.5 ± 0.8 45.9 ± 1.8 54.1 ± 1.8

sugar -0.3 ± 1.0 0.8 ± 0.1 0.5 ± 1.0 88.1 ± 0.5 11.9 ± 0.5 50.3 ± 1.7 49.7 ± 1.7

Stress no-sugar 2.3 ± 0.5 0.9 ± 0.1 1.0 ± 0.1 86.8 ± 0.8 13.2 ± 0.8 52.3 ± 4.7 47.7 ± 2.7

sugar 1.4 ± 0.6 3.3 ± 0.6 2.5 ± 0.6 87.7 ± 0.6 12.3 ± 0.6 62.6 ± 2.2$ 37.4 ± 1.2

Data represent mean ± S.E.M.; p < 0.05 *between groups controls vs. stress; $ vs. all other groups.

Behavioral parameters that differ significantly are bold.
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Discussion

The phenotype of chronically stressed mice has a strong resemblance with features of 

depression in humans. The effects of the chronic ‘rat stress’ model persisted beyond the 

period of actual exposure to the rat. One to five weeks after cessation of the stressor, we 

observed suppression of behavioral reactivity together with altered spatial learning and 

memory and emotionality. In addition, the pattern of circadian corticosterone secretion 

showed dynamic changes during the first week after rat stress, culminating in an overall 

increase in total corticosterone exposure during the light period of day 6. Reward 

sensitivity was affected as indicated by distinct sensitivity of memory to sugar reward: 

spatial performance improved in control mice whereas in stressed mice sugar reward 

“normalized” performance to the level of controls without sugar. Also, an increased 

sucrose and water intake in stressed mice and preference to drink water at the location 

of prior sucrose consumption was observed. Remarkably, sugar consumption in close 

context with spatial learning partially rescued stress-induced emotional and cognitive 

disturbances, with the effects measured even weeks later in other tasks. Although the 

increase in sucrose consumption and a similar preference compared to non-stressed 

mice are not characteristic for anhedonia, they do reflect an alteration in the reward 

system. 

Circadian corticosterone secretion
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Figure 5

Corticosterone concentrations in 

blood plasma (ng/ml) determined 

before and 1 and 6 days after 

cessation of the stressor during the 

light period of the day (A) at 09:00 

a.m., 13:00 and 17:00 p.m.; (B) 

Overall corticosterone concentration 

during the light period, expressed as 

Area Under the Curve (AUC_total). 

Data represent mean ± S.E.M.;* p 

< 0.05 1-day post-stress vs. before 

stress and/or 6-days post-stress.

(A) (B)
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Chronic stress and the expression of anhedonia.

We used a variety of parameters that indicate emotional and cognitive responses in 

relation to positive stimuli that could be affected by chronic stress: approach behavior, 

post-training sugar administration and sucrose-preference testing. 

Behavioral inhibition

Exploration of novel environments is an essential aspect of behavior. At the same time, 

the exposure to novelty creates a conflict between approach towards new sources of 

reward and avoidance of potential treats (Powell et al. 2004; Krebs et al. 2009). Previously, 

(Dalm et al. 2009a) we exposed chronically stressed mice to the circular hole board 

two days after the last stressor. Behavioral changes were limited to reduced latency to 

first hole visit and increased perseveration. In the present study, chronically stressed 

mice displayed strong behavioral inhibition upon exposure to the novel environment 

of the circular hole board, one week after cessation of the stressor. The inhibition 

remained even during recurring training and free exploration trials on the circular hole 

board, i.e. stressed mice were always slower to leave the start area of the circular hole 

board. However, over trials the latency to locate the exit hole decreased to the level 

of non-stressed mice, indicating the learning capability of stressed mice. Interestingly, 

5 weeks after the last rat exposure, stressed mice still displayed behavioral inhibition 

when exposed to the novel environment of the light-dark box. We previously observed 

a similar response to the light-dark box for stressed mice, even 3 months after cessation 

of the stressor (Grootendorst et al. 2001b). We may conclude that chronic stress has 

long-lasting consequences as expressed in different degrees of behavioral inhibition in 

novel environments. 

Approach behavior may yield important information about food and 

reproduction-possibilities, while an open lit place, for example, is dangerous with regard 

to predators and has to be avoided (Belzung and Griebel 2001). Indeed, non-stressed 

mice explored the novel environment of the circular hole board, while also moving 

away from the brightly lit open space during light-dark box testing. Stressed mice lack 

the anticipatory responses: their behavior is inhibited and non-adaptive on both the 

circular hole board and the light-dark box. Chronic stress also reduced the activity of 

mice in the familiar environment of the home cage (Dalm et al. 2009a). In that study, 

we showed that the activity was dedicated to foraging (moving to and from the food 

dispenser) at the expense of moving around in other areas of the cage. It is evident that 

chronic stress resulted in a shift of approach/avoidance behavior and thus, a lack of 
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behavioral adaptation in novel environments. Bevins and Besheer (Bevins and Besheer 

2005) interpreted such results as changes in reward sensitivity. Therefore, the behavioral 

inhibition in stressed mice might point towards an alteration in reward that will influence 

memory formation. 

Modulation of learning and memory by post-training reward 

Chronic stress and long term exposure to high levels of glucocorticoids are known to 

alter neuronal morphology and synaptic plasticity in the hippocampus (spatial memory 

for facts), prefrontal cortex (response selection), striatum (stimulus-response) and 

amygdala (emotional value of stimuli), amongst other structures, affecting spatial 

processing (de Kloet et al. 1999; McEwen 1999b; Mizoguchi et al. 2000; Dias-Ferreira et 

al. 2009; Roozendaal et al. 2009; Conrad 2010). Reward-coding dopaminergic neurons in 

the hippocampus regulate the motivational drive to explore an environment. They are 

involved in signaling stimulus novelty and are able to facilitate hippocampus-dependent 

consolidation memory of novel events (O’Carroll et al. 2006). We had hypothesized 

that the impact of chronic stress on the modulation of memory by post-training 

administration of sugar would indicate a change in the reward system of the mice. Post-

training reward has been shown to strengthen memory traces (Huston and Mondadori 

1977; Huston and Oitzl 1989; Messier 2004). Recently we demonstrated that access to 

sugar directly post-training resulted in the improved spatial memory of mice in a water 

maze and circular hole board task (Dalm et al. 2009b).

We will discuss the impact of chronic stress followed by the effects of post-

training sugar on learning and memory processes. Chronic stress impaired learning 

which is in accordance with the literature (Conrad 2010) and our own previous findings 

on the circular hole board task using an extended training schedule (Grootendorst et al. 

2001b). In the present study, two training trials were given each day. The non-stressed 

controls displayed a see-saw-like pattern of performance, with longer latencies for 

the first trial of the day compared to the second trial of the previous day (long-term 

memory). The second trial of the day had short latencies, indicative for intact short-

term working memory. Non-stressed mice displayed a smooth learning curve. However, 

stressed mice had a delay in learning, but did improve their performance from day 3 

onwards to the level of non-stressed mice. We regard the extended time in the start area, 

the slow walking and short distance walked during learning, expressions of behavioral 

inhibition in stressed mice, as it is also expressed during novelty exposure i.e. the first 

free exploration trial. 
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Post-training administration of sugar improved the performance of non-stressed 

controls. From day 2 onwards, latencies to the exit hole decreased from trial to trial 

(smooth learning curve), while controls without sugar were slower during the first trials 

of the training trials, resulting in a kind of “seesaw” pattern of performance. Treating the 

stressed mice with sugar revealed an interesting “normalization” of behavior. These mice 

displayed the same see-saw pattern of performance as non-stressed controls without 

sugar. However, this was a partial similarity to the behavior of controls as stressed mice 

with sugar had longer latencies during all first training trials of the day, and non-stressed 

controls improved over days. Nonetheless, post-training access to sugar could alleviate 

the effects of chronic stress and partially “normalize” the performance to the level of 

non-stressed mice. We consider this effect to be additional support for a chronic stress-

induced alteration of the reward system. Concluding, the rewarding effects of sugar on 

memory depend on the prior life history, having experienced chronic stress or not. 

In addition to a series of training trials over days, we challenged the mice 

with two conditions that require behavioral flexibility, changing behavior and learning 

strategies: (1) the exit hole is not available any more during the free exploration trials after 

spatial acquisition training; (2) the location of the exit hole was changed, i.e., reversal 

trials. The free exploration trials revealed that stressed mice use a more perservative 

strategy and are less flexible (returned more often to the same hole, remained longer 

in the area of the exit hole), as opposed to the more efficient serial strategy employed 

by the non-stressed mice. Focusing on the aspect of learning strategies, we recently 

reported that our chronic stress paradigm produces a shift in the use of search strategies 

by favoring stimulus-response over spatial learning strategies in mice and man (Schwabe 

et al. 2008). Others (Dias-Ferreira et al. 2009) demonstrated in rats that chronic social 

stress caused a reorganization of the frontostriatal neuronal network and led to a bias 

of behavioral strategies towards habit (i.e., stimulus-response) learning. Acquiring the 

novel location of the exit hole is achieved by all mice. The free exploration trial following 

reversal training revealed that stressed mice returned to the original exit hole just 

as often as they returned to the new one, while non-stressed mice favored the new 

exit location. We might conclude that reversal learning is superior in the non-stressed 

mice. Surprisingly, latencies to exit were prolonged in non-stressed mice with sugar 

during reversal learning. Speculating, it might be that the original memory trace of the 

non-stressed mice with sugar is stronger than in the non-stressed without sugar, and 

therefore, interferes with the acquisition of new memory. For the stressed mice, post-

training sugar has no apparent effect on reversal learning expressed by latencies to the 

new exit hole. The free exploration trial revealed behaviors of stressed mice with sugar 
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that indicate increased flexibility, such as less perseveration and early approach of the 

rim area. 

Emotions affect memory. It might be argued that changes in emotions, such as 

increased anxiety, contribute to the altered performance of the stressed mice. Behaviors 

related to anxiety and reduced risk-taking e.g., reduced speed of movements, reduced 

exploration, and not visiting the rim area of the circular hole board, would support such 

a notion. In contrast, elevated anxiety is not expressed by stressed mice which remain 

long in the lit area of the light-dark box. Therefore, we prefer to consider a change in the 

behavioral inhibition, the balance between approach and avoidance as an acceptable 

operationalisation of behavior. 

Sucrose consumption and preference

The most common procedure to determine whether anhedonia has been induced in 

animals is the measurement of sucrose consumption and/or preference. Chronic stress 

most often decreases sucrose consumption when tested during, and in close context 

with the applied stressor (Pothion et al. 2004; Anisman and Matheson 2005). In our 

previous study, chronic stress reduced sucrose consumption during the stress period 

and delayed the development of sucrose preference measured one day after the last 

stressor (Dalm et al. 2009a). We can interpret this result as stress-induced anhedonia. 

In the present study we measured sucrose consumption 35 days after cessation of the 

stressor. Stressed mice consumed more volume of both sucrose and water. In contrast 

with our previous study, the sucrose consumption was not an indicator for anhedonia. 

Stressed mice even drink more fluid than non-stressed mice with the same preference 

for sucrose (88%) over water. In fact, we find a stress-induced increase of caloric 

intake. It is known that glucocorticoids stimulate behaviors that are mediated by the 

dopaminergic mesolimbic “reward” pathways, and increase the intake of food with high 

carbohydrate and fat (Dallman et al. 2007), so-called “comfort” food, which contributes 

to the development of obesity.

Remarkably and at this time unexplainable is the finding that stressed mice 

that had received sugar during spatial training weeks before, preferred to drink water at 

the location where they had drunk sucrose the day before. Did they perceive the taste 

of sugar as highly rewarding, strengthening the memory for this location? It would be 

of great interest to study the time-dependent effects of chronic stress with respect to 

stress-induced metabolic changes and food intake.
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Conclusion

Chronic stress has immediate and long lasting consequences for behavior, emotional 

and cognitive abilities. Especially the behavioral inhibition seems to become part of the 

daily repertoire of responses elicited by novelty, as well as in the familiar environment 

of the home cage. Corticosterone secretion patterns change, manifested as higher 

corticosterone levels during the day, within a week after cessation of the chronic stress 

procedure. Post-training reward in close context with a spatial learning task could 

partially rescue the chronic stress-induced behavioral changes that reflect emotions and 

cognitive processes.

We conclude that our chronic stress model results in behavioral and neuroendocrine 

features that might contribute to the development of stress-related psychopathologies, 

such as depression and anxiety disorders. Introducing context-related periods of reward, 

as we did in relation to spatial memory formation, can ameliorate some of the chronic 

stress effects. Several parameters of behavior became comparable between stressed 

and non-stressed control mice. Other features, such as the stress-induced increased 

consumption of sucrose and water were not counteracted. Sugar as a reward even 

strengthened the memory for the location of the sucrose. This could indicate a possibility 

for craving and thereby affecting consumption of high caloric nutrients in the future. 

Our study has provided some insight into the complex interaction of reward and stress. 

While there are clear positive consequences on memory formation, metabolic effects in 

relation to chronic stress need more attention in future studies. 
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Abstract

Acute stress modulates multiple memory systems in favor of caudate nucleus-dependent 

stimulus-response and at the expense of hippocampus-dependent spatial learning 

and memory. We examined in mice and humans whether chronic stress has similar 

consequences. 

Male C57BL/6J mice that had been repeatedly exposed to rats (‘rat stress’) 

used in the circular hole board task significantly more often a stimulus-response strategy 

(33%) than control mice (0%). While velocity was increased, differences in latency to exit 

hole, distance moved or number of holes visited were not observed. Increased velocity 

and performance during retention trials one day later indicates altered emotionality and 

motivation to explore in rat stressed mice. Forty healthy young men and women were 

split into “high chronic stress” and “low chronic stress” groups based on their answers 

in a chronic stress questionnaire (“Trier Inventory of Chronic Stress”-TICS) and trained 

in a 2D task. A test trial immediately after training revealed that participants of the 

“high chronic stress” group used the S-R strategy significantly more often (94%) than 

participants of the “low chronic stress” group (52%). Verbal self-reports confirmed the 

strategy derived from participants’ choice in the test-trial. 

Learning performance was unaffected by the chronic stress level. We conclude 

that one consequence of chronic stress is the shift to more rigid stimulus-response 

learning, that is accompanied by changes in motivational factors in mice. 
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Introduction

Memory consists of multiple systems which differ regarding the processed kind of 

information, the performed operations and the underlying neural structure (Gabrieli 

1998; Squire 2004a). “Cognitive” memory supports the acquisition of flexible, consciously 

accessible knowledge, such as the memory of your last birthday party, and is based on 

the medial temporal lobe, in particular the hippocampus (Scoville and Milner 1957; 

Eichenbaum 2004). “Habit” memory, on the other hand, processes simple stimulus-

response (S-R) associations, such as “stop your car when the traffic lights are red”. It is 

not necessarily accessible and relies on the caudate nucleus (Knowlton et al. 1996; Jog 

et al. 1999). 

Hippocampus- and caudate-based systems work in parallel and process 

information simultaneously (Mizumori et al. 2004). The nature of interactions between 

these systems has been described as cooperative by some authors (Voermans et al. 

2004) and competitive by others (Poldrack and Packard 2003) raising the question 

which factors coordinate their use. Recent findings suggested that stress plays a critical 

role in the modulation of multiple memory systems. Acute stress prior to training in a 

task that could be acquired by a hippocampus-based spatial and a caudate-based S-R 

strategy favored caudate-based learning both in rodents and humans (Kim et al. 2001; 

Packard and Wingard 2004; Schwabe et al. 2007). This stress-induced modulation of 

hippocampus-dependent and caudate-dependent systems is assumed to be mediated 

by the amygdala (Packard & Wingard, 2004). Effects of prolonged or repeated periods of 

stress on the modulation of caudate-dependent and hippocampus-dependent learning 

have not been studied yet. This however, would be particularly valuable since chronic 

stress has been related to psychiatric disorders such as depression (for a review: Willner 

1997). 

Chronic stress impairs hippocampus-dependent learning and memory (Bodnoff 

et al. 1995; Kleen et al. 2006). Non-hippocampal memory systems respond differently. 

Working memory was not affected after repeated restraint stress (Kleen et al. 2006), 

but fear memory was even strengthened following a prolonged stress period (Conrad et 

al. 1999). Interestingly, Wright and Conrad (Wright and Conrad 2005a) demonstrated in 

chronically stressed rats that salient intramaze cues prevented impaired performance in 

a spatial Y-maze task. We suggest that the introduction of intramaze cues allowed for S-R 

learning and thus, compensated for impairment of spatial functions. Consequently, we 

hypothesize that chronic stress modulates multiple memory systems in favor of caudate-

based and at the expense of hippocampus-based learning. 



154

Chapter 8

Chapter 8

To test this hypothesis, we used experimental designs that provide a single 

proximal and multiple distal cues for learning the task, i.e. allowing stimulus-response 

learning and spatial learning. Changing the position of the proximal cue in the last trial of 

the learning session revealed the used strategy in mice and humans. First, we examined 

in mice the effect of chronic stress (i.e. by repeatedly exposing the mouse to a rat, but 

separated by a partition) on the use of spatial and S-R learning strategies during the 

acquisition of a circular hole board task, followed by a retention test 24hrs later. Second, 

we examined in humans the influence of self reported chronic stress as assessed by the 

Trier Inventory of Chronic Stress (TICS) on the learning strategy used in a 2D spatial task 

in which the position of a win-field could be acquired by spatial and S-R strategies. 

Materials and Methods

Mouse study

Animals

Male C57BL/6J mice (n = 24, 12 weeks old; purchased from Charles River, The 

Netherlands) were single-housed in a temperature- (21 ± 1°C) and humidity-controlled 

room on a 12-12h light-dark cycle (lights on at 0700h) with ad libitum access to food and 

water. Behavioral experiments were performed in the same room. Three times during 

the week before training started, mice were ‘pretrained’ to climb through an S-shaped 

tube into their home cage after weighing. Experiments were approved by the Local 

Committee for Animal Health, Ethics and Research of the University of Leiden. Animal 

care was conducted in accordance with the EC Council Directive of 24 November 1986 

(86/009/EEC).

Experimental design

Five days prior to the beginning of the rat stress, general activity and exploratory behavior 

of mice were assessed on the circular hole board. Animals were randomly assigned to 

one of two conditions: control (n = 12) and ‘rat stress’ (n = 12; see below). Mice of the “rat 

stress” group were repeatedly exposed to a rat for 1 to 2hrs a day during 2 weeks. Seven 

days after the last rat exposure mice started with the circular hole board (CHB) task. 

Twenty-four hours after training retention performance was tested. Testing took place 

between 0800 and 1230h. One day later, mice were sacrificed between 0800 and 1000h. 

The experimenter was unaware of the previous treatment of the animals. Behavior 
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was recorded on videotape and analyzed by EthoVision 1.95 (Noldus Information and 

Technology BV, Wageningen, The Netherlands). This image analysis system sampled the 

position of an animal 12.5 times per second; to calculate the distance moved we chose 

for a minimal distance between samples of 3cm.

Rat stress paradigm

In nature, mice and rats avoid each other. Exposure to a rat is highly stressful for a mouse 

(Linthorst et al. 2000). In the first week, mice were exposed to male Wistar rats on 5 

consecutive days (1-2h per day resulting in 9hrs in the first week). In the second week, 

mice were confronted with rats on Tuesday and Thursday for 1h. This time schedule was 

chosen to increase unpredictability and uncontrollability which are key stress components 

(Dickerson and Kemeny 2004). Rats were placed in a cage with a grid floor and Plexiglas 

walls on the top of two mouse cages which were covered by a grid. Thus, mice and rats 

could hear, see and smell, but not touch each other. During exposure to rats mice were 

kept in another cage than their home cage (but always the same cage for confrontation 

with rats) without food and water. The rat stress took place during the light phase (0700 

to 1900h) in a room adjacent to the housing room. Previous studies using the same stress 

protocol showed that it induces reliable features of chronic stress expressed e.g., by 

reduced body weight, changes in corticosterone secretion and alteration in hippocampal 

corticosteroid receptor expression, strain-dependent alterations in learning and memory 

and motivation to explore (Grootendorst et al. 2001a; Grootendorst et al. 2001b). Mice 

of the control group (naïve) were housed in their home cage.

Learning task

Apparatus: The circular hole board (CHB) is a revolvable white Plexiglas plate (diameter: 

110cm) with twelve holes (diameter: 5cm) at equal distance to each other, 10cm from 

the rim. It is situated 1m above the floor (see Figure 1A; light intensity at the level of 

the platform 120lux). Holes can be closed by a lid at a depth of 5cm. Whether a hole is 

open or not can be recognized by the mouse if it puts its head over the edge of the hole. 

If open, the hole provides access to the home cage of the mouse via an s-shaped 15cm 

long tunnel (diameter: 5cm). Since mice avoid open, illuminated areas, it is reasonable 

to assume that mice are motivated to leave the platform. Same as in landmark studies in 

the field (De Quervain et al. 1998; Winocur et al. 2005) numerous distal cues in the room 

allowed spatial orientation. 
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high, 10cm in diameter) located at the centre of the CHB. After 5s the cylinder was lifted 

and mice could explore the board and exit through the open hole. There was just one 

open hole during training which was at the same location in all six training trials, next to a 

bottle (transparent 0.5 liter bottle filled with water; 22cm high, 5cm in diameter; placed 

at the rim of the board, see Figure 1A). Thus, the exit hole could be located via two 

strategies: mice could use cues in the room (spatial strategy) or they could use the bottle 

as a proximal cue (S-R strategy). If a mouse did not enter the exit hole within 120s the 

experimenter guided it there by a grid (20cm x 6cm). Six training trials were given (inter-

trial interval: 15 min). This relatively low number of trials was chosen to avoid training 

to asymptotic performance which would promote the use of an S-R strategy (Packard & 
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Figure 1

Apparatus used in the mouse (A) and 

human study (B). Mice were trained to 

find an exit hole. They could use either a 

spatial (room cues) or a stimulus-response 

strategy (bottle). Relocation of the bottle 

in the test trial revealed the used strategy. 

In the human study, participants could 

identify the position a “win-field” with a 

spatial (right column, second row) or a 

stimulus-response (stimulus: letter M) 

strategy. Changing the arrangement of the 

letters in the test trial allowed revealed 

the employed strategy.

(A)

(B)
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McGaugh, 1996). Fifteen minutes after the last training trial a test trial (trial 7) revealed 

the strategy. In this test trial, the bottle was relocated next to the hole opposite to the 

position of the exit hole during training. Now, two exit holes were available: one next to 

the novel position of the bottle and one at the position of the exit hole during training. 

Leaving the CHB via the hole next to the bottle was classified as S-R strategy. Leaving the 

board through the hole in the old position was classified as spatial strategy. To avoid that 

behavior during the test trial could be biased by odor cues; the bedding of the home 

cage of one mouse was distributed over two cages each placed under one hole. 

On the following day, three retention test trials were given which were exactly 

the same as the test trial. After each mouse, the board was wiped with 1% HAc solution 

to spread odor cues and turned clockwise until another hole was at the location of the 

exit.

Five days prior to the beginning of the rat stress, general activity and exploratory 

behavior of mice were assessed. All holes were closed (the bottle was at the location 

where it will be during training). After 5 min the hole next to the bottle was opened and 

the mouse was gently guided by a grid (20cm x 6cm) towards the exit hole. Mice did not 

show a bias for a certain location on the board during the exploration.

Thymus, Adrenals and Plasma Corticosterone

At the end of the experiment, mice were decapitated under basal resting conditions; 

thymus and adrenals were removed and weighed to verify the success of the stress 

protocol. Adrenal weights of three and thymus weights of two animals are missing. 

Furthermore, blood obtained via decapitation was collected individually in capillaries 

(coated with potassium-EDTA, Sarstedt, Germany) and stored frozen at -20°C. Plasma 

corticosterone concentrations were determined (in 10μl plasma) using commercially 

available radioimmunoassay kits with 125I-corticosterone (MP Biomedicals Inc. Europe, 

Belgium; sensitivity 3ng/ml; intra-assay variability 7%).

Human study

Participants

Forty young healthy students (21 females, 19 males) aged between 20 and 32 years 

(mean: 23.9 yrs; SD = 2.7 yrs) participated in this study. Participants were recruited 

at the University of Trier and got paid a moderate monetary compensation. Exclusion 

criteria were checked in an initial interview and comprised current or chronic mental 

or substance use disorders, current physical disease as well as the use of medication 
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that affects central nervous and endocrine systems. All participants provided written 

informed consent.

Trier Inventory of Chronic Stress (TICS)

The Trier Inventory of Chronic Stress (TICS; Schulz and Schlotz 1999; Schulz et al. 2004) 

is a valid and reliable German 57-item questionnaire that was designed to measure 9 

aspects of chronic stress: “work overload”, “social overload”, “pressure to succeed”, 

“work discontent”, “excessive work demand”, “lack of social recognition”, “social 

stresses”, “social isolation” and “chronic concern”. Items are descriptions of experiences 

such as “I have to finish too many things” and people are asked to specify on a 5-point 

rating scale (“never”, “infrequent”, “sometimes”, “frequent”, very frequent”) how often 

they made the referring experience within the last 3 months. The time required to 

complete the TICS is 10 to 15 min. 

“High vs. low chronic stress”: To assess the effect of chronic stress, we calculated 

a chronic stress score by adding up the scores of the nine TICS scales. Next, we performed 

a median-split and assigned the participants with a chronic stress score higher than the 

median to the “high chronic stress” group and the participants with a chronic stress 

score lower than the median to the “low chronic stress” group. It is important to note 

that we tested healthy subjects and that the measured chronic stress scores were in a 

normal, non-pathological range. Our labels “low chronic stress” vs. “high chronic stress” 

refer to the median in the present study. They do not indicate low vs. high chronic stress 

in an absolute sense. 

Learning task

Participants were presented six rectangles (6cm x 4cm) arranged in two columns on a 

customary 17” computer screen (Figure 1B). Each of the rectangles was marked by one 

letter: R,C,Q,M,B,K. Participants were told that one of these rectangles is a win-field 

and asked to click with the mouse cursor at the rectangle which they thought would 

be the win-field. Immediately thereafter, either a “win” or “blank” window popped up, 

serving as positive or negative feedback. Per trial one rectangle could be chosen. At 

the end of the experiment, participants received 50 Euro-Cent for each trial in which 

the win-field was found. The arrangement of the letters was the same in all 14 training 

trials. Participants were not informed that the win-field was always in the same position 

(marked by the letter M, right column middle). Thus, there were two possible strategies 

to identify the win-field: participants could learn the position of the win-field via the 
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association with the letter (S-R strategy) or they could use a spatial strategy, i.e. they 

could use the spatial location (right column, middle). Fourteen training trials were given 

(inter-trial interval: about 30s). Previous findings showed that the used learning strategy 

is a function of practice with participants using spatial learning at the beginning of a task 

and S-R learning after extensive practice (Iaria et al. 2003). We chose the number of 

training trials to assess participants’ performance rather early in this process. Participants 

were classified as “learners” when they chose the correct field three times in a row and 

did not switch to another field in a subsequent trial. Trial 15 was the test trial - here, the 

six letters were rearranged. Choosing the field with the letter M in the novel position was 

classified as S-R strategy. Choosing the field in the position where the win-field had been 

during all training trials (second column, middle) was classified as place strategy. Trials 1 

to 15 were performed within 8 to 10 min.

The experimental procedure was created with the help of the software E-prime 

(Psychological Software Tools, Inc.; Pittsburgh, USA). Behavioral analyses focused on 

reaction times and the chosen field in the test trial.

Verbal report

Subsequent to participants’ choice in the test trial but before they received feedback, 

participants were asked (i) to indicate on a scale from 0 to 100 how certain they feel that 

the chosen field is the win-field (0 - “absolutely uncertain”; 100 - “absolutely certain”) 

and (ii) to explain why they have decided for the chosen field.

Statistical analysis

Data were subjected to χ²-test, mixed-design ANOVA or t-test, as appropriate. Reported 

p-values are two-tailed and p < 0.05 was accepted as significance. All calculations were 

done with the statistics software SPSS (version 14.0; SPSS Inc.). 

Results

Chronic stress favors the use of stimulus-response learning strategies in mice

Learning strategy: Mice were repeatedly exposed to a rat over a period of 2 weeks, a 

procedure with long-lasting and profound effects on the stress responsive system and 

behavior of mice (Grootendorst et al. 2001a; Grootendorst et al. 2001b). One week after 

the last contact with a rat, mice were trained in six trials on a circular hole board (CHB) 
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to find an open hole providing access to the home cage. This hole was marked by a 

cue (a bottle) and could thus be located by caudate-dependent S-R and hippocampus-

dependent spatial strategies (Figure 1A). Relocation of the cue to another hole in trial 7 

(test trial) revealed the applied strategy. Control mice were housed in their homecage 

until behavioral testing started. They had been never exposed to rats. Groups differed 

significantly regarding the used learning strategy in the test trial (χ²(1)=4.80, p < 0.03; 

Figure 2). One third of the chronically stressed mice used an S-R strategy, while – in line 

with the findings of Kim and colleagues (2001) - all naïve control mice applied the spatial 

strategy. 

Performance: Decreasing latencies and number of holes visited over trials 

indicated learning performance in both groups (latency: F(5,110)=8.37, p < 0.001; number 

of holes visited: F(5,110)=4.04, p < 0.01; Figure 3). The learning curve of the mice shows 

that no asymptote is reached which would be indicative for “extensive training”. As 

shown in Figure 3, mice made on average 2-3 errors before selecting the correct hole 

in the last training trials. Nevertheless, search was not at all random as suggested by 

the fact that then proportion of time in which mice were in the correct quadrant of 

the CHB increased significantly over trials (F(5,110)=2.32, p < 0.05). There were no group 
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Figure 2

(A) Percent of chronically stressed and naive mice that used a spatial or stimulus-response strategy 

in the test trial on day 1. Chronic stress changed the used strategy towards more stimulus-response 

learning. (B) Percent of mice that chose a different hole in the first trial on day 2 than in the test 

trial on day 1. Behavior of chronically stressed mice was less predictable than that of controls. * 

p ≤ 0.05.

(A) (B)
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differences in the latency to the exit hole, neither during training (F(1,22)=0.55, p = 0.47; 

group × trial: F(5,110)=0.29, p = 0.91) nor in the test trial (t(22)=0.77, p = 0.57). Similarly, 

there was no effect of chronic stress on the number of holes visited during training 

(F(1,22)=0.40, p = 0.53; group × trial: F(5,110)=0.33, p = 0.89) or in the test trial (t(22)=0.66, 

p = 0.52). However, chronically stressed mice moved significantly faster during training 

than controls (velocity: F(1,22)=5.37, p = 0.03). This pattern did not change when spatial 

learners of the chronic stress and control group were compared (all F < 1.5, all p > 0.25; 

except velocity: F(1,17)=4.79, p < 0.05)

Interestingly, relocation of the cue in the test trial caused a decrease in latency 

in controls but an increase in chronically stressed mice underlining the rigidity and 

reduced flexibility of the behavior of chronically stressed mice (trial (t6, test trial) × 

group: F(1,22)=4.58, p < 0.04; Table 1). A similar pattern was observed for velocities: while 

chronically stressed mice had decreasing velocities from trial 6 to the test trial, naїve 

mice increased velocity from trial 6 to the test trial (trial (t6, test trial) × group: F(1,22)=5.49, 

p = 0.03; Table 1). Chronically stressed mice visited more holes after cue relocation in the 
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Figure 3

Mice: Latencies to the exit hole (A) and number of holes (B) visited during the six training trials 

and the test trial on day 1, and during the three retention trials on day 2. Chronic stress affected 

neither the latencies nor the number of holes visited on day 1 but reduced both parameters on 

day 2. Inset: circular hole board with the location of the bottle, arrows point at the exit hole(s). 

Data represent Mean ± S.E.M. * p < 0.05.

(A)

(B)
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test trial than in the last training trial, whereas naїve mice tended to visit fewer holes 

in the test trial than in trial 6. However, the referring interaction effect failed to reach 

statistical significance (trial (t6, test trial) × group: F(1,22)=1.11, p = 0.26; Table 1).

Retention performance: Twenty-four hours later, mice performed three trials. 

Two exits were available: one at the bottle (same as during test trial 7), the other at the 

position of the training trials 1-6. Both groups used mainly the hole at the position of the 

training trials to access their home cage. However, chronically stressed mice switched 

their strategy significantly more often from the test trial to the first trial on day 2 (42% 

chronically stressed vs. 8% naive mice: χ²(1)=3.56, p = 0.05; Figure 2B). A mixed-design 

ANOVA for the latencies to the exit hole revealed a significant group and trial effect. 

Both groups showed shorter latencies in the first than in the following trials (F(2,44)=3.30, 

p = 0.05). Chronically stressed mice had shorter latencies than controls, especially in 

trials 2 and 3 (F(1,22)=7.86, p = 0.01; Figure 3). The same pattern was found for distance 

moved and the number of holes visited (all p-values < 0.03). There was no trial effect on 

the animals’ velocity (F(2,44)=0.37, p = 0.69); like 24hrs before, chronically stressed mice 

moved significantly faster than controls (F(1,22)=8.57, p < 0.01). When only spatial learners 

of the chronic stress group were considered, group differences remained unchanged (Fs 

> 5, p’s < 0.05). 

To assess basal exploratory behavior and locomotion, all mice had spent 5 

min on the CHB (all holes closed), one week before the rat stress started. No group 

differences regarding the number of holes visited and the latency to the hole which 

provided access to the home cage in the training trials three weeks later were observed 

(both t-values < 1.04, and p’s > 0.30).

Learning strategy and performance within the stressed group: Mice were 

classified as spatial and SR learners based on their performance in the test trial. Spatial 

Table 1: Velocities and latencies to exit hole of naïve control and chronically stressed mice in the 

last training trial and the test trial. Controls had decreasing latencies and increasing velocity in 

response to cue relocation in the test trial; chronically stressed mice showed the opposite pattern 

(chronic stress × trial: velocity - F(1,22)=4.58, p < 0.04; latency - F(1,22)=5.49, p = 0.03; holes visited - 

F(1,22)=1.11, n.s.). * Significantly lower than in the test trial (p < 0.05).
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and S-R learners had similar latencies in trials 1 to 6 and in the test trial (F(1,9)=0.02, p = 

0.97). Over the three trials on day 2, S-R learners decreased their latencies to the exit 

hole, the distances walked and the numbers of holes visited, whereas these parameters 

increased in the spatial learners. Thus, spatial learners of the stress group showed the 

same performance pattern as spatial learners of the control group.

Endocrine parameters (Figure 4): More than one week after the last rat exposure, 

rat stressed mice had significantly enlarged adrenals (t(19)=2.31, p = 0.03); thymus 

weight was lower but did not differ significantly between rat stressed and control groups 

(M ± S.E.M. in mg; controls: 42.83 ± 2.22, chronic stress: 38.93 ± 2.67; t(21)=1.11, p = 

0.27). Basal plasma corticosterone under resting conditions was significantly increased 

in the rat stressed group (t(22)=3.80, p = 0.001). The three parameters indicate the 

success of the chronic stress protocol.
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Figure 4

Chronic stress caused a significant increase in (A) adrenal weight and (B) plasma corticosterone 

suggesting that the use rat stress protocol was effective. * p < 0.05.

(A) (B)
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Chronic stress favors the use of stimulus-response learning strategies in 

humans 

Chronic stress and learning strategy: Forty young healthy humans were given a 

questionnaire (Trier Inventory of Chronic Stress, TICS) measuring chronic stress and 

trained in a 2D spatial task. They had to locate the one win-field (marked by a cue) out of 

six (Figure 1B) in 14 trials using spatial or stimulus-based learning strategies. Relocation 

of the cue in the test trial (trial 15) revealed the applied strategy. Twenty-six participants 

(65 percent) used an S-R strategy, 9 (23 percent) employed a spatial strategy, 5 (12 

percent) chose neither the S-R nor the spatial option (“non-learners”).

Participants had been assigned to high vs. low chronic stress groups (n = 20 

per group; “low chronic stress” – median: 435, range: 346 - 461; “high chronic stress” 

– median: 489, range: 463 - 579; Figure 5A). The number of non-learners did not differ 

between groups: two vs. three in the high vs. low chronic stress group. Importantly, 

“high chronic stress” changed the used learning strategy significantly (χ2(1)=5.02, p = 

0.025; Figure 5B). Ninety-four percent (17 out of 18) of the learners in the “high chronic 

stress” group applied an S-R strategy in the test trial while the S-R strategy was used by 

52 percent (9 out of 17) of the learners in the “low chronic stress” group.  
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Figure 5

(A) Participants’ chronic stress scores as measured by the Trier Inventory of Chronic stress (TICS). 

According to their chronic stress scores subjects were assigned to the “low chronic stress” and 

“high chronic stress” groups. The line shows the median. Circle – spatial learner in the “low 

chronic stress group”; Dotted circle – spatial learner in the “high chronic stress group”; Square 

– non-learners. (B) Percent of spatial, stimulus-response and non-learners in the high and low 

chronic stress groups. Significantly more participants of the “high chronic stress” group used of the 

stimulus-response strategy. * p < 0.05.

(A) (B)
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There was no effect of sex on the used strategy (χ2(1)=0.47, p = 0.49; ratio men 

to women in percent: spatial strategy – 42 to 58, S-R strategy: 56 to 44). Men and women 

were comparable with respect to their chronic stress scores (t(38)=0.66, p = 0.52; mean 

± SEM: men – 460 ± 13, women – 470 ± 10).

Chronic stress and learning performance: A mixed design ANOVA on the reaction 

times during training revealed a significant time effect (F(13,442)=18.04, p < 0.001), while 

there was neither an effect of chronic stress (F(1,38)=0.26, p = 0.61) nor a time × chronic 

stress interaction (F(13,442)=0.80, p = 0.38) indicating that the performance of high and 

low chronic stress groups improved similarly over trials. Reaction times increased from 

about 2 to 6s in the test trial, but were unaffected by chronic stress (t(38)=0.11, p = 0.91).

Spatial and S-R learners had comparable learning gradients (no main effect 

of the applied learning strategy (F(1,33)=0.45, p = 0.51) nor an interaction of time and 

strategy (F(2,52)=0.98, p = 0.37).

Verbal report: All participants that were classified as “learner” described the applied 

strategy in line with the chosen field. S-R learners reported that they used the stimulus 

(letter M) to identify the win-field; spatial learners described the use of the spatial 

arrangement (field in the second row of the right column). Non-learners stated that the 

position of the win-field was completely random and that there was no consistency. 

Interestingly, S-R learners tended to be more certain that the chosen field is the win-field 

than spatial learners (mean certainty: S-R 56%; spatial 44%; t(33)=1.68, p = 0.11). 

Discussion

Our results showed that the experience of prolonged or repeated stress in mice and 

humans affects the learning strategy (S-R or spatial) used to acquire a task. (1) Repeated 

exposure to rats increased the use of an S-R strategy in mice. (2) Experiencing relatively 

high levels of stress within the three months prior to testing were associated with a 

significant change in the used learning strategy (derived from test trial performance and 

confirmed by subjects’ verbal reports) towards more S-R learning in healthy young men 

and women. These effects refer to a change in the quality of learning.

Previous studies demonstrated that acute stress modulates multiple memory 

systems in rodents and humans in a manner which favors S-R over spatial learning and 

memory (Kim et al. 2001; Packard and Wingard 2004; Schwabe et al. 2007). Impairing 
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effects of chronic stress on hippocampus-dependent forms of learning and memory are 

well known (Bodnoff et al., 1995, Kleen et al., 2006, Wright & Conrad, 2005) and parallel 

changes in hippocampal plasticity (Bodnoff et al. 1995; McEwen 1999a; Conrad 2006). 

Indications that chronic stress affects learning strategies are derived from three studies 

(Grootendorst et al. 2001; Wright and Conrad 2005). 

Grootendorst and colleagues (Grootendorst et al. 2001b) used the same paradigm 

of rat stress as we did and reported impaired spatial learning in the circular hole board 

task in 6 month old wild type mice with a C57BL/6J background. The training protocol 

of the circular hole board task covered several days, followed by a free exploration trial 

to detect search strategies. Remarkable was the shift to more perservative strategies, 

i.e., repeatedly return to the same hole, in the rat-stressed group. The same rat stress 

paradigm also impaired spatial learning in the Morris water maze together with a shift 

in search strategies from predominantly persistent in controls (60%) to concentric (58%) 

in rat-stressed mice (Grootendorst et al., 2001a). Both studies indicate that different 

learning strategies might have been used during training sessions, while the present 

study demonstrates that chronic stress indeed alters the learning strategy used to solve 

the task.

The findings of Wright and Conrad (Wright and Conrad 2005) pointed to an 

intriguing interaction of environmental conditions and task performance. Whereas 

chronically stressed rats were impaired in a Y-maze task which required the use of 

extramaze cues, i.e., hippocampus-dependent spatial learning, the introduction of 

intramaze cues eliminated the impairment. Thus, providing the use of more than one 

approach to solve the task allows switching to other problem-solving strategies. We 

conclude that their, like our task allowed for caudate-based stimulus-associated learning 

in addition to spatial learning, thereby rescuing performance (i.e., quantitative learning 

parameters). Our experimental setup clearly revealed the use of distinct learning 

strategies as a consequence of chronic stress. 

Moreover, our data support the view of a non-competitive, cooperative 

interaction between memory systems (Voermans et al. 2004). It could be argued that 

chronic stress induced changes in the morphology of neurons decreases the functionality 

of the hippocampus (McKittrick et al. 2000; Fuchs et al. 2006), and therefore, the caudate 

nucleus might compensate for hippocampal impairment. This is not necessarily a case 

of the caudate “out-competing” the hippocampus but could be seen as the two systems 

working in parallel and one taking control when the other is dysfunctional.

Twenty-four hours after training, behavior of chronically stressed and control 

mice differed both qualitatively and quantitatively. Stressed mice behaved less 
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predictably than controls, in that they more often chose a different hole during the first 

trial of day 2 than on the test trial the day before. Whether this is due to chronic stress 

effects on memory consolidation or retrieval can not be decided here. To disentangle 

consolidation and retrieval effects, stress has to be administered either within a certain 

time window after learning or immediately prior to retention testing. Obviously, this is 

impossible in chronic stress studies. Next to differences in behavioral consistency, we 

obtained group differences in performance 24hrs after training. Now, stressed mice 

appear to perform “better”, based on latencies and hole visits than mice of the control 

group. Does this indicate superior memory in chronically stressed animals? In our view, it 

does not. Memory effects would be expected especially in trial 1. Yet, group differences 

were absent in trial 1 but increased in the second and third trial. It is more likely and 

also suggested by others that chronic stress attenuates rodents’ motivation to explore 

(Tejani-Butt et al. 1994; Conrad et al. 1999). We propose that performance 24hrs after 

training presents motivational rather than memory effects of chronic stress. 

Moreover, chronically stressed mice moved significantly faster than controls 

which might suggest higher emotionality after chronic stress. Long-lasting effects of 

repeated stress on predominantly fear-related behavior and characteristic exploration 

patterns have been found in rodents (Grootendorst et al. 2001b; Wood et al. 2008) 

and humans (Armony et al. 2005). Importantly, others describe these manifestations 

of enhanced emotionality in relation to stress-induced structural alterations in 

hippocampus and amygdala. While chronic stress induces dendritic atrophy and 

debranching in hippocampal neurons, it enhances dendritic arborization and synaptic 

connectivity in the amygdala (Vyas et al. 2002; Mitra et al. 2005). Interestingly, the 

amygdala has been assigned a critical role in acute stress effects on memory functions 

(Kim et al. 2001; Roozendaal 2002) and in the “emotional” modulation of spatial and S-R 

learning (Packard and Wingard 2004). Intra-amygdala infusions of anxiogenic drugs were 

sufficient to switch learning strategies form predominant spatial to more S-R learning in 

rats. It is tempting to speculate that the amygdala plays also a critical role in the observed 

modulation of spatial and S-R learning by chronic stress.

Corroborating previous rodent and human studies we obtained no differences in 

quantitative learning parameters between spatial and S-R learners during task acquisition, 

neither in humans nor in mice (Kim et al. 2001; Schwabe et al. 2007). However, 24hrs 

later S-R learners showed decreasing latencies, number of holes visited and distances 

moved over the three trials on day 2, whereas all these parameters were increased in 

the spatial learners in the stress group - same as in spatial learners in the control group. 

If longer latencies in the second and third trial are indicative for motivation to explore 
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which in turn is - as argued above - attenuated by chronic stress, then the differences 

between spatial and S-R learners on day 2 might be interpreted as indication of a higher 

chronic stress level in S-R learners. 

A challenging question derives from the fact that a certain percentage of the 

tested population of both species is resistant or vulnerable to the effects of stress. Here, 

the contribution of an epigenetic predisposition could be tested in animals experiencing 

discrete early life events like maternal care (Meaney et al. 2007). Additionally, assessing 

the degree of emotionality which is known to modulate cognitive performance (Packard 

and Wingard 2004; Brinks et al. 2007a) could contribute to the understanding of a 

resistant or vulnerable phenotype. 

Chronic stress has been frequently associated with “depressive-like” symptoms 

(for reviews: Willner 1997a; Blackburn-Munro and Blackburn-Munro 2001). Here, the 

focus was primarily on emotional and motivational factors. Several authors showed that 

chronic stress contributes to anhedonia (the core symptom of the melancholic subtype 

of major depression) expressed e.g., as reduced sucrose consumption and preference 

or reduced sexual behavior in rats (Konkle et al. 2003; Gronli et al. 2005). In the present 

study, we demonstrate that chronic stress leads to a shift from elaborate “cognitive” 

to rather rigid “habit” learning. Comparable cognitive dysfunctions were observed in 

depressive patients. For instance, Harvey and colleagues (Harvey et al. 2004) as well 

as Purcell and colleagues (Purcell et al. 1997) report deficits in mental set shifting in 

patients with depression. We suggest that cognitive rigidity, here expressed by the S-R 

learning strategy, is an important factor in the etiopathogenesis of depression. 

Finally, some limitations of the present study have to be addressed. The human 

task we used here is relatively simple and it is rather unlikely that it is dependent on 

the hippocampus per se. Memory for a single location is primarily a function of the 

parahippoacmpal cortex (Duzel et al. 2003). Alternatively, choosing of the win-field could 

be done using a simple S-R strategy without making use of any external landmarks. Thus, 

task difficulty might be an even more contributing factor rather than the fact that a task is 

hippocampus-dependent or not. Furthermore, we compared in the present study effects 

of experimentally induced chronic stress (mice) and self-reported stress (humans) which 

might raise questions regarding the comparability of the chronic stress effects in mice 

and man. This is a problem hardly to solve because chronic stress cannot be induced 

experimentally in humans, for obvious reasons.

Moreover, it is important to note that we did not examine effects of severe, 

pathological stress. Human subjects were healthy. Chronic stress levels were rather 

moderate. We stressed mice for 11hrs over a period of two weeks. In line with the study 



Chronic stress modulates the use of spatial and stimulus response learning strategies in mice and man

169

Ch
ap

te
r 

8

of Grootendorst et al. (2001a) this resulted in increased basal corticosterone secretion 

indicative for an effective stress procedure. One of the very few studies that varied 

the duration of chronic stress found a biphasic effect on performance in a radial maze 

task. While 21 days of stress resulted in memory impairments, 13 days of stress did not 

impair but even enhanced memory performance (Luine 2002). It is likely that our “rat 

stress” paradigm belongs to the category of rather mild chronic stress that still allows 

adaptation and prevents performance impairment. Extending the stress period in mice 

and testing a patients suffering from a stress-related disease will provide answers to 

the more detrimental effects of chronic stress. Initially, chronic stress-induced changes 

should be viewed as signs of an adaptive response, yet the potential for damage and 

pathology is increased.

So far, research on memory effects of chronic stress predominantly focused 

on quantitative parameters such as the number of items remembered in humans and 

latencies to a goal in animals, i.e. how much is learned. The present findings show clearly 

that chronic stress affects the quality of learning; i.e. which memory system is involved 

in the process of learning, how an individual learns. Independent of the used memory 

system, quantitative parameters may remain unchanged and thus veil the actual effects 

of stress on learning and memory. The use of S-R instead of spatial strategies appear 

to be a first signal of the impact of chronic stress in a vulnerable individual, while the 

level of performance can still be maintained, as long as the environment remains stable 

(such as during the training trials in the present studies) and alternative approaches are 

allowed.
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9.1. Introduction

For decades, treatment of depression has relied on combined behavioral and 

neuropharmaceutical approaches, which usually take weeks to become effective. These 

approaches invariably are aimed to reduce the negative symptoms (including anhedonia, 

a key symptom in depression) patients experience in their daily activities they previously 

found enjoyable. Still, faster acting and more efficient drugs are needed. The chronic 

inability to cope with stress is a major risk factor in the precipitation of depression. Hence, 

there has always been a line of reasoning that intervention in stress system activity 

per se could be a more direct therapeutical approach towards reduction of depressive 

symptoms. Following, the glucocorticoid antagonist mifepristone (RU38486=MIF) was 

tested for its efficacy in depressive patients. MIF appeared to be a rapid acting drug 

primarily abolishing the psychotic symptoms characteristic for a subtype of depression, 

i.e. psychotic major depression (DeBattista and Belanoff 2006 and the discussion by 

Carroll and Rubin 2006), while also ameliorating other negative symptoms of depression 

such as emotional dysregulation, mood disturbance and anhedonia. 

The objective of the research described in this thesis was to develop a mouse model of 

depression that would express anhedonia, induced by chronic stress. Anhedonia was 

assessed by studying the behavioral response to positive stimuli, and reward expectation. 

We hypothesized that a chronically stressed individual would have a reduced response 

to such positive stimuli. To test this hypothesis we have exposed mice repeatedly to 

a psychosocial stressor using our ‘rat stress’ paradigm. Furthermore, we explored the 

impact of reward on behavioral performance of the ‘depressed’ mouse. As a potential 

therapeutical approach we assessed the outcome of repeated pharmacological blockade 

of glucocorticoid receptor (GR) function using MIF on stress system activation and 

behavioral responses. 

First we designed a novel method of drug administration to mice, and optimized several 

behavioral tests. Next, the expression of anhedonia was validated by phenotyping the 

consequences of chronic stress in our model. Also the outcome of repeated GR blockade 

with the GR antagonist MIF was examined on neuroendocrine and behavioral response 

patterns. The last step aimed to compare the impact of chronic stress in healthy human 

volunteers with its effects in naïve mice on two distinct learning and memory systems.
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9.2. Methodology

Drug delivery of glucocorticoid ligands

We deduced the magnitude of the stress response from the enhanced and long-lasting 

elevations of corticosterone (CORT) secreted by the adrenals. CORT is the endproduct 

of the HPA axis and feeds back on the brain to modulate the processing of information 

underlying the neuroendocrine and behavioral response pattern. This action exerted 

by CORT is mediated by MR (mineralocorticoid-) and GR activation that operate in 

complementary fashion (Oitzl and de Kloet 1992; De Kloet et al. 1998). 

Most often, drug delivery involves hand-restraint administration (e.g., 

subcutaneous, intraperitoneal or by gavage), which leads to a concomitant, uncontrolled, 

and unwanted activation of the stress system (Balcombe et al. 2004). This unwanted 

stress effect would be a serious confounder in our experiments. Therefore, a method of 

stress-free drug delivery was required. Using oats, we succeeded in designing a novel 

non-invasive, stress-free method of glucocorticoid administration in mice (Chapter 3). 

Drug delivery via oats reduced stress system activation as is evident from the 

following consideration: The method of drug delivery is non-invasive and avoids handling 

of the mice; they can remain in the home cage (= non-invasive) where the oats are 

delivered in a separate feeding cup. Although this procedure elicits a short-lasting, slight 

increase in plasma CORT secretion, its magnitude is not at all comparable to injection-

induced effects, neither in quantity nor quality. Removal of physical contact between 

human and mice also has the advantage that minimal training is required to deliver the 

drug of choice to the animal; there is no restraint and no injection needed. Hence, the 

oat procedure minimizes variability of drug effects induced by the experimenter. Animal 

discomfort is also strongly reduced due to refinement of the method. Moreover, oats 

containing the glucocorticoid ligand(s) can be offered during both the light and dark 

period of the 24h circadian cycle. Because oats were given in addition to standard food 

and water regimes, the mice considered the oats as a treat. This was evident from the 

observation that all mice readily ate the oats within 10 min after administration. As a 

result, the need for food and/or water deprivation, which is considered to be stressful to 

mice, was by-passed (Sommerville et al. 1988; Duclos et al. 2005). We have shown that 

mice eat the oats with and without glucocorticoid ligands, for at least 7 consecutive days 

(Chapter 4). 

The preferred method of administration depends on the experimental design. 

Drug delivery via oats is not selective as it reaches the entire body. Circulating CORT 
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has been shown to cross the blood-brain-barrier, although the concentrations in blood 

plasma vs. brain tissue differ. Penetration of MIF through the blood-brain-barrier is 

hampered and the drug is rapidly metabolized albeit in active metabolites. Therefore, 

high concentrations of the antagonist are to be administered (Karssen 2003). Collectively, 

GR and MR agonists and antagonists delivered via oats likely can activate and block MR 

and GR functions in brain.

Drug delivery via oats in close-context with behavioral testing is also feasible. 

However, it might be less suitable to study fast drug effects. The use of oats as a reward 

in close-context with learning and memory testing might be confounded however, 

by the postprandial increase in blood glucose, resulting from oats consumption. 

Glucose is known to modulate cognitive functions (Messier 2004) and can modulate 

glucocorticoid action (Gagliardino et al. 1984; Peters et al. 2004). However, the observed 

glucose increase following oat consumption is a mere fraction compared to the glucose 

concentrations that are required to modulate learning and memory processes in which 

glucocorticoids are involved (Gold 1986; Messier 2004; Dalm et al. 2009b). Therefore, a 

role of postprandial glucose is unlikely.

Drug-delivery via oats requires that mice are single housed, at least during the 

time of drug delivery. In the majority of behavioral tasks the animals are phenotyped 

one at a time. For experimental designs that require animals to be treated while group-

housed, partitioning of the home cage might be a possibility. However, it is likely that 

interference with the home cage environment will introduce an additional stress factor 

(Ouagazzal et al. 2003; Chourbaji et al. 2005) to which the animals can be habituated by 

a handling procedure.

Advantages and disadvantages of drug delivery via oats are summarized in 

Table 1 below:

Table 1: Advantages vs. disadvantages using drug delivery via oats.

Advantages Disadvantages

Non-invasive Time required for the mice to eat the 
oats is 10 min at a minimum

Minimal corticosterone secretion during delivery, i.e. stress-free Animals single-housed

Reduces animal’s discomfort

Can be used by any experimenter without extensive training in 
animal handling 

Administration can be continued for at least 7 days

Application of drugs in behavioral context

Application possible throughout the day

Self-administration resembling human drug delivery
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In conclusion, drug delivery via oats reduces unwanted stress system activation and can 

be used in close-context with learning and memory tasks. The preferred method of drug 

delivery will depend on the scientific question addressed and subsequent experimental 

design. 

9.3. Learning and memory reinforcement

Decades ago, Huston and colleagues presented a memory processing theory of 

reinforcement, and proposed that the reinforcer acts on a memory of either the response 

or the stimulus-response contiguity (Huston et al. 1974; Huston and Mondadori 1977). 

It has provided a framework for studies that have demonstrated a close correspondence 

between memory promoting and reinforcing effects of natural reinforcers like food 

(Huston and Oitzl 1989). We demonstrated that post-training reward (access to sugar) in 

close context with learning facilitates spatial memory performance in mice (Chapter 5).

Long-term memory was improved by sugar-reward in both spatial tasks, expressed 

as superior performance in the first trial of the following day. Whereas the memory 

facilitating effect in the circular hole board was observed already after the first 

contingency -location of and moving through the exit hole and sugar consumption, it 

took several days until it was obvious in the Morris water maze. This time-related effect 

of the reinforcer is most likely due to task-inherent properties (i.e., aversiveness, stress 

system activity, testing environment). However, common to both tasks is that goal-

directed behavior during the training trials and the persistence of the search pattern in 

the area of the platform and exit hole are strengthened. General activity and velocity as 

behavioral responses to the task were not reinforced. Thus, the memory trace of how 

to locate the platform or exit hole is strengthened by the sugar reward. This memory 

facilitating effect of sugar is most obvious reinforced in the earlier phases of learning.  

In line with other viewpoints (Whishaw 1995; Wotjak 2004), we consider the 

circular hole board test a procedure that is better adapted to the species-specific needs 

of mice. Moreover, the circular hole board task allows to collect a broader set of variables 

related to motivation and emotional expression than our water maze paradigm. The 

limited number of training trials in the circular hole board provides an opportunity to 

implement pharmacological interventions in close-context with training events (see 

Table 2 for an overview of circular hole board vs. water maze). 
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Table 2: Characteristics of the Circular hole board and the Morris water maze

Characteristic Circular hole board Morris water maze 

Environment Dry Wet

Motivation Appetive Aversive

HPA activity Low CORT High CORT

Training trials 2 trials/day 4-5 trials/day 

Predictive 2nd trial always shorter latency High Trial-trial variability

Learning and 
memory

Short- and long term memory Short- and long term memory

Anxiety measurable Yes No

Pharmacological 
intervention

Can be implemented before and after 
each trial seperately

Can be implemented following a set of 
trials 

Effects on consolidation processes were achieved by allowing mice free access to sugar 

in the home cage after the last training trial of the day. As expected, a sugar reward in 

close-context with training (immediately, but not 4hrs later) facilitated memory in both 

spatial tasks, albeit within different time domains.

Studies on the effect of sugar reward and other drugs on learning processes 

include handling, restraining and injecting the animal and thereby, additionally increasing 

stress-hormone secretion (Meijer et al. 2006). The task-independent activation of the 

stress system by these manipulations may contribute to the modulation of memory 

processes. By giving the mice free access to sugar in close context with their performance 

in the learning task, we have introduced a non-invasive method for sugar reward that is 

devoid of possible interfering effects of stress hormones on memory processes. 

Concluding, in line with the concept by Huston & Oitzl (Huston and Oitzl 1989) post-

training sugar in close context with learning facilitates spatial memory in mice, via 

modulation of consolidation processes. We have utilized this method to study the effect 

of chronic stress in reward processing in Chapter 7. 

9.4. Conceptualization of our animal model of 
depression

We validated our ‘rat stress’ animal model for depression by three criteria (Willner 1984): 

(1) construct validity: the model mimics the etiology of depression; (2) face validity: the 

model replicates a number of symptoms characteristic for depression; (3) predictive 

validity: treatment of symptoms has identical effects in the mouse model as in humans. 
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9.4.1. Construct validity

Depression is characterized by disturbances in emotional and cognitive processes, 

together with a dysregulated circadian and stress-induced secretion of glucocorticoid 

hormones. The expression of these symptoms may be of genetic- or environmental 

origin or a combination of both, and can be modulated by cognitive and non-cognitive 

inputs (Bale et al. 2010; Mann and Currier 2010). 

Chronic stress is considered a vulnerability factor for the development of depression (De 

Kloet et al. 1998; de Kloet et al. 2005; McEwen 2005). Whereas all kinds of stressors induce 

behavioral alterations and concomitant changes in the regulation of the Hypothalamic-

Pituitary-Adrenal (HPA) axis (Endo and Shiraki 2000; Anisman and Matheson 2005), 

psychological stressors are ethologically relevant and resemble the kind of stress that 

is related to depression in humans (Calvo-Torrent et al. 1999; Apfelbach et al. 2005; 

Beekman et al. 2005). Central features of chronic psychological stressors in humans are 

repeated, unpredictable and uncontrollable exposure to (or imagination of) threatening 

situations. To mimic such conditions of chronic stress, animal models make use of 

confrontations with territorial conspecifics and exposure to predators with or without 

physical confrontation (Apfelbach et al. 2005).

Previously, our group generated a “chronic stress mouse model” by exposing 

mice repeatedly to the presence of a rat, a procedure referred to as chronic ’rat stress’. 

Mice and rats could hear, see and smell each other, while preventing physical contact 

(Grootendorst et al. 2001b). Therefore, we expected that a psychological stressor would 

target the prefrontal cortex, amygdala and hippocampus. These brain areas show 

altered synaptic plasticity in rodents exposed to psychological stressors (Diamond and 

Park 2000; Diamond et al. 2006) and in patients that suffer from depression (Drevets et 

al. 2008); antidepressants affect this synaptic plasticity (Vouimba et al. 2006). All three 

brain areas express high levels of GR, indicating a high sensitivity to glucocorticoids 

secreted during stress (Reul and de Kloet 1985). Although we did not measure synaptic 

plasticity in mice exposed to our chronic stress paradigm, the observed acute and long 

term psychoneuroendocrine effects were evident and not detectable in non-stressed 

mice. These psychoneuroendocrine effects will be discussed in detail in the section 

related to face validity. 

We used 3 months old male C57BL/6J mice for all the studies on the animal model 

described in this thesis for several reasons. First, the C57BL/6J mice is most commonly 

used in generating transgenic mice, including those with targeted MR and GR expression 

alterations (Muller et al. 2002; Urani and Gass 2003; Kolber et al. 2008). Hence, this 
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mouse strain has been extensively phenotyped (i.e., neuroendocrine, emotional and 

cognitive processes). Secondly, 3 months old mice are regarded as late adolescent or 

young adults, a period in their lives where brain development is still ongoing. Thirdly, 

the age of onset of mood/affective disorders has been shown to occur in the median age 

range of 25-45 years (Kessler et al. 2007). Finally, this age group displays a 24h circadian 

cycle of CORT secretion which approximates human cortisol secretion during the day 

(Krieger et al. 1971; Steiger 2003), taking into account the fact that mice are nocturnal 

animals. The cycle is characterized by peak concentrations of CORT at the onset of 

darkness, which is the active period for mice. Thereafter, CORT concentrations gradually 

decrease during the remainder of the dark and into the light period of the circadian cycle 

(Chapters 2 and 4). 

Concluding, construct validity of our animal model of depression was achieved by 

exposing young adult male mice to ‘rat stress‘ which elicits an etiological relevant type 

of psychological stressor. 

9.4.1.1. Stress system activity and multiple memory systems in mice and men

As described in Chapter 7, stressed mice reached the same level of performance as 

non-stressed mice to locate the exit hole in the complex environment of the circular 

hole board. Interestingly, during the free exploration trial following the training trials, 

stressed mice preferred using a perservative search strategy, which is less efficient 

then a serial search strategy (Grootendorst et al. 2001a; Grootendorst et al. 2001b). It 

was recently discovered that stress may operate as switch between multiple memory 

systems (White and McDonald 2002; Schwabe et al. 2010). Neurobiological studies 

demonstrate that memory is organized in multiple brain systems. These memory 

systems differ with respect to the kind of information they process (Gabrieli 1998; Squire 

2004a). Spatial hippocampus-dependent memory supports the acquisition of flexible, 

consciously accessible knowledge (Scoville and Milner 1957; Eichenbaum 2004). Non-

spatial, stimulus-response (S-R) learning processes associations, such as ‘‘stop your car 

when the traffic lights are red”. It is not necessarily accessible to consciousness and relies 

on the caudate nucleus (Knowlton et al. 1996; Jog et al. 1999).

Whereas the circular hole board is considered a spatial memory task, the setup 

of the circular hole board experiment described in Chapter 7, did not allow to study the 

use of the two different memory systems that might be used by chronically stressed 

and non-stressed mice to solve the task. Therefore, we created a learning and memory 

paradigm for the circular hole board (Chapter 8), based on a study performed by Kim et 
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al (Kim et al. 2001). The same principle was used for the human variant of the learning 

task. This allowed a translational approach to study the impact of stress on the use of 

memory systems between mice and human.

Our results show that a period of chronic stress in mice and humans switches 

the use of either a spatial or S-R learning strategy, in favour of the latter. The observed 

learning performance refers to a change in the quality of learning, rather than in the 

quantity of learning (Schwabe et al. 2010). 

Acute stress prior to training in a task that could be acquired by a hippocampus-based 

spatial, and a caudate-based S-R strategy resulted in predominantly caudate-based 

learning both in rodents and humans (Kim et al. 2001; Packard and Wingard 2004; 

Schwabe et al. 2007). We show that chronic stress has the same effect. Going back to the 

results we previously described (Grootendorst et al. 2001a; Grootendorst et al. 2001b, 

Chapter 7: thesis), it is likely that our chronic stress paradigm induces a switch from using 

S-R over the spatial learning strategy, in both the water maze and circular hole board.

The stress-induced modulation of hippocampus-dependent and caudate-

dependent systems is assumed to be influenced by the amygdala (Packard and Wingard 

2004). Emotional components like anxiety, punishment, reward, are part of the majority 

of behavioral tasks for rodents, including the water maze and circular hole board (Dalm 

et al. 2009b; see Chapter 5). The associated stress increases the excitatory amygdala 

input to the hypothalamus PVN producing enhanced release of CRH and ultimately a 

larger output of CORT. This additional increase of CORT could affect both the quantity 

and quality of cognitive performance. Whereas learning is critical for adaptation to the 

environment, when the adaptation is inappropriate, it can also produce dysfunctional 

patters of thinking and emotional responding (Schwabe et al. 2010). In fact, heightened 

activity of the amygdala improves memory consolidation of negative events (Roozendaal 

et al. 2009). 

As a result of stress an organism may switch from perceiving the world from a 

balanced positive and negative perspective, towards a more negative perception, due 

to increased use of an S-R learning strategy that maintains focus on threats (negative) 

rather than reward (positive). Interestingly, a cognitive framework for depression 

suggests that positive mood promotes associative processes and vice versa (Bar 2009). 

From an evolutionary standpoint this would be of value as it allows the organism to learn 

and explore multiple alternatives that a given environment provides regarding coping 

with rewarding and aversive stimuli. The recent focus on the impact of stress on multiple 

memory systems actually supports this cognitive framework. Of course, perception 
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of the environment involves multiple brain regions to work in concert resulting in an 

adaptive response, either beneficial or maladaptive, but is always aimed to restore 

homeostasis (McEwen 2000). 

Concluding, we demonstrate that chronic stress leads to a shift from elaborate 

“cognitive” spatial to rather “rigid” S-R/habit learning. Comparable cognitive shifts 

were observed in patients that suffer from depression (Purcell et al. 1997; Harvey et 

al. 2004). We suggest that cognitive rigidity, expressed as favoring S-R learning strategy 

used for problem solving, is an important factor in the etiology of stress-related affective 

disorders including depression.

9.4.2. Face validity

Affective disorders like psychotic, major and bipolar depression, share several 

characteristics (de Kloet et al. 2005): emotional changes related to approach or 

avoidance behavior, loss of interest or pleasure in daily activities, impairment of 

cognitive functions, reduced motor activity and alterations in the circadian pattern of 

physiological, neuroendocrine and behavioral responses (Endo and Shiraki 2000; Volkers 

et al. 2002; Keller et al. 2006). Our chronic stress model was evaluated based on the 

degree of symptoms expressed as described above; see Table 3 for an overview.

We particularly focused on the expression of anhedonia using different methods aimed at 

detecting a disturbance in reward processing i.e., reduced responsiveness to rewarding 

stimuli. Loss of responsiveness to rewarding stimuli indicates a shift in the detection, 

interpretation and response to negative and positive stimuli that are part of the external 

world of the organism. Stress has been shown to alter the perception of those stimuli 

via modulation of stress hormone receptors in the brain, in particular the hippocampus 

(Oitzl and de Kloet 1992). Hence, we expected that chronically stressed mice would have 

an altered perception of the environment. To test this, we determined: 1) the behavioral 

response in a novel environment; 2) modulation of learning and memory processes by 

reward; 3) sucrose consumption and preference.

9.4.2.1. Anhedonia: behavioral inhibition in a novel environment

For patients that suffer from depression, the negative effects exist in both familiar and 

novel environments (Volkers et al. 2002; Keller et al. 2006). Chronic ‘rat stress’ alters 

the perception of a novel environment as indicated by distinct behavioral response 
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patterns, similarly as has been described previously (Grootendorst et al. 2001b). We 

extended the characterization of behavior to the familiar environment of the home cage 

of individually stressed, and non-stressed mice. Long-term automatic recordings using 

the PhenoTyper observation cage (Noldus Information & Technology BV, Wageningen, 

The Netherlands), revealed a reduction in general activity, and overall, a disturbance in 

the daily organization of behavior (Chapter 6). Most pronounced was the expression of 

behavioral inhibition measured as a delayed onset to explore the environment. 

Animals need to forage for food to meet their energy demands, while at the same time 

minimizing the risk of being exposed to a life-threatening situation, i.e., a predator or the 

threat of a possible predator (Lima and Bednekoff 1999). Although mice were exposed to 

the ‘rat stress’ outside their home cage, they displayed inhibition of exploration together 

with focused attention upon return to their home cage. This indicates that the impact of 

the rat exposure outside the home cage was carried over into the situation of the home 

Table 3:  Symptoms associated with depression in humans, and reference to the Chapters in thesis 

that assessed the expression of the human-like symptoms in our mouse model of depression.

Symptoms of  
depression *

Assessed in 
Chapter

Symptoms 
expressed

Parameter(s)  
for stressed mice

Anhedonia 6 and 7 Yes Behavioral inhibition
Altered response towards positive 
stimuli

Appetite/Weight changes 6 Yes Bodyweight fluctuated
Sleep disturbances/
circadian activity pattern

6 and 7 Yes Daily organization of behavior in 
the home cage was different

Psychomotor retardation 6 and 7 Yes Behavioral inhibition during 
novelty exposure

Fatigue/loss of energy not assessed n.a. n.a.
Depressed mood No n.a. n.a.
Feelings of 
worthlessness/guilt

No n.a. n.a.

Diminished ability to 
think/make decisions

6, 7 and 8 Yes Shift to a more rigid search 
strategy, likely triggered by an 
altered perception; sugar reward 
partially improved memory 

Thoughts of death/
suicide

No n.a. n.a.

*Source: Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV, American 

Psychiatric Association 1994.
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cage where the actual exposure to the rat never occurred. The inhibition and the reduced 

exploratory activity in the home cage has an adaptive value as it temporarily decreases 

the risk of predation (Nordahl and Korpimaki 1998), even though the actual danger is no 

longer present. Interestingly, the behavioral inhibition and reduced exploratory activity 

in the home cage is maintained if the mouse is placed in a novel cage (Chapters 6, 7 and 

8). 

In the novel environment of the circular hole board, stressed mice alternated 

between serial (sequential hole visits) and perservative (repetitive visits of the same 

hole) search strategies more often than controls. Exploration of the holes and the rim of 

the board are important to locate possible routes of escape from the open, unprotected 

environment. We observed that stressed mice were slower in starting to visit holes and 

performing rim dips. We also observed changes in head-dipping behavior which have 

been associated with altered information processing, and therefore may reflect the 

anxiogenic or anxiolytic state of the mouse (File and Wardill 1975b; File and Wardill 

1975a; Takeda et al. 1998). In addition, the anxiolytic state was observed for at least 

3 months after cessation of the stressor (Grootendorst et al. 2001b), when mice were 

tested in the light-dark box. Thus, independent of the environmental context (circular 

hole board vs. light-dark box), stressed mice displayed behavioral inhibition, indicative 

for more anxiety-related behavior. Apparently, the behavioral inhibition became part 

of the daily organization of behavior and lasted weeks after cessation of the stressor 

(Chapters 6 and 7). 

Exploration is considered a self-rewarding behavior. In the early 1980’s Katz and 

colleagues studied the effects of stress on open field (novelty exploration) behavior. A 

history of chronic stress exposure reduced the novelty induced activity, which could be 

reversed by chronic antidepressant treatment (Katz and Hersh 1981; Katz et al. 1981; 

Roth and Katz 1981). Whereas the inhibition of exploration is generally related to 

anxiety, it might also indicate the loss of hedonic responses, as suggested by Bevins and 

colleagues (Bevins and Besheer 2005). Thus, the exploration patterns in a familiar or 

novel environment might provide leads to the emotional state of the animal (File 2001; 

Kalueff et al. 2006).

We showed that chronic ‘rat stress’ altered the daily organization of behavior such that 

situations were perceived as threatening and negative, rather than neutral or positive, 

both in a familiar and novel environment. The chronic stress forced mice into a conflict 

situation, i.e. approach vs. avoidance, where they have to maintain food and water intake, 

while lowering the risk of being predated. In 1976, Gray conceptualized two motivation 
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systems that act in response to environmental stimuli: (i) the Behavioral Activation System 

(BAS), that controls approach behavior in response to cues of reward via dopaminergic 

activity in the mesolimbic system; (ii) the Behavioral Inhibition System (BIS), that is 

sensitive to cues of threat and controls inhibition of behavior via noradrenergic and 

serotonergic activity in the limbic septohippocampal system and amygdala (Gray 1976; 

Gray 1987; Gray 1994). Chronically stressed mice in our model displayed increased 

inhibition of behavior focusing primarily on threats in the environment. Thus, it is likely 

that the BIS has become more dominant. In fact, this has been shown for patients that 

suffer from depression (Kash et al. 2002) and schizophrenia (Scholten et al. 2006). 

Concluding, chronic stress changes the perception of the environment by focusing on 

stimuli that might indicate a threat at the expense of possible rewarding stimuli. This 

in turn shifts the sensitivity between the two proposed motivational systems from the 

dopaminergic BAS towards a more sensitive limbic BIS. This sensitivity becomes, at least 

for weeks, embedded into the daily organization of behavior.

9.4.2.2. Anhedonia: modulation of learning and memory processes by reward 

The impact of stress on learning and memory processes is described as impairing, 

improving or ineffective. The key towards disentangling these apparent paradoxical 

effects exerted by stress is the timing and context of stressor exposure in relation to the 

learning and memory processes (Joels et al. 2006; de Quervain et al. 2009; Conrad 2010). 

Glucocorticoids are often examined in this respect as representing ‘stress’, but obviously 

these hormones operate in concert with all other stress mediators, and this interaction 

between the various stress signals adds another level of complexity. Yet, glucocorticoids 

target the hippocampus, which is considered a key brain structure in the processing of 

novel information. 

The hippocampus functions at the crossroad where novel information is 

detected, evaluated and appraised. Glucocorticoids operate in the hippocampus through 

MR and GR, which are implicated during information processing. In fact, these receptors 

mediate the CORT effects on the appraisal processes of novel information, as well as 

on memory storage. Additionally, CORT also acts on other circuits impinging on the 

hippocampal formation, notably the amygdala-entorhinal input through which emotions 

are regulated. It is well known that the more emotional an experience is, the better it is 

remembered, and glucocorticoids acting through MR and GR in the hippocampus have 

a key role in labeling the emotions in space and time (Oitzl and de Kloet 1992; McGaugh 

and Roozendaal 2002; Brinks et al. 2007c). 
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Indeed, long term exposure to glucocorticoids or stress has been shown to alter 

synaptic plasticity in hippocampus in a spatial context, in prefrontal cortex with respect 

to response selection and in amygdala regarding the emotional value of stimuli, amongst 

other brain structures, affecting information processing (de Kloet et al. 1999; McEwen 

1999b; Mizoguchi et al. 2000; Roozendaal et al. 2009; Conrad 2010). Interestingly, 

human fMRI studies show that joint activation of hippocampus and brain reward regions, 

involving dopamine, is crucial for the development of long term memories (Schott et 

al. 2006b; Wittmann et al. 2007). Changes in the reward processing system belong to 

the main symptoms of depression (Keedwell et al. 2005; Martin-Soelch 2009). These 

changes contribute to the expression of anhedonia. We have exploited our method 

described in Chapter 5, to study the impact of chronic stress on the facilitating effect of 

post-training reward on cognition. 

We confirmed and extended our previous results using the chronic ‘rat stress’ 

model, and showed that stressed mice displayed a distinct learning curve (Grootendorst 

et al. 2001b). The stressed mice were slower to locate the exit hole during the first 2 days 

of acquisition training; thereafter they were as fast as non-stressed mice. Analysis of the 

free exploration trial after completion of the acquisition learning trials indicated that the 

stressed mice used a more perservative strategy to locate the exit hole. Controls favored 

the use of the serial search strategy which became apparent as a pattern resembling 

a ‘see-saw’, while the stressed mice showed a smooth though delayed learning curve 

during training trials. Thus, stress changes the way an animal navigates within a given 

environment. In fact, we demonstrated in Chapter 8 that chronic stress produced a shift 

in the use of search strategies by favoring stimulus response over spatial strategies in 

mice (Schwabe et al. 2008). 

We investigated the impact of stress on reward processing by utilizing our 

developed method, providing mice post-training free access to 30 mg sugar in close-

context with a training trial. As task, we used the circular hole board, which permits 

multiple readout parameters on emotional and cognitive responses (see Chapter 5). 

In stressed mice post-training sugar partially restored performance to the level 

of control mice that did not receive sugar post-training. The graphical representation 

of the latency to exit hole displayed a similar ‘see-saw’ pattern (i.e., latency during 1st 

trail of the day higher than during the second trial). However, controls without-sugar 

gradually improved performance (latency in trial 1 approximating latency in trial 2), 

whereas stressed mice that received sugar remained slower during all 1st acquisition 

trials of the day. This could be due to the overall behavior expressed in stressed mice, 

namely the initial inhibition which was present during circular hole board training and 
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up to 1 month later in the light-dark box novelty paradigm. The question then becomes 

which processes are affected by stress, and which of those are partially restored to 

function, under these conditions of post-training sugar.

An organism will need to learn to predict which environmental stimuli are 

biological meaningful, rewarding or aversive. In complex natural environments, like 

the circular hole board, this requires the integration of different sensory modalities 

into coherent memories and the coordination of various motor systems. In particular, 

the brain must learn and store representations of the biological value of appetitive 

or aversive stimuli, and recall these representations to control adaptive experience-

dependent behavior (for example, when to approach or to retreat; Hammer et al. 1997).

The process of integration during learning and memory processes involves 

3 stages: acquisition, consolidation and retrieval. During acquisition, both the task 

inherent proximal and distal environmental cues are perceived by the organism. In the 

circular hole board spatial memory task, the goal is to locate the accessible exit hole 

that is connected via a tunnel to the home cage. Because of the complexity of this task, 

it will take several training trials before the organism understands the ‘rule’. It needs to 

create a map of the environment, and recognize its own position in relation to the exit 

hole (note: the mouse is placed in a non-transparent cylinder before it is free to explore 

the circular hole board environment). In addition, it will start to value the predictable 

access to sugar reward post-training. Analysis of the training trials revealed that path 

length, walking velocity and time to leave the start center were not affected by post-

training sugar during the course of the learning paradigm. The performance however, 

did improve from trial to trial and from day to day in sugar-rewarded mice. It is likely that 

this is due to modulation of short- and long-term memory following re-exposure to the 

circular hole board environment. 

Immediately after learning the memory is still in a labile form prior to being 

fixed or consolidated in a more permanent form (McGaugh and Herz 1972). This 

implies that during the post-trial, post-training period memory remains susceptible to 

disruptive or facilitating treatments. Thus, environmental manipulation and changes in 

circulating CORT concentration or a reward can act during this labile period and affect 

spatial learning in rats (Sandi et al. 1997; De Kloet et al. 1998; Akirav et al. 2001; Joels 

et al. 2006), and mice (Chapter 5; (Dalm et al. 2009b). Because the sugar-reward was 

provided post-training and, importantly, in close-context with the learning task, memory 

consolidation was affected in both stressed and control mice. Although to a different 

degree, both groups displayed improved performance due to the reward. This raises the 

question which process(es) are involved in the observed cognitive enhancement. 
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Several studies have shown that the intake of palatable food (e.g., calorically 

dense food containing high amounts of carbohydrates or fats) is increased during periods 

of stress. In fact, the increased intake results in an improved emotional state in humans 

(Dube et al. 2005) and lowers the cortisol response to a stressful event (Pecoraro et al. 

2004; Ulrich-Lai et al. 2007). In our own studies we observed that exposure to the circular 

hole board increased corticosterone concentrations in mice (see Chapter 5 discussion). 

It is speculated that the free access i.e. self administration, to 30 mg sugar corns of 

the stressed and non-stressed mice during the (pre-)training phase of the circular hole 

board learning and memory paradigm might have dampened HPA axis activity, resulting 

in improved spatial performance and emotional state. 

As previously mentioned, the impact of CORT on learning and memory is 

described as impairing, improving or ineffective, and becomes manifest depending 

on the timing and context of stressor exposure in relation to the learning processes, 

described as a U-shaped curve (Joels et al. 2006; de Quervain et al. 2009; Conrad 2010). 

Previously we showed that chronic ‘rat stress’ increased basal CORT concentration 7 days 

after the last rat exposure (Grootendorst et al. 2001b). We did not measure the CORT 

response induced by circular hole board exposure in stressed and non- stressed mice 

that had received 30 mg sugar prior. However, as other studies do suggest, daily access 

to palatable food attenuates the stress response (Ulrich-Lai et al. 2007). Moreover, the 

intake of palatable drink as stress relief also affects reward pathways and metabolic 

circuitry in the brain (Ulrich-Lai et al. 2010; Ulrich-Lai et al. 2011). 

In conclusion, as observed in human studies the improved performance in stressed mice 

by post-training sugar might result from the attenuation of HPA axis activity following this 

reward, which shifts the CORT value towards the optimal range required for modulation 

of learning and memory processes. 

9.4.2.3. Anhedonia: sucrose consumption and preference

Measurement of sucrose consumption or preference is in widespread use in preclinical 

psychopharmacology to show an alteration in reward responsiveness induced by stress 

by a change in hedonic responses. Authors describing animal models of chronic stress 

generally report a decrease in sucrose consumption as a measure for anhedonia (Katz 

1982; Pothion et al. 2004; Strekalova et al. 2004; Anisman and Matheson 2005; Willner 

2005). We used a 5% sucrose solution (i.e. dissolved table sugar in water), based on 

a study by Pothion and colleagues (Pothion et al. 2004). They showed that a sucrose 
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solution between 4-8% resulted into the highest intake (± 11-16 ml) and preference (± 

97-98%) in naïve C57BL/6J male mice.

Prior to the start of the ‘rat stress’ paradigm, mice showed an impressive 

consumption of (12 ml) and preference for (85%) the 5% sucrose solution (Chapters 

6 and 7). Control mice further increased their consumption and preference over the 

course of the experiment. There was a clear time-dependent pattern in the development 

of increasing consumption of and preference for sucrose in the control mice which was 

absent in stressed mice. In contrast, stressed mice consumed less sucrose during the 

initial phase of the ‘rat stress’ paradigm; since baseline levels were reached only one day 

after the cessation of rat exposures. During the stress paradigm the stressed mice spent 

less time near the bottles than controls, which most likely reduced their fluid intake. 

However, since the preference of the stressed mice for sucrose did not change during 

the course of the experiment, and water intake was comparable to controls, we feel 

confident that ‘rat stress’ affected the hedonic properties of sucrose. Stressed mice did 

not increase their preference and consumption alike the controls. Based on the findings 

described in Chapter 6, we may conclude that chronic stress induces anhedonia. 

However, the outcome of the sucrose preference task does not necessarily 

indicate expression or absence of anhedonia, as indicated by reduced sucrose 

consumption and preference. The results of the sucrose testing in Chapter 7 showed 

that mice exposed to the same chronic stress paradigm, consumed more volume of both 

sucrose and water, 35 days after cessation of the stressor. In fact, we found a stress-

induced increase of caloric intake. It is known that glucocorticoids stimulate behaviors 

that are mediated by the dopaminergic mesolimbic “reward” pathways, and also increase 

the intake of food with high carbohydrate and fat (see review Dallman et al. 2007), so-

called “comfort” food. Consequently, we propose that the rat stress procedure affected 

the reward system, in a manner that also counteracted to some extent the addictive 

properties of sucrose (Avena et al. 2008). 

The volume overload of 300% due to sucrose drinking most likely affected the 

body’s fluid and energy balance. Sucrose by itself is rich in energy, which is utilized directly, 

stored in adipose tissue or secreted from the body (Peters et al. 2004). Drinking sucrose 

might have lowered stress-induced CORT secretion as shown by Bell and colleagues (Bell 

et al. 2002). Indeed, absolute CORT values in response to rat exposure were lower than 

measured in previous studies (Grootendorst et al. 2001a; Grootendorst et al. 2001b). 

Our additional experiment revealed (Chapter 6), that the ‘rat stress’ control procedure 

(placement in another cage) reduced the nocturnal activity for at least two days, while 

sucrose overload affected the activity pattern only on the day of consumption. Therefore, 
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the reduced consumption and lesser preference for sucrose is a distinct feature of the 

rat stressed mice. Consequently, we conclude that the ‘rat stress’ procedure affected the 

reward system.

As described in Chapter 7, the initial 24h sucrose testing was followed by 

measuring the preference for the bottle that previously contained the 5% sucrose solution. 

Despite the fact that the content of the sucrose bottle was changed to water, stressed 

mice preferred to drink from that water bottle. This can be seen as a sign of habitual 

learning. The rigidity in behavior might also suggest reduced extinction learning as a 

consequence of stress (Brinks et al. 2009; Schwabe and Wolf 2009; Schwabe et al. 2011). 

Exposure to a psychosocial stressor before training in an instrumental task rendered the 

participants’ behavior insensitive to the change in the value of the food outcomes: i.e., 

stress led to habit performance at the expense of goal-directed performance in humans 

(Schwabe and Wolf 2009). This proves that recognizing a change in rewarding values is 

differentially perceived under stress. Also, chronic social stress enhances habit-based 

learning in mice (Ferragud et al. 2010). We performed the sucrose testing > 1 month 

after cessation of the stressor and still, stressed mice displayed the apparent habit-like 

behavior. This suggests that, next to behavioral inhibition (see section 9.4.2.1.) the use of 

habit-like responses over goal-directed flexible response prevails in chronically stressed 

mice. The shift in memory systems and response selection has been discussed in more 

detail in section 9.4.1.1.

What could have triggered the shift in response strategy in stressed mice? Did 

they perceive the taste of sugar as highly rewarding, strengthening the memory for this 

location? It would be of great interest to study the time-dependent effects of chronic 

stress with respect to stress-induced metabolic changes and food intake.

Overall, we conclude that ‘rat stress’ model induces the expression of anhedonia in 

mice, and more generally, that chronic stress alters reward processing, leading to shifts 

in response strategies. As we focused on responsiveness towards positive stimuli, the 

shift in response strategy is likely due to an altered perception of the environment. 

Ultimately, rigidity might occur, making the organism less flexible when faced with new 

challenges. 

9.4.2.4. Dysregulation of HPA axis activity

The circadian cortisol secretion pattern is disturbed in patients that suffer from a mood 

disorder like depression (Belanoff et al. 2001b; Flores et al. 2006). Although numerous 

mouse models for a wide range of human stress related mood disorders like depression 
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have been developed, the circadian secretion pattern of mice has received relative little 

attention. We showed that naïve male C57BL/6J mice display a circadian rhythm that is 

affected by age (Chapter 2). The secretion of CORT was highest for the 9 months old mice 

and lower in the 3 months and the 16 months old mice, during the light / inactive period, 

with no differences in total CORT secretion over the dark / active period. In Chapter 7 

the 24h circadian pattern of glucocorticoid secretion is affected by chronic stress in 3 

months old mice. One day after termination of the chronic stress procedure the CORT 

concentration was not increased. However, 6 days after cessation of the stressor, the 

CORT concentration during the light inactive period of the day was nearly 1.5 times 

higher.  

Concluding, although this finding is suggestive, clearly more data need to be collected on 

the HPA reactivity regarding face validity of the neuroendocrine system in our ‘rat stress’ 

model for depression. 

9.4.3. Predictive validity 

In our experiments we have used naïve mice, stressed mice and mice that received the GR 

antagonist MIF. We have not tested whether the short-lasting treatment did ameliorate 

stress induced alterations in mice exposed to our ‘rat stress’ paradigm. We did show 

that post-training sugar reward partially restored learning and memory performance in 

stressed mice to the level of non-stressed mice (see section 9.4.2.2. for discussion). 

The efficacy of GR antagonism in clinical studies could be due to the following factors:      

(1) The detrimental effects of high CORT levels via GR activation are prevented by the 

GR antagonism. On the other hand, (2) as a result of GR blockade and subsequent rise in 

CORT levels, only the MR becomes strongly activated. The recent discovery of MR being 

located in the membrane and sensitive to high amounts of CORT, exerting non-genomic 

actions (see Karst et al. 2005; Joels et al. 2008; Groeneweg et al. 2011; Groeneweg et al. 

2012) in addition to the well-known genomic action mediated by MR, opens new avenues 

to discover MR functions. (3) As the pharmacological action of the GR antagonist wanes, 

GR becomes activated by the high circulating levels of CORT and via negative feedback, 

shuts off the CORT secretion. By means of recurrent blockade of GR we might force a 

pronounced circadian pattern of enhanced CORT secretion followed by its suppression. 

This effect might be of importance for the development of a new balance and threshold 

for HPA axis activation. Acting in such a way, drugs that antagonize GR or boost MR are 

likely candidates for novel antidepressants.
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9.4.3.1. Effect of daily mifepristone administration on circadian and stress-

induced HPA axis activity.

The secretion of CORT (cortisol and corticosterone in humans and corticosterone in 

rodents) exhibits a circadian pattern (Windle et al. 1998a; Buckley and Schatzberg 2005; 

Dalm et al. 2005). In humans dramatic changes in circadian patterns of corticosteroid 

hormones have been described in aging and also in psychiatric and neurological diseases 

like depression and Alzheimer’s disease (Hatfield et al. 2004; Peeters et al. 2004). These 

changes in cortisol are linked to resistance in GR-mediated negative feedback (Ribeiro et 

al. 1993; Heuser et al. 1996; Pariante and Miller 2001). 

In response to blockade of GR the circadian CORT secretion was altered (Chapter 

4). Two hours after a single dose of MIF (200mg/kg RU38486) was administered to naïve 

mice, the CORT concentration was significantly higher and remained elevated for 14h 

due to interference with negative feedback at the level of GR. Interestingly, during the 7th 

day of GR antagonist administration no apparent alteration in circadian CORT secretion 

was observed. The repeated GR antagonism resulted overall in lower CORT secretion 

during the light period of the day, compared to controls and acute GR antagonism. 

How does this paradoxical effect of GR blockade come about? We reason that 

by blocking GR mediated negative feedback with the antagonist a long-lasting elevation 

of CORT occurs which persists beyond the actual blockade of the receptor, since MIF is 

very rapidly degraded and eliminated (see Karssen 2003). Next, the elevated CORT levels 

will exert a negative feedback action which persists for many hours suppressing CORT 

even below baseline at 32h post injection. However, CORT secretion remains highly 

responsive to stressors at that time, which is also evident from the increased adrenal 

weight after GR antagonist treatment. Hence, we propose that a renewed GR antagonist 

administration will each day show a diminished effect on the CORT secretion until the 

HPA axis does not respond at all anymore at the 7th day of administration; this is what 

was observed. 

Repeated MIF administration to rats for 5 days in a 10 fold lower dose than 

we did, also caused a reduction in ACTH and CORT release. Moreover, c-fos expression 

in the prefrontal cortex and amygdala, and decreased expression in hippocampal 

region (Wulsin et al. 2010) was observed. These data suggest that MIF is enhancing 

inhibitory and suppressing excitatory inputs to the PVN that collectively may account 

for downregulation of HPA axis activity as well. This downregulation of HPA axis activity 

is also further enhanced by CORT action via hippocampal MR suggesting a coordinate 

control by both MR and GR at longer time intervals after antagonist treatment.
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In a study by Bachmann and colleagues (Bachmann et al. 2003) MIF and other 

more specific GR antagonist, administered for 3 weeks in a dose range comparable with 

that of Wulsin studie, did not increase hippocampal and pituitary GR mRNA expression. 

However, prefrontal cortex GR mRNA expression was increased after 3 weeks of MIF 

treatment. We observed that after the first MIF administration MR expression was 

downregulated in the hippocamus, but upregulated after the 7th administration, 

specifically in the hippocampal CA2 cell field. The observation that MR function becomes 

more prominent after GR antagonism is also evident from the shift in hyperactivity 

displayed on the circular hole board to a more serial search pattern (Oitzl et al. 1994; 

Oitzl et al. 1997b).

Also the mode of MIF administration appears important. Episodic administration 

of very high concentrations of MIF down regulates the HPA axis over a few days. This 

effect can be prevented by increasing the frequency of MIF administration to twice a 

day. Such a condition of continuous blockade of central GR’s enhances the amplitude in 

circadian and stress-induced activations probably because of a changed set point of the 

HPA axis. This increase in feedback resistance caused by the chronic infusion of the GR 

antagonist follows the theoretical prediction by Walker & Lightman (Walker et al. 2010): 

any system that has a delay between activation and inhibition has to oscillate. However, 

in all cases, irrespective of the route and dose of administration, the size and weight 

of the adrenal cortex is increased suggesting hyperfunction of the adrenals during GR 

blockade. 

Concluding: the above finding in our chronic ‘rat stress’ model may explain how 

‘normalization’ of aberrant cortisol secretion may occur in patients suffering from 

psychotic major depression that are treated daily with very high doses of MIF (Belanoff 

et al. 2001a; Thomson and Craighead 2008). It appears that the dose and mode of 

administration of the GR antagonist is essential for this downregulation of HPA axis 

activity. The paradoxical strengthening of negative feedback inhibition of CORT secretion 

by recurrent administration of MIF is most likely achieved by the integration of MR and 

GR-mediated effects. 
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9.5. Concluding remarks

In this thesis, the studies were described with mice that had a history of repeated and 

unpredictable exposure to rats. Our ‘rat stress’ paradigm is known to elicit an etiological 

relevant type of psychological stressor, which we found causing neuroendocrine and 

behavioral changes in the mouse that show features of human depression. The CORT 

secretion was altered, while an impaired cognitive performance and a reduced preference 

for positive rewarding stimuli developed. Accordingly, these behavioral changes induced 

by the ‘rat stress’ paradigm display features fulfilling construct and face validity of a 

mouse model of depression.

In the cognitive domain, chronic ‘rat stress’ led to a shift from a spatial learning strategy 

to a rather rigid stimulus-response strategy. This shift towards so called habit learning 

reflects a state of cognitive rigidity in problem solving behavior. Moreover, exposure 

to novelty revealed behavioral inhibition in our chronic stress model. Collectively, 

the behavioral inhibition, the rigidity and reduced flexibility to novelty, as well as the 

preference for habit learning present a phenotype that provides leads for translational 

studies. Central to these translational leads is the behavioral phenotype of our mouse 

model that signals vulnerability for pathogenesis of human stress-related affective 

disorders including depression. In Chapter 8 we report our discovery that this shift from 

spatial to habit learning and rigidity occurred in both mice and humans, after a history 

of chronic stress exposure.

Our mouse model of depression demonstrated features predicted by the BIS/BAS theory 

of the late Jeffrey A. Gray (Gray 1982). This theory points to a reciprocal relationship 

between the limbic noradrenergic / serotonergic behavioral inhibition system (BIS) 

and the mesolimbic dopaminergic behavioral approach or activation system (BAS) that 

corresponds to the conflict between two major personality traits i.e., the conflict between 

the motivation to avoid fear vs. the desire to approach an award or to anticipate joy and 

happiness. In particular because chronic stress seemed capable to drive the perception 

of the mice towards focus on potential threatening rather than rewarding stimuli, or in 

other words by enhancing BIS over BAS activity. This change in activity between the two 

postulated motivational brain circuits appeared to become part of the daily behavioral 

organization in our mouse model. 
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Anhedonia is a prominent behavioral feature of our ‘rat stress’ model, that is manifested  

as a consequence of the presumed reduced activity of the mesolimbic dopaminergic 

circuit. In order to test for anhedonia our studies were performed along the conceptual 

framework developed by Huston and Oitzl (Huston and Oitzl 1989) aimed to integrate 

naturally occurring reinforcers as memory promoting rewards. Here we report that 

access to sugar as post-training reward in close context with learning indeed partially 

restored the spatial memory impairment of the chronically stressed mice. This discovery 

is a further demonstration of the predictive validity of our chronic stress model. 

Our findings raise the following questions for further study:

(i) Translational perspective. Since the negative inhibitory bias of stressed mice was 

partially counterbalanced by exposure to a sugar reward, it is tempting to translate this 

finding to a therapeutical perspective in the human. Environmental enrichment of the 

home situation has been shown to increase the well-being of both humans and mice by 

lowering anxiety levels with a positive influence on learning and memory performance 

(Walker and Mason 2011). Alternatively, the combination of extinction training in a fear 

conditioning paradigm with anti-depressant treatment was recently shown to remodel 

the memory circuit through local neurotrophic activity (Karpova et al. 2011). 

These two examples demonstrate that external cues can help (at least partially) to 

overcome the effects induced by previous stressor for better or worse. It would be 

of interest to study whether exposure to positive stimuli can also be used as ‘animal 

therapy’, translating human findings back to the design of the experimental procedures 

and measurements. This implies that positive stimuli during behavioral testing may 

increase the well-being of the animals. Alternatively, in translational perspective, the 

combination of this type of psychotherapy based on reward may help the efficacy of 

anti-depressants in remodeling neural circuitry underlying the BIS/BAS reciprocity. In 

further experiments the actual measurement of BIS/BAS activity, obviously, is required 

to substantiate this notion.

(ii) Dopamine and opioid signaling in the reward circuitry. A diminished functioning 

of the reward mechanism is evident in patients suffering from depression, especially 

in the mesolimbic dopamine system (Nestler and Carlezon 2006). In our chronic stress 

model, post-training reward modulated memory performance, and sucrose preference 

eventually led to an increase in sucrose consumption over time. To account for this 

phenomenon Treadway and Zald (Treadway and Zald 2011) differentiated between 
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consumatory (hedonic – ‘liking’) and motivational (‘wanting’) aspects of reward. 

Whereas the mesolimbic system is involved in motivational processes, the opioid system 

underlies the sensation of the pleasure obtained from drinking a sweet solution or 

disgust when something is bitter. To better understand this dissociation we would need 

to examine the impact of chronic stress in our animal model of depression on dopamine 

and opioid signaling. 

(iii) HPA reactivity. More data needs to be collected on the HPA reactivity to support 

the face validity of the neuroendocrine system in our ‘rat stress’ model of depression. 

This refers to the neuroendocrine characterization of the ‘rat stress’ model. Also, the 

improved performance in stressed mice by post-training sugar might result from the 

attenuation of HPA axis activity following this reward. It would be of interest to examine 

if CORT dynamics acquires the optimal range required for promotion of learning and 

memory processes.

(iv) The “antistress” drug mifepristone. The daily recurrent blockade of the GR with the 

very high doses of mifepristone triggered in the mouse a rebound surge of endogenous 

CORT that subsequently mediated a negative feedback action and progressively 

downregulated HPA axis activity. This paradoxical effect of mifepristone in the mouse 

occured in the face of a persistent limbic MR activation, which incidentally also explained 

the concomitant change in explorative behavior towards a serial search strategy. The 

finding points to the mechanism underlying the beneficial effect of the “anti-stress’’ 

drug mifepristone for stress-related mood disorders like depression. 

The above mentioned conclusion is based on findings in the naïve unstressed mouse 

and needs to be extrapolated to the chronic stress model. If this extrapolation holds, it 

provides a criterium for predictive validity that explains how ‘normalization’ of aberrant 

circadian cortisol secretion may occur in patients suffering from psychotic major 

depression treated daily with very high doses of mifepristone (Belanoff et al. 2001a; 

Thomson and Craighead 2008). However, the kinetics of mifepristone is very different 

in mouse and men, because in human the antiglucocorticoid is protected against 

rapid metabolism and clearance by binding to a circulating α1-glycoprotein lacking in 

the mouse. It seems that the dose and mode of administration of the GR antagonist is 

essential for downregulation of HPA axis activity and therapeutic efficacy, but this needs 

to be further examined. 
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(v) MR:GR balance. The paradoxical strengthening of negative feedback inhibition of 

CORT secretion by recurrent administration of mifepristone is most likely achieved 

by integration of MR- and GR-mediated effects. Hence, besides anti glucocorticoid 

modulation of the MR:GR balance also enhancing the MR- mediated actions in the brain 

may provide an interesting alternative lead towards a novel class of antidepressants and/

or antipsychotics. That one particular gene variant (haplotype) of the MR is associated 

with optimism therefore provides a highly exciting novel lead (Klok et al. 2011).
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Worldwide, depression is among the leading causes of disability. It is a mood disorder 

that leads to substantial impairments in an individual’s ability and pleasure to take care 

of everyday responsibilities. Antidepressant medications and brief structured forms of 

psychotherapy are still ineffective for 20-40% of the affected individuals. Therefore, more 

effective fast acting medicines are therefore urgently needed. What hampers the progress 

in new drug discovery is the complex nature of depression which involves multiple 

brain processes. A promising perspective for new drug targets is that the etiology of 

depression has been linked to the inability of the affected individual to cope with chronic 

stress. The aim of the research described in this thesis was to develop an animal model 

which would express a wide range of emotional, behavioral and neuroendocrine signs 

and symptoms of depression, based on exposure of mice to a chronic stressor. Using this 

model, new drug targets could be revealed and current pharmacologic treatment tested 

on a wide range of processes.

The glucocorticoids cortisol and corticosterone (collectively called “CORT”) are secreted 

by the adrenal glands after activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis in 

response to stress. This response occurs on top of its ultradian (hourly burst in secretion) 

and circadian (24h) rhythms. CORT and the other hormones of the HPA axis are powerful 

neuro-endocrine mediators of stressful environmental stimuli. They coordinate adaptive 

functions of brain and body via the mineralocorticoid- and glucocorticoid receptor (MR 

and GR). 

Using our chronic stress mouse model we investigated how adaptation to 

stress can become impaired and how this impaired adaptation is capable to precipitate 

emotional and cognitive disturbances as characteristic features of depression. In this 

line of reasoning, chronic stress leads to an altered pattern of HPA axis activity which is 

considered causal to the pathogenesis of depression. The key symptom of depression 

studied in this thesis is anhedonia, which is defined as a decrease in the sensitivity for a 

reward, i.e. positive stimuli. 

We have tested the hypothesis that chronic stress alters glucocorticoid signaling 

thereby disturbing the appraisal processes that underlie the expression of anhedonia. 

We monitored the expression of reduced responsiveness to positive stimuli by assessing 

learning and memory performance, emotionality and endocrine response patterns 

during and after cessation of the chronic stress. 

Before we assessed the effects of chronic stress on psychoneuroendocrine parameters in 

our mouse model, we characterized the basal 24h circadian activity patterns of selected 
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HPA axis markers in male 3, 9, and 16 months old C57BL/6J mice. In Chapter 2 the results 

were described for the 9 and 16 month old mice in comparison to 3 month old mice. 

Whereas 9 month old mice expressed a relative hypercorticism (high CORT 

level), 16 month old mice displayed a relative hypocorticism (low CORT level). 

Mineralocorticoid- (MR) and glucocorticoid receptor (GR) mRNA expression in the 

hippocampus were significantly decreased in 9 month old mice, whereas in 16 month 

old mice, the expression of both MR and GR was similar to that observed in young 

animals. The parvocellular hypothalamic paraventricular nucleus (PVN) expressed very 

high vasopressin mRNA in 16 month old mice, which was subject to circadian variation 

in 3 and 9 months old mice. 

In conclusion, basal 24h-circadian HPA axis activity and expression of some 

of its central regulatory markers are age-dependent in mice. It is showing an inverted 

U-shape pattern with highest activity at 9 months of age at least with respect to CORT. 

For the remainder of the studies we continued using male 3 months old mice as to avoid 

interference of the basal endogenous and stress induced CORT secretion by age, induced 

by our chronic stress model. 

Conventional drug delivery methods (e.g., subcutaneous, intraperitoneal, per os) are 

intrusive and consequently, can evoke a stress response. This additional stress response 

can interfere with the pharmacological action of the drug and behavior being studied. 

Because we wanted to study the effect of GR antagonist RU38486 (i.e. mifepristone – 

MIF) in naïve and stressed mice, we devised a novel non-invasive, stress-free method of 

drug delivery via oats in mice in, as described in Chapter 3. We measured CORT in blood 

plasma in response to conventional drug delivery methods and following drug delivery 

via oats. 

Oat consumption induced a small increase in CORT concentrations after 15 

min (< 50ng/ml) that returned to the initial low resting levels after 30 min (< 10ng/ml). 

Gavage and intraperitoneal vehicle injections resulted in long-lasting CORT elevations 

(> 100ng/ml and ~ 50ng/ml after 30 min and at 60 min respectively). To determine 

whether it would be possible to produce a pulse with exogenous CORT, three different 

CORT doses were added to the oats. These doses were offered to adrenalectomized 

mice as to eliminate the contribution of endogenous CORT. Adding CORT to oats resulted 

in a 3-fold higher plasma CORT concentration in the 15.0mg/kg-group (± 250ng/ml) 

compared to the 4.5mg/kg-group at t=30 and t=90 min. Interestingly, the administration 

of mifepristone (MIF -200mg/kg) via oats elevated plasma CORT for at least eight hours 

in non-stressed mice. 
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Concluding, oat delivery is a good, practical and useful non-invasive method for 

the delivery of glucocorticoid ligands. The method of administration induces a very low 

stress-CORT level, and allows also to mimic a CORT pulse. This method was applied in 

Chapter 4.

In Chapter 4 the effects of single and repeated GR blockade using MIF on circadian CORT 

patterns and stress-induced neuroendocrine and behavioral responses were described. 

We designed a study to mimic the protocol which has proven successful in the treatment 

of patients that suffer from psychotic major depression. Naïve male C57BL/6J mice 

were offered MIF (200mg/kg) per os by oats, either once (1xMIF) or once per day on 7 

consecutive days (7xMIF) or vehicle (VEH). 

Whereas single administration of this very high dose of the GR antagonist 

resulted in very high CORT concentrations, repeated GR antagonism progressively 

downregulated HPA axis activity towards a normal CORT output. To explain this 

unexpected phenomenon we reasoned that in fact the very high CORT level remained 

elevated beyond the actual presence of the GR blockade, and hence were capable to 

exert a strong feedback signal suppressing HPA axis activity. This GR-mediated CORT 

feedback signal persisted because of its genomic nature, long after return of CORT to 

even below baseline levels as observed at 32h after the first administration. However, 

24h after MIF administration, the mice were still capable to show a rapid stress-induced 

increase in CORT following exposure for 5 min to the circular hole board. After 7 cycles 

of MIF, the CORT feedback has proceeded to such an extent that neither MIF nor stress 

is capable to activate the HPA axis. 

The contribution of the brain CORT receptors was also determined. While brain 

and pituitary GR were subsequently blocked by MIF and activated by endogenous CORT 

over several circadian cycles, the brain MR is freely accessible by circulating CORT under 

any condition. In response, the hippocampal MR expression was initially lower during 

high levels of CORT, but increased upon repeated GR antagonist exposure. Particularly 

within the hippocampal CA2 region at the time CORT exposure was back to baseline. The 

patterns of MR and GR activation during the course of daily repeated GR antagonism 

was also expressed in the choice of search strategy employed. Whereas 1xMIF mice 

were hyperactive, the 7xMIF mice showed relatively more serial search patterns than 

1xMIF and VEH treated animals. This suggests an increased role of MR-mediated limbic 

function. 

In conclusion, our data revealed that the recurrent daily blockade of GR by the 

very high dose of MIF did not produce the expected lasting hypercorticism. Instead, 
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it led to downregulation of basal and stress-induced HPA axis activity. Possibly this 

downregulation is caused in part by the long lasting CORT feedback activity hat becomes 

prevalent during timepoints when the GR antagonist dissociates from GR. This recurrent 

blockade and activation of the GR is thought to proceed in cooperation with a limbic 

MR mediated mechanism that may account for the reported (Wulsin et al. 2010) MIF-

induced suppression of excitatory, and enhancement of inhibitory inputs to the HPA axis. 

To determine which behavioral task would be most suitable to study a variety of behavioral 

responses that are indicative for chronic stress-induced improvement or impairment of 

learning and memory processes (see Chapter 6, 7 and 8), we compared two commonly 

used behavioral paradigms for (non-) spatial learning and memory: the circular hole 

board and the water maze. Additionally, we studied the modulation of spatial memory 

by reward as a post-training positive reinforcer as described in Chapter 5. Free access to 

sugar was chosen as a post-training reinforcer and was provided immediately (0h-sugar) 

after training, or with a delay of 4h (4h-sugar), while the controls did not receive sugar.

In both tasks, ‘0h-sugar mice’ showed superior performance as indicated by 

shorter latencies and distances to the trained spatial location. The memory facilitating 

effect of sugar became detectable at distinct times during training: on the circular hole 

board from the first trial onwards, whilst in the water maze on training days 4 and 5. 

Both the ‘0h and 4h-sugar’-rewarded mice kept their superior performance during the 

free exploration/swim trial as expressed by their more persistent search strategies for 

locating the exit hole or platform. We showed that a sugar reward given immediately after 

the training trials each day (0h-sugar) reinforced memory processes via enhancement of 

consolidation. 

These findings support the integrative theory of reinforcement and memory 

advanced by Huston & Oitzl (1989). This is in particular the case for the circular hole 

board procedure, which provides a broader range of behavioral responses that can be 

studied. The experimental set-up of the circular hole board allows differentiation of 

learning and memory processes as well as detection of alterations in reward processes. 

Accordingly, we have used the circular hole board in the experiments described in 

Chapters 6, 7 and 8 designed to determine the consequences of the sucrose award for 

behavioral performance tested our animal model of depression.

The effects of chronic stress studied in a variety of animal models are mainly assessed in 

short-lasting test-situations that have task-inherent features of novelty. Sometimes these 

situations even include exposure to physical stressors. In Chapter 6 we reported the 
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impact of chronic stress on the daily organization of behavior in the familiar environment 

of the home cage, during and after cessation of the stressor in our animal model (i.e., 

the repeated and unpredictable exposure of mice to rats without physical contact). In 

addition, exploration of a novel environment was determined. 

Continuous longitudinal observation revealed that ‘rat stress’ decreased 

exploratory and foraging activity as characterized by increased time spent in the 

shelter and less time spent in the open area. The brain reward mechanism was affected 

as indicated by reduced sucrose consumption and inhibition in sucrose preference 

development. Stressed mice used a more perservative strategy during exploration of 

a novel environment, whilst general locomotor activity was unaffected. Interestingly, 

already the control procedure, that includes spending the same amount of time in 

another cage without rat exposure, disrupted the organization of behavioral activity 

patterns, albeit to a lesser degree. In some aspects this was different than observed in 

rat-stressed mice. 

The results support our notion that mice repeatedly exposed to rats might 

serve as a model of (human) chronic stress. Distinct behavioral changes in explorative 

and foraging activities, as well as the reduced response to a rewarding stimulus, suggest 

that negative changes in the reward system have occurred during chronic ‘rat stress’, in 

the context of changes in circadian CORT secretion. The loss of interest in pleasurable 

activities is known as anhedonia which is a hallmark, not only in individuals suffering 

from chronic stress exposure, but also of depression.

In Chapter 7 we reported a combination of methodologies as described in the previous 

chapters, to determine whether the expression of anhedonia in our ‘rat-stress’ paradigm 

would be measurable using additional read-out parameters. Following cessation of the 

chronic stressor we assessed: learning and memory performance, facilitation of memory 

by reward, reward sensitivity, the emotional response and CORT levels. 

It appeared that chronic ‘rat stress’ induced alterations in three domains of 

reward processing as indicated by (1) suppression of behavioral reactivity to novelty; (2) 

enhanced memory processes in response to sugar reward: spatial performance improved 

in control mice, whereas sugar reward “ameliorated” the impaired performance of 

stressed mice to the level of non-stressed controls without sugar; (3) increased sucrose 

and water intake: stressed mice that had received sugar post-training preferred to drink 

water at the location of prior sucrose consumption. Finally, the total CORT secretion 

during the light period of the day increased from day 1 to day 7, following the first week 

after ‘rat stress’.
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Taken together, chronic ‘rat stress’ altered the circadian CORT secretion pattern 

over time, impaired spatial memory and increased caloric intake. These alterations 

show, in addition to the previously observed diminished response to positive stimuli, 

that mice exposed to our chronic stress paradigm express anhedonia, which is supported 

by the changes in the three read-out parameters used. Sugar offered in the context of 

spatial learning partially rescued stress-induced, emotional and cognitive impairments. 

Collectively, these findings suggest that reward can ameliorate part of the negative 

consequences of chronic stress on memory processes. 

Acute stress has been shown to modulate different memory systems to guide behavior 

in favor of caudate nucleus-dependent stimulus-response learning and memory at the 

expense of hippocampus-dependent spatial learning. In Chapter 8, a translational study 

was described where we examined in mice and humans, whether chronic stress has 

similar consequences as acute stress for the use of either one or both memory systems. 

In our animal test, male C57BL/6J mice exposed to chronic ‘rat stress’ more 

often used a stimulus-response strategy than control mice for locating the exit hole 

on the circular hole board task. Thirty three percent of the stressed mice altered their 

strategy to stimulus-response or habit learning, while none of the control mice did; 

the controls all adhered to the spatial strategy. In the human test, forty healthy young 

men and women were divided into a “high chronic stress” and a “low chronic stress” 

group based on their answers posed in a questionnaire (the “Trier Inventory of Chronic 

Stress”-TICS) to identify symptoms of chronic stress. The subjects were trained in a 2D 

task where they had to remember the location of an object. We found that 94% of the 

participants of the “high chronic stress” group more often used the stimulus-response 

strategy, while this was the case only for 52% of the “low chronic stress” participants. 

Chronic stress seemed to affect the quality of learning. This means that chronic 

stress affects which memory system is involved in the process of learning and how an 

individual learns. The induced shift towards a more rigid habit of stimulus-response 

learning strategy appears to be one of the consequences of chronic stress that can 

make an individual more vulnerable to the negative consequences, when exposed to 

additional stressors in the future.
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As discussed in Chapter 9 the following conclusions were reached

 

1)	 Our chronic stress model of repeated and unpredictable exposure of mice to 

rats proves to fulfill criteria of construct and face validity for depression.

2)	 The long lasting decrease in responsiveness to positive stimuli, which is 

considered indicative of anhedonia, served as presumed symptom of depression 

in our chronic stress model. 

3)	 A history of chronic stress produces in both mice and men a shift towards a 

more rigid habit of stimulus-response learning. 

4)	 Rigidity i.e., behavioral inhibition and habit learning, appears to be one of the 

consequences of chronic stress that can make an individual more vulnerable to 

the negative consequences of subsequent periods of stress.

5)	 The new methodology to reduce stress by either administration of the “anti-

stress’’ drug mifepristone or by providing positive and rewarding stimuli 

during behavioral testing, increases the well-being of the animals and may - in 

translational perspective - protect against depression. 

6)	 The daily recurrent blockade of the GR with a very high dose of mifepristone may 

downregulate HPA axis activity because of the rebound surge of endogenous 

CORT. This subsequently mediates a negative feedback action in the face of 

a persistent limbic MR activation with concomitant changes in explorative 

behavior 

7)	 Modification of the MR-GR balance may provide an interesting lead towards a 

novel class of antidepressants and/or antipsychotics. 
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Wereldwijd behoort depressie tot een van de meest voorkomende ziektebeelden. 

Het is een stemmingsstoornis welke zich kenmerkt door een verminderde levenslust 

of zware neerslachtigheid, en die ertoe bijdraagt dat een individu moeite heeft met 

het uitvoeren van alledaagse taken. Behandeling met antidepressiva en kortdurende, 

gestructureerde psychotherapie hebben geen effect bij 20-40% van de mensen. 

Effectievere geneesmiddelen en behandelingen zijn daarom dringend nodig.

	De complexe aard van depressie, waarbij meerdere hersenfuncties betrokken 

zijn, bemoeilijkt de ontwikkeling van nieuwe geneesmiddelen. Er zijn aanwijzingen dat 

chronische stress leidt tot verhoogde kans op ontwikkeling van depressie, in individuen met 

een genetische aanleg. Stress leidt tot activatie van de Hypothalamus-Hypofyse-Bijnier-

(HHB-) as, waarna de bijnieren de glucocorticoïden (stresshormonen) meer cortisol en 

corticosteron (verder aangeduid als “CORT”) in het bloed uitscheiden. Deze verhoging in 

de CORT concentratie komt bovenop de reeds aanwezige ultradiane en circadiane ritmes 

van het stresshormoon. Het ultradiane ritme geeft de amplitude en frequentie van de 

pulsatiele hormoonafgifte aan Het circadiane ritme weerspeigelt de schommelingen in 

het dag-en nachtritme. Bij het aanbreken van de actieve periode (bij mensen is dit het 

begin van de lichtperiode; bij muizen is dit het begin van de donkerperiode) bereikt 

het circulerend CORT niveau zijn circadiane piek waarde. Deze wordt gekenmerkt door 

een grotere amplitude in de pulsen van CORT afgifte door de bijnieren die ieder uur 

voorkomen. De effecten van CORT komen tot stand na binding aan de mineralocorticoid- 

en glucocorticoid receptoren (MR en GR respectievelijk). MR is betrokken bij de activatie 

van de HHB-as in reactie op een stress, en bij de gedragsresponse dien ten gevolge. 

Wanneer door de stressde CORT concentratie toeneemt, wordt de GR geactiveerdt dat 

leidt tot normalisatie van de HHB-as activiteit. Tevens is de GR betrokken bij leer- en 

geheugen processen. Deze endocriene reactie op stress zorgt ervoor dat (i) het individu 

zich kan aanpassen aan de stressvolle situatie en (ii) het individu leert hoe er mee om te 

gaan indien een soortgelijke stressvolle situatie zich weer voordoet. 

Het doel van het in dit proefschrift beschreven promotie-onderzoek was om een 

muismodel voor depressie te ontwikkelen. Het model is gebaseerd op de blootstelling 

van muizen aan de aanwezigheid van ratten, wat diende als een chronische stressor.  

Gebruikmakend van ons muismodel is onderzocht hoe chronisch stress kan 

leiden tot verstoringen in emotionele en cognitieve processen die kenmerkend zijn 

voor symptomen van depressie zoals die mensen voorkomt. Het meest kenmerkende 

symptoom van depressie is een verminderde reactie op positieve prikkels, dat anhedonie 

wordt genoemd. Anhedonie is in ons muismodel gemeten door te bepalen of er een 
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afname of verandering plaatsvond in de reactie op een aangeboden positieve prikkel 

(beloning). 

Alvorens we de effecten van chronische stress op HHB-as activatie en activiteit in ons 

muismodel hebben bestudeerd, werd eerst de basale circadiane (licht/donker ritme) 24 

uurs CORT concentratie bepaald. Tevens is op de tijdstippen dat de CORT concentratie 

het laagst en het hoogst is, de expressie van MR en GR in de hersenen, en het 

adrenocorticotroop hormoon (ACTH) bepaald in 3, 9, en 16 maanden oude mannelijke 

C57BL/6J muizen. Deze resultaten staan beschreven in Hoofdstuk 2. 

De 9 maanden oude muizen vertoonden hypercorticisme (te veel CORT). 

Daarentegen, de 16 maanden oude muizen vertoonden hypocorticisme (te weinig 

CORT), also ook een verhoogde ACTH concentratie in het bloed gedurende de dag. De 

expressie van MR en GR mRNA was lager in de hippocampus van de 9 maanden oude 

muizen, terwijl de expressie in de 16 maanden oude muizen vergelijkbaar was met die 

van 3 maanden oude muizen. Verder liet de parvocellular paraventriculaire kern (PVN) 

in de hypothalamus van de 16 maanden oude muizen een zeer hoge expressie van 

vasopressine mRNA en een significante verhoging van MR mRNA zien. 

We concluderen dat de activiteit van de HHB-as mede door de leeftijd 

wordt bepaald en dat de maximale CORT afgifte over de leeftijd zich laat zien als een 

omgekeerde U-vorm. Niet de oudste dieren, maar de 9 maanden oude dieren vertonen 

de hoogste maximale CORT afgifte. De 3 maanden oude muizen hebben een HHB-as 

activiteit waarbij we voorzagen dat de effecten van chronische stress het best meetbaar 

zou zijn. Voor de rest van de in deze thesis beschreven onderzoeken is gebruikt gemaakt 

van de 3 maanden oude muizen.  

De traditionele methoden voor het toedienen van geneesmiddelen bij muizen (b.v. 

subcutaan, intraperitoniaal of per os) zorgen voor een stressreactie. Deze stressreactie 

kan ertoe leiden dat zowel de werking van het geneesmiddel wordt beinvloed, als ook 

het eventuele daarna bepaalde gedrag. Daar we in ons chronisch stressmodel de GR 

antagonist RU38486 (ook wel bekend als mifepristone –MIF- dat klinische resultaten laat 

zien) wilde gaan toedienen (zie Hoofdstuk 4), en we dat gepaard wilde gaan met een 

zeer lage stressreactie, is een nieuwe niet-invasieve en stressvrije methode ontwikkelt 

welke beschreven staat in Hoofdstuk 3. Voor deze toediening is gebruikt gemaakt 

van havervlokken waarop de te in te brengen stof is toegevoegd. Deze toediening via 

havervlokken werd vergeleken met toediening via injecties en orale toediening, door de 

stress/CORT reactie in het bloedplasma te meten. 
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De consumptie van de onbehandelde havervlokken veroorzaakte een kleine 

toename in de CORT concentratie na 15 minuten (< 50ng/ml), welke na 30 minuten 

terugkeerde naar de eerdere lage basale waarde (< 10ng/ml). Zowel de toediening per 

os als de intraperitoneale injectie resulteerde in een langdurige CORT verhoging 30 en 60 

minuten na toediening (respectievelijk > 100ng/ml en ~ 50ng/ml). 

	Om te weten of de havervlok methode ook gebruikt kon worden om CORT-

pulsen te induceren, werden 3 verschillende doseringen van CORT toegediend. Dti 

gebeurde bij muizen waarbij bijnieren waren verwijderd, zodoende dat het endogene 

CORT niet van invloed was op de CORT metingen. Het toedienen van CORT via 

havervlokken resulteerde in een 3 maal hogere plasma-CORT waarde in de 15.0mg/kg 

groep (± 250ng/ml) in vergelijking met de 4.5mg/kg groep 30 en 90 minuten later. De 

toediening van mifepristone (MIF - 200mg/kg) via havervlokken leidde eveneens tot een 

verhoging van plasma CORT die ten minste acht uur duurde. 

Het toedienen van medicatie via de consumptie van havervlokken is een goede, 

niet-invasieve methode. De toediening gaat gepaard met een zeer lage stress/CORT 

reactie en met kan er tevens een CORT-pulse mee generen. Deze toedieningsmethode 

wordt verder toegepast in Hoofdstuk 4.

In Hoofdstuk 4 zijn de effecten beschreven van een éénmalige en herhaalde GR 

blokkade middels de GR-antagonist MIF, op circadiane CORT veranderingen en stress-

geïnduceerde neuro-endocriene en gedragsmatige reacties. De opzet van dit experiment 

kwam wat betreft de dosis en de tijdsduur van behandeling overeen met de succesvol 

gebleken therapie toegepast bij patiënten die lijden aan een psychotische depressie. 

Mannelijke C57BL/6J muizen gedurende 1 week/1x per dag een zeer hoge dosis MIF 

(200mg/kg) via havervlokken toegediend (zie Hoofdstuk 3). De CORT concentratie in 

bloed werd gedurende 24 uur gemeten op dag 1 (1XMIF) en dag 7 (7xMIF) na toediening, 

en vergeleken met een controle groep, die havervlokken kregen met daarin alleen het 

oplosmiddel. 

De éénmalige toediening van de zeer hoge dosis van MIF resulteerde in zeer 

hoge CORT concentraties, terwijl herhaalde toediening van dezelfde hoge concentratie 

(7xMIF) leidde tot een geleidelijke verlaging in HHB-as activatie. Een mogelijke verklaring 

voor dit onverwachte resultaat is dat de hoge CORT concentratie de activiteit van de 

HHB-as onderdrukt via GR activatie, nadat MIF van de GR gedissocieerd is. Deze 

terugkoppeling via CORT bleef tot 32 uur na de laatste toediening van MIF aanwezig 

vanwege genomische processen, waarbij de CORT concentratie zelfs nog lager was dan 

eerder gemeten. 
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	De expressie van de CORT receptoren MR en GR in de hersenen zijn ook 

bepaald. Terwijl de GR in de hersenen en hypofyse achtereenvolgens door MIF werden 

geblokkeerd, en door het endogene CORT werden geactiveerd, zijn de MR in de hersenen 

vrij toegankelijk voor CORT. Als gevolg hiervan was de MR expressie in de hippocampus 

aanvankelijk lager tijdens de hoge CORT concentratie, maar was deze verhoogd na 

herhaalde toediening van de GR-antagonist in het CA2 gebied van de hippocampus. 

Toediening van MIF leidde ook tot een verandering in de gedragsparameters gemeten 

in de ‘circular hole board test’ (= een ronde plaat met gaten, zonder wanden, waar 

de dieren getest worden op exploratief gedrag). De 1xMIF muizen waren hyperactief, 

terwijl de 7xMIF muizen een voorkeur hadden voor het gebruik van een meer seriële 

zoekstrategie. Een dergelijke voorkeur voor zoekstrategie wijst eveneens op beïnvloeding 

van de centrale MR functie die betrokken is bij de beoordeling van een situatie, en bij de 

vervolgens gekozen strategie om met die situatie om te gaan. 

Concluderend, dagelijkse herhaalde toediening van een hoge dosis MIF, leidde 

in tegenstelling tot onze verwachting niet tot hypercorticisme, maar juist normalisering 

van circulerende CORT gehaltes opleverde. De onderdrukking van de HHB-as activiteit 

komt vermoedelijk tot stand doordat na het dissociëren van MIF van de GR, de hoge 

CORT concentratie de GR activeert en zo de HHB-as activiteit onderdrukt. De dagelijkse 

MIF toediening gaat gepaard met MR gerelateerde processen, omdat deze receptor 

door de antagonist ongemoeid gelaten wordt (Wulsin et al., 2010). De activatie van MR 

kan ook de activatie van de HHB-as remmen. 

Voordat de effecten van chronisch stress op leer en geheugenprocessen werd bepaald (zie 

Hoofdstukken 6, 7, en 8), is bepaald welke gedragstaak daarvoor het meest geschikt zou 

zijn. Hiervoor zijn twee veel gebruikte gedragstaken vergeleken: de ‘circular hole board’ 

en ‘de water maze’, zoals beschreven in Hoofdstuk 5. Tevens werd de beïnvloeding van 

het ruimtelijk geheugen door beloning in deze gedragstaken onderzocht. Als beloning 

was gekozen het vrijwillige innemen van een hoeveelheid suikerkorrels in de thuiskooi, 

direct (0-uur groep) of 4-uur (4-uur groep) na de leertaak. De controle dieren kregen 

geen suiker. 

Op zowel de ‘circular hole board’ als in de ‘water maze’ vertoonden de muizen 

die direct na de training suiker als beloning kregen (0-uur) superieure prestaties. 

Ze vonden de ontsnappingslocatie sneller en onthielden die beter. Het effect van de 

suikerbeloning op de leerprestatie was zichtbaar op verschillende tijdstippen tijdens de 

training. Bij de ‘circular hole board’ was dit effect reeds meteen zichtbaar vanaf de eerste 

trainingsdag, maar bij de ‘water maze pas tijdens de 4de en 5de trainingsdag. 
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De resultaten tonen aan dat een suikerbeloning die direct na de training gegeven 

wordt, het geheugen van het zojuist geleerde gedrag kan versterken. Deze bevinding is in 

overeenstemming met de theorie ‘reinforcement and memory’ opgesteld door Huston & 

Oitzl (1989). Op basis van de bevindingen in Hoofdstuk 5 is gekozen voor de ‘circular hole 

board’ in de vervolgexperimenten om de rol van beloning en de effecten van chronische 

stress op leer- en geheugenprocessen (Hoofdstukken 6, 7 en 8) te bestuderen 

In Hoofdstuk 6 werd het effect van chronische stress op de dagelijkse organisatie 

van foeragerend en exploratief gedrag in de bekende omgeving van de thuiskooi 

onderzocht. Als stressor werd gekozen voor de herhaalde blootstelling van de muis aan 

de aanwezigheid van een rat. De rat kon door de muis wel worden geroken en gezien, 

maar zonder dat er fysiek contact mogelijk was. 

Deze ‘rat stress’ leidde tot een verlaging in verkennende en foeragerende 

activiteiten (regelmatig terugkerend zoeken en vinden van voedsel) van de muis in de 

thuiskooi. Er werd meer tijd in de schuilplaats doorgebracht en minder tijd in de open 

ruimte, wat duidt op angst. Tevens vertoonden de gestresste muizen een verminderde 

consumptie van sucrose en een langzamere ontwikkeling in de voorkeur voor een sucrose 

oplossing boven water. Daarbij gebruikten de muizen een meer persistente zoekstrategie 

tijdens het verkennen van de ’circular hole board’ terwijl de locomotorische activiteit 

onveranderd bleef. 

De resultaten laten zien dat ons chronisch stress model, d.i. de herhaalde 

blootstelling van muizen aan de aanwezigheid van een rat (‘rat stress’), een verandering 

in het beloningssysteem teweegbrengt. Dit is af te leiden uit een afname in verkennende 

en foerageeractiviteiten, als ook een verminderde reactie op een belonende stimulus. 

Deze verminderde reactie op een beloning kan gedefinieerd worden als anhedonie, een 

belangrijk symptoom dat kenmerkend is voor depressie.

In Hoofdstuk 7 werd een combinatie van eerder toegepaste en ontwikkelde methoden 

gebruikt om verdere effecten van de ‘rat stress’ procedure op leer-, geheugen- en 

beloningsprocessen te bepalen. Dit gebeurde in een nieuwe omgeving buiten de 

thuiskooi. Hiertoe werden de volgende parameters bepaald na afloop aan de blootstelling 

aan de chronische stressor: leer- en geheugenprocessen met en zonder suikerbeloning, 

de reactie op positieve prikkels en de CORT concentratie in het bloed. 

De chronische ‘rat stress’ onderdrukte de gedragsrespons tijdens blootstelling 

aan een nieuwe omgeving en verminderde het effect van suikerbeloning op de 

geheugenprocessen. Suikerbeloning verbeterde de ruimtelijke leerprestatie bij controle 
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muizen. Daarnaast werd de vermindere leerprestatie bij gestresste muizen verbetert 

door de beloning, waardoor ze evengoed presteerden als de controle muizen die geen 

suikerbeloning hadden gekregen. Verder vertoonden de gestresste muizen die na 

training op de ‘circular hole board’ de suikerbeloning hadden kregen, een voorkeur voor 

de fles met water die was aangeboden op de plaats waar eerder een fles met sucrose 

was geplaatst. Een dag na afloop van de chronische ‘rat stress’ periode was de totale 

CORT secretie tijdens de lichtperiode hoger dan die een week later gemeten. 

Concluderend, de chronische ‘rat stress’ zorgt voor veranderingen die wijzen 

op verschijnselen van anhedonie. Daarnaast blijkt een suikerbeloning de door stress 

veroorzaakte emotionele en cognitieve stoornissen gedeeltelijk te herstellen. De 

resultaten suggereren dat een beloning een deel van de negatieve gevolgen van de 

chronische ‘rat stress’ op het geheugenproces, kan verbeteren. 

Informatie wordt door de hersenen op verschillende manieren verwerkt en bewaard 

voor gebruik indien nodig. Eerdere studies hebben aangetoond dat door acute stress 

eerder gebruik gemaakt wordt van een directe stimulus-respons strategie dan van een 

hippocampus-afhankelijke ruimtelijke leer- en geheugenprocessen om een leertaak 

uit te voeren. In Hoofdstuk 8 is bij muizen en mensen onderzocht of chronische 

stress hetzelfde effect heeft als acute stress, op het gebruik van één of beide leer en 

geheugensystemen in een vergelijkbare leertaak. Hiertoe moesten de muizen de locatie 

van een uitgang vinden op de ’circular hole board’, terwijl de mensen de locatie van een 

voorwerp dienden te onthouden in een 2-dimensionele leertaak. 

De mannelijke C57BL/6J muizen die blootgesteld waren aan ‘rat stress’ 

maakten vaker gebruik van een stimulus-respons strategie (33%) dan de controle 

dieren, die vasthielden aan de hippocampus-afhankelijke zoekstrategie. Veertig gezonde 

proefpersonen werden verdeeld in een ‘hoge chronische stress’ en een ’lage chronische 

stress’-groep op basis van hun antwoorden op vragen uit een vragenlijst (de “Trier 

Inventaris van Chronische Stress”-TICS), waarmee de symptomen van chronische stress 

bepaald kunnen worden. Van de proefpersonen behorende bij de “hoge chronische 

stress” groep gebruikte 94% vaker de stimulus-respons leerstrategie, terwijl dit bij 

de”lage chronische stress” groep slechts 52% was. 

Concluderend, chronische stress beïnvloedt voornamelijk de kwaliteit van het 

leren. Dit betekent dat chronische stress beinvloedt welk leer- en geheugensysteem 

wordt gebruikt, en zo dus hoe een individu leert. De verschuiving naar het gebruik van 

de meer rigide vorm van stimulus-respons leren lijkt één van de gevolgen van chronische 
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stress. Dit kan ertoe bijdragen dat een individu kwetsbaarder wordt voor de gevolgen 

van een toekomstige stresssituatie. 

Zoals beschreven in Hoofdstuk 9, komen we tot de volgende conclusies:

1) 	 Ons chronische ‘rat stress’ model waarbij muizen herhaaldelijk en op 

onvoorspelbare tijden worden blootgesteld aan de aanwezigheid van een rat, 

voldoet aan de ‘construct en face validity criteria’ voor depressie.

2) 	 De langdurig veminderde reactie op beloning, die wordt gezien als kenmerk van 

anhedonie, werd geinduceerd in ons chronisch stress model als een symptoom 

van depressie. 

3) 	 Een voorgeschiedenis van chronische stress resulteert bij muizen en mensen in 

een toename van het gebruik van stimulus-response (minder flexibel) leren en 

gaat ten kosten van het ruimtelijk (meer flexibel) leren.

4) 	 Starheid in gedrag, uitgedrukt als een geremdheid en een minder flexibele 

manier van leren, lijkt één van de gevolgen van chronische stress die er toe kan 

leiden dat een individu gevoelig wordt voor toekomstige stressvolle situaties.

5) 	 De nieuwe methodiek om stress (en de gevolgen ervan) te verlagen via 

toediening van het ‘anti-stress’ medicijn mifepristone, of via extra positieve 

prikkels en beloning tijdens gedragstaken vergroot het welzijn van de muizen 

en kan – vertaald naar de menselijke situatie - beschermen tegen de gevolgen 

van depressie.

6) 	 De dagelijkse blokkade van GR met de zeer hoge doses van mifepristone kan 

de HHB-as onderdrukken doordat de verhoging van het endogene CORT de 

negatieve terugkoppeling van de HHB-as tot stand brengt. Hierbij zijn zowel de 

GR betrokken die beschikbaar worden na het verdwijnen van de antagonist, 

als ook de MR die door verhoging in CORT extra geactiveerd worden. De 

veranderingen in neuroendocriene functie wordt ook gezien in exploratief 

gedrag dat overgaat van hyperactiviteit naar een meer seriële zoekstrategie bij 

herhaalde toediening.

7) 	 Een geïnduceerde verandering in de expressie en activatie van de MR-GR kan 

leiden tot een nieuwe klasse van medicijnen tegen depressie of psychotische 

aandoeningen.
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private life.

Voor mijn vrienden, kennissen en familie die betrokken waren bij de tot standkoming 

van dit proefschrift, zie hier,  het is dan toch af J. Dank jullie wel. 

De twee personen die me hebben gesteund en die ik kon benaderen wanneer nodig 

voor mijn thesis en prive, Leo en Petra. We hebben de voorbije jaren een hoop mooie 

gebeurtenissen mogen zien en meemaken bij elkaar. Enorm bedankt dusver en ik kijk uit 

naar wat we verder gaan meemaken, samen en met de kids. Bedankt!!! 

Als laatste genoemd, mijn nummer 1...Luka mijn zoon. Jouw aanwezigheid zorgt voor 

plezier in mijn leven en leert me wat er echt toe doet. Ons avontuur gaat verder... 
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