Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/15968

Note: To cite this publication please use the final published version (if applicable).
Fuel Cell Electrocatalysis

Oxygen Reduction on Pt-based Nanoparticle Catalysts

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus Prof. Mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 21 september 2010
klokke 16.15 Uur

doort

Dennis Franciscus van der Vliet

geboren te Tilburg in 1981
Promotiecommissie:

Promotor: Prof. Dr. M. T. M. Koper
Copromotor: Dr. N. M. Marković (Argonne National Lab, USA)

Overige Leden: Prof. Dr. J. Breuwer
Prof. Dr. B. E. Nieuwenhuys
Prof. Dr. J. W. N. Frenken
Prof. Dr. G. A. Attard (University of Cardiff, UK)
Prof. Dr. J. A. R. van Veen (Shell)
Dr. N. P. Lebedeva (ECN)
Table of Contents

Preface

Chapter 1

Introduction

1.1 History of Fuel Cells

1.2 Working principle of a Fuel Cell

1.3 Towards better Fuel Cells

1.4 Outline of this thesis

Chapter 2

On the Importance of Correcting for the Uncompensated Ohmic Resistance in Model Experiments of the Oxygen Reduction Reaction

2.1 Introduction

2.2 Experimental

2.3 Results and discussion

2.3.1 IR-Drop

2.3.2 Consequences on data interpretation

2.3.2.1 Influence of adsorption processes

2.3.2.2 Influence of Ohmic drop

2.4 Conclusion and Recommendations

Chapter 3

Monodisperse Pt₃Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity

3.1 Introduction

3.2 Experimental

3.3 Results and Discussion

3.4 Conclusion

3.5 Appendix

3.5.1 Synthesis of Pt3Co nanoparticles

3.5.2 Characterization

3.5.3 Electrochemical Measurements
Chapter 4
Monodisperse Pt₃Co Nanoparticles as Electrocatalysts: the effects of Particle Size and Pretreatment on Electrocatalytic Reduction of Oxygen

4.1 Introduction
4.2 Experimental
 4.2.1 NP synthesis
 4.2.2 Characterizations
 4.2.3 Electrochemical measurements
 4.2.4 Simulation
4.3 Results and discussion
 4.3.1 Size controlled synthesis of Pt₃Co NPs
 4.3.2 Size-dependent activity
 4.3.3 Annealing temperature
 4.3.4 Modeling and mechanisms
4.4 Summary

Chapter 5
Multimetallic Au/FePt₃ Nanoparticles as Highly Durable Electrocatalyst

5.1 Introduction
5.2 Results
5.3 Core shell particle synthesis and analysis
5.4 Electrochemical characterization
5.5 Discussion
5.6 Summary
5.7 Appendix
 5.7.1 Part 1 Experimental Methods and Characterizations
 5.7.1.1 Nanoparticle Synthesis
 5.7.1.2 7 nm Au NPs
 5.7.1.3 7/1.5 nm Au/FePt₃ NPs
 5.7.1.2 Material Characterizations
 5.7.1.3 Electrochemical Study
 5.7.1.4 Theory and Simulations
 5.7.2 Part 2 Electrochemical Properties of Well-Defined Surfaces
 5.7.2.1 Electrochemical characterization of Pt and FePt₃ thin films on Au(111) substrate
 5.7.2.1.1 Au(111)-Pt
 5.7.2.1.2 Au(111)-FePt₃
 5.7.2.1.3 The absence of Au atoms on the Au(111)-FePt₃ surface
 5.7.3 Part 3 Properties of Multimetallic Nanoparticles
5.7.3.1 Elemental analysis of Au/FePt nanoparticles: 92
5.7.3.2 Electrochemical Characterization 93
5.7.4 Part 4 Mechanism of Stability Enhancement 94
5.7.4.1 Nanoparticle Shape 94
5.7.4.2 Stability enhancement through adsorbate induced segregation of Pt 95
5.7.4.3 Stabilization of Pt surface atoms through the hindered place exchange mechanism 96
5.7.4.4 DFT calculations of the subsurface atomic oxygen adsorption in FePt$_3$(111) alloys with subsurface Au 97

Chapter 6
Platinum-alloy Nanostructured Thin Film Catalysts for the Oxygen Reduction Reaction 101

6.1 Introduction 102
6.2 Experimental 103
6.3 Results and Discussion 104
 6.3.1 Microscopy 104
 6.3.2 Determination of proper platinum loading 105
 6.3.3 Blank Cyclic Voltammetry 107
 6.3.4 Oxygen Reduction Reaction 110
6.4 Conclusion 114

Chapter 7
Multimetallic Nanotubes as Catalysts for the Oxygen Reduction Reaction 117

7.1 Introduction 118
7.2 Experimental 119
7.3 Results 120
 7.3.1 Catalyst preparation and characterization 120
 7.3.2 Electrochemical characterization 123
 7.3.3 ORR 124
7.4 Conclusion 128
7.5 Appendix 129
 7.5.1 General observations during the annealing 129
 7.5.2 Effect of annealing temperature 129
 7.5.3 Different annealing environments 131
 7.5.4 Effect of annealing time 132
 7.5.5 Effect on Active Surface Area 133
Chapter 8
Electrochemistry of Pt (100) in Alkaline Media: A Voltammetric Study

8.1 Introduction 138
8.2 Materials and Methods 139
8.3 Results 140
 8.3.1 Effect of electrode preparation method 140
 8.3.2 Effect of potential cycling 145
 8.3.3 Cation and Anion effects 147
8.4 Discussion 151
8.5 Conclusion 154

Summary 157

Nedelandse Samenvatting 160

List of Publications 163

Curriculum Vitae 164

Nawoord 165
Preface

This thesis was prepared in cooperation between Argonne National Laboratory (ANL) and Leiden University. The density functional theory calculations set forth in this thesis were performed by Jeff Greeley at the center for nanoscale materials at ANL and the Monte Carlo simulations were performed by Guofeng Wang at Indiana University-Purdue University.

The synthesis of the nanoparticles as described in chapters 3-5 was performed by Dr. Chao Wang at ANL.