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Chapter 1

Number rings and counting

problems

A number field is a field that is finite as a vector space over Q, the field of rational
numbers. The dimension of the vector space is called the degree of the number field.
A number ring is a domain such that the field of fractions is a number field. Most of
the time, we will only consider number rings that are finitely generated as a group.
Another term for a finitely generated number ring is order.

To an order, we can assign two integers that measure the size of the order. The
first is the rank, which is the degree of the field of fractions of the order. The second is
the discriminant, which measures the density of the elements. A larger discriminant
tells us that the elements are farther apart. We can see this most easily in imaginary
quadratic orders; for positive integers d, the order Z[

√
−d] has discriminant 4d, and

if we embed Z[
√
−d] into C, the area of the parallelogram (0,

√
−d, 1 +

√
−d, 1) is√

d. This parallelogram is called a fundamental domain of the order. We denote the
discriminant of an order R by ∆(R). Note that what we call the discriminant here
is the absolute value of the usual discriminant.

Once we know the rank and the discriminant, we have almost determined the
order; for every rank and discriminant there are only finitely many orders with that
rank and discriminant. This fact is essential when we want to count orders, but it
does not help with creating them.

A way we can obtain an order is to take a monic, irreducible polynomial f ∈ Z[X]
and divide out the ideal it generates. The resulting ring Z[X]/(f) has field of
fractions Q[X]/(f) and is therefore a number ring. It can be embedded into C
by fixing a root α ∈ C of f and taking the map

Z[X]/(f) → Z[α]

X 7→ α.

Orders of this type are called monogenic; we can generate them as Z-algebra by one
element. The rank of a monogenic order Z[α] ∼= Z[X]/(f) is equal to the degree of f ,
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and the discriminant of this order is equal to the absolute value of the discriminant
of f .

Not every order is monogenic, for example, the order Z[
√
−2,

√
−5] is not mono-

genic. However, in every order R we can find an element α such that Z[α] is close
to R, by which we mean that Z[α] has finite index in R. For R = Z[

√
−2,

√
−5] we

can take for example α =
√
−2 +

√
−5; the subring Z[α] ⊂ R has index 12.

In every number field we can order the suborders of that number field by inclu-
sion. Then there is a unique largest order, which contains all other orders. This
largest order is called the maximal order of that number field. Every order R has
finite index in the maximal order of the field of fractions of R. For the example

R = Z[
√
−2,

√
−5] the field of fractions is Q[

√
−2,

√
−5]. The element α =

√
−2+

√
10

2
satisfies α4 − 4α2 + 9 = 0 and is therefore an element of the maximal order. The

maximal order of Q[
√
−2,

√
−5] is in fact O = Z

[√
−2+

√
10

2 ,
√
−5

]
and R has index 2

in O.
When an order R is contained in a larger order R′ of the same rank, then its

discriminant ∆(R) is divisible by the discriminant ∆(R′) of the larger order. The
quotient is the square of the index of the R in R′.

More information on number rings and orders can be found in for example the
lecture notes ‘Number rings’ by Peter Stevenhagen [11].

Counting problems

Depending on the way we look at number rings, there are several basic questions
that arise.

For the construction that uses polynomials, a first natural question would be
whether constructing an order by picking a random polynomial is usable in practice.
For example, what is the probability that a random monic polynomial is irreducible?
We measure the probability that a polynomial of degree n has a certain property P
in the following way.

Let for every positive integer H the set Bn(H) consist of all monic polynomials
of degree n with coefficients that are at most H in absolute value. We define the
probability that a random monic polynomial of degree n has the property P to be

lim
H→∞

#{f ∈ Bn(H) : f has property P}
#Bn(H)

,

if that limit exists. A theorem by van der Waerden from 1934 states that for every
degree the probability that a monic polynomial is irreducible is 1, see [12].

Since each number field has a unique maximal order, a basic counting problem related
to number rings is the question how many number fields there are with discriminant
up to a given bound, where the discriminant of a number field is defined as the
discriminant of its maximal order.

For degree 2 there is classical result, which classifies the number fields by discrim-
inant. In 1969 and 1971, Davenport and Heilbronn published articles where they
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studied number fields of degree 3, see [6]. They gave a classification by providing a
bijection between the set of isomorphism classes of cubic number fields and the set
of certain classes of integral binary cubic forms. In 2005 Manjul Bhargava handled
the case of degree 4 by first counting ring structures and then sieving out all but
the maximal orders [2]. The theory in chapter 8 from the present thesis is used by
Bhargava for the sieving step for degree 5, see [3].

The ideal structure of a maximal order can be studied via the class group, denoted by
Cl(O). It is a finite abelian group that measures for a maximal order O the difference
between the group of fractional O-ideals and the group of principal fractional O-
ideals. For example, the order Z[i] is a principal ideal ring, and its class group is
therefore the trivial group.

The size of the class group is called the class number and is denoted by h(O). A
bound on the size of ideals, the Minkowski bound, proved by Hermann Minkowski
in 1889, can be used to bound the class number from above; for a maximal order O
of rank n and discriminant ∆, we can bound the class number by

h(O) ≤
(

2

π

)n/2

∆1/2 (n − 1 + log(∆1/2))n−1

(n − 1)!

This bound is shown in [7, theorem 6.5].
As an example, we look at maximal quadratic orders, that is, maximal orders

of rank 2. For a square-free integer d with d 6= 1, we split these orders into two
categories, the imaginary orders, where d < 0 and the real orders, where d > 0.

In the first case, there are nine orders that have class number 1 like Z[i]. It
has been shown that in general there are only finitely many maximal imaginary
quadratic orders with class number below a given bound. In fact, the class numbers
are close to the bound given above. For the real quadratic orders, the class numbers
in general are small. It is believed that there are an infinite number of maximal
orders whose class number is 1.

The difference between these two cases comes from the fact that imaginary
quadratic orders have only a finite number of units, but real quadratic orders have
an infinite number. If we want to give a reasonable lower bound on the size of the
class group we need to account for the units. This is done by making use of the
regulator R(O) of O. For a maximal real quadratic order O ⊂ Q(

√
d), the regulator

is log((x+ y
√

d)/2), where x+ y
√

d ∈ O is the smallest element under the condition
that x and y are positive integers which are a non-trivial solution to the Pellian
equation x2 − dy2 = ±4.

The product h(O)R(O) has a better behaviour than the two factors separately.
Upper and lowers bound for this product of class group and regulator are given by
the Brauer-Siegel theorem, which can be stated as follows. For a number field K
with maximal order OK , we define ǫK through the equation

hKRK = ∆(OK)1/2+ǫK when ∆(OK) 6= 1

ǫK = 0 when ∆(OK) = 1.
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Then for each degree n and each positive real number ǫ, there are only finitely many
number fields K of degree n such that |ǫK | > ǫ.

This bound is ineffective, but there is an effective upper bound similar to the
upper bound on the class number.

In this thesis we will discuss three counting problems that are related to the three
counting problems described above. The first provides a link between the description
of orders in terms of polynomials and the one in terms of maximal orders. The
second problem is counting suborders of maximal orders. In the last chapter we will
generalize the bounds from the Brauer-Siegel theorem to general orders.

Square-free discriminants

Recall that if two orders R and R′ have the same rank and satisfy the inclusion
R ⊂ R′, then their discriminants are related by ∆(R) = (R′ : R)2∆(R′).

Let f be a monic polynomial. When the discriminant of f is square-free it is
implied that the order Z[X]/(f) is a maximal order. In chapter 3, we will determine
a heuristic for the probability that a polynomial has a square-free discriminant and
for the probability that a polynomial f is such that Z[X]/(f) is a maximal order. It
turns out that these probabilities are not equal, so that, heuristically, the converse
of the implication fails with positive probability.

For degree 2, we can prove these heuristics. The following two theorems hold.
The first is proven in section 3.6; the second has a proof that goes similarly.

Theorem 1.1. The probability that a random monic polynomial in Z[X] of degree 2
has square-free discriminant is 4/π2.

Theorem 1.2. The probability that a for a random monic polynomial f ∈ Z[X] of
degree 2 the order Z[X]/(f) is maximal is 6/π2.

This chapter has been published in Experimental Mathematics in 2007 [1].

Suborders

The second counting problem covers several chapters. The main result is described
in chapter 5. We take a number field K and look at the orders that have K as field
of fractions. Each of those orders R is contained in the maximal order OK and the
index (OK : R) is finite. Furthermore, for every integer m the number of orders R
with index m can be bounded in terms of m and n, the degree of the number field K.

Let fK(m) be the number of orders R ⊂ OK with index m. For example, when
K has degree 2, then for every integer m the only subring of OK of index m is
Z + mOK . So in that case fK(m) is 1.

For number fields of degree 3, there exist a formula for the Dirichlet series ηK(s) =∑∞
m=1 fK(m)m−s in terms of the Riemann zeta function ζ(s) and the Dedekind zeta

function ζK(s) of K. It is

ηK(s) =
ζK(s)

ζK(2s)
ζ(2s)ζ(3s − 1),
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see [9, lemma 3.2]. By writing out the Euler factors and applying the following
proposition, which is proven in section 5.3, we obtain a bound on fK(m) that is
uniform in K.

Proposition 1.3. The following equality holds for all number fields K

lim sup
m→∞

log fK(m)

log m
= lim sup

pk→∞

log fK(pk)

k log p
,

where m ranges over the set of positive integers and pk over the set of prime powers.

The bound we obtain is that for every real ǫ > 0 there is a constant c1(ǫ) such that
for all number fields K of degree 3 and all integers m we can bound

fK(m) ≤ c1(ǫ)m
1/3+ǫ.

Furthermore, for each number field K of degree 3 there exist infinitely many m such
that fK(m) ≥ m1/3−ǫ holds as well.

For degree 4, Jin Nakagawa provides a similar, but more involved formula for
ηK(s) in [8]. His results do not cover all cases, but they seem to indicate that we
have, similarly to the degree 3 case, that for every real ǫ > 0 there is a constant c2(ǫ)
such that for all number fields K of degree 4 and all integers m we can bound

fK(m) ≤ c2(ǫ)m
1/2+ǫ.

For each number field K of degree 4 there exist infinitely many m such that fK(m) ≥
m1/2−ǫ holds as well.

For degree 5 and higher there are no formulas known for ηK(s). In chapter 5, we
will study the following function

F (n) = lim sup
m→∞

log(maxK{#R ⊂ OK : R is a suborder of index m})
log m

,

where K ranges over the collection of number fields of degree n. We saw that
F (2) = 0 and F (3) = 1/3, and F (4) is probably equal to 1/2.

We will give explicit upper and lower bounds for F (n). For example, we will
show that F (5) lies between 2/3 and 20/11. The bounds we prove for F (n) are not
very sharp. They show that F (3) = 1/3, but the value for F (4) already has a gap,
it lies somewhere between 1/2 and 1. For large n, they do have the same behaviour,
in the sense that the upper and lower bound for F (n) turn out to be both linear
in n.

Hall polynomials, first used by Ernst Steinitz in 1901, but named after Philip Hall
who redefined them in 1959, count the number of subgroups of finite abelian groups.
This theory can be used to give an upper bound on the number of subgroups of
maximal orders as well. The bound on F (n) this gives is already quite reasonable
and will be the basis of the theory.

The lower bound follows from the following lemma, which is proven in section 5.1.
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Lemma 1.4. Every additive subgroup G of OK that satisfies Z + m2OK ⊂ G ⊂
Z + mOK for some integer m is a subring.

To improve the upper bound, we consider the cotype of the order R, that is, the
isomorphism type of the finite abelian group OK/R. For cocyclic subrings, that is,
subrings such that the cotype is a cyclic group, we use the following theorem, which
is proven in chapter 4.

Theorem 1.5. Let K be a number field of degree n and let OK be its maximal order.
Let pe > 1 be a prime power and define the set W to be the set of subrings R ⊂ OK

with OK/R ∼= Z/peZ as groups, which is a set of certain cocyclic subrings. Let V be
the set of OK-ideals I with OK/I ∼= (Z/peZ)2 as groups. Then the maps

f : W → V

R 7→ {x ∈ OK : xOK ⊂ R}
and

g : V → W

I 7→ Z + I

are well-defined and each others two-sided inverse.
Furthermore, the set V satisfies #V ≤

(
n
2

)
.

We generalize the notion of cocyclic to round rings. These are subrings such that
the cotype is of the form (Z/peZ)d for some integers e and d. The cocyclic rings are
the round rings with d = 1.

For d ≥ 2, we can also give bounds for the number of round rings. The reason
this works is that these round rings have more structure. For example, we have the
following theorem from chapter 6.

Theorem 1.6. Let p be a prime, n, d and e ≥ 2 be integers and Z be the ring Z/peZ.
Let A be a commutative Z-algebra such that A ∼= Zn as Z-module and suppose A is
an artinian principal ideal ring. Let B ⊂ A be a sub-Z-algebra such that A/B ∼= Zd

as Z-module. Then B is an artinian principal ideal ring.

The condition e ≥ 2 in this theorem cannot be omitted. For e = 1 we use the
following, weaker result, which is proven in section 7.3.

Definition 1.7. Let A be a ring. A subring B of A is called maximal if there are
precisely two rings B′ with B ⊂ B′ ⊂ A, namely B′ = B and B′ = A.

Proposition 1.8. Let p be a prime and A be a commutative principal ideal ring of
characteristic p, that is, a commutative principal ideal Fp-algebra, of finite dimen-
sion n as Fp-module. Then the number of maximal subrings of A is at most

(
n
2

)
.

The other, non-round, subrings can sometimes be rounded to round subrings,
and this provides us with a new upper bound for the number of subrings of certain
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cotypes. This rounding map is described and studied in section 5.5. Combining all
the roundings gives the upper bound for F (n).

Finally, in chapter 8 we take a closer look at suborders of number fields of de-
gree 5. We prove the following bound, which is used by Manjul Bhargava to count
the number of number fields of degree 5, see [3]. It plays the same role as the the-
orem by Jin Nakagawa does for degree 4, namely that it can be used to sieve the
maximal orders from all orders.

Theorem 1.9. Define for a number field K and integer m the number

fK(m) = #{R ⊂ OK : R is a subring of index (OK : R) = m}.

Then there is a constant c3 such that for every number field K of degree 5 and every
prime p we can bound

∞∑

k=1

fK

(
pk

)
/p2k ≤ c3

p2
.

Class semigroups

For a maximal order OK in a number field K, we define the group Frac(OK) to be the
semigroup of finitely generated fractional OK-ideals with ideal multiplication as op-
eration. Since OK is a maximal order, every fractional OK-ideal is invertible. Hence
this semigroup is in fact a group. The subgroup PFrac(OK) of principal fractional
OK-ideals has finite index. The quotient group Cl(OK) = Frac(OK)/PFrac(OK) is
called the class group or Picard group of OK .

In chapter 9 we will generalize this notion of class group to general, not neces-
sarily maximal, orders and prove bounds similar to the bounds from Minkowski and
Brauer-Siegel. Since for general orders not every fractional ideal is invertible, we
can generalize the class group in two ways. For an order A, we let Frac(A) be the
semigroup of fractional A-ideals, Inv(A) the group of invertible fractional A-ideals
and PFrac(A) the subgroup of principal fractional A-ideals. We define the Picard
group of A to be

Pic(A) = Inv(A)/PFrac(A)

and the class semigroup of A is

Cl(A) = Frac(A)/PFrac(A).

Note the the first quotient is dividing out a subgroup, while the quotient in the
second formula is dividing out by the action of PFrac(A) on Frac(A).

The upper bound from the Brauer-Siegel theorem has been generalized for the
Picard group by Jonathan Sands in 1991 [10]. The upper bound he gives is effective.

We prove upper and lower bounds on the size of the Picard group and class
semigroup of an order A by relating them to the class group of the maximal order OK ,
where K is the field of fractions of A. The difference can be expressed in terms of the
normalization kernel of A. This is the finite subsemigroup SA of Frac(A) consisting

13



of the fractional A-ideals I that satisfy IOK = OK . In other words, it is the kernel
of the normalization map

Frac(A) → Frac(OK)

I 7→ IOK .

This normalization kernel has been described by Dade-Taussky and Zassenhaus
in [5].

For example, let K be a number field and let n be its degree. Let p be an
inert prime and define the order A = Z + pOK in K. The set SA consists of all
fractional A-ideals I that satisfy IOK = OK . This implies that every I ∈ SA

satisfies pOK ( I ⊂ OK . On the other hand, for this A every subgroup N ⊂ OK

with pOK ( N is a fractional A-ideal and since pOK is a maximal OK-ideal, such a
subgroup also satisfies NOK = OK . So SA consists of all subgroups N ⊂ OK that
satisfy pOK ( N .

By providing bounds on the normalization kernel, we can use the known bounds for
the class group of OK to give bounds on the Picard group and class semigroup of A.
We can, for example, bound the class semigroup in the following way.

Theorem 1.10. For all integers n and real numbers ǫ > 0, there exist constants
c4(n, ǫ) such that for all orders A of rank n we can bound

#Cl(A) ≤ c4(n, ǫ)∆(OK)1/2+ǫm2n,

where K is the field of fractions of A and m is the index of A in OK .

Another example of a bound we will prove is the following theorem. It is the
Brauer-Siegel theorem for the Picard group of general orders.

Theorem 1.11. For all integers n and real numbers ǫ > 0, there exist constants
c5(n, ǫ) > 0 and c6(n, ǫ) such that for all orders A of rank n we can bound

#Pic(A) · R(A)

w(A)
≥ c5(n, ǫ)∆(A)1/2−ǫ

and

#Pic(A) · R(A)

w(A)
≤ c6(n, ǫ)∆(A)1/2+ǫ,

where K is the field of fractions, R(A) the regulator and w(A) the number of roots
of unity of A and m is the index of A in OK .

The upper bound of this theorem also follows immediately from the bound proven
by Sands.

Since the proofs of the bounds in chapter 9 use the Brauer-Siegel theorem, they
are ineffective. The upper bounds can be made effective by using the effective upper
bounds for maximal orders.
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Chapter 2

Conventions and notations

In this chapter we introduce some notation and standard notions that are used
throughout the rest of the chapters.

Number fields

A number field K is a finite field extension of Q, the field of rationals. We denote
the degree of K by deg(K) and the integral closure of Z in K by OK .

p-adic numbers

For a prime number p we denote the ring of p-adic integers by Zp and the ring of
p-adic rationals by Qp.

Finite étale algebras

For a field L, a finite étale L-algebra E is a finite product
∏

i Ei of finite separable
field extensions Ei of L. The degree of E is its dimension over L; we denote the degree
of E by deg(E). We will in particular be interested in finite étale Qp-algebras.

For a finite étale Qp-algebra E we denote by OE the integral closure of Zp in E.

Order notation

Let V and X be collections, and f1 : V → R, f2 : V → X and f3 : V → R≥0 maps.
By f1 = Of2

(f3) we mean that for every x ∈ X there exists c(x) ∈ R≥0 such that
for all v ∈ V with f2(v) = x we have |f1(v)| ≤ c(x)f3(v).

Similarly, let V and X be collections, f1 : V → R, f2 : V → X and f3 : V → R≥1

maps and α ∈ R a constant. By f1 ≤ f
α+of2

(1)
3 we mean that for each x ∈ X and

each ǫ ∈ R>0 there is a constant c(x, ǫ) such that for all v ∈ V with f2(v) = x we

have |f1(v)| ≤ c(f2(v), ǫ)(f3(v))α+ǫ. Similarly, by f1 ≥ f
α+of2

(1)
3 we mean that for

each x ∈ X and each ǫ ∈ R>0 there is a constant c(x, ǫ) > 0 such that for all v ∈ V
with f2(v) = x we have |f1(v)| ≥ c(f2(v), ǫ)(f3(v))α−ǫ.

By f1 = f
α+of2

(1)
3 we mean that both f1 ≤ f

α+of2
(1)

3 and f1 ≥ f
α+of2

(1)
3 are

satisfied.
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We usually will not explicitly name the collections and the maps. They should
be clear to the reader from the context they are in. For example, one of the results
of chapter 7 is stated as follows.

Let E be a finite étale Qp-algebra and let n be its degree. For integers e ≥ 1 and
1 ≤ d ≤ n − 1, let We,d(E) be the set

{
R ⊂ OE : R is a sub-Zp-algebra with OE/R ∼= (Z/peZ)d as groups

}
.

Define for positive integers n the constants c10(n, 1) = 0 and c10(n, 2) = 1. Fur-
thermore, define for integers n and d with 3 ≤ d ≤ n − 1 the constant c10(n, d) =
(d − 1)(n − d − 1). Then we can bound

#We,d(E) = On

(
pc10(n,d)

)
,

where p ranges over the set of primes, E over the collection of finite étale Qp-
algebras, e over the set of positive integers, d over {1, . . . ,deg(E)− 1}, and n is the
degree of E.

For this example the set V consists of the quadruples (p,E, d, e), where p ranges
over the set of primes, E over the collection of finite étale Qp-algebras, e over the
set of positive integers and d ranges over {1, . . . ,deg(E) − 1}. The set X is the set
of integers, and the maps are

f1 : V → R

(p,E, d, e) 7→ #We,d(E),

f2 : V → X

(p,E, d, e) 7→ deg(E)

and

f3 : V → R≥0

(p,E, d, e) 7→ pc10(deg(E),d).

Tensors

We denote the tensor product over a commutative ring R of R-modules M and N
by M ⊗R N .

Index

For groups M and subgroups N ⊂ M , we write (M : N) for the index of N in M .

Minimal polynomial

Let R be a commutative ring, A a commutative R-algebra and a ∈ A an element.
A polynomial g ∈ R[X] is called the minimal polynomial of a over R if g is monic
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and there is an isomorphism

R[X]/(g) → R[a]

X 7→ a

of R-algebras.

Semigroups

A set H together with an operation · : H × H → H such that · is associative and
commutative, and H contains a unit element with respect to this operation, is called
a semigroup.

A morphism φ : H1 → H2 of semigroups is a map that sends the unit element
of H1 to the unit element of H2 and respects the operation.

For a semigroup H, we define H∗ to be the group of invertible elements, that
is, the elements h ∈ H such that there exists h′ ∈ H with h · h′ equal to the unit
element.

Fractional ideals

Let A be a domain with field of fractions K. A fractional A-ideal is a non-zero
finitely generated A-module I with I ⊂ K. Two fractional ideals I and J can be
multiplied; the result is the fractional ideal I · J generated by the products ij of
elements i ∈ I and j ∈ J . We can restrict the generating set of I · J to products of
generators of I and J . Hence I ·J is also finitely generated. With this multiplication,
the set Frac(A) of fractional A-ideals becomes a semigroup.

We denote the group of invertible fractional ideals Frac(A)∗ by Inv(A). The
principal fractional ideals, that is, the fractional ideals generated by a single element
of K∗, form a subgroup of the group of invertible fractional ideals. We denote the
group of principal fractional ideals by PFrac(A).
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Chapter 3

Equality of polynomial and

field discriminants

This chapter has been published as: Avner Ash, Jos Brakenhoff, and Theodore
Zarrabi, “Equality of polynomial and field discriminants”, Experimental mathemat-
ics, volume 16, number 3 (2007), 367–374. Some minor corrections have been made.

Abstract. We give a conjecture concerning when the discriminant of an irreducible
monic integral polynomial equals the discriminant of the field defined by adjoining
one of its roots to Q. We discuss computational evidence for it. An appendix by the
second author gives a conjecture concerning when the discriminant of an irreducible
monic integral polynomial is square-free and some computational evidence for it.

3.1 Introduction

This paper arose out of a search for S5-extensions of Q with small discriminant,
performed by the first and third authors. Using PARI, they made lists of irreducible
monic integral quintic polynomials f and computed both the polynomial discrim-
inant Dpol(f) and the absolute discriminant of the splitting field Dfield(f). They
noticed that these two discriminants were equal far more often than expected.

Call an irreducible monic integral polynomial f essential if Dpol(f) = Dfield(f).
It is well known that this implies that the ring of integers of the splitting field of f
is monogenic.

In reply to an inquiry, Hendrik Lenstra suggested the following:

Conjecture 3.1. Let n ≥ 2. The probability that a random irreducible monic
integral polynomial of degree n and height ≤ X is essential should tend to 6/π2 as
X → ∞.

For any irreducible monic integral polynomial f , Dpol(f)/Dfield(f) is a square in-
teger. Hence, f is essential if Dpol(f) is square-free. However, this square-freeness
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does not account for 100% of essential polynomials, probabilistically speaking.

In section 3.3, we present a heuristic argument for conjecture 3.1, due to Lenstra
who kindly communicated it to us via email in October 2004. In section 3.4, we
ask when does a random polynomial have square-free discriminant? A conjecture
of Bjorn Poonen suggests that for a fixed degree, there should be an asymptotic
probability for this. In the appendix (section 3.6), the second author gives a precise
conjecture for the value of this probability. Unlike conjecture 3.1, this probability
depends on the degree of the polynomial.

In section 3.5 and the appendix we present our experimental evidence, gathered
using PARI and Magma, where we studied polynomials whose degrees ranged from 2
to 10. This evidence supports our conjectures.

3.2 Probability

In this paper we deal with two kinds of probability that are easily related. First, let
n,N be positive integers and let Z/NZ[x]n denote the set of all monic polynomials
in Z/NZ[x] of degree n.

Suppose Q(f) is a predicate of a monic polynomial f of degree n in Z/NZ[x].
For example, Q might be the property that f is irreducible.

Define the probability that f possesses Q to be

#{f ∈ Z/NZ[x]n | f has Q}
#Z/NZ[x]n

.

Now let R(T ) be a predicate of an irreducible monic polynomial T of degree n
in Z[x]. Define the height h(T ) to be the maximum of the absolute value of the
coefficients of T . Let Bn(X) be the set of all monic, irreducible T of degree n with
h(T ) ≤ X. Then we define the probability that T has R to be

lim
X→∞

#{T ∈ Bn(X) | T has R}
#Bn(X)

.

We make a similar definition for all polynomials (not necessarily irreducible) in a
similar way.

We have the following lemma:

Lemma 3.2. Let n,N be positive integers and Q,R predicates as above. Suppose
R(T ) = Q(T mod N). Then the probability that T mod N has Q equals the proba-
bility that T has R.

Proof. Easy, given the fact that the probability that a monic integral polynomial of
degree n is irreducible equals 1 [7].
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3.3 Lenstra’s heuristic argument

Let p be a prime number, K a number field and A a sublattice of finite index of the
ring of integers OK of K. We say that A is p-maximal if p does not divide the index
of A in OK .

Let T ∈ Z[x] be a monic, irreducible polynomial with root θ and K = Q[θ]. It is
well known that the polynomial discriminant of T equals the field discriminant of K
if and only if Z[θ] is p-maximal for every prime p. (See for example [3, proposition 16
and remark 1, section 3.3].) We call such a T essential. Of course, if T is essential,
OK is monogenic, that is, OK is generated as a ring over Z by a single element.

We wish to determine the probability (as defined in section 3.2) that an irre-
ducible, monic T of degree n, is essential. Obviously, if n = 1 this probability
is 1. It will turn out that for n ≥ 2, the probability we conjecture is independent
of n. Start with Dedekind’s criterion, as found, for example, in [1, section 6.1.2], as
part (2) of theorem 6.1.4.

Denote reduction modulo p by an overbar.

Lemma 3.3 (Dedekind’s criterion). Let T ∈ Z[x] be a monic, irreducible polynomial
with root θ and K = Q[θ]. Let p be a prime number. Let

T̄ =
∏

t̄ei
i

be the factorization of T̄ into monic irreducible polynomials in Fp[x], where the
ti ∈ Z[x] are arbitrary monic lifts of the t̄i. Let

g =
∏

ti, h =
∏

tei−1
i ,

so that h ∈ Z[x] is a monic lift of T̄ /ḡ. Set f = (gh − T )/p ∈ Z[x]. Then Z[θ] is
p-maximal if and only if

(f̄ , ḡ, h̄) = 1

in Fp[x].

From this we can derive the following corollary:

Corollary 3.4. With notation as above, Z[θ] is p-maximal if and only if (⋆) there
does not exist a monic polynomial u ∈ Z[x] such that ū is irreducible in Fp[x] and
T ∈ (p2, pu, u2) ⊂ Z[x].

Proof. First suppose that Z[θ] is not p-maximal. Then f̄ , ḡ, h̄ have a common factor,
which without loss of generality is t̄1. Therefore e1 > 1. Set u = t1. Then T =
gh − pf =

∏
tei
i − pf . Since ū divides f̄ , we have au = f + pb for some integral

polynomials a, b. Hence pf ∈ (p2, pu) and T ∈ (p2, pu, u2) . Conversely, let u be as
in the statement of the corollary. Then T̄ ∈ (ū2). Without loss of generality, u = t1
and e1 > 1. Then ū divides ḡ and h̄. Now there are integral polynomials a, b, c such
that T = p2a + pub + u2c. Therefore, f = (gh− T )/p = −pa− ub + u2

(
g
u

h
u − c

)
/p.

By Gauss’s lemma, p must divide
(

g
u

h
u − c

)
. It follows that ū also divides f̄ .
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Continuing with the heuristic, we note that the probability that a monic integral
polynomial T satisfies (⋆) is independent of whether T is irreducible. This is because
the probability that T is irreducible is 1 [7]. We can then compute that probability
as follows: First note that (⋆) depends on T only modulo p2. Let R = (Z/p2Z)[x].
For each positive integer i, let Ri denote the set of polynomials in R of degree ≤ i
and let R monic

i be the subset of monic polynomials of degree i. For any g ∈ R
denote by Ig the ideal (g2, pg), Ig,n = Ig ∩ Rn, and I monic

g,n = Ig ∩ R monic
n . Note

that each of these sets depends only on ḡ.

Lemma 3.5. Let g, h be monic polynomials in R of degrees d, e respectively such
that ḡ and h̄ are both square-free and relatively prime. Then Ig,n ∩ Ih,n = Igh,n.

Proof. If f ∈ Ig,n∩Ih,n then f = ag2+pbg and f = Ah2+pBh for some polynomials

a, b, A,B. Then f̄ = āḡ2 = Āh̄2, and hence equal to C̄(gh)
2

for some polynomial C.
Therefore f − C(gh)2 = pk for some polynomial k. Then

k =
ag2 + pbg − Cg2h2

p
=

(a − Ch2)g2

p
+ bg.

Since g is monic, this implies that p divides a − Ch2 and thus that k̄ is divisible
by ḡ. Similarly, k̄ is divisible by h̄. It follows that f = C(gh)2 + pD(gh) for some
polynomial D, and so f ∈ Igh,n. The converse is obvious.

Proposition 3.6. Let g1, . . . , gk be monic polynomials in R such that the ḡi are
all irreducible and distinct. Let d be the sum of their degrees. Let f ∈ R monic

n be
randomly chosen. Then the probability P (g1, . . . , gk) that f ∈ I monic

g1,n ∩· · ·∩I monic
gk,n

is 0 if 2d > n and p−3d otherwise.

Proof. Let g = g1 · · · gk. Then I monic
g1,n ∩· · ·∩I monic

gk,n = Ig1,n∩· · ·∩Igk,n∩R monic
n =

I monic
g,n since by lemma 3.5 we have that Ig1,n ∩ · · · ∩ Igk,n = Ig,n.

We must show that the cardinality of I monic
g,n is 0 if 2d > n and p2n−3d otherwise.

If f = ag2 + pbg for some a, b, since f and g are monic, looking modulo p we see
that 2d ≤ n. So we may assume from now on that 2d ≤ n.

Define a map of sets

φ : R̄ monic
n−2d × R̄n−d−1 → I monic

g,n

as follows: For each α ∈ R̄ monic
n−2d fix a lift a(α) ∈ R monic

n−2d and for each β ∈ R̄n−d−1

fix a lift b(β) ∈ Rn−d−1. Set φ(α, β) = a(α)g2 + pb(β)g. We will show that φ is
bijective.

1. φ is injective: If a(α)g2 +pb(β)g = a(α′)g2 +pb(β′)g then ā(α) = ā(α′), which
means α = α′. Then pb(β)g = pb(β′)g so b(β)g = b(β′)g + pk for some polynomial
k and hence b̄(β) = b̄(β′), which means β = β′.

2. φ is surjective: Let f = ag2 + pbg for some a, b, where f is monic. Since ā
must be monic of degree n − 2d, we may write a = a′ + pb′, where a′ is itself monic
of degree n− 2d. By adding b′g to b we may thus assume that a is already monic of
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degree n − 2d and (since we can add p times any polynomial we like to b) that the
degree of b is n − d or less.

Let b∗ be the coefficient of xn−d in b. Then f = ag2 +pb∗xn−dg+p(b−b∗xn−d)g.
Now p(b − b∗xn−d)g has degree less than n, so that ag2 + pb∗xn−dg must be monic
of degree n. Then ā is monic of degree n− 2d, so that a = a(α)+ pk for some α and
some polynomial k of degree n − 2d or less. Therefore f = a(α)g2 + p(b + kg)g.

Since f, g, a(α) are all monic, the coefficient of xn−d in b + kg (which has degree
n − d or less) must be divisible by p. Therefore (b + kg) = β for some β in R̄n−d−1

and p(b + kg) = pb(β). Therefore f = a(α)g2 + pb(β)g is in the image of φ. It now
follows easily that P (g1, . . . , gk) = p−3d if 2d ≤ n.

Proposition 3.7. Let Pn denote the probability that an element of R monic
n is not

in Ig,n for any g ∈ R such that ḡ is irreducible. Then if n ≥ 2, Pn = 1 − p−2.

Proof. Let H(t) =
∑

n≥0 Pntn. To evaluate this using our previous results, consider

K(t) = (1 − t)−1
∏

γ

(
1 − t2d(γ)

p3d(γ)

)
,

where the product runs over all irreducible monic γ in R̄ and d(γ) denotes the degree
of γ. The coefficient of tn in K(t) is

∑

k≥0

∑

γ1,...,γk

(−1)kp−3d,

where the inner sum runs over k-tuples of γ’s such that 2d = 2d(γ1)+· · ·+2d(γk) ≤ n.

By proposition 3.6, using the usual inclusion-exclusion rule for independent
events, we see that the double sum equals Pn. So H(t) = K(t).

On the other hand let Z(u) = 1
1−pu be the zeta function of Y = Spec Fp[x].

Defining s by the equation u = p−s, the Euler product for the zeta function gives

Z(u) =
∏

y

(1 − N(y)−s)−1,

where the product is taken over all the closed points y of Y . If y corresponds to the
irreducible polynomial γ of degree d(γ), its norm is given by N(y) = pd(γ). Thus

Z(u) =
∏

γ

(
1 − p−d(γ)s

)−1

=
∏

γ

(
1 − ud(γ)

)−1

.

Hence as formal power series, we have

1 − pu =
∏

γ

(
1 − ud(γ)

)
.
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Setting u = t2/p3 we obtain

1 − t2

p2
=

∏

γ

(
1 − t2d(γ)

p3d(γ)

)
.

Thus

H(t) = (1 − t)−1

(
1 − t2

p2

)

and the coefficient Pn of tn is 1 − p−2 if n ≥ 2.

Finally, we assume that the probabilities that Z[θ] is p-maximal, for varying p’s,
are independent. Applying this assumption to corollary 3.4 and proposition 3.7, we
obtain our conjecture 3.1 which we can restate as follows:

Conjecture. The probability that an irreducible monic integral polynomial T of
degree n ≥ 2 with root θ has its polynomial discriminant equal to the discriminant
of the number field Q(θ) exists and equals

∏
p(1 − p−2) = 6/π2.

3.4 Squarefreeness of polynomial discriminants

It might be thought that the reason conjecture 3.1 should be true is that almost all
polynomials might have square-free discriminant, since the probability that a random
integer is square-free is known to be 6/π2. For if the irreducible, monic, integral
polynomial T (x) has discriminant D(T ) and the field discriminant of Q[x]/(T ) is D,
then it is well-known that D(T )/D is an integral square. (See, for example, [3,
section 3.3].)

Section 3.6 presents a conjecture and numerical evidence for the value of the
probability that a random polynomial of fixed degree has square-free discriminant.
This result denies the “thought” of the previous paragraph.

We remark that the existence of such a probability is consistent with general
results of Bjorn Poonen, where the abc conjecture implies that there is a well-defined
density Pn for the set of integral, monic polynomials T of fixed degree n with square-
free discriminant. The formula for the density is given by [6, theorem 3.2], applied
to the discriminant viewed as a polynomial in the coefficients of T . Of course, there
is no easy way to evaluate Poonen’s formula directly.

3.5 Experimental evidence

The data in table 3a were generated (using PARI) from random samples of one
million polynomials per degree, chosen uniformly from a box of prescribed coefficient
height 10,000. The polynomials were first checked for reducibility and then the
irreducible polynomials had their field and polynomial discriminants compared.
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The last column shows the experimental value minus the expected value 6/π2 ≈
0.6079271 divided by the standard deviation. (The standard deviation σ is computed
in the usual way for a binomial distribution with N trials assuming p = 6/π2. That
is, σ =

√
p(1 − p)/N , which in our case is ≈ 0.00049.)

Degree Percent coincidence Error/standard deviation

2 0.608356 0.8797
3 0.608551 1.2777
4 0.607761 −0.3391
5 0.607229 −1.4289
6 0.607297 −1.2908
7 0.607995 0.0443

Table 3a

3.6 Appendix – square-free discriminants

Let p be a prime and let I be the set of monic irreducible elements of Z/pZ[X]. If
f ∈ Zp[X] is a monic polynomial, then we can write f mod p =

∏
g∈I geg . Using

Hensel’s lemma [8, 2.2.1] we can write f =
∏

g∈I fg, where fg ∈ Zp[X] is monic and
satisfies fg = geg mod p. Recall that we let Dpol denote the polynomial discriminant
and we denote reduction modulo p by an overbar.

Denote by R(f, g) the resultant of f and g.

Lemma 3.8. Let f, g ∈ Zp[X], with f monic. If gcd(f̄ , ḡ) = 1, then ordpR(f, g) = 0.

Proof. Write f̄ = (X − t1) · . . . · (X − tn), with the ti in some algebraic closure of Fp.
From the proof of [4, section IV.8, proposition 8.3] we have R(f̄ , ḡ) =

∏n
i=1 ḡ(ti).

Now p | R(f, g) if and only if R(f̄ , ḡ) = 0, so ḡ(ti) = 0 for some ti, that is, if ti is a
zero of ḡ.

Corollary 3.9. Let f, g ∈ Zp[X] be monic. If gcd(f̄ , ḡ) = 1, then ordp(Dpol)(fg)) =
ordp(Dpol)(f)) + ordp(Dpol(g)).

Proof. This follows from Dpol(fg) = Dpol(f)Dpol(g)R(f, g)2 and lemma 3.8.

Corollary 3.10. Let f ∈ Zp[X] be monic. If f̄ is irreducible, then ordp(Dpol(f)) = 0.

Proof. This follows from using lemma 3.8 with g = f ′ and [4, section IV.8, proposi-
tion 8.5].
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Proposition 3.11. Let Pn,0 denote the probability that a monic polynomial f ∈
Zp[X] of degree n satisfies ordpDpol(f) = 0. If n ≤ 1, then Pn,0 = 1 and if n ≥ 2,
then Pn,0 = 1 − p−1.

Proof. Let H(t) =
∑

n≥0 Pn,0t
n. From lemma 3.8 and its corollaries, we see that

whether the polynomial f satisfies ordpDpol(f) = 0 depends only on f modulo p.
We have ordpDpol(f) = 0 if and only if for all g ∈ I we have eg = 0 or 1, that is, if
and only if f̄ is square-free.

Denote by M the set of monic polynomials in Z/pZ[X]. From unique factoriza-
tion in Z/pZ[X] we have the following formula.

∑

f∈M

udeg f =
∏

g∈I

∑

k≥0

uk deg g

Taking square-free parts left and right and replacing u by t/p, we obtain

H(t) =
∏

g∈I

(
1 +

(
t

p

)deg g
)

.

Now,

1

1 − t
=

∑
tn =

∏

g

∑

i≥0

(
t

p

)i deg g

=
∏

g

1

1 −
(

t
p

)deg g
=

∏

g

1 +
(

t
p

)deg g

1 −
(

t2

p2

)deg g

= H(t)
1

1 − t2

p

.

So H(t) = (1 − t)−1
(
1 − t2

p

)
. The coefficient Pn,0 of tn is 1 if n ≤ 1 and 1 − p−1

otherwise.

Lemma 3.12. Let R be a ring and r ∈ R[X] be a monic polynomial. Denote by
Ω(R[X]/(r))/R the module of Kähler differentials of R[X]/r over R. Then we have an
isomorphism Ω(R[X]/r)/R

∼= R[X]/(r, r′).

Proof. Follows from [5, section 10.26]

Write l(L) for the length of a finite-length Zp-module L, and set e(ψ,L) = l(cok(ψ))−
l(ker(ψ)) for a Zp-module endomorphism ψ : L → L.

Lemma 3.13. Let f ∈ Zp[X] be monic and h ∈ I. Then ordpDpol(fh) ≥ (eh − 1) ·
deg h. If also p | eh, then ordpDpol(fh) ≥ eh deg h.
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Proof. Let

φ : Zp[X]/fh → Zp[X]/fh

x 7→ f ′
hx

be multiplication by f ′
h. Then cok(φ) = Zp[X]/(fh, f ′

h) = Ω(Zp[X]/fh)/Zp
(lem-

ma 3.12).
From [2, lemma A.2.6] we get that e(φ, Zp[X]/fh) = e(det(φ), Zp) and from [2,

example A.2.1] we get det(φ) = R(fh, f ′
h) = Dpol(fh). We have

pordpDpol(fh) = pe(det(φ),Zp) ≥ #Ω(Zp[X]/fh)/Zp
.

The map

Ω(Zp[X]/(fh))/Zp
→ Ω(Fp[X]/(fh))/Fp

dg 7→ dḡ

is surjective, so

#Ω(Zp[X]/fh)/Zp
≥ #Ω(Fp[X]/(fh))/Fp

= #Fp[X]/(fh, f ′
h)

=

{
#Fp[X]/(heh) = peh deg(h) if p | eh

#Fp[X]/(heh−1) = p(eh−1) deg(h) otherwise,

which completes the proof.

Proposition 3.14. A monic polynomial f ∈ Zp[X] satisfies ordpDpol(f) = 1 if and
only if the following conditions are met:

1. p 6= 2;

2. there is a unique h ∈ I for which eh ≥ 2;

3. for this h we have deg h = 1 and eh = 2;

4. if h = X − α̃, and α is any lift of α̃ to Zp, then fh(α) 6≡ 0 mod p2.

Proof. Let I ′ be the set of all g ∈ I with eg ≥ 2.
From lemma 3.8, its corollaries and lemma 3.13, we see that

ordp(Dpol(f)) =
∑

g∈I′

ordp(Dpol(fg)) ≥
∑

g∈I′

(eg − 1) deg g.

This can equal 1 only if #I ′ = 1 and the only h ∈ I ′ satisfies deg h = 1 and eh = 2.
Furthermore, if p = 2, then ordp(Dpol(f)) ≥ eh deg h = 2. So p 6= 2.

If f satisfies conditions 1.–3., then there are b, c ∈ pZp such that fh = (X − α)2+
b(X−α)+c and ordp(Dpol(fh)) = ordp(b

2−4c), which is 1 if and only if ordp(c) = 1,
independently of the choice of the lift α.
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Theorem 3.15. Let Pn,1 denote the probability that a monic polynomial f ∈ Zp[X]
of degree n satisfies ordp(Dpol(f)) = 1. The following table gives Pn,1 for various n
and p.

p = 2 p 6= 2
n = 2 0 p−1 − p−2

n = 3 0 p−1 − 2p−2 + p−3

n ≥ 4 0 (p − 1)2(1 − (−p)−n+2)/(p2(p + 1))

Proof. From proposition 3.14 we see that whether f satisfies ordp(Dpol(f)) = 1
depends only on f modulo p2. So we have

Pn,1 =
1

p2n
#{f ∈ Z/p2Z[X] : f monic,deg f = n, ordp(Dpol(f)) = 1}.

If p = 2, then proposition 3.14 tells us that the discriminant being square-free is
the same as it being a unit, so Pn,1 = 0.

Now let p 6= 2 and let H(t) =
∑

n≥0 Pn,1t
n. Let N = {f ∈ Z/p2Z[X] : f monic}

and N ′ = {f ∈ N : ordp(Dpol(f)) = 1}. For h ∈ I linear, let

Nh = {f ∈ N : ordpDpol(fh) = 1},
Nh,1 = {f ∈ N : h2 = f̄ , f(α) 6= 0},
Nh,2 = {f ∈ N : ordpDpol(f) = 0, h ∤ f̄}.

Then N ′ =
⋃

h∈I,deg h=1 Nh and for all h we have a bijection

Nh → Nh,1 × Nh,2

f 7→ (fh, f/fh).

So we have the following generating function

∑

n≥0

Pn,1p
2nun =

∑

f∈N ′

udeg f =
∑

h∈I,deg h=1

∑

f∈Nh

udeg f

=
∑

h∈I,deg h=1







∑

f∈Nh,1

udeg f







∑

f∈Nh,2

udeg f







=
∑

h∈I,deg h=1

p (p − 1) u2
∏

g∈I,g 6=h

(
1 + (pu)

deg g
)

,

where we used proposition 3.14 and the proof of proposition 3.11 for the last step.
Setting u = t/p2, we obtain

H(t) =
∑

h∈I,degh=1

t2
(

p − 1

p3

) ∏

g∈I,g 6=h

(
1 +

(
t

p

)deg g
)

.
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By rewriting this formula and using proposition 3.11 we obtain

H(t) = pt2
(

p − 1

p3

)(
1 +

t

p

)−1 ∏

g∈I

(
1 +

(
t

p

)deg g
)

= t2
(

p − 1

p2

)(
1 +

t

p

)−1

(1 − t)−1

(
1 − t2

p

)

= t2
p − 1

p2(p + 1)

(
p − t2

1 − t
+

1 − t2

p

1 + t
p

)
,

and the coefficient of tn is given by

Pn,1 =





p−1
p2(p+1) (p + 1), n = 2,

p−1
p2(p+1) (p − 1

p ), n = 3,

p−1
p2(p+1) (p − 1 +

(
−1
p

)n−2

+
(

−1
p

)n−3

), n ≥ 4.

By combining proposition 3.11 and theorem 3.15, we obtain the probability that
ordpDpol(f) ≤ 1.

p = 2 p 6= 2
n = 2 1/2 1 − 1/p2

n = 3 1/2 1 − 2/p2 + 1/p3

n ≥ 4 1/2 (1 − 1/p) + (p−1)2(1−(−p)−n+2)
(p2(p+1))

If we assume that all these probabilities are independent, then we obtain a heuristic
for the probability that a polynomial f ∈ Z[X] has square-free discriminant, by
taking the product over all p.

For 2 ≤ n ≤ 7, table 3b gives approximations for the heuristic probability.
It is obtained by calculating the product for primes up to 1 million. It also gives
experimental values, which were obtained as the fraction of polynomials with square-
free discriminant out of a random set of 1 million polynomials of height at most
10,000. In the last column the experimental value is compared to the heuristic value
and then divided by the standard deviation.

For n = 2 we can calculate the heuristic probability exactly. It is

1

2

∏

p6=2

(
1 − 1

p2

)
=

2

3

∏

p

(
1 − 1

p2

)
=

4

π2
.

The following theorem proves that this value is in fact correct.

29



degree heuristic value experimental value error/standard deviation

2 0.4052847 0.404588 −1.4191
3 0.3425997 0.342442 −0.3323
4 0.2997226 0.299933 0.4593
5 0.3090905 0.309574 1.0463
6 0.3064416 0.305986 −0.9883
7 0.3072498 0.307041 −0.4526

Table 3b

Theorem 3.16. The probability that a random monic polynomial in Z[X] of degree 2
has square-free discriminant is 4/π2. More exactly,

#{(b, c) ∈ ([−x, x] × [−x, x]) ∩ (Z × Z) : Dpol(X
2 + bX + c) is square-free}

=
4

π2
(2x)2 + O(x7/4).

Proof. Write

P (x) = #{(b, c) ∈ ([−x, x] × [−x, x]) ∩ (Z × Z) : Dpol(X
2 + bX + c) is square-free}.

If b is even, then Dpol(X
2 +bX +c) = b2−4c = 0 mod 4, so we only need to consider

odd b. Since Dpol(X
2 + bX + c) is square-free if and only if Dpol(X

2 − bX + c) is
square-free, it suffices to count the case in which b > 0 twice. So we have

P (x) = 2#{(d, c) ∈ ([0, (x−1)/2]× [−x, x])∩ (Z×Z) : (2d + 1)2−4c is square-free}.

Now we can use inclusion-exclusion. Since |(2d + 1)2 − 4c| ≤ x2 + 4x < (x + 2)2, it
suffices to do the inclusion-exclusion up to x + 2. We already dealt with the even
n, so the inclusion-exclusion only needs to be done over the odd n. Let µ(n) denote
the Moebius function. Then we have

P (x) = 2

x+2∑

n=1, odd

µ(n)A(n),

where

A(n) = #{(d, c) ∈ ([0, (x − 1)/2] × [−x, x]) ∩ (Z × Z) : (2d + 1)2 − 4c = 0 mod n2}.

We split this sum into two parts,

Q1(x) = 2

x3/4∑

n=1, odd

µ(n)A(n)

and
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Q2(x) = 2

x+2∑

n=x3/4, odd

µ(n)A(n).

For the first part we observe that we have an element in the set only if c =
4−1(2d + 1)2 mod n2. So the number of c is

⌊
2x+1

n2

⌋
or this number plus 1. Then we

sum over all d to get

Q1(x) = 2
x3/4∑

n=1, odd

µ(n)

⌊
x + 1

2

⌋(
2x + 1

n2
+ B(n)

)
,

where |B(n)| ≤ 1. Now,
⌊

x+1
2

⌋ (
2x+1

n2

)
= x2

n2 + O(x). Furthermore,

x3/4∑

n=1, odd

|µ(n)

⌊
x + 1

2

⌋
B(n)| <

x3/4∑

n=1, odd

⌊
x + 1

2

⌋
= O(x7/4).

So

Q1(x) = 2
x3/4∑

n=1, odd

µ(n)
x2

n2
+ O(x7/4).

To count Q2(x), we observe that since (2d + 1)2 − 4c 6= 0, we need (2d + 1)2 ≥
n2 + 4c ≥ x6/4 − 4x, which can only happen if d ≥ 1

2x3/4 − x1/4 − 1. So when d is
large enough to get a solution, the difference between (2(d + 1) + 1)2 and (2d + 1)2

is at least 4x3/4 − 8x1/4, which is greater than x3/4, for x sufficiently large. Around
every multiple of n2, we have an interval of length 8x in which (2d + 1)2 must lie
for solutions to occur. The number of d that can lie in such an interval is at most
8x/x3/4 +1 = 8x1/4 +1 and the number of intervals is at most x2/n2 +1 ≤ x2/4 +1.
So per n, the number of solutions is at most 8x3/4 + O(x2/4). So

Q2(x) ≤ 2

x+2∑

n=x3/4, odd

(8x3/4 + O(x2/4)) < 16x7/4 + O(x6/4) = O(x7/4).

Now we have

P (x) = 2

x3/4∑

n=1, odd

µ(n)
x2

n2
+ O(x7/4).

We use that

∞∑

n=x3/4, odd

x2µ(n)/n2 ≤
∫ ∞

x3/4−1

x2/t2dt = x2/(x3/4 − 1) = O(x5/4)

to conclude that

P (x) = 2x2
∞∑

n=1, odd

µ(n)

n2
+ O(x7/4).
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Since

∞∑

n=1, even

µ(n)/n2 =

∞∑

m=1

µ(2m)/(2m)2 = −1

4

∞∑

m=1, odd

µ(m)/m2

and ∞∑

n=1

µ(n)/n2 = 6/π2,

we obtain

P (x) = 4x2 4

π2
+ O(x7/4),

and the proof is complete.
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Chapter 4

Cocyclic subrings

The next five chapters will all deal with subrings of commutative rings. This first
part will deal with cocyclic subrings. A commutative ring can be viewed as Z-
algebra; in that case the cocyclic subrings of a commutative ring A are subrings
R ⊂ A such that A/R ∼= Z/mZ as groups for some positive integer m. In this
chapter we will use a more general view. We will look at commutative Z-algebras A,
for some commutative ring Z. Then cocyclic subrings are sub-Z-algebras R ⊂ A
such that A/R ∼= Z/J as Z-modules for some Z-ideal J .

There is a link between these subrings and a certain class of A-ideals.

Theorem 4.1. Let Z be a commutative ring, J ⊂ Z an ideal and A a commutative
Z-algebra. Let W be the set of sub-Z-algebras R ⊂ A with A/R ∼= Z/J as Z-modules,
which is a set of certain cocyclic subrings. Let V be the set of A-ideals I with
A/I ∼= (Z/J)2 as Z-modules. Then the maps

f : W → V

R 7→ {x ∈ A : xA ⊂ R}
and

g : V → W

I 7→ Z + I

are well-defined and each others two-sided inverse.

We will prove this theorem in the next section. After the proof we will apply it to
the maximal order OB of a finite étale Qp-algebra B. For these rings we obtain an
upper bound on the number of cocyclic subrings in terms of the degree of B.

4.1 Cocyclic subrings and ideals

In this section we will prove theorem 4.1. To show the well-definedness of the map g
we will use the following lemma.
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Lemma 4.2. Let Z be a commutative ring and A a commutative quadratic Z-
algebra, that is, an algebra that is free of rank 2 as an Z-module. Then there exists
a basis of A over Z containing 1.

Proof. Let (a1, a2) be a basis for A. Write 1 = s1a1+s2a2 with s1, s2 ∈ Z. The ideal
(s1, s2) generated by s1 and s2 satisfies (s1, s2)A = A and therefore (s1, s2) = Z.
Hence, there exist t1, t2 ∈ Z such that the matrix

(
s1 s2

t1 t2

)

is invertible. So (1, t1a1 + t2a2) is a basis for A.

For a commutative ring T and a T -module M , we denote the annihilator of M in T
by AnnT (M).

Proof of theorem 4.1. First, we show the correctness of the maps. For every R ∈ W ,
the set f(R) = AnnR(A/R) is clearly an A-ideal. The isomorphism EndZ(A/R) ∼=
EndZ(Z/J) ∼= Z/J shows that the map

ψ : R → EndZ(A/R)

r 7→ (a 7→ ra)

is surjective. We obtain the short exact sequence of Z-modules

0 → f(R) → R → EndZ(A/R) → 0

ψ : r 7→ (a 7→ ra).

In fact, the map ψ is already surjective when restricted to Z, so we obtain R/f(R) ∼=
Z/J . Since we required A/R ∼= Z/J , we have JA ⊂ R. From this we see JA ⊂ f(R)
and therefore we can view A/f(R) as an Z/J-module. The short exact sequence of
Z/J-modules

0 → R/f(R) → A/f(R) → A/R → 0

splits because A/R ∼= Z/J is free. We obtain A/f(R) ∼= (Z/J)2, and therefore f(R)
is an ideal of the required type.

For the correctness of g, we note that for each I ∈ V the set Z+I is equal to φ−1φ(Z),
where φ : A → A/I is the canonical ring morphism. So Z + I is a sub-Z-algebra
of A.

By definition, A/I is a quadratic Z/J-algebra. By lemma 4.2, there exists a basis
(1, a) of A/I over Z/J . Now, the isomorphism

A/(Z + I) = (A/I)/φ(Z) = (1 · Z/J ⊕ a · Z/J)/(1 · Z/J) = a · Z/J ∼= Z/J

shows that g(I) is a ring of the required type.
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Let I ⊂ A be an ideal with A/I ∼= (Z/J)2. From J = AnnZ(A/I) it follows that
J ⊂ Z ∩ I. On the other hand, if x ∈ Z ∩ I is an element, then we have an inclusion
xA ⊂ I; this implies x ∈ AnnZ(A/I) = J , so Z ∩ I = J also holds.

We finish the proof by showing f and g are inverses. Since g is well-defined,
A/(Z + I) is isomorphic to Z/J . Combining this with the fact that Z ∩ I = J ,
we obtain the Z-linear isomorphism A/(Z + I) ∼= Z/J ∼= Z/(Z ∩ I) ∼= (Z + I)/I.
Since I acts trivially on both A/(Z + I) and (Z + I)/I, this is in fact a Z + I-linear
isomorphism. Hence, for an ideal I ∈ V we have fg(I) = AnnZ+I(A/(Z + I)) =
AnnZ+I((Z + I)/I) = I.

On the other hand, for each subring R ∈ W , we have the inclusion gf(R) =
Z + f(R) ⊂ R, and since Z maps via ψ surjectively to R/f(R), the subrings gf(R)
and R are equal.

4.2 Cocyclic rings for p-adic orders

We will apply theorem 4.1 to the case where A = OE , the ring of integers of a finite
étale Qp-algebra E, for a prime p. We view this ring as a Zp-algebra. Each non-zero
ideal of Zp is generated by some power pe, and for each of those ideals we can bound
the number of cocyclic subrings. The result is the following corollary. Note that the
bound is independent of e.

Corollary 4.3. For every integer n ∈ Z>0, every prime p, every positive inte-
ger e and every finite étale Qp-algebra E of degree n, the number of sub-Zp-algebras
R ⊂ OE such that OE/R ∼= Z/peZ as Zp-modules is bounded from above by

(
n
2

)
.

Proof. Since the subrings we are looking at are cocyclic, the theorem gives us a
bijection between the set of subrings R ⊂ OE with OE/R ∼= Z/peZ and the set of
ideals I ⊂ OE with OE/I ∼= (Z/peZ)2. Write E =

∏
m∈Spec(E) Em as a product of

field extensions of Qp. Every ideal I ⊂ OE =
∏

m
OEm

can be written as I =
∏

m
Im,

where Im ⊂ OEm
is an ideal. There are only two ways to obtain an ideal I ⊂ OE

with OE/I ∼= (Z/peZ)2. The first is the kernel of the map OE → OEm
→ OEm

/Im,
where Im ⊂ OEm

is an ideal such that OEm
/Im

∼= (Z/peZ)2. The other is the kernel
of the map OE → OEm

×OE′

m
→ OEm

/Im×OEm′
/Im′ , where m and m′ are different

and both Im ⊂ OEm
and Im′ ⊂ OEm′

are ideals such that OEm
/Im

∼= Z/peZ and
OEm′

/Im′
∼= Z/peZ.

For each m ∈ Spec(E), the ring OEm
is a discrete valuation ring. The set of

ideals Im ⊂ OEm
such that OEm

/Im is as a Zp-module isomorphic to a given finite
p-group, consists of at most one element. Furthermore, if Em is isomorphic to Qp,
then the set {Im ⊂ OEm

: OEm
/Im

∼= (Z/peZ)2} is empty for all k. If Em is not
isomorphic to Qp, then the degree deg(Em) is at least 2.

Denote by s1 the number #Spec(E) and by s2 the number #{m ∈ Spec(E) :
deg(Em) ≥ 2}. From the inequalities 1 ≤ s1 + s2 ≤ n and the previous remarks, we
obtain the result

{I ⊂ OE : OE/I ∼= (Z/peZ)2} ≤
(

s1

2

)
+ s2 ≤

(
s1 + s2

2

)
≤

(
n

2

)
.
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Chapter 5

Subrings of maximal orders

In this chapter K is a number field. We will determine bounds for the number of
subrings R of OK of given finite additive index m. These bounds depend on the
degree of K and the index m.

More precisely, for an integer n ∈ Z≥2 define Nfn to be the collection of number
fields of degree n. Define for each K ∈ Nfn the function fK : Z≥1 → Z by

fK(m) = #{R ⊂ OK : R is a subring of index m}.

Note that if K ∈ Nfn and R is a subring of index m of OK , then mOK ⊂ R. Since
OK/mOK is as a group isomorphic to (Z/mZ)n, the number fK(m) is bounded
from above by the number of subsets of (Z/mZ)n. This bound depends only on n
and m. Hence, the function f : Z≥2 × Z≥1 → Z defined by

f(n,m) = max
K∈Nfn

#{R ⊂ OK : R is a subring of index m}

is well-defined.
We will study the function f . We are in particular interested in the limit be-

haviour of f(n,m) for fixed n and m → ∞. The main result of this chapter is the
following theorem.

Theorem 5.1. For an integer n ≥ 2, define c7(n) = max0≤d≤n−1
d(n−1−d)

n−1+d and
define c8(n) by the following table.

n 2 3 4 5 6 7 8 9 10 11 12 13 ≥ 14

c8(n) 0 1
3 1 20

11
29
11

186
53

49
11

119
22

70
11

388
53

440
53

492
53 n − 8

3

Then for each integer n ≥ 2 the inequalities

c7(n) ≤ lim sup
m→∞

log f(n,m)

log m
≤ c8(n)
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hold. Furthermore, we have

lim inf
n→∞

1

n
lim sup
m→∞

log f(n,m)

log m
≥ 3 − 2

√
2

and

lim sup
n→∞

1

n
lim sup
m→∞

log f(n,m)

log m
≤ 1.

For n = 2 the bounds c7(n) and c8(n) are equal. This is a classical result. Indeed,
the only subring of OK of index m is Z+mOK . In [5] Nakagawa studies the Dirichlet
series

ηK(s) =
∑

R

(OK : R)−s

where R runs over all subrings of finite index (OK : R). In his introduction, Naka-
gawa gives a formula for ηK(s) in the case where K has degree 3. From the formula
we can deduce that the lower bound, 1/3, is the correct value the case n = 3. Nak-
agawa also gives a hypothesis for a formula in the case where n = 4. If this formula

is true, we can deduce that lim supm→∞
log f(4,m)

log m should be 1/2, equal to c7(4).

The fact that c8(5) < 2 will be used in chapter 8 to prove a theorem on quintic
rings requested by Manjul Bhargava.

In section 5.1, we will prove theorem 5.1 using some auxiliary results. In the rest
of this chapter and chapters 6 and 7 we will prove those results.

For n ≥ 3, the upper bound of theorem 5.1 is different from the lower bound.
This can be seen by comparing the following table with the table of upper bounds.

n 2 3 4 5 6 7 8 9 10 11 12 13

c7(n) 0 1
3

1
2

2
3

6
7 1 6

5
15
11

20
13

12
7

15
8

35
17

Also 3 − 2
√

2 ≈ 0.1716, the lower bound of the final statement, is smaller than 1,
the upper bound. There clearly is room for improvement.

5.1 Articulation of the proof

In this section, we will prove theorem 5.1 from a few results we will prove in later
sections.

Vector spaces

For the lower bound, we construct a large set of subrings. We will count that set
using the following lemma.

Lemma 5.2. Let p be a prime and let n and d be integers such that 0 ≤ d ≤ n.
Then the number of Fp-linear subspaces V ⊂ Fn

p of dimension d is

d∏

i=1

pn − pi−1

pd − pi−1
.
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Furthermore, there exists a constant c9 > 0 such that for all prime numbers p and

all integers n and d with 0 ≤ d ≤ n, the number
∏d

i=1
pn−pi−1

pd−pi−1 is between pd(n−d)

and pd(n−d) + c9p
d(n−d)−1.

This lemma will be proven in section 5.2.

Localization

For a prime p and an integer n ∈ Z≥2 define Etp,n to be the collection of finite étale
Qp-algebras that have degree n.

For a prime p, an algebra E ∈ Etp,n and an integer k ∈ Z≥0 define

fE(k) = #{R ⊂ OE : R is a sub-Zp-algebra of index pk}

and fEt(n, p, k) = maxE∈Etp,n
fE(k).

To prove the upper bounds, we will prove bounds on fEt(n, p, k), the localized
version of f(n,m). The result we obtain locally, immediately gives a similar result
globally by the next proposition, which we will prove in section 5.3.

Proposition 5.3. The following equality holds for all integers n ≥ 2.

lim sup
m→∞

log f(n,m)

log m
= lim sup

pk→∞

log fEt(n, p, k)

k log p
,

where m ranges over the set of positive integers and pk over the set of prime powers.

Cotype

For a finite étale algebra E, the ring of integers OE is free as a Zp-module. Every
subring of OE contains 1 · Zp, so there is a natural inclusion of the set of subrings
of OE to the set of subgroups of OE/Zp. We split the set of subgroups of OE/Zp

of finite index up according to the so-called cotype. For each cotype we will bound
the number of subgroups of that cotype, and hence the number of subrings of that
cotype.

Definition 5.4. A partition λ is a sequence (λi)i∈Z>0
of non-negative integers such

that λi ≥ λi+1 holds for all i ∈ Z>0 and λi 6= 0 for only finitely many i. Define the
length of λ to be the number of non-zero coordinates of λ.

Whenever we write a partition as a finite vector (λ1, λ2, . . . , λn), then we mean that
λi = 0 for all i > n.

For partitions, we will sometimes use a parenthesis notation. The product
of two parentheses is concatenation. For example, (2)2(1)3 denotes the partition
(2, 2, 1, 1, 1).

Definition 5.5. For a prime p and a finite abelian p-group G, define the type
of G to be the unique partition (λ1, . . . , λd) such that G is isomorphic to the group⊕d

i=1 Z/pλiZ.

39



Definition 5.6. Let M be a finitely generated Zp-module. For a submodule N ⊂ M
of finite index, we define the cotype of N to be the type of M/N .

Note that this is an extension of the definition of cotype in Macdonald [3, chapter II
(1.3)–(1.4)]. If µ is the cotype of N ⊂ M , then µ is also the cotype of N/paM ⊂
M/paM for any integer a ≥ µ1.

Let M be a free Zp-module of rank n and let N ⊂ M be a submodule of finite
index. Then the cotype of N ⊂ M has length at most n. For a partition µ of length
at most n, we define

S(M,µ) = {N ⊂ M : N is a submodule of cotype µ}

and u(µ, n) =
∑n

i=1((n + 1 − 2i)µi).
The following proposition gives a bound on the number of subgroups, and hence

on the number of subrings.

Proposition 5.7. The set S(M,µ) satisfies

#S(M,µ) = On

(
pu(µ,n)

)
,

where p ranges over the set of primes, M over the collection of free Zp-modules of
finite rank and µ over the set of partitions of length at most n, the rank of M .

For example, for a cotype µ = (e), the corresponding submodules are cocyclic. We
have the bound #S(M, (e)) = On

(
pu((e),n)

)
= On

(
p(n−1)e

)
.

We will prove the bound from this proposition, as well as a lower bound for
#S(M,µ), in section 5.4.

Bound for round rings

The Zp-module OE/Zp has rank n−1, so every subring of OE has a cotype of length
at most n − 1.

In chapter 4, we have seen that the number of subrings of OE of cotype (e) is at
most

(
n
2

)
. This bound is better than the bound from proposition 5.7. In general, we

can obtain better bounds for subrings of cotype (e)d, so called round subrings. For
integers e ≥ 1 and 1 ≤ d ≤ n − 1, define We,d(E) to be the set

{R ⊂ OE : R is a sub-Zp-algebra of cotype (e)d}.

Proposition 5.8. Define for positive integers n the constants c10(n, 1) = 0 and
c10(n, 2) = 1. Furthermore, define for integers n and d with 3 ≤ d ≤ n − 1 the
constant c10(n, d) = (d − 1)(n − d − 1). Then we can bound

#We,d(E) = On

(
pc10(n,d)

)
,

where p ranges over the set of primes, E over the collection of finite étale Qp-
algebras, e over the set of positive integers, d ranges over {1, . . . ,deg(E)− 1} and n
is the degree of E.
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In chapter 6 we look at extensions of commutative artinian principal ideal rings. In
chapter 7 we will apply the theory from chapter 6 to the ring OE/(peOE) and derive
the proposition.

Rounding rings

For other, non-round cotypes, we can get bounds for the number of rings of that
cotype from the result on round subrings. This is done through a process called
rounding.

Let E be a finite étale Qp-algebra and let n be its degree. For a partition λ of

length at most n − 1 define S̃(E, λ) to be the set of sub-Zp-modules N ⊂ OE of
cotype λ with 1 ∈ N . Note that {R ⊂ OE : R is a subring of cotype λ} is a subset
of S̃(E, λ).

Proposition 5.9. For each prime p, each integer n ≥ 2, each finite étale Qp-
algebra E of degree n, each partition λ of length at most n − 1 and each integer d
with λd > 2λd+1, there exists a map

ρd : S̃(E, λ) → S̃
(
E, (λd − 2λd+1)

d
)

with the following properties:

1. every fibre of ρd has the same cardinality; the number

c11(n, d, λ) = −d(n − d − 1)(λd − 2λd+1) +

n−1∑

i=1

(
(n − 2i)λi

)

is such that #ρ−1
d (N) = On

(
pc11(n,d,λ)

)
, where p ranges over the set of primes,

E over the collection of finite étale Qp-algebras, λ over the set of partitions
of length at most n, the degree of E, the integer d over integers such that
λd > 2λd+1 and N over S̃

(
E, (λd − 2λd+1)

d
)
;

2. the image under ρd of a subring of OE is a subring.

The map ρd is the rounding map. In section 5.5 we will describe this map and show
it has the required properties.

Lower bounds of main theorem

First, we prove the lower bounds of theorem 5.1. Let K be a number field and let n
be its degree.

Lemma 5.10. Every additive subgroup G of OK that satisfies Z + m2OK ⊂ G ⊂
Z + mOK for some integer m is a subring.

Proof. Clearly, 1 is an element of G. Since G ⊂ Z+mOK , we can write any element of
G as x+my with x ∈ Z and y ∈ OK . Let x1+my1 and x2+my2 be two such elements.
Then their product (x1 + my1)(x2 + my2) = x1x2 + (mx1y2 + mx2y1) + m2y1y2 lies
in Z + G + m2OK = G.
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For any number field K ∈ Nfn, any prime p and any integer d with 0 ≤ d ≤ n − 1
we can use the above lemma to bound

#{R ⊂ OK : R is a subring of index pn−1+d}
from below by

#{G ⊂ OK : G is a subgroup,

Z + p2OK ⊂ G ⊂ Z + pOK ,

dimFp
(G/(Z + pOK)) = d}.

For a prime p, the vector space (Z+pOK)/(Z+p2OK) has dimension n−1 over Fp.
Hence, for each integer d with 0 ≤ d ≤ n − 1 there exists a bijection between this
set of subgroups and the set of Fp-linear subspaces V ⊂ Fn−1

p of dimension d. By

lemma 5.2, this set of subspaces has cardinality at least pd(n−1−d).
Hence, for all n and 0 ≤ d ≤ n − 1 we have

lim sup
m→∞

log f(n,m)

log m
≥ lim sup

p→∞

d(n − 1 − d) log p

(n − 1 + d) log p
.

We obtain c7(n) as a lower bound by taking the maximum over all d.
The lower bound of the final statement of the theorem is proven by

lim
n→∞

1

n
max

0≤d≤n−1

d(n − 1 − d)

n − 1 + d
= lim

n→∞
n − 1

n
max

0≤d≤n−1

d
n−1 (1 − d

n−1 )

1 + d
n−1

= max
x∈[0,1]

x(1 − x)

1 + x

= 3 − 2
√

2.

Upper bounds of main theorem

Now, we will prove the upper bounds of theorem 5.1. By proposition 5.3, it suffices
to show the upper bounds for fEt(n, p, k). For this local version, we set up an integer
linear program.

For an integer n ≥ 1 and a vector λ ∈ Zn−1, define the constant

c12(n, 0, λ) =
n−1∑

i=1

((n − 2i)λi).

For an integer n with n ≥ 1, a vector λ ∈ Zn−1 and an integer d with 1 ≤ d ≤ n− 2
define the constant

c12(n, d, λ) = c10(n, d) − d(n − d − 1)(λd − 2λd+1) +
n−1∑

i=1

((n − 2i)λi),

with c10(n, d) as defined in proposition 5.8.
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Theorem 5.11. Let n ≥ 1 be an integer. Suppose r ∈ R is such that there is no
integral solution λ = (λ1, λ2, . . . , λn−1) to the following system of linear inequalities.

c12(n, d, λ) ≥ r

n−1∑

i=1

λi for d = 0, . . . , n − 2

λd ≥ λd+1 for d = 1, . . . , n − 2 (5.12)

λn−1 ≥ 0

n−1∑

i=1

λi ≥ 1

Then we can bound

lim sup
pk→∞

log fEt(n, p, k)

k log p
≤ r.

To prove the previous theorem, we will first combine all the bounds from the auxiliary
results.

Lemma 5.13. We can bound

fE(λ) = #{R ⊂ OE : R is a subring of cotype λ} = On

(
pc12(n,d,λ)

)
,

where p ranges over the set of primes, E over the collection of finite étale Qp-
algebras, λ over the set of all partitions of length at most deg(E) − 1 and d over
{0, . . . ,deg(E) − 2}, and where n is the degree of E.

Proof. By proposition 5.7, we have fE(λ) ≤ #S(OE/Zp, λ) = On

(
pu(λ,n−1)

)
. Not-

ing that u(λ, n − 1) = c12(n, 0, λ) proves the case d = 0.
If d > 0 and λd − 2λd+1 ≤ 0, then the inequality c12(n, d, λ) ≥ c12(n, 0, λ) holds.

Hence, we are done in that case as well.
In the final case d > 0 and e = λd−2λd+1 > 0. Define the partition µ = (e)d. By

the second property of the rounding map (see proposition 5.9) every ring R ⊂ OE

of cotype λ can be rounded to a ring of cotype µ.
If there exists no ring of cotype µ, then there are also no rings of cotype λ. We

obtain fE(λ) = 0 = On

(
pc12(n,d,λ)

)

If there exists a ring of cotype µ, denote by Rµ such a ring. By the first property
of the rounding map and proposition 5.8, we can bound

fE(λ) ≤ #We,d(E) · #ρ−1
d (Rµ)

≤ On

(
pc10(n,d)

)
On

(
pc11(n,d,λ)

)

= On

(
pc12(n,d,λ)

)
,

which proves the last case.
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Proof of theorem 5.11. By lemma 5.13, there exists for each integer n a constant
c13(n) such that for all primes p, all finite étale Qp-algebras E of degree n, all
partitions λ of length at most n − 1 and all integers d with 0 ≤ d ≤ n − 2,
we have fE(λ) ≤ c13(n)pc12(n,d,λ). We can combine this to the bound fE(λ) ≤
min0≤d≤n−2 c13(n)pc12(n,d,λ).

We denote the set of partitions λ of size k and length n − 1 by Λn(k). We see
that

fEt(n, p, k) = max
E∈Etp,n

max
λ∈Λn(k)

fE(λ)

≤ max
λ∈Λn(k)

min
0≤d≤n−2

(c13(n)pc12(n,d,λ))

≤ c13(n) max
λ∈Λn(k)

min
0≤d≤n−2

pc12(n,d,λ).

We obtain the bound

lim sup
pk→∞

log fEt(n, p, k)

k log p
≤ lim sup

pk→∞

(
log c13(n)

k log p
+ max

λ∈Λn(k)
min

0≤d≤n−2

c12(n, d, λ)

k

)

= lim sup
pk→∞

max
λ∈Λn(k)

min
0≤d≤n−2

c12(n, d, λ)
∑n−1

i=1 λi

= sup
λ∈S

∞

k=1 Λn(k)

min
0≤d≤n−2

c12(n, d, λ)
∑n−1

i=1 λi

.

Suppose lim suppk→∞
log fEt(n,p,k)

k log p = r + ǫ > r holds. Then there exists a non-zero

partition λ of length at most n− 1 such that min0≤d≤n−2
c12(n,d,λ)
Pn−1

i=1 λi
> r + ǫ

2 . Clearly,

(λi)
n−1
i=1 is a solution of system (5.12).

If r is as in theorem 5.11, then we obtain lim supm→∞
log f(n,m)

log m ≤ r by proposi-
tion 5.3. For n = 2 every partition gives the same bound, namely r = 0. For n = 3
and n = 4 system (5.12) is analysed in the following lemma.

Lemma 5.14. For n = 3 system (5.12) has no solutions for r with r > 1/3. It does
have solutions for r = 1/3.

For n = 4 system (5.12) has no solutions for r with r > 1. It does have solutions
for r = 1.

Proof. Suppose that for n = 3 the partition λ is a solution with r for r > 1/3. The
first inequality for d = 0 is λ1 − λ2 ≥ r(λ1 + λ2) > 1/3(λ1 + λ2). This can be
rewritten as λ1 > 2λ2. The first inequality for d = 1 is −(λ1 − 2λ2) + λ1 − λ2 ≥
r(λ1 + λ2) > 1/3(λ1 + λ2). This can be rewritten as 2λ2 > λ1. This contradicts
λ1 > 2λ2 and therefore proves the first claim.

As can be seen from this, for r = 1/3, the only possible solutions are of the form
(2λ2, λ2). Indeed, all these partitions are solutions for system (5.12).
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n c8(n) λ(n)
2 0 (1)
3 1/3 (2,1)
4 1 (2,1,0)
5 20/11 (7,3,1,0)
6 29/11 (7,3,1,0,0)
7 186/53 (31,14,6,2,0,0)
8 49/11 (12,6,3,1,0,0,0)
9 119/22 (12,6,3,1,0,0,0,0)
10 70/11 (12,6,3,1,0,0,0,0,0)
11 388/53 (28,14,7,3,1,0,0,0,0,0)
12 440/53 (28,14,7,3,1,0,0,0,0,0,0)
13 492/53 (28,14,7,3,1,0,0,0,0,0,0,0)

Table 5a. Optimal solutions to system (5.12) for small n.

Suppose that for n = 4 the partition λ is a solution with r for r > 1. The first
inequality for d = 1 is −2(λ1 − 2λ2) + 2λ1 − 2λ3 ≥ r(λ1 + λ2 + λ3) > λ1 + λ2 + λ3.
This can be rewritten as 3λ2 > λ1 + 3λ3. The first inequality for d = 2 is
1 − 2(λ2 − 2λ3) + 2λ1 − 2λ3 ≥ r(λ1 +λ2 +λ3) > λ1 +λ2 +λ3. This can be rewritten
as 1 + λ1 + λ3 > 3λ2. Since every λi is an integer, we can conclude λ1 + λ3 ≥ 3λ2.

Combining these inequalities, we get λ1 + λ3 ≥ 3λ2 > λ1 + 3λ3. This can only
happen when λ3 is negative, contradicting the third inequality of the system. This
shows the third claim of the lemma.

For r = 1, we obtain the inequality 1 + λ1 + λ3 ≥ 3λ2 ≥ λ1 + 3λ3. This can
only occur when λ3 = 0 and either λ1 = 3λ2 or λ1 = 3λ2 − 1. Indeed, the partitions
(3λ2, λ2, 0) and (3λ2 − 1, λ2, 0) are solutions to the system for r = 1.

For a fixed n and r, system (5.12) is an integer linear program without objective.
If we add an objective, a computer program can check whether there is a solution
for that r, and, by varying the objective, can check whether the solution is unique.
When a partition is a solution for the linear program with a fixed r0, it is also a
solution for r < r0. Hence, when we find a unique solution λ for a number r, we
can use that solution to find the maximum r for with system (5.12) has a solution,
namely the largest r for which λ is a solution.

For 5 ≤ n ≤ 13, it turns out that there exists a number r for which system (5.12)
has a unique solution. In table 5a the column c8(n) states the largest value for r
for which system (5.12) has an integral solution. These values are the upper bounds
from theorem 5.1. The partition λ(n) is a solution for the system with r = c8(n); it
is unique for 5 ≤ n ≤ 13.

The upper bound for n ≥ 14, as well as the upper bound for the final statement
of theorem 5.1 follow from the following proposition.
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Proposition 5.15. Let n ≥ 5 be an integer. Then system (5.12) does not have any
solutions for r > n − 8

3 .

Proof. For ease of notation, write α = 4
3 . Suppose λ = (λ1, . . . , λn−1) is a solution

for system (5.12) for some r > n − 4 + α. Write A =
∑n−1

i=1 λi.
In case λ1 ≤ α

2 A we obtain

c12(n, 0, λ) =

n−1∑

i=1

(
(n − 2i)λi

)
≤ 2λ1 +

n−1∑

i=1

(
(n − 4)λi

)
≤ αA + (n − 4)A < rA,

which is a contradiction with the first equation of the system for d = 0. If λ1 > α
2 A

and λ2 ≤ α
4 A hold, then we have the inequality

c12(n, 1, λ) = −(λ1 − 2λ2)(n − 2) +

n−1∑

i=1

(
(n − 2i)λi

)

≤ −(n − 4)λ1 + 2(n − 2)λ2 +
n−1∑

i=1

(
(n − 4)λi

)

≤ −(n − 4)
α

2
A + 2(n − 2)

α

4
A + (n − 4)A

= (α + n − 4)A

< rA.

This is a contradiction with the first equation of the system for d = 1. For the
final case where λ1 > α

2 A and λ2 > α
4 A, the inequality λ1 + λ2 > α

2 A + α
4 A = A

contradicts the λi being non-negative.

Since limn→∞
n−8/3

n = 1 holds, this finishes the proof of theorem 5.1.

5.2 Vector spaces

In this section we will prove lemma 5.2, restated below for convenience.

Lemma 5.2. Let p be a prime and let n and d be integers such that 0 ≤ d ≤ n.
Then the number of Fp-linear subspaces V ⊂ Fn

p of dimension d is

d∏

i=1

pn − pi−1

pd − pi−1
.

Furthermore, there exists a number c9 > 0 such that for all prime numbers p and

all integers n and d with 0 ≤ d ≤ n, the number
∏d

i=1
pn−pi−1

pd−pi−1 is between pd(n−d)

and pd(n−d) + c9p
d(n−d)−1.

46



Proof. The number of ordered independent sets in Fn
p of cardinality d is equal to∏d

i=1(p
n − pi−1). Each subspace V of dimension d is generated by

∏d
i=1(p

d − pi−1)
of those sets. So the number of Fp-linear subspaces V ⊂ Fn

p of dimension d is

d∏

i=1

pn − pi−1

pd − pi−1
.

Taking the logarithm and using the Taylor expansion log(1 − y) = −
∑∞

j=1
yj

j ,

which converges for |y| < 1, we get

log

(
d∏

i=1

pn − pi−1

pd − pi−1

)
= log

(
pd(n−d)

d−1∏

i=0

1 − pi−n

1 − pi−d

)

= log(pd(n−d)) +
d−1∑

i=0

(
log(1 − pi−n) − log(1 − pi−d)

)

= log(pd(n−d)) +
d−1∑

i=0

∞∑

j=1

−p(i−n)j + p(i−d)j

j

= log(pd(n−d)) +

∞∑

j=1

∑d−1
i=0 pij(p−dj − p−nj)

j

= log(pd(n−d)) +
∞∑

j=1

pdj−1
pj−1 (p−dj − p−nj)

j
.

Using the bounds 1 ≤ pdj−1
pj−1 < pdj 1

pj−1 ≤ pdj2p−j and 0 ≤ p−dj−p−nj < p−dj , we can

bound this from below by log(pd(n−d)) and from above by log(pd(n−d))+
∑∞

j=1
2p−j

j =

log(pd(n−d)) + log((1 − p−1)−2) ≤ log(pd(n−d)) + log(1 + 6p−1).

5.3 Localization

In this section, we will show that the function f , defined in the introduction of
this chapter, is multiplicative in m and that it therefore suffices to determine only
f(n, pk) for prime powers pk. Furthermore, the number of subrings of OK of prime
power index pk can be determined from the localization K ⊗ Qp.

The goal of this section is to prove proposition 5.3, which was stated in section 5.1.
A tool we will use is a weak approximation theorem for the field Q. This theorem is
useful in proving the results for all number fields and finite étale Qp-algebras, from
the results on specific ones. That is, we use it to link the functions f and fK , from
the introduction to the functions fEt and fE , defined in section 5.1.
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5.3.1 Weak approximation

In this section we state and prove a weak approximation theorem for the field Q.
We will use the following lemma, which is a variant of Krasner’s lemma.

Let L be a field with a discrete valuation v : L∗ → Z. Let |.| be an absolute value
corresponding to this valuation. For polynomials g, h ∈ L[X], we define the distance
between g and h as |g − h| = maxi |gi − hi|, where g =

∑
i giX

i and h =
∑

i hiX
i.

Lemma 5.16. Let L be a field with a discrete valuation. Suppose L is complete with
respect to this valuation. Let g ∈ L[X] be a separable, monic polynomial. Then there
exists δ(g) > 0 such that for any monic polynomial h ∈ L[X] of the same degree as g
with |g − h| < δ(g), the polynomial h is also separable and L[X]/(g) and L[X]/(h)
are isomorphic as L-algebras.

Proof. [6, lemma 5.5].

Now we state and prove a weak approximation theorem for the field Q.

Lemma 5.17. Let n ≥ 1 be an integer and let P be a finite set of prime numbers.
For p ∈ P , let Ep be a finite étale Qp-algebra of degree n. Then there exists a number
field K of degree n such that for all p ∈ P the Qp-algebra K ⊗ Qp is isomorphic
to Ep.

Proof. Let p be a prime in P . If Ep is a finite étale Qp-algebra, then we can write
Ep =

∏
i∈I(p) Ep,i, where each Ep,i is a finite field extension of Qp and I(p) is a

finite set. For each of the fields Ep,i there exists a separable, irreducible, monic
polynomial gp,i ∈ Zp[X] such that Ep,i

∼= Qp[X]/(gp,i). When some gp,i are equal,
we can, by lemma 5.16, modify them slightly such that they are different but still
satisfy Ep,i

∼= Qp[X]/(gp,i). Then the product gp =
∏

i∈I(p) gp,i is also separable.

Note that Ep is isomorphic to Qp[X]/(gp) and hence gp has degree n.
Next, we take a prime q not in P and let g̃q ∈ Fq[X] be a monic irreducible

polynomial of degree n. Let gq ∈ Qq[X] be a lift of g̃q. Define the algebra Eq =
Qq[X]/(gq). Since gq is irreducible, Eq is a field extension of Qq of degree n.

The set P is finite, so by the Chinese remainder theorem we can choose a monic
polynomial h ∈ Z[X] such that for all p ∈ P ∪{q} we have |gp−h| ≤ δ(gp) in Qp[X].
Applying lemma 5.16 for each p ∈ P ∪{q} to gp and h, we see (Q[X]/(h))⊗Qp

∼= Ep.
The polynomial h is irreducible, since it is irreducible over Qq. Hence, K = Q[X]/(h)
satisfies the requirements.

5.3.2 Local rings of integers

In this section, we will establish the connection between fK(pk) and the correspond-
ing function fK⊗QQp

(k). From this and the weak approximation, we will deduce that
for all n, p and k, the equality f(n, pk) = fEt(n, p, k) holds.

Lemma 5.18. Let K be a number field. Then there exists a ring isomorphism
OK ⊗Z Zp

∼= OK⊗QQp
.
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Proof. Since Zp is torsion-free over Z, the ring morphism OK ⊗Z Zp → K ⊗Z Zp is
injective. Furthermore, there exists a ring isomorphism K⊗QQp

∼= K ⊗Q Q ⊗Z Zp
∼=

K ⊗Z Zp. Hence, we have a natural injective ring morphism OK ⊗Z Zp → K ⊗Q Qp.
Every element of OK ⊗Z Zp is integral over Zp, so the image of this map lies
in OK⊗QQp

.

Next, we can write K ⊗Q Qp
∼=

∏
p|p Kp, where Kp is the completion of K at p.

Hence, the ring of integers of K ⊗Q Qp is
∏

OKp
. From [7, 4-8-13] we see that the

discriminant of OK ⊗Z Zp over Zp is equal to the product over all p that extend p
of the discriminant of OKp

over Zp. Hence the injection OK ⊗Z Zp →֒ ∏OKp
is a

bijection.

Proposition 5.19. For all number fields K ∈ Nfn and prime powers pk we have
the equality fK(pk) = fK⊗Qp

(k).

Proof. An easy verification shows that the map from the set of subrings R ⊂ OK

of index (OK : R) = pk to the set of sub-Zp-algebras S ⊂ OK ⊗ Zp of index
(OK ⊗ Zp : S) = pk that sends a subring R to the subalgebra R ⊗ Zp, is a well-
defined bijection. Lemma 5.18 gives the isomorphism OK ⊗Zp

∼= OK⊗Qp
. Counting

these sets gives the result fK(pk) = fK⊗Qp
(k).

Proposition 5.20. For all n, p and k, we have f(n, pk) = fEt(n, p, k).

Proof. Let K ∈ Nfn be such that f(n, pk) = fK(pk). Then by proposition 5.19, we
can bound

f(n, pk) = fK(pk) = fK⊗Qp
(k) ≤ fEt(n, p, k).

On the other hand, let E ∈ Etp,n be such that fEt(n, p, k) = fE(k). From
lemma 5.17, we know there exists a number field K such that K ⊗ Qp

∼= E. Hence,
we also have the bound

fEt(n, p, k) = fE(k) = fK⊗Qp
(k) = fK(pk) ≤ f(n, pk).

5.3.3 Multiplicativity

In this section, we will prove the multiplicativity of f and proposition 5.3. We start
by showing that fK is multiplicative.

Lemma 5.21. Let K be a number field. The function fK : Z>0 → Z≥0 defined by

fK(m) = #{R ⊂ OK subring : (OK : R) = m}

is multiplicative.
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Proof. For each integer m, define the set Vm = {R ⊂ OK subring : (OK : R) = m}.
For relatively prime, positive integers m1 and m2, define the map

φ : Vm1
× Vm2

→ Vm1m2

(R1, R2) 7→ R1 ∩ R2.

The reader can easily verify that this map is well-defined and that it is a bijection.
Therefore we have fK(m1m2) = fK(m1)fK(m2).

Proposition 5.22. The function f(n,m) is multiplicative in m.

Proof. Let m1 and m2 be relatively prime positive integers and let P be the set of
all prime divisors of m1m2. For i = 1, 2, let Ki be a number field that attains the
maximum value for fK(mi).

For each prime p in P with p | mi, define Ep = Ki⊗Qp. According to lemma 5.17,
there exists a number field K such that K ⊗Qp

∼= Ep for all p ∈ P . For i = 1, 2 and
pk | mi, we have fK(pk) = fK⊗Qp

(k) = fKi⊗Qp
(k) = fKi

(pk) by proposition 5.19.
By lemma 5.21, we get fK(mi) = fKi

(mi) = f(n,mi) and therefore f(n,m1m2) ≥
fK(m1m2) = f(n,m1)f(n,m2).

On the other hand let K ′ be a number field of degree n that attains the maximum
value for fK(m1m2). Then we also have the bound

f(n,m1m2) = fK′(m1m2) = fK′(m1)fK′(m2) ≤ f(n,m1)f(n,m2).

Now we prove proposition 5.3, restated here for convenience.

Proposition 5.3. The following equality holds for all n.

lim sup
m→∞

log f(n,m)

log m
= lim sup

pk→∞

log fEt(n, p, k)

k log p

Proof. From proposition 5.20 we know

lim sup
pk→∞

log fEt(n, p, k)

k log p
= lim sup

pk→∞

log f(n, pk)

log pk
= x.

The set of prime powers is a subset of the integers, so we can bound

x ≤ lim sup
m→∞

log f(n,m)

log m
.

Hence, if x is infinite, we are done.
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Assume x is finite. Then for all ǫ > 0 we have limpk→∞
f(n,pk)
pk(x+ǫ) = 0. Since f

is multiplicative, we can use [1, theorem 316] to obtain limm→∞
f(n,m)
mx+ǫ = 0. This

implies lim supm→∞
log f(n,m)

log m < x + ǫ for all ǫ > 0. Hence, we also have the bound

lim sup
m→∞

log f(n,m)

log m
≤ x.

5.4 Counting submodules

In this section, we will prove proposition 5.7, stated in section 5.1. We start by
stating a more general version of the proposition. We will use the extra statement
in section 5.5.

Recall the definition of u(µ, n) =
∑n

i=1((n + 1 − 2i)µi).

Proposition 5.23. The set S(M,µ) defined in section 5.1, satisfies

#S(M,µ) = On

(
pu(µ,n)

)

and
1

#S(M,µ)
= On

(
p−u(µ,n)

)
,

where p ranges over the set of primes, M over the free Zp-modules of finite rank and
µ over the partitions of length at most n, the rank of M .

One could use the theory of Hall polynomials to show that there exists a monic
polynomial gµ,n ∈ Z[X], depending on the partition µ and the rank n, of degree
u(µ, n) such that for all primes p we have #S(M,µ) = gµ,n(p). The existence of
such a polynomial would prove the first part of the proposition. For example, a book
by Macdonald [3, chapter I–II] states the theory necessary for such an approach.
The second statement follows from the fact that the polynomials gµ,n(p) have non-
negative coefficients when expanded in powers of p − 1, see [4]. It follows that for
every prime p and every partition µ of length at most n the inequality gµ,n(p) > 0
holds.

Note that we could explicitly find the exact polynomials as indicated after the
proof of [3, chapter II (4.1)]. One could, in theory, use these explicit polynomials
through this entire chapter to derive more precise statements. This would, however,
involve a lot of calculations.

We will give a different proof using the following observation.
For a prime p and a partition µ, let Aµ,p be a finite abelian p-group of type µ,

see definition 5.5. Then for free Zp-modules M of rank at least the length of µ, there
exists a bijection

S(M,µ) ∼= {φ : M → Aµ,p surjective}
Aut(Aµ,p)

.
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This follows from the fact that every N ∈ S(M,µ) is the kernel of such a surjective
map. Two kernels are the same if and only if the maps differ by an automorphism
of Aµ,p. We will use this fact to bound #S(M,µ) by giving upper and lower bounds
for both #{φ : M → Aµ,p surjective} and #Aut(Aµ,p).

Lemma 5.24. For every prime p, every positive integer n, every free Zp-module M
of rank n and every partition µ of length at most n, the following inequalities hold.

1 − pn − 1

pn(p − 1)
≤ #{φ : M ։ Aµ,p}

(#Aµ,p)n
≤ 1

Proof. To give a morphism φ : M → Aµ,p, it suffices to give the map on a set of
generators. Therefore, the number of such maps is (#Aµ,p)

n, which is an upper
bound for the number of surjective maps.

For the lower bound, we first note that a surjective map M → Aµ,p exists, since
the number of generators of Aµ,p is at most n. Let ψ be such a surjective map.

If a morphism φ : M → Aµ,p is not surjective, its image lies in a maximal
subgroup of Aµ,p, that is, one of index p. Let Subgrp(A) and Subgrp(M) be the set
of subgroups of index p of A and M respectively. We see that

#{φ : M → Aµ,p not surjective} ≤ #
∐

B∈Subgrp(A)

{φ : M → B} =
∑

B∈Subgrp(A)

(#B)n.

If B ∈ Subgrp(A) is a subgroup, then ψ−1(B) ⊂ M is a subgroup of index p.
Furthermore, since ψ is surjective, the map

Subgrp(A) → Subgrp(M)

B 7→ ψ−1(B)

is injective. Hence, we can bound #Subgrp(A) from above by #Subgrp(M). Since
Subgrp(M) = S(M, (1)), we can use the bijection

S(M, (1)) ∼= {M → Z/pZ surjective}
Aut(Z/pZ)

to obtain #Subgrp(M) = pn−1
p−1 .

Combining this yields

#{φ : M → Aµ,p surjective} ≥ (#Aµ,p)
n −

∑

B∈Subgrp(A)

(#B)n

≥ (#Aµ,p)
n − pn − 1

p − 1

(
#Aµ,p

p

)n

= (#Aµ,p)
n

(
1 − pn − 1

pn(p − 1)

)
,

the lower bound.
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For the bounds on Aut(Aµ,p), we use the following lemma.

Lemma 5.25. Let d ≥ 0 and h ≥ 1 be integers and P ∈ Fp[X1, . . . ,Xh] be a non-
zero homogeneous polynomial of total degree d. Then the number of zeroes of P
in Fh

p is at most dph−1.

Proof. We will do induction on h. If h = 1, then P = aXd
1 for some non-zero

constant a. When d = 0 the polynomial P has no zeroes, and when d ≥ 1 it has one
zero. In either case, the number of zeroes is at most dph−1.

Suppose the statement is true for all polynomials in less than h variables and
let P be a polynomial in h variables. If Xh does not occur in P , then we can view
it as a polynomial in h − 1 variables. By the induction hypothesis, the number of
zeroes is at most p · dph−2 = dph−1. If Xh does occur, let d′ denote the maximal
degree of Xh in P . View P as a polynomial in Xh and let Pd′ be the coefficient
of Xd′

h . Note that Pd′ is a non-zero homogeneous polynomial in h − 1 variables of
degree d − d′.

Let (xi)
h−1
i=1 run over Fh−1

p . If P (x1, x2, . . . , xh−1,Xh) ∈ Fp[Xh] is zero, then it
has p zeroes. Since in this case Pd′(x1, x2, . . . , xh−1) is zero, the number of times
this occurs is at most (d − d′)ph−2, the maximal number of zeroes of Pd′ . On
the other hand, if P (x1, x2, . . . , xh−1,Xh) is non-zero, then it has at most d′ ze-
roes. Combining these results, we obtain that the number of zeroes of P is at
most p · (d − d′)ph−2 + d′ · ph−1 = dph−1.

Lemma 5.26. For every prime p, every positive integer n and every partition µ of
length at most n, we have

1 ≤ #End(Aµ,p)

#Aut(Aµ,p)
≤ p

p − n

when p > n and

1 ≤ #End(Aµ,p)

#Aut(Aµ,p)
≤ pn2

when p ≤ n.

Proof. The lower bounds are clear, since every automorphism is an endomorphism.
For the upper bounds, we define the map

ψ : End(Aµ,p) → End(Aµ,p/pAµ,p)

φ 7→ φ/pAµ,p = {a + pAµ,p 7→ φ(a) + pAµ,p}.

This is well-defined, since pAµ,p is mapped into itself by any endomorphism of Aµ,p.
The set ψ(End(Aµ,p)) is an Fp-linear subspace of End(Aµ,p/pAµ,p). Let h be its
dimension.

If φ ∈ End(Aµ,p) is invertible, then φ−1/pAµ,p is the inverse of φ/pAµ,p. On
the other hand, if φ ∈ End(Aµ,p) is such that φ/pAµ,p is invertible, then we can
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write A = pA + im(φ). By Nakayama’s lemma [2, X§4, lemma 4.1], we obtain that
A = im(φ), that is, φ is surjective. Since Aµ,p is a finite set, φ is invertible. We see
ψ(Aut(Aµ,p)) = ψ(End(Aµ,p)) ∩ Aut(Aµ,p/pAµ,p).

Since an endomorphism φ ∈ End(Aµ,p/pAµ,p) is an automorphism if and only if
det(φ) 6= 0, we look at the determinant map det : ψ(End(Aµ,p)) → Fp. It is given
by a non-zero homogeneous polynomial in h variables of degree equal to the length
of µ. Since µ has length at most n, by lemma 5.25, the number of zeroes of the
determinant is at most nph−1. Hence, we can bound

#Aut(Aµ,p)

#End(Aµ,p)
=

#ψ(Aut(Aµ,p))

#ψ(End(Aµ,p))
≥ ph − nph−1

ph
=

p − n

p
.

When p is greater than n, then p−n
p > 0 implies that we can invert this. We obtain

the first upper bound.
If p is at most n, we can improve this bound to

#ψ(Aut(Aµ,p))

#ψ(End(Aµ,p))
≥ 1

pn2

by noting that #ψ(Aut(Aµ,p)) ≥ 1 and h ≤ n2. Inverting this fraction gives the
second upper bound.

Now we combine lemmas 5.24 and 5.26 to prove proposition 5.23.

Proof of proposition 5.23. First, we will determine #End(Aµ,p). For positive in-
tegers a and b, a morphism φ ∈ Hom(Z/paZ, Z/pbZ) is determined by the image
of 1 in Z/pbZ. This element should be such that φ(1)pa = 0. It follows that
the number #Hom(Z/paZ, Z/pbZ) is equal to min(pa, pb). Furthermore, for all
groups A1, A2, B1 and B2, there exist group isomorphisms Hom(A1 × A2, B1) →
Hom(A1, B1)×Hom(A2, B1) and Hom(A1, B1×B2) → Hom(A1, B1)×Hom(A1, B2).
Using these facts for End(Aµ,p), we obtain

#End(Aµ,p) =

n∏

i,j=1

Hom(Z/pµiZ, Z/pµj Z)

= p
Pn

i,j=1 min(µi,µj) = p
Pn

i=1(2i−1)µi .

Hence, the equality pu(µ,n) =
(#Aµ,p)n

#End(Aµ,p) follows from the definition of u(µ, n).

We obtain the equality

#S(M,µ)

pu(µ,n)
=

#{φ : M ։ Aµ,p}/#Aut(Aµ,p)

(#Aµ,p)n/#End(Aµ,p)

=
#{φ : M ։ Aµ,p}

(#Aµ,p)n
· #End(Aµ,p)

#Aut(Aµ,p)
.
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By lemmas 5.24 and 5.26, for p > n this is bounded from above by p
p−n = 1+ n

p−n ≤
1 + n, and for p ≤ n this is bounded from above by pn2 ≤ nn2

.

The second statement follows similarly. By the lemmas, #S(M,µ)
pu(µ,n) is bounded

from below by 1 − pn−1
pn(p−1) . For p = 2 this is 1 − pn−1

pn(p−1) = 1
2n and for p ≥ 3 this is

bounded by 1 − pn−1
pn(p−1) ≥ 1 − 1

p−1 ≥ 1
2 .

5.5 Rounding rings

In this section we will prove proposition 5.9. For each prime p, each integer n ≥ 2,
each finite étale Qp-algebra E of degree n, each partition λ of length at most n − 1

and each integer d with λd > 2λd+1, we will define the rounding map ρd on S̃(E, λ),
a set defined in section 5.1. The map ρd associates with a sub-Zp-module of a given
cotype λ a submodule of a round cotype µ, that is, a cotype of the form µ = (e)d

for some positive integers e and d. We will show that ρd maps subrings to subrings
and give a bound for the size of the fibres of ρd.

After that we will investigate the situation where two roundings satisfy an inclu-
sion relation.

We will start by defining roundings on the sets S(M,λ) for free Zp-modules M and
partitions λ of length at most the rank of M . The sets S(M,λ) were defined in
section 5.1 for use in section 5.4. Since for each partition λ there exists a natural
bijection between S̃(E, λ) and S(OE/1·Zp, λ), this will give us a rounding on S̃(E, λ).

Let M be a free Zp-module, let r be its rank. Let N ∈ S(M,λ) be a sub-
Zp-module of cotype λ. Let d be an integer with 1 ≤ d ≤ r − 1 and suppose
that λd > 2λd+1 holds. Define the sub-Zp-module

ρd(N) = M ∩ p−2λd+1(N + pλdM) ⊂ M ⊗Zp
Qp.

Proposition 5.27. The module ρd(N) is a submodule of M of cotype (λd−2λd+1)
d.

Proof. Taking a basis 〈ω1, . . . , ωr〉 of M such that 〈pλ1ω1, . . . , p
λrωr〉 is a basis of N ,

we see that ρd(N) has a basis 〈pµ1ω1, . . . , p
µrωr〉, where the numbers µj are such

that pµj ωj · Zp = ωjZp ∩ p−2λd+1Zp(p
λj ωj + pλdωj). Hence, we can calculate

µj = max(0,−2λd+1 + min(λj , λd))

=





0 if λj ≤ 2λd+1

−2λd+1 + λj if 2λd+1 < λj and λj < λd

−2λd+1 + λd if λd ≤ λj

=

{
0 if j > d
−2λd+1 + λd if j ≤ d.
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Note that from this proof it follows that we can use the same basis of M for N
and ρd(N).

Recall the definition c11(n, d, λ) = −d(n−d−1)(λd−2λd+1)+
∑n−1

i=1

(
(n−2i)λi

)
.

Proposition 5.28. Let M be a free Zp-module, let r be its rank. Let λ be a partition
of length at most r and let d ≤ r− 1 be an integer with λd > 2λd+1. Write µ for the
partition (λd − 2λd+1)

d.
Then the map ρd : S(M,λ) → S(M,µ) that sends a sub-Zp-module to its rounding

is surjective. Furthermore, all fibres have the same cardinality. The fibres of ρd

satisfy

#ρ−1
d (N) = Or

(
pc11(r+1,d,λ)

)
,

where p ranges over the set of primes, M over the collection of free Zp-modules,
λ over the set of partitions of length at most the rank of M , the integer d over the
integers such that λd > 2λd+1, the module N over S(M, (λd − 2λd+1)

d) and r is the
rank of M .

Proof. The surjectivity and the equality of the sizes of the fibres follow from the fact
that the group AutZp

(M) acts transitively on S(M,µ).
Recall the definition of u(λ, r) =

∑r
i=1((r + 1 − 2i)λi). By proposition 5.23, we

have #S(M,λ) = Or

(
pu(λ,r)

)
and 1

#S(M,µ) = Or

(
p−u(µ,r)

)
. By the first remark of

the proof, the number of Zp-modules in S(M,λ) that get rounded to a given Zp-

module in S(M,µ) is #S(M,λ)
#S(M,µ) = Or

(
pu(λ,r)−u(µ,r)

)
. The fact u(λ, r) − u(µ, r) =

c11(r + 1, d, λ) completes the proof.

Now, we will switch our focus from S(M,λ) to S̃(E, λ). The Zp-module OE/1 · Zp

is free of rank n − 1. The canonical bijection between S(OE/1 · Zp, λ) and S̃(E, λ)
transports the rounding map ρd from the first to the second set. From the previous
proposition we know that the fibres of ρd are equal in size and satisfy #ρ−1

d (N) =
Or

(
pc11(n,d,λ)

)
, as required for proposition 5.9.

It remains to show that ρd maps subrings to subrings. This fact is true for all
Zp-algebras R that are free of finite rank as Zp-module, as we will show in the next
proposition.

Let R be a Zp-algebra that is free as a Zp-module, suppose 〈ω1, . . . , ωn−1, 1〉
is a basis of R. Consider only sub-Zp-modules of R with a basis of the form
〈pλ1ω1, . . . , p

λn−1ωn−1, 1〉. By the remark after proposition 5.27, we can do this
without loss of generality. For ease of notation, we write ωn = 1.

Since R is a ring, there exist ck
ij ∈ Zp for i, j, k = 1, . . . , n such that ωiωj =∑

k ck
ijωk.

Proposition 5.29. Let R be a Zp-algebra that is free as a Zp-module. Let T ⊂ R
be a subring of cotype λ. Let d be an integer with 1 ≤ d ≤ n − 2 and suppose that
λd > 2λd+1. Then ρd(T ), the rounding at d of T , is a subring of R.

In the proof we will use the following lemma.
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Lemma 5.30. Let R be a Zp-algebra that is free of finite rank as Zp-module and
let 〈ω1, . . . , ωn−1, 1〉 be a basis of R. A sub-Zp-module N ⊂ R with a basis of the
form 〈pλ1ω1, . . . , p

λn−1ωn−1, 1〉 is a subring if and only if for all i, j, k the equality
ck
ij ≡ 0 mod pλk−λi−λj holds.

Proof. The product of two basis elements pλiωi and pλj ωj is

pλiωip
λj ωj =

∑

k

(pλi+λj−λkck
ij)p

λkωk.

This is an element of N if and only if pλi+λj−λkck
ij ∈ Zp for all k.

Proof of proposition 5.29. Let µ be the cotype of ρd(N). According to lemma 5.30,
it suffices to show that ck

ij ≡ 0 mod pµk−µi−µj for all i, j, k.
For the case k > d, we have µk − µi − µj ≤ 0 and therefore we are done. The

case k ≤ d we split up into two subcases. If i ≤ d or j ≤ d holds, then we have
µk − µi − µj ≤ 0 and we are done. If i > d and j > d both hold, then we can
bound µk − µi − µj = λd − 2λd+1 ≤ λk − λi − λj , and since T is a subring we have
ck
ij ≡ 0 mod pλk−λi−λj , hence ck

ij ≡ 0 mod pµk−µi−µj is as required.

We finish this section by looking into the case where one of the roundings of a subring
is contained in a different rounding. These rounding chains will be used to improve
the bound for degree 5 and cotype (3, 1, 0, 0), an improvement that is used to obtain
a result requested by Manjul Bhargava. Chapter 8 will state and prove that result.

Proposition 5.31. Let M be a free Zp-module; let r be its rank. Let N ⊂ M be
a sub-Zp-module of cotype λ. Let d1 and d2 be integers with 1 ≤ d1 < d2 ≤ r − 1
and suppose that 0 < λd1

− 2λd1+1 ≤ λd2
− 2λd2+1 holds. Then the rounding ρd1

(N)
of N at d1 contains the rounding ρd2

(N) of N at d2.

Proof. Write µ for the cotype of ρd1
(N) and ν for the cotype of ρd2

(N). From the
proof of proposition 5.27 it follows that there is a basis 〈ω1, . . . , ωr〉 for M such
that ρd1

(N) is generated by {pµiωi}i and ρd2
(N) by {pνiωi}i. The fact that for all i

the inequality µi ≤ νi holds, shows the inclusion.

Define for a free Zp-module M of finite rank r and partitions λ1 and λ2 of length at
most r the set S(M,λ1, λ2) = {(N1, N2) ∈ S(M,λ1) × S(M,λ2) : N2 ⊂ N1}.

Proposition 5.32. Let M be a free Zp-module, let r be its rank. Let λ be a partition
of length at most r and let d1, d2 be integers with 1 ≤ d1 < d2 ≤ r − 1 and 0 <
λd1

− 2λd1+1 = λd2
− 2λd2+1. Write e for λd1

− 2λd1+1 and write for i = 1, 2 the
partition µi = (e)di . Then the map

ρd1,d2
: S(M,λ) → S(M,µ1, µ2)

N 7→ (ρd1
(N), ρd2

(N))

is surjective.
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Furthermore, all fibres of ρd1,d2
have the same cardinality. The fibres of ρd1,d2

satisfy

#ρ−1
d1,d2

((N1, N2)) = Or

(
p(−d2(r−d2)−d1(d2−d1))e+

Pr
i=1((r+1−2i)λi)

)
,

where p ranges over the set of primes, M over the collection of free Zp-modules, e
over the set of positive integers, λ over the set of partitions of length at most the rank
of M , the integer pair (d1, d2) over the integers such that 1 ≤ d1 < d2 ≤ rk(M) − 1
and 0 < λd1

−2λd1+1 = λd2
−2λd2+1 = e, the module pair (N1, N2) over S(M,µ1, µ2)

and r is the rank of M .

Proof. The previous proposition shows that the image of the map is contained in
S(M,µ1, µ2).

For any pair (N1, N2) ∈ S(M,µ1, µ2), let 〈ω′
1, . . . , ω

′
r〉 be a basis of M such that

〈peω′
1, . . . , p

eω′
d2

, ω′
d2+1, . . . , ω

′
r〉 is a basis of N2. Define the submodule Ñ2 ⊂ M to

be the module generated by ω′
1, . . . , ω

′
d2

. Let 〈ω1, . . . , ωd2
〉 be a basis of Ñ2 such that

〈peω1, . . . , p
eωd1

, ωd1+1 . . . , ωd2
is a basis of N1 ∩ Ñ2. It follows that, with ωi = ω′

i

for i > d2 that 〈ω1, . . . , ωr〉 is a basis of M such that 〈peω1, . . . , p
eωdj

, ωdj+1, . . . , ωr〉
is a basis of Nj for j = 1, 2.

This choice of basis shows that AutZp
(M) acts transitively on S(M,µ1, µ2), and

it therefore follows that ρd1,d2
is surjective and that the fibres all have equal size.

Hence all the fibres have size #S(M,λ)
#S(M,µ1,µ2)

.

Recall the definition of u(λ, r) =
∑r

i=1((r + 1 − 2i)λi). By proposition 5.23, we
can bound #S(M,λ) = Or

(
pu(λ,r)

)
.

For all N2 ∈ S(M,µ2), the number of modules N1 ∈ S(M,µ1) with N2 ⊂ N1 ⊂ M
is equal to #S(Ñ2, µ1). So we can bound by proposition 5.23,

1

#S(M,µ1, µ2)
=

1

#S(M,µ1)#S(Ñ2, µ1)

= Or

(
p−u(µ2,r)−u(µ1,d2)

)

= Or

(
p−d2(r−d2)e−d1(d2−d1)e

)
.

Combining these two bounds gives the result.
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Chapter 6

Artinian principal ideal rings

In this chapter, we will study the structure of commutative artinian principal ideal
rings. For some background information on artinian rings, we refer to Atiyah-
Macdonald [1]. Note especially the following two results.

Lemma 6.1. A commutative artinian ring can uniquely be written as a finite product
of local artinian rings.

Proof. [1, theorem 8.7].

Lemma 6.2. For a commutative local artinian ring A the following are equivalent:

1. A is a principal ideal ring;

2. the maximal ideal of A is principal.

Proof. [1, proposition 8.8].

The theory in this chapter will be used in the next chapter to prove proposi-
tion 5.8. We first highlight some of the results that will be used in the next chapter.

Throughout this chapter, Z will be a commutative local artinian principal ideal
ring and A will be a commutative Z-algebra that is an artinian principal ideal ring.
In the next chapter, Z will be the ring Z/peZ for some prime power pe and A will be
the ring OE/peOE with E a finite étale Qp-algebra. The rings in the sets Wd,e(E)
defined in section 5.1, correspond to certain sub-Z-algebras of A.

The first theorem tells us that these subalgebras are artinian principal ideals
themselves.

Theorem 6.3. Let Z be a commutative, local, artinian principal ideal ring, not a
field; let m be the maximal ideal of Z. Let A be a commutative Z-algebra such that
A/m2A is a free Z/m2-module of finite rank and A is an artinian principal ideal
ring. Let B ⊂ A be a sub-Z-algebra such that B is a free Z-module. Then B is an
artinian principal ideal ring.
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We will show that a commutative, local, artinian principal ideal Z-algebra is gen-
erated as a Z-algebra by a single element where the minimal polynomial of that
element is generalized Eisenstein.

Definition 6.4. Let Z be a local ring with maximal ideal m. A polynomial g ∈ Z[X]
is generalized Eisenstein if there exist a monic polynomial h ∈ Z[X], a positive
integer e and for i = 0, . . . , e − 1 a polynomial ci ∈ Z[X] such that

h is irreducible in Z/m[X];

g = he +
∑e−1

i=0 cih
i;

deg(ci) < deg h;

ci ∈ mZ[X];

c0 6∈ m2Z[X].

The notion of generalized Eisenstein has been studied for the case where Z = Zp by
Ford, Pauli and Roblot [3, § 4].

Theorem 6.5. Let Z be a commutative, local, artinian principal ideal ring, not a
field; let m be its maximal ideal. Suppose Z/m is a perfect field. Then a commutative
Z-algebra B that is free of finite rank as a Z-module is a local principal ideal ring
if and only if there exists a generalized Eisenstein polynomial g ∈ Z[X] such that
B ∼= Z[X]/(g).

Let Z be a commutative, local, artinian principal ideal ring, not a field; let m be
the maximal ideal of Z. Suppose Z/m is a perfect field. Let A be a commutative
Z-algebra such that A/m2A is a free Z/m2-module of finite rank and A is an artinian
principal ideal ring.

By theorems 6.3 and 6.5 and lemma 6.1 we can write a sub-Z-algebra B ⊂ A such
that B is a free Z-module, as a finite product

∏
i Bi where each Bi is isomorphic to

Z[X]/(gi) for some polynomial gi ∈ Z[X] that is generalized Eisenstein. Let βi ∈ Bi

be the element corresponding to X. Then Bi = Z[βi] and βi is a zero of gi. Define
the A-ideal

IB = {a ∈ A : a(g′i(βi))i = 0}.
In section 6.5 we will show that the definition of IB does not depend on the choice
of gi or βi. Using the ideals IB for various B, we can define a relation on the set of
sub-Z-algebras B ⊂ A that are free as a Z-module and satisfy I2

B = 0.

Definition 6.6. On the set of artinian principal ideal sub-Z-algebras B ⊂ A such
that B is free as a Z-module and I2

B = 0, we define the relation B1 ≈ B2 if B1

and B2 have the same image in A/IB1
.

This relation will turn out to be an equivalence relation; we show this in section 6.5
together with the following theorem, which counts the number of rings in an equiv-
alence class.
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Definition 6.7. Let Z be a finite, commutative, local, artinian principal ideal ring,
not a field. Write a commutative, finite, local, free, artinian principal ideal Z-
algebra B as B = Z[β], let g be a minimal polynomial of β and define the discrimi-
nant of B over Z to be the integer ∆B/Z = #(B/g′(β)).

In section 6.5 we will show that the definition of ∆B/Z does not depend on the choice
of g or β.

Theorem 6.8. Let Z be a finite, commutative, local artinian principal ideal ring,
not a field; let m be the maximal ideal of Z. Let A be a commutative, finite Z-algebra
such that A is an artinian principal ideal ring.

Suppose B ⊂ A is a local, free, artinian principal ideal sub-Z-algebra satisfying
I2
B = 0. Suppose A is free as a B-module of rank r. Then the number of subalgebras

B′ ⊂ A such that B ≈ B′ is ∆r−1
B/Z .

When we can count the number of equivalence classes, we can bound the number of
subrings B ⊂ A such that I2

B = 0. Part of the next chapter will be to do precisely
that in the case where Z = Z/peZ and A = OE/peOE .

In the next section we recall the basic ring theory to be used in the rest of
the chapter. In section 6.2 artinian principal ideal rings are given a valuation. In
sections 6.3, 6.4 and 6.5 we prove theorems 6.3, 6.5 and 6.8 respectively.

6.1 Basic ring theory

In this section, we state some basic ring theory that will be used in various places
in this chapter and the next.

6.1.1 Products

The next lemma will be used in many places to reduce the theory for global rings
to that of local rings.

Lemma 6.9. Let T be a commutative ring and R a commutative T -algebra. Suppose
we can write T =

∏
i∈I Ti as a finite product of rings. Then R =

∏
i∈I Ri is a product

of rings where Ri is a Ti-algebra.

Proof. Let Ri = R⊗T Ti for all i ∈ I. Then Ri is a Ti-algebra and as rings we have

R = R ⊗T T = R ⊗T

∏

i∈I

Ti =
∏

i∈I

(R ⊗T Ti) =
∏

i∈I

Ri.

62



6.1.2 Differentials

The definitions of IB and ∆B/Z from the introduction are a bit ad hoc. The more
natural way to define this ideal is to look at differentials. We define the differentials
here and will show the connection with IB and ∆B/Z in section 6.5.

Let T be a commutative ring and R a commutative T -algebra. Denote by ΩR/T

the R-module of relative differentials of R over T , see [6, chapter 10, §26.C] for a
definition. Define the different DR/T to be the annihilator of ΩR/T , that is,

DR/T = {r ∈ R | ∀x ∈ ΩR/T : rx = 0}.

Note that DR/T is an R-ideal.

Lemma 6.10. Let T be a commutative ring and R a commutative T -algebra. If
R = T [X]/(f) holds for some polynomial f , then DR/T is the ideal generated by f ′.
Furthermore, we have ΩR/T

∼= R/DR/T .

Proof. From [6, chapter 10, §26, theorem 58], we have the following exact sequence
of R-modules.

(f)/(f)2 → ΩT [X]/T ⊗T [X] R → ΩR/T → 0

From [6, chapter 10, §26.E, example 1], we have ΩT [X]/T = T [X]dX ∼= T [X], so we
obtain ΩT [X]/T ⊗T [X]R ∼= T [X]⊗T [X]R ∼= R. The first map from the exact sequence
becomes the map

(f)/(f)2 →ΩT [X]/T ⊗T [X] R = T [X]dX ⊗T [X] R ∼= R

f̄ 7→ df ⊗ 1 = f ′dX ⊗ 1 7→f ′,

so ΩR/T
∼= R/im((f)/(f)2) = R/(f ′). The annihilator of the module R/(f ′) is the

ideal generated by f ′.

Lemma 6.11. Let T be a commutative ring and let R1 and R2 be commutative
T -algebras. Define R = R1 × R2. Then the different of R over T is DR/T =
DR1/T × DR2/T .

Proof. Define the multiplicative systems S1, S2 ⊂ R by S1 = {(1, 1), (1, 0)} and S2 =
{(1, 1), (0, 1)} According to [6, chapter 10, §26.G example 2], we have ΩS−1

i R/T
∼=

S−1
i ΩR/T . Since S−1

i R = Ri for i = 1, 2 and S−1
1 ΩR/T ×S−1

2 ΩR/T
∼= ΩR/T , we have

ΩR1/T × ΩR2/T
∼= ΩR/T .

6.1.3 Hensel

In the theory of this chapter we will want to construct zeroes of polynomials in
certain rings. When we have partial information on those zeroes, for example the
residue class modulo some ideal, we can use Hensel theory to find a zero.

The theory in this section is from [2, chapter 7].
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Definition 6.12. Let R be a commutative ring and a an ideal of R. Then the ring
R̂a = lim←−i

R/ai is called the completion of R with respect to a.
When the natural map

R → R̂a

x 7→ (x mod ai)i

is a ring isomorphism, we will say that R is complete with respect to a.

Lemma 6.13. Let R be a commutative ring and m an ideal of R such that R is
complete with respect to m. Let f ∈ R[X] be a polynomial.

If a ∈ R is such that f(a) ≡ 0 mod (f ′(a)2mk) for some k ∈ Z≥1, then there
exists an element b ∈ R such that f(b) = 0 and b ≡ a mod (f ′(a)mk).

Furthermore, if f ′(a) is not a zero divisor, then b is unique.

Proof. This follows almost directly from [2, theorem 7.3]. The only thing left to
prove is that whenever R is complete with respect to m, it is also complete with
respect to mk for any positive k. This is clear from the fact that

R̂m → R̂mk

(xi)i 7→ (xki)i

is an isomorphism.

6.2 Valuations

This section provides us with a way of describing commutative artinian principal
ideal rings. We will use this description in the proof of theorem 6.3. For semigroups,
see chapter 2.

Definition 6.14. A valuation on a ring Z is a morphism of semigroups from Z
with its multiplicative structure to a semigroup H.

Definition 6.15. Let l ≥ 0 and m > 0 be integers. Define an equivalence relation ∼
on 1

mZ≥0 ⊂ Q by i
m∼ j

m when i = j holds or both i and j are at least l. The
set Hl/m =

(
1
mZ≥0

)
/∼ is a semigroup where the operation is addition. We write

Hl for the semigroup Hl/1.

Note that for all l, m and m′ the semigroups Hl/m and Hl/m′ are isomorphic.
Furthermore, products of these semigroups with componentwise operation are semi-
groups themselves.

The ordering on Z gives rise to a total ordering on Hl/m and we define a partial
ordering on

∏
i Hli/mi

by saying (ai)i ≥ (bi)i if ai ≥ bi for all i.
We will sometimes view Hl/e as subset of Q with l/e ∈ Q the chosen representa-

tive for [l/e] ∈ Hl/e. Note that this inclusion respects the ordering, but that addition
is only respected as long as the answer is at most l/e.
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Proposition 6.16. Let A be a commutative ring and t ≥ 0 an integer. Then the
following are equivalent:

1. A is an artinian principal ideal ring with t maximal ideals;

2. there are positive integers (li)
t
i=1 and a surjective valuation φA : A → ∏t

i=1 Hli

such that for a, b ∈ A the inequality φA(a) ≥ φA(b) implies that a ∈ bA.

We start the proof of this proposition by defining for commutative, artinian principal
ideal rings A the valuation φA.

For a commutative, local, artinian principal ideal ring A, we denote by πA a
generator of the maximal ideal of A. The chain A ⊃ πAA ⊃ π2

AA ⊃ . . . is fi-
nite, say πl

AA = πl+1
A A. Write πl

A = πl+1
A x for some x ∈ A. Then we have

πl
A(1 − πAx) = 0. Since 1−πAx is not in πAA, it is invertible. So the element πA is

nilpotent. Define lA, the length of A, to be the smallest integer l such that πl
A = 0

holds. (This length is the length of A as A-module.)

Definition 6.17. For a commutative, local artinian principal ideal ring A, take
l = lA and define the map φA : A → Hl in the following way. For an element a ∈ A,

with a 6= 0, the value φA(a) is the integer such that a ∈ π
φA(a)
A A and a 6∈ π

φA(a)+1
A A.

We also set φA(0) = lA.
Using lemma 6.1, we write a general commutative, artinian principal ideal ring A

as
∏

i Ai, a finite product of commutative, local, artinian principal ideal rings.
Take li = lAi

and define the map

φA : A →
∏

i

Hli

a = (ai)i 7→ (φAi
(ai))i.

Next, we show that for local rings A the map φA has the desired properties.

Lemma 6.18. Let A be a commutative, local, artinian principal ideal ring with
a maximal ideal generated by πA. Then every ideal of A is generated by πi

A for
some i ∈ Z≥0.

The map φA is a surjective valuation such that for a, b ∈ A the inequality φA(a) ≥
φA(b) implies that a ∈ bA.

Furthermore, A is complete with respect to its maximal ideal.

Proof. For an element a ∈ A with a 6= 0, we can write a = a′πφA(a)
A for some a′ 6∈ πAA,

which implies a′ ∈ A∗. So the ideal (a) equals
(
π

φA(a)
A

)
. Hence every ideal I of A

is generated by πi
A, with i = mina∈I{φA(a)}.

All elements a, b ∈ A satisfy
(
π

φA(ab)
A

)
= (ab) = (a)(b) =

(
π

φA(a)
A

) (
π

φA(b)
A

)
=

(
π

φA(a)+φA(b)
A

)
.

Hence φA is a valuation. Furthermore, if a, b ∈ A are such that φA(a) ≥ φA(b) holds,

then we have the inclusion aA = π
φ(a)
A A ⊂ π

φ(b)
A A = bA.
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Since πlA
A = 0 implies that we have Â(πA)

∼= A/(πlA
A ) = A, the ring A is complete

with respect to (πA)

Proof of proposition 6.16. Let A be a commutative, artinian principal ideal ring.
Write A =

∏t
i=1 Ai as a finite product of local rings and let φA be the map from

definition 6.17. By lemma 6.18 and the properties of the product, this map is a
valuation and it satisfies the requirements.

In this case t is equal to the number of maximal ideal of A.

On the other hand, let φ : A → ∏t
i=1 Hli be a valuation with the required properties.

Denote by φi : A → Hli the valuation followed by projection on the i-th coordinate.

Let ei ∈ A be such that

φj(ei) =

{
0 if i = j
lj if i 6= j

.

Suppose 1 ≤ i ≤ t and a, b ∈ A are such that φi(a) ≥ φi(b). By definition of ei,
we have φ(eia) ≥ φ(eib), so we can write eia = eibx for some x ∈ A. Hence, the
inequality φi(a + b) = φi(ei) + φi(a + b) = φi(eia + eib) = φi(eib(x + 1)) ≥ φi(b)
holds. Without loss of generality, we can conclude that for all i and a, b ∈ A the
inequality

φi(a + b) ≥ min(φi(a), φi(b)) (6.19)

holds.

Now, let I ⊂ A be an ideal, and let for i = 1, . . . , t the elements yi ∈ I be such
that φi(yi) is minimal. Note that the elements xi = eiyi ∈ A satisfy φj(xi) = lj
whenever i and j are different. Define x =

∑
i xi ∈ I and take an element a ∈ A

that for all i satisfies φi(a) = φi(xi). Then for all i we have φ(xi) ≥ φ(a). Therefore
we have x ∈ aA, hence we obtain φi(x) ≥ φi(a) = φi(xi). Using (6.19), we also

have φi(xi) = φi

(
x − ∑

j:j 6=i xj

)
≥ minj:j 6=i(φi(x), φi(xj)) = φi(x). We obtain

that φi(x) = φi(xi) holds for all i. By the minimality of φi(xi), any element b ∈ I
satisfies φ(b) ≥ φ(x) and is therefore in xA. Hence, the ideal I is generated by x
and A is a principal ideal ring.

Let IdA be the set of A-ideals with a partial order defined by inclusion. Then we
have shown that the map

IdA →
∏

i

Hli

aA 7→ φA(a)

is well-defined. The properties of φA makes it into an anti-isomorphism of partially
ordered sets. This shows that A has only finitely many ideals, and hence is artinian.
It also gives a bijection between the set of maximal A-ideals and the set of minimal
non-zero elements of

∏
i Hli , of which there are exactly t.
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In the next lemma we describe a different set of requirements on a valuation for a
commutative, local, artinian principal ideal ring that is equivalent to the require-
ments from proposition 6.16. These new requirements are easier to check and will
be used in the proof of theorem 6.3.

Lemma 6.20. Let A be a commutative ring, l ≥ 0 an integer and φ : A → Hl a
valuation. Then the following are equivalent:

1. φ is surjective and for a, b ∈ A the inequality φ(a) ≥ φ(b) implies a ∈ bA;

2. the fibre φ−1(0) is A∗ and the fibre φ−1(l) is {0}; there exists πA ∈ φ−1(1)
that satisfies {a ∈ A : φ(a) ≥ 1} ⊂ πAA.

Proof. We start by showing that the first set of requirements implies the second.
First, let b ∈ A with φ(b) = 0. Then 1 ∈ bA shows that b ∈ A∗. Also, if b′ ∈ A∗

holds, then we have φ(b′) ≤ φ(b′) + φ(b′−1b) = φ(b) = 0. Second, for a ∈ φ−1(l) the
inequality φ(a) ≥ φ(0) shows a ∈ 0A, that is, a = 0. Finally, take πA ∈ φ−1(1).
Then all a ∈ A such that φ(a) ≥ 1 = φ(πA) satisfy a ∈ πAA.

Now we show that the second set of requirements implies the first. For 1 ≤ k ≤ l,
we have φ(πk

A) = k, and φ(1) = 0, so φ is surjective.

We will prove that the inequality φ(a) ≥ φ(b) implies a ∈ bA by induction
on φ(b). For the induction basis where φ(b) = 0, we have b ∈ A∗, so every a ∈ A is
in bA. Next, let k be such that 1 ≤ k < l. Suppose the statement is true for all b′

with φ(b′) < k. Let b ∈ A be such that φ(b) = k and a ∈ A such that φ(a) ≥ k.
Since k ≥ 1, there exist a′, b′ ∈ A such that a = a′πA and b = b′πA. Now, since
φ(b) < l, we have φ(a′) ≥ φ(a)− 1 ≥ φ(b)− 1 = φ(b′). By the induction hypothesis,
we have a′ ∈ b′A and so a = a′πA ∈ b′πAA = bA.

If b ∈ A satisfies φ(b) = l, then any a with φ(a) ≥ φ(b) equals 0, so a ∈ bA is
true in that case as well.

We conclude this section with two lemmas on valuations used in sections 6.3 and 6.5
respectively.

Lemma 6.21. Let Z be a commutative, local, artinian principal ideal ring; let πZ be
a generator of its maximal ideal. Let be A a commutative, local, artinian principal
ideal Z-algebra. Denote φA(πZ) by eA.

If A is free as a Z-module of finite rank, then its length is lA = eAlZ .

Proof. Let πA be a generator of the maximal ideal of A. We can take a basis
of A/πZA over Z/πZZ with πeA−1

A as one of the basis elements. Using Nakayama’s

lemma, we lift this basis to a basis of A. When A is free, the element πlZ−1
Z πeA−1

A is
not 0. The length of A is therefore at least (lZ − 1)eA + eA − 1 + 1 = eAlZ . On the

other hand, we have
(
πeAlZ

A

)
=

(
πlZ

Z

)
= 0, so the length of A is at most eAlZ .
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Lemma 6.22. Let Z be a commutative, local, artinian principal ideal ring, not a
field; let πZ be a generator of its maximal ideal. Let the Z-algebra A be a commuta-
tive, artinian principal ideal ring such that A/π2

ZA is a free Z/π2
ZZ-module of finite

rank.

Then we have the inclusion {x ∈ A : x2 = 0} ⊂ πZA.

Proof. Write A =
∏

m
Am as a finite product of local artinian principal ideal rings.

To ease notation, we will write m as subscript instead of Am. Denote φm(πZ) by em.

Because A/π2
ZA is free as a Z/π2

ZZ-module, it follows from lemma 6.21 that for
any localization Am of A, we have lm ≥ lAm/π2

ZAm
= emlZ/π2

ZZ = 2em. Every x ∈ A

with x2 = 0 satisfies for all m ∈ MaxSpec(A) the inequality φm(x) ≥ lm/2 = em =
φm(πZ). This implies φA(x) ≥ φA(πZ). Now x ∈ πZA follows from proposition 6.16.

6.3 Subalgebras

In this section, we prove theorem 6.3. We will use the valuation from the previous
section. To be able to compare valuations of different algebras over the same base
ring, we first define a scaling of the valuations.

Notation 6.23. Let Z be a commutative, local, artinian principal ideal ring; let πZ

be a generator of its maximal ideal. For a commutative Z-algebra A that is also a
local artinian principal ideal ring, we denote φA(πZ) by eA. Denote by ψ the natural
isomorphism HlA → HlA/eA

. The scaling of φA is the valuation φ̃A = ψφA.

We write a general commutative, artinian principal ideal Z-algebra A as
∏

i Ai, a
finite product of commutative, local, artinian principal ideal Z-algebras. The scaling
of φA is the valuation φ̃A =

∏
i φ̃Ai

.

The valuation φ̃A is a scaled version of φA that behaves nicely under inclusions.

Proposition 6.24. Let Z be a commutative, local, artinian principal ideal ring,
not a field; let πZ be a generator of its maximal ideal. Let the Z-algebra A be a
commutative artinian principal ideal ring such that A/π2

ZA is a free Z/π2
ZZ-module

of finite rank. Let B ⊂ A be a local sub-Z-algebra such that πZA ∩ B = πZB.

Then there exist an integer l, a valuation φB : B → Hl and an element πB ∈ B
such that

φ−1
B (0) = B∗,

φ−1
B (l) = {0},

φB(πB) = 1 and

{b ∈ B : φB(b) ≥ 1} ⊂ πBB.
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Proof. Write A =
∏

m
Am as a finite product of local artinian principal ideal rings.

To ease notation, we will write m as subscript instead of Am. Since A/π2
ZA is a free

Z/π2
ZZ-module, by lemma 6.21 we obtain for all m the inequality lm ≥ lAm/π2

ZAm
=

emlZ/π2
ZZ = 2em.

Since A/π2
ZA is finite over Z, and therefore A also, the ring B is finite over Z.

Since Z is artinian, B is also artinian.

Next, we show that for every ideal m ∈ MaxSpec(A) the valuation φ̃m satisfies
B∗ = φ̃−1

m (0) ∩ B. Take an element x ∈ φ̃−1
m (0) ∩ B. Then x is locally at m

invertible, hence it is not nilpotent; since B is local and artinian, we obtain x ∈ B∗.
On the other hand,

B∗ ⊂ A∗ ∩ B =

(
⋂

m

φ̃−1
m (0)

)
∩ B ⊂ φ̃−1

m (0) ∩ B

shows that B∗ ⊂ φ̃−1
m (0) ∩ B for every maximal ideal m.

Now we prove the following claim.

Claim. For all elements x ∈ B and ideals n, n′ ∈ MaxSpec(A) we have

min(ln′/en′ , φ̃n(x)) = min(ln/en, φ̃n′(x)).

Proof of claim. Suppose there exist x ∈ B and n, n′ ∈ MaxSpec(A) such that the
claim is not true. Take x and n such that φ̃n(x) is minimal with this property. We
have φ̃n(x) ≤ φ̃n′(x) ≤ ln′/en′ and φ̃n(x) ≤ ln/en. The only possible case is φ̃n(x) =
min(ln′/en′ , φ̃n(x)) < min(ln/en, φ̃n′(x)). Note that in particular, φ̃n(x) < ln/en and
φ̃n(x) < φ̃n′(x) ≤ ln′/en′ hold.

If there exists m ∈ MaxSpec(A) such that φ̃m(x) < φ̃n(x), then, by the minimality
of φ̃n(x), we have min(lm/em, φ̃n(x)) = min(ln/en, φ̃m(x)), which can only happen
if lm/em = φ̃m(x). We see that for all m ∈ MaxSpec(A) either φ̃n(x) ≤ φ̃m(x), or
φ̃m(x) ≥ 2 holds.

Suppose φ̃n(x) ≥ 1 holds, then by the previous remark, we have φ̃A(x) ≥
(1, 1, . . . , 1) and x ∈ πZA. By the assumption on B, we can write x = πZx′ with
x′ ∈ B. The strict bound φ̃n(x′) < φ̃n(x) < ln′/en′ and the minimality of φ̃n(x)
tell us φ̃n(x′) = min(ln′/en′ , φ̃n(x′)) = min(ln/en, φ̃n′(x′)). Since we also have the
strict bound φ̃n(x′) < φ̃n(x) < ln/en, we obtain φ̃n(x′) = φ̃n′(x′). Therefore, we
have equality in φ̃n(x) = φ̃n(x′) + 1 = φ̃n′(x′) + 1 ≥ φ̃n′(x), a contradiction with the
inequality φ̃n(x) < φ̃n′(x).

If we have φ̃n(x) = 0, then x ∈ B∗ shows that φ̃n′(x) = 0 holds as well.
For the final case where 0 < φ̃n(x) < 1, we first note that φ̃n(x) is the minimum

over m ∈ MaxSpec(A) of φ̃m(x). Let k ∈ Z be such that (k − 1)φ̃n(x) < 1 ≤
kφ̃n(x) holds. By the minimality of φ̃n(x) and the fact that lm/em ≥ 2 for all
m ∈ MaxSpec(A), we have the inequality (1, 1, . . . , 1) ≤ kφ̃A(x) and xk ∈ πZA.
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When we write xk = πZx′ and apply the valuation, we get the strict bound 1 +
φ̃n(x′) = kφ̃n(x) = (k − 1)φ̃n(x) + φ̃n(x) < 2 ≤ ln/en. The structure of Hln/en

gives φ̃n(x′) = kφ̃n(x) − 1 < φ̃n(x). From the minimality of φ̃n(x) it follows that
φ̃n(x′) = φ̃n′(x′). We see φ̃n(xk) = φ̃n(x′) + 1 = φ̃n′(x′) + 1 = φ̃n′(xk). Since this
expression is less than 2 and hence less than ln′/en′ , we obtain φ̃n(x) = φ̃n′(x).
Hence x, n and n′ do not exist.

Let m ∈ MaxSpec(A) be such that lm/em is maximal and define φ̃B = φ̃m|B . This
map is a valuation, since φ̃m is a valuation. We will show that this valuation re-
stricted to its image has the desired properties, including the property that its image
is isomorphic to Hl for some integer l.

We already saw that φ−1
B (0) = φ−1

m (0) ∩ B = B∗.

By the choice of m, we have for all x ∈ A and n ∈ MaxSpec(A) the inequal-
ity φ̃n(x) ≤ lm/em. So, as a direct consequence of the claim, we have for all x, y ∈ B
with φ̃m(x) ≥ φ̃m(y) and all n ∈ MaxSpec(A) the inequality

φ̃n(x) = min(lm/em, φ̃n(x)) = min(ln/en, φ̃m(x))

≥ min(ln/en, φ̃m(y)) = min(lm/em, φ̃n(y)) = φ̃n(y).

We see that if x, y ∈ B satisfy φ̃B(x) ≥ φ̃B(y), then we also have φ̃A(x) ≥ φ̃A(y).

Take x ∈ B with φ̃B(x) ≥ φ̃B(0). Then by the previous remark, φ̃A(x) ≥ φ̃A(0).
Hence x = 0 follows from the properties of φA from proposition 6.16.

Next, we will show that the image φ̃B(B) ⊂ Hlm/em
is equal to HlB/eB

for some

integers lB , eB ∈ Z>0. Let πB ∈ B be such that φ̃B(πB) is non-zero and minimal
with this property. Let eB ∈ Z>0 be such that (eB − 1)φ̃B(πB) < 1 ≤ eBφ̃B(πB).
It now follows from the consequence of the claim that φ̃A(πZ) ≤ φ̃A(πeB

B ). From
the requirement that πZA ∩ B = πZB it follows that there exists x ∈ B such
that πeB

B = πZx. The inequality φ̃B(x) < φ̃B(πB) shows that x ∈ B∗. So, we

have eBφ̃B(πB) = 1.
Now, let y ∈ B be an element with φ̃B(y) < 1. Let k ∈ Z be such that

(k − 1)φ̃B(πB) + φ̃B(y) < 1 ≤ kφ̃B(πB) + φ̃B(y), and write yπk
B = πZy′ with

y′ ∈ B. Then the inequality φ̃B(y′) < φ̃B(πB) shows that φ̃B(y′) = 0, and
φ̃B(y) = eB−k

eB
∈ Z 1

eB
∩ Hlm/em

.

For general x ∈ B with x 6= 0, we can write x = π
⌊φ̃B(x)⌋
Z y, with y ∈ B such that

φ̃B(y) < 1. So φ̃B(x) = eB⌊φ̃B(x)⌋ + φ̃B(y) is in Z 1
eB

∩ Hlm/em
as well.

With lB = ⌈(lm/em)eB⌉, we have φ̃B(0) = [lm/em] = [lB/eB ]. Hence we obtain
φ̃B(B) ∼= HlB/eB

.

It remains to show that every b ∈ B such that φ̃B(b) ≥ φ̃B(πB) satisfies b ∈ πBB.
Let b ∈ B be such an element. We can write πZ = πBx for some x ∈ B. The
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inequality φ̃B(bx) ≥ φ̃B(πZ) now gives us bx ∈ πZA ∩ B = πZB. If we write
bx = πZy = πBxy, then we see πZ(b − πBy) = πBx(b − πBy) = 0. Applying
the valuation, we get φ̃B(πZ) + φ̃B(b − πBy) ≥ lB/eB ≥ 2. Hence, we obtain
φ̃B(b − πBy) ≥ 1. This implies b − πBy ∈ πZB ⊂ πBB.

Now we can tie everything together to prove theorem 6.3. We restate this theorem
below with a slight notational difference.

Theorem 6.3. Let Z be a commutative, local, artinian principal ideal ring, not
a field; let πZ be a generator of its maximal ideal. Let A be a commutative Z-
algebra such that A/π2

ZA is a free Z/π2
ZZ-module of finite rank and A is an artinian

principal ideal ring. Let B ⊂ A be a sub-Z-algebra such that B is a free Z-module.
Then B is an artinian principal ideal ring.

Proof. First assume B is local. Since B is free, we have the inclusion πZB =
AnnB(πlZ−1

Z ) = AnnA(πlZ−1
Z ) ∩ B ⊃ πZA ∩ B. The reverse inclusion is clear.

Now we use proposition 6.24 to conclude that B has a valuation with the second
set of properties from lemma 6.20. Hence, from lemma 6.20 and proposition 6.16,
we obtain that B is a local artinian principal ideal ring.

If B is a general ring, write B =
∏

m
Bm as a finite product of local rings.

Kaplansky’s theorem [5], which states that over a local ring every projective module
is free, shows that each ring Bm is free as a Z-module and therefore a local artinian
principal ideal ring. Hence B is an artinian principal ideal ring.

6.4 Generalized Eisenstein

We start this section with proving theorem 6.5. The proof is split into two parts. In
proposition 6.25 we show the implication from left to right and in proposition 6.26
we show the reverse.

After these two propositions, we will continue with some theory on IB.

Proposition 6.25. Let Z be a commutative, local, artinian principal ideal ring, not
a field; let πZ be a generator of its maximal ideal. Suppose Z/πZZ is a perfect field.
Let B be a commutative Z-algebra that is free of finite rank as a Z-module. Suppose
B is a local principal ideal ring.

Then there exists a generalized Eisenstein polynomial g ∈ Z[X] such that B is
isomorphic to Z[X]/(g).

Proof. Write F for the field Z/πZZ. The ring B/πBB is an F -algebra, that is,
B/πBB is an extension of F . So we can write B/πBB = F (ā). Let h̄ ∈ F [X] be the
monic irreducible minimal polynomial of ā, let h be a monic lift of h̄ to Z[X] and
let ã be a lift of ā to B.

Since F is perfect, h′(ã) is not in (πB), so by Hensel’s lemma, there is a unique
a ∈ B such that a is a zero of h and a = ā holds in F .
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The element β = a + πB is also a lift of ā. So Z[β] maps onto the entire residue
class field B/πBB and since we have h(β) = h(a + πB) = h(a) + h′(a)πB + xπ2

B ≡
h′(a)πB mod (π2

B) and h′(a) 6∈ (πB), it also contains a generating element of (πB).
If we view Z[β] as subset of B/π2

BB, we see it is equal to B/π2
BB. According to [4,

II-7.4] the embedding Z[β] → B is surjective and therefore it is an isomorphism.
View multiplication by β as a Z-linear map and let g ∈ Z[X] be the characteristic

polynomial of this map. By Cayley-Hamilton theorem [7] the element β is a zero
of g. Furthermore, since the degree of g is exactly the rank of B over Z, we obtain
B ∼= Z[X]/(g).

Viewing this isomorphism modulo πZ gives B/πZB ∼= (Z/πZZ)[X]/(g). Define
e = φB(πZ). We obtain deg(g) = rkF (B/πZB) = rkF (B/πe

BB) = e rkF (B/πZB) =
edeg(h). The polynomials g and h are monic, so through repeated division with
remainder, we can write

g = he +

e−1∑

i=0

cih
i,

where ci ∈ Z[X] are such that deg(ci) < deg(h). Hence we have

h(β)e =
e−1∑

i=0

−ci(β)h(β)i.

The valuation in B of h(β) = h(a+πB) = h(a)+πBh′(a)+π2
Bx = πB(h′(a)+πBx)

is 1. Furthermore, for each i we either have ci = 0, or we can write ci = πki

Z c̃i, for
some integer ki and polynomial c̃i ∈ Z[X] \ πZZ[X]. In B/πBB we have c̃i(β) =
c̃i(a) 6= 0, so the valuation of ci(β) is a multiple of e.

From the equality

e = φB(h(β)e) = φB

(
e−1∑

i=0

−ci(β)h(β)i

)
= min

i:ci 6=0
(φB(ci(β) + i)),

where the last step follows from the fact that all φB(ci(β)) + i are different, we
see that φB(ci(β)) ≥ e and φB(c0(β)) = e. In other words, ci ∈ πZZ[X] and
c0 6∈ π2

ZZ[X].

Proposition 6.26. Let Z be a local, artinian principal ideal ring. Let g ∈ Z[X] be a
generalized Eisenstein polynomial. Then Z[X]/(g) is a commutative, local, artinian
principal ideal ring that is free as a Z-module.

Proof. Write g = he +
∑

i cih
i with h, e and ci as in the definition of generalized

Eisenstein. Write B for Z[X]/(g).
The polynomial g is monic, so B is free of finite rank as a Z-module. This also

shows that B is artinian.
Let πZ be a generator of the maximal ideal of Z. Since πZ is nilpotent, any

maximal ideal of B contains πZ and is therefore a contraction of a maximal ideal of

B/πZB = (Z/πZZ)[X]/(g) = (Z/πZZ)[X]/(he).
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Since h is irreducible in (Z/πZZ)[X], the only maximal ideal of B/πZB is generated
by h. Hence, the only maximal ideal of B is (h, πZ)B.

In B we have 0 = h(he−1 +
∑e−1

i=1 cih
i−1) + c0, which shows that c0 ∈ hB. Let

c ∈ Z[X] be a polynomial such that πZc = c0. Now, from deg c = deg(c0) < deg h
and c 6∈ πZZ[X] we deduce that c is invertible in (Z/πZZ)[X]/(h) = Z[X]/(πZ , h) =
Z[X]/(πZ , h, g) = B/(πZ , h)B, and hence in B. This shows that c0 and πZ generate
the same B-ideal. Now, the inclusion πZB = c0B ⊂ hB shows the maximal ideal
(πZ , h)B = hB is a principal ideal. Hence B is a principal ideal ring by lemma 6.2.
Since Z[X] is commutative, B is commutative.

Combining propositions 6.25 and 6.26 completes the proof of theorem 6.5.
To get a handle on the condition I2

B = 0 from theorem 6.8, we would like to bound
g′(X) for generalized Eisenstein polynomials. This is done through the following
proposition.

Proposition 6.27. Let Z be a commutative, local, artinian principal ideal ring and
g ∈ Z[X] a generalized Eisenstein polynomial. Write B = Z[X]/(g) and let φB the
valuation on B from proposition 6.16. Let e be as in the definition of generalized
Eisenstein.

Then we can bound φB(g′(X)) ≤ φB(deg(g)) + e − 1. If φB(e) = 0, that is, if e
is invertible in Z, we have φB(g′(X)) = e − 1.

In the proof of this proposition, we use the following lemma.

Lemma 6.28. Let Z be a commutative, local, artinian principal ideal ring and
g ∈ Z[X] a generalized Eisenstein polynomial. Write B = Z[X]/(g) and let φB the
valuation on B from proposition 6.16. Let h ∈ Z[X], e ∈ Z and ci ∈ Z[X] be as in
the definition of generalized Eisenstein.

Then every element b ∈ B can be written as

b =

e−1∑

i=0

sih
i

with

si =

deg h−1∑

j=0

si,jX
j ∈ Z[X].

Furthermore, the valuation φB(b) is equal to mini,j φB(si,jh
i).

Proof. View b ∈ B as a polynomial in Z[X] of degree less than deg(g). Since h is

monic, we can use repeated division with remainder by h to write b =
∑e−1

i=0 sih
i

with si ∈ Z[X] of degree less than deg(h).
If b is 0, then every si is 0 and and for every i and j we have φB(b) = φB(si,jh

i).
Suppose b is non-zero and let i be such that si is non-zero. Since deg(si) < deg(h), we
know that φB(si) = minj(φZ(si,j)e). For every i with si 6= 0, the value φB(sih

i) =
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minj(φZ(si,j)e) + i is unique. In particular, the minimum of φB(sih
i) is unique. It

follows that

φB(b) = min
i

φB(sih
i)

= min
i

min
j

(φZ(si,j)e) + i

= min
i,j

φB(si,jh
i).

Proof of proposition 6.27. Let h, ci ∈ Z[X] be as in the definition of generalized
Eisenstein; write ce = 1. The first claim follows from the lemma; we write

g′(X) =

e−1∑

i=0

(dih
i−1)

with di ∈ Z[X] of degree less than deg(h), and see that

φB(g′(X)) = min
i,j

φB(di,jh
i)

≤ φB(de−1,deg(h)−1h
e−1)

= φB(deg(g)) + e − 1.

The last statement of the proposition follows from the fact that if e is invertible,
then eh′ is invertible. The term eh′he−1 in g′(X) =

∑e−1
i=0 (c′i + (i + 1)ci+1h

′) hi has
valuation e − 1, which is less than the valuation of the other terms; each of those
terms is in πZZ[X] and therefore has valuation at least e.

Let Z be a commutative, local, artinian principal ideal ring, not a field; let m be the
maximal ideal of Z. Suppose Z/m is a perfect field. Let A be a commutative Z-
algebra such that A is a free Z-module of finite rank n and A is an artinian principal
ideal ring.

Write a sub-Z-algebra B ⊂ A such that B is a free Z-module as a finite product∏
i Bi, where each Bi is isomorphic to Z[X]/(gi) for some polynomial gi ∈ Z[X] that

is generalized Eisenstein. Let βi ∈ Bi be the element corresponding to X. Then Bi

is equal to Z[βi] and βi is a zero of gi. Define the A-ideal

JB = {a ∈ A : a(g′i(βi)
2)i = 0}

and recall the definition of

IB = {a ∈ A : a(g′i(βi))i = 0}.

The ideal JB does not depend on the choice of βi, which we will show in the next
section.

The last proposition of this section tells us that the condition I2
B = 0 is satis-

fied for all B, when lZ is large enough in comparison to n. It also contains some
statements that are useful for checking the conditions of lemma 6.13.
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Proposition 6.29. Let Z be a commutative, local, artinian principal ideal ring;
let πZ be a generator of its maximal ideal. Suppose Z/πZZ is a perfect field. Let A
be a commutative Z-algebra such that A is free of finite rank n as Z-module and A
is an artinian principal ideal ring. Suppose 2(maxj=1,...,n(φZ(j)) + 1) ≤ lZ . Then
for every Z-algebra B ⊂ A that is free as a Z-module we have

I2
B = 0,

the ring A is complete with respect to JB and

IB = (g′i(βi))iJB.

Proof. First we suppose that B is local and we write B = Z[X]/(g) with g general-
ized Eisenstein. Then by the previous proposition, we can bound

φ̃B(g′(X)) =
φB(g′(X))

e

≤ φB(deg g) + e − 1

e
=

eφZ(deg g) + e − 1

e
< φZ(deg g) + 1 ≤ max

j=1,...,n
(φZ(j)) + 1.

Since A is free, for each n ∈ Spec(A) we have by lemma 6.21 that ln/en = lZ . The
claim in the proof of proposition 6.24 now gives for each element x ∈ B and every
pair n, n′ ∈ Spec(A) the equality φ̃n(x) = φ̃n′(x), in particular, since φB was defined
as the restriction of φm for some m ∈ MaxSpec(A), we have φB(g′(X)) = φn(g′(X)).

Let δ1, δ2 ∈ IB and n ∈ MaxSpec(A). Then in Hln/en
we have the inequality

φ̃n(δ1δ2) = φ̃n(δ1) + φ̃n(δ2)

≥ 2(lZ − φ̃n(g′(X)))

≥ lZ + lZ − 2

(
max

j=1,...,n
(φZ(j)) + 1

)

≥ lZ .

We see that δ1δ2 = 0 and I2
B = 0.

For the general case, write B =
∏

i Bi as a product of local rings and let
A =

∏
i Ai be the corresponding product from lemma 6.9. Each Ai is free as a

Z-module of rank at most n, so the condition is satisfied for each local part. Fur-
thermore, since IB =

∏
i IBi

, where each IBi
is a subset of Ai respectively, we can

conclude from the local case that I2
B =

∏
i I2

Bi
= 0.

The inequality 2φ̃B(g′(X)) < lZ is not an equality, hence JB is contained in every
maximal ideal of A and therefore A is complete with respect to JB .

If a ∈ JB is an element, then the equality ((g′i(βi))ia)(g′i(βi))i = a(g′i(βi)
2)i = 0

shows that ((g′i(βi))ia) is an element of IB. On the other hand, write an element
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a = (am)m ∈ IB locally as am = umπ
φm(am)
m , where um is a unit in Am. Also write

(g′i(βi)) = (bm)m locally as bm = vmπ
φm(bm)
m , where vm is again a unit in Am.

Now a ∈ IB implies that φm(am) − φm(bm) ≥ lm − 2φm(bm) > 0; this shows

that xm = umv−1
m π

φm(am)−φm(bm)
m ∈ Am is well-defined. Furthermore, the element

x = (xm)m satisfies xb2 = ab = 0, so it is in JB . Hence we can write a = bx as an
element of (g′i(βi))iJB .

6.5 Equivalence on artinian ideal rings

In this section we will show that the definitions of IB and ∆B/Z from the introduction
and that of JB from the previous section depend only on B and not on the choices
made. Furthermore, we will show that ≈ is an equivalence relation. After that we
prove theorem 6.8.

In this section, Z is a commutative, local, artinian principal ideal ring such that
the length lZ of Z is at least 2 and Z/πZZ is a perfect field. Furthermore, A is
a commutative Z-algebra such that A/π2

ZA is free as Z/π2
ZZ-module and A is an

artinian principal ideal ring.

Let B ⊂ A be a principal ideal sub-Z-algebra that is free as a Z-module. By
theorems 6.3 and 6.5 and lemma 6.1 we can write a sub-Z-algebra B ⊂ A such that B
is a free Z-module, as a finite product

∏
i Bi where each Bi is isomorphic to Z[X]/(gi)

for some polynomial gi ∈ Z[X] that is generalized Eisenstein. Let βi ∈ Bi be the
element corresponding to X.

Locally, the isomorphism Bi/g′i(βi) ∼= ΩBi/Z from lemma 6.10 shows that the
discriminant in definition 6.7 does not depend on the choice of βi. By lemma 6.11
we see that the same is true for products of these local rings.

In similar manner, we show that IB and JB are independent of the choice of β;
they can be defined in terms of DB/Z as well.

Proposition 6.30. Let DB/Z be the different defined in section 6.1.2. Then the A-
ideal IB is equal to {a ∈ A : aDB/Z = 0} and JB is equal to {a ∈ A : aD2

B/Z = 0}.

Proof. If B is local, then lemma 6.10 tells us that DB/Z = g′(β)B. Hence in that
case we are done.

In general, write B =
∏

m
Bm as a product of local rings and write A =

∏
m

Am

for the corresponding product from lemma 6.9. The Am-ideals IBm
and JBm

satisfy
IB =

∏
m

IBm
and JB =

∏
m

JBm
respectively. By lemma 6.11, we obtain

IB =
∏

m

IBm
=

∏

m

{am ∈ Am : amDBm/Z = 0}

= {a ∈ A : a
∏

m

DBm/Z = 0} = {a ∈ A : aDB/Z = 0}

and
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JB =
∏

m

JBm
=

∏

m

{am ∈ Am : amD2
Bm/Z = 0}

= {a ∈ A : a
∏

m

D2
Bm/Z = 0} = {a ∈ A : aD2

B/Z = 0}.

The following lemma ensures we can conclude global statements about B, IB and ≈
from the corresponding local statements.

Lemma 6.31. Let B ⊂ A be a principal ideal sub-Z-algebra that is free as a Z-
module and satisfies I2

B = 0. Write B =
∏

m
Bm as a product of local rings, and let

A =
∏

m
Am be the corresponding product from lemma 6.9.

If B′ ⊂ A is a principal ideal sub-Z-algebra such that B ≈ B′, then there exist
sub-Z-algebras B′

m ⊂ Am such that B′ =
∏

m
B′

m and Bm ≈ B′
m as sub-Z-algebras

of Am.

Proof. For each m, let em ∈ A be the unit of Am, that is, the element that is 1 when
projected to Am and 0 when projected to a different coordinate. Since Bm ⊂ Am

is a subring, em is in B. Let δ ∈ IB be such that em + δ ∈ B′. The elements
(em + δ)2 = em + 2δem and (em + δ)3 = em + 3δem are in B′, and therefore
em = 3(em + δ)2 − 2(em + δ)3 is an element of B′ as well.

Define B′
m to be the projection of B′ onto Am. Then B′ =

∏
m

B′
m holds, because

for each b ∈ B′ we have b =
∑

m
emb. Furthermore, since we can write IB =

∏
m

IBm
,

we also see that Bm ≈ B′
m.

Next, we show that ≈ is an equivalence relation, a corollary to the following propo-
sition.

Proposition 6.32. If B1, B2 ⊂ A are principal ideal sub-Z-algebras that are free as
Z-modules and satisfy I2

B1
= I2

B2
= 0 such that B1 ≈ B2 holds, then B1 and B2 are

isomorphic as Z-algebras and the ideals IB1
and IB2

are equal.

Proof. First assume B1 is local. Write B1 = Z[β] ∼= Z[X]/(g), where g is the
minimal polynomial of β. Let α ∈ B2 be such that δ = β − α ∈ IB1

. Then we
have g(α) = g(β + δ) = g(β) + δg′(β) + δ2x for some x ∈ A. Since δ is in IB1

,
we have δg′(β) = 0, and since I2

B1
= 0 holds, we also have δ2 = 0. Hence we

obtain g(α) = g(β) = 0.

From lemma 6.22 we see that IB1
⊂ πZA. The images of B1 and B2 in A/πZA

are therefore equal. From πZA ∩ B1 = πZB1 and πZA ∩ B2 = πZB2 it now follows
that B1/πZB1 and B2/πZB2 are isomorphic as Z/πZZ-algebras. The element β
generates B1/πZB1 as a Z-algebra and therefore α generates the algebra B2/πZB2.
By Nakayama’s lemma, α generates the algebra B2. Since B1 and B2 are both
free over Z and B1/πZB1 and B2/πZB2 have the same rank over Z/πZZ, we see
that B2

∼= Z[X]/(g) is isomorphic to B1.
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For the second claim of the lemma, let β, α and δ be as in the first part of the proof.
Let a be an element of IB1

. Then for some x ∈ A, we have ag′(α) = ag′(β)+aδx = 0.
This shows that IB1

is a subset of IB2
. In particular, δ is in IB2

. Therefore, for any
a ∈ IB2

, we have for some x ∈ A the equality ag′(β) = ag′(α) − aδx = 0, which
shows the reverse inclusion.

The general case follows from the local case by lemma 6.31.

Corollary 6.33. The relation ≈ is an equivalence relation.

Proof. The relation is clearly reflexive. The lemma shows that it is symmetric and if
B1 ≈ B2 and B2 ≈ B3, then IB1

, IB2
and IB3

are all equal and the relation becomes
transitive.

We conclude this section with the proof of theorem 6.8.

Proposition 6.34. If B1, B2 ⊂ A are principal ideal sub-Z-algebras that are free as
Z-modules and satisfy I2

B1
= I2

B2
= 0 such that B1 ≈ B2 holds, then the Z-modules

B1 ∩ IB1
and B2 ∩ IB1

are isomorphic.

Proof. For the local case, we write B1 = Z[β] ∼= Z[X]/(g) and B1 = Z[α] ∼=
Z[X]/(g), where β − α ∈ IB1

. Since β − α ∈ IB1
= IB2

, the isomorphism from
B1 to B2 from proposition 6.32, which sends β to α makes the following diagram
commutative.

B1 B2

A/IB1

∼

φ1 φ2

This induces an isomorphism between ker(φ1) = B1 ∩ IB1
and ker(φ2) = B2 ∩ IB1

.
The general case follows from the local case by lemma 6.31.

Proposition 6.35. If A is finite and B ⊂ A is a principal ideal sub-Z-algebra that
is free as a Z-module and satisfies I2

B = 0, then the number of B′ ⊂ A such that
B ≈ B′ is

#IB

#(B ∩ IB)
.

Proof. First we assume B is local. Write B = Z[β] ∼= Z[X]/(g). For every δ ∈ IB ,
the element β + δ satisfies g(β + δ) = g(β) + δg′(β) + δ2x = 0, where x is some
element of A. Hence, the Z-algebra morphism

ψ : Z[X]/(g) → Z[β + δ]

X 7→ β + δ

is well-defined. It is also clearly surjective. We will show that ψ is injective.
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Suppose h ∈ Z[X]/(g) satisfies ψ(h) = 0. We will show with induction that
for all k we have πk

Z | h. For k = 0 this amounts to π0
Z = 1 | h, which is clearly

true. Next, suppose that πk−1
Z | h. From 0 = ψ(h) = h(β) + δh′(β) it follows

that h(β) = −δh′(β). By lemma 6.22 and the fact that πk−1
Z | h′ we see that

h(β) = δh′(β) ∈ πk
ZA, hence πlZ−k

Z h(β) = 0. Since Z[β] is isomorphic to Z[X]/(g)

as a Z-algebra, we see that πlZ−k
Z h = 0, from which it follows that πk

Z | h. With
induction we obtain πk

Z | h for all k, hence h = 0 and ψ is injective.

From the proof of proposition 6.32, we see that every B′ with B ≈ B′ is equal to
Z[β +δ] for some δ ∈ IB . On the other hand, every Z-algebra Z[β +δ] is isomorphic
to B and is therefore a local artinian principal ideal ring that is free as a Z-module
and satisfies IZ[β+δ] = 0. From the choice of δ it is clear that B ≈ Z[β + δ]. We see
that {B′ : B ≈ B′} = {Z[β + δ] : δ ∈ IB}.

A subalgebra B′ = Z[β + δ1] ⊂ A with B ≈ B′ is equal to Z[β + δ2] if and
only if δ1 − δ2 ∈ B′ ∩ IB . Hence, the number of δ ∈ IB such that B′ = Z[β + δ] is
#(B′ ∩ IB). By the previous proposition this is equal to #(B ∩ IB).

The general case follows again from the local case by lemma 6.31.

Stated below is theorem 6.8 with a slight notational modification.

Theorem 6.8. Let Z be a finite, commutative, local, artinian principal ideal ring,
not a field; let πZ be a generator of its maximal ideal. Let A be a commutative, finite
Z-algebra such that A is an artinian principal ideal ring.

Suppose B ⊂ A is a local, free, artinian principal ideal sub-Z-algebra satisfying
I2
B = 0. Suppose A is free as a B-module of rank r. Then the number of subalgebras

B′ ⊂ A such that B ≈ B′ is ∆r−1
B/Z .

Proof. As modules, A is free over B and B is free over Z, so A is free over Z.
We calculate #IB

#(B∩IB) . Let (ei)
r
i=1 be a basis of A over B. Then we can write

IB = {a ∈ A : ag′(β) = 0}
∼= {(bi)i ∈ Br :

∑

i

(eibi)g
′(β) = 0}

= {(bi)i ∈ Br : big
′(β) = 0 for each i}

= {b ∈ B : bg′(β) = 0}r ∼= (B/g′(β))r

and

B ∩ IB = B ∩ {a ∈ A : ag′(β) = 0}
= {a ∈ B : ag′(β) = 0} ∼= B/g′(β).

Hence, by the previous proposition, the number of B′ such that B ≈ B′ is

#IB

#(B ∩ IB)
=

#(B/g′(β))r

#(B/g′(β))
= ∆r−1

B/Z .
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Chapter 7

Round rings

In this chapter we will use the theory from the previous chapter to prove the bound
on the number of round rings that was used in chapter 5.

Recall from section 5.1 that for a prime p, a finite étale Qp-algebra E and inte-
gers e ≥ 1 and 1 ≤ d ≤ deg(E) − 1, the sets

We,d(E) = {R ⊂ OE : R is a sub-Zp-algebra with OE/R ∼= (Z/peZ)d as groups}

are the sets of round rings. We will prove the following bound on these sets.

Theorem 7.1. Define for integers n the constants c10(n, 1) = 0 and c10(n, 2) = 1.
Furthermore, define for integers n and d with 3 ≤ d ≤ n−1 the constant c10(n, d) =
(d − 1)(n − d − 1). Then we can bound

#We,d(E) = On

(
pc10(n,d)

)
,

where p ranges over the set of primes, E over the collection of finite étale Qp-
algebras, e over the set of positive integers, d over {1, . . . ,deg(E)− 1}, and n is the
degree of E.

It is remarkable that the bound in this theorem does not depend on e. When e
is large enough, we can use the theory from chapter 6 to determine the structure
of round rings. This gives us a bound for #We,d(E) that does not depend on e.

More precisely, define the number c14(n, p) = 2
⌊

log n
log p

⌋
+ 2. For the cases where

e ≥ c14(n, p), there is a bound for #We,d(E) that is better than the bound given in
theorem 7.1. The exponent in this bound is defined by the following combinatorial
problem.

Definition 7.2. For integers n ≥ 2 and 1 ≤ d ≤ n − 1, define the integer c15(n, d)
to be the maximum of d −

∑
j∈J(rj − 1) under the constraints that J is a finite set,

rj ∈ Z>0 are integers and there are integers ej ∈ Z>0 such that d =
∑

j∈J((rj−1)ej)
and n =

∑
j∈J(rjej).
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Theorem 7.3. We can bound

#We,d(E) = On

(
pc15(n,d)

)
,

where p ranges over the set of primes, E over the collection of finite étale Qp-
algebras, e over the set of integers with e ≥ c14(deg(E), p), the number d ranges over
{1, . . . ,deg(E) − 1}, and n is the degree of E.

Moreover, for every quadruple of integers n, d, p, e with p prime, n ≥ 2, p > n,
1 ≤ d ≤ n − 1 and e ≥ c14(n, p), there exists a finite étale Qp-algebra E of degree n
such that

#We,d(E) ≥ pc15(n,d).

We will split the proof of theorem 7.1 in two parts:

1. the cases where e = 1;

2. the cases where e ≥ c14(n, p).

For each n, there are only finitely many pairs (p, e) with 1 < e < c14(n, p). Since in
those remaining cases #We,d(E) is bounded, for example by the module counting
argument in proposition 5.7, the above two cases suffice to prove theorem 7.1.

We will handle the first case in section 7.3. The second case follows from the-
orem 7.3, which we will prove in section 7.4. We will combine these results in
section 7.5 to show theorem 7.1.

7.1 Applicability of chapter 6

For a finite étale Qp-algebra E, let Vd(E) denote the set of sub-Zp-algebras T ⊂ OE

such that OE/T is a free Zp-module of rank d.
In this section we prove the following result. It expresses that many rings en-

countered in this chapter, especially those in section 7.4, meet the conditions that
make the theory of chapter 6 applicable.

Proposition 7.4. For every prime p, integers n ≥ 1, 1 ≤ d ≤ n and e ≥ 2, finite
étale Qp-algebra E of degree n and ring R ∈ We,d(E), the ring Z = Z/peZ is a
finite, commutative, local, artinian principal ideal ring with a perfect residue field,
the Z-algebra A = OE/peOE is a finite, commutative, artinian principal ideal ring
that is free of finite rank as a Z-module and the sub-Z-algebra B = R/peOE ⊂ A is
free as a Z-module.

Recall from section 6.4 the definition of JB. Let JR be the inverse image of JB

in OE. If e ≥ c14(n, p), then OE is complete with respect to every OE-ideal JR and
every ring T ∈ Vd(E) is complete with respect to the T -ideal JT+peOE

∩ T .

Lemma 7.5. For every prime p, every finite étale Qp-algebra E and every positive
integer e, the ring OE/peOE is an artinian principal ideal ring.
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Proof. Write E =
∏

i Ei as a product of fields. The ring OE =
∏

i OEi
is a product

of discrete valuation rings. A discrete valuation ring is a principal ideal ring, hence
OE is a principal ideal ring. The ring OE/peOE is therefore also a principal ideal
ring. Since it is finite, it is artinian.

Lemma 7.6. Let E be a finite étale Qp-algebra and let F ⊂ E be a sub-Qp-algebra.
Then OE/OF is a free Zp-module.

Let e > 0 be an integer. Then (OE/peOE)/(OF /peOF ) is a free Z/peZ-module.

Proof. Since OF = OE∩F , there is an injective map from OE/OF into the Qp-linear
space E/F . The finitely generated Zp-module OE/OF is therefore torsion-free, hence
free.

From the first part of the proof, we know that the exact sequence 0 → OF →
OE → OE/OF → 0 splits. From this it follows that peOE ∩OF = peOF , and hence
that (OE/peOE)/(OF /peOF ) is a free Z/peZ-module.

Lemma 7.7. For a finite étale Qp-algebra E, the map from the set

{T ⊂ OE : T is a sub-Zp-algebra and OE/T is a free Zp-module}
to the set

{F ⊂ E : F is a finite étale sub-Qp-algebra}

that sends a sub-Zp-algebra T to T ⊗Zp
Qp, is bijective. The inverse of this map

sends a finite étale sub-Qp-algebra F to OF .

Proof. First of all we will show that this map and its claimed inverse are well-
defined. From part 1 of lemma 7.6 we see that if F is a finite étale subalgebra
of E, then OE/OF is Zp-free. On the other hand, if T is a sub-Zp-algebra of OE

then T ⊗ Qp is a sub-Qp-algebra of E. Every subalgebra of a finite étale algebra
is finite étale itself by [1, chapter 5, §6, proposition 3]. (Note that the definition
in this reference and our definition of finite étale are the same by [1, chapter 5, §7,
theorem 3].)

To show these maps are inverses, let F be a finite étale sub-Qp-algebra, let x
be any element of F and f ∈ Zp[X] a non-zero polynomial that has x as a zero.
Let α be the leading coefficient of f . Then αx is integral over Zp. Hence it follows
that OF ⊗ Qp = F .

On the other hand, let T be a sub-Zp-algebra of OE such that OE/T is a free
Zp-module. We have the inclusions T ⊂ OT⊗Qp

⊂ OE . We also have the equality
OT⊗Qp

⊗ Qp = T ⊗ Qp, from which it follows that (OT⊗Qp
/T ) ⊗ Qp = 0. This

implies OT⊗Qp
/T is torsion. However, OT⊗Qp

/T is a subgroup of OE/T , which is
torsion-free. We conclude that OT⊗Qp

= T .

Proof of proposition 7.4. Since A is a finite ring, all finiteness conditions on Z, A
and B are satisfied. The ring Z is clearly a principal ideal ring. The ring A is free
over Z by lemma 7.6 and a principal ideal ring by lemma 7.5. The subring B is free
over Z by the choice of R and [2, proposition 2.9].
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The condition e ≥ c14(n, p) is equivalent to 2(maxj=1,...,n(φZ(j)) + 1) ≤ lZ ,
with φZ and lZ as defined in proposition 6.16 and lemma 6.21 respectively. Hence,
by proposition 6.29, the ideal JR is nowhere equal to OE , so OE is complete with
respect to JR. For T ∈ Vd(E) there is, by lemma 7.7, a finite étale Qp-algebra F
such that T = OF , hence T is complete with respect to JT+peOE

∩ T .

7.2 Finite étale Qp-algebras

In this section, E denotes a finite étale Qp-algebra, n denotes its degree. The
integers d and e satisfy 1 ≤ d ≤ n and e ≥ 2.

The theory from chapter 6 now gives us an equivalence relation on We,d(E) and
a bound for the size of each class. In section 7.4 we will show that each equivalence
class contains exactly one element of the form T + peOE for some T ∈ Vd(E). To
complete the counting of We,d(E) we bound the number of elements of Vd(E) and
hence the number of equivalence classes.

Proposition 7.8. We can bound #Vd(E) = On(1), where p ranges over all primes,
E over all finite étale Qp-algebras, n is the degree of E and d ranges over all integers
with 1 ≤ d ≤ n − 1.

For a finite étale algebra E over a field L, we denote by Y (E) the set of subalgebras
of E and by Yd(E) the subset of algebras of codimension d. Furthermore, we denote
the set of equivalence relations on Spec(Ln) by C(n) and the subset of relations
with n − d equivalence classes by Cd(n).

Lemma 7.9. Let L be a field and n an integer. The map

φ : C(n) → Y (Ln)

∼ 7→ {x ∈ Ln : i ∼ j =⇒ xi = xj}

is bijective. For each integer d it maps Cd(n) to Yd(L
n).

Proof. Let ∼ be an equivalence relation and define for each equivalence class c the
element ec ∈ Ln to be the element that is 1 on coordinates in c and 0 otherwise. The
set {ec}c forms a basis of φ(∼) and therefore φ is injective and maps equivalence
relations to subalgebras of dimension equal to the number of equivalence classes.

To see that φ is surjective, we define the map ψ : Y (Ln) → C(n) that sends an
algebra E to the relation ∼ that satisfies i ∼ j ⇐⇒ (∀x ∈ E : xi = xj). Clearly,
we have for all E ∈ Y (Ln) the inclusion E ⊂ φψ(E). Define for each equivalence
class c of ψ(E) the maximal ideal mc to be the kernel of the map

E → L

x 7→ xc.

If c′ is a different equivalence class, then, by definition of ψ, there is an element x ∈ E
such that xc 6= x′

c. The element x−xc is in mc, but not in mc′ . Hence these ideals are
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different. We see that dim(E) ≥ #Spec(E) ≥ #{c : c equivalence class of ψ(E)} =
dim φψ(E), so E and φψ(E) are equal and φ is surjective.

Proof of proposition 7.8. For a finite étale Qp-algebra E, there exists a field exten-
sion L of Qp such that E ⊗ L ∼= Ln. Milne [5, chapter I, §3, proposition 3.1] shows
this for example for L = Q̄p. Let L be such a field. Since for every subalgebra F ⊂ E
we have F = (F ⊗ L) ∩ E, the map

Yd(E) → Yd(E ⊗ L)

F 7→ F ⊗ L

is injective. Hence we can bound

#Vd(E) = Yd(E) ≤ #Yd(E ⊗ L) = #Yd(L
n) = #Cd(n) = On(1),

where the first equality follows from lemma 7.7 and the equality #Yd(L
n) = #Cd(n)

follows from lemma 7.9.

7.3 Maximal subrings

In this section, E denotes a finite étale Qp-algebra, n denotes its degree. The
integer d satisfies 1 ≤ d ≤ n. We prove theorem 7.1 in the cases where e = 1. The
result is the following.

Proposition 7.10. Define for positive integers n the constants c10(n, 1) = 0 and
c10(n, 2) = 1. Furthermore, define for integers n and d with 3 ≤ d ≤ n − 1 the
constant c10(n, d) = (d − 1)(n − d − 1). Then we can bound

#W1,d(E) = On(pc10(n,d)),

where p ranges over the set of primes, E over the collection of finite étale Qp-alge-
bras, d over the set {1, . . . ,deg(E) − 1}, and n is the degree of E.

We start the proof by first describing the ring OE/pOE .

Lemma 7.11. Let p be a prime and A a commutative ring. Then the following are
equivalent:

1. there is a finite étale Qp-algebra E such that A ∼= OE/pOE;

2. A is a principal ideal ring of characteristic p and has finite dimension as
an Fp-module;

3. there is a finite index set I and for each i ∈ I integers ei ≥ 1 and fi ≥ 1 such
that A ∼=

∏
i∈I Fpfi [Xi]/(Xei

i ).
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Proof. Assuming the first condition is true, we show the second is as well. Let E be
a finite étale Qp-algebra. Lemma 7.5 shows OE/pOE is a principal ideal ring. It is
also clearly of characteristic p and since OE/pOE is finite, it is of finite dimension
as an Fp-module.

Assuming the second condition is true, we show the third is as well. Let A be a
commutative principal ideal ring of characteristic p of finite dimension as Fp-module.
Since A is finite, it is artinian and we can write A =

∏
i∈I Ai, where I is a finite set

and each Ai is a local artinian principal ideal ring of characteristic p. Let Xi be a
generator of the maximal ideal of Ai, then Ai/(Xi) is a finite field of characteristic p;
let fi be its dimension over Fp. Let ei be the smallest integer such that Xei

i = 0.

Let mi be an integer such that pmi > ei. Then the map

Fpfi
∼= Ai/(Xi) → Ai

a + (Xi) 7→ apmi

is a well-defined injective ring morphism. This morphism can be extended to a
morphism

Fpfi [Xi]/(Xei
i ) → Ai

Xi 7→ Xi,

which is easily seen to be surjective. The kernel of this last morphism is an ideal
of Fpfi [Xi]/(Xei

i ) and is therefore generated by Xk
i for some integer 0 ≤ k ≤ ei. By

the choice of ei, the integer k cannot be less than ei. Hence we have an isomor-
phism Ai

∼= Fpfi [Xi]/(Xei
i ).

Finally, assuming the third condition is true, we show the first is as well. For
each i in some finite set I, let ei and fi integers. Let hi ∈ Zp[X] be a monic
polynomial of degree fi that is irreducible in Z/pZ[X] and define the field

Ei = (Qp[X]/(hi))[Y ]/(Y ei − p).

The finite étale Qp-algebra E =
∏

i Ei satisfies OE/pOE =
∏

i Fpfi [Xi]/(Xei
i ).

A ring R ∈ W1,d(E) corresponds to the subring R/pOE ⊂ OE/pOE . Each subring
is contained in some maximal subring.

Definition 7.12. Let A be a ring. A subring B of A is called maximal if there are
precisely two rings B′ with B ⊂ B′ ⊂ A, namely B′ = B and B′ = A.

By counting the maximal subrings, we will obtain the required bound for #W1,d(E)
when d 6= 2.

Proposition 7.13. The number of maximal subrings of Fpf [X]/(Xe) equals pd(f),
the number of prime divisors of f , when e = 1 and pd(f) + 1 when e ≥ 2.
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Proof. Write A = Fpf [X]/(Xe). We start with the case where e = 1. In that case
A is a field, and any subring will be equal to a subfield. The maximal subfields
correspond to the maximal divisors of f . The number of maximal divisors of f
equals the number of prime divisors of f . This finishes the proof in the case e = 1.

Now let e ≥ 2 be an integer and R a maximal subring of A. Look at the quotient
map φ1 : A → A/(X). If φ1(R) is not the entire image of φ, then φ1(R) is a maximal
subring of A/(X) and R is the entire pre-image of this subring under φ1. As seen
in the case where e = 1, the number of such subrings equals the number of prime
divisors of f .

If φ1(R) is the entire image, then we look at the quotient map φ2 : A → A/(X2).

For every c ∈ F∗
pf there is an element c + aX ∈ φ2(R). So the element (c + aX)pf

=

cpf

+ apf

Xpf

= c is also in φ2(R). Together with the fact that 0 ∈ R, this shows
that Fpf ⊂ φ2(R). If φ2(R) 6= Fpf holds, let c + aX ∈ φ2(R) be an element
outside Fpf , then X = a−1((c + aX) − c) is in φ2(R). This shows that φ2(R) is the
entire image. In that case, we obtain by [3, II, lemma 7.4] that the inclusion of R
in A is surjective, which contradicts the maximality of R. We are left with the case
where φ2(R) = Fpf . The entire pre-image of Fpf is a subring of A, so that is the
only maximal ring we had not accounted for.

Lemma 7.14. Let R ⊂ R1 ×R2 be a subring of a product of two commutative rings
such that the projections P1 : R → R1 and P2 : R → R2 are surjective. Then there
are ideals I1 ⊂ R1 and I2 ⊂ R2 and a ring isomorphism ψ : R1/I1 → R2/I2 such
that R = {(r1, r2) ∈ R1 × R2 : ψ(r1 + I1) = r2 + I2}.

Proof. This follows from the lemma of Goursat on groups [4, I, §12 exercise 5] by
noting that the projections are ring morphisms and hence the normal subgroups are
ideals.

Combining lemmas 7.13 and 7.14 we obtain the following uniform bound for the
number of maximal subrings of OE/pOE .

Proposition 7.15. Let A be a commutative principal ideal ring of characteristic p
of finite dimension n as an Fp-module. Then the number of maximal subrings of A
is at most

(
n
2

)
.

Proof. Write A ∼=
∏

i∈I Fpfi [Xi]/(Xei
i ) as in lemma 7.11. We prove the proposition

by induction on #I. If I = {i}, then by lemma 7.13 the number of maximal
subrings is at most fi − 1 when ei = 1 and fi when ei ≥ 2. In the first case we
have fi − 1 ≤

(
fi

2

)
=

(
n
2

)
; in the second case fi ≤

(
2fi

2

)
≤

(
n
2

)
holds.

Suppose the claim is true for all rings where #I is smaller. Write A = R1 × R2

as product of rings with R2
∼= Fpf [X]/(Xe) local. A maximal subring of A is either

the pre-image of maximal subring of R1, the pre-image of a maximal subring of R2,
or it is a ring as described in lemma 7.14.

If a maximal ring R ⊂ R1 × R2 is of the third kind, let the ideals I1 ⊂ R1

and I2 ⊂ R2 be as in lemma 7.14. Let J ( R2 be an ideal strictly containing I2.
The ring R′ = {(r1, r2) ∈ R1 ×R2 : ψ(r1 +J) = r2 +ψ(J)} is a subring that strictly
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contains R. Since this would contradict the maximality of R, the ideal I2 is maximal
and R2/I2

∼= Fpf
∼= R1/I1. For each choice of I1 there are f isomorphisms. We see

that the number of subrings of the third type equals f · #{i ∈ I(R1) : fi = f}.
The total number of maximal subrings of A can therefore be bounded from above

by
(
n−ef

2

)
+

(
ef
2

)
+ f · #{i ∈ I(R1) : fi = f}. The number #{i ∈ I(R1) : fi = f} is

bounded from above by n−ef
f . So the total number of maximal subrings of A is at

most

(
n − ef

2

)
+

(
ef

2

)
+

n − ef

f
f ≤

(
n − ef

2

)
+

(
ef

2

)
+ ef(n − ef) =

(
n

2

)
,

which proves the proposition.

Note that the bound from the previous proposition is sharp, since for each i ∈ I we
can take ei = 1 and fi = 1 to obtain

(
n
2

)
maximal subrings.

Using this proposition and lemma 5.2, which was proven in section 5.2, we can
prove proposition 7.10 for d 6= 2. The result is the following proposition. Note that
it also gives a bound for d = 2. This bound is however not sharp enough.

Proposition 7.10 for d 6= 2. We can bound

#W1,d(E) = On(pd−1)(n−d−1)),

where p ranges over the set of primes, E over the collection of finite étale Qp-alge-
bras, d over {1, . . . ,deg(E) − 1}, and n is the degree of E.

Proof. For a finite étale Qp-algebra E, the quotient OE/pOE is an artinian principal
ideal ring of characteristic p by lemma 7.11. Its dimension as an Fp-module is equal
to the degree of E.

Each maximal subring of OE/pOE can be viewed as an Fp-linear space of dimen-
sion at most n − 1. For each maximal subring R the map

{R′ ⊂ R : R′ is a subring of Fp-dimension n − d}
→ {V ⊂ R/(1 · Fp) : V is an Fp-linear subspace of dimension n − d − 1}

is injective. By lemma 5.2 we obtain the inequality

#{R′ ⊂ R : R′ is a subring of Fp-dimension n − d}
≤ p(n−d−1)(dimFp (R/1·Fp)−(n−d−1))

≤ p(n−d−1)(n−2−(n−d−1)) = p(n−d−1)(d−1).

By proposition 7.15, we obtain #W1,d(E) ≤
(
n
2

)
p(n−d−1)(d−1) = On

(
p(d−1)(n−d−1)

)
.
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For d = 2, we use the theory from chapter 4 to show the required bound.

Proposition 7.10 for d = 2. We can bound

#{R ⊂ A : R is a subring of index p2} = On(p),

where p ranges over the set of prime numbers and A over the set of artinian principal
ideal rings of characteristic p and n is the dimension of A as an Fp-vector space.

Proof. Let A be an artinian principal ideal rings of characteristic p and dimension n
as an Fp-vector space. By proposition 7.15 the number of maximal subrings R of
index p2 is bounded from above

(
n
2

)
.

To count the non-maximal R, we let B be a subring of A of index p; there are at
most

(
n
2

)
of these subrings. By theorem 4.1, there is a bijection between {R ⊂ B :

R is a subring with B/R ∼= Z/pZ as groups} and {I ⊂ B : I is an ideal with B/I ∼=
(Z/pZ)2 as groups}.

Let I ⊂ B be an ideal with B/I ∼= (Z/pZ)2 as groups. If there exist two maximal
B-ideals that contain I, then I is the product of these maximal ideals. We can bound
the number of such ideals from above by

(
#MaxSpec(B)

2

)
≤

(
n
2

)
.

On the other hand, if I is contained in only one maximal B-ideal m, then we
localize B at m and take Am to be the corresponding part of A from lemma 6.9.
If Bm = Am holds, then there is only one possible ideal, namely I = m when m has
index p2, or I = m2 when m has index p. Otherwise, Bm has index p in Am. We look
at the ideal I + m2. If that ideal is equal to m, then by Nakayama’s lemma, I = m

and we can bound the number of such I from above by n. If I + m2 is not equal
to m, then we have inclusions I ⊂ I + m2 ( m ( Bm; combined with #B/I = p2

this shows that I = I + m2 and I/m2 ⊂ m/m2 has index p.
Let f = AnnBm

(Am/Bm) be the conductor of Bm in Am. From theorem 4.1
it follows that Am/f ∼= (Am/Bm)2 has p2 elements. Since Bm is a local ring, f

equals m and therefore m is an Am-ideal. Since Am is a principal ideal ring, we can
bound #m/m2 ≤ #A/m = p2. Hence, for each m, the number of ideals I is bounded
from above by the number of subgroups of index p in m/m2; this number is bounded
by p + 1.

Combining this, we can bound for each subring B ⊂ A of index p the number

#{I ⊂ B : I is an ideal with B/I ∼= Z/pZ as groups} ≤
(

n

2

)
+ n + n(p + 1).

and hence we can bound

#{R ⊂ A : R is a subring of index p2} ≤
(

n

2

)
+

(
n

2

)((
n

2

)
+ n + n(p + 1)

)

= On(p).
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It is conceivable that the method used to obtain the bound for d = 2 can be used
to improve the bounds for larger d. However, the bounds in proposition 7.10 are
enough for our purposes.

7.4 Approximate lifts

In this section, E denotes a finite étale Qp-algebra, n denotes its degree. The

integers d and e satisfy 1 ≤ d ≤ n and e ≥ c14(n, p) = 2
⌊

log n
log p

⌋
+ 2.

We will prove theorem 7.3 using the theory from the previous chapter and sec-
tion 7.2. We start by introducing some notation that will be used throughout this
section. Most of the notation is a straightforward transcription of the notation from
the previous chapter specified to this case.

Notation 7.16. Let E be a finite étale Qp-algebra, and e > 2 an integer. Let
φ : OE → OE/peOE be the quotient map. For a ring R ∈ We,d(E), we define the
OE-ideals IR = φ−1(IR/peOE

) and JR = φ−1(JR/peOE
). The definition of IR/peOE

and JR/peOE
can be found in chapter 6 in the introduction and in section 6.4, re-

spectively. For a Zp-algebra T ⊂ OE, we define IT = IT+peOE
and JT = JT+peOE

.

For subrings of a commutative, artinian principal ideal ring A we have defined an
equivalence relation ≈ in chapter 6, see definition 6.6. For a ring R ∈ We,d(E) we call
an algebra T ∈ Vd(E) such that in OE/peOE we have R/peOE ≈ (T +peOE)/peOE

an approximate lift of R. When T is an approximate lift of R, we write R ≈ T .

Proposition 7.17. Let e be an integer such that e ≥ c14(n, p) = 2
⌊

log n
log p

⌋
+ 2.

Let R ∈ We,d(E) be a ring. Then there is a unique approximate lift T ∈ Vd(E) of R.

Proof. First we show existence. Assume R is local, let g ∈ Zp[X] be a gen-
eralized Eisenstein polynomial and β ∈ OE be such that g(β) = 0 mod peOE

and R/peOE = (Z/peZ)[β] ∼= (Z/pZ)[X]/(g). By the definition of JR we have
g(β) = 0 mod g′(β)2JR and by proposition 6.29 the ring OE is complete with re-
spect to JR. By Hensel’s lemma 6.13, there is an element α ∈ OE such that g(α) = 0
and α−β ∈ g′(β)JR = IR, where the last equality follows from proposition 6.29. By
lemma 6.22 we have IR ⊂ pOE , and therefore the equality (Z/pZ)[α] = (Z/pZ)[β]
as subrings of OE/pOE .

Define the Zp-algebra T = Zp[α]. Note that it is generated as a Zp-module
by deg(g) = n − d elements. The Z/pZ-module (T + pOE)/OE = Z/pZ[α] =
Z/pZ[β] = R/pOE is free of dimension n−d. So we can choose a Zp-module U ⊂ OE

such that U is generated by d elements and satisfies U + T + pOE = OE . By
Nakayama’s lemma we obtain U + T = OE . The Zp-module OE is in this way
generated by d+(n−d) elements. On the other hand, it is free of rank n. So U and T
are both free as Zp-modules of rank d and n−d respectively. Since OE/T = U is free
of rank d, the Zp-algebra T is in Vd(E). Since T is free, the Z/peZ-module (Z/peZ)[α]
is free, and satisfies R/peOE ≈ (Z/peZ)[α]. Hence T is an approximate lift of R.
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For general R, let x ∈ R/peOE be an idempotent. For x we have x2 − x ≡
0 mod pe. Since ((x2 − x)′)2 = 4x2 − 4x + 1 ≡ 1 mod x2 − x holds, we obtain
x2 − x ≡ 0 mod (2x − 1)2pe. Since R is complete with respect to pe, we can use
Hensel to lift the idempotents of R/peOE to R.

So we can write R =
∏

i Ri as product of local rings Ri. Let OE =
∏

i OEi
be

the corresponding product from lemma 6.9 and let Ti ⊂ OEi
be the approximate lift

of Ri. Then T =
∏

i Ti is an approximate lift of R.

Next, we show uniqueness. Let T1, T2 ∈ Vd(E) be such that (T1 + peOE)/peOE ≈
(T2 + peOE)/peOE .

First we assume that T1 is local. Let α1 ∈ T1 be such that T1 = Zp[α1] and
let g ∈ Zp[X] be the minimal polynomial of α1. By proposition 6.32, there exists an
element α2 ∈ T2 such that α1 − α2 ∈ IT1

and g(α2) = 0 mod peOE .
The ring T2 is complete with respect to T2 ∩ JT2

. We apply Hensel’s lemma to
obtain that there is a unique α3 ∈ T2 such that g(α3) = 0 and α2 − α3 ∈ IT2

= IT1
.

Both α1 and α3 are the unique element α ∈ OE such that g(α) = 0 and α−α2 ∈ IT1
,

so they are equal and T1 ⊂ T2. From lemma 6.31 it follows that (T2 + peOE)/peOE

is local, and hence that T2 is local. By symmetry, we also have T2 ⊂ T1.
The general case follows from the local one by applying lemma 6.31 to the Z/peZ-

algebras (T1 + peOE)/peOE and (T2 + peOE)/peOE .

For a Zp-algebra T ∈ Vd(E), write T =
∏

m∈MaxSpec(T ) Tm as product of local

Zp-algebras and let OE =
∏

m∈MaxSpecT (OE)m be the corresponding product from
lemma 6.9. Denote the rank [(OE)m : Tm] by rm, the inertia degree of Tm/Zp by fm

and the ramification index of Tm/Zp by em.

Proposition 7.18. Let E be a finite étale Qp-algebra, d a positive integer smaller

than the degree of E and T ∈ Vd(E) a Zp-algebra; let e ≥ c14(n, p) = 2
⌊

log n
log p

⌋
+ 2

be an integer.

1. If p is greater than n, then we have

#{R ∈ We,d(E) : R ≈ T} = p
P

m
fm(em−1)(rm−1).

2. For p ≤ n, we can bound

#{R ∈ We,d(E) : R ≈ T} = On(1),

where p ranges over the set of primes less than n, the T ranges over Vd(E) for
a finite étale Qp-algebra E of degree n, and 1 ≤ d ≤ n − 1 and e ≥ c14(n, p)
are integers.

Proof. By theorem 6.5 we can write the ring T as product T =
∏

m∈MaxSpec(T ) Tm =∏
m

Zp[αm] ∼=
∏

m
Zp[X]/(gm) where each gm is the minimal polynomial of αm and
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is generalized Eisenstein. Let Z be the ring Z/peZ. Theorem 6.8 tells us that

#{R ∈ We,d(E) : R ≈ T} =
∏

m

∆rm−1
((Tm+peOE)/peOE)/Z =

∏

m

(#(Tm/g′m(αm)))
rm−1

.

If p > n, then em is invertible in Z, so by proposition 6.27, we have #Tm/g′(αm) =
pfm(em−1). Hence in the first case, the number #{R ∈ We,d(E) : R ≈ T} is equal to
∏

m

(
pfm(em−1)

)rm−1
= p

P

m
fm(em−1)(rm−1).

In the case where p ≤ n, we let φm be the valuation on the local principal ideal
Z-algebra (Tm + peOE)/peOE . Since deg(gm) ≤ n, we know that φm(deg(gm)) ≤
maxj≤n φm(j) = em

⌊
log n
log p

⌋
< eme. Hence φm(deg(gm)) ∈ Hlm is represented in

Hlm = Z/∼ by a unique integer, which we will also denote by φm(deg(gm)). We now
use proposition 6.27 to bound #Tm/g′(αm) ≤ pfm(φm(deg(gm))+em−1)

From the inequality

pfm(φm(deg(gm))+em−1) ≤ pemfm( log n
log p +em−1) = nemfmpfm(em−1)

we can now bound, using n = [OE : Zp] =
∑

m
[(OE)m : Tm][Tm : Zp] =

∑
m

rmfmem,

#{R ∈ We,d(E) : R ≈ T} ≤
∏

m

(nemfmpfm(em−1))rm−1 ≤ nnpn ≤ n2n.

Hence, #{R ∈ We,d(E) : R ≈ T} = On(1) is as required.

Recall the definition of c15(n, d) from the introduction to the present chapter.
We will prove theorem 7.3, restated below.

Theorem 7.3. We can bound

#We,d(E) = On

(
pc15(n,d)

)
,

where p ranges over the set of primes, E over the collection of finite étale Qp-alge-
bras, e over the set of integers with e ≥ c14(deg(E), p), the number d ranges over
{1, . . . ,deg(E) − 1}, and n is the degree of E.

Moreover, for every quadruple of integers n, d, p, e with n ≥ 2, 1 ≤ d ≤ n − 1,
p > n with p prime and e ≥ c14(n, p), there exists a finite étale Qp-algebra E of
degree n such that

#We,d(E) ≥ pc15(n,d).

Proof. We first look at the case where p > n. Let T ∈ Vd(E) be a Zp-algebra. From
[6, I §4, proposition 10] we have n − d = [T : Zp] =

∑
m

[Tm : Zp] =
∑

m
emfm

and n = [OE : Zp] =
∑

m
[(OE)m : Tm][Tm : Zp] =

∑
m

rmemfm.
Proposition 7.18 tells us that a uniform upper bound for #{R ∈ We,d(E) : R ≈ T}

over all T ∈ Vd(E) can be found by maximizing the quantity
∑

m
fm(em−1)(rm−1) =
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d − ∑
m

fm(rm − 1) under the constraints that d =
∑

m
(rm − 1)emfm and n =∑

m
rmemfm ; if the maximum is M , then pM is a uniform upper bound. Now, if the

system of integers (em, fm, rm)m satisfies the constraints and at least one fm is greater
than 1, then the solution (e′m, f ′

m, r′m)m = (emfm, 1, rm)m has a higher value for
d−∑

m
fm(rm−1), so the maximum is attained when all fm equal 1. Hence for p > n

and e ≥ c14(n, p) we obtain the uniform bound #{R ∈ We,d(E) : R ≈ T} ≤ pc15(n,d)

for all T ∈ Vd(E).
From proposition 7.8 we know that #Vd(E) = On(1). Hence, if p > n and

e ≥ c14(n, p), then we have

#We,d(E) ≤ On

(
pc15(n,d)

)
.

By combining proposition 7.8 and the second part of proposition 7.18 we obtain
for p ≤ n the bound #We,d(E) = On(1).

For the final statement of the theorem, we let (ej , rj)j be the integers that max-
imize c15(n, d). The finite étale Qp-algebra E =

∏
j (Qp[X]/(Xej − p))

rj has de-

gree
∑

j ejrj = n and integral closure OE =
∏

j

(
OQp[X]/(Xej−p)

)rj
. Define the

Zp-algebra T =
∏

j Tj ⊂ OE by letting each Tj = OQp[X]/(Xej−p) be the diagonal

in
(
OQp[X]/(Xej−p)

)rj
. As a Zp-module OE/T is free of dimension

∑
j ej(rj −1) = d,

so T is in Vd(E). Since we have p > n, we can use proposition 7.18 to conclude

#We,d(E) ≥ #{R ∈ We,d(E) : R ≈ T} = p
P

j(ej−1)(rj−1) = pd−P

j(rj−1) = pc15(n,d).

7.5 Bound on round rings

We will now prove theorem 7.1, the bound on the number of round rings. We start
by comparing the exponents of the bounds in proposition 7.10 and theorem 7.3.

Lemma 7.19. For all integers n and d with 1 ≤ d ≤ n−1 the inequality c15(n, d) ≤
c10(n, d) holds.

Proof. We will first show the inequality for d 6= 2. It that case, we need to prove
that c15(n, d) ≤ (d−1)(n−d−1). Since the rj in definition 7.2 are positive integers
and d =

∑
j(rj − 1)ej is positive as well, there exists j such that rj − 1 is positive.

So we have c15(n, d) = d −
∑

j(rj − 1) ≤ d − 1. Therefore the inequality holds
if n − d − 1 ≥ 1.

The only remaining case is n − d − 1 = 0. Since we have n − d =
∑

j ej , there
is only one possible solution, namely #J = 1 and ej = 1, which implies rj = n. In
this case we have c15(n, d) = d − (n − 1) = 0 = (d − 1)(n − d − 1) so the inequality
holds.

It remains to show that c15(n, 2) ≤ 1. Suppose c15(n, 2) > 1. Then every rj

is 1 and we obtain n =
∑

j rjej =
∑

j ej = d, which is a contradiction with the
requirement d ≤ n − 1.
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Theorem 7.1. Define for integers n the constants c10(n, 1) = 0 and c10(n, 2) = 1.
Furthermore, define for integers n and d with 3 ≤ d ≤ n−1 the constant c10(n, d) =
(d − 1)(n − d − 1). Then we can bound

#We,d(E) = On

(
pc10(n,d)

)
,

where p ranges over the set of primes, E over the collection of finite étale Qp-
algebras, e over the set of positive integers, d over {1, . . . ,deg(E)− 1}, and n is the
degree of E.

Proof of theorem 7.1. Proposition 7.10 tells us that #W1,d(E) = On

(
p(d−1)(n−d−1)

)

and combining theorem 7.3 and lemma 7.19 gives #We,d(E) = On

(
p(d−1)(n−d−1)

)

for e ≥ c14(n, p). When we have p > n, then c14(n, p) = 2 shows we have dealt with

all possible values of e. For the remaining cases, p ≤ n and e < 2
⌊

log n
log 2

⌋
+ 2 are

both bounded in n. Hence, by proposition 5.7, we can bound #We,d(E) = On(1),
where e is in {2, . . . , c14(n, p)−1}. Combining these three bounds gives #We,d(E) =
On

(
p(d−1)(n−d−1)

)
where e ranges over all positive integers.
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Chapter 8

Quintic rings

In [1] Manjul Bhargava counts the number of number fields of degree 5. One of the
results he uses is the following.

Theorem 8.1. Define for a number field K and integer m the number

fK(m) = #{R ⊂ OK : R is a subring of index (OK : R) = m}.

Then we can bound ∞∑

k=1

fK(pk)/p2k = O(1/p2),

where K ranges over all number fields of degree 5 and p over all primes.

The theory from the previous chapters was started to prove this bound. As it is
now, it is almost enough to do this. There is one cotype, (3, 1, 0, 0), that requires a
little more work. The theory at the end of section 5.5 suffices to prove the required
bound on this last cotype. Define for a finite étale Qp-algebra E of degree n and
partition λ of length at most n − 1 the number

fE(λ) = #{R ⊂ OE : R is a subring of cotype λ}.
Proposition 8.2. Let λ be the partition (3, 1, 0, 0). We can bound

fE(λ) = O(p6),

where p ranges over the set of prime numbers and E over the collection of finite
étale Qp-algebras of degree 5.

Proof. We apply the map ρ1,2 from proposition 5.32 to the Zp-module OE/1 · Zp.
This rounding chain map is the product of two rounding maps, so every subring
of cotype λ maps to a pair of subrings (R1, R2) where R1 is a subring of OE of
cotype (1, 0, 0, 0) and R2 of cotype (1, 1, 0, 0). By proposition 7.10, the number of
such pairs is bounded by #W1,1(E) · #W1,2(E) = O(1) · O(p) = O(p).
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Combining this bound with the bound on the size of the fibres of ρ1,2 from
proposition 5.32 gives

fE(λ) = O(p)O
(
p−d2(r−d2)(λd2

−2λd2+1)−d1(d2−d1)(λd1
−2λd1+1)+

Pr
i=1((r+1−2i)λi)

)

= O(p)O(p−2·2·1−1·1·1+3·3+1·1) = O(p6).

This bound and the bounds from chapter 5 give us enough ingredients to prove
theorem 8.1.

Proof of theorem 8.1. Recall the definition of c12(n, d, λ) from chapter 5 and define
for each partition λ of length at most 4 the constant c16(λ) = min0≤d≤3 c12(5, d, λ).
The fourth row of table 5a shows that for all these partitions λ we can bound
c16(λ) ≤ 20

11k, where k =
∑

i λi is the size of the partition. From lemma 5.13

it follows that we can bound fE(λ) = O(p
20
11 k), where λ ranges over the set of

partitions of length at most 4.
We will also use the bound fE(λ) = O(p2k−2). This bound is worse than the

bound above for k > 11. There are only a limited number of partitions of size
k ≤ 11. A computer search shows that lemma 5.13 suffices to prove the bound
fE(λ) = O(p2k−2) for all but one partition, namely (3, 1, 0, 0). Proposition 8.2
provides the required bound for this last cotype.

Furthermore, we denote the set of partitions λ of size k and length at most 4 by
Λ(k) and note that we can bound Λ(k) ≤ k4.

Now we can bound

∞∑

k=1

fK(pk)/p2k =
11∑

k=1

fK(pk)/p2k +
∞∑

k=12

fK(pk)/p2k

=

11∑

k=1

∑

λ∈Λ(k)

O(p2k−2/p2k) +

∞∑

k=12

∑

λ∈Λ(k)

O
(
p

20
11 k

)
/p2k

= O(p−2) +

∞∑

k=12

k4O
(
p

−2
11 k

)

= O(p−2) + O

( ∞∑

k=12

p
−2
12 k

)

= O(p−2) + O

(
p−2

1 − p−2/12

)

= O(p−2)

as required.
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Chapter 9

Class numbers for general

orders

Let K be a number field of degree n and OK its ring of integers. Denote by ∆(OK)
the absolute value of the discriminant of OK over Z. The class group or Picard group
of OK is the group

Cl(OK) = Frac(OK)/PFrac(OK).

A priori this is the semigroup Frac(OK) divided by the action of PFrac(OK). How-
ever, since every fractional OK-ideal is invertible, the semigroup Frac(OK) is in fact
the group Inv(OK), and the quotient becomes a quotient of groups.

From the Minkowski bound [5, chapter V, §4, theorem 4] it follows that the class
number #Cl(OK) satisfies

#Cl(OK) ≤ ∆(OK)1/2+on(1),

where K ranges over the collection of number fields and n is the degree of K, see [6,
theorem 6.5] for a proof of this bound.

We will generalize the notion of class group to orders A ⊂ OK of finite index,
that is, subrings of OK of finite index. Denote this index (OK : A) by m and the
absolute value of the discriminant of A by ∆(A). The discriminant of A is related
to the discriminant of OK ; we have ∆(A) = m2∆(OK).

There are two ways to generalize the notion of the class group. We define the Picard
group of A to be

Pic(A) = Inv(A)/PFrac(A)

and the class semigroup of A is

Cl(A) = Frac(A)/PFrac(A).
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For the Picard group, the quotient is a quotient of groups, but for the class semi-
group, the quotient is the semigroup Frac(A) divided out by the action of the group
PFrac(A). Note that Pic(A) consists of the invertible elements of Cl(A).

We would like to bound #Pic(A) and #Cl(A) in terms of the degree n of K and
the discriminant ∆(A) of A. For the Picard group the bound resembles the bound
on #Cl(OK) given above, and for the class semigroup the bound we give has an
extra factor depending on the index m and the degree n. The bounds are given in
the following two theorems.

Theorem 9.1. We can bound

#Pic(A) ≤ ∆(A)1/2+on(1),

where K ranges over the collection of number fields, A over the set of suborders
of OK of finite index and n is the degree of K.

Theorem 9.2. We can bound

#Cl(A) ≤ ∆(OK)1/2+on(1)m2n,

where K ranges over the collection of number fields, A over the set of suborders
of OK of finite index, m is the index of A in OK and n is the degree of K.

There are no good lower bounds known for Cl(OK) in terms of ∆(OK). We can give
lower bounds when we put the regulator into play.

To define the regulator, we write O∗
K

∼= T × Zr as Z-modules. Here T is a finite
torsion group consisting of the roots of unity of OK ; we denote by w(OK) the order
of this group. The integer r+1 is equal to the number of infinite places of K. Define
the map

O∗
K/T → Rr+1

x 7→ (Nv log |x|v)v,

where v runs over the infinite places of K; if v is real, then we set Nv = 1, and
if v is complex, we set Nv = 2. The image of this map is an r-dimensional lattice.
The regulator R(OK) of OK is the co-volume of the projection of this lattice on the
first r coordinates. In other words, it is the absolute value of the determinant of
the matrix (Nv log |xi|v)i,v=1,...r, where x1, . . . , xr is a basis of O∗

K/T . The absolute
value of this determinant is independent of the ordering of the places.

The Brauer-Siegel theorem [2] states upper and lower bounds on the product of
the class number and the regulator.

Lemma 9.3 (Brauer-Siegel theorem). We can bound

#Cl(OK) · R(OK)

w(OK)
= ∆(OK)1/2+on(1),

where K ranges over the collection of number fields and n is the degree of K.
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We can extend the definition of regulator to suborders A of OK of finite index.
If (OK : A) is finite, then (O∗

K : A∗) is also finite [7, lemma 2.5]. This implies we
can write A∗ ∼= TA × Zr as Z-modules, where again TA is a finite torsion group.
The definition of R(A), the regulator of A, and w(A) are analogous to the definition
for OK .

The upper bound for the Brauer-Siegel theorem has been generalized for the
Picard group of a general order in [7]. We will generalize this even further; we will

give a lower bound on #Pic(A)·R(A)
w(A) and we will give upper and lower bounds for an

analogous quantity related to Cl(A) instead of Pic(A).

Theorem 9.4. We can bound

#Pic(A) · R(A)

w(A)
= ∆(A)1/2+on(1),

where K ranges over the collection of number fields, A over the suborders of OK of
finite index and n is the degree of K.

For an ideal I ∈ Frac(A), we denote the ring {x ∈ K : xI ⊂ I} by End(I), called
the endomorphism ring. This notation is justified by the fact that there is an iso-
morphism between End(I) and the ring EndA(I) consisting of the A-module endo-
morphisms of I. We have inclusions A ⊂ End(I) ⊂ OK . If I, J ∈ Frac(A) are such
that [I] = [J ] in Cl(A), then their endomorphism rings are equal. We can therefore
talk about the endomorphism ring End[I] for a class [I] in Cl(A).

Theorem 9.5. We can bound

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
≤ ∆(OK)1/2+on(1)m2n

and
∑

[I]∈Cl(A)

R(End[I])

w(End[I])
≥ ∆(OK)1/2+on(1)m1+on(1),

where K ranges over the collection of number fields, A over the set of suborders of
OK of finite index, m is the index of A in OK and n is the degree of K.

For an ideal class [I] ∈ Cl(OK), the ring End[I] is equal to OK , so the sum

∑

[I]∈Cl(OK)

R(End[I])

w(End[I])
= #Cl(OK)

R(OK)

w(OK)

is the same as the quantity studied in the Brauer-Siegel theorem.
The upper and lower bounds in theorem 9.5 are not equal. In fact, these bounds

cannot be equal. This follows from the following two theorems. The second of these
theorems also shows that the lower bound in theorem 9.5 is sharp.
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Theorem 9.6. For every real ǫ > 0 and integer n > 1, there exists D > 0 such that
for all number fields K of degree n with ∆(OK) > D and all integers M there is a
subring A ⊂ OK of index m > M such that

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
≥ ∆(OK)1/2−ǫm(n−2)/4.

Theorem 9.7. For every real ǫ > 0 and integer n > 1, there exists D > 0 such that
for all number fields K of degree n with ∆(OK) > D and all integers M there is a
subring A ⊂ OK of index m > M such that

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
≤ ∆(OK)1/2+ǫm.

The proofs of theorems 9.1, 9.2, 9.4 and 9.5 have similar structure. We relate the
general Picard group or class semigroup to the class group of OK . The difference can
be related to the finite subsemigroup SA of Frac(A) consisting of the ideals I that
satisfy IOK = OK ; we call this semigroup the normalization kernel. This semigroup
was studied by Dade, Taussky and Zassenhaus in [3]. In that article, they showed
some basic properties of this object. Amongst others, they showed that it is indeed
a semigroup.

In the next section, the articulation, we will state the relations between Pic(A),
Cl(A) and Cl(OK) as well as the bounds on SA. Using these relations and bounds,
we prove theorems 9.1, 9.2, 9.4 and 9.5. In sections 9.2–9.4 we prove the relations
used in the articulation and in section 9.5 we will prove the various bounds on SA.

In section 9.6 we prove theorems 9.6 and 9.7.

9.1 Articulation of the proofs

In this section we prove the theorems from the introduction. In those proofs we will
use results proved in later sections. We start by stating those results.

Conductors

Let K be a number field. For an order A ⊂ OK of finite index the OK-ideal
fA = {x ∈ OK : xOK ⊂ A} is called the conductor of A in OK . If the index
(OK : A) is m, then we have the inclusion mOK ⊂ fA. This shows that OK/fA is
finite.

Note that the conductor is the largest OK-ideal contained in A. For fractional
A-ideals I that satisfy IOK = OK , we get the inclusion

fA = fAOK = fAOKI ⊂ AI = I.
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The normalization kernel

For a number field K and an order A ⊂ OK of finite index, we define the semi-
group SA to be the kernel of the map

Frac(A) → Frac(OK)

I 7→ IOK .

It consists of all fractional A-ideals I that satisfy IOK = OK . We call this semigroup
the normalization kernel of A. We know that for every ideal I ∈ SA we have the
inclusions fA ⊂ I ⊂ OK . Since OK/fA is finite, this shows that SA is finite.

A fractional OK-ideal does not change if we multiply it by an element of O∗
K .

The action of O∗
K on Frac(A) therefore stabilizes SA. This gives us an action of

the group O∗
K on the set SA. We denote the semigroup of orbits of SA under this

action by SA/O∗
K . Since S∗

A is stable under this action, we can also define the
group S∗

A/O∗
K .

The normalization kernel is used to relate the Picard group and class semigroup
of A to those of OK . To prove bounds on the class numbers of A, we will require some
bounds on the size of SA. The used bounds are given in the following proposition.
It is proven in section 9.5.

Proposition 9.8. The normalization kernel SA is bounded by

1. #SA ≤ m2n and

2. #S∗
A = m1+on(1),

where K ranges over the collection of number fields, A over the set of suborders
of OK of finite index, m is the index of A in OK and n is the degree of K.

Relations between class semigroups

The normalization kernel SA provides a link between the Picard group and class
semigroup of A on the one hand and the class group of OK on the other hand.
For the Picard group the result we use is the following proposition. It is proven in
section 9.2.

Proposition 9.9. For every maximal order OK and suborder A there is an exact
sequence of groups

1 → A∗ → O∗
K → S∗

A → Pic(A) → Pic(OK) → 1.

For class semigroups, we have a similar result. This is phrased a little differently,
since the notion of exact sequence for semigroups cannot be used to bound the
relative size of the objects in the sequence. This proposition is proven in section 9.3.

Proposition 9.10. Each fibre of the map

ψ : Cl(A) → Cl(OK)

[I] 7→ [IOK ]

has #(SA/O∗
K) elements.
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To relate the regulators of A and OK , we use the following lemma, which is proven
in section 9.4.

Lemma 9.11. For a maximal order OK and a suborder A, the equation

(O∗
K : A∗) =

R(A)w(OK)

w(A)R(OK)

holds.

Bounds on class numbers

We now have all the ingredients we use to prove theorems 9.1, 9.2 and 9.4 from the
introduction.

Proof of theorem 9.1. The exact sequence from proposition 9.9 gives the equality
#Pic(A) = #(S∗

A/O∗
K) · #Pic(OK). Using the upper bound on S∗

A from proposi-
tion 9.8 and the known bound on #Pic(OK) we obtain

#Pic(A) = #(S∗
A/O∗

K) · #Pic(OK)

≤ #S∗
A · #Pic(OK)

≤ m1+on(1)∆(OK)1/2+on(1)

= ∆(A)1/2+on(1),

the claimed result.

Proof of theorem 9.2. Proposition 9.10 gives the equality #Cl(A) = #(SA/O∗
K) ·

#Cl(OK). We bound #(SA/O∗
K) ≤ #SA ≤ m2n using proposition 9.8 and see that

#Cl(A) = #(SA/O∗
K) · #Cl(OK) ≤ m2n∆(OK)1/2+on(1),

as desired.

Proof of theorem 9.4. The exact sequence from proposition 9.9 gives the equality
#Pic(A) · (O∗

K : A∗) = #S∗
A · #Pic(OK). Combining this with the equality in

lemma 9.11 yields

#Pic(A)
R(A)

w(A)
= #Pic(A) · (O∗

K : A∗)
R(OK)

w(OK)

= #S∗
A · #Pic(OK)

R(OK)

w(OK)

= m1+on(1)∆(OK)1/2+on(1),

where the last step follows from the bound in proposition 9.8 and the Brauer-Siegel
theorem.
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The relation #Pic(A)R(A)
w(A) = #S∗

A · #Pic(OK)R(OK)
w(OK) , which was shown in the pre-

vious proof, can be generalized to the class semigroup. The result is the following
proposition, which will be proved in section 9.4.

Proposition 9.12. For a maximal order OK and a suborder A, we have

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
= #SA · #Cl(OK)

R(OK)

w(OK)
.

This proposition, combined with proposition 9.8 and the Brauer-Siegel theorem al-
lows us to prove theorem 9.5.

Proof of theorem 9.5. Proposition 9.8 gives for #SA the upper bound #SA ≤ m2n

and lower bound #SA ≥ #S∗
A = m1+on(1), so we obtain

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
= #SA · #Cl(OK)

R(OK)

w(OK)
≤ m2n∆(OK)1/2+on(1)

and

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
= #SA · #Cl(OK)

R(OK)

w(OK)
≥ m1+on(1)∆(OK)1/2+on(1).

Note that we can also obtain the lower bound of this theorem by restricting the sum
to the classes [I] ∈ Pic(A) and applying theorem 9.4.

9.2 Picard groups

In this section the ring A is an order of finite index in a maximal order OK . We
relate the Picard group of A to that of OK and prove proposition 9.9.

Lemma 9.13. The morphism

Inv(A) → Inv(OK)

I 7→ IOK

is surjective.

Proof. [3, corollary 2.1.11].
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We now prove proposition 9.9, restated below for convenience.

Proposition 9.9. For every maximal order OK and suborder A there is an exact
sequence of groups

1 → A∗ → O∗
K → S∗

A → Pic(A) → Pic(OK) → 1.

Proof. Consider the following diagram.

1 K∗ K∗

S∗
A Inv(A) Inv(OK)

∼

Lemma 9.13 shows the surjectivity of the last arrow in the second row, the rest of
the maps are the obvious ones. It is a commutative diagram with exact rows.

Applying the snake lemma [1, proposition 2.10] to this diagram gives the following
commutative diagram with exact rows and columns.

1 A∗ O∗
K

1 K∗ K∗

S∗
A Inv(A) Inv(OK)

S∗
A Pic(A) Pic(OK)

∼

The snake is the required exact sequence.

9.3 Class semigroups

In this section the ring A is an order of finite index in a maximal order OK . We
relate the class group of A to that of OK and prove proposition 9.10, restated below
for convenience.

Proposition 9.10. Each fibre of the map

ψ : Cl(A) → Cl(OK)

[I] 7→ [IOK ]

has #(SA/O∗
K) elements.
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Proof. The group Inv(A) acts on both Cl(A) and Cl(OK) and ψ respects these
actions. By lemma 9.13 the action on Cl(OK) is transitive. Hence each fibre of ψ
has the same number of elements.

It suffices to determine #ψ−1([OK ]). We have

ψ−1([OK ]) = {[I] ∈ Cl(A) : ∃α ∈ K∗ : αIOK = OK}
= {[I] ∈ Cl(A) : I ∈ Frac(A), IOK = OK}.

Note that in the last description of ψ−1([OK ]) not every I ′ ∈ [I] needs to satisfy the
condition, only one suffices.

If I1, I2 ∈ Frac(A) are two ideals such that I1OK = OK = I2OK and [I1] = [I2]
in ψ−1([OK ]), then there exists α ∈ K∗ such that αI1 = I2. Since we have αOK =
αI1OK = I2OK = OK , the element α is in O∗

K . Conversely, if I1 = αI2 holds for
some α ∈ O∗

K , then clearly [I1] = [I2] holds. We obtain the semigroup isomorphism

ψ−1([OK ]) ∼= {I ∈ Frac(A) : IOK = OK}/O∗
K = SA/O∗

K .

9.4 Regulators

In this section we prove lemma 9.11 and proposition 9.12. Recall the definition of
the regulator R(A) from the introduction and of the torsion group TA consisting of
the roots of unity of the order A. Lemma 9.11 is restated below.

Lemma 9.11. For a maximal order OK and a suborder A, the equation

(O∗
K : A∗) =

R(A)w(OK)

w(A)R(OK)

holds.

Proof. We write the index (O∗
K : A∗) as product of (TOK

: TA) and the index of the
lattice A∗/TA in the lattice O∗

K/TOK
. By definition, the first factor is w(OK)/w(A)

and by linear algebra, the lattice index is R(A)/R(OK).

Proposition 9.12. For a maximal order OK and a suborder A, we have

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
= #SA · #Cl(OK)

R(OK)

w(OK)
.

Proof. From lemma 9.11 we have

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
=

∑

[I]∈Cl(A)

(O∗
K : End[I]∗)

R(OK)

w(OK)
.
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The map ψ from proposition 9.10 shows that this is equal to

R(OK)

w(OK)

∑

[J]∈Cl(OK)

∑

[I]∈ψ−1([J])

(O∗
K : End[I]∗).

Let a ∈ Inv(A) be a fractional ideal. Then for every fractional ideal I ∈ Frac(A) the
set {x ∈ K : xaI ⊂ aI} is equal to {x ∈ K : xI ⊂ I}. So the action of Inv(A) on
Frac(A) leaves End(I) invariant. Since the action of Inv(A) on Cl(OK) is transitive,
the number

∑
[I]∈ψ−1([J])(O∗

K : End[I]∗) is the same for every [J ] ∈ Cl(OK). Hence
we have the equality

∑

[J]∈Cl(OK)

∑

[I]∈ψ−1([J])

(O∗
K : End[I]∗) = #Cl(OK)

∑

[I]∈ψ−1([OK ])

(O∗
K : End[I]∗).

We saw in the proof of proposition 9.10 that the fibre ψ−1([OK ]) is equal to the
set {[I] ∈ Cl(A) : I ∈ SA}/O∗

K . Take I ∈ SA. Then the stabilizer of I under the
action of O∗

K is {x ∈ O∗
K : xI = I} = End(I)∗. Hence the orbit of I has length

(O∗
K : End(I)∗). We obtain

#SA =
∑

I∈SA/OK∗
(O∗

K : End(I)∗) =
∑

[I]∈ψ−1([OK ])

(O∗
K : End[I]∗).

9.5 The size of the normalization kernel

In this section, we will provide the bounds on the size of the normalization kernel SA

and on the subgroup S∗
A from proposition 9.8.

For the bounds on #S∗
A, we rely heavily on the work of Sands [7].

Proposition 9.14. For every number field K and order A ⊂ OK there is a group
isomorphism

S∗
A → (OK/fA)∗/(A/fA)∗.

Proof. This follows from the exact sequence

1 → (A/fA)∗ → (OK/fA)∗ → S∗
A → 1,

which is in the proof of [7, theorem 3.7].

Proposition 9.15. Let R be a finite commutative ring such that the additive group
is generated n elements and T ⊂ R a subring of index m > 1, then we can bound

(R∗ : T ∗) > m

(
3

π2 log log(3m2)

)n−1

.
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Proof. For a prime p ∈ Spec(T ), we define the norm Np = #T/p. Since T is finite, it
can be written as product of local rings T =

∏
p∈Spec(T ) Tp. For each local factor Tp,

we have #T ∗
p = #Tp(1 − 1

Np
). By taking the product, we see

#T ∗ = #T
∏

p∈Spec(T )

(
1 − 1

Np

)
.

Combining this with a similar result for R gives

(R∗ : T ∗) = (R : T )

∏
q∈Spec(R) (1 − 1/Nq)

∏
p∈Spec(T ) (1 − 1/Np)

.

For every prime p ∈ Spec(T ), we choose a prime q ∈ Spec(R) such that q ∩ T = p.
For that prime we have Nq ≥ Np and hence 1 − 1/Nq ≥ 1 − 1/Np. Let P be the
set of all chosen q. Then we can bound

(R∗ : T ∗) ≥ (R : T )
∏

q∈Spec(R)\P

(1 − 1/Nq) .

For each prime number p | m there are at most n primes q ∈ Spec(R) that lie
above p, that is, they have a norm that is a power of p. At least one of those is in P ,
so we can bound the above by

(R∗ : T ∗) ≥ m
∏

p|m
(1 − 1/p)

n−1
.

Define on the set of positive integers the functions a(m) =
∏

p|m(1 − 1/p) and

b(m) =
∏

p|m(1 + 1/p). From [7, proposition 5.2], we have for m > 1 the bound

b(m) < 2 log log(3m2). Combining this with the inequality

a(m)b(m) =
∏

p|m
(1 − 1/p2) >

∏

p

(1 − 1/p2) =
6

π2

gives the required result.

Lemma 9.16. For every number field K and order A ⊂ OK we can bound

#(OK/fA) ≤ #(OK/A)2.

Proof. For the orders we are looking at, corollary 2 of [4] amounts to

#(OK/fA)∆(OK) | ∆(A).

Combining this with the fact that ∆(A) = (OK : A)2∆(OK) gives the result.
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We now prove proposition 9.8, which is restated below.

Proposition 9.8. The semigroup SA is bounded by

1. #SA ≤ m2n and

2. #S∗
A = m1+on(1),

where K ranges over the collection of number fields, A over the set of suborders
of OK of finite index, m is the index of A in OK and n is the degree of K.

Proof. To prove the bound on #SA, we first note that there is a canonical injection
SA → {G ⊂ OK/fA : G is a subgroup}. Since OK is as group isomorphic to Zn, we
can bound the number of subgroups of OK/fA from above by (#OK/fA)n. Com-
bining this with the bound from lemma 9.16 gives the desired result.

To prove the lower bound on #S∗
A, we obtain from proposition 9.14 the equality

#S∗
A = ((OK/fA)∗ : (A/fA)∗). Applying proposition 9.15 to OK/fA and A/fA gives

the result

#S∗
A = ((OK/fA)∗ : (A/fA)∗) ≥ m

(
3

π2 log log(3m2)

)n−1

≥ m1+on(1).

The upper bound on #S∗
A follows directly from propositions 5.1 and 5.2 in [7].

Define on the set of positive integers the function b(m) =
∏

p|m(1 + 1/p). Then we
can bound

#S∗
A ≤ mb(m)n/2 ≤ m(2 log log(3m2))n/2.

9.6 Examples

In this section we will construct orders A such that the normalization kernel SA

is large and orders such that this semigroup is small. This will allow us to prove
theorems 9.6 and 9.7.

Theorem 9.6. For every real ǫ > 0 and integer n > 1, there exists D > 0 such that
for all number fields K of degree n with ∆(OK) > D and all integers M there is a
subring A ⊂ OK of index m > M such that

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
≥ ∆(OK)1/2−ǫm(n−2)/4.
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Proof. By the Brauer-Siegel theorem, there exists D = D(ǫ) such that for all number
fields of degree n and discriminant ∆(OK) > D we have

#Cl(OK)R(OK)

w(OK)
≥ ∆(OK)1/2−ǫ.

Take K a number field of degree n and discriminant ∆(OK) > D. Let p > M be
a prime. Define the subring A = pOK +Z ⊂ OK and the quotient rings Ā = A/pOK

and ŌK = OK/pOK . The index of A in OK is pn−1 > M . Since Ā has conductor 0
in ŌK , the ring A has conductor pOK .

For every subgroup N ⊂ OK with A ⊂ N , we define N̄ = N/pOK and see that N
satisfies

AN = (pOK + Z)N = pOKN + N = N

and is a fractional A-ideal. Furthermore, N also satisfies NOK ⊃ AOK = OK .
So SA contains the set of subgroups N with A ⊂ N ⊂ OK . The number of these
subgroups is at least p(n−1)2/4 when n is odd (take d = (n − 1)/2 in lemma 5.2)
and pn(n−2)/4 when n is even (take d = n/2).

From proposition 9.12 it now follows that for this particular K and A, we can
bound

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
= #SA · #Cl(OK)

R(OK)

w(OK)

≥ pn(n−2)/4∆(OK)1/2−ǫ

≥ ∆(OK)1/2−ǫm(n−2)/4.

The proof of theorem 9.7 goes similarly.

Theorem 9.7. For every real ǫ > 0 and integer n > 1, there exists D > 0 such that
for all number fields K of degree n with ∆(OK) > D and all integers M there is a
subring A ⊂ OK of index m > M such that

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
≤ ∆(OK)1/2+ǫm.

Proof. By the Brauer-Siegel theorem, there exists D = D(ǫ) such that for all number
fields K of degree n and discriminant ∆(OK) > D we have

#Cl(OK)R(OK)

w(OK)
≤ ∆(OK)1/2+ǫ.

Take K a number field of degree n and discriminant ∆(OK) > D. Let p > M
be a prime that splits completely in K and let φ : OK → Fp × Fp be a surjective
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ring morphism. Define the subring A = φ−1(Fp · (1, 1)) ⊂ OK and the quotient rings
Ā = A/ ker(φ) and ŌK = OK/ ker(φ). The ring A has index p > M in OK and
conductor ker(φ).

For every subgroup N ⊂ OK with ker(φ) ( N , we define N̄ = N/ ker(φ). Such
a subgroup N is an A-ideal if and only if N̄ is an Ā-module. Such an A-module N
satisfies NOK = OK if and only if it satisfies N̄ŌK = ŌK . Since ŌK is isomorphic
to Fp × Fp, we obtain

#SA = #{I ⊂ Fp × Fp : I is an Fp-module such that I(Fp × Fp) = Fp × Fp} = p,

From proposition 9.12 it now follows that for this particular K and A, we can
bound

∑

[I]∈Cl(A)

R(End[I])

w(End[I])
= #SA · #Cl(OK)

R(OK)

w(OK)

≤ p∆(OK)1/2+ǫ

= ∆(OK)1/2+ǫm.
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Samenvatting

Telproblemen voor getallenringen

Een getallenlichaam is een lichaam dat eindig is als vectorruimte over Q, het
lichaam van rationale getallen. De dimensie van de vectorruimte heet de graad van
het getallenlichaam. Een getallenring is een domein waarvan het breukenlichaam
een getallenlichaam is. Meestal zullen we enkel de getallenringen bekijken die ein-
dig voortgebracht zijn als groep. Een andere naam voor een eindig voortgebrachte
getallenring is orde.

Aan een orde kennen we twee gehele getallen toe die de grootte van de orde
meten. De eerste is de rang, die gelijk is aan de graad van het breukenlichaam van
de orde. De tweede is de discriminant, die de dichtheid van de elementen meet. Een
grotere discriminant duidt erop dat de elementen verder van elkaar liggen. Dit is
het eenvoudigst te zien voor imaginair kwadratische ordes; voor een positief geheel
getal d heeft de orde Z[

√
−d] discriminant 4d, en als we Z[

√
−d] in C inbedden, dan

is de oppervlakte van het parallellogram (0,
√
−d, 1 +

√
−d, 1) gelijk aan

√
d. Dit

parallellogram noemen we een fundamentaalgebied van de orde. De discriminant van
de orde R duiden we aan met ∆(R). Merk op dat wat we hier aanduiden met de
discriminant de absolute waarde is van de gebruikelijke discriminant.

Wanneer we van een orde de rang en de discriminant weten, dan ligt de orde bijna
vast; voor elke rang en discriminant zijn er namelijk maar eindig veel ordes met die
rang en discriminant. Dit is een essentieel feit wanneer we ordes willen tellen, maar
het helpt niet bij het maken van ordes.

Een manier om een orde te construeren is om een monisch irreducibel poly-
noom f ∈ Z[X] te nemen en uit te delen naar het ideaal dat het voortbrengt. Het
resultaat is de ring Z[X]/(f). Deze ring heeft breukenlichaam Q[X]/(f) en is daarom
een getallenring. Het kan worden ingebed in C door een nulpunt α van f te kiezen
in C en de afbeelding

Z[X]/(f) → Z[α]

X 7→ α

te nemen. Ordes van dit type heten monogeen; we kunnen ze voortbrengen als
Z-algebra door één element. De rang van een monogene orde Z[α] ∼= Z[X]/(f) is
gelijk aan de graad van f en de discriminant van deze orde is gelijk aan de absolute
waarde van de discriminant van f .
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In elk getallenlichaam kunnen we de deelordes van dat getallenlichaam ordenen
met inclusie. Er is dan een unieke grootste orde, die alle andere ordes bevat. Deze
grootste orde heet de maximale orde van dat getallenlichaam. Elke orde heeft eindige
index in de maximale orde van zijn breukenlichaam.

Als een orde R bevat is in een grotere orde R′ van dezelfde rang, dan is zijn
discriminant ∆(R) deelbaar door de discriminant ∆(R′) van de grotere orde. Het
quotiënt is het kwadraat van de index van R in R′.

De ideaalstructuur van een maximale orde O kunnen we beschrijven met de klas-
sengroep, die we aanduiden met Cl(O). Het is een eindige abelse groep die het
verschil meet tussen de groep van gebroken O-idealen en de ondergroep van gebro-
ken hoofdidealen. Als de orde een hoofdideaaldomein is, zoals bijvoorbeeld Z[i], dan
is zijn klassengroep de triviale groep. De grootte van de klassengroep noemen we
het klassengetal en duiden we aan met h(O).

In dit proefschrift beschouwen we drie telproblemen die te maken hebben met ordes.
Het eerste probleem legt een verband tussen de beschrijving van ordes in termen van
polynomen en maximale ordes. Het gaat over de vraag wat de kans is dat voor een
willekeurig polynoom f ∈ Z[X] de orde Z[X]/(f) de maximale orde van Q[X]/(f) is.

Het tweede probleem gaat over het tellen van deelordes binnen maximale ordes.
We weten dat het aantal deelringen van gegeven index eindig is. We bepalen grenzen
voor het aantal deelordes in termen van de rang van de maximale orde en de index
van de deelorde.

Het laatste probleem heeft te maken met klassengroepen. Er zijn grenzen bekend
voor het klassengetal van maximale ordes, en we gebruiken deze grenzen om grenzen
voor het klassengetal van algemene ordes af te leiden.
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