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ABSTRACT

During gastrulation, chicken primordial germ cells (PGCs) are present in an 
extraembryonic region of the embryo from where they migrate towards the genital ridges. 
This is also observed in mammals, but in chicken the vehicle used by the migratory 
PGCs is the vascular system. We have analysed the migratory pathway of chicken PGCs, 
focusing on the period of transition from the extraembryonic region to the intraembryonic 
vascular system.

 Our findings show that at Hamburger and Hamilton developmental stage 
HH12–HH14 the majority of PGCs concentrate axially in the sinus terminalis and 
favour transport axially via the anterior vitelline veins into the embryonic circulation. 
Moreover, directly blocking the blood flow through the anterior vitelline veins resulted 
in an accumulation of PGCs in the anterior region and a decreased number of PGCs in 
the genital ridges. We further confirmed the key role for the anterior vitelline veins in 
the correct migration of PGCs using an ex ovo culture method that resulted in defective 
morphogenetic development of the anterior vitelline veins.

 We propose a novel model for the migratory pathway of chicken PGCs whereby 
the anterior vitelline veins play a central role at the extraembryonic and embryonic 
interface. The chicken model of PGC migration through the vasculature may be a 
powerful tool to study the process of homing (inflammation and metastasis) due to the 
striking similarities in regulatory signalling pathways (SDF1–CXCR4) and the transient 
role of the vasculature.
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INTRODUCTION 

Early during the development of amniotes, the germline is segregated from the somatic 
cell lineages. This is an important event because the primordial germ cells (PGCs), 
the precursors of the oocytes and sperm, carry the genetic information throughout 
generations and are therefore the engine of evolution, contributing to genetic variability 
in sexually reproducing animals [1]. Even though PGCs can be formed by two distinct 
mechanisms, epigenesis and preformation, they show some common characteristics, 
including early segregation, similar morphology cross-species [2] and a distinct migratory 
period from a peripheral or extraembryonic location to the place where the somatic gonad 
compartments are formed. Understanding the details surrounding the migration of PGCs 
is important because an aberrant migration can cause cancer and infertility (reviewed by 
[3]). Interestingly, in Gallus gallus the PGCs migrate from an anterior location towards 
the genital ridge compartment, whereas in Mus musculus the PGCs migrate from a 
posterior/caudal location towards the genital ridges [4].

 In chicken, the staining method classically used to distinguish PGCs from 
the somatic cells was the periodic acid-Schiff (PAS) staining [5]. There are also 
immunological markers against cell-surface glycoproteins present in PGCs, like SSEA1, 
which is commonly used to identify mammalian and chicken PGCs. However, SSEA1 
is not restricted to chicken or mammalian PGCs, but is found in several types of 
undifferentiated multipotent mouse and chicken cells [6, 7]. More recently, Tsunekawa 
and colleagues identified the chicken vasa homolog (CVH) gene and have shown its 
germline-specific expression [8]. The function of VASA is not well understood, but it 
has been shown that vasa is indispensable for germ cell development and it is present in 
the germline of many animal species, suggesting a conserved role throughout evolution 
(reviewed by [3]). Immunohistochemical analyses, using specific antibodies against 
CVH protein, demonstrated that CVH-expressing cells were detectable during early 
embryogenesis of chicken embryos, starting from the first cleavage of fertilized eggs,[8], 
suggesting that a preformation mode of germline specification was adopted in chicken.

 At stage X [the roman numerals refer to the staging system used by Eyal-Giladi 
and Kochav, [9] the PGCs are localized in the central zone of the area pellucida, on the 
ventral surface of the epiblast [10]. At this stage, the PGCs are gradually translocated from 
the epiblast to an extra-embryonic structure, the hypoblast and carried anteriorly by the 
hypoblast to the so-called germinal crescent region, away from the primitive streak that 
starts to move forward from the posterior area of the blastodisc [10]. At HH4–5 [referring 
to the staging system used by Hamburger and Hamilton in 1951, and reprinted in 1992 
[11], the germinal crescent containing the PGCs is localized at the border region between 
the area pellucida and area opaca, anterior to the developing embryonic disk [12, 13]. 
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The PGCs move from the hypoblast layer to accumulate in the extraembryonic mesoderm 
localized between the ectoderm and hypoblast. Subsequently, the PGCs become lodged 
in the vascular system as the blood islands are formed in the yolk sac around HH10 
and by HH12 use those extraembryonic blood vessels as a vehicle to reach the embryo 
[5, 12, 13]. By HH15, the PGCs start leaving the vascular system close to the genital 
ridges, just caudally from the vitelline arteries and by HH17 the majority of the PGCs 
have settled in the genital ridges [5, 13-16]. The mechanism by which the PGCs enter the 
vascular system is less well understood than the mechanism by which the PGCs exit the 
vascular system (SDF1–CXCR4) to colonize the gonads [17] that has clear similarities 
with the process of homing of lymphocytes during inflammation and tumor metastasis 
[18, 19].

 Here, we have investigated the vasculatory route used by the PGCs from 
the extraembryonic germinal crescent to the intraembryonic vascular system as this 
has also not been well described to date. We observed that PGCs concentrate and make 
effective use of the two large calibre blood vessels that flow into the embryo from left 
and right: the anterior part of the sinus terminalis and the anterior vitelline veins. A 
defective development of the anterior vitelline veins or the direct blocking of the blood 
flow through the vitelline veins resulted in an accumulation of PGCs anteriorly and a 
concomitant decrease in the number of PGCs that reached the genital ridges. We propose 
a novel model of PGC migration in chicken embryos.
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MATERIAL AND METHODS

Embryo collection and manipulation

Fertilized White Leghorn chicken (Gallus gallus) eggs were incubated in 
a humidified atmosphere at 37.0°C until the desired HH stage [11]. Embryos 
were washed and manipulated on 2% agar-coated petri dishes containing 
phosphate buffer solution (PBS). The vitelline membrane was removed, the embryos 
were isolated with intact area opaca and pellucida and fixed overnight (o/n) at 4°C either 
in 4% paraformaldehyde (PFA) for whole mount immunofluorescence or in Bouin’s 
solution (Sigma) for immunohistochemistry and stored in PBS at 4°C until further use.

Whole mount immunofluorescence

Fixed embryos were permeabilized with 0.5% Triton (Sigma) in PBS (PBT) o/n at 4°C 
with rotation. Thereafter, they were washed in PBS and incubated 24 hours at 4°C with 
the first antibodies diluted in 1% bovine serum albumin (BSA, Fraction V) (Gibco) in 
PBS. The first antibodies used were rabbit anti-CVH IgG at 1:500 and mouse anti-SSEA1 
IgM (TG1) at 1:10. Next, the embryos were washed in PBS for 1 hour and incubated 
with the respective secondary antibodies diluted in 1% BSA/PBS for 24 hours at 4°C. 
The secondary antibodies used were Alexa Fluor 488 donkey anti-rabbit IgG (Molecular 
Probes) and Alexa Fluor 568 goat anti-mouse IgM (Molecular Probes), both used at 
1:1000. The embryos had a final rinse in PBS and were enclosed with Vectashield with 
Dapi (Vector), covered with a cover glass and sealed with nail polish. For this analysis, 
we considered only embryos that showed normal morphology, including the presence of 
PGCs. The total number of PGCs per embryo was counted and plotted.

Immunohistochemistry

For paraffin inclusion, embryos from HH13 were dehydrated following a graded series of 
ethanol (70%, 80%, 90% and 100%) and cleared in xylene. The embryos were individually 
embedded in paraffin (2× 30 minutes) at 70°C and stored at 4°C. The embryos were 
sectioned (transverse sections, 5 µm) using a rotatory microtome RM2255 (Leica, 
Nussloch, Germany). The sections were rehydrated starting with xylene and followed by 
a decreasing series of ethanol (100%, 90%, 80%, 70%) followed by milli-Q water and 
PBS. The inhibition of endogenous peroxidase activity was performed by treatment with 
a freshly prepared 0.3% H2O2 in PBS for 20 minutes at room temperature (RT). Next, the 
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sections were blocked for 1 hour at RT in fresh 1% BSA/PBS. The slides were incubated 
with rabbit anti-CVH IgG at 1:500 diluted in blocking o/n at 4°C, washed in PBS and 
incubated with BrightVision Poly-HRP anti-rabbit (Immunologic) for 30 minutes at 
RT. Thereafter, the slides were washed first with PBS, than with 0.05M Tris-maleate 
buffer (pH 7.6), revealed with a solution of 0.4 mg/ml 3,3-diaminobenzidine (DAB) and 
finally counterstained with Mayer’s Hematoxylin. The sections were washed in water, 
dehydrated in an increasing series of ethanol and finally xylene. Thereafter, the samples 
were mounted in Entellan (Merck). For this analysis, we considered only embryos that 
showed normal morphology, including the presence of PGCs. The total number of PGCs 
per embryo was counted and plotted.

In ovo clamp experiments

At HH14, an opening was made in the shell of eggs and part of the vitelline membrane was 
removed to expose the embryo and some drops of PBS were added to avoid embryo drought. 
To block blood flow though the anterior vitelline veins a knot was tied using a small 
semicircular multipass needle attached to a prolene monofilament (Ethicon). The opening 
made in the eggs was closed and the eggs incubated for 6 hours (until HH15). 
The control embryos were treated similarly, but the vitelline veins were not clamped. 
After the incubation time, the embryos were isolated, fixed in 4% PFA o/n and processed 
for whole mount immunofluorescence. The total number of PGCs per embryo was 
counted and statistical analysis to compare the distribution of PGCs in the two groups of 
embryos was performed using the non-parametric Mann–Whitney test.

Ex ovo culture of chicken embryos

Preparation of the embryos for ex ovo culture was performed as described 
[20]. This culture system allows the growth of chicken embryos without the 
vitelline membrane in a fish embryo-like topology on top of a “mini yolk sac-like”. HH5 
embryos were removed from the egg, cleared of excessive yolk with PBS and folded 
by the anterior–posterior axis into a half circle. Forceps were used to gently press the 
edges of the area opaca together to create a “sealed” half circle. Outside the sealed area, 
the rest of the area opaca was cut off with micro scissors and the embryo was left to 
heal undisturbed for 30 minutes in Pannett–Compton solution [21] at RT. Thereafter, 
the embryos were cultured for 30 hours (HH13) or 48 hours (HH17) on a petri dish in 
suspension in medium consisting of a mix 2:1 of thin albumen and Pannett–Compton 
solution containing 1:300 Penicillin/Streptomycin (Gibco) at 37°C with humidity on air. 
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After the incubation time, the embryos were isolated, fixed in 4% PFA o/n and processed 
for whole mount immunofluorescence.

Image acquisition and analysis

Whole mount embryos were imaged on a Leica M420 stereoscope (Leica, Rijswijk, 
the Netherlands) equipped with a Nikon E4500 coolpix camera (Nikon, Tokyo, Japan), 
fluorescence images were made on a Leica MZFIII stereoscope (Leica, Rijswijk, the 
Netherlands) equipped with a Leica DFC90 camera (Leica, Heerbrugg, Switzerland) 
and confocal images were made on a Leica TCS SP5 confocal inverted microscope 
(Leica, Mannheim, Germany) operating under the Leica Application Suite Advanced 
Fluorescence software (Leica, Mannheim, Germany). Sections were imaged on an 
Olympus AX70 microscope (Olympus, Zoeterwoude, Netherlands) equipped with either 
an Olympus XC50 camera (Olympus, Tokyo, Japan) or a Spot RT3 camera (Diagnostic 
Instruments, Sterling Heights, MI, USA). For 3D reconstruction, serial paraffin sections 
immunostained for CVH followed by Hematoxylin staining were digitalized using a 
Pannoramic MIDI scanner (3D Histech, Budapest, Hungary) and reconstructed with 
Amira 4.1 software (Visage Imaging, Carlsbad, CA, USA).
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RESULTS

The number of chicken PGCs remained constant, but increasing numbers of 
PGCs expressed SSEA1 between HH8–HH19

We analysed the number of PGCs in White Leghorn chicken embryos between HH5–
HH19 (n = 42) by whole mount double immunofluorescence for CVH and SSEA1, 
counting the total number of PGCs present in the embryo, area pellucida and area opaca. 
We observed a high variation in the total number of PGCs between embryos of the same 
developmental stage; however, the average number of PGCs present in the germinal 
crescent at HH5 was similar to the average number of PGCs present in the genital ridges 
between HH16–HH19. The majority of the embryos exhibited between 200 and 450 
PGCs (Fig. 1A). Between HH5–HH7, all the CVH-positive cells were positive for SSEA1 
(Fig. 1B), but SSEA1 was observed in many other cells and tissues in the embryo, making 
SSEA1 an inadequate marker of the germline at those stages. At HH8, SSEA1 was 
drastically downregulated in the CVH-positive PGCs and was then slowly upregulated 
in a fraction of the germ cells (Fig. 1B,C) until it stabilized at 60% of the cells by the time 
the PGCs colonized the genital ridges at HH16–HH19 (Fig. 1B,D). Interestingly, in the 
typically 3–4 cell clusters of germ cells, already described in 1914 by Swift [13], we often 
observed both SSEA1-positive and SSEA1-negative cells (Fig. 1E). In agreement, Swift 
noticed pronounced differences in the yolk content and yolk coloration among PGCs [13] 
and this may be directly linked to the heterogeneity observed in SSEA1 staining.

At HH13, the PGCs localized to the sinus terminalis and anterior vitelline 
veins

We analysed the distribution of the CVH-positive PGCs in detail between HH5–HH19 
in whole mount chicken embryos and observed PGCs in three different structures: the 
area opaca, the area pellucida and the genital ridges (Fig. 2A,B). Between HH5–HH8, 
the great majority of the PGCs were located at the anterior region of area pellucida, 
bordering with the area opaca, the germinal crescent (Fig. 2B). However, at HH8–HH10, 
the PGCs were displaced to the area opaca adjacent to the germinal crescent, where 
they were predominantly found between HH11–HH12 (Fig. 2B). From there, the PGCs 
migrated transiently through the anterior area pellucida, towards the embryo, during 
a period of 12 hours between HH13–HH15. By HH16, the majority of the PGCs had 
reached the genital ridges (Fig. 2B). The number of PGCs present in the posterior part 
of the embryo, both in the area opaca and area pellucida, was consistently low during 
the period of development analysed (Fig. 2B).
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Figure 1. Chicken PGCs between HH5–HH19. (A) Total number of CVH positive cells present between HH5–HH19. 
n is the total number of embryos analyzed. (B) Percentage of SSEA1-positive cells in the CVH-positive population 
of PGCs between HH5–HH19. n is the total number of embryos analyzed. (C) Expression of CVH and SSEA1 in 
area pellucida, lateral to the head region at HH12. The PGCs (CVH positive) were SSEA1-positive (white arrows) or 
SSEA1-negative (yellow arrows). (D) In the genital ridges at HH16 the PGCs (CVH-positive) were SSEA1-positive 
(white arrows) or SSEA1-negative (yellow arrows). (E) PGCs from the same cluster showed different expression of 
SSEA1. CVH (green) is expressed in the cytoplasm while SSEA1 (red) expression is restricted to the cell surface. 
Scale bars: 100 mm in C,D and 5 mm in E.



 At HH13, the PGCs start to transit between the anterior region of area opaca, 
area pellucida and the genital ridges and this coincides with the period of initiation 
of the (vitelline) blood circulation. Therefore, we zoomed in at HH13 and defined 
two developmental sub-stages, HH13 and HH13circ. At HH13, the PGCs were relatively 
dispersed in the anterior central part of the area opaca and anterior central area pellucida 
(Fig. 2C). However, in some HH13 embryos, the PGCs concentrated in a narrower 
continuous axial region between the area opaca and the area pellucida (Fig. 2D). Both 
HH13 and HH13circ embryos contained about 17–19 somites and approximately the same 
number of PGCs (with similar medians) in the yolk sac in the area opaca and in the area 
pellucida, the amnion and ectopically, in particular in the head vasculature (Fig. 3A). 

 The histological analysis and 3D reconstruction of the vasculature and 
the position of the PGCs confirmed that at HH13circ the majority of PGCs are 
concentrated in specific blood vessels in the yolk sac, namely in the sinus terminalis 
(in the area opaca) and continuous to the developing anterior vitelline veins (in the area 
pelucida) (Fig. 3B). Our observations contrast with the current model where the PGCs 
were thought to be scattered broadly throughout the yolk sac vasculature and enter the 
embryo through the omphalomesenteric veins. Also of note was the fact that, at HH13circ 
the PGCs were clearly present both inside (in the lumen of the vessel) and outside the 
blood vessels in the yolk sac (Fig. 3C–F), suggesting that they are not simply engulfed 
by the blood vessels as they form. In addition, PGCs were also observed frequently in the 
amnion (somatopleura) (Fig. 3G) and ectopically in the vasculature of the embryo head 
(Fig. 3H). The PGCs in the amnion probably mislocated when the somatopleura (amnion/
chorion) and splanchnopleura (yolk sac) separated.

 Finally, we also report that the head (at the level of the prosencephalon) at stage 
HH13circ, while extending anteriorly, becomes transiently enveloped in the proamnion, a 
bilaminar tissue consisting of hypoblast and epiblast (and no mesoderm); and, as a result, 
both the somatopleura (amnion/chorion) and splanchnopleura (yolk sac) are transiently 
localized above the developing head (Fig. 3E).

The PGCs migrated towards the embryo primarily using the anterior 
vitelline veins

To experimentally test whether the anterior vitelline veins play a key role in the migration 
of PGCs from the extraembryonic to the intraembryonic vasculature, we blocked 
the anterior vitelline veins (by clamping the veins) in embryos at stage HH14 (Fig. 4A) 
and allowed the embryos to develop in ovo for 6 hours (from HH14 to HH15) to check 
whether that impacted on PGC migration. 
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Figure 2. Tracking of the migration of PGCs using CVH as a marker. (A) Cartoon defining the different regions 
analysed during chicken development in several stages (HH5, HH12, HH17): anterior (dark blue/circle) and posterior 
(light blue/cross) regions of the area opaca; anterior (dark yellow/ circle) and posterior (light yellow/cross) regions of 
area pellucida; and genital ridges (red/circle). (B) Total number of PGCs in the areas defined (A) showed predominant 
localization in 4 different structures during migration: at HH5–8 PGCs localized in the anterior region of area pellu-
cida (dark yellow circle), at HH8–12 there was a displacement of the PGCs to the anterior region of area opaca (dark 
blue circle), from there the PGCs are migrating back to the anterior region of area pellucida (dark yellow circle) at 
HH13–15, and from HH14 on, the PGCs started to settle on the genital ridges (red circle). (C,D) At HH13, PGCs are 
either sparsely localized between area opaca and area pellucida (white arrows) (C) or they have aligned axially in the 
area pellucida (white arrows). We define this novel stage as HH13circ. Scale bars: 500 mm in C,D.



After 6 hours of culture, in control embryos (n = 7) the majority of PGCs found their way 
to the embryo and colonized the genital ridges (Fig. 4B–D). However, in experimental 
embryos (n = 6), the PGCs remained clustered in the region of the clamped anterior 
vitelline veins in the axial anterior area pellucida (Fig. 4B,E) and showed a reduced 
number of PGCs transiting through the embryo and in the genital ridges when compared 
to the controls (Fig. 4B,F). Our results indicate that blocking the blood flow from the 
anterior vitelline veins at HH14 has a significant effect in the correct migration of PGCs 
towards the genital ridges. We concluded that the anterior vitelline veins are the main 
vehicle used by the PGCs during their migration from the extraembryonic vasculature 
into the intraembryonic vasculature. 

 To further confirm the role of the anterior vitelline veins in the migration of 
PGCs from the extraembryonic to the intraembryonic circulation, we analyzed embryos 
cultured ex ovo using a modified Cornish pasty method that results in primary defects 
in the morphogenesis of the anterior extraembryonic structures [20]. Using this method, 
the somatopleura (amnion/chorion) and the splanchnopleura (yolk sac) separate, but 
the amniotic folds from the head, lateral and tail do not form leaving the embryo exposed. 
Moreover, the anterior axial conversion of the sinus terminalis and the anterior vitteline 
veins does not occur and therefore we investigated whether the PGCs were able to find 
their way into the genital ridges from the germinal crescent. For the modified Cornish 
pasty method, embryos at HH5 were removed from the egg, folded in two by their 
anterior–posterior axis and the edges of the semi-circle were pressed together to create a 
“mini yolk sac-like” (Fig. 5A) and cultured in suspension.

 After 30 hours ex ovo, embryos at stage HH13 were collected and immunostained 
for CVH (Fig. 5B,C). In general, the head showed a normal development, the embryos 
had 17–19 somites (n = 10), the heart was beating and the extraembryonic circulation 
well-established in the posterior region of the embryo. As expected, the headfold of the 
amnion did not form leaving the head exposed and tilting upwards. We observed many 
PGCs (± 200) dispersed in the splanchnopleura, anterior to the head at the border between 
the area opaca and pellucida and some PGCs mislocated in the somatopleura (Fig. 5C). 

 Ater 48 hours ex ovo, we could collect embryos corresponding to stage HH17 
(Fig. 5D,E) showing a beating heart with visible blood flow and about 29–32 defined 
somites (n = 10), which corresponds to stage HH17 in ovo. HH17 ex ovo embryos showed 
a well-established circulation in the “mini yolk sac” and well-developed posterior 
vitelline arteries (Fig. 5D). However, there were clear defects in the morphogenesis and 
positioning of the large calibre anterior vitelline veins. We observed a general defect in 
the axial movement and fusion of the left and right side of the sinus terminalis and the 
two anterior vitelline veins. We counted the total number of (CVH-positive) PGCs in 
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several HH17 ex ovo embryos (n = 5) and the majority of the PGCs (± 150) were present 
in the region of the splanchnopleura between the left and right vitelline veins and anterior 
to the heart. In those embryos, only a very low number of PGCs (< 10) was observed 
in the region of the genital ridges. We concluded that due to the developmental defects 
in the position of the sinus terminalis and the anterior vitelline veins in the HH13 and 
HH17 ex ovo embryos, the PGCs fail to find and ingress these blood vessels and therefore 
remained ectopically in the “germinal crescent” region. We propose a novel model for 
the migration of PGCs in the chicken with a key role for the sinus terminalis and the 
anterior vitelline veins (Fig. 5E) as part of a defined or preferred vascular pathway used 
by the PGCs  to travel from their position in the germinal crescent into the heart via the 
omphalomesenteric veins.

Figure 3. At HH13circ the majority of PGCs is localized in the sinus terminalis and anterior vitelline veins. (A) 
Analysis of position of PGCs in sectioned embryos at stage HH13circ. PGCs at HH13 and HH13circ are present in 
similar numbers in the yolk sac in the anterior area opaca and pellucida; the amnion and ectopically in the embryo 
head. (B) 3D reconstruction of the extraembryonic vasculature of embryos at HH13circ has shown that the PGCs 
were mainly localized in the anterior vitelline veins and the sinus terminalis. (C–E) Transverse sections of HH13circ 
embryos immunostained for CVH. PGCs were dispersed in the area opaca (C) and area pellucida (D) anterior from 
the head and at the level of the head (E). PGCs were observed inside and outside the blood vessels (black arrows). 
The junction between the area opaca and pellucida is marked by a red arrow. Note in E, that the head at the level of 
the prosencephalon is completely surrounded by proamnion. (F) PGCs (black arrow) in the anterior anterior vitelline 
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DISCUSSION

SSEA1 has been used as an appropriate marker to identify and isolate PGCs from chicken 
embryos [22-27]. However, by performing double immunofluorescence analyses, using 
antibodies against CVH and SSEA1, we have now demonstrated that although SSEA1 
marked PGCs, it is only expressed by a fraction, albeit increasing, of CVH-positive PGCs 
between HH8–HH19, but not in the entire population of PGCs. This perhaps explains 
why the fraction of circulating PGCs at HH13–HH15 isolated by fluorescence-activat-
ed cell sorting (FACS) on the basis of SSEA1 expression by Mozdziak and colleagues 
was smaller than the fraction of circulating PGCs isolated using a Nycodenz density 
gradient [28] or found in chicken blood by PAS staining [29]. Interesting, pluripotent 
mouse embryonic stem cells, which are closely related to PGCs, also show pronounced 
heterogeneity for SSEA1 staining [30].
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Figure 4. Blocking the anterior vitelline veins prevented the correct migration of PGCs towards the genital ridges. 
(A) The anterior vitelline veins were clamped in HH14 embryos growing in ovo and the embryos were allowed to 
develop for 6 hours. (B) Analysis of the total number of PGCs in control (n57, black dots) and experimental embryos 
(n56, white dots) in different regions. The differences in distribution of the PGCs in the axial area pellucida, the 
embryo and genital ridges were statistically significant (P,0.05) using the non-parametric Mann–Whitney test [(*) 
P,0.05]. (C–F) The number of PGCs (white arrows) present ectopically in the embryo head (C) and genital ridges (D) 
was consistently higher in control embryos than in experimental embryos, where the PGCs concentrated surrounding 
the clamped vitelline veins (E) and the number of PGCs settled in the genital ridges was reduced (F). Scale bars: 500 
mm in A, 100 mm in C,E and 200 mm in D,F.
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Figure 5. A new model for PGCs migration in chicken embryos. (A) Embryos at HH5 prepared to be cultured using 
the Cornish pasty method. (B,C) Ex ovo embryos at HH13 showed a relatively normal embryonic morphology (B) and 
the PGCs were observed in the germinal crescent area in both the somatopleura and splanchnopleura (white arrows). 
(D,E) Ex ovo embryos at HH17 showed a relatively normal embryonic morphology and the formation of well-de-
veloped posterior vitelline arteries (black arrow) (D) and the PGCs were still observed in the germinal crescent area 
in both the somatopleura and splanchnopleura (white arrows) (E). (F) A new model for PGCs migration in chicken 
embryos. At HH12–13, the yolk sac circulation courses in loop (red arrows) to enter the embryo via the heart. At this 
stage, the majority of PGCs (green dots) localized axially at the border between the area opaca and pellucida, where the 
sinus terminalis converged in the anterior vitelline veins. At HH14–16, the PGCs (green dots) circulated effectively to-
wards the embryo via the sinus terminalis and the anterior vitelline veins towards the heart. Thereafter, the PGCs traf-
fic via the aorta to the caudal part of the embryo and become lodged in the genital ridges. Scale bars: 100 mm in A–E.



 It will be important to identify additional lineage-specific markers, like NANOG 
and DEAD END [31-33] and in particular novel cell surface markers to study chicken 
PGCs. This will be important to investigate both embryonic pluripotency and PGC 
development at very early developmental stages, where the CVH antibody is the only 
available to identify PGCs.

 We and others [29] have observed a large individual variation in the number of 
PGCs between HH5 and HH19. This results from genetic variation as demonstrated by 
Tajima and colleagues that showed that specific hens layed eggs with embryos containing 
consistently high or low number or circulating PGCs [29]. Maybe due to this high 
variability in PGC numbers, we were unable to observe an increasing number of PGCs 
between HH5 and HH19 as reported [12]. In our hands, the number of PGCs remained 
approximately constant between HH5 and HH19. In agreement, Fujimoto and colleagues 
described 312 PGCs at HH10 [5], Motono and colleagues referred to about 300 PGCs at 
HH13–HH16 [24] and Nakamura described embryos containing on average 300 PGCs 
from HH14 to HH20 [34]. Together, we concluded that from HH5, when the PGCs are 
present in the germinal crescent, until HH19, when the PGCs have reached the genital 
ridges, the number of PGCs remained constant and range from 200–400.

 Two studies have mapped the position of PGCs during their migration 
from the germinal crescent (HH4) to the genital ridges (HH17) by analysis of whole 
amount embryos [5, 12]. None of them mentioned the vitelline veins, even though there is 
a clear concentration of PGCs visible at the junction between the sinus terminalis and the 
vitelline veins at HH10–11. Curiously, neither Fujimoto nor Nakamura analysed embryos 
at stage HH13 and this could be the reason why the concentration of PGCs in the anterior 
vitelline veins has remained unnoticed.

 Different groups have collected circulating PGCs at HH13–HH14 using 
blood from the sinus terminalis, the vitelline vessels, the heart and the dorsal aorta 
[12, 15, 25, 26, 28, 29, 35, 36]. Although none referred to a specific vascular route used by 
the PGCs, their methods to collect circulating PGCs support the idea that the majority of 
the PGCs indeed concentrate and use the sinus terminalis and anterior vitelline veins as 
an effective way to reach the embryo via the omphalomesenteric veins that enter the heart. 
Circumstantial evidence was also provided by Nakamura and colleagues by injecting 
quail PGCs in chick vitelline vessels at HH15 and later observing those quail PGCs in 
the recipient chicks’ genital ridges [37]. We now provide functional data indicating a key 
role for the anterior vitelline veins transporting PGCs towards the embryo.

 The PGCs leave the heart between HH13–HH15 and use the aorta to transit 
towards the genital ridges. At these stages, the ventral aorta develops first cranially 
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before it turns caudally, via the first aortic arch, into the dorsal aorta. It is therefore not 
surprising that we and others [34, 38] observed that HH13–HH15 PGCs had the tendency 
to become trapped in the cephalic capillary network when being pumped out of the heart, 
instead of performing the U-turn towards the dorsal aorta. In embryos in which the 
posterior part, including the gonads, have been excised, the PGCs still accumulate in 
the head capillaries [34]. Interestingly, stromal cell-derived factor-1 (SDF1/CXCL12), a 
chemokine involved in the extravasation of the PGCs from the vascular system to the 
mesenchyme of the genital ridges [17], is expressed at HH12–HH15 specifically both in 
the area of the genital ridges and the head region [39] and could promote migration of 
PGCs into both areas.

 The signaling pathway involved in attracting the PGCs into the vascular 
system is less understood. Having a better understanding of the vascular route taken 
by the PGCs and the markers that can be used to follow the population of PGCs will 
greatly facilitate the investigation of the mechanisms used by PGCs to enter the vascular 
system. In turn this may prove an important model to understand how metastatic cells 
behave on their way to form secondary tumors and how leukocytes behave during 
processes like infection and inflammation.
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