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GLUCOSE HOMEOSTASIS

The pancreatic islets of Langerhans secrete the reciprocal hormones insulin
and glucagon which are responsible for controlling of the glucoregulatory
feedback-loop and tightly control blood glucose levels (Figure 1). Insulin is pro-
duced by the f3-cells of the pancreas and was first discovered in 1921 by Dr.
Frederick Banting and Charles Best. Shortly after the discovery of insulin, glu-
cagon hormone, which is secreted from pancreatic a.-cells, was discovered by
Kimball and Murlin [1].

INSULIN REGULATES CARBOHYDRATE, PROTEIN AND FAT
METABOLISM IN THE BODY

Insulin binds to tyrosine kinase receptors at the cell surface. Insulin inhibits
hepatic glucose production and stimulates glycogenesis, the process of gly-
cogen synthesis for storage in liver and muscles. Glucose uptake is increased
by insulin, which stimulates the transport of vesicles containing glucose
transporters towards the cell membrane. Furthermore, insulin inhibits glu-
cagon secretion from pancreatic a-cells, thereby decreasing hepatic glucose
production (gluconeogenesis and glycogenolysis). Adipose tissue is exqui-
sitely sensitive to the inhibitory effect of insulin on lipolysis. Insulin decreases
the release of nonesterified fatty acids and glycerol from adipose tissue and
gluconeogenic precursors from skeletal muscles, thus causing a decrease in
precursor supply for hepatic gluconeogenesis.

GLUCAGON PROTECTS AGAINST HYPOGLYCEMIA

The main role of glucagon is to protect the body and in particular the brain
from low glucose levels during periods of fasting. In healthy subjects, gluca-
gon levels are only elevated in the fasting state, because low glucose levels
are the mostimportant physiologic stimulator of glucagon secretion. Glucagon
mediates its effects by binding to and activating the glucagon receptor (GcGR),
a member of the class B family of heptahelical cTp-binding protein coupled
receptors [2]. Stimulation of these receptors results in activation of adenylate
cylase and increased levels of intracellular cyclic adenosine monophosphate
(camp). Glucagon receptors are mainly expressed in the liver and kidney with
lesseramounts in heart, adipose tissue, adrenal glands, pancreas, cerebral cor-
tex and gastrointestinal tract [2;3]. The role of ccGRr in glucose homeostasis
has been studied in mice lacking the receptor, which show slightly reduced
plasma levels of glucose and insulin. Agonism at the glucagon receptor results
in glycogenolysis, gluconeogenesis, proteolysis and lipolysis.
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INCRETINS

There are two main incretin hormones in humans, cLpP-1 (glucagon-like pep-
tide-1) and cip (glucose-dependent insulinotropic peptide, also known as
gastric inhibitory peptide). Both hormones are secreted by endocrine cells
that are located in the epithelium of the small intestine. Food intake, and also
stimulation of the sympathetic nervous system (for example physical exercise),
stimulate the secretion of cLp-1 and is rapidly inactivated by enzyme ppp-1v
(Dipeptidyl peptidase-1v). The mechanism of incretin action is outlined in
Figure 2. gLP-1 stimulates the production and secretion of insulin, the release
of somatostatin, and glucose utilization by increasing insulin sensitivity. It
inhibits glucagon release, gastric emptying, appetite, and food intake via the
central nervous system [4].

BALANCE BETWEEN GLUCOSE PRODUCTION AND UTILIZATION

In the postabsorptive state plasma glucose levels are the result the balance
between the rates of glucose production and glucose utilization [5]. Each of
these processes is tightly regulated by the levels of hormones and substrates
in blood. Glucose is produced by both the liver (9o%) and the kidneys (10%).
The kidneys take up ~10% of the glucose produced, so that in a net sense they
do not supply glucose to the other tissues of the body. Therefore, the liver is
responsible for providing glucose to both insulin-insensitive (neural tissues,
formed elements of the blood, skin, smooth muscle, etc.) and insulin-sensitive
(skeletal muscle and fat) tissues. The control of hepatic glucose production
(HGP) by the liver serves as a primary regulatory event of glucose homeostasis.
In normal physiology the liver maintains blood glucose homeostasis by rapid
clearance of glucose from the portal vein in the absorptive state after a meal
(glycogenesis), and by controlled production of glucose (gluconeogenesis &
glycogenolysis) in the fasted state at a sufficient rate to maintain euglycemia
(blood glucose level 4.5-6.5 mmol/L) [6].

DIABETES MELLITUS TYPE 2 (T2DM)

Type 2 diabetes mellitus (T2DM) is a characterized by a combination of resis-
tance to insulin action in target tissues and inadequate compensatory insulin
secretion. In the absence of a defect in 3-cell function, individuals can com-
pensate for insulin resistance with appropriate hyperinsulinemia. However,
in a later stage of the disease, a decline in pancreatic f3-cell function (relative
insulin deficiency) ultimately leads to postprandial and fasting hyperglycemia
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that characterizes T2bM. Insulin resistance prolongs the duration of postpran-
dial hyperglycemia, which can be marked when both hepatic and extra-hepatic
insulin resistance are present [7]. Studies using hyperinsulinemic euglycemic
clamps show impaired suppression of hepatic glucose production by hyper-
glycemia [8] and by elevated insulin levels [g], indicating that intrahepatic
changes in glucose metabolism and in responsiveness to hyperglycemia and
insulin contribute to the increase in the hepatic glucose threshold and insulin
resistance.

In addition, subjects with T2bM have elevated fasting glucagon concentra-
tions that do not decrease appropriately, and can even paradoxically increase,
after food ingestion [10-13]. During fasting conditions in T2DM patients,
hyperglucagonemia sustains gluconeogenesis and glycogenolysis in the liver,
contributing to increased fasting blood glucose levels [14]. Similarly, increased
glucagon responses after food ingestion, result in inadequate suppression
of hepatic glucose production, contributing to increased postprandial glu-
cose levels [11]. This paradoxical glucagon response may be explained by an
impaired suppressive effect of glucose on the a-cell in T2pM and by gastro-
intestinal factors as reduced incretin effect observed in patients with T2pM
[15]. Knop et al. showed attenuated and delayed glucagon suppression in T2pM
after oral ingestion of glucose, where intravenous administration of the same
amount of glucose results in normal suppression of glucagon, supporting this
hypothesis [15].

GLYCAEMIC CONTROL / TREATMENT OF T2DM

The Diabetes Control and Complications Trial [16] and the U.K. Prospective
Diabetes Study [17;18] have documented that strict glycemic control effec-
tively reduces the risk of developing microvascular (diabetic nephropathy,
neuropathy, and retinopathy) and, to a lesser extent, macrovascular (coronary
artery disease, peripheral arterial disease, and stroke) complications of diabe-
tes. Current treatments for T2pM are focused on increasing insulin secretion
or improving insulin sensitivity. Lifestyle modifications such as diet, are con-
sidered the first line of treatment to halt or delay further progression of the
disease [19]. In addition to energy intake restriction, specific food compo-
nents like amino acids and proteins can be applied to more directly modulate
glycemic control. The possibility that substances other than glucose could
stimulate insulin secretion was first reported by Cochrane et al. in 1956 [20].
Subsequently, many studies have demonstrated that the combined intake of
carbohydrate and protein induced a higher insulin response than the intake
of carbohydrate alone [21;22], both in healthy subjects [23-25] and in T2DM
patients [26-31].
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CURRENT INSULIN-BASED THERAPIES

Standard pharmacological, insulin-based, treatment regimens for T2pmM are
oral blood glucose lowering medication as biguanides, sulfonylureas, and/or
thiazolidinediones. Inthe 1950’s, the biguanide drug metformin was introduced
forthe treatment of diabetes as insulin sensitizer by increasing the efficiency of
glucose transporters and lowering glycated hemoglobin (HbA1c) by 1-2% [32].
Gastrointestinal side-effects occur to varying degrees in up to 30% of patients.
Sulphonylureas act mainly by stimulating insulin release from the f3-cells of the
pancreas and may also improve insulin resistance in peripheral target tissues.
These drugs reduce concentrations of HbA1c by 1-2% and fasting plasma glu-
cose (FPG) concentrations by 3.3-3.9 mmol/L [33]. Hypoglycemia is the most
worrisome side effect of the sulfonylureas. Thiazolidinediones (Tzp), such as pi-
oglitazone, have been associated with a 0.5 to 1.5 % reduction in HbA1c levels
and1.4to 2.8 mmol/L reductions in FrG levels. Tzb’s are contraindicated in pa-
tients with (a history of) heart failure and should be used with caution in women
at high risk of fractures [34]. Currently, Tzps are hardly prescribed any more in
the Netherlands. In a more advanced stage of the disease, exogenous subcu-
taneous insulin therapy or a combination of subcutaneous insulin with oral
drugs will be prescribed. Although insulin therapy results in a 1-29% reduction of
HbA1c, it is accompanied by weight gain, a significant risk of hypoglycemia and
an increased risk of cancer in patients taking long-acting insulin [32].

CURRENT INCRETIN-BASED THERAPIES

Almost 10 years ago, incretin-based therapies (cLp-1 analogs or bpp-1v inhibi-
tors) were introduced on the market for overweight T2pM patients [35]. T2DM
patients display an impaired incretin effect and higher cLp-1 levels can be
achieved using GLP-1 analogs, cLP-1 receptor agonists produced by recom-
binant bNA technology or ppp-iv inhibitors which prolong the half-life of
endogenous GLP-1 by preventing its enzymatic degradation. In 2005 exenatide
was the first FpA (Food and Drug Administration, usa) approved drug that uses
the ‘incretin effect’. Currently available gLp-1 analogs exenatide and liraglutide
have to be administered subcutaneously; exenatide twice daily and liraglutide
once a day. Recently, exenatide has been developed in an extended-release
formulation which can be used once weekly. Clinical trials with exenatide [36-
39] showed significant reductions in HbA1c of approximately 1.0-1.2% when
compared to placebo, and a modest reduction in fasting plasma glucose (FPG)
of approximately 1.0-1.4 mM. The average weight loss amounted to 1.6 kg in
the exenatide-treated groups. Liraglutide significantly lowered HbA1c by 0.8-
1.5%, FPG with up to 2.6 mM, and induced a weight loss in the range of 2 to 3 kg
compared to the placebo-treated group [39-41]. In LEAD 6 study both available
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GLp-analogs were compared [42]. The mean reduction in HbA1c levels was
significantly higher with liraglutide 1.8 mg once daily than with exenatide 10
mg twice daily (—1.129% versus —0.79%; p<0.001). The most common adverse
events associated with GLP-1 mimetics are gastrointestinal. Safety concerns
have been raised during the development of liraglutide; a small number of
cases of pancreatitis have been reported [43], while the initial concerns regard-
ing thyroid C-cell tumors have not been confirmed in humans [44]. In contrast
to GLP-1 receptor agonists, bpp-1v inhibitors are orally available and have a
longer duration of action, requiring only once daily dosing. Sitagliptin, vilda-
gliptin, saxagliptine, and linagliptine as monotreatment and also combined
with metformin are currently available in the Netherlands. These drugs control
hyperglycemia, reduce HbA1c concentrations by ~1%, and improve pancreatic
3-cell function. ppp-iv inhibitors are generally safe and well-tolerated with a
low risk of hypoglycemia, but do not reduce appetite or cause weight loss such
as GLP-1 agonists [45]. The long-term safety and effects of cLP-1 analogs and
pPP-1v inhibitors have not been established yet.

SGLT2 INHIBITORS IN THE TREATMENT OF TYPE 2 DIABETES

Agents that inhibit sodium glucose co-transporter 2 (sGLT2) in the kidney
represent a novel class of drugs, which has become available for treatment of
T2DM since 2012. The sGLT2 transporter protein is found only in renal epithe-
lium cells of the proximal tubule, and mediates the majority (~90%) of glucose
reabsorption along the nephron. Pharmacological inhibition of sgLT2 increases
urinary glucose excretion and decreases plasma glucose levels in an insulin-
independent manner [46]. Hypoglycemic episodes are less likely, because of
the insulin independence of their action plus the fact that these compounds
only lower the glucose re-absorption threshold without completely blocking
renal glucose reabsorption. In November 2012 the first scLT2 inhibitor dapa-
gliflozine was introduced on the market in Europe, followed by canagliflozine
in September 2013. In the usa canagliflozin became the first scLT2 inhibitor
(approved March 2013), followed by dapagliflozine which was approved in
January 2014 by the Fpa. Clinical trials on these two agents have shown signifi-
cant and sustained HbA1c reduction of 0.5-1% when used as monotherapy or
in combination with other antidiabetic agents [47]. Comparing other antidia-
betic drugs, the major disadvantage of sgLT2 inhibitors is the increased risk of
genital mycotic infections and urinary tract infections, particularly in women.
Additionally, since the efficacy of scLT2 inhibitors requires adequate filtered
load of glucose in the kidney, their efficacy diminishes in renal impairment.
Multiple other scLT2 inhibitors are currently in clinical development such as
small molecules empagliflozin, ipragliflozin, Lx4211 (a novel dual inhibitor of
sGLT1 and sGLT2 glucose transporters), and antisense oligonucleotide target-
ing the human scLT2 transporter [48].
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NOVEL MECHANISM(S) OF ACTION FOR THE TREATMENT OF
DIABETES TYPE 2

Despite all currently available pharmacological therapies, treatment of patients
with diabetes is not completely successful in restoring control of glucose
metabolism. Thus, there remains a need for agents with novel mechanism(s) of
action. Nowadays, there is more attention to the role of liver in the pathogen-
esis of diabetes, reduction of hepatic glucose production has been targeted as
a strategy for diabetes treatment and can be achieved through counteracting
the action of glucagon. Attenuation of the action of glucagon could be a viable
therapeutic strategy for T2pM in combination with insulin-based antidiabetic
drugs that are currently on the market (combined targeting of two sites within
the liver).

GLUCAGON RECEPTOR ANTAGONISTS

Pharmacological antagonism of glucagon action may be a potential thera-
peutic approach for T2pm. Different mechanisms to lower glucagon levels
are: inhibition of glucagon secretion, ccGRr receptor blockers and (antisense)
inhibition of ccGRr expression. Peptide antagonists and monoclonal antibod-
ies against the ccGr attenuated hyperglycemia in animal models [49-51],
suggesting a potential to treat hyperglycemia in T2pM through the inhibition
of glucagon function. Peptides were the earliest ccGr antagonists that were
designed by structural modification of the native hormone [52] . However, oral
bioavailability and long half-life appeared to be hurdles that have not been
overcome. The development of small molecules against the GcGr has not been
very successful due to limited drug selectivity, cross-species differences and
lack of sustained effects after non-competitive blockade [53]. Only one phase 1
study has been published describing the acute effects of Bay 27-9955, a small
molecule glucagon receptor inhibitor [54] that blunted hyperglucagonemia-
induced hyperglycemia. However, long-term antidiabetic benefits, as well as
side effects, of this compound in patients with T2DM remain unknown.

ANTISENSE THERAPY

Antisense oligonucleotides (Asos) as therapeutical agents are relatively
new, and only one antisense compound has been approved by the Fpa and
European authorities until now [55]. Many antisense compounds are currently
in preclinical or clinical development phases. Asos are short, single-stranded
molecules which are complementary to a target messenger ribonucleic acid
(mrNA). Upon Watson-Crick hybridization with their target mrRNA, Asos inhibit
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translation through the activation of endogenous rRNase H enzymes and other
mechanisms, for example via alternative splicing (Figure 3) [56].

CLINICAL USE OF ANTISENSE OLIGONUCLEOTIDES (ASOS)

For clinical use of Asos, chemical modified Asos were used. The first generation
oligonucleotides contain a phosphorothioate modification to protect the mol-
ecule from rapid degradation by nucleases. Second-generation 2’-O-methyl
(2’-ome) and 2’-methoxyethyl (2’-MoE) oligonucleotides were developed to
further increase nuclease resistance, thereby improving pharmacokinetics
and to increase target affinity. Third-generation oligonucleotides represent a
heterogeneous group of Asos that are most often bNA and RNA analogs with
modified phosphate linkages or riboses. These modifications also lead to
improved nuclease resistance, affinity and pharmacokinetics. The different
classes of Asos have different toxicological, pharmacokinetic and pharmaco-
logical properties [57;58]. Studies with species-specific GcGr antisense drugs
in rodent models of T2DM have demonstrated selective inhibition of hepatic
and adipose tissue glucagon receptor expression and normalization of blood
glucose levels without development of hypoglycemia or weight gain [59;60]. In
addition to hepatic effects, in preclinical studies glucagon receptor antisense
therapy increased the levels of active cLpP-1 levels and improved pancreatic
beta cell function [60].

In conclusion, the pathophysiology of T2bM is characterized not only by
insulin resistance and f3-cell dysfunction, but also with elevated fasted and
postprandial plasma glucagon levels. It has been suggested that the diabetic
a-cell exhibits a reduced glucose sensitivity and/or insulin resistance. The
overall aim of this thesis was to gain more insight in the role of glucagon in glu-
cose homeostasis in health and disease, and to explore glucagon antagonism
as therapeutic potential for the treatment of T2DM.

OUTLINE OF THIS THESIS

This thesis is comprised of a variety of human studies designed to investigate
the role of glucagon in glucose homeostasis in health and disease.

CHAPTER 2 studied the effects of a single protein hydrolysate meal replace-
ment (insuVida™) on postprandial serum glucose, insulin and glucagon levels
in patients with type 2 diabetes.

The aim of the study in cHAPTER 3 was to characterize the applicability of
the glucagon challenge test as a tool in diabetes research, by assessing the
inter- and intra-individual variabilities of the glucagon challenge test and
investigating the activity of the autonomic nervous system (ans) during the
challenge, as this might have an indirect impact on glucose homeostasis.
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Furthermore, we determined whether human adipose tissue expresses gluca-
gon receptor MRNA.

In cHAPTER 4 the effects of a glucagon challenge in T2DM patients were
explored. A stable isotope glucose tracer technique was applied to determine
hepatic glucose production. The influence of oral antidiabetic drugs on the
response to hyperglucagonemia was investigated by using a cross-over study
design. We compared the glucagon challenge data of healthy volunteers with
T2DM.

Increased fasting and post-meal glucagon concentrations cause excessive
hepatic glucose production (HGP) in patients with type 2 diabetes, suggesting
that attenuation of hepatic glucagon action could be a promising therapeutic
strategy for T2DM. CHAPTER 5 shows the results of the phase | double-blind,
placebo-controlled, dose-escalation study, which evaluated the safety, toler-
ability, Pk and pharmacodynamics of single and multiple dose administrations
of placebo or antisense glucagon receptor antagonist (isis 325568) at 4 dose
levels in healthy subjects. In the multiple dose cohorts at each dose level, 8
subjects received 8 doses over 6-weeks (3 1v doses in week 1 followed by g
weekly sc doses) and underwent a glucagon challenge procedure (glucagon
infusion that doubled both plasma glucagon and glucose levels) at baseline
and at the end of 6-week treatment.

CHAPTER 6 describes the development of a semi-mechanistic model simul-
taneously describing glucagon, plasma glucose, insulin and glucagon receptor
internalization. This model was build using data from our glucagon challenge
study in healthy volunteers (chapter 3).

Finally, cHAPTER 7 combines the results and conclusions from the previous
chapters and places these in a broader perspective. The role of glucagon in
glucose homeostasis in health and disease is discussed and suggestions for
future research are given.
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FIGURE 1 Homeostatic insulin-glucagon system

Diagram of the homeostatic (insulin-glucagon) system. Insulin secretion is
stimulated by high blood glucose levels and glucagon is stimulated by low
blood glucose levels.

FIGURE 2 Enteroinsulinar axis

After food intake (1) the complex sugars are broken down in the small intestine
into glucose molecules. L-cells in the distal intestinal wall secrete the incretin
GLP-1 upon stimulation by food/glucose (2). This glucagon-like peptide-1

is released proportional to the amount of food post-prandial in the distal
intestine. GLP-1 is key player in many processes after a meal. It stimulates the
release of insulin by the f3-cells in the pancreas (3). Similarly, cLp-1 inhibits
the release of glucagon by the a-cells (4). The rise in insulin will stimulate the
glucose uptake from the blood into the cells (8). Further, Lp-1 inhibits gastric
emptying (5) and induces the feeling of satiety (6) in order to reduce further
carbohydrate intake. cLP-1 is metabolised by the enzyme dipeptidyl peptidase
4 (bop-1v) which is present in the cell wall (7).

FIGURE 3 Antisense oligonucleotides

RNase H-dependent antisense mechanism. Single-stranded oligonucleotides
are transported across the plasma membrane, by either poorly characterized
natural processes or by the use of facilitators such as cationic lipids (step 1).
Once in the cytoplasm, single-stranded oligonucleotides rapidly accumulate
in the cell nucleus (steps 2 and 3), where they bind to their targeted RNA (step
4). Once bound to the RNA, RNase H recognizes the oligonucleotide/rRNA
duplex as a substrate, cleaving the RNA strand and releasing the antisense
oligonucleotide (step 5). Although the cleavage of the RNA by RNase H is
shown to occur in the nucleus, rRNase H is also present in the cytosol, allowing
for cleavage to occur in that cellular compartment as well.

See inside of the backcover for the figures in full colour.
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