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Section 1

The first section of this thesis is divided into two chapters. Chapter 1 is 
an introductory chapter in which the outline of the thesis and its context 
are described. This is followed by Chapter 2, which provides some more 
background on the ‘-omics’ technologies (cdna microarray-based 
transcriptomics and ¹h nmr-based metabolomics) evaluated in the 
studies comprising this thesis. 

Section 2

The second section describes the results of the analyses performed to 
evaluate and demonstrate the treatment response of the two ‘prototype’ 
peroxisome proliferator activated receptor (ppar) agonists rosiglitazone 
(pparγ-agonist), and ciprofibrate (pparα-agonist) by assessing both 
‘traditional’ and a number of ‘non-traditional’ (candidate) plasma 
markers. In both studies, the experimental populations consisted of 
16 type 2 Diabetes Mellitus (t2dm) patients and 16 healthy volunteers 
(hvs), balanced for gender (i.e. 8 males and 8 females). 

In the first study (Chapter 3) we sought to demonstrate efficacy  
of the insulin sensitizing drug rosiglitazone vs. placebo, by studying  
its effects on ‘traditional’ parameters of gluco-regulation (i.e. fasting 
blood glucose, insulin and C-peptide) in a 6-week treatment period.  
In parallel, we investigated whether a selection of inflammation markers 
and pro-inflammatory cytokines could serve as early responding ‘non-
traditional’ biomarkers for the pharmacological effects of rosiglitazone 
in t2dm patients and hvs. In addition, we explored the differences in 
baseline concentrations of these markers between the t2dm patients and 
hvs groups, in order to investigate and confirm some of the previously 
reported t2dm- associated biochemical changes. 

By measuring the response of these candidate ‘non-traditional’ effect 
parameters, which we hypothesized to be more upstream in the cascade 
of the events leading to insulin sensitization, we aimed to identify a 
comprehensive new set of early responding biomarkers for pparγ action 
that could potentially precede or predict the response of the ‘traditional’ 
parameters in t2dm patients. In addition, we sought to investigate if 
these candidate biomarkers would also respond in more easily studied 
and recruited hvs. If found, these new biomarkers could be used to 
support and expedite early clinical development ‘proof of concept’ 
studies with novel pparγ-agonist-class compounds.
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In this study we demonstrated efficacy of rosiglitazone in t2dm patients 
by showing significant decreases in parameters of gluco-regulation as 
well as a significant decrease in some of the ‘non-traditional’ markers 
(i.e. Interleukin-6 (il-6), and white blood cell count (wbc)). However, 
we could not identify new markers that had an earlier response to treat-
ment with rosiglitazone than the ‘traditional’ parameters of glucoregula-
tion in this group. Also, we did not observe significant treatment effects 
in hvs, apart from a slight reduction in peak glucose and peak insulin 
following an oral glucose load. Comparing t2dm patients and hvs at 
baseline revealed elevated concentrations of il-6 and hs-crp in the 
t2dm group, which is consistent with previous observations and sup-
ports the concept that t2dm reflects a state of chronic inflammation. 

We concluded that although il-6 did not have a quicker response 
than the ‘traditional’ biomarkers, it might still have a place as 
complementary biomarker in the early clinical evaluation of novel 
thiazolidinediones in t2dm patients. Finally, the marginal response  
of the ‘traditional’ biomarkers, and entirely absent response of the ‘non-
traditional’ biomarkers in the hvs group in this study, indicated that 
t2dm patients cannot easily be substituted with hvs in early clinical 
‘proof of concept’ experiments evaluating novel thiazolidinediones.
	 In the subsequent chapter (Chapter 4) a study is described in  
which we sought to evaluate and validate the efficacy of the lipid-
lowering drug ciprofibrate in t2dm patients and hvs by demonstrating 
its effects on ‘traditional’ parameters of lipid metabolism, including 
several (apo-)lipoproteins in a relatively short-term (3-week) treatment 
period. In parallel and for comparison with the effects on ‘traditional’ 
markers, we investigated the effects on two ‘non-traditional’ pro-
inflammatory candidate markers (i.e. tumour necrosis factor α (tnfα), 
and monocyte chemoattractant protein 1 (mcp-1)). 
	 Since recent evidence suggested that the previously observed 
(anti-inflammatory) effects of pparα-agonists on tnfα and mcp-1 
may be important factors related to the beneficial effects on human 
atherogenesis and cardiovascular disease outcome measures, we 
hypothesized that these non-traditional variables could serve as 
important ‘mechanism-based’ biomarkers for the early clinical 
evaluation of novel pparα-agonist class compounds in t2dm patients. 
In addition, and in analogy to the study with rosiglitazone, we sought  
to investigate if these candidate markers would also respond in hvs.

In addition, to gain more insight in the mechanism and site of ciprofi-
brate action, we investigated whether the anticipated in vivo drug effects 
on tnfα and mcp-1 plasma levels were (partly) attributable to reduced 
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spontaneous as well as ex vivo lipopolysacharide (lps) or C-reactive  
protein (crp) stimulated whole-blood mcp-1 and tnfα secretion. 

We demonstrated efficacy of ciprofibrate in both t2dm patients 
and hvs by showing significant decreases in most of the ‘traditional’ 
lipid and (apo)lipoprotein parameters after 3 weeks treatment with 
ciprofibrate vs. placebo. There was virtually no change in mean mcp-1  
and tnfα concentrations in either study group. However, ciprofibrate 
treatment did significantly decrease the ex vivo whole blood unstimu-
lated, lps and crp stimulated mcp-1 release in hvs. We concluded 
that mcp-1 and tnfα are unsuitable as ‘mechanism-based’ biomarkers 
in small clinical ‘proof on concept’ studies with novel pparα agonist-
class drug candidates. In addition, the fact that ciprofibrate significantly 
decreased the unstimulated, lps and crp stimulated mcp-1 release 
in whole blood in hvs suggests a possible role in the modulation of 
atherosclerosis and inflammation by pparα agonists in general.

Section 3

The third section contains a description of the pilot study (Chapter 5)  
in which we assessed the feasibility of minimally invasive human 
skeletal muscle and adipose tissue biopsy procedures that were 
to be applied in our subsequent drug intervention microarray 
studies. In addition, this chapter portrays the evaluation of the 
rna extraction techniques and methods for cdna microarray 
hybridization, data normalisation procedures as well as methods to 
assess data reproducibility and perform outlier detection and removal. 
Furthermore, this section contains a description of the studies in which 
we evaluated the usefulness of transcriptional profiling using spotted 
cdna microarray technology for the assessment of the pharmacological 
effects of the ppar γ and α agonists rosiglitazone (Chapter 6) and 
ciprofibrate (Chapter 7), respectively, in their relevant human target 
tissues. 

Since these drug-induced transcriptional profiles or ‘treatment 
fingerprints’ are hypothetically capable of capturing the pleiotropic 
‘upstream’ actions of these types of drugs, they were proposed as 
potentially superior, rapidly responding ‘mechanism-based’ biomarkers, 
which would allow better, knowledge-based (‘go / no go’) decision-
making in the clinical development of novel ppar-class candidate drugs. 
In addition, in both these studies we sought to explore the baseline 
differences in global tissue gene expression profiles between the t2dm 
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patients and hvs (i.e. identify a molecular disease ‘fingerprint’) and 
subsequently compare these profiles between our two studies to see if 
we could identify putative disease related, so-called ‘enriched’ t2dm-
associated genes, biological functions and pathways.

The results from our pilot study (Chapter 5) demonstrated that 
the muscle and adipose tissue biopsy procedures were well tolerated 
by the study subjects. The muscle biopsy procedure yielded sufficient 
amounts of high quality rna, evidenced by gel electrophoresis as well as 
subsequent dynamic range, concordance correlation and cluster analyses.  
The adipose tissue biopsy procedure however, yielded insufficient 
amounts of rna in some samples and did therefore not allow duplicate 
or triplicate hybridizations for all samples. This resulted in two putative 
outliers in a series of 12 samples. The blood samples, harbouring 
peripheral blood leukocytes, yielded sufficient rna in most cases. 
However, it was concluded that future blood sampling should be 
performed in duplicate to prevent needless missing data points. Taken 
together, we concluded that the biopsy and rna extraction procedures 
in this pilot study were suitable for use in subsequent clinical microarray 
intervention studies, provided that the adipose tissue biopsy weight was 
minimally 400 mg and the skeletal muscle biopsy weight minimally 
100 mg. Furthermore, the tested methodology for microarray data 
normalization and elimination of outlier data points and subsequent 
clustering analysis proved to be an appropriate approach, which was 
expected to be fully applicable to the identification of (ppar) treatment 
induced changes in global tissue gene expression profiles in a clinical 
setting.

The results from the subsequent intervention study with 
rosiglitazone (Chapter 6) indicated that none of the genes in adipose 
tissue, muscle tissue or pbls of t2dm or hvs displayed a significant 
treatment response vs. placebo at Bonferroni adjusted values and α=0.05. 
It appeared that in this study design the signal-to-noise ratio was 
probably too low to adequately identify drug-induced effects on tissue 
gene expression levels using spotted cdna microarray technology.

On the other hand, using identical statistical criteria, we identified 
several genes that were significantly differentially expressed between 
t2dm patients and hvs in skeletal muscle and adipose tissue at baseline. 
Exploratory pathway analysis of these baseline data identified several 
(previously reported) putative t2dm- associated genes that were 
implicated in carbohydrate and lipid metabolism, as well as a number 
of t2dm-associated canonical pathways (i.e. the ‘Chemokine’, ‘Insulin 
receptor’ and ‘ppar’ signalling pathways) in adipose tissue. Analysis 
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of the skeletal muscle data set identified several canonical pathways 
implicated in lipid metabolism and inflammation (i.e. the ‘il-6’ and 
‘Nuclear factor κB’ signalling pathways). 

From these results we concluded that gene expression profiling using 
spotted cdna microarray technology (in the contemporary tested study 
design and wet lab design settings) was unable to provide a broad array 
of molecular biomarkers for drug response to be used in early clinical 
‘proof of concept studies’ with novel thiazolidinediones in humans. 
Nonetheless, we demonstrated that microarray technology coupled 
with sophisticated bioinformatic pathway analyses appeared suited for 
metabolic disease exploration. Finally, we stated that the capability of 
cdna microarray technology to detect ppar agonist-induced changes in 
global tissue gene expression profiles should be evaluated further using a 
modified study design (i.e. studying patients on stable doses  
of oral hypoglycaemic medication and accounting for potential print 
batch issues), which might result in an improved signal-to-noise ratio.
	 The observations made in the subsequent study with ciprofibrate 
(Chapter 7) were similar to our previous findings in the study with 
the pparγ agonist rosiglitazone, and showed that none of the genes 
in adipose tissue, skeletal muscle tissue or pbls of t2dm and hvs 
displayed a significant response to ciprofibrate vs. placebo at Bonferroni 
adjusted values and α=0.05. 

Also similar to the results from the study with rosiglitazone, the 
baseline comparisons revealed a large number of differentially expressed 
genes in adipose and skeletal muscle tissues between t2dm patients 
and hvs. Comparison of these exploratory baseline findings (using 
the Ingenuity Pathway Analysis application) between the two studies 
revealed a number of biological ‘themes’ in adipose tissue, of which 
‘uptake of monosaccharide’ and ‘ppar signalling’ were identified as 
most significantly ‘enriched’ biological function and canonical pathway, 
respectively. In the skeletal muscle data sets, although based on a very 
small number of focus genes, ‘Release of eicosanoid’ and ‘il6- signalling’ 
were identified as most significantly enriched biological function and 
pathway, respectively. In contrast, there was very little overlap between 
the two studies at the individual gene level, with only one individually 
enriched gene that exhibited the same direction of differential 
expression (up- or downregulation) in both studies.

In summary, we concluded that the results from this study confirm 
the findings from our previous microarray study with pparγ agonist 
rosiglitazone, and indicate that global tissue gene expression profiling 
using spotted cdna microarray technology is currently unable to provide 
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a broad array of ‘combinatorial biomarkers’ for the action of ppar agonists 
in relevant human tissues that could be used to support the early clinical 
development of novel ppar agonist drug candidates. Nonetheless, 
as demonstrated by the identification of several enriched biological 
functions and pathways, the technology may still have important utility 
in metabolic disease exploration, and could yield important new starting 
points for future hypothesis driven investigations.

Section 4

Section four describes the studies in which we evaluated the usefulness 
of  1h nmr spectroscopy-based metabolomics as a method to assess 
the pharmacological effects of ppar α and γ agonists on global 
endogenous metabolite profiles in human biofluids of t2dm patients 
and hvs. Since most of the ‘pleiotropic’ actions of a drug would likely 
remain unnoticed when studying a limited number of pre-defined 
conventional biochemical plasma markers, we hypothesized that global 
endogenous metabolite profiles could serve as a broad, more complete 
array of biomarkers (i.e. ‘treatment fingerprint’) for the ‘downstream’ 
pharmacological effects of ppar agonists in easily collected human 
biofluids like urine and blood plasma. 

If found to respond in small groups of t2dm subjects, and preferably 
in more easily studied and recruited hvs, these global metabolite 
profiles could be useful effect parameters to be applied in the early 
clinical evaluation of novel ppar-agonist drug candidates. In addition, 
the design of these studies provided the opportunity to explore the 
baseline differences in urine and plasma metabolite profiles between 
t2dm patients and hvs in order to attain a putative metabolic t2dm 
‘disease fingerprint’.
	 Chapter 8 describes the pharmacological effects of pparγ agonist 
rosiglitazone on global endogenous metabolite profiles measured in 
plasma and urine samples of t2dm patients and hvs using 1h nmr 
spectroscopy coupled with multivariate statistical analysis (Principal 
Component Discriminant Analysis; pc-da). In addition, we sought to 
explore the baseline differences in plasma and urine metabolite profiles 
between the t2dm patients and hvs groups.
Treatment with rosiglitazone vs. placebo led to clear separation of 
the different treatment Visits in the pc-da plots in the urine and to 
a lesser extent plasma of the t2dm group, but not in the hvs group. 
Interpretation of the peaks that could be identified in the proprietary 
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tno database indicated that the treatment-induced separation was 
primarily related to a relative decrease in urinary hippurate and aromatic 
amino acids coinciding with an increase in plasma branched chain amino 
acids as well as alanine, glutamine and glutamate. Since the maximum 
effect on these metabolites was observed after 2 weeks of rosiglitazone 
treatment, we hypothesized that these observations could be related to 
the early improvement in hepatic insulin sensitivity reported to occur 
after short-term thiazolidinedione use. Furthermore, the baseline 
comparisons between t2dm patients and hvs showed that urine and 
plasma metabolite profiles convincingly discriminated between disease 
state and gender. Subsequent identification of metabolites in these 
profiles showed that t2dm patients exhibited a relative increase in 
urinary levels of several amino acids, citrate, phospho(enol)pyruvate 
and hippurate, whereas putative t2dm-associated changes in plasma 
appeared largely attributable to increased levels of lipids and lactate 
coinciding with decreased levels of several amino acids. From these 
results we concluded that nmr-based metabolomics of urine and blood 
plasma coupled with advanced bioinformatics can yield a comprehensive 
array of non-glucose biomarkers for the action of thiazolidinediones 
in small groups of t2dm patients but not in hvs. In addition, nmr-
based metabolomics appeared capable of providing distinct endogenous 
metabolite profiles for t2dm patients and hvs (so-called ‘disease 
fingerprints’) in plasma and urine samples at baseline. 
	 Analogous to the previous chapter, Chapter 9 describes the 
pharmacological effects of the pparα agonist ciprofibrate as well as the 
baseline differences in global endogenous metabolite profiles measured 
in urine samples between t2dm patients and hvs using ¹h nmr 
spectroscopy. 

In this study we demonstrated that supervised multivariate 
statistical analysis (partial least squares discriminant analysis; pls-da) 
of human urine samples was able to separate the various study groups 
– ciprofibrate vs. placebo treated – when the male and female subjects 
were analyzed separately. The contribution plots showed those regions 
of the urine spectra that were responsible for the differences between 
the various treatment groups. In addition, the t2dm patients and hvs 
were easily separated, but the variation in the urine profiles limited 
the number of metabolites observed that distinguished one group 
from another using this type of study design and method of analysis. 
We concluded that nmr-based metabonomics of easily collected 
urine samples could discern hvs from t2dm patients as well as the 
ciprofibrate-treated and placebo-treated categories. 
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In this thesis a series of studies is described, in which we evaluated 
the capability of two distinct molecular profiling platforms – cdna 
microarray-based transcriptomics and 1h nmr-based metabolomics 
– to identify a broad array of (rapidly responding) molecular biomarkers 
for the pharmacological effects of the peroxisome proliferator activated 
receptor (ppar)α agonist ciprofibrate and pparγ agonist rosiglitazone 
(i.e. ‘treatment fingerprint’) in relevant target tissues and biofluids of 
type 2 Diabetes Mellitus (t2dm) patients. In addition, we assessed if 
these ‘combinatorial biomarkers’ [1] could also be identified in more 
easily studied and recruited healthy volunteers (hvs). If found, these 
‘prototype’ molecular biomarker profiles could eventually be used 
to support and expedite early clinical development ‘proof of concept’ 
studies with novel ppar agonist-class drug-candidates. 

In addition, the design of these studies provided the opportunity 
to evaluate if these molecular profiling platforms were capable of 
identifying putative disease-related biomarker profiles (i.e. a ‘disease 
fingerprint’) by comparing the gene expression and metabolite profiles 
between the t2dm patients and hvs at baseline.

In the first intervention study with the pparγ agonist rosiglitazone 
we ‘validated’ our study design by first demonstrating efficacy of 
rosiglitazone in t2dm patients using a ‘traditional’ set of biochemical 
plasma markers. 

In parallel, we investigated the effects on global tissue gene 
expression profiles, but failed to detect significant (‘upstream’) 
rosiglitazone-induced changes in two relevant pparγ target tissues 
(adipose tissue and skeletal muscle) and peripheral blood leukocytes 
(pbls). In contrast, we did identify clear (‘downstream’) changes in 
urine and plasma metabolite profiles using 1h nmr spectroscopy-based 
metabolomics. Moreover, a similar discordance between ‘upstream’ and 
‘downstream’ treatment effects was observed in the consecutive study 
with the pparα agonist ciprofibrate.

The lack of ‘upstream’ treatment effects on the transcriptome could 
be related to a number of issues related to study design, but likely also 
to some issues inherent to the sensitivity and limitations of microarray-
based gene expression profiling and mechanisms of ppar agonist 
action per se. To start with, our studies used a longitudinal design (e.g. 
comparison of active drug vs. placebo in time) that is typically employed 
in clinical pharmacology studies. This design is clearly more complicated 
than the commonly used cross-sectional design (i.e. tumour vs. healthy 
tissue) for microarray studies. A number of temporal factors including 
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intra- and inter-individual variability in gene expression, possible 
confounding effects of intercurrent illness, concomitant medications, 
diet and menstrual cycle (for pre-menopausal women) may all represent 
additional complicating factors that might introduce variability in the 
analysis [2]. Also, variability in gene expression profile related to age, 
gender, or ethnic background can become a potentially important issue 
when comparing subjects in a treatment cohort [2]. Besides these general 
issues related to the longitudinal study design, other more specific 
issues, although partially accounted for in the statistical analyses, may 
have increased variability. 

In the first microarray study (with rosiglitazone), there were some 
concerns with regard to the glucose-lowering potential of rosiglitazone 
as add-on therapy and thus the demonstration of efficacy using 
‘traditional’ markers. Therefore, it was decided to withdraw the patients’ 
oral hypoglycaemic maintenance therapy and washout all subjects for 
two weeks before randomizing them to either rosiglitazone or placebo. 
Unfortunately, this led to a higher than anticipated number of dropouts 
(largely due to hyperglycaemia in the placebo group) and corresponding 
missing data points which had to be substituted with modelled data. In 
addition, metabolic derangement, after withdrawal of oral maintenance 
therapy in the remaining (non-dropout) patients, may have generated 
additional variability. However, considering the fact that we also failed 
to detect significant changes in gene expression profiles of (relatively 
stable) hvs, makes it less likely that these factors played a major role.

With regard to spotted cdna microarray technology itself, we 
concluded that, in addition to other well-known technical pitfalls 
[3;4], differences in microarray print batch, as unavoidable in 
larger studies with multiple samples, appeared to be an important 
variability introducing factor, which if it had remained undetected and 
uncorrected, would have led to considerable misinterpretation of the 
data. In the second study (with ciprofibrate), the study design allowed 
studying patients that remained on steady doses of oral hypoglycaemic 
therapy instead of patients washed-out from oral hypoglycaemic 
therapy. This design thus avoided the confounding effects of metabolic 
derangement and resulted in considerably fewer subjects dropping 
out and hence less missing data in the patients’ cohort. In addition, 
to avoid technical interpretation issues with regard to differences in 
print batch, we assured that the samples were well balanced. Hence, no 
major statistical correction was needed during the analysis. However, 
also with this improved study design, and using identical methods and 
statistical criteria, we were unable to demonstrate significant pparα-
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agonist induced effects on global tissue gene expression profiles in t2dm 
patients or hvs. 

When taking into consideration that changes in gene expression 
profile induced by pharmacological interventions may be much smaller 
than differences commonly observed in (cross-sectional) disease vs. 
control comparisons (i.e. in cancer where many genes are differentially 
expressed due to multiple dna mutations), it is conceivable that this 
relatively subtle treatment signal could be obscured by the large amount 
of ‘noise’ associated with a surfeit of uncontrolled factors in a more 
complicated longitudinal design. However, this view appears to be in 
contrast with the observed treatment effects on ‘downstream’ effect 
parameters, i.e. biochemical markers and metabolite profiles, which 
appeared less affected by this ‘noise’ and remained readily detectable 
in both studies. A possible explanation for this could be that after the 
activation of the ppar receptor, many small and interlinked changes 
in (temporal) gene expression induce relatively large, more consistent 
changes in ‘downstream’ processes, which are therefore more easily 
measured in a ‘noisy’ clinical environment. In addition, especially 
the traditional sets of biochemical markers were measured using 
more targeted and robust methods. In other words, the discrepancy 
between ‘upstream’ and ‘downstream’ findings is likely to bear down 
to differences in signal-to-noise ratio, which, in this study design 
and use of methods, appears to be a considerably better ratio for the 
‘downstream’ processes.

In addition to a low signal-to-noise ratio, the lack of observed 
treatment-induced transcriptome changes could be partially related to 
suboptimal timing and quantity of serial gene expression measurements 
performed in these studies. It has been shown in previous experiments 
with lps infusions in healthy men that gene expression changes in 
peripheral blood mononuclear cells (pbmcs) can follow many different 
patterns of (sub)acute response during a 24 hour period after infusion 
[5]. The most commonly observed pattern was that genes do not change 
in expression at all, which is quite surprising considering the fact that 
lps represents a very strong stimulus. However, some of the changes 
included a quick up or down regulation of several genes, which rapidly 
returned to baseline within 24 hours [5]. Only a few patterns included 
a slow rise in expression that was still continuing after 24 hours [5]. 
These observations show that changes in gene expression can follow 
many different patterns in time and illustrate that frequent sampling is 
eminent to provide a good picture of the transcriptome changes in time 
following an intervention. 
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However, in a clinical setting is it unfeasible to collect large series of 
tissue samples. For this reason, we also obtained more easily collected 
blood samples (harbouring pbls) at more frequent time points during 
the study. However, although a subpopulation of pbls, i.e. mononuclear 
cells, expresses pparα and γ receptors [6], we failed to detect a 
significant acute (i.e within hours) or delayed (i.e after 2, 4 and 6 weeks) 
treatment response on their transcriptome. This could be related to the 
fact that white blood cells are by far the most transcriptionally active 
cells in the human body and thus exhibit even larger intra- and inter-
individual variability than adipose and skeletal muscle tissue [7]. In 
addition, as is true for the biopsy samples, white blood cells represent 
a highly heterogeneous ‘tissue’, which is comprised of many different 
subtypes (i.e. lymphocytes (30%), monocytes (5%), and granulocytes 
(65%)) [8]. Furthermore, the proportions of these subtypes often vary 
from time to time, adding to the variability in relative gene expression 
[8]. Recent evidence suggests that better results can be obtained when 
studying the peripheral mononuclear cells (pbmcs; i.e. monocytes and 
lymphocytes) in isolation [7].

The suggestion that the additional ‘noise’ introduced in a 
longitudinal study design likely obscures the relatively weak treatment 
signal, appears to receive further support by the observation that in 
both studies (using virtually identical statistical criteria and methods) 
we were able to identify a large number of putative disease related genes 
when performing a typical cross-sectional comparison (i.e. t2dm vs. 
hvs at baseline). In other words, the supposedly larger difference in 
gene expression profile (i.e. ‘signal’) related to the disease state was 
more easily detected when making use of a simpler and thus less noisy 
cross-sectional comparison. Although the adipose tissue and skeletal 
muscle ‘disease fingerprints’ showed little overlap on the individual 
gene level across both studies, the analysis was still able to identify a 
number of enriched putative t2dm-associated biological functions 
and pathways that appear plausible findings in view of the pertaining 
literature on t2dm. For instance, the gene encoding pparγ, which is the 
renowned target for thiazolidinediones (including rosiglitazone) in i.e. 
adipose tissue [9], and its corresponding signalling pathway were found 
to be significantly ‘enriched’ using the Ingenuity Pathway Analysis 
application, but remained unidentified using conventional p-value 
cut-offs and correction for multiple comparisons. Similar findings were 
reported by Bammler et al. who compared gene expression profiling 
results (from the same experiment) across different laboratories and 
across platforms [10]. Although they observed large inconsistencies 
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on a gene-by-gene basis, the biological themes (using Gene Ontology 
annotations) that emerged from the data from the different platforms 
and laboratories were overall the same. These observations underline the 
true potential of cdna microarray technology, which in combination 
with sophisticated pathway-level analyses and in experienced hands 
can be an important tool for disease exploration by facilitating the 
identification of disease pathways and potentially novel ‘druggable’ 
targets.

Although a low signal-to-noise ratio is, as discussed above, likely 
to be the main reason for the absence of detectable treatment induced 
transcriptome changes, the apparent discrepancy between up- and 
downstream effects could be also be partially explained by the fact that 
our a priori assumption of the primary mechanism of action of ppar 
agonists was incomplete. While it is apparent from many investigational 
studies with pparγ agonists that changes in global gene expression 
in animal models or using human adipocyte cell-lines appear to occur 
[11;12], it is debatable whether these (small and often highly variable) 
changes play a major role in the primary and true mechanism(s) of action 
of these drugs in vivo. In fact, there is a good chance that many of the key 
‘downstream’ effects of thiazolidinediones may actually be controlled by 
post-transcriptional, pparγ-independent mechanisms, as has recently 
been shown for adiponectin [13;14]. Adiponectin is a cytokine produced 
and secreted by adipocytes and is regulated by thiazolidinediones. 
It is believed to be one of the key modulators of insulin sensitivity 
[15] by having an important insulin-independent effect on hepatic 
gluconeogenesis [16]. This means that, in theory, also other significant 
changes in ‘downstream’ parameters could be observed without changes 
in expression of the supposedly responsible pparγ target genes.

Finally, our results appear to be corroborated by the findings from a 
recent study by Goldfine et al. [17]. The authors of this paper reported on 
the effects of 8-weeks rosiglitazone treatment on global gene expression 
profiles in adipose tissue and skeletal muscle of 6 drug-naive t2dm 
patients using a newly developed (more sensitive) array technology; 
Total Gene Expression Analysis (toga) [18]. Although this study used 
less rigorous statistical criteria for gene selection (concordant fold-
change instead of p-values adjusted for multiple comparisons in our 
study) only two out of approximately 17,000 genes were found to be 
concordantly differently expressed after rosiglitazone treatment. The 
fact that independent authors using a more sensitive array method 
coupled with less stringent gene selection criteria only found two out 
of 17,000 transcripts to be modulated by thiazolidinedione treatment 



strengthens our belief that many issues need to be resolved before gene 
expression profiles can be used as effective molecular biomarkers for the 
pharmacological effects of ppar agonists in vivo. 

As stated in the introduction, ideally, the combination and 
integration of all three established ‘-omics’ subdisciplines as proposed in 
the ‘systems biology’ approach [19], should provide a more holistic view 
of the multiparametric response of a biological system to perturbation. 
Although the concept is appealing and has shown its successful 
application in in vitro cell-based and animal studies [20;21], with the 
currently available molecular profiling technologies and tested study 
designs, it appears to be a less fruitful approach for the assessment of 
global drug effects in small groups of human subjects. Hence, it appears 
that at least one of the pillars of systems biology, i.e. (cdna microarray-
based) transcriptomics, is currently unable to bear its share of weight in a 
clinical pharmacology setting. 

Recently, and analogous to the above discussed issues regarding 
the pbls transcriptome, it has become apparent that when studying 
heterogeneous tissue samples, cell-sorting is a necessary step for better 
and reproducible results in a microarray experiment [22]. It is expected 
that applying this step to human tissue samples will certainly improve 
the signal-to-noise ratio and will consequently deliver better results. 
In addition, new emerging technologies including laser capture micro-
dissection, are currently being optimized, which will enable microarray 
researchers to study more pure target cell populations [23], or perform 
serial single cell collections directly from a research subject in a highly 
non-invasive manner [24]. Coupled with validated rna amplification 
techniques [25-27], this may prove to be an adequate approach to resolve 
the issues related to tissue heterogeneity and relative invasiveness of 
tissue biopsies that clinical microarray scientists are currently facing. In 
addition, much effort is focused on improvements of the core microarray 
technology in terms of sensitivity and specificity of the arrays as well as 
the implementation of uniform standards, i.e. the minimal information 
about microarray experiments (miame), by a growing number of 
scientific journals as a requirement for publication [28;29]. In fact,  
these developments have already shown to allow better comparison  
of results between different laboratories, platforms and research groups 
[10;30-33]. Finally, the development of new bioinformatic protocols for 
the normalization of microarray data has recently gained substantial 
momentum, with new bioinformatic companies striving to develop 
better noise-reducing algorithms to improve the processing, analysis 
and interpretation of microarray generated data [34;35]. 
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In conclusion, it appears that from the two ‘-omics’ technologies 
evaluated in this thesis, 1h nmr spectroscopy-based metabolomics 
of urine and plasma samples is currently the most promising ‘-omics’ 
technology for the discovery of combinatorial biomarkers for ppar-
agonist action that may eventually (and obviously after independent 
validation) be applied to early clinical ‘proof of concept’ studies. Many 
of the spectral data derived from metabolomic analyses currently 
generate a large number of so-called ‘black box’ parameters, i.e. spectral 
peaks that can not be identified in public domain databases [36]. 
Nevertheless, it is expected that, analogous to ongoing developments in 
transcriptomics technology, when metabolomics and its accompanying 
bioinformatic tools mature, more and more data can be transformed 
into meaningful biological information. Adding this up to the easy and 
non-invasive sample collection, metabolomics will stand a very good 
chance of becoming one of the preferred methods for the identification 
of combinatorial biomarkers that can be successfully applied to future 
clinical ‘proof of concept’ studies. 

However, until the ‘-omics’ technologies and their accompanying 
bioinformatic protocols have evolved into more robust and clinically 
applicable tools, the measurement of ‘traditional’ biochemical plasma 
markers will continue to be the method of choice to evaluate which 
of the (ppar agonist) drug-candidates in store will have the greatest 
chance of sweet success. 
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