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11 incretins

There are two main incretin hormones in humans, glp-1 (glucagon-like pep-
tide-1) and gip (glucose-dependent insulinotropic peptide, also known as 
gastric inhibitory peptide). Both hormones are secreted by endocrine cells 
that are located in the epithelium of the small intestine. Food intake, and also 
stimulation of the sympathetic nervous system (for example physical exercise), 
stimulate the secretion of glp-1 and is rapidly inactivated by enzyme dpp-iv 
(Dipeptidyl peptidase-iv). The mechanism of incretin action is outlined in 
Figure 2. glp-1 stimulates the production and secretion of insulin, the release 
of somatostatin, and glucose utilization by increasing insulin sensitivity. It 
inhibits glucagon release, gastric emptying, appetite, and food intake via the 
central nervous system [4].

balance between glucose production and utilization

In the postabsorptive state plasma glucose levels are the result the balance 
between the rates of glucose production and glucose utilization [5]. Each of 
these processes is tightly regulated by the levels of hormones and substrates 
in blood. Glucose is produced by both the liver (90%) and the kidneys (10%). 
The kidneys take up ~10% of the glucose produced, so that in a net sense they 
do not supply glucose to the other tissues of the body. Therefore, the liver is 
responsible for providing glucose to both insulin-insensitive (neural tissues, 
formed elements of the blood, skin, smooth muscle, etc.) and insulin-sensitive 
(skeletal muscle and fat) tissues. The control of hepatic glucose production 
(hgp) by the liver serves as a primary regulatory event of glucose homeostasis. 
In normal physiology the liver maintains blood glucose homeostasis by rapid 
clearance of glucose from the portal vein in the absorptive state after a meal 
(glycogenesis), and by controlled production of glucose (gluconeogenesis & 
glycogenolysis) in the fasted state at a sufficient rate to maintain euglycemia 
(blood glucose level 4.5-6.5 mmol/L) [6]. 

diabetes mellitus type 2 (t2dm) 

Type 2 diabetes mellitus (t2dm) is a characterized by a combination of resis-
tance to insulin action in target tissues and inadequate compensatory insulin 
secretion. In the absence of a defect in ß-cell function, individuals can com-
pensate for insulin resistance with appropriate hyperinsulinemia. However, 
in a later stage of the disease, a decline in pancreatic ß-cell function (relative 
insulin deficiency) ultimately leads to postprandial and fasting hyperglycemia 

glucose homeostasis 

The pancreatic islets of Langerhans secrete the reciprocal hormones insulin 
and glucagon which are responsible for controlling of the glucoregulatory 
feedback-loop and tightly control blood glucose levels (Figure 1). Insulin is pro-
duced by the ß-cells of the pancreas and was first discovered in 1921 by Dr. 
Frederick Banting and Charles Best. Shortly after the discovery of insulin, glu-
cagon hormone, which is secreted from pancreatic α-cells, was discovered by 
Kimball and Murlin [1]. 

insulin regulates carbohydrate, protein and fat 
metabolism in the body

Insulin binds to tyrosine kinase receptors at the cell surface. Insulin inhibits 
hepatic glucose production and stimulates glycogenesis, the process of gly-
cogen synthesis for storage in liver and muscles. Glucose uptake is increased 
by insulin, which stimulates the transport of vesicles containing glucose 
transporters towards the cell membrane. Furthermore, insulin inhibits glu-
cagon secretion from pancreatic α-cells, thereby decreasing hepatic glucose 
production (gluconeogenesis and glycogenolysis). Adipose tissue is exqui-
sitely sensitive to the inhibitory effect of insulin on lipolysis. Insulin decreases 
the release of nonesterified fatty acids and glycerol from adipose tissue and 
gluconeogenic precursors from skeletal muscles, thus causing a decrease in 
precursor supply for hepatic gluconeogenesis. 

glucagon protects against hypoglycemia

The main role of glucagon is to protect the body and in particular the brain 
from low glucose levels during periods of fasting. In healthy subjects, gluca-
gon levels are only elevated in the fasting state, because low glucose levels 
are the most important physiologic stimulator of glucagon secretion. Glucagon 
mediates its effects by binding to and activating the glucagon receptor (gcgr), 
a member of the class B family of heptahelical gtp-binding protein coupled 
receptors [2]. Stimulation of these receptors results in activation of adenylate 
cylase and increased levels of intracellular cyclic adenosine monophosphate 
(camp). Glucagon receptors are mainly expressed in the liver and kidney with 
lesser amounts in heart, adipose tissue, adrenal glands, pancreas, cerebral cor-
tex and gastrointestinal tract [2;3]. The role of gcgr in glucose homeostasis 
has been studied in mice lacking the receptor, which show slightly reduced 
plasma levels of glucose and insulin. Agonism at the glucagon receptor results 
in glycogenolysis, gluconeogenesis, proteolysis and lipolysis.
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11 current insulin-based therapies

Standard pharmacological, insulin-based, treatment regimens for t2dm are 
oral blood glucose lowering medication as biguanides, sulfonylureas, and/or 
thiazolidinediones. In the 1950’s, the biguanide drug metformin was introduced 
for the treatment of diabetes as insulin sensitizer by increasing the efficiency of 
glucose transporters and lowering glycated hemoglobin (HbA1c) by 1–2% [32]. 
Gastrointestinal side-effects occur to varying degrees in up to 30% of patients. 
Sulphonylureas act mainly by stimulating insulin release from the ß-cells of the 
pancreas and may also improve insulin resistance in peripheral target tissues. 
These drugs reduce concentrations of HbA1c by 1–2% and fasting plasma glu-
cose (fpg) concentrations by 3.3–3.9 mmol/L [33]. Hypoglycemia is the most 
worrisome side effect of the sulfonylureas. Thiazolidinediones (tzd), such as pi-
oglitazone, have been associated with a 0.5 to 1.5 % reduction in HbA1c levels 
and 1.4 to 2.8 mmol/L reductions in fpg levels. tzd’s are contraindicated in pa-
tients with (a history of) heart failure and should be used with caution in women 
at high risk of fractures [34]. Currently, tzds are hardly prescribed any more in 
the Netherlands. In a more advanced stage of the disease, exogenous subcu-
taneous insulin therapy or a combination of subcutaneous insulin with oral 
drugs will be prescribed. Although insulin therapy results in a 1-2% reduction of 
HbA1c, it is accompanied by weight gain, a significant risk of hypoglycemia and 
an increased risk of cancer in patients taking long-acting insulin [32].

current incretin-based therapies

Almost 10 years ago, incretin-based therapies (glp-1 analogs or dpp-iv inhibi-
tors) were introduced on the market for overweight t2dm patients [35]. t2dm 
patients display an impaired incretin effect and higher glp-1 levels can be 
achieved using glp-1 analogs, glp-1 receptor agonists produced by recom-
binant dna technology or ddp-iv inhibitors which prolong the half-life of 
endogenous glp-1 by preventing its enzymatic degradation. In 2005 exenatide 
was the first fda (Food and Drug Administration, usa) approved drug that uses 
the ‘incretin effect’. Currently available glp-1 analogs exenatide and liraglutide 
have to be administered subcutaneously; exenatide twice daily and liraglutide 
once a day. Recently, exenatide has been developed in an extended-release 
formulation which can be used once weekly. Clinical trials with exenatide [36-
39] showed significant reductions in HbA1c of approximately 1.0–1.2% when 
compared to placebo, and a modest reduction in fasting plasma glucose (fpg) 
of approximately 1.0–1.4 mM. The average weight loss amounted to 1.6 kg in 
the exenatide-treated groups. Liraglutide significantly lowered HbA1c by 0.8–
1.5%, fpg with up to 2.6 mM, and induced a weight loss in the range of 2 to 3 kg 
compared to the placebo-treated group [39-41]. In lead 6 study both available 
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that characterizes t2dm. Insulin resistance prolongs the duration of postpran-
dial hyperglycemia, which can be marked when both hepatic and extra-hepatic 
insulin resistance are present [7]. Studies using hyperinsulinemic euglycemic 
clamps show impaired suppression of hepatic glucose production by hyper-
glycemia [8] and by elevated insulin levels [9], indicating that intrahepatic 
changes in glucose metabolism and in responsiveness to hyperglycemia and 
insulin contribute to the increase in the hepatic glucose threshold and insulin 
resistance.

In addition, subjects with t2dm have elevated fasting glucagon concentra-
tions that do not decrease appropriately, and can even paradoxically increase, 
after food ingestion [10-13]. During fasting conditions in t2dm patients, 
hyperglucagonemia sustains gluconeogenesis and glycogenolysis in the liver, 
contributing to increased fasting blood glucose levels [14]. Similarly, increased 
glucagon responses after food ingestion, result in inadequate suppression 
of hepatic glucose production, contributing to increased postprandial glu-
cose levels [11]. This paradoxical glucagon response may be explained by an 
impaired suppressive effect of glucose on the α-cell in t2dm and by gastro-
intestinal factors as reduced incretin effect observed in patients with t2dm 
[15]. Knop et al. showed attenuated and delayed glucagon suppression in t2dm 
after oral ingestion of glucose, where intravenous administration of the same 
amount of glucose results in normal suppression of glucagon, supporting this 
hypothesis  [15].

glycaemic control / treatment of t2dm

The Diabetes Control and Complications Trial [16] and the U.K. Prospective 
Diabetes Study [17;18] have documented that strict glycemic control effec-
tively reduces the risk of developing microvascular (diabetic nephropathy, 
neuropathy, and retinopathy) and, to a lesser extent, macrovascular (coronary 
 artery disease, peripheral arterial disease, and stroke) complications of diabe-
tes. Current treatments for t2dm are focused on increasing insulin secretion 
or improving insulin sensitivity. Lifestyle modifications such as diet, are con-
sidered the first line of treatment to halt or delay further progression of the 
disease [19]. In addition to energy intake restriction, specific food compo-
nents like amino acids and proteins can be applied to more directly modulate 
glycemic control. The possibility that substances other than glucose could 
stimulate insulin secretion was first reported by Cochrane et al. in 1956 [20]. 
Subsequently, many studies have demonstrated that the combined intake of 
carbohydrate and protein induced a higher insulin response than the intake 
of carbohydrate alone [21;22], both in healthy subjects [23-25] and in t2dm 
patients [26-31]. 
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11 novel mechanism(s) of action for the treatment of 
diabetes type 2

Despite all currently available pharmacological therapies, treatment of patients 
with diabetes is not completely successful in restoring control of glucose 
metabolism. Thus, there remains a need for agents with novel mechanism(s) of 
action. Nowadays, there is more attention to the role of liver in the pathogen-
esis of diabetes, reduction of hepatic glucose production has been targeted as 
a strategy for diabetes treatment and can be achieved through counteracting 
the action of glucagon. Attenuation of the action of glucagon could be a viable 
therapeutic strategy for t2dm in combination with insulin-based antidiabetic 
drugs that are currently on the market (combined targeting of two sites within 
the liver).

glucagon receptor antagonists

Pharmacological antagonism of glucagon action may be a potential thera-
peutic approach for t2dm. Different mechanisms to lower glucagon levels 
are: inhibition of glucagon secretion, gcgr receptor blockers and (antisense) 
inhibition of gcgr expression. Peptide antagonists and monoclonal antibod-
ies against the gcgr attenuated hyperglycemia in animal models [49-51], 
suggesting a potential to treat hyperglycemia in t2dm through the inhibition 
of glucagon function. Peptides were the earliest gcgr antagonists that were 
designed by structural modification of the native hormone [52] . However, oral 
bioavailability and long half-life appeared to be hurdles that have not been 
overcome. The development of small molecules against the gcgr has not been 
very successful due to limited drug selectivity, cross-species differences and 
lack of sustained effects after non-competitive blockade [53]. Only one phase 1 
study has been published describing the acute effects of Bay 27-9955, a small 
molecule glucagon receptor inhibitor [54] that blunted hyperglucagonemia-
induced hyperglycemia. However, long-term antidiabetic benefits, as well as 
side effects, of this compound in patients with t2dm remain unknown. 

antisense therapy

Antisense oligonucleotides (asos) as therapeutical agents are relatively 
new, and only one antisense compound has been approved by the fda and 
European authorities until now [55]. Many antisense compounds are currently 
in preclinical or clinical development phases. asos are short, single-stranded 
molecules which are complementary to a target messenger ribonucleic acid 
(mrna). Upon Watson-Crick hybridization with their target mrna, asos inhibit 

glp-analogs were compared [42]. The mean reduction in HbA1c levels was 
significantly higher with liraglutide 1.8 mg once daily than with exenatide 10 
mg twice daily (−1.12% versus −0.79%; p<0.001). The most common adverse 
events associated with glp-1 mimetics are gastrointestinal. Safety concerns 
have been raised during the development of liraglutide; a small number of 
cases of pancreatitis have been reported [43], while the initial concerns regard-
ing thyroid C-cell tumors have not been confirmed in humans [44]. In contrast 
to glp-1 receptor agonists, dpp-iv inhibitors are orally available and have a 
longer duration of action, requiring only once daily dosing. Sitagliptin, vilda-
gliptin, saxagliptine, and linagliptine as monotreatment and also combined 
with metformin are currently available in the Netherlands. These drugs control 
hyperglycemia, reduce HbA1c concentrations by ~1%, and improve pancreatic 
ß-cell function. dpp-iv inhibitors are generally safe and well-tolerated with a 
low risk of hypoglycemia, but do not reduce appetite or cause weight loss such 
as glp-1 agonists [45]. The long-term safety and effects of glp-1 analogs and 
dpp-iv inhibitors have not been established yet.

sglt2 inhibitors in the treatment of type 2 diabetes

Agents that inhibit sodium glucose co-transporter 2 (sglt2) in the kidney 
represent a novel class of drugs, which has become available for treatment of 
t2dm since 2012. The sglt2 transporter protein is found only in renal epithe-
lium cells of the proximal tubule, and mediates the majority (~90%) of glucose 
reabsorption along the nephron. Pharmacological inhibition of sglt2 increases 
urinary glucose excretion and decreases plasma glucose levels in an insulin-
independent manner [46]. Hypoglycemic episodes are less likely, because of 
the insulin independence of their action plus the fact that these compounds 
only lower the glucose re-absorption threshold without completely blocking 
renal glucose reabsorption. In November 2012 the first sglt2 inhibitor dapa-
gliflozine was introduced on the market in Europe, followed by canagliflozine 
in September 2013. In the usa canagliflozin became the first sglt2 inhibitor 
(approved March 2013), followed by dapagliflozine which was approved in 
January 2014 by the fda. Clinical trials on these two agents have shown signifi-
cant and sustained HbA1c reduction of 0.5-1% when used as monotherapy or 
in combination with other antidiabetic agents [47]. Comparing other antidia-
betic drugs, the major disadvantage of sglt2 inhibitors is the increased risk of 
genital mycotic infections and urinary tract infections, particularly in women. 
Additionally, since the efficacy of sglt2 inhibitors requires adequate filtered 
load of glucose in the kidney, their efficacy diminishes in renal impairment. 
Multiple other sglt2 inhibitors are currently in clinical development such as 
small molecules empagliflozin, ipragliflozin, lx4211 (a novel dual inhibitor of 
sglt1 and sglt2 glucose transporters), and antisense oligonucleotide target-
ing the human sglt2 transporter [48].
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Furthermore, we determined whether human adipose tissue expresses gluca-
gon receptor mrna.

In chapter 4 the effects of a glucagon challenge in t2dm patients were 
explored. A stable isotope glucose tracer technique was applied to determine 
hepatic glucose production. The influence of oral antidiabetic drugs on the 
response to hyperglucagonemia was investigated by using a cross-over study 
design. We compared the glucagon challenge data of healthy volunteers with 
t2dm.

Increased fasting and post-meal glucagon concentrations cause excessive 
hepatic glucose production (hgp) in patients with type 2 diabetes, suggesting 
that attenuation of hepatic glucagon action could be a promising therapeutic 
strategy for t2dm. chapter 5 shows the results of the phase I double-blind, 
placebo-controlled, dose-escalation study, which evaluated the safety, toler-
ability, pk and pharmacodynamics of single and multiple dose administrations 
of placebo or antisense glucagon receptor antagonist (isis 325568) at 4 dose 
levels in healthy subjects. In the multiple dose cohorts at each dose level, 8 
subjects received 8 doses over 6-weeks (3 iv doses in week 1 followed by 5 
weekly sc doses) and underwent a glucagon challenge procedure (glucagon 
infusion that doubled both plasma glucagon and glucose levels) at baseline 
and at the end of 6-week treatment.

chapter 6 describes the development of a semi-mechanistic model simul-
taneously describing glucagon, plasma glucose, insulin and glucagon receptor 
internalization. This model was build using data from our glucagon challenge 
study in healthy volunteers (chapter 3).

Finally, chapter 7 combines the results and conclusions from the previous 
chapters and places these in a broader perspective. The role of glucagon in 
glucose homeostasis in health and disease is discussed and suggestions for 
future research are given.

translation through the activation of endogenous rnase h enzymes and other 
mechanisms, for example via alternative splicing (Figure 3) [56]. 

clinical use of antisense oligonucleotides (asos)

For clinical use of asos, chemical modified asos were used. The first generation 
oligonucleotides contain a phosphorothioate modification to protect the mol-
ecule from rapid degradation by nucleases. Second-generation 2’-O-methyl 
(2’-ome) and 2’-methoxyethyl (2’-moe) oligonucleotides were developed to 
further increase nuclease resistance, thereby improving pharmacokinetics 
and to increase target affinity. Third-generation oligonucleotides represent a 
heterogeneous group of asos that are most often dna and rna analogs with 
modified phosphate linkages or riboses. These modifications also lead to 
improved nuclease resistance, affinity and pharmacokinetics. The different 
classes of asos have different toxicological, pharmacokinetic and pharmaco-
logical properties [57;58]. Studies with species-specific gcgr antisense drugs 
in rodent models of t2dm have demonstrated selective inhibition of hepatic 
and adipose tissue glucagon receptor expression and normalization of blood 
glucose levels without development of hypoglycemia or weight gain [59;60]. In 
addition to hepatic effects, in preclinical studies glucagon receptor antisense 
therapy increased the levels of active glp-1 levels and improved pancreatic 
beta cell function [60].

In conclusion, the pathophysiology of t2dm is characterized not only by 
insulin resistance and ß-cell dysfunction, but also with elevated fasted and 
postprandial plasma glucagon levels. It has been suggested that the diabetic 
α-cell exhibits a reduced glucose sensitivity and/or insulin resistance. The 
overall aim of this thesis was to gain more insight in the role of glucagon in glu-
cose homeostasis in health and disease, and to explore glucagon antagonism 
as therapeutic potential for the treatment of t2dm.

outline of this thesis

This thesis is comprised of a variety of human studies designed to investigate 
the role of glucagon in glucose homeostasis in health and disease. 

chapter 2 studied the effects of a single protein hydrolysate meal replace-
ment (insuVida™) on postprandial serum glucose, insulin and glucagon levels 
in patients with type 2 diabetes. 

The aim of the study in chapter 3 was to characterize the applicability of 
the glucagon challenge test as a tool in diabetes research, by assessing the 
inter- and intra-individual variabilities of the glucagon challenge test and 
investigating the activity of the autonomic nervous system (ans) during the 
challenge, as this might have an indirect impact on glucose homeostasis. 
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figure 1	 Homeostatic insulin-glucagon system 
Diagram of the homeostatic (insulin-glucagon) system. Insulin secretion is 
stimulated by high blood glucose levels and glucagon is stimulated by low 
blood glucose levels.

figure 2	 Enteroinsulinar axis
After food intake (1) the complex sugars are broken down in the small intestine 
into glucose molecules. L-cells in the distal intestinal wall secrete the incretin 
glp-1 upon stimulation by food/glucose (2). This glucagon-like peptide-1 
is released proportional to the amount of food post-prandial in the distal 
intestine. glp-1 is key player in many processes after a meal. It stimulates the 
release of insulin by the ß-cells in the pancreas (3). Similarly, glp-1 inhibits 
the release of glucagon by the α-cells (4). The rise in insulin will stimulate the 
glucose uptake from the blood into the cells (8). Further, glp-1 inhibits gastric 
emptying (5) and induces the feeling of satiety (6) in order to reduce further 
carbohydrate intake. glp-1 is metabolised by the enzyme dipeptidyl peptidase 
4 (ddp-iv) which is present in the cell wall (7).

figure 3	 Antisense oligonucleotides
rnase h-dependent antisense mechanism. Single-stranded oligonucleotides 
are transported across the plasma membrane, by either poorly characterized 
natural processes or by the use of facilitators such as cationic lipids (step 1). 
Once in the cytoplasm, single-stranded oligonucleotides rapidly accumulate 
in the cell nucleus (steps 2 and 3), where they bind to their targeted rna (step 
4). Once bound to the rna, rnase h recognizes the oligonucleotide/rna 
duplex as a substrate, cleaving the rna strand and releasing the antisense 
oligonucleotide (step 5). Although the cleavage of the rna by rnase h is 
shown to occur in the nucleus, rnase h is also present in the cytosol, allowing 
for cleavage to occur in that cellular compartment as well.

See inside of the backcover for the figures in full colour.
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