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Introduction

With the completion of the human genome project [1;2], high expecta-
tions are raised with regard to advances in our understanding of diseases 
and the development of better drugs to treat them. Indeed, vast quantities 
of data have been generated at an unmatched rate, which has provided 
important new insights in the pathophysiology of diseases and has led 
to the discovery of many promising novel drug targets [3]. Combined 
with the efforts from recent developments in combinatorial chemistry 
and high throughput screening technologies, huge libraries of lead com-
pounds have been constructed and screened, resulting in many drug 
candidates that fuel the drug discovery pipelines of the pharmaceutical 
industry [3]. However, it is one thing to generate a plethora of drug candi-
dates, but it is another to see more of these candidates make it through the 
clinical trials and ultimately reach the patient’s bedside. 

The bottleneck in delivering new or improved pharmacological 
treatments appears to have shifted from forming new hypotheses 
and identifying new targets (i.e. drug discovery), to choosing which 
candidates warrant follow-up and critical resource allocation (i.e. drug 
evaluation) [3]. At present, most drug candidates fail relatively late 
during the large-scale costly (phase III) trials because of lack of efficacy 
[4]. Clearly, one part of the problem is poorly predictive animal models, 
especially for some diseases and drugs with a novel mechanism of action 
[4]. Arguably, the best ‘models’ for drug evaluation are in fact human 
subjects themselves [5]. Therefore, a key element to reduce the late stage 
failure rates is the development and use of sensitive and selective effect 
parameters (i.e. ‘biomarkers’) that indicate in vivo ‘target modulation’  
as early as possible in the clinical development of new compounds [6].

Biomarkers

Although the term biomarker historically refers to analytes in biological 
samples, any measurement that predicts an individual’s disease state 
or response to a drug can be called a biomarker [7]. A biomarker is 
defined as ‘a characteristic that is objectively measured and evaluated 
as an indicator of normal biological processes, pathogenic processes 
or pharmacological responses to a therapeutic intervention’ [8]. 
It is distinguished from a clinical end point, which is defined as ‘a 
characteristic or variable that reflects how a patients feels, functions 
or survives’ or a surrogate end point defined as ‘a biomarker that is 
intended as a substitute for a clinical and point [8]. A surrogate end point 

is expected to predict clinical benefit (or harm, or lack of benefit or harm) 
based on epidemiological, therapeutic, pathophysiological or other 
scientific evidence [8].

To expedite the clinical drug evaluation process, there is a high de-
mand for biomarkers that adequately, and with great specificity, indicate 
the presence or absence of the desired pharmacological response [6]. It has 
now become evident that a broader array of ‘knowledge-based’ (relating 
to the known mechanism of action), combinatorial biomarkers [9] (or 
biomarker profiles) can be used for better decision-making, i.e. to stop the 
development of nonviable drug candidates as early as possible and trans-
ferring the available resources to potentially more successful ones [7;10]. 

‘Narrow’ versus ‘broad’

Currently, assays of drug action (i.e. biomarker assays) typically  
evaluate biochemical activity from a limited number of known analytes 
(e.g. fasting plasma glucose) or physiological parameters (e.g. blood 
pressure and heart rate). However, many drugs have more than one 
specific action and are called ‘pleiotropic’ [11]. Therefore, it is quite 
understandable that accurately matching or predicting therapeutic 
efficacy with a limited number of variables can be a challenge [12]. 

Newly developed molecular profiling approaches, defined as 
‘platform technologies capable of recording the entire cellular response 
to perturbation’ [13;14], seek to provide broad information about the 
effects of a disease or drug into a specific ‘molecular fingerprint’ [15]. 
Biological samples, whether tissue, cells or body fluids, can be studied 
using a variety of molecular profiling methods, collectively called  
the ‘-omics’ technologies [6]. For clarity, in this introduction the  
term ‘-omics’ is used to cover the three well-established sub disciplines: 
transcriptomics, proteomics and metabolomics.

Approaches in molecular profiling 

The cellular response to perturbation can be measured on various levels 
between dna (‘upstream’) and metabolite (‘downstream’) by making 
use of one or more of the ‘-omics’ sub disciplines as indicated in figure 1 
(p. 201).
 One of the most widely used approaches in molecular profiling is the 
measurement of global gene expression profiles (i.e. ‘transcriptomics’) 
using cdna or the oligonucleotide-based microarrays (i.e. Affymetrics 
GeneChip®) [16]. This technology is capable of simultaneously 
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assessing cell or tissue gene expression levels (i.e. mrna abundance)  
of more than 30,000 genes in a single experiment [17].

Proteomics entails the investigation of all proteins and their various 
modifications within a system, i.e. a cell, tissue, biofluid or organism. 
The techniques involved in proteomics (i.e. 2-D gel electrophoresis 
followed by mass spectrometry, liquid chromatography and immuno-
assay based microarray technology (ProteinChip®)) allow the global 
screening of complex samples of proteins and provide a qualitative and 
quantitative read-out for differentially expressed proteins [18;19]. 

The third, most recent addition to the ‘-omics’ profiling toolbox 
is called metabolomics [20]. It involves the quantification of proteins 
and low molecular weight molecules concentrations using i.e. nmr 
spectroscopy and/or liquid chromatography mass spectrometry  
(lc-ms) in a variety of biofluids like urine [21], blood plasma [22;23]  
or serum [24;25], seminal fluid [26], and spinal fluid [27]. 

A more detailed description of the major ‘-omics’ sub disciplines 
employed in the studies comprising this thesis (i.e. transcriptomics  
and metabolomics) is provided in Chapter 2.

Systems biology

Comparison of the molecular profiles (i.e. gene expression or metabolic 
profiles in a certain tissue or biofluid) between two or more ‘states’  
or ‘classes’ could indicate the global effects and affected pathways  
of a (pharmacological) intervention or disease state and thus constitutes 
a molecular ‘fingerprint’.

Ultimately, the data collected from all molecular profiling sub 
disciplines could be integrated and also combined with data from 
‘clinical’ measurements (i.e. blood-pressure, heart-rate, fasting plasma 
glucose concentrations etc.) using sophisticated analytical software, 
constituting the ‘systems biology’ approach, which aims to provide 
a more holistic picture of the functioning of a biological system [28]. 
However, the workup of these complicated computational analyses  
is beyond the scope of this thesis.

Type 2 Diabetes Mellitus (t2dm) as ‘playground’ 
for molecular profiling

t2dm is a multifactorial, heterogeneous disorder characterized  
by impaired insulin secretion on a background of insulin resistance 
and is typically accompanied by high triglyceride-low high density 

lipoprotein-cholesterol dyslipidemia [29]. The thiazolidinedione-based 
glitazones [30] and fibric acid derivatives or fibrates [31], are typical drugs 
used in the management of t2dm and the metabolic syndrome [32]. 

The glitazones mainly increase insulin sensitivity and reduce glucose 
levels in t2dm patients by enhancing glucose metabolism in muscle 
tissue and decrease the rate of hepatic gluconeogenesis [33;34]. Fibrates 
improve the lipid profile mainly by decreasing triglyceride and increase 
hdl-cholesterol levels [35;36]. In addition, both classes of drugs appear 
to possess potent anti-inflammatory properties [37-43]. 

The glitazones and fibrates mediate their therapeutic effects by 
binding and activating the peroxisome proliferator activated receptor 
(ppar), pparγ and pparα, respectively [44]. In addition to these 
two classes, a third class of pparß/∂ agonists is currently being 
developed, with a potential indication in the prevention and treatment 
of atherosclerosis [45]. However, none of the compounds under 
investigation in this class have thus far attained marketing approval. 

The ppars (α,γ and ß/∂ isoforms) are members of the nuclear 
hormone receptor family of ligand-activated transcription factors 
and control the expression of many target genes regulating glucose 
metabolism, lipid metabolism and inflammatory processes in various 
tissues through at least three mechanisms [30;46-48] (figure 2; p. 201). 
 First, ppar/Retinoic acid x receptor (r xr) heterodimers bind to a 
specific response element within the promoter sequence of their target 
genes. In the absence of ligands this heterodimer actively represses 
transcription through interactions with co-repressor complexes, a 
process called ‘active repression’ [49-52]. Second, r xr receptors can 
form a heterodimeric protein pair with ligand activated ppars, and 
activate peroxisome proliferator-activated response elements in the 
promoter region of target genes, thereby increasing gene transcription, 
a process known as ‘transactivation’ [53-55]. A third mechanism of 
action relates to the physical interaction between ligand-activated 
ppar and the binding of other pairs of nuclear transcription factors to 
their responsive elements in gene promoters, thereby inhibiting gene 
transcription, a process known as ‘transrepression’ [56-58].

Two ppar isoforms are expressed at the protein level in humans, 
γ₁ and γ₂[59]. These differ only in that the γ₂ isoform has 30 additional 
amino acids at its N terminus due to differential promoter usage within 
the same gene and subsequent alternative rna processing. pparγ₂ is 
expressed primarily in adipose tissue [60] whereas pparγ₁ is expressed 
in a broad range of tissues including heart, skeletal muscle, colon, small 
and large intestines, kidney, pancreas, and spleen. pparα is highly 
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expressed in numerous metabolically active tissues including liver, 
kidney, heart, skeletal muscle, and brown fat [61;62] and it is also present 
in mononuclear cells [63], vascular endothelial cells [64], and vascular 
smooth muscle cells [37]. A third isoform pparß/∂ (and the last of the 
ppars to be identified [65]) is ubiquitously expressed in human organs 
and has been proposed to act as ‘lipid sensor’ [66].

The notion that ppar agonists are known to regulate gene 
expression and have well documented effects on biochemical markers in 
human plasma [35;36;67;68], makes these drugs ideal for the evaluation 
of new molecular profiling technologies, which could serve as important 
tools for the identification of ‘mechanism-based’ efficacy biomarker 
patterns or molecular ‘fingerprints’. Eventually these ‘fingerprints’ 
could be used to support and expedite the clinical development of new 
drug candidates. For this evaluation, rosiglitazone and ciprofibrate were 
selected as ‘prototype’ drugs to generate a putative pparγ and pparα 
class-specific molecular fingerprint, respectively.

Furthermore, we chose to study t2dm patients and healthy 
volunteers (hvs) in parallel. This allowed us to assess if the anticipated 
molecular ‘treatment fingerprints’ could also be identified in more easily 
studied and recruited hvs. In addition, this provided an opportunity to 
explore the baseline differences in molecular profile between the two 
study groups and thus identify a putative t2dm ‘disease fingerprint’. 

The outstanding question is whether any one or both of these  
new molecular profiling technologies – and pillars of ‘systems biology’ 
– are sufficiently robust to generate reliable results and thus allow the 
potential future application of these ‘mechanism-based’ molecular 
biomarkers to early clinical development ‘proof of concept’ studies  
with novel (ppar agonist) drug-candidates. 

Outline of the thesis

This thesis is divided in five major sections. After a brief introduction 
(Chapter 1), the first section contains a more detailed description of the 
molecular profiling platforms and some background on the biostatistical 
analyses employed in the studies of this thesis (Chapter 2). 

The second section describes the results of the analyses performed 
to show the baseline characteristics of the two studygroups and 
demonstrates the treatment response of the two ppar(γ and α) 
‘prototype’ drugs in t2dm patients and hvs by assessing a set of both 
‘traditional’ and ‘non-traditional’ biochemical markers (Chapter 3 and 4). 

The third section contains a description of the studies in which we 
evaluated the feasibility and methods of transcriptional profiling  
(using spotted cdna microarray technology) for the assessment of  
the pharmacological effects of ppar agonists in their target tissues.  
In addition, the baseline differences in gene expression profile between 
the t2dm patients and hvs were explored to identify putative disease 
related genes within certain biological functions / pathways.

To evaluate the feasibility of human tissue gene expression profiling 
in a clinical pharmacology setting, we first performed a pilot study in 
which the tolerability of minimally invasive human skeletal muscle 
and adipose tissue biopsy procedures were evaluated (Chapter 5). 
In addition, we evaluated the performance of our rna extraction 
and cdna microarray hybridization methods, data normalization 
procedures as well as methods to assess data reproducibility and outlier 
detection.

Chapter 6 describes the assessment of the pharmacological effects 
of rosiglitazone (pparγ agonist) on global gene expression profiles 
in skeletal muscle, adipose tissue and peripheral blood leukocytes 
of t2dm and hvs using cdna microarrays in order to identify a 
molecular ‘treatment fingerprint’. In addition, this chapter describes 
the exploration of the baseline differences in gene expression profile 
between t2dm patients and hvs to identify a putative ‘disease 
fingerprint’. 

Analogous to Chapter 6, Chapter 7 describes the evaluation of 
the pharmacological effects of ciprofibrate on global gene expression 
profiles and exploration of the baseline differences in gene expression 
profile between t2dm patients and hvs. In addition, the chapter 
describes the comparison of the putative disease related gene expression 
profiles between the two studies in order to explore the ‘external’ 
reproducibility of these profiles and to identify potentially ‘enriched’ 
(overlapping) t2dm-related biological functions and pathways within 
these profiles.

Section four describes the evaluation of nmr spectroscopy-based 
metabolite profiling (‘metabolomics’) as tool for the assessment 
of pharmacological (ppar) effects and exploration of the baseline 
differences in urine and plasma metabolite profiles between t2dm 
patients and hvs. In Chapter 8 we describe the pharmacological effects 
of rosiglitazone on global metabolite profiles in urine and plasma as well 
as the exploration of baseline differences between t2dm patients and 
hvs. Subsequently, in Chapter 9 we describe the pharmacological effects 
of ciprofibrate on global metabolite profiles in plasma as well as the 
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exploration of baseline differences between t2dm patients and hvs.
Section five contains the summary (Chapter 10), general discussion and 
conclusions of the thesis (Chapter 11) as well as the introduction, results 
and conclusions of the thesis in Dutch (Chapter 12). 
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