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In this thesis, studies are described in which the role of miRNA-126 in vascular
biology is investigated. While initially considered to be exclusively restricted to
endothelial cells, it is now appreciated that significant levels of miRNA-126 can
be found in platelets, epithelial cells and circulating hematopoietic cells [I-3].
Moreover, ‘free-floating’ miRNA-126 molecules have now been detected in
the periphery [4]. The presence of miRNAs in the circulation may underline
the importance of these molecules as potential biomarkers. While native RNA
molecules are rapidly degraded in plasma, miRNAs display exceptional stability in
the circulation due to their association with argonaute protein [4], high density
lipoprotein (HDL) [5] or their inclusion into exosomes or microparticles [6].
Considering the tissue-specific nature of miRNAs and their stable presence in
the periphery, circulating miRNAs may give a reflection of the health status of
tissue connected to the vascular bed. So far, only circumstantial evidence has
been reported, the levels of miRNA-126 might be an indicator of ongoing
endothelial injury in the body during cardiovascular disease [7-9]. To date, an
exact role for these free-floating molecules has not been established, however,
they might become increasingly important to serve as new biomarkers.

A functional role of cellular miRNA-126 was not established until the binding
of miRNA-126 to the 3’ untranslated-region (UTR) of vascular cell adhesion
molecule-1 (VCAM-1) was revealed. The binding of miRNA-126 subsequently
led to the interference with the function of VCAM-I [10]. Soon after, targeted
deletion of mMiRNA-126 in endothelial cells, by either genetic deletion or use
of cholesterol-conjugated antisense oligonucleotides (antagomir) showed the
facilitating role of miRNA-126 in vascular development and ischemia-induced
angiogenesis [ 1-13].

To date, a limited number of pathways has been associated with the
functional targeting of mRNAs by endothelial miRNA-126.1t has been determined
that miRNA-126 is an important mediator in vascular homeostasis by targeting
key proteins involved in angiogenesis, vasculogenesis and inflammation [10-15].
This chapter summarizes and discusses the contribution of the research
described in this thesis to the understanding of the role of miRNA-126 in vascular
homeostasis.

Silencing of miRNAs in vitro and in vivo

Previously, miRNA-126 was found to be expressed in the heart and blood
vessels of zebrafish embryos [16].We demonstrate in Chapter 3 that miRNA-126
is specifically expressed in endothelial cells of capillaries and arterioles in vivo.To
gain insight into a possible regulatory role for this miRNA in neovasculariza-
tion, we aimed to obtain a specific miRNA-126 inhibitor for conditional silencing
of miRNA-126 in the vascular endothelium. Several different methods to
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silence miRNAs in vitro and in vivo have been established. (I) Locked nucleic
acid (LNA)-modified oligonucleotides for the efficient and long lasting silencing
of miRNA-122 function in the liver of mice and non-human primates [17, 18].
This LNA-based method is momentarily being evaluated in the first human
clinical trials of miRNA inhibition (Santaris Pharma, ClinicalTrials.gov). (2) Chemi-
cally modified and cholesterol-conjugated antisense oligonucleotides (antagomirs)
bind to miRNAs and block their function in multiple tissues after tail vein
injection [19]. The use of antagomirs has been extensively studied and has
been widely used in a variety of in vitro and in vivo studies. Although both the
antagomir and LNA-modified oligonucleotides can effectively target a miRNA,
the LNA-modified chemistries require lower doses based on their higher binding
affinity. (3) Recently, the use of 8-mer LNA-anti-miR has been described [20].The
8-mer fully modified LNA-oligomer is directed against the seed region of a miRNA
and can additionally be functional for targeting multiple miRNA family members
at once. Gene expression analysis indicates that the shorter LNA-containing
chemistries do not induce off-target gene expression changes as opposed to the
longer LNA-anti-miRs and antagomirs [18]. This off-target targeting is probably
due to the fact that when too many RNA-oligonucleotides are incorporated
into a cell, all cytoplasmatic RNA binding proteins, including the RNA Induced
Silencing Complex, present might be saturated with RNA molecules. This over-
saturation may then lead to an overexpression of all miRNA-regulated proteins.
Therefore, to be able to analyze the effects of antagomirs properly, we have used
a control RNA analog of identical composition and length, but with a random
sequence (scramblemir) in all in vitro and in vivo experiments.

So, although the possibility of off-target targeting exists while using antagomirs,
we chose to use this method due to its high potential to inhibit miRNA expres-
sion and function in almost all organs [19]. Furthermore, as cholesterol uptake
is a salient feature shared by virtually all cells, including endothelial cells, we
designed an antagomir directed to mMiRNA-126. In mice treated with
antagomir- 126, we validated the specificity of miRNA-126 silencing by quantifying
the level of mature miRNA-126 in total lung tissue. This was based on previous
observations that, of all organs profiled for miRNA-expression by extensive
cloning and sequencing, the lung displays the highest levels of miRNA-126
expression [13,21,22].We observed that 10 days after administration of a single,
[.0 mg injection of antagomir-126 per mouse, was sufficient to almost completely
abrogate miRNA-126 expression in lung tissue, whereas miRNA-126 remained
readily detectable in the control scramblemir groups. As a single injection of
1.0 mg is low compared to the reported dose needed for silencing of the liver
specific miRNA-122 (3 consecutive injections of 2 mg per mouse), we conclude
that endothelial cells readily take up antagomirs from the circulation and may
therefore be highly useful for studying endothelial miRNA-function in vivo. In
addition, the data described in Chapters 3, 4 and 5 supports the poten-
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tial therapeutic use of antagomir-based approaches for conditional silencing of
miRNAs in the endothelium in vivo.

MiRNA-126 and angiogenesis

Endothelial cells are key mediators in vascular integrity and, as such, the
maintenance of the endothelial cell layer in the periphery is of high relevance.
Pathological conditions such as tissue ischemia and inflammation lead to the
activation of endothelial cells and ultimately to endothelial cell apoptosis [23].
The loss of endothelial function is a hall mark of vascular disease and is an early
event in development of atherosclerosis and, furthermore, shown to be predictive
of future adverse cardiovascular events. To keep the endothelium healthy is,
therefore, a crucial aspect for vascular integrity and mechanisms, like angio-
genesis and vasculogenesis, that help to overcome endothelial cell dysfunction
have been intensively studied. The execution of these tightly regulated programs
depends on a vast array of factors whose identification has been a prime focus of
cardiovascular research in the last two decades [24]. Since the role for miRNAs
in gene regulation has been widely acknowledged and evidence supporting a role
for endothelial miRNAs in the control of neovascularization has been provided
for a high number of miRNAs [25-31], we have studied the role for endothelial
miRNA-126 in vascular integrity.

In Chapter 2 we demonstrate data that supports a role for miRNA-126 in an
angiogenic response induced by ischemia.To investigate the role of miRNA-126
in neovascularization, we injected C57BI/6 WT mice in the tail vein with either
antagomir-126 or scramblemir. Subsequently, we subjected these animals to
unilateral hind limb ischemia by electrocoagulation of the left common femoral
artery. Using this model we were able to assess the hypoxia induced angiogenic
response in the distal calf muscle [32]. The mice treated with antagomir-126
showed a strongly reduced capillary density in gastrocnemius muscle as
compared to the scramblemir-treated mice. Likewise, an impaired ex vivo
outgrowth of endothelial cells from aortic sections of miRNA-126-silenced mice
was observed. Surprisingly, in vitro experiments designed to assess the relatively
short term effects of antagomir-126 silencing in human umbilical vein endothelial
cells (HUVEQC) revealed no differences.The effects of miRNA-126 on angiogenesis
likely involve mechanisms operational in endothelial cells in the in vivo context.

Two other studies reported that targeted deletion of miRNA-126 in mice and
zebrafish impairs angiogenesis, likely through dysregulation of Sprouty-related
Ena/VASP homology | domain containing protein (Spred-1) and phospho-
inositol-3 kinase regulatory subunit 2 (PIK3R2, p85-f3) expression [II, 13].
Spred-I and PIK3R2 are actively involved in the negative regulation of vascular
endothelial growth factor (VEGF) signaling [33] and are both predicted targets
of miRNA-126 (http://www.targetscan.org). Consequently, upregulation of
miRNA-126 would thus facilitate angiogenesis by reducing the expression of
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both repressors of VEGF signaling, whereas low levels of miRNA-126 would
be associated with elevation of Spred-1 or PIK3R2 and repress angiogenic
signaling. This makes them likely targets to be associated with diminished capacity
of endothelial cells to overcome ischemia-induced angiogenesis as demonstrated
in our studies.

The angiogenic potential of mMiRNA-126 was underlined in a different study,
which is described in Chapter 7. Here, we demonstrate that the angiogenic
potential of miRNA-126 may reach beyond its presence in endothelial cells,
supporting the potential therapeutic use of this miRNA. We over-expressed
the endothelial, pro-angiogenic miRNA-126 in bone marrow cells, which sub-
sequently were used to successfully reconstitute the bone marrow of lethally
irradiated mice. Over-expression of miRNA-126 in the transplanted bone
marrow lead to an upregulation of white blood cells in the circulation when
compared to animals that were transplanted with bone marrow cells transduced
with control lentiviral particles. This upregulation of white blood cells coincided
with expression levels of miRNA-126 in the bone marrow. Furthermore, the
animals that were transplanted with miRNA-126 over-expressing bone marrow
cells showed increased capillary infiltration of an angiogenic matrigel plug, which
was inserted in the flank of mice.The injected matrigel plug contained high levels
of recombinant VEGF and stromal cell-derived factor-1 (SDF-1) that is released
slowly into the blood stream. Over-expression of miRNA-126 in bone marrow
cells will inhibit the translation of PI3KR2 and SPRED-I [I 1, 13] that are two
major negative mediators of the VEGF-receptor and SDF-1/CXCR4 signaling
pathways in endothelial cells. Therefore, these miRNA-126-transduced cells may
have become more responsive to a gradient of VEGF and SDF-1 in the periphery,
leading to an increased migratory capacity as compared to cells transduced with
a control virus.

It has been described that leukocytes can contribute to angiogenesis in a variety
of molecular mechanisms [19, 34-41]. Therefore, the variable representations
of leukocytes that are upregulated in the circulation might explain the
increased number and length of the vessels in the angiogenic plug. Moreover,
endothelial cells that are proximal to the matrigel plug are exposed to high local
concentrations of VEGF and SDF-1, which could accelerate their invasion of the
plug after insertion. Alongside this process, bone marrow cells will enter the
angiogenic plug and support the endothelial cells to vascularize the plug, by
perivascular stabilization of the newly formed capillaries. Also, invading, (perivas-
cular) bone marrow cells have the possibility to release microvesicles that
contain (elevated) levels of miRNA-126 that can be taken up by endothelial
cells [42]. After uptake, miRNA-126 levels will increase in the angiogenic
endothelial cells and this leads to an increased potential of capillary formation [12].
Indeed, we found a number of ds-Red-positive cells in the matrigel plug that align
vessel-like structures (shown by a positive staining for endothelial cell-marker
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von Willebrandfactor), indicating that these act as perivascular cells that support
capillary ingrowth. Since we also saw an increase of total white blood cells in
the circulation, one can speculate on the miRNA-126 based mechanisms that
underlie these findings. The study described in Chapter 7 underlines the
angiogenic capacity of miRNA-126 and that this miRNA might be used in
pro-angiogenic therapies.

MiRNA-126 and vasculogenesis

The loss of miRNA-126, either in knockout models or mediated by treatment
with antagomirs, leads to structural impairment of the vascular bed [I1-13].
In Chapter 4, we provide evidence for a vasculogenic role for miRNA-126 by
regulating the mobilization of endothelial progenitor cells via the release
of chemokine SDF-I from ischemic endothelial cells. In vitro, the increased
secretion of SDF-1 upon silencing of miRNA-126 was sufficient to stimulate the
migration of human CD34+ stem cells. In mice, however, systemic silencing with
a single tail vein injection of antagomir-126 was not sufficient to raise the levels
of circulating murine Sca-|+/Lin- progenitor cells. However, in combination with
the ligation of the femoral artery, we demonstrated an increase in circulating
Sca-1+/Lin- cells following miRNA-126 silencing, strongly suggesting that tissue
ischemia is needed to reveal the regulatory role of miRNA-126 in vivo. The
elevated numbers of circulating Sca- | +/Lin- cells in the antagomir-treated animals
are the result of SDF-1 mediated mobilization of these cells following ischemia.
This is supported by the fact that SDF-I|-protein expression is also up regulated
in the endothelial cells in the ischemic tissue as well as in the peripheral circula-
tion. Interestingly, interaction between miRNA-126 and SDF-1 has previously
been shown to increase miRNA-126 uptake of endothelial cell-derived apoptotic
bodies by endothelial cells. This resulted in increased SDF-| expression through
inhibition of Regulator of G-protein signaling 16 (RGS16) [43]. In contrast, our
studies implicate that the abrogation of miRNA-126 is associated with increased
expression of SDF-1, suggesting that miRNAs could serve as a biological switch,
with the response magnitude of biological pathways being dependent on the
context and source of the external stimulus.

Since the functional repression of miRNA-126 leads to impaired angiogenesis
in one hand, and to increased vasculogenesis in the other, it has been proposed
that this elevation of stem cells, upon ischemia, can be seen as a vascular rescue
mechanism to overcome impaired angiogenesis after losing expression of
endothelial miRNA-126. This suggestion underlines the importance of
miRNA-126 in vascular homeostasis.

MiRNA-126 and vascular inflammation

It is well established that systemic inflammation leads to endothelial cell
activation and subsequent leukocyte recruitment [44]. In contrast, knowledge
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on how distinct microvascular endothelial cells subsets respond molecularly to
inflammatory stimuli is almost non-existent in acute and chronic renal diseases,
like glomerulonephritis, vasculitis, and ischemia related acute renal failure. Since
miRNA-126 is a central regulator of endothelial cell function and homeostasis,
it is likely that miRNA-126 might influence the microvascular endothelial cell
response to inflammatory stimuli in the kidney. In Chapter 5 we describe that
the expression of miRNA-126 in the glomerular microvascular compartment
is a governing factor in the control of VCAM-1 protein expression in response
to acute inflammation. High miRNA-126 levels in the glomerular compartment
coincided with low VCAM-I| protein expression. Furthermore, in arterioles
low miRNA-126 levels were associated with high VCAM-| protein levels.
Previously, the relation between miRNA-126 andVCAM-1 has been investigated in
HUVEC, predominantly in conditions in which miRNA-126 was exogenously
over-expressed [10]. We showed that in vivo target deletion of miRNA-126 by
antagomir-126 injection resulted in increased VCAM-1 protein production in all
renal microvascular segments in response to a challenge with tumor necrosis
factor-alpha (TNFa).

The role of miRNA-126 in response to inflammation in the kidney and
hypoxia is of high interest in the search for therapeutic targets. Our discovery
that miRNA-126 is a governing factor of VCAM-| expression in the heterogenic
response of the renal vascular bed to an inflammatory stimulus provides an
interesting link between miRNA-126 and the inflammatory response, via its target
VCAM-1. However, our finding that antagomir-126 administration did not result
in increased blood flow recovery after femoral artery ligation when compared
to scramblemir-treated animals shows that regulation of VCAM-1| expression by
miRNA-126 is unlikely to be a rate-limiting factor for in vivo arteriogenesis.

MIiRNA-126 in the circulation

Endothelial cells, circulating cells and platelets can be considered as sources
that can release miRNA-126 into the periphery.To date, the exact quantitative
contribution of each cell type has not been elucidated. Nonetheless, it is likely
that all three cell types might release miRNAs into the circulation during their
life time. In Chapter 6 we demonstrate that platelets store significant amounts
of miRNA-126 and that upon platelet-activation miRNA-126 is secreted into
the surrounding plasma in vitro. In parallel with those findings, we show that
when the activation of platelets is blocked by aspirin, the release of miRNA-126
by platelets is hampered. These data were underlined by a patient study where
we investigated the relation between plasma levels of miR-126 and in vivo
platelet activation.VWVe studied miRNA-126 levels in plasma of patients with type 2
diabetes mellitus, who had participated in a prospective, randomized, placebo-
controlled, double-blind, crossover study, in which patients were assigned to a
period of aspirin-treatment or placebo [45, 46]. As shown previously [47], only
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50% of the aspirin-treated patients were considered ‘aspirin-responders’, defined
by a decrease in the platelet-activation marker, soluble P-selectin (the other 50%
were so called ‘non-responders’). When discriminating for responders and non-
responders a significant difference between the miRNA-126 plasma levels was
measured between both groups.

At present, no molecular mechanisms are linked to circulating miRNAs
(including miRNA-126) and cardiovascular disease. VWhether the source of
circulating miRNA-126 is endothelium, circulating cells or platelets, the
established involvement of miRNA-126 in vascular biology will make it a key
component to investigate in patients with cardiovascular risk factors.To date, the
use of circulating miRNAs as predictive and/or monitory biomarkers is still in an
early phase. However, in the future a spectrum of circulating miRNAs, miRNAs
in urine samples [48] or other bodily fluids [49] will be highly informative about
the disease status of a patient in the clinic.

Currently no clinical trials to enhance or antagonize miRNA-126 function are,
to our knowledge, undertaken. Nevertheless, subjects with cardiovascular risk
factors have decreased levels of miRNA-126 in their plasma [7, 8, 50], suggesting
that mechanisms whereby miRNA-126 could be administered to these subjects
could be an effective modality in the prevention of cardiovascular disease.

Future perspectives

As has been shown in this thesis, miRNA-126 is abundantly expressed in
endothelial cells, circulating cells and platelets, and plays an important role in
neovascularisation by regulating the expression of various proteins involved
in driving both angiogenesis and vasculogenesis [I1-13, 15, 43]. Although the
role of angiogenic miRNAs such as miRNA-126 in vascular maintenance and
repair is now well-established, surprisingly little is known about the molecular
mechanisms underlying the regulation of these regulators. So far it has been
demonstrated that binding of Ets-1 or Ets-2 to the EBS and induction of flow
are needed to govern the expression of the EGFL7/miRNA-126 gene [51, 52].
Furthermore, miRNA-126 levels can be increased in endothelial cells as a result
of microvesicle endocytosis [43]. In contrast, extracellular factors that lead to
endothelial cell activation and also potentially modulate miRNA-126 levels are
currently unknown. For instance, cytokines like vascular endothelial growth
factor (VEGF) and tumor necrosis factor-alpha (TNFa) that mediate the activation
of endothelial cells, lead to an upregulation of a distinct subset of miRNAs, but
appear to have no impact on the expression of miRNA-126 [29, 53]. In order to
fully understand the role of miRNAs in neovascularisation and inflammation it
is of particular interest to unravel the molecular mechanisms that modulate the
expression of these miRNAs.

To study the impact of extracellular factors on endothelial miRNA-expression
and explore the intracellular mechanisms that control the distribution of
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miRNAs after endothelial cell activation, future studies could seek to:

1) Identify extracellular factors that modulate the expression of
miRNA-126 in endothelial cells

To gain insight into the regulation of miRNA-126 expression in endothelial
cells, the endothelial response program can be triggered by mechanic (shear)
stress, oxidative stress or a variety of soluble growth factors. Recent work has
established that the absence of pulsatile flow leads to severely diminished levels
of miRNA-126 in zebrafish [52]. Furthermore, preliminary studies have identified
that continuous flow (I5 dyne/cm? for 4 days) and hypoxia (2.5% O, for 6-48
hours) on HUVEC leads to increased miRNA-126 expression (Van Solingen et al,
unpublished data).Varying parameters such as the time the cells are exposed to
flow, flow velocity, and the degree of hypoxia will likely provide key insight into
conditions that attenuate miRNA-126 levels.

Since stimulation of endothethelial cells withVEGF or TNFa has a minimal impact
on miRNA-126 expression [29, 53], HUVEC can be exposed to additional
pro-angiogenic cytokines such as TGFf3, FGF, IGF-1, angiopoietin-1 or -2 to
determine whether these stimuli modulate miRNA-126 levels.

2) Unravel signal transduction pathways associated with differen-
tial expression of angiogenic miRNAs in endothelial cells

It has been demonstrated that miRNA biogenesis can be regulated a) at the
level of transcription; b) during miRNA-processing; c) by altering stability; and
d) through activation of secondary signalling elements and downstream
transcription factors [54, 55]. Preliminary studies reveal that the stimulation of
endothelial cells with VEGF leads to a striking up regulation of several miRNAs
(miRNA-16, -155, the miRNA-cluster -17~92, Suarez et al, unpublished data) that
are implicated in the control of angiogenesis and/or endothelial cell proliferation
[53, 56, 57]. It would be, therefore, of high interest to determine on what level
pro-angiogenic miRNAs, including miRNAs, are regulated.

To determine if the observed increase of VEGF-induced miRNAs is the result
of transcriptional regulation, expression levels of primary miRNA transcripts can
be examined.

To assess to which degree miRNA expression is regulated at the level of
pre-existing primary transcript processing, proteins involved in this processing
(including Dicer, Ago2 and exportin5 [55]) can be silenced using a siRNA
approach. Upon this knock down endothelial cells can be stimulated and the
expression of the mature miRNA forms.

Treatment of endothelial cells with VEGF may influence the miRNA stability.
The generation of new miRNA transcripts can be arrested using actinomycin D.
Subsequently, endothelial cells can be treated withVEGF and the miRNA primary
transcript expression profile can be assessed.
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The contribution of the VEGF-regulated signalling pathway, as well as the
participation of downstream transcription factors to the regulation of miRNAs
can be tested. A siRNA approach for the identification of proteins that regulate
the expression of a miRNA of interest can be used to study the importance of
this aspect of miRNA-biogenesis.

The previous two objectives will discern the transcriptional and post-
transcriptional regulation of miRNAs in endothelial cells after stimulation
with VEGF. Finally it will be highly interesting to study the possible therapeutic
potential of angiogenic miRNAs.Therefore the determination of a functional role
ofattenuated miRNAs in angiogenesis can be tested by modulating their expression
levels in vitro as well as in vivo by means of treatment with either miRNA-
mimics or antisense oligonucleotides

Conclusively, identifying the mechanisms that regulate the expression of,among
others, the pro-angiogenic miRNA-126 could provide critical insight into the
role of this miRNA in regulating endothelial cell homeostasis and in particular,
the response to injury to the endothelium. Furthermore, the identification of
factors that trigger angiogenic miRNA expression could potentially lead to the
generation of novel therapeutic approaches to maintain a healthy endothelium.
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