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c h a p t e r 2

Introduction to molecular profiling platforms
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Gene expression profiling using cdna 
microarray technology

Gene expression

The complex process of coordinated expression of a large number of 
genes is a requirement for the maintenance of a proper health status 
[1]. With little exceptions, all cells of the human body have a full set 
of chromosomes and harbour identical genes. Of these genes, only 
a few are turned on and it is the subset that is ‘expressed’ that gives 
the distinctive properties to each cell type and thus determines its 
phenotype and biological function [1]. 

Gene expression is defined as the transcription of information 
stored within the dna into messenger rna (mrna) molecules that 
are subsequently translated into proteins that perform most of the 
cellular functions [1]. The road from ‘gene’ to ‘function’ is controlled 
at many levels including the transcriptional level (transcription 
initiation, elongation and termination), the posttranscriptional level 
(rna translocation, rna splicing, rna stability), the translational 
level (translation initiation, elongation and termination), and the 
posttranslational level (protein splicing, translocation, stability and 
covalent modifications like glycosylation) [2]. Disruptions in any of  
these steps can result in changes to the physical structure and activity 
of the various dna, rna, and protein complexes, thus leading to an 
altered health or disease status [2]. 

Studying gene expression

The type and quantity of mrna produced by a particular cell or tissue 
are studied to learn which genes are expressed. This can provide 
important insights into how the cell or tissue responds to its changing 
needs in i.e. a disease state or as a result of a (pharmacological) 
intervention. As indicated above, gene expression is a highly complex 
and tightly regulated process. It enables cells to react dynamically both  
to environmental stimuli and to their own changing requirements 
[1]. This mechanism can act as both an ‘on/off’ switch to control 
which genes are expressed as well as a ‘volume control’ that increases 
or decreases the level of expression of particular genes as necessary 
[1]. Global gene expression levels can be measured using a wide 
variety of low and high throughput technologies. Using traditional 
low throughput methods (i.e. northern blotting [3] or real-time 

(quantitative) polymerase chain reaction (rt-pcr) analysis [4]) to  
study gene expression, one can only assess a relatively small number  
of genes (usually less than one hundred) at a time. In addition, these  
methods are considered to be very labour- and time-intensive [5;6].  
In contrast, newly emerged high throughput technologies allow the 
rapid analysis of the (semi-quantitative) expression of multiple genes in 
a single experiment [7-9]. These technologies can be classified into two 
categories: ‘open’ and ‘closed’ systems [10]. Open systems do not require 
any a priori knowledge of the sequence of the gene or genome being 
studied. Closed systems, however, always require some knowledge 
of the gene sequences [2]. Examples of an open system include serial 
analysis of gene expression (sage) [11] and massively parallel signature-
sequencing (mpss) [12]. An example of a closed system is the dna 
microarray (or GeneChip™), which is currently by far the most widely 
employed technique for global gene expression profiling [10].

Microarray technology

Microarray technology, developed in parallel by Southern et al. [13] 
and Fodor et al. [14] was pioneered at the Brown lab at Stanford 
University [8], and is currently the most widely applied high through-
put technology that allows the rapid analysis of global gene expression 
profiles [7-9]. Although it has proven to be valuable in many areas 
of biomedical research (see further), the effective application of this 
technology is reliant on the required level of quantification needed to 
answer the scientific question posed by the researcher.

The most straightforward microarray experiment design compares 
two distinct biological conditions, i.e. ‘disease’ state vs. ‘healthy’ state. 
Genes that are up- or down regulated in the disease state are more likely 
than random chance to be potential drug targets for that particular 
disease and can collectively (i.e. the expression profile) offer a detailed 
molecular disease ‘fingerprint’ [15]. 

In recent years, microarray technology has been employed to 
study basic biological processes, such as the temporal changes in 
gene expression during the cell cycle and has shed more light on the 
underlying mechanisms of both physiological and pathophysiological 
processes, including aging, tumorigenesis, rheumatoid arthritis, and 
inflammatory bowel disease [16-19]. Furthermore, the technology has 
shown to be quite useful in clinical oncology research where methods 
for molecular diagnostics [20;21] (classification of tumours according 
to gene expression profile) and prediction [22] (prediction of patient 
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prognosis based on gene expression profile) have made their first steps 
towards a clinically applicable tool. Moreover, the Oncotype Dx tex [23], 
which measures the tumour expression of 21 genes, can predict how 
likely certain breast cancers are to recur and respond to pharmacological 
treatment and similar Mammaprint®test [24] (based on the expression 
of 70 genes), were recently marketed in the United States. In addition, 
the use of microarray technology is promising for toxicology 
assessments [25] as well as for monitoring the effects (i.e. mode of 
action prediction) of in vitro [26] and in vivo [27-29] pharmacological 
interventions, and may therefore have considerable impact on the 
process of drug development [30-32].

Besides being useful tools for global gene expression profiling, 
microarrays can be employed in high throughput genotyping, i.e. single 
nucleotide polymorphism (snp) detection [33]. Recently, the us Food 
and Drug Administration approved the first dna microarray test, 
the AmpliChip cytochrome P450 Genotyping Test (Roche Molecular 
Systems) for use as a diagnostic [34]. This test can be used to predict  
how quickly a certain individual will metabolize a range of drugs, 
thereby assisting physicians to select the optimal drug and dosage. 
Another interesting application was reported by Joseph DeRisi, 
who used a microarray to identify the sars virus [35]. Finally, new 
applications of the technology are continuously emerging, such as 
genome-wide epigenetic analysis and on-chip synthesis [36]. 

Gene expression profiling using dna microarrays

dna microarrays are small, solid supports (usually glass microscope 
slides, but can also be silicon chips or nylon membranes) onto which 
the sequences from thousands of different genes (i.e. probes) are 
immobilized, or attached, at pre-determined locations [1]. The dna  
is printed, spotted, or actually synthesized directly onto the support. 
Key to the microarray system is that the gene sequences are fixed to  
their support in an orderly fashion, since the position of each spot in  
the array is used to identify a specific gene sequence [1]. The probes  
can be dna, complementary dna (cdna), or oligonucleotides.  
An oligonucleotide is a short fragment of a single-stranded dna  
that is typically 5 to 50 nucleotides long [1;5]. 

The basic principle of dna microarrays is complementary base 
pairing. Complementary nucleotide strands interact non-covalently 
allowing subsequent detection [37;38]. By the application of microarrays 
the contemporary gene expression status of a cell or tissue is used to 

generate a molecular ‘fingerprint’ [37]. Consequently, it is possible 
to relate this fingerprint to distinct time points, disease states or any 
type of intervention. However, because of the large number of data 
points generated, and the required data normalisation procedures, this 
processing requires specific, sophisticated statistical algorithms [39-45]. 
A schematic overview of the steps involved in dna microarray-based 
gene expression profiling is provided in figure 1 (p. 202).

Bioinformatics, data management, and functional 
annotation

Microarray data is typically characterized by many measurements per 
patient sample [37;46]. Interpretation is quite difficult, since the number 
of genes vastly surpasses the number of samples and the data correlation 
structure is poorly understood [37]. The key challenge is to make a 
distinction between random (‘noise’) and significant patterns of gene 
expression [37;46].

Several critical steps need to be taken before the raw data are ready 
for biological interpretation. After quality control and hybridization 
of the rna sample to the microarray, image processing, translation of 
images into signal intensities and normalization, the data are finally 
ready for data mining [37;44].

Data mining

Data mining, defined as the discovery of non-obvious information in 
the data set, often uses mathematical techniques that have traditionally 
been used to identify patterns in complex data [37;46]. Recently, these 
techniques have been adapted to suit the needs of gene expression 
(i.e. ‘transcriptome’) analyses [37]. In essence, there are two different 
approaches to analyze the data, i.e. the unsupervised and the supervised 
approach [47]. An unsupervised analysis does not use any pre-defined 
class definition, and simply seeks to determine what structure is inherent 
in the data. In contrast, a supervised analysis aims at finding putative 
associations between genes or gene profiles and a pre-defined class. 

Unsupervised analysis

Unsupervised analysis of microarray data seeks to identify (sub)groups 
of samples or outliers without using information of the clinical features 
of each sample [37]. For instance new subgroups of a disease with a 
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distinct ‘molecular signature’ can be identified [48]. A commonly  
used unsupervised method is hierarchical clustering [49]. Although  
this type of analysis is quite useful for data visualization, it has 
a number of drawbacks including the lack of statistically valid 
quantitative information about the genes that are differentially 
expressed between classes [50]. In addition, this method does not 
enable the investigator to deal with multiple comparison issues in a 
statistically valid manner. Consequently, cluster analyses are more 
appropriate for ‘class discovery’, but are often less suitable for ‘class 
comparison’ or ‘class prediction’ [51].

Supervised analysis

Typically, it is of great interest to correlate microarray data directly  
with clinical data [37]. In supervised analyses the classification of each 
sample is used (i.e. diseased vs. healthy or active treated vs. placebo 
treated). The main objective of this evaluation is to identify significant 
differentially expressed genes between two classes i.e. to perform 
‘class comparison’ [51]. There are a large number of parametric and 
nonparametric tests available to assess gene significance in the analysis 
[52-58]. However, because of the vast number of genes, results should 
be adjusted for multiple hypothesis testing to exclude random patterns 
[51;59]. A commonly used approach is the estimation of the ‘false 
discovery rate’ (fdr). This rate will provide an indication of the number 
of false positive genes that are present in a given list of differentially 
expressed genes between two classes [60]. The desired fdr can be 
determined by the investigator and is featured in i.e. the Significance 
Analysis of Microarrays (sam) [61;62] and BrBarraytools [63] software 
applications. In each type of supervised analysis, a list of differentially 
expressed genes associated with the (clinical) response variable is 
generated. Ultimately, the number of genes in this list is reliant on  
the (arbitrary) significance level set by the investigator.

Functional annotation

Functional clusters of genes (based on their similarity among gene 
expression profiles) derived from i.e. hierarchical clustering analyses, 
can be identified using detailed gene annotation [37]. This information 
can be used to provide new insights into (patho)physiological pathways 
and may also provide a simple means of gaining leads to the functional 
relationship of many genes for which detailed information is currently 

unavailable [49]. A structured annotation of genes and gene products, 
essential for all biological interpretations, is available from the Gene 
Ontology consortium [64].

Furthermore, relevant gene information can be found in various 
other (freely internet accessible) databases such as the Online Mendelian 
Inheritance in Man (omim; more clinically oriented) [65], UniProtkb/
Swiss-Prot Protein Knowledgebase [66], ncbi Genbank [67] and ebi 
Ensembl [68] thereby substantiating the knowledge about a particular 
gene and its gene product and thus aid in the biological interpretation  
of microarray experiment results.

Molecular network and pathway analysis

To evaluate the role of significant differentially expressed genes in the 
pathogenesis of a certain disease or in response to a certain intervention, 
the question arises whether some of the genes are interconnected and 
share biological functions or are involved in common pathways [37]. 
There are several collections of (metabolic) pathways that can help to 
answer these questions. Valuable information can for instance be found 
in the Kyoto Encyclopaedia of Genes and Genomes (kegg) [69] and 
Encyclopaedia of Metabolic Pathways (metacyc) [70]. In addition, 
biological networks can be generated (and pathways visualised) through 
the use of various commercial and non-commercial applications [71]. 
One of the commercial applications, i.e. Ingenuity Pathway Analysis™ 
(ipa), is a web-delivered application that enables scientists to discover, 
visualize and explore therapeutically relevant (gene and protein) 
networks significant to their experimental results [72]. Since this 
specific software application was used in the analysis of the microarray 
studies in this thesis it will be discussed in more detail in the following 
paragraph.

Ingenuity Pathway Analysis™

To allow for a meaningful pathway analysis, first a sufficient number  
of genes have to be identified that is differentially expressed between 
the two defined classes. For generating molecular networks that indicate 
how these genes may be interrelated, a certain cut-off of (i.e. 5% fdr or 
p-value < 0.001) can be set. However, since these analyses are used for 
exploratory purposes, relatively non-stringent cut-off criteria are usually 
applied. After uploading the expression data file in the ipa application, 
each probe set is mapped to its corresponding database gene object to 
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designate so-called ‘focus genes’ [72]. Focus genes are genes from the 
analysis input data file that have a level of significance below the chosen 
cut-off criterion and interact directly with other genes in the ipa global 
molecular network. To start building the networks, the application 
queries the ipa Knowledge Base for interactions between focus genes 
and all other gene objects stored in the knowledge base, and generates 
a set of networks with a network size of 35 genes / gene products [72]. 
The application will then calculate a score for each network according 
to the fit of the user’s set of significant genes. This score (‘Z-score’) is 
derived from a p-value and random chance. A score of 2 indicates that 
there is a 1 in 100 chance that the focus genes are together in a network 
due to chance. Consequently, every score of 2 or above has at least a 99% 
confidence of not being generated by random chance alone. Biological 
functions and pathways are then calculated and assigned to each 
network [72]. Finally, the results are ready for biological interpretation  
by the investigator. 

Limitations of global gene expression profiling

Although microarray-based gene expression profiling offers the 
advantage of being able to monitor the expression many genes 
simultaneously, this enormous set of data only provides one aspect  
of the disease or (pharmacological) intervention being studied [10].  
In fact, it is well known that not all biological processes are regulated 
at the transcriptional level. Proteins are the key players in many 
processes and post-translational modification (i.e. phosphorylation, 
prenylation, sulfation etc.) of proteins is also very important for 
the regulation of many biological processes and pathways [10]. 
Therefore, a more complete understanding of the disease process or 
(drug)mechanism being investigated can only be obtained when it is 
studied at the different molecular levels of mrna (transcriptomics), 
protein (proteomics) and metabolite (metabolomics) simultaneously 
[73]. However, since the field of ‘proteomics’ is beyond the scope of this 
thesis it will not be discussed here. The following section provides an 
overview of the background, measurements, and statistical methods 
employed in the metabolomics studies of this thesis. 

Metabolic profiling using ¹h nmr 
spectroscopy

Introduction

Along with its counterparts in the ‘-omics’ revolution, metabolomics 
has arisen as an important and gripping discipline in biomedical research 
[73]. It involves the identification and quantitation of large amounts of 
metabolites from cells or biofluids and their changes due to physiological 
and nonphysiological processes [74]. A schematic overview of the steps 
involved in nmr-based metabolomics studies is provided in figure 2  
(p. 202). 
 Metabolomics is less well-defined than i.e. transcriptomics or 
proteomics, illustrated by the fact that many synonyms (for virtually 
the same approach) i.e. ‘metabonomics’ [75], ‘metanomics’ [76] and 
‘metabolite profiling’ [77] can be found in the pertaining literature [78]. 
The definition for ‘metabonomics’ previously proposed by Nicholson  
et al.: ‘the quantitative measurement of the multiparametric response  
of living organisms to pathophysiological stimuli or genetic modifi-
cation’ [75] will be used to cover the term ‘metabolomics’ in this 
introduction.

When foreign compounds (i.e. drugs) interact with cells and tissues 
they disturb the ratios, concentrations and fluxes of endogenous 
metabolites by interfering with key intermediary metabolic pathways 
[73;78;79]. When slightly perturbed (i.e. as a consequence of disease 
processes or intervention), cells will try to maintain homeostasis and 
metabolic control by changing the composition of their intra- and 
extra cellular body fluids [79]. Hence, as a result of this ‘metabolic 
disturbance’, distinctive organ- and mechanism-specific alterations  
in biofluid (i.e. urine, plasma, saliva, etc.) composition can be observed 
[78]. To explore the multifaceted metabolic reactions to this disturbance, 
which can be disease processes, reactions to a toxin or drug, or even 
genetic manipulation, non-selective, specific ‘information-rich’ 
investigative approaches are essential [73;78;79]. In addition to  
¹h nmr spectroscopy, which was employed in the studies described  
in this thesis, several other analytical methods can serve as powerful 
means of acquiring multivariate metabolic data [80], including; 
Gas Chromatography / Mass Spectrometry (gc/ms) [77;81], High 
Performance Liquid Chromatography / Mass Spectrometry (hplc/ms) 
[82], hplc-coupled with a diode array detector (dad) [83] and optical 
spectroscopic techniques [75;76] (figure 3; p. 203).
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Even though the field of clinical metabolomics is still in its infancy, 
many reports have been published involving a great variety of disease 
states and biofluids, illustrating the vast prospective for development 
and growth of this research field [78;84-87]. 
 In (pre-clinical) animal experiments, the precise biological history 
of the studied animals is known and experimental conditions (i.e. diet, 
temperature and compound dose) as well as sample timing are well 
controlled. However, in the case of human studies, there is a surfeit  
of variables in the medical history and experimental conditions that 
are much more difficult to control [78]. The intrinsic variability of 
human metabolic and biochemical parameters makes human biofluids 
more complex to analyse and even more care must be given to rigorous 
statistical analysis (see further) [78].

Background to nmr

The nmr phenomenon was first discovered in 1945 and published  
in 1946 [88;89]. With the advent of chemical shift and spin coupling 
it has developed into a key analytical technique that still continues to 
evolve [78]. Over the last 20 years, an enormous increase in technological 
innovations and knowledge in this research area has resulted in a wide 
range of applications for nmr, ranging from the characterization of 
prospective protein drugs and protein drug targets [90] to whole-body 
imaging using magnetic resonance imaging (mri) devices [91].

The basic principle of the conventional nmr technique can be explained 
as follows. The test-sample, contained in a special glass tube of diameter 
of 5 or 10 mm, usually dissolved in a particular solvent, is placed in 
a high uniform magnetic field. Subsequently, from a variable radio 
frequency (rf) source, rf of appropriate power is sent through a 
shielded cable to a coil that is wound around the tube holding the test-
sample. The frequency is varied stepwise using small increments (or  
so-called ‘scanning’) through a preset frequency range. During scanning, 
the absorption of the rf is monitored and measured using appropriate 
electronic circuitry. Subsequently, the frequency of the rf and its 
corresponding absorption value are plotted on the x- and y- axes.  
The resulting graph, is characteristic of the compound(s) in the test 
sample and referred to as the ‘nmr spectrum’ [92;93].

The absorption of the rf energy occurs because of the presence  
of some nuclei (i.e. ¹h, ¹³c, ³¹p, ¹⁹f etc.) all of which exhibit non-zero 
nuclear spin and are called magnetic nuclei. The nmr spectrum arising 

due to the presence of ¹h is generally termed ‘proton nmr’ or ‘pmr’. 
When a compound containing such an atom is kept in the magnetic 
field it behaves in two or more different ways that are associated with 
different energy levels. Protons split into two different energy levels 
and the energy gap between these levels depends upon many factors, 
but primarily the magnetic field itself. The higher the magnetic field, the 
bigger the energy gap and hence higher rf will be absorbed [92;93].

However, during nmr measurements the field is kept constant. 
Even in a constant magnetic field, the energy level gap for the same 
nuclei within a molecule can be different due to the difference in 
shielding of the nuclei by the electrons surrounding the nuclei. In other 
words, since electrons around the nuclei of interest are involved in 
bond formation, they shield or de-shield the nuclei to different extents 
resulting in different energy gaps and in turn different rf absorptions. 
These shifts in the absorption lines are called ‘Chemical Shifts’ and are 
one of the most fundamental parameters of nmr [92].

Generally, nmr	signals are reported in ‘chemical shifts’, which 
are the ratio of the frequency difference between a reference standard 
and the test signal to the frequency of the spectrometer. This is a 
dimensionless quantity is expressed in ppm to make the ratio a 
convenient number. This dimensionless chemical-shift quantity is 
generally termed as ‘d’ [92;93]. 

Occasionally, the chemical shift reference standard is added to the 
solvent itself so that one can directly measure/calculate the chemical 
shift. Thus, Tetramethyl silane (tms), which is an inert volatile 
compound, is frequently used as ppm marker for ¹h, ¹³c and ²⁹si nmr 
measurements. The nmr signal arising out of the tms is set to zero 
ppm in each case. Similarly for other nuclei such convenient standards 
are chosen. Sometimes, it is not possible to have these primary ppm 
markers or reference in the solvents. In such cases, secondary standards 
can be used, for which the ppm value is known [92;93]. 

When one is not too much concerned about the exact ppm value, 
one can use external referencing. In this case, the spectrum of a known 
compound of known ppm value is measured first and the spectral chart 
is calibrated. Then without changing any instrumental experimental 
parameters, the nmr spectrum of the test compound is measured. By 
comparing the ‘external’ standard spectrum and the sample spectrum, 
one can get a reasonably accurate ppm value of the signals [92;93].

Another important phenomenon in nmr is the interaction between 
neighbouring magnetic nuclei. This is called spin-spin coupling [92;93]. 
This causes the otherwise single resonance line of each chemically 
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shifted nucleus to be split into multiple lines in an ordered fashion. 
Though this can increase the complexity of the spectrum, one can,  
if correctly assigned, get a wealth of information of the group of atoms 
present in the immediate vicinity and their through-bond connectivity 
[92;93].

Instrumentation

A nmr instrument comprises a Magnet (permanent magnet / 
electromagnet or iron magnet / superconducting magnet). The sample 
is inserted into the centre of the magnetic field. The sample within the 
sample tube is surrounded by rf coils as mentioned earlier. Signals 
are detected by either the same coil or another coil depending upon 
the manufacturer’s design. The main spectrometer consists of the rf	
generator, magnetic field monitor, rf signal receiving and detecting 
system-recording device, and necessary power supplies. Optionally, 
there can be computer connected to the spectrometer to collect, store 
and process the spectral data [92;93]. 

There are two classes of nmr spectrometers; continuous wave  
(cw) and pulsed Fourier Transform (ft) spectrometers. The cw  
technique is quite old and is almost obsolete whereas almost all  
current manufacturers produce only ft	nmr spectrometers, which  
are much more versatile. Though both type of spectrometers contain  
the magnet and the sample probe, the design of the rf	transmitter and 
the detection circuitry are different. In ft	nmr, the sample in a resonant 
coil is subjected to an intense and short rf pulse. Since the short pulse 
contains a broad band of frequencies (Fourier components of the rf 
pulse) this system is subjected to a broad band excitation. Irrespective  
of the differences in the chemical shift spread all nuclei of a given kind 
are simultaneously excited and give a time-response, which is acquired 
by a fast digital computer to give the so-called Free Induction Decay 
(fid). Upon a mathematical Fourier transform, the fid produces a 
frequency spectrum, which will be identical to the spectrum obtained 
by the conventional cw sweep of the frequency [92]. 

The advantage is that several thousand responses from a sample  
can be coherently added, increasing the signal to noise ratio enormously. 
This makes it possible to address by nmr any Magnetic nucleus in 
the Periodic Table irrespective of the magnetic moment and natural 
abundance [92;93]. 

The role of Liquid-State ¹h nmr in metabolomics

An important point of metabolomics studies is to have one or more 
generic analytical methods at ones disposal that allow rapid biological 
sample profiling [78]. High resolution nmr spectroscopy is now a firmly 
established method in this area, and it is well documented that it can 
generate useful qualitative and quantitative data on the metabolic status 
of a person, animal or cell system [78;94-96]. A number of studies have 
reported on the usefulness of ¹h	nmr spectroscopic for the analysis  
of a broad array of biofluids, including i.e. urine [97], blood plasma 
[98;99] or serum [85;100], seminal fluid [101], and spinal fluid [102].  
The characteristics of nmr spectroscopy that are useful in this type  
of study are summarized in table 1.

table 1 Summary of useful features of  1h nmr spectroscopy in biofluid studies.

 

Feature Comment
Selectivity	 ‘Hypothesis-free’	pre-selection	of	analytical	conditions	based	on	the	chemical	
	 properties	of	the	analyte(s),	or	postulation	of	the	metabolites	affected	by	

a	disease	or	intervention	is	not	necessary.	Therefore,	a	broad	array	of	low	
molecular	weight	metabolites	and	macromolecules	can	be	rapidly	monitored		
in	parallel,	without	a	priori	knowledge	or	expectation	of	the	results.

Non-Invasive	 The	non-invasive,	non-destructive	and	non-equilibrium	perturbing	nature	
	 of	nmr	spectroscopy	allows	the	subsequent	analysis	of	a	sample	with	other	

techniques.	

Speed	 A	typical	single	pulse	¹h	nmr	biofluid	spectrum	can	be	obtained	in	les	than	
 10 minutes.

Sample Volumes Only 50 μl of sample is needed for routine spectroscopy with a standard 
	 nmr probe and only 1-2 μl with a micro-volume nmr	probe.

Sample Preparation	 The	only	requirement	for	analysis	is	the	addition	of	deuterium	oxide.
Dynamic Information	 The	technique	can	provide	data	on	dynamic	biochemical	processes	in	complex	
	 matrices	and	molecular	interactions,	i.e.	protein-ligand	binding.
Structural Information	 Data	provides	qualitative	structural	information,	which,	with	the	addition	
	 of	internal	standards	at	known	concentrations,	can	also	be	quantitative.

Different from other investigative methods, pre-selection of the  
analytes of interest is not required for nmr spectroscopy [78]. In fact, 
its strength lies within its potential to rapidly provide data relating 
to low molecular weight compounds and macromolecules without a 
priori knowledge or expectation of the results [78]. Moreover, the latest 
advances in sensitivity and the non-destructive nature of the method 
have led to its increased popularity for biomedical studies, illustrated by 
the increasing number of scientific papers being published on the subject 
[78;98;99;103-110]. 



34	 evaluation	 of	 molecular	 profiling	 platforms	 in	 clinical	 pharmacology 35	 sec t ion 1 	–	general	introduction

Although conventional enzymatic and chromatographic methods are 
more sensitive than ¹h	nmr spectroscopy in detecting low levels of 
metabolites, these methods entail consideration of the key biochemical 
pathways and pre-selection of metabolites of interest [78]. Consequently, 
the subjective and time-consuming process of selection of a series  
of biochemical methods is required. Moreover, if an inappropriate or 
too narrow range of biochemical methods and variables are selected, 
important metabolic changes may be missed [78]. In contrast, the use  
of nmr spectroscopy to study (changes in) metabolite profiles does not 
involve such a pre-selection of analytes and thus permits subsequent 
‘hypothesis-free’ multivariate analysis without any bias imposed by  
the scientist’s expectations [78].

Multivariate Data Analysis 

¹h	nmr	spectra of biofluids capture a wealth of information on 
endogenous processes in both health and disease [78]. These biofluids 
(e.g. plasma or urine) contain numerous compounds, which in turn 
produce thousands of nmr signals and consequently, signal overlap  
and crowding of the spectra can occur [78]. Subtle metabolic differences 
or alterations can therefore be easily overlooked when examining these 
spectra by eye [78]. Moreover, in most cases it is the global metabolite 
profile, rather than the absolute concentrations of specific individual 
metabolites, which appears to provide most of the information on the 
metabolic status [73;78].

This highly complex spectral profile can be more efficiently analysed 
using advanced data reduction and pattern recognition methods for 
classification (diagnostic) purposes [78].

Metabolomics studies (in analogy to microarray experiments) 
generally produce large amounts of complex data. The datasets, 
containing nmr spectra and clinical data (i.e. disease or treatment 
status), hold biological information that encompasses many correlated 
variables or so-called ‘peaks’ [78]. The correlation between the 
individual peaks is derived from the fact that a single metabolite will 
characteristically have more than one peak in an nmr spectrum and  
that there are biological relationships between metabolites [78].

To identify these relationships, several multivariate analysis 
methods can be used [111-113], however, a detailed description is beyond 
the scope of this introduction. Here, we will focus on the most clear-
cut approach (used in the metabolomics studies of this thesis) being 
Principal Component Analysis (pca) [114]. For practical reasons, pca 

coupled with discriminant analysis (pc-da) approaches are extremely 
relevant in the context of high dimensional (nmr) data [74]. Typically, 
pc-da analysis will be performed on triplicate analytical measurements 
on each sample, after which each sample is defined by a category  
(e.g. active treated vs. placebo treated). Then, after selection of a number 
of principal components, a discriminant analysis is performed [115].  
Any observed clustering or separation of samples resulting from  
pca or pc-da provides strong evidence for statistically significant 
differences between or among sample datasets [74]. Another (related) 
method entails the partial least-squares (pls) analysis [116]. This 
method is basically a generalization of pca where a projection model is 
developed predicting Y (i.e., an outcome) from x (the variables used in 
pca as described above) via the scores of x [116]. When pls is combined 
with discriminant analysis (da) the Y’s are defined by the user and the 
algorithm allocates observations (a set of samples) to one class of a given 
set of classes [116].

Usually, the pca or pc-da clustering is the first step in pattern 
recognition, followed by the interpretation of the peaks within 
the dataset that largely account for an observed pattern [74]. Such 
interpretation identifies the variables (metabolites) that are responsible 
for the differences between separate clusters (e.g. disease vs. healthy) 
and thus provides the basis for subsequent biological interpretation 
[74]. Unfortunately, many of these variables are unknown and can only 
be identified by their chemical shift values [74]. In-house proprietary 
databases and public domain databases can assist in the identification, 
but especially at lower concentrations, the number of unknown variables 
increases progressively [74]. Proper identification of these unknown 
variables thus becomes one of the key challenges in metabolomics 
research.

Why are the ‘-omics’ technologies 
important?

The ‘-omics’ technologies provide the means for the identification of 
distinct molecular phenotypes or ‘fingerprints’ through the analysis 
of (human) tissues, cells and biofluids. Furthermore, it is anticipated 
that the application of the ‘-omics’ technologies will continue to 
improve molecular diagnostics and will provide ‘deep’ insights into the 
pathogenic alterations in diseases and mechanisms of pharmacological 
interventions [10]. Especially when the different ‘-omics’ sub disciplines 
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are integrated, as advocated in the ‘systems biology’ approach [117], it can 
provide a broad, more ‘holistic’ view on disease and drug mechanisms, 
which could eventually lead to the development of new or improved 
treatment modalities. However, in the end, the combined strength  
of the three major ‘-omics’ pillars ultimately determines if ‘systems 
biology’ can live up to its expectations and will become a useful tool  
for future clinical drug evaluation. 
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