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Chapter 1

Introduction

The two main topics of this thesis, gene assembly in ciliates and membrane com-
puting, are representatives of the broad research field of natural computing. Mem-
brane computing is a computational model inspired by the functioning of mem-
branes in living cells, and gene assembly is a complex biological process occurring
in unicellular organisms called ciliates.

1.1 Natural Computing

Natural computing is a broad and diverse research discipline residing on the
boundary of computer science and natural sciences. Therefore, by its very nature,
natural computing is interdisciplinary and it builds bridges between computer
science and natural sciences – here computer science is meant as a broadly under-
stood science of information processing. In natural computing one can distinguish
two main research directions. On one hand, it considers processes taking place in
nature as (some sort of) computation, while on the other hand it is concerned
with developing and analyzing computational methods inspired by nature [16].

This thesis considers two research areas within natural computing: gene assem-
bly in ciliates, representing the first research direction given above, and membrane
computing, representing the second research direction.

In the following section we recall some very basic cell biology underlying the
theory presented in this thesis. Then, in Section 1.3 we provide a basic description
of the gene assembly process, and in Section 1.4 we discuss sorting by reversal
which is strongly related to our theoretical model of gene assembly. In Section 1.5
we discuss the generic membrane computing model. We conclude this chapter
with an outline of the thesis.



2 Background: Cells

1.2 Background: Cells

Each organism consists of one or more cells. The tiniest organisms are unicellular,
they consist of just one cell, while, e.g., the number of cells in humans is of the
order 1014. On one hand cells can be seen as building blocks for complex organisms
such as human beings – cells in such organisms have their own function, and
together they form more complex organizations such as tissues, organs, etc. On
the other hand, cells themselves are amazingly complex – they have an involved
internal structure. Two substructures of (eukaryotic) cells will be most relevant for
us: cell membranes and the cell nucleus. A standard text concerning the molecular
biology of the cell is [1]. A more accessible text for a computer scientist is Chapter 1
of [10].

1.2.1 Membranes

Membranes separate cells from their environment, but membranes also divide
a cell into compartments. Each compartment may have its own structure and
function, and either requires or avoids the presence of certain ions and molecules.
Communication between compartments of cells or between a cell and its outside
environment is facilitated by various kinds of channels. They allow for controlled
passage of ions and molecules from one compartment to another, or between the
cell and its outside environment. Different channels may control the passage of
different molecules or ions.

1.2.2 DNA and Cell Nucleus

A single-stranded DNA molecule (where DNA stands for deoxyribonucleic acid) is
a chain of basic components (monomers) called nucleotides. There are four types
of nucleotides: adenine, cytosine, guanine, and thymine, abbreviated as A, C, G,
and T , respectively. A DNA molecule can thus be represented as a sequence of
symbols A, C, G, and T . For example, the sequence (string) GACGT represents
a single-stranded DNA molecule, which is the chain of nucleotides G, A, C, G, T
(in this order).

A single stranded DNA molecule has a natural orientation, meaning that one
end of it is (chemically) distinguishable from the other – one of the ends is called
5’ and the other one 3’. Almost all information processing of DNA molecules in
nature happens in the direction from 5’ to 3’, and for this reason the reading of
the sequence of the nucleotides comprising a DNA molecule goes from its 5’ end
to its 3’ end. Hence, DNA molecule GACGT is not equal to its reverse TGCAG.

A basic feature of single stranded DNA molecules is that each such molecule
has a complementary single stranded DNA molecule. Together they can form a
double stranded DNA molecule. Here, two complementary single stranded DNA
molecules bind together by weak hydrogen bonds between complementary nu-
cleotides: nucleotides A and T are complementary, and C and G are complemen-
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=⇒ GACGTACGTCGACGT + ACGTC

Figure 1.1: Two single-stranded DNA molecules forming a double-stranded DNA
molecule.

tary. Moreover, the two complementary single stranded DNA molecules bind in
their opposite orientation – meaning that the first (second, .., resp.) nucleotide on
the 5’ end of one molecule sticks to the first (second, .., resp.) nucleotide on the 3’
end of the other molecule. This is illustrated in Figure 1.1 with the complemen-
tary DNA molecules GACGT and ACGTC. We use the arrows as the standard
notation for indicating the 5’-3’ orientation of a single-stranded DNA molecule.
Since strings are used to denote/specify single-stranded DNA molecules, the dou-
ble string notation is very natural for denoting double-stranded DNA molecules.
Thus, the double-stranded DNA molecule in the Figure 1.1 is denoted by either
GACGT
CTGCA

or
ACGTC
TGCAG

, since double-stranded DNA molecules do not have

an orientation. Of course, segments within a double-stranded DNA molecule α
do have an orientation (w.r.t. α), e.g., although double-stranded DNA molecule
AC
TG

can also be represented as
GT
CA

, only
AC
TG

appears in
GACGT
CTGCA

which

is not equal to
GGTGT
CCACA

. For this reason, we sometimes fix an orientation of a

double-stranded DNA molecule, i.e., choose one of the two representations of the
molecule. If we let M be a double-stranded DNA molecule with a fixed orientation,
then we define the inversion of M , denoted by M̄ , to be the same double-stranded
DNA molecule with the other orientation, i.e., M rotated 180 degrees.

The cell nucleus is a substructure of the cell holding the genome. The genome
is divided into a number of chromosomes, e.g., the human genome consists of
46 chromosomes. Each chromosome contains one double-stranded DNA molecule.
These DNA molecules contain genes which are segments containing “instructions”
for the production (expression) of proteins. The genetic part of chromosomal
DNA may be very small (e.g., in humans only about 2%-5% is genetic). It also
contains regulatory information (when and how much of specific proteins should
be produced), but the role of the non-genetic part of chromosomal DNA is not
yet well understood.

1.3 Gene Assembly in Ciliates

Ciliates (ciliated protozoa) are a group of ancient unicellular organisms. The name
ciliates is due to the hair-like structure, called cilia, present on their external sur-
face. Ciliates are different from other organisms in that they have two kinds of
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Figure 1.2: Schematic image of a ciliate, copyright SparkNotes.

· · ·

Mk

︷ ︸︸ ︷

︸ ︷︷ ︸

Mk−1

M3

︷ ︸︸ ︷

︸ ︷︷ ︸

M2

M1

︷ ︸︸ ︷

Figure 1.3: The structure of a MAC gene consisting of κ MDSs.

nuclei that are radically different, both functionally and physically. The two kinds
of nuclei (which both can be present in various multiplicities) are called micronu-
cleus (MIC) and macronucleus (MAC) – the former is used only in mating, while
the latter is used for producing RNA needed for cell maintenance and reproduc-
tion. A schematic image of a ciliate is given in Figure 1.2.

The number of chromosomes in a MIC is similar to that of other eukaryotes
(say about 100), while there are very many (millions) of minichromosomes in
the MAC. Also, the MIC chromosomes are very long (as is generally the case
for eukaryotes) and for the most part (more than 95%) non-genetic. The MAC
minichromosomes are very short (on average about 2000 base pairs but may be
as small as 300 base pairs), and for the most part (about 85%) genetic.

All the genes occur in both the MIC and the MAC, but in very different forms.
The relationship between the form of MIC and MAC genes can be described as fol-
lows. For each gene, one can distinguish a number of double stranded DNA mole-
cules M1, . . . , Mκ with a fixed orientation, called MDSs (macronuclear destined
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M3

M2

M1 M8M9M7M5M6M4

Figure 1.4: The structure of the MIC gene encoding for the actin protein in
sterkiella nova.

segments), appearing in both the MIC and MAC form of that gene. The MAC
form is a sequence of overlapping MDSs in their orthodox order, i.e., M1, . . . , Mκ

– this is illustrated in Figure 1.3. The gray areas in the figure indicate the overlaps
of MDSs – these overlaps are called pointers. In the MIC form the MDSs are sep-
arated by non-coding segments, called IESs (internal eliminated segments). The
MDSs either occur in orthodox order or in a different order, and the MDSs can
occur inverted (no MDS can occur twice). As an example, Figure 1.4 shows the
MIC form of the gene that encodes for the actin protein in a ciliate called sterkiella
nova. This gene consists of nine segments, where the enumeration M1, M2, . . . , M9

refers to the orthodox order of the MDSs in the MAC form of the gene. Note that
MDS M2 occurs inverted in the MIC form of the gene. It is important to realize
that the number of MDSs, the specific permutation of the MDSs and the possi-
ble inversions are fixed for a given gene and given species, but they can be very
different for different genes and for the same gene in different species.

The process of gene assembly transforms a MIC into a MAC. This process oc-
curs during sexual reproduction of two ciliates where first a MIC is formed holding
half of the genetic information of each parent, and then a MAC is constructed
from this newly formed MIC. During gene assembly, each of the about 25,000
genes in MIC form are transformed into the corresponding gene in MAC form.
The transformation of a single gene from MIC form to MAC form is complex: all
MDSs must be ‘sorted’ in the right order and must have the right orientation,
and all IESs must be spliced out from between the MDSs. This transformation
process involves quite a number of “cutting and gluing” of DNA. Pointers in the
MIC form indicate how this cutting and gluing, called recombination, is done.
Indeed, each overlapping segment of two MDSs in the MAC form appears in two
places in the MIC form and this in turn indicates where the DNA segments are to
be cut and glued together. The differences in the genetic material of the MIC and
the MAC discussed above are particularly pronounced in the stichotrichs group
of ciliates. For this reason, a lot of literature, including this thesis, concerns this
group of ciliates. We refer to [10] for an in-depth treatment of the biology of gene
assembly.

In one possible modeling of the assembly process, the MIC form of a gene is
transformed into the MAC form through three types of recombination operations
that operate on the pointers. These types of operations are called: loop recom-
bination, hairpin recombination, and double-loop recombination. Each of these
recombinations can only take place on pointers of the gene in MIC form (or an
intermediate product) provided that these pointers fulfill specific conditions. The



6 Sorting by Reversal

→zyx ȳ zx

Figure 1.5: Inversion within a chromosome.

0

8630 1 2 4 5 7

sorting by reversal

8461̄5̄372̄

Figure 1.6: Two chromosomes of different species and their common contiguous
segments.

operations are defined in [10] and we will recall them in Part 1 of this thesis.

1.4 Sorting by Reversal

During evolution the genomes of species change. One such change is inversion,
and is illustrated in Figure 1.5. The result is that a segment y is inverted (rotated
180 degrees) – this is indicated by ȳ in the figure. In this way, two different
species can have several contiguous segments in their genome that are very similar,
although their relative order (and orientation) may differ in both genomes. For
example, consider the two chromosomes in Figure 1.6. Both chromosomes have
9 segments in common, however their relative order and orientation differs. The
breakpoints of a chromosome are the borders of each two consecutive segments.
Figure 1.7 shows the application of an inversion, called reversal, on the breakpoint
between segments 0 and 2̄ and the breakpoint between segments 1̄ and 6 (these
two breakpoints are indicated by two small arrows in the figure).

In the theory of sorting by reversal, initiated by S. Hannenhalli and P.A.
Pevzner in [11], one tries to determine the minimal number of reversals needed to
convert the genome of one species into that of the other. The smaller this number,
the more likely it is that their common ancestor is relatively young in evolution.
Thus, this number can aid in constructing an ancestor tree of species, called a
phylogenetical tree.

Note that sorting by reversal differs from gene assembly in ciliates in several
aspects. First, it is an evolutionary process from one species to another; there
are no pointers that indicate where recombination should take place. Second,
recombination takes place on the scale of complete chromosomes, while in gene
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8

427̄3̄5 860 1

reversal

0 2̄ 7 3 5̄ 1̄ 6 4

Figure 1.7: Applying a reversal on the chromosome.

0

7 8546256438723 11
8461̄5̄372̄

Figure 1.8: The breakpoint graph of the given chromosome.

assembly it is on the level of individual genes. And finally, instead of three types
of recombination operations there is only one type: the reversal.

An essential tool in the theory of sorting by reversal is the breakpoint graph
(also called reality and desire diagram) which is used to capture both the present
situation, the genome of the first species, and the desired situation, the genome
of the second species. For each breakpoint, we assign two vertices in the graph
representing both sides of that breakpoint. These vertices are labeled such that
segment i has vertices labelled by i and i+1. Then i represents the left-hand side
and i + 1 the right-hand side of segment i. If segment i appears inverted in the
genome then, w.r.t. the chromosome, i appears on the right-hand side and i + 1
on the left-hand side. Moreover, there are edges, called desire edges, that connect
vertices with the same label. In Figure 1.8 these vertices and edges are depicted
for our example∗.

In addition to the desire edges, the breakpoint graph has a second set of edges,
called reality edges. These edges connect each two vertices belonging to the same
breakpoint. Thus, in Figure 1.8, the left-most two vertices labeled by 1 and 3 are
connected by a reality edge, and similarly for the next two vertices labeled by 2 and
7, etc. The linear order of the vertices in the figure is therefore partially captured
by the reality edges. However, the complete linear order of the vertices remains
important, and therefore the breakpoint graph should not be seen as a graph, but

∗It is customary for breakpoint graphs to let 2i − 1 represent the left-hand side and 2i the
right-hand side of segment i – in this way eliminating the need for labels. However, we choose
this notation to make comparison with reduction graphs (defined in the next chapter) easier.
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membranes

multisets of objects
aa

bcc

aab

skin membrane

1

2

3

4

regions

Figure 1.9: Example membrane system.

as a diagram where the vertices are drawn in this linear order. Therefore reality
and desire diagram is arguably a more appropriate name for this concept. One
could extent the breakpoint graph with a third set of edges, for example called
segment edges, connecting each two consecutive vertices belonging to the same
segment. Thus, e.g., in Figure 1.8 the two vertices labeled by 3 and 2 of segment
2̄ are then connected by such a segment edge. In this way, we obtain a graph
which retains the linear order of the vertices, and hence need not be seen as a
diagram. We will introduce these additional sets of edges in the context of gene
assembly in this thesis. Given only the breakpoint graph it is possible to deduce,
in a computationally efficient way, the minimal number of reversals needed to
convert the genome from one species into that of the other.

1.5 Membrane Computing

Membrane computing studies a range of computational models inspired by the
functioning of membranes in cells. This research area was initiated by Gh. Păun
in 1998 (see [13]). Membrane systems are therefore also often called P systems
after its inventor. Membrane computing has in a short time attracted a large
research community. Many classes of membrane systems exist, but in this section
we consider a ‘typical/generic’ membrane system; for an in-depth introduction to
membrane computing we refer to [14], and for an easier-to-read overview we refer
to [15].

Such a membrane system consists of a hierarchical membrane structure where
each membrane, except for the outer membrane (called the skin membrane), is
fully contained in another membrane (called its parent). The compartments en-
closed by (situated in-between) the membranes are called regions. An example of
a membrane structure is given in Figure 1.9.

Each region contains zero or more objects, and each object is of a certain
type. In the figure the region enclosed by the skin membrane (called skin region)
contains two objects of type a, and one object of type b. To make the system
evolve/compute there are evolution rules assigned to the regions that in some
way transform, create, delete, or move the objects (between regions – moving



Chapter 1 9

4

aabb

bccc

aa

1

2

3

Figure 1.10: A possible state of the membrane system in Figure 1.9 after one time
step.

objects between adjacent regions is referred to as communication).

In each time step (there is a global clock) during the evolution of a membrane
system many such evolution rules can be applied in parallel. In fact, in each time
step the evolution rules are applied in a maximal parallel manner: the multiset
of evolution rules that is applied cannot be extended by any evolution rule – no
subset of the objects that remain unused in a given time step can evolve using
any evolution rule.

For example, there could be two evolution rules in the skin region: one that
transforms one object of type a and one of type b into two objects of type a, both
of which cross membrane 2, and one that transforms one object of type a into
two objects of type b (both staying in the skin region). In addition there could be
an evolution rule in the region enclosed by membrane 4 transforming one object
of type b and one of type c into one object of type b and two objects of type c.
Then, there are two possible maximal parallel ways to transform this membrane
system. In the next time step, the state of the membrane system is either the one
given in Figure 1.10 or the one given in Figure 1.11.

A membrane system computes by iteratively applying the evolution rules in a
maximal parallel manner until no evolution rule can be applied anymore. Then,
the contents of a preselected membrane, called the output membrane, is the result
of the computation. In this way, the language of a given membrane system is
defined to be the set of results of all computations of the membrane system.

A well-studied class of membrane systems called symport/antiport P systems
involves only communication and no transformation, see [12]. Here, the rules are
assigned to membranes instead of regions, and they allow movement of objects
from a region on one side of the membrane to the region on the other side. The
movement of objects is also synchronized. For example, an object a may only
move together with object b to the other side of the membrane. Or, for example,
an object a may only move through the membrane if simultaneously an object b
from the other side of the membrane moves through the membrane in the opposite
direction. The former type of movement is described by the so-called symport
rules, while the latter type of movement is described by antiport rules. Note that
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Figure 1.11: A possible state of the membrane system in Figure 1.9 after one time
step.

these rules cannot change either the type of an individual object or the quantity
of objects present in the system.

1.6 Overview of the Thesis

This thesis consists of two parts.
The first part, consisting of Chapters 2 through 5, is devoted to gene assembly

in ciliates. The central notion of this part is the reduction graph – it is inspired
by the breakpoint graph discussed in Section 1.4. The concept of reality and de-
sire remains in place, but the notion of reduction graph is specifically tailored
for the theory of gene assembly. Given the MIC form (reality) of a gene, the re-
duction graph describes the end result (desire) after gene assembly for this gene
is completed. This includes the MAC form of a gene, but it also describes the
“end structure” of all the IESs. The reduction graph however is defined in a more
general fashion: it deals with arbitrary recombination using pointers. In the model
we use, the MIC form of the gene is represented by a string, called legal string,
and the reduction graph is defined for each such legal string. In Chapter 2 we
introduce the reduction graph, and then use it to characterize the intermediate
gene patterns that may occur during the transformation of a MIC form of a gene
to its MAC form. We also show that for legal strings in general the number of
loop recombination operations in each possible strategy transforming the MIC
form into the MAC form is fixed and directly determinable through the reduction
graph. This chapter is based on [7]. In Chapter 3 we strengthen these results in
order to obtain a characterization of loop recombination that allows one to de-
termine which loop recombination operations can be applied in such strategies
and also in which order they can be applied. This is done by using the notion of
pointer-component graph (defined “on top of” the reduction graph) that identifies
the relationship of pointers on the connected components of the reduction graph.
This chapter is based on [6]. Since the reduction graph is the main notion of the
first part of the thesis, it is certainly natural to ask which graphs are reduction
graphs. Such a characterization of reduction graphs is given in Chapter 4. Also,
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in Chapter 4 we consider the problem of equivalence for MIC genes: we charac-
terize which genes in MIC form (formally legal strings) yield the same end result
after gene assembly is accomplished. This characterization is given in terms of
string rewriting rules (applied to legal strings) that correspond to recombination
operations which, surprisingly, are very similar to the recombination operations
defining gene assembly. This chapter is based on [5]. The MIC forms of genes can
be represented both as strings, called legal strings, and as graphs, called signed
overlap graphs. Both representations lead to two almost equivalent models of gene
assembly. The definition of reduction graph in Chapter 2 relies on string represen-
tations. In Chapter 5 we define the reduction graph directly for overlap graphs,
and show that this graph is identical to the reduction graph of every “realistic”
legal string corresponding to that overlap graph. This allows one to carry over the
results of Chapters 2, 3, and 4 to the graph based model of gene assembly. This
chapter is based on [9] (see [8] for an extended abstract).

The second part of this thesis, consisting of Chapters 6 to 8, is devoted to
membrane computing. Chapter 6 considers membrane systems that can have ob-
jects not only within the regions (which is standard in membrane systems) but
also on/within the membranes themselves. Such objects allow for both controlled
movement of objects through the membranes and controlled evolution of the mem-
branes. These systems are biologically motivated by the fact that some proteins
(represented by objects) residing on/within membranes control the movement of
ions/molecules through membranes. This chapter is based on [4]. Chapter 7 con-
siders membrane systems where the evolution of the system depends on external
signals. Each signal is represented by a sequence (string) of objects which enters
the system from outside and during the evolution of the system moves through
the regions. Here the first object of the signal has influence on the system and
this object is removed when passing through a membrane until finally the whole
“string signal” has disappeared. This chapter is based on [3]. Chapter 8 focusses
on membrane systems with symports and antiports where we relax the condition
that symports only move objects – we allow now that during the crossing of a
membrane the objects themselves can change in both type and quantity. The in-
tuitive interpretation is that objects can engage in (biochemical) reactions while
crossing the membrane. This chapter is based on [2]. The central unifying research
topic (question) which we consider in Part 2 is the computational power (including
decidability results) of the various classes of membrane systems described above.
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Part I

Gene Assembly in Ciliates





Chapter 2

Reducibility of Gene Patterns

in Ciliates using the

Breakpoint Graph

Abstract
Gene assembly in ciliates is one of the most involved DNA processings going on
in any organism. This process transforms one nucleus (the micronucleus) into
another functionally different nucleus (the macronucleus). We continue the devel-
opment of the theoretical models of gene assembly, and in particular we demon-
strate the use of the concept of the breakpoint graph, known from another branch
of DNA transformation research. More specifically: (1) we characterize the in-
termediate gene patterns that can occur during the transformation of a given
micronuclear gene pattern to its macronuclear form; (2) we determine the num-
ber of applications of the loop recombination operation (the most basic of the
three molecular operations that accomplish gene assembly) needed in this trans-
formation; (3) we generalize previous results (and give elegant alternatives for
some proofs) concerning characterizations of the micronuclear gene patterns that
can be assembled using a specific subset of the three molecular operations.

2.1 Introduction

Ciliates are single cell organisms that have two functionally different nuclei, one
called micronucleus and the other called macronucleus (both of which can occur
in various multiplicities). At some stage in sexual reproduction a micronucleus
is transformed into a macronucleus in a process called gene assembly. This is
the most involved DNA processing in living organisms known today. The reason
that gene assembly is so involved is that the genome of the micronucleus may be
dramatically different from the genome of the macronucleus — this is particularly
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true in the stichotrichs group of ciliates, which we consider in this chapter. The
investigation of gene assembly turns out to be very exciting from both biological
and computational points of view.

Another research area concerned with transformations of DNA is sorting by
reversal, see, e.g., [23, 21, 1]. Two different species can have several contiguous
segments in their genome that are very similar, although their relative order (and
orientation) may differ in both genomes. In the theory of sorting by reversal one
tries to determine the number of operations needed to reorder such a series of
genomic ‘blocks’ from one species into that of another. An essential tool is the
breakpoint graph (or reality and desire diagram) which is used to capture both
the present situation, the genome of the first species, and the desired situation,
the genome of the second species.

Motivated by the breakpoint graph, we introduce the notion of reduction graph
into the theory of gene assembly. The intuition of ‘reality and desire’ remains in
place, but the technical details are different. Instead of one operation, the reversal,
we have three operations. Furthermore, these operations are irreversible and can
only be applied on special positions in the string, called pointers. Also, instead of
two different species, we deal with two different nuclei — the reality is a gene in
its micronuclear form, and desire is the same gene but in its macronuclear form.
Surprisingly, where the breakpoint graph in the theory of sorting by reversal is
mostly useful to determine the number of needed operations, the reduction graph
has different uses in the theory of gene assembly, providing valuable insights into
the gene assembly process. Adapted from the theory of sorting by reversal, and
applied to the theory of gene assembly in ciliates, we hope the reduction graph
can serve as a ‘missing link’ to connect the two fields.

For example, the reduction graph allows for a direct characterization of the
intermediate strings that may be constructed during the transformation of a given
gene from its micronuclear form to its macronuclear form (Theorem 11). Also,
it makes the number of loop recombination operations (see Figure 2.3 below)
needed in this transformation quite explicit as the number of cyclic (connected)
components in the reduction graph (Theorem 18).

Each micronuclear form of a gene defines a sequence of (oriented) segments,
the boundaries of which define the pointers where splicing takes place. In abstract
representation, the gene defines a so-called realistic string in which every pointer
is denoted by a single symbol. Each pointer occurs twice (up to inversion) in
that string. Not every string in which each symbol has two occurrences (up to
inversion) can be obtained as the representation of a micronuclear gene. Our
results are obtained in the larger context, i.e., they are not only valid for realistic
strings, but for legal strings in general.

The chapter is organized as follows. In Section 2.2 we briefly discuss the basics
of gene assembly in ciliates, and describe three molecular operations stipulated
to accomplish gene assembly. The reader is referred to monograph [12] for more
background information. In Section 2.3 we recall some basic notions and nota-
tion concerning strings and graphs, and then in Section 2.4 we recall the string
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Figure 2.1: The MAC form of genes.

Ik−1I3I2I1
. . .M̃i1

M̃i2
M̃i3
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Figure 2.2: The MIC form of genes.

pointer reduction system, which is a formal model of gene assembly. This model
is used throughout the rest of this chapter. In Section 2.5 we introduce the oper-
ation of pointer removal, which forms a useful formal tool in this chapter. Then
in Sections 2.6 and 2.7 we introduce our main construct, the reduction graph,
and discuss the transformations of it that correspond to the three molecular op-
erations. In Section 2.8 we provide a characterization of intermediate forms of a
gene resulting from its assembly to the macronuclear form — then, in Section 2.9
we determine the number of loop recombination operations required in this as-
sembly. As an application of this last result, in Section 2.10 we generalize some
well-known results from [13] (and Chapter 13 in [12]) as well as give elegant alter-
natives for these proofs. A conference edition of this chapter, containing selected
results without proofs, was presented at CompLife [5].

2.2 Background: Gene Assembly in Ciliates

This section discusses the biological origin for the string pointer reduction system,
the formal model we discuss in Section 2.4 and use throughout this chapter. Let
us recall that the inversion of a double stranded DNA sequence M , denoted by

M̄ , is the point rotation of M by 180 degrees. For example, if M =
GACGT
CTGCA

,

then M̄ =
ACGTC
TGCAG

.

Ciliates are unicellular organisms (eukaryotes) that have two kinds of func-
tionally different nuclei: the micronucleus (MIC) and the macronucleus (MAC).
All the genes occur in both MIC and MAC, but in very different forms. For a
given individual gene (in given species) the relationship between its MAC and
MIC form can be described as follows.

The MAC form G of a given gene can be represented as the sequence M1, M2,
. . . , Mk of overlapping segments (called MDSs) which form G in the way shown in
Figure 2.1 (where the overlaps are given by the shaded areas). The MIC form g of
the same gene is formed by a specific permutation Mi1 , . . . , Mik

of M1, . . . , Mk in
the way shown in Figure 2.2, where I1, I2, . . . , Ik−1 are segments of DNA (called
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Figure 2.3: The loop recombination operation.

ȳp̄x p y z → p̄x p z

Figure 2.4: The hairpin recombination operation.

IESs) inserted in-between segments M̃i1 , . . . , M̃ik
with each M̃i equal to either Mi

or M̄i (the inversion of Mi). As clear from Figure 2.1, each MDS Mi except for
M1 and Mk (the first and the last one) begins with the overlap with Mi−1 and
ends with the overlap with Mi+1 — these overlap areas are called pointers; the
former is the incoming pointer of Mi denoted by pi, and the latter is the outgoing
pointer of Mi denoted by pi+1. Then M1 has only the outgoing pointer p2, and
Mk has only the incoming pointer pk.

The MAC is the (standard eukaryotic) ‘household’ nucleus that provides RNA
transcripts for the expression of proteins — hence MAC genes are functional
expressible genes. On the other hand the MIC is a dormant nucleus where no
production of RNA transcripts occurs. As a matter of fact MIC becomes active
only during sexual reproduction. Within a part of sexual reproduction in a process
called gene assembly, MIC genes are transformed into MAC genes (as MIC is
transformed into MAC). In this transformation the IESs from the MIC gene g
(see Figure 2.2) must be excised and the MDSs must be spliced (overlapping on
pointers) in their order M1, . . . , Mk to form the MAC gene G (see Figure 2.1).

The gene assembly process is accomplished through the following three mole-
cular operations, which through iterative applications beginning with the MIC
form g of a gene, and going through intermediate forms, lead to the formation of
the MAC form G of the gene.

Loop recombination The effect of the loop recombination operation is illus-
trated in Figure 2.3. The operation is applicable to a gene pattern (i.e.,
MIC or an intermediate form of a gene) which has two identical pointers p,
p separated by a single IES y. The application of this operation results in
the excision from the DNA molecule of a circular molecule consisting of y
(and a copy of the involved pointer) only.

Hairpin recombination The effect of the hairpin recombination operation is
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Figure 2.5: The double-loop recombination operation.

illustrated in Figure 2.4. The operation is applicable to a gene pattern con-
taining a pair of pointers p, p̄ in which one pointer is an inversion of the
other. The application of this operation results in the inversion of the DNA
molecule segment that is contained between the mentioned pair of pointers.

Double-loop recombination The effect of the double-loop recombination op-
eration is illustrated in Figure 2.5. The operation is applicable to a gene
pattern containing two identical pairs of pointers for which the segment of
the molecule between the first pair of pointers overlaps with the segment of
the molecule between the second pair of pointers. The application of this
operation results in interchanging the segment of the molecule between the
first two (of the four) pointers in the gene pattern and the segment of the
molecule between the last two (of the four) pointers in the gene pattern.

For a given MIC gene g, a sequence of (applications of) these molecular operations
is successful if it transforms g into its MAC form G. The gluing of MDS Mj with
MDS Mj+1 on the common pointer pj+1 results in a composite MDS. This means
that after gluing, the outgoing pointer of Mj and the incoming pointer of Mj+1

are not pointers anymore, because pointers are always positioned on the boundary
of MDSs (hence they are adjacent to IESs). Therefore, the molecular operations
can be seen as operations that remove pointers. This is an important property of
gene assembly which is crucial in the formal models of the gene assembly process
(see [12]).

2.3 Basic Notions and Notation

In this section we recall some basic notions concerning functions, strings, and
graphs. We do this mainly to set up the basic notation and terminology for this
chapter.

The empty set will be denoted by ∅. The composition of functions f : X → Y
and g : Y → Z is the function gf : X → Z such that (gf)(x) = g(f(x)) for every
x ∈ X . The restriction of f to a subset A of X is denoted by f |A.

We will use λ to denote the empty string. For strings u and v, we say that
v is a substring of u if u = w1vw2, for some strings w1, w2; we also say that v
occurs in u. For a string x = x1x2 . . . xn over Σ with x1, x2, . . . , xn ∈ Σ, we say
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that substrings xi1 · · ·xj1 and xi2 · · ·xj2 of x overlap in x if i1 < i2 < j1 < j2 or
i2 < i1 < j2 < j1.

For alphabets Σ and ∆, a homomorphism is a function ϕ : Σ∗ → ∆∗ such that
ϕ(xy) = ϕ(x)ϕ(y) and for all x, y ∈ Σ∗. Let ϕ : Σ∗ → ∆∗ be a homomorphism. If
there is a Γ ⊆ Σ such that

ϕ(x) =

{

x x 6∈ Γ

λ x ∈ Γ
,

then ϕ is denoted by eraseΓ.
We move now to graphs. A labelled graph is a 4-tuple G = (V, E, f, Ψ), where V

is a finite set, Ψ is an alphabet, E is a finite subset of V ×Ψ∗×V , and f : D → Γ,
for some D ⊆ V and some alphabet Γ, is a partial function on V . The elements
of V are called vertices, and the elements of E are called edges. Function f is the
vertex labelling function, the elements of Γ are the vertex labels, and the elements
of Ψ∗ are the edge labels.

For e = (x, u, y) ∈ V × Ψ∗ × V , x is called the initial vertex of e, denoted
by ι(e), y is called the terminal vertex of e, denoted by τ(e), and u is called the
label of e, denoted by ℓ(e). Labelled graph G′ = (V ′, E′, f |V ′, Ψ) is an induced
subgraph of G if V ′ ⊆ V and E′ = E ∩ (V ′ ×Ψ∗ × V ′). We also say that G′ is the
subgraph of G induced by V ′.

A walk in G is a string π = e1e2 · · · en over E with n ≥ 1 such that τ(ei) =
ι(ei+1) for 1 ≤ i < n. The label of π is the string ℓ(π) = ℓ(e1)ℓ(e2) · · · ℓ(en).
Vertex ι(e1) is called the initial vertex of π, denoted by ι(π), vertex τ(en) is
called the terminal vertex of π, denoted by τ(π) and we say that π is a walk
between ι(π) and τ(π) (or that π is a walk from ι(π) to τ(π)). We say that G
is weakly connected if for every two vertices v1 and v2 of G with v2 6= v1, there
is string e1e2 · · · en over E ∪ {(τ(e), ℓ(e), ι(e)) | e ∈ E} with n ≥ 1, ι(e1) = v1,
τ(en) = v2, and τ(ei) = ι(ei+1) for 1 ≤ i < n. A subgraph H of G induced by
VH ⊆ V is a component of G if H is weakly connected, and for every edge e ∈ E
either ι(e), τ(e) ∈ VH or ι(e), τ(e) ∈ V \VH .

The isomorphism between two labelled graphs is defined in the usual way. Two
labelled graphs G = (V, E, f, Ψ) and G′ = (V ′, E′, f ′, Ψ) are isomorphic, denoted
by G ≈ G′, if there is a bijection α : V → V ′ such that f(v) = f ′(α(v)) for all
v ∈ V , and

(x, u, y) ∈ E iff (α(x), u, α(y)) ∈ E′,

for all x, y ∈ V and u ∈ Ψ∗. The bijection α is then called an isomorphism from
G to G′.

In this chapter we will consider walks in labelled graphs that often originate
in a fixed source vertex and will end in a fixed target vertex. Therefore, we need
the following notion.

A two-ended graph is a 6-tuple G = (V, E, f, Ψ, s, t), where (V, E, f, Ψ) is a
labelled graph, f is a function on V \{s, t} and s, t ∈ V where s 6= t. Vertex s is
called the source vertex of G and vertex t is called the target vertex of G. The
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basic notions and notation for labelled graphs carry over to two-ended graphs.
However, for the notion of isomorphism, care must be taken that the two ends are
preserved. Thus, if G and G′ are two-ended graphs, and α is a isomorphism from
G to G′, then α(s) = s′ and α(t) = t′, where s (s′, resp.) is the source vertex of
G (G′, resp.) and t (t′, resp.) is the target vertex of G (G′, resp.).

2.4 The String Pointer Reduction System

In this chapter we consider the string pointer reduction system, which we will
recall now (see also [11] and Chapter 9 in [12]).

We fix κ ≥ 2, and define the alphabet ∆ = {2, 3, . . . , κ}. For D ⊆ ∆, we define
D̄ = {ā | a ∈ D} and ΠD = D ∪ D̄; also Π = Π∆. We will use the alphabet Π to
formally denote the pointers — the intuition is that the pointer pi will be denoted
by either i or ī. Accordingly, elements of Π will also be called pointers.

We use the ‘bar operator’ to move from ∆ to ∆̄ and back from ∆̄ to ∆. Hence,
for p ∈ Π, ¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ Π, the inverse of u is

the string ū = x̄nx̄n−1 · · · x̄1. For p ∈ Π, we define p =

{

p if p ∈ ∆

p̄ if p ∈ ∆̄
, i.e., p is

the ‘unbarred’ variant of p. The domain of a string v ∈ Π∗ is dom(v) = {p |
p occurs in v}. A legal string is a string u ∈ Π∗ such that for each p ∈ Π that
occurs in u, u contains exactly two occurrences from {p, p̄}.

We define the alphabet Θκ = {Mi, M̄i | 1 ≤ i ≤ κ} — these symbols denote
the MDSs and their inversions. With each string over Θκ, we associate a unique
string over Π through the homomorphism πκ : Θ∗

κ → Π∗ defined by:

πκ(M1) = 2, πκ(Mκ) = κ, πκ(Mi) = i(i + 1) for 1 < i < κ,

and πκ(M̄j) = πκ(Mj) for 1 ≤ j ≤ κ. A permutation of the string M1M2 · · ·Mκ,
with possibly some of its elements inverted, is called a micronuclear pattern since it
can describe the MIC form of a gene. String u is realistic if there is a micronuclear
pattern δ such that u = πκ(δ).

Example 1
The MIC form of the gene that encodes the actin protein in the stichotrich
Sterkiella nova is described by micronuclear pattern

δ = M3M4M6M5M7M9M̄2M1M8

(see [22, 12]). The associated realistic string is π9(δ) = 344567567893̄2̄289.

Note that every realistic string is legal, but a legal string need not be realistic.
For example, a realistic string cannot have ‘gaps’ (missing pointers): thus 2244 is
not realistic while it is legal. It is also easy to produce examples of legal strings
which do not have gaps but still are not realistic — 3322 is such an example. For
a pointer p and a legal string u, if both p and p̄ occur in u then we say that both p
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and p̄ are positive in u; if on the other hand only p or only p̄ occurs in u, then both
p and p̄ are negative in u. So, every pointer occurring in a legal string is either
positive or negative in it. A nonempty legal string with no proper nonempty legal
substrings is called elementary. For example, the legal string 234324 is elementary,
while the legal string 234342 is not (because 3434 is a proper legal substring).

Definition 1
Let u = x1x2 · · ·xn be a legal string with xi ∈ Π for 1 ≤ i ≤ n. For a pointer
p ∈ Π such that {xi, xj} ⊆ {p, p̄} and 1 ≤ i < j ≤ n, the p-interval of u is the
substring xixi+1 · · ·xj . Two distinct pointers p, q ∈ Π overlap in u if the p-interval
of u overlaps with the q-interval of u.

The string pointer reduction system consists of three types of reduction rules
operating on legal strings. For all p, q ∈ Π with p 6= q, we define:

• the string negative rule for p by snrp(u1ppu2) = u1u2,

• the string positive rule for p by sprp(u1pu2p̄u3) = u1ū2u3,

• the string double rule for p, q by sdrp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where u1, u2, . . . , u5 are arbitrary strings over Π.
Note that each of these rules is defined only on legal strings that satisfy the

given form. For example, snr2 is not defined on legal string 2323. It is important
to realize that for every non-empty legal string there is at least one reduction
rule applicable. Indeed, every legal string for which no string positive rule and no
string double rule is applicable must have only nonoverlapping, negative pointers
and thus a string negative rule is applicable.

We also define Snr = {snrp | p ∈ Π}, Spr = {sprp | p ∈ Π} and Sdr =
{sdrp,q | p, q ∈ Π,p 6= q} to be the sets containing all the reduction rules of a
specific type.

The string negative rule corresponds to the loop recombination operation, the
string positive rule corresponds to the hairpin recombination operation, and the
string double rule corresponds to the double-loop recombination operation. Note
that the fact (pointed out at the end of Section 2.2) that the molecular operations
remove pointers is explicit in the string pointer reduction system — indeed when
a string rule for a pointer p (or pointers p and q) is applied, then all occurrences
of p and p̄ (or p, p̄, q and q̄) are removed.

Definition 2
The domain dom(ρ) of a reduction rule ρ equals the set of unbarred variants
of the pointers the rule is applied to, i.e., dom(snrp) = dom(sprp) = {p} and
dom(sdrp,q) = {p,q} for p, q ∈ Π. For a composition ϕ = ϕ1 ϕ2 · · · ϕn of
reduction rules ϕ1, ϕ2, . . . , ϕn, the domain dom(ϕ) is the union of the domains of
its constituents, i.e., dom(ϕ) = dom(ϕ1) ∪ dom(ϕ2) ∪ · · · ∪ dom(ϕn).
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Definition 3
Let u and v be legal strings and S ⊆ {Snr, Spr, Sdr}. Then a composition ϕ of
reduction rules from S is called an (S-)reduction of u, if ϕ is applicable to (defined
on) u. A successful reduction ϕ of u is a reduction of u such that ϕ(u) = λ. We
then also say that ϕ is successful for u. We say that u is reducible to v in S if there
is a S-reduction ϕ of u such that ϕ(u) = v. We simply say that u is reducible to
v if u is reducible to v in {Snr, Spr, Sdr}. We say that u is successful in S if u is
reducible to λ in S.

Note that if ϕ is a reduction of u, then dom(ϕ) = dom(u)\dom(ϕ(u)). Because
(as pointed out already) for every non-empty legal string there is at least one
reduction rule applicable, we easily obtain Theorem 9.1 in [12] which states that
every legal string is successful in {Snr, Spr, Sdr}.

Example 2
Let S = {Snr, Spr}, u = 32454̄53̄2̄, and v = 5̄45̄4̄. Then u is reducible to v in S,
because (snr3 spr2)(u) = v. Since applying ϕ = spr5̄ spr4 snr2̄ spr3 to u yields
λ, ϕ is successful for u. On the other hand, u = 3232 is not reducible to any v in
S, because none of the rules in Snr and none of the rules in Spr is applicable for
this u.

Referring to the Introduction, in Theorem 11 we present a characterization of
the intermediate strings that may be constructed during the transformation of a
given gene from its micronuclear form to its macronuclear form. Formally, this
is a characterization of reducibility, which allows one to determine for any given
legal strings u and v and S ⊆ {Snr, Spr, Sdr}, whether or not u is reducible to v
in S. This result can be seen as a generalization of the results from Chapter 13 in
[12], which provide a characterization of successfulness for realistic strings, that
is, for the case where u is realistic and v = λ.

2.5 Pointer Removal Operation

Let ϕ be a reduction of a legal string u. If we let u′ be the legal string obtained
from u be deleting all pointers from Πdom(ϕ(u)), then it turns out that ϕ is also
a reduction of u′. In fact, ϕ is a successful reduction of u′. This is formalized
in Theorem 6, and thus it states a necessary condition for reducibility. In the
following sections we will strengthen Theorem 6 to obtain a characterization of
reducibility.

Definition 4
For a subset D ⊆ ∆, the D-removal operation, denoted by remD, is defined by
remD = eraseD∪D̄. We also refer to remD operations, for all D ⊆ ∆, as pointer
removal operations.
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Example 3
Let u = 32454̄53̄2̄ and D = {4, 5}. Then remD(u) = 323̄2̄. Note that 2, 3 6∈ D.
Note also that ϕ = snr3 spr2 is applicable to both u and remD(u), but for
remD(u), ϕ is also successful.

The following easy to verify lemma formalizes the essence of the above exam-
ple.

Lemma 5
Let u be a legal string and D ⊆ dom(u). Let ϕ be a composition of reduction
rules.

1. If ϕ is applicable to remD(u) and ϕ does not contain string negative rules,
then ϕ is applicable to u.

2. If ϕ is applicable to u and dom(ϕ) ⊆ dom(u)\D, then ϕ is applicable to
remD(u).

3. If ϕ is applicable to both u and remD(u), then ϕ(remD(u)) = remD(ϕ(u)).

Note that the first statement of Lemma 5 may not be true when ϕ is allowed
to contain string negative rules. The obvious reason for this is that two identical
occurrences of a pointer p may end up to be next to each other only if some pointers
in between those occurrences are first removed by remD. This is illustrated in the
following example.

Example 4
Let u = 32454̄53̄662̄, v = 5̄45̄4̄66 and D = dom(v). Then remD(u) = 323̄2̄.
Note that although ϕ = snr3 spr2 is a successful reduction of remD(u), ϕ is not
applicable to u.

The following theorem is an immediate consequence of the previous lemma.

Theorem 6
Let S ⊆ {Snr, Spr, Sdr}. For legal strings u and v, if u is reducible to v in S and
D = dom(v), then remD(u) is successful in S.

Proof
Let u be reducible to v in S. Then there is an S-reduction ϕ such that ϕ(u) = v.
By Lemma 5, ϕ is an S-reduction of remD(u) and ϕ(remD(u)) = remD(ϕ(u)) =
remD(v) = λ. Hence, ϕ is a successful S-reduction of remD(u).

The proof of the above result observes that any reduction of u into v must be
a successful reduction of remD(u) where D = dom(v). Referring to Example 4,
we now note that u is not reducible to v, because remD(u) has two successful
reductions and neither is applicable to u. In fact, there is no v′ with D = dom(v′)
such that u is reducible to v′.
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42 3 2̄ 4̄ 3

Figure 2.6: Part of a genome with three pointer pairs corresponding to the same
gene.

2.6 Reduction Graphs

The main purpose of this section is to define the notion of reduction graph. A
reduction graph represents some key aspects of reductions from a legal string u
to a legal string v: it provides the additional requirements on u and v to make
the reverse implication of Theorem 6 hold. In addition, it allows one to easily
determine the number of string negative rules needed to successfully reduce u.
We will first define the notion of a 2-edge coloured graph.

Definition 7
A 2-edge coloured graph is a 7-tuple

G = (V, E1, E2, f, Ψ, s, t),

where both (V, E1, f, Ψ, s, t) and (V, E2, f, Ψ, s, t) are two-ended graphs. Note that
E1 and E2 are not necessary disjoint.

The terminology and notation for the two-ended graph carries over to 2-edge
coloured graphs. However, for the notion of isomorphism, care must be taken
that the two sorts of edges are preserved. Thus, if G = (V, E1, E2, f, Ψ, s, t) and
G′ = (V ′, E′

1, E
′
2, f

′, Ψ, s′, t′) are two-ended graphs, then it must hold that for any
isomorphism α from G to G′,

(x, u, y) ∈ Ei iff (α(x), u, α(y)) ∈ E′
i

for all x, y ∈ V , u ∈ Ψ and i ∈ {1, 2}.
We say that edges e1 and e2 have the same colour if either e1, e2 ∈ E1 or

e1, e2 ∈ E2, otherwise they have different colours. An alternating walk in G is a
walk π = e1e2 · · · en in G such that ei and ei+1 have different colours for 1 ≤ i < n.
For each edge e with ℓ(e) ∈ Π∗, we define (τ(e), ℓ(e), ι(e)), denoted by ē, as the
reverse of e.

We are ready now to define the notion of a reduction graph, the main technical
notion of this chapter. The reduction graph is a 2-edge coloured graph and it is
defined for a legal string u and a set of pointers D ⊆ dom(u). The intuition behind
it is as follows.

Figure 2.6 depicts a part of a genome with three pointer pairs corresponding to
the same gene g. The reduction graph introduces two vertices for each pointer and
two special vertices s and t representing the ends. It connects adjacent pointers
through reality edges and connects pointers corresponding to the same pointer
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Figure 2.7: The reduction graph corresponding to the underlying genome.

pair through desire edges in a way that reflects how the parts will be glued after
a molecular operation is applied on that pointer. The resulting reduction graph
is depicted in Figure 2.7. Thus, every reality edge corresponds to a certain DNA
segment. If such a DNA segment contains other pointers of g, then these pointers
form the label of that reality edge.

By definition a realistic string has a physical interpretation. It shows the
boundaries of the MDSs, and how these should be recombined (following their
orientation). Considering a subset of these pointers, we still have the physical in-
terpretation, although the other pointers are hidden in the segments. Technically,
however, removing a subset of the pointers may change a realistic string into a
legal one that is no longer realistic or even realizable (by renaming pointers we
cannot obtain a realistic string). An example of such a case is given in the in-
troduction of Section 2.10. In fact, each legal string has a physical interpretation
with pointers indicating how parts of the string are to be reconnected, cf. Fig-
ure 2.7, where no use is made of any MDS-IES segmentation. Thus our definition
of reduction graph works for legal strings in general, rather than only for realistic
ones. The intuition of a reduction graph is similar to the intuition behind a reality
and desire diagram (or breakpoint graph) from [16, 21].

Formally, the reduction graph of legal string u with respect to D ⊆ dom(u)
shows how u is reduced to a legal string v with dom(v) = D by any possible
reduction ϕ. The vertices of the graph correspond to (two copies of each of)
the pointers that are removed during the reduction (those in Πdom(u)\D). As
illustrated above, we have two types of edges. The desire edges are unlabelled and
connect the pointer pairs in Πdom(u)\D, while reality edges connect the successive
pointers in Πdom(u)\D and are labelled by the strings over Π∗

D that are in between
these pointers in u.

Definition 8
Let D ⊆ ∆ and let u be a legal string, such that u = δ0p1δ1p2 . . . pnδn where
δ0, . . . , δn ∈ Π∗

D and p1, . . . , pn ∈ Πdom(u)\D. The reduction graph of u with respect
to D, denoted by Ru,D, is a 2-edge coloured graph (V, E1, E2, f, Π, s, t), where

V = {I1, I2, . . . , In} ∪ {I ′1, I
′
2, . . . , I

′
n} ∪ {s, t},

E1 = E1,r ∪ E1,l, where

E1,r = {e0, e1, . . . , en} with ei = (I ′i, δi, Ii+1) for 1 ≤ i ≤ n − 1,
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Figure 2.8: The part of the reduction graph of the legal string u with respect to
D as defined in Example 5 which involves only reality edges (the vertex labels are
omitted).

s I1 I ′1 I2 I ′2 I3 I ′3 I4 I ′4 I5 I ′5 I6 I ′6 t

Figure 2.9: The part of the reduction graph of the legal string u with respect to
D as defined in Example 5, where only desire edges are shown (the vertex labels
are omitted). Crossing edges correspond to positive pointers.

e0 = (s, I1), en = (I ′n, t),

E1,l = {ē | e ∈ E1,r},

E2 = {(I ′i, λ, Ij), (Ii, λ, I ′j) | i, j ∈ {1, 2, . . . , n} with i 6= j and pi = pj} ∪

{(Ii, λ, Ij), (I
′
i , λ, I ′j) | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called the reality edges, and the edges of E2 are called the
desire edges. Note that E1 and E2 are not necessary disjoint. The components of
Ru,D that do not contain s and t are called cyclic components. When D = ∅, we
simply refer to Ru,D as the reduction graph of u.

Thus the reduction graph is a ‘superposition’ of two graphs on the same set
of vertices V : one graph with edges from E1 (reality edges), and one graph with
edges from E2 (desire edges). The following example should make the notion of
reduction graph more clear.

Example 5
Let u = 5268832̄54̄37746 be a legal string and D = {5, 6, 7, 8} ⊆ dom(u). Thus,
{2, 3, 4} = dom(u)\D, and

u = δ0 2 δ1 3 δ2 2̄ δ3 4̄ δ4 3 δ5 4 δ6

with δ0 = 5, δ1 = 688, δ2 = λ, δ3 = 5, δ4 = λ, δ5 = 77 and δ6 = 6. Notice that
δ1, δ2, . . . , δ6 ∈ Π∗

D. This example corresponds to the situation in Figure 2.6.
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Figure 2.10: The reduction graph Ru,D as defined in Example 5 (the vertex labels
are omitted).
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Figure 2.11: The reduction graph of Figure 2.10 where every vertex (except s and
t) is represented by its label.
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The reduction graph Ru,D of u with respect to D is given in Figure 2.10. It is
the union of the graphs in Figure 2.8 and Figure 2.9. Note that for every desire
edge e, we represent both e and ē by a single unlabelled, undirected edge. The
graphs are drawn in a form that closely relates to the linear ordering of u. The
desire edges that cross correspond to positive pointers, and the desire edges that
do not cross correspond to negative pointers.

Since the exact identity of the vertices in a reduction graph is not essential
for the problems considered in this chapter (we need only to know, modulo ‘bar’,
which pointer is represented by a given vertex), in order to simplify the pictorial
notation of reduction graphs we will replace the vertices (except for s and t) by
their labels. Figure 2.11 gives Ru,D in this way. In this figure we have reordered
the vertices, making it transparent that Ru,D has a single cyclic component (the
figure illustrates why the adjective ‘cyclic’ was added).

Note that a reduction graph is an undirected graph in the sense that if e ∈ E1

(e ∈ E2, resp.) then also ē ∈ E1 (ē ∈ E2, resp.). If we think of a reduction graph
as an undirected graph by considering edges e and ē as one undirected edge, then
both s and t are connected to exactly one (undirected) edge, and every other
vertex is connected to exactly two (undirected) edges. As as corollary to Euler’s
theorem, a reduction graph has exactly one component that has a linear structure
with s and t as endpoints and possibly one or more components that have a cyclic
structure (the cyclic components). Thus, there is a unique alternating walk from
s to t in every reduction graph.

If a 2-edge coloured graph G has a unique alternating walk from s to t, then
the label of this walk is called the reduct of G, denoted by red(G). We know now
that if Ru,D is a reduction graph of a legal string u with respect to D ⊆ dom(u),
then the reduct exists. It is then also called the reduct of u to D, and denoted by
red(u, D). Since Ru,dom(u) consists of the vertices s and t connected by a (reality)
edge labelled by u (and by ū in the reverse direction), we have red(u, dom(u)) = u.
Also, it is clear that if 2-edge coloured graphs G1 and G2 are isomorphic, then
red(G1) = red(G2).

Example 6
If we take u and D from Example 5, then

red(u, D) = δ0δ̄2δ̄4δ6 = 56,

which is easy to see in Figure 2.11.

2.7 Reduction Function

Before we can prove (in the next section) our main theorem on reducibility, we
need to define reduction functions. A reduction function operates on reduction
graphs. As we will see, these functions simulate the effect (up to isomorphism) of
each of the three string pointer reduction rules on a reduction graph. For a vertex
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Figure 2.12: The reduction graph obtained when applying rf2 to the reduction
graph of Figure 2.11.

label p, the p-reduction function merges edges that form a walk ‘over’ vertices
labelled by p and removes all vertices labelled by p.

Definition 9
For each vertex label p, we define the p-reduction function rfp, which constructs
for every 2-edge coloured graph G = (V, E1, E2, f, Ψ, s, t), the 2-edge coloured
graph

rfp(G) = (V ′, (E1\Erem) ∪ Eadd, E2\Erem, f |V ′, Ψ, s, t),

with

V ′ = {s, t} ∪ {v ∈ V \{s, t} | f(v) 6= p},

Erem = {e ∈ E1 ∪ E2 | f(ι(e)) = p or f(τ(e)) = p}, and

Eadd = {(ι(π), ℓ(π), τ(π)) | π = e1e2 · · · en with n > 2 is an alternating walk

in G with f(ι(π)) 6= p, f(τ(π)) 6= p, and f(τ(ei)) = p for 1 ≤ i < n}.

Example 7
If we take the reduction graph Ru,D from Example 5, cf. Figure 2.11, then
rf2(Ru,D) is given in Figure 2.12.

It is easy to see that the following property holds for each reduction graph
Ru,D and all p ∈ dom(u)\D:

red(Ru,D) = red(rfp(Ru,D)).

Also, reduction functions commute under composition. Thus, if moreover there is
a q ∈ dom(u)\D such that p 6= q, then

(rfq rfp)(Ru,D) = (rfp rfq)(Ru,D).
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The main property of reduction functions is that they simulate the effect (up to
isomorphism) of each of the three string pointer reduction rules on a reduction
graph.

Theorem 10
Let u be a legal string, let D ⊆ dom(u), and let ϕ be a reduction of u such that
dom(ϕ) = {p1, p2, . . . , pn} ⊆ dom(u)\D. Then

(rfpn
· · · rfp2

rfp1
)(Ru,D) ≈ Rϕ(u),D,

and red(u, D) = red(ϕ(u), D).

Proof
To prove the first statement, it suffices to prove the cases where ϕ = snrp, ϕ =
sprp and ϕ = sdrp,q for p, q ∈ Πdom(u)\D.

We first prove the snr case. Assume snrp is applicable to u. We consider the
general case

u = u1q1δ1ppδ2q2u2

for some δ1, δ2 ∈ Π∗
D, q1, q2 ∈ Πdom(u)\D and u1, u2 ∈ Π∗. In the special case

where q1 (q2, resp.) does not exist, the vertex labelled by q1 (q2, resp.) in the
graphs below equals the source vertex s (target vertex t, resp.). We will first prove
that rfp(Ru,D) = Rsnrp(u),D. Because u = u1q1δ1ppδ2q2u2, the reduction graph
Ru,D is

... q1

δ1

p

δ̄1

p

δ2

q2

δ̄2

...

p
λ

p

λ

where we omitted the parts of the graph that remain the same after applying rfp.
Now, the graph rfp(Ru,D) is given below.

... q1

δ1δ2

q2

δ̄2 δ̄1

...

This is clearly the reduction graph of snrp(u) = u1q1δ1δ2q2u2 with respect to D.
Thus, indeed rfp(Ru,D) ≈ Rsnrp(u),D.

We now prove the spr case. Assume sprp is applicable to u. We may distinguish
three cases, which differ in the number of elements of Πdom(u)\D in between p and
p̄ in u:

1. u = u1q1δ1pδ2p̄δ4q4u3

2. u = u1q1δ1pδ2q2δ3p̄δ4q4u3
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3. u = u1q1δ1pδ2q2u2q3δ3p̄δ4q4u3

for some δ1, . . . , δ4 ∈ Π∗
D, q1, . . . , q4 ∈ Πdom(u)\D, and u1, u2, u3 ∈ Π∗. Note that

we have assumed that p is preceded and that p̄ is followed by an element from
Πdom(u)\D. The special cases where q1 or q4 do not exist, can be handled in the
same way as we did for the snr case (by setting them equal to s and t, resp.).
In each of the three cases, one can prove that rfp(Ru,D) ≈ Rsprp(u),D. We will
discuss it in detail only for the third case. The reduction graph Ru,D is

... q1

δ1

p

δ̄1

p

δ̄3

q3

δ3

...

... q2

δ̄2

p

δ2

p

δ4

q4

δ̄4

...

where we again omitted the parts of the graph that remain the same after applying
rfp. Now, the graph rfp(Ru,D) is given below.

... q1

δ1 δ̄3

q3

δ3 δ̄1

...

... q2

δ̄2δ4

q4

δ̄4δ2

...

This graph is clearly isomorphic to the reduction graph of

sprp(u) = u1q1δ1δ̄3q̄3ū2q̄2δ̄2δ4q4u3

with respect to D. Thus, indeed rfp(Ru,D) ≈ Rsprp(u),D.

Finally, we prove the sdr case. Assume sdrp,q is applicable to u. We only
consider the general case (the other cases are proved similarly):

u = u1 q1δ1pδ2q2 u2 q3δ3qδ4q4 u3 q5δ5pδ6q6 u4 q7δ7qδ8q8 u5

for some δ1, . . . , δ8 ∈ Π∗
D, q1, . . . , q8 ∈ Πdom(u)\D, and u1, . . . , u5 ∈ Π∗. The
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reduction graph Ru,D is

... q1

δ1

p

δ̄1

p

δ6

q6

δ̄6

...

... q2

δ̄2

p

δ2

p

δ̄5

q5

δ5

...

... q3

δ3

q

δ̄3

q

δ8

q8

δ̄8

...

... q4

δ̄4

q

δ4

q

δ̄7

q7

δ7

...

where we omitted the parts of the graph that remain the same after applying
(rfq rfp). Now, the graph rfq(rfp(Ru,D)) is given below.

... q1

δ1δ6

q6

δ̄6 δ̄1

...

... q2

δ̄2 δ̄5

q5

δ5δ2

...

... q3

δ3δ8

q8

δ̄8 δ̄3

...

... q4

δ̄4 δ̄7

q7

δ7δ4

...

This graph is clearly isomorphic to the reduction graph of

sdrp,q(u) = u1q1δ1δ6q6u4q7δ7δ4q4u3q5δ5δ2q2u2q3δ3δ8q8u5

with respect to D. Thus, indeed rfq(rfp(Ru,D)) ≈ Rsdrp,q(u),D. This proves the
first statement.

Now, by the fact that the reduction function does not change the reduct of
the graph, and by the first statement, we have

red(Ru,D) = red((rfp1
rfp2

· · · rfpn
)(Ru,D)) = red(Rϕ(u),D).

Thus, red(u, D) = red(ϕ(u), D) and this proves the second statement.
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2.8 Characterization of Reducibility

We are now ready to prove our main theorem on reducibility. In Theorem 6 we have
shown that if u is reducible to v in S, then remdom(v)(u) is successful in S. Here
we strengthen this theorem into an iff statement by additionally requiring that v
equals the reduct of u to dom(v). The resulting characterization is independent
of the chosen set of reduction rules S ⊆ {Snr, Spr, Sdr}.

Theorem 11
Let u and v be legal strings, D = dom(v) ⊆ dom(u) and S ⊆ {Snr, Spr, Sdr}.
Then u is reducible to v in S iff remD(u) is successful in S and red(u, D) = v.

Proof
Let u be reducible to v in S. Therefore, there is an S-reduction ϕ of u such that
ϕ(u) = v. Also, remD(u) is successful in S by Theorem 6. By Theorem 10, we
have red(u, D) = red(ϕ(u), D). Now, red(ϕ(u), D) = ϕ(u) = v, because D =
dom(ϕ(u)).

To prove the reverse implication, let remD(u) be successful in S and red(u, D)
= v. We have to prove that u is reducible to v in S. Clearly, there is a successful
S-reduction ϕ of remD(u).

Assume that ϕ is not applicable to u. Since ϕ is applicable to remD(u), we
know from Lemma 5 that ϕ = ϕ2 snrp ϕ1 for some ϕ1, ϕ2 and p, where ϕ1 is
applicable to u and snrp is not applicable to ϕ1(u). Thus, pδp is a substring of
ϕ1(u) with δ ∈ Π∗

D\{λ}. Therefore the following graph

p

δ

p

δ̄

must be isomorphic to a cyclic component of the reduction graph Rϕ1(u),D of
ϕ1(u) with respect to D. Because v = red(u, D) = red(ϕ1(u), D) is a legal string
and dom(v) = D, the labels of the reality edges of Rϕ1(u),D belonging to cyclic
components are empty. This is a contradiction and therefore ϕ is applicable to u.
Now, we have ϕ(u) = red(ϕ(u), D) = red(u, D) = v, because D = dom(ϕ(u)).
Thus, u is reducible to v in S.

Note that the proof of Theorem 11 even proves a stronger fact. The S-reduction
ϕ of u with ϕ(u) = v can be taken to be same as the (successful) S-reduction ϕ
of remD(u). The following corollary follows directly from the previous theorem
and the fact that every legal string is successful in {Snr, Spr, Sdr}.

Corollary 12
Let u and v be legal strings and D = dom(v) ⊆ dom(u). Then u is reducible to v
iff red(u, D) = v.
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The previous corollary shows that reducibility can be checked quite efficiently.
Since the reduction graph of a legal string u has 2|u| + 2 vertices and 8|u| + 4
edges (counting an undirected desire edge as two (directed) edges), it takes only
linear time O(|u|) to generate Ru,∅ using the adjacency lists representation. Also,
generating Ru,D for any D ⊆ dom(u) is of at most the same complexity as Ru,∅.
Now, since the walk from s to t does not contain vertices more than once, it
takes only linear time to determine red(u, D) = v, and therefore, by the previous
corollary, it takes linear time to determine whether or not u is reducible to v.

The next corollary illustrates that the function of the reduct is twofold: it does
not only determine, given u and D ⊆ dom(u), which legal string is obtained by
applying a reduction ϕ of u with dom(ϕ(u)) = D, but also whether or not there
is such a ϕ.

Corollary 13
Let u be a legal string and D ⊆ dom(u). Then u there is a reduction ϕ of u with
dom(ϕ(u)) = D iff red(u, D) is legal and dom(red(u, D)) = D.

Proof
We first prove the forward implication. If we let v = ϕ(u), then v is a legal string,
u is reducible to v, and D = dom(v). By Corollary 12, red(u, D) = v and therefore
red(u, D) is legal and dom(red(u, D)) = D.

We now prove the reverse implication. If we let v = red(u, D), then v is legal
and dom(v) = D. By Corollary 12, u is reducible to v.

Example 8
Let u and D be as in Example 5. By Example 6, red(u, D) = 56. Therefore by
Corollary 13, there is no reduction ϕ of u with dom(ϕ(u)) = D. Thus, there is no
reduction ϕ of u with dom(ϕ) = {2, 3, 4}.

2.9 Cyclic Components

In this section we consider the cyclic components of the ‘full’ reduction graph
Ru,∅ of a legal string u. We show that if snrp is applicable to u for some pointer
p, then the number of cyclic components of Rsnrp(u),∅ is exactly one less than the
number of cyclic components of Ru,∅. On the other hand, if either sprp or sdrp,q

is applicable to u for some pointer p, q, then the number of cyclic components
remains the same. Before we state this result (Theorem 17), we will prepare for
its proof by studying some elementary connections between u and the structures
in Ru,∅. Since all the edges of Ru,∅ are labelled λ, we will omit the labels of the
edges in the figures.

Because desire edges in a reduction graph connect vertices that are of the
same label, for every label p, there are exactly 0, 2 or 4 vertices labelled by p

in every cyclic component of a reduction graph. The following lemma establishes
an additional property of the number of vertices of a single label in a cyclic
component.
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Lemma 14
Let u be a legal string, and let P be a cyclic component in Ru,∅. Let p (q, resp.)
be the first (last, resp.) pointer (from left to right) in u such that there is a vertex
in P with label p (q, resp.). Then there are exactly two vertices of P labelled by
p and there are exactly two vertices of P labelled by q.

Proof
Assume that all four vertices labelled by p are in P . Then these vertices are Ii, I ′i,
Ij and I ′j for some i and j with i < j. By the definition of reduction graph, there
is a reality edge from vertex Ii to vertex I ′i−1. But by the definition of p, vertex
I ′i−1 cannot belong to P , which is a contradiction. Therefore, there are only two
vertices labelled by p in P . The second claim is proved analogously.

Note that in the previous lemma, p and q need not be distinct. Note also
that if all the vertices of a cyclic component have the same label, than the cyclic
component has exactly two vertices.

Lemma 15
Let u be a legal string, and let p ∈ Π. Then Ru,∅ has a cyclic component consisting
of exactly two vertices, which are both labelled by p iff either pp or p̄p̄ is a substring
of u.

Proof
Let either pp or p̄p̄ be a substring of u. Then

p p

is a cyclic component of Ru,∅ consisting of exactly two vertices, both labelled by
p.

To prove the forward implication, let Ru,∅ have a cyclic component P con-
sisting of exactly two vertices, both labelled by p. Clearly, every vertex of a cyclic
component has exactly one incoming and one outgoing edge in each colour. Be-
cause there is a reality edge between the two vertices of P , I ′i and Ii+1 are the
vertices of P for some i. Now, since there is a desire edge (I ′i, Ii+1) in P , either p
or p̄ occurs twice in u. As reality edges in Ru,∅ connect adjacent pointers in u,
either pp or p̄p̄ is a substring of u.

Lemma 16
Let u be a legal string, let p and q be negative pointers occurring in u. Then
Ru,∅ has a cyclic component consisting of exactly two vertices labelled by p and
two vertices labelled by q iff either u = u1pqu2qpu3 or u = u1qpu2pqu3 for some
strings u1, u2, u3 ∈ Π∗.
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Proof
Let either u = u1pqu2qpu3 or u = u1qpu2pqu3 for some strings u1, u2, u3 ∈ Π∗.
Then

p p

q q

is a cyclic component of Ru,∅ consisting of exactly two vertices labelled by p and
two vertices labelled by q.

To prove the forward implication, let Ru,∅ have a cyclic component P consist-
ing of exactly two vertices labelled by p and two vertices labelled by q. Since each
cyclic component ‘is’ a cycle of edges of alternating colour, and since desire edges
connect only vertices with the same label, the component looks like the figure
above. Since reality edges in Ru,∅ connect adjacent pointers in u and since p and
q are negative, either u = u1pqu2qpu3 or u = u1pqu2pqu3 with ui ∈ Π∗ (with
possibly p and q interchanged). Assume that u = u1pqu2pqu3 (with possibly p
and q interchanged). Then there must be vertices I ′i and I ′j labelled by p with a
desire edge (I ′i , I

′
j) in P . But this is impossible since p is negative. Consequently,

u = u1pqu2qpu3 (with possibly p and q interchanged).

The following theorem states that only the string negative rules can remove
cyclic components. This is consistent with the fact that only loop recombination
introduces a new (cyclic) molecule, cf. Figure 2.3. Clearly, by the definition of
reduction function, a cyclic component is removed by simply removing its vertices
and edges and not by merging with another component.

Theorem 17
Let u be a legal string, let N be the number of cyclic components of Ru,∅, and
let p ∈ Π with p ∈ dom(u).

• If snrp is applicable to u, then the reduction graph of snrp(u) has exactly
N − 1 cyclic components.

• If sprp is applicable to u, then the reduction graph of sprp(u) has exactly
N cyclic components.

Now let q ∈ Π with q ∈ dom(u) and p 6= q.

• If sdrp,q is applicable to u, then the reduction graph of sdrp,q(u) has exactly
N cyclic components.

Proof
First note that by the definition of reduction function and Theorem 10 the number
of cyclic components cannot increase when applying reduction rules.

Let snrp be applicable to u. By Lemma 15, Ru,∅ has a cyclic component con-
sisting of exactly two vertices, which are both labelled by p. It follows then from
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Theorem 10 that the reduction graph of snrp(u) has at most N − 1 cyclic com-
ponents. The other two vertices labelled by p are connected by reality edges to
vertices that are not labelled by p, and therefore this component does not disap-
pear. Hence, the reduction graph of snrp(u) has exactly N −1 cyclic components.

Let sprp be applicable to u. Assume that the reduction graph of sprp(u)
has less than N cyclic components. Then by Theorem 10, there exist a cyclic
component P of Ru,∅ consisting of only vertices labelled by p. By Lemma 14, P
consists of only two vertices. By Lemma 15, either pp or p̄p̄ is a substring of u
and thus sprp is not applicable to u. This is a contradiction. Consequently, the
reduction graph of sprp(u) has exactly N cyclic components.

Let sdrp,q be applicable to u. Assume that the reduction graph of sdrp,q(u)
has less than N cyclic components. Then there exist a cyclic component P in
Ru,∅ consisting only of vertices labelled by p and q. Assume that all vertices
of P are labelled by p. Then, analogously to the previous case, we deduce that
either pp or p̄p̄ is a substring of u. Thus sdrp,q is not applicable to u. This is a
contradiction. Similarly, P cannot consist only of vertices labelled by q. Assume
then that P consists of vertices that are labelled by both p and q. By Lemma 14
and the fact that pointers p and q overlap, there are only two vertices labelled by
p in P and two vertices labelled by q in P . By Lemma 16, either u = u1pqu2qpu3

or u = u1qpu2pqu3 for some strings u1, u2, u3 ∈ Π∗. Thus sdrp,q is not applicable
to u. This is a contradiction. Therefore, such a component P cannot exist and so
the reduction graph of sdrp,q(u) has exactly N cyclic components.

The previous theorem can be reformulated as follows, yielding a key property
of reduction graphs.

Theorem 18
Let N be the number of cyclic components of the reduction graph of legal string
u. Then every successful reduction of u has exactly N string negative rules.

The Invariant Theorem [14] (and Chapter 12 in [12]) shows that all successful
reductions of a realistic string u have the same number of string negative rules.
Therefore, Theorem 18 can be seen as a generalization of this result, since it holds
for legal strings in general. Indeed, the technical framework used in [14] is the MDS
descriptor reduction system which is only suited to model realistic strings.

Moreover, Theorem 18 shows that this number N is an elegant graph theo-
retical property of the reduction graph. As a consequence, it can be efficiently
obtained. Since it takes O(|u|) to generate Ru,∅, and again O(|u|) to determine
the number of connected components of Ru,∅, the previous theorem implies that
it takes only linear time to determine how many string negative rules are needed
to successfully reduce legal string u. Theorem 18 will be used in the next section,
when we characterize successfulness in S ⊆ {Spr, Sdr}.

Example 9
Let u = 232̄4̄34 be a legal string. The reduction graph of u is depicted in Fig-
ure 2.11, where δi = λ for all i ∈ {0, 1, . . . , 6}. By Theorem 18 every reduction of u
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Figure 2.13: The reduction graph of u = 2233.

has exactly one string negative rule. There are exactly four successful reductions of
u, these are snr2 spr3 spr4̄, snr3̄ spr2 spr4̄, snr3̄ spr4̄ spr2 and snr4 spr3̄ spr2.
Notice that each of these reductions has exactly one string negative rule.

Remark
Results in [13] (and Chapter 13 in [12]) show that a successful reduction of a real-
istic string u has at least one string negative rule if the string has a disjoint cycle.
Clearly, the notions of disjoint cycle and (cyclic) component are related. It is easy
to verify that every disjoint cycle of a string can be found as a connected compo-
nent of the reduction graph of the string, although that might be the linear com-
ponent. As an example, consider the realistic string u = π3(M1M2M3) = 2233.
This realistic string has three disjoint cycles {22}, {33}, and {23, 32} correspond-
ing to the connected components of the reduction graph of u, see Figure 2.13.
This correspondence is not a bijection for all legal strings, not even for realistic
ones. E.g., realistic string u = π3(M3M̄1M2) = 32̄23 has only a single disjoint
cycle {33} whereas its reduction graph has two components, one linear and one
cyclic. Hence, the number of disjoint cycles cannot be used to characterize the
number of string negative rules present in every successful reduction of u.

It is easy to see that for legal string u and D ⊆ dom(u), RremD(u),∅ is isomor-
phic to Ru,D modulo the labels of the edges. Now, we have the following corollary
to Theorems 18.

Corollary 19
Let u be a legal string, D ⊆ dom(u), and let N be the number of cyclic components
of Ru,D. Then every reduction ϕ of u with dom(ϕ(u)) = D has exactly N string
negative rules.

Proof
Let ϕ be a reduction of u with dom(ϕ(u)) = D. Then by Theorem 6, ϕ is a
successful reduction of remD(u). Since Ru,D is isomorphic to RremD(u),∅ modulo
the labels of the edges, RremD(u),∅ has N cyclic components. By Theorem 18, ϕ
has exactly N string negative rules.
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2.10 Successfulness of Legal Strings

In [13] (and Chapter 13 in [12]) an elementary characterization of the realistic
strings that are successful in any given S ⊆ {Snr, Spr, Sdr} is presented. This is
helpful in applying Theorem 11, where reducibility of legal string u into legal string
v is translated into successfulness of remD(u) with D = dom(v). Unfortunately,
even when u is a realistic string, remD(u) for some D ⊆ dom(u) is not necessary
a realistic string. For example, u = π5(M1M2M̄3M4M5) = 2234̄3̄455 is realistic,
while rem{4}(u) = 2233̄55 is not. As a matter of fact, it can be shown that this
legal string is not even realizable, that is, the legal string can not be transformed
into a realistic string by renaming pointers. Formally, legal string v is realizable if
there exists a homomorphism h : Π → Π with h(p̄) = h(p) for all p ∈ Π such that
h(v) is realistic. Thus, e.g., 2233̄44 and 2̄2̄3̄344 are also not realistic.

In this section we generalize the results from [13], and give a characteriza-
tion of the legal strings that are successful in any given S ⊆ {Snr, Spr, Sdr}.
Theorems 22, 23, and 25 are the ‘legal counterparts’ of Theorems 8, 9, and 6
in [13], respectively. These results are independent of the results in the previous
sections of this chapter. On the other hand, Theorems 27, 28, and 30 (the ‘legal
counterparts’ of Theorems 14, 11, and 13 in [13], respectively) rely heavily on
Theorem 18.

2.10.1 Trivial Generalizations and Known Results

In the cases of {Snr, Spr}, {Snr, Sdr}, and {Snr, Spr, Sdr}, the characterizations
from [13] (and Chapter 13 in [12]) and their proofs, although stated in terms of
realistic strings, are valid for legal strings in general. The results are given below
for completeness. First we restate Lemma 4 and Lemma 7 from [13] respectively,
which will be used in our considerations below.

Lemma 20
Let u = αvβ be a legal string such that v is also a legal string, and let S ⊆
{Snr, Spr, Sdr}. Then u is successful in S iff both v and αβ are successful in S.

Lemma 21
Let u be an elementary legal string. Then u is successful in {Snr, Spr} iff either
u contains at least one positive pointer or u = pp for some p ∈ Π.

The following result follows directly from Lemma 20 and Lemma 21. It is the
‘legal version’ of Theorem 8 in [13], which can be taken almost verbatim.

Theorem 22
Let u be a legal string. Then u is successful in {Snr, Spr} iff for all legal sub-
strings v of u, if v = v1u1v2 · · · vjujvj+1, where each ui is a legal substring, then
v1v2 · · · vj+1 either contains a positive pointer or is successful in {Snr}.

The previous theorem can be stated more elegantly in terms of connected
components of the overlap graph of u, see [12, p.141]. Note that characterization
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for case {Snr, Spr} refers to the case of {Snr}. The latter case does differ from
the realistic characterization in [13], and is treated later.

Theorem 23
Let u be a legal string. Then u is successful in {Snr, Sdr} iff all the pointers in u
are negative.

We give now the legal version of Theorem 9.1 in [12] — it is a direct conse-
quence of Theorems 22 and 23. Without restrictions on the types of reduction
rules used, every legal string is successful, cf. the remark below the definition of
the reduction rules, in Section 2.4.

Theorem 24
Every legal string is successful in {Snr, Spr, Sdr}.

2.10.2 Non-Trivial Generalizations

The following theorem is the legal counterpart of Theorem 6 in [13]. It turns out
to be much less restrictive than the original realistic version.

Theorem 25
Let u be a legal string. Then u is successful in {Snr} iff u consists of negative
pointers only and no two pointers overlap in u.

Proof
The condition from the statement of the lemma is obviously necessary, because
snr cannot resolve overlapping or positive pointers. We will now prove that this
condition is also sufficient. If no two pointers overlap in u, then there must be
a substring pp or pp̄ of u for some pointer p. If moreover u consists of negative
pointers only, then pp is a substring of u. So snrp is applicable to u. Now, again
no two pointers overlap in legal string snrp(u), and snrp(u) consists of negative
pointers only. By iteration of this argument we conclude that u is successful in
{Snr}.

Observe that the {Snr} case is referred to in the characterization of {Snr, Spr}
in Theorem 22. With the above result we can rephrase the latter result as follows.

Corollary 26
Let u be a legal string. Then u is successful in {Snr, Spr} iff for all legal substrings
v of u, if v = v1u1v2 · · · vjujvj+1, where each ui is a legal substring, then, if
v1v2 · · · vj+1 consists of negative pointers only, they are nonoverlapping.

The following result follows directly from Theorem 18; a successful reduction
without string negative rules means that the reduction graph has a single (linear)
connected component.

Theorem 27
Let u be a legal string. Then u is successful in {Spr, Sdr} iff the reduction graph
of u has no cyclic component.
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Theorem 14 in [13] is the realistic predecessor of this result, but instead of
cyclic components it uses disjoint cycles, cf. Remark 1. The latter notion cannot
be used in the general case, as, e.g., the legal string 233̄244̄ has no disjoint cycle,
but its reduction graph has one cyclic component. Obviously, the only way to
reduce this string is to apply spr3 and spr4 (in either order) and then to apply
snr2. In particular, the converse of Corollary 13.1 in [12] does not hold.

In the same way as Theorem 27 relates to Theorem 14 in [13], the following
theorem and lemma relate to Theorem 11 and Lemma 12 from [13], respectively.

Theorem 28
Let u be a legal string. Then u is successful in {Sdr} iff u consists of negative
pointers only and Ru,∅ has no cyclic component.

Proof
The forward implication follows directly from Theorem 18 and the fact that sdr

cannot resolve positive pointers. To prove the reverse implication, let u consist of
negative pointers only, and let the corresponding reduction graph Ru,∅ have no
cyclic component. By Theorem 27, there is a successful {Spr, Sdr}-reduction ϕ of
u. Since u consists of negative pointers only, ϕ is a successful {Sdr}-reduction of
u (as applications of string double rules do not introduce positive pointers).

Lemma 29
Let u be an elementary legal string. Then u is successful in {Spr} iff u contains
a positive pointer and Ru,∅ has no cyclic component.

Proof
The forward implication follows directly from Theorem 18. To prove the reverse
implication, let u contain a positive pointer and let Ru,∅ have no cyclic com-
ponent. By Lemma 21, there is a successful {Snr, Spr}-reduction ϕ of u. By
Theorem 18, ϕ is a {Spr}-reduction of u.

The following result follows directly from Lemmas 20 and 29 — it relates to
Theorem 13 in [13].

Theorem 30
Let u be a legal string. Then u is successful in {Spr} iff for all legal substrings v of
u, if v = v1u1v2 · · · vjujvj+1, where each ui is a legal substring, then v1v2 · · · vj+1

either is λ or contains a positive pointer and its reduction graph has no cyclic
component.

Similarly to Theorem 22, the previous theorem can be stated in terms of
connected components of the overlap graph of u.

Recall that for legal string u and D ⊆ dom(u), RremD(u),∅ is isomorphic to
Ru,D modulo the labels of the edges. Then, by Theorems 11 and 27, we have the
following corollary. In this result it is especially apparent that both the linear com-
ponent and the cyclic components of reduction graphs reveal crucial properties
concerning reducibility.
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Corollary 31
Let u and v be legal strings with D = dom(v) ⊆ dom(u). Then u is reducible to
v in {Spr, Sdr} iff Ru,D has no cyclic component and red(Ru,D) = v.

2.11 Discussion

This chapter introduces the concept of breakpoint graph (or reality and desire
diagram) into gene assembly models, through the notion of reduction graph. The
reduction graph provides surprisingly valuable insights into the gene assembly
process. First, it allows one to characterize which gene patterns can occur during
the transformation of a given gene from its MIC form to its MAC form. Formally,
in the string pointer reduction system we characterize whether a legal string u is
reducible to a legal string v for a given set of reduction rule types. The character-
ization is independent from the chosen subset of the three types of string pointer
rules, and it allows us to determine whether a legal string u is reducible to a legal
string v in linear time. This generalizes the characterization of successfulness in
[13], since the reduced string need not be the empty string. Secondly, the reduc-
tion graph allows one to determine the number of loop recombination operations
that are necessary in the transformation of a given gene from its MIC form to its
MAC form. This result allows for a second generalization of the characterization
of successfulness, since we consider legal strings instead of realistic strings.

Reduction graphs are defined for legal strings, the basic notion of the string
pointer reduction system that represents the genes. Future research could focus
on the possibility of defining a similar notion for overlap graphs, which are used
in the the graph pointer reduction system — a model (almost) equivalent to the
string pointer reduction system. This would allow results in this chapter to be
carried over to the graph pointer reduction system.





Chapter 3

Strategies of Loop

Recombination in Ciliates

Abstract
The concept of breakpoint graph, known from the theory of sorting by reversal, has
been successfully applied in the theory of gene assembly in ciliates. We further
investigate its usage for gene assembly, and show that the graph allows for an
efficient characterization of the possible orders of loop recombination operations
(one of the three types of molecular operations that accomplish gene assembly) for
a given gene during gene assembly. The characterization is based on spanning trees
within a graph built upon the connected components in the breakpoint graph. We
work in the abstract and more general setting of so-called legal strings.

3.1 Introduction

Gene assembly is an involved DNA transformation process in ciliates (a large
group of single cell organisms) which transforms a nucleus (the micronucleus) into
a functionally different nucleus (the macronucleus). The process is accomplished
using three types of DNA splicing operations, which operate on special DNA
sequences called pointers. Each pointer can be seen as a breakpoint with a ‘tag’
which specifies how the splicing should be done, ensuring that the end result is
fixed. The process however is not deterministic: for every gene in its micronuclear
form, there can be several sequences of operations, called strategies, to transform
this gene to its macronuclear form. For a given micronuclear gene, strategies may
differ in the number of operations. It has been shown however that the number
of loop recombination operations is independent of the chosen strategy [14, 12],
and that this number can be efficiently calculated [6, 5].

In this chapter we characterize for a given set of pointers D, whether or not
there is a strategy that applies loop recombination (called string negative rule
in the formal model that we use) on exactly these pointers. This result depends



48 Basic Notions and Notation

heavily on the reduction graph, which is motivated by the breakpoint graph in the
theory of sorting by reversal [21, 23, 1] since it adopts the concept of reality-and-
desire for DNA sequences with breakpoints. More specifically, we define a graph,
called the pointer-component graph, ‘on top of’ the reduction graph, thereby
depicting the distribution of pointers over the connected components of the re-
duction graph [6, 5]. We show that one can apply loop recombination on the
pointers in D exactly when D forms a spanning tree in the pointer-component
graph. This characterization implies an efficient algorithm. Also, we characterize
in which order the pointers of D can possibly be applied in strategies.

This chapter is organized as follows. In Section 3.2 we recall basic notions and
terminology mainly concerning strings and graphs, and in Section 3.3 we recall a
formal model of the gene assembly process: the string pointer reduction system.
In Section 3.4 we recall the notion of reduction graph and some theorems related
to this notion. In Section 3.5 we define the pointer-component graph, a graph
that depends on the reduction graph, and we discuss an operation on this graph
that captures the application of string pointer rules. In Section 3.6 we show that
the spanning trees of the pointer-component graphs reveal crucial information
concerning applicability of string negative rules. Section 3.7 shows that merging
and splitting of vertices in pointer-component graphs relate to the removal of
pointers. Using the results of Sections 3.6 and 3.7, we characterize in Section 3.8
for a given set of pointers D, whether or not there is a strategy that applies
string negative rules on exactly these pointers. Section 3.9 strengthens results of
Section 3.8 by also characterizing in which order the string negative rules can be
applied on the pointers. We conclude this chapter with Section 3.10. A conference
edition of this chapter, containing selected results without proofs, was presented
at CompLife ’06 [3].

3.2 Basic Notions and Notation

In this section we recall some basic notions concerning functions, strings, and
graphs. We do this mainly to fix the basic notation and terminology.

The restriction of f to a subset A of X is denoted by f |A, and for D ⊆ X we
denote by f(D) the set {f(x) | x ∈ D}. Let ≺ be a binary relation over a finite set
X . Then xi and xj in X are called independent, if they are incomparable in the
transitive closure of ≺. A topological ordering of ≺ is a linear ordering (x1, . . . , xn)
of X such that if xi ≺ xj , then i < j.

We will use λ to denote the empty string. For strings u and v, we say that v is
a substring of u if u = w1vw2, for some strings w1, w2; we also say that v occurs
in u.

Let Σ and ∆ be alphabets. For Γ ⊆ Σ, we denote by eraseΓ : Σ∗ → ∆∗ the
homomorphism defined by

ϕ(a) =

{

a if a 6∈ Γ

λ if a ∈ Γ
,
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for all a ∈ Σ.
We now turn to graphs. We will only consider undirected graphs. A graph is

a tuple G = (V, E), where V is a finite set and E ⊆ {{x, y} | x, y ∈ V }. The
elements of V are called vertices and the elements of E are called edges. We
also write o(G) = |V |. We allow x = y, and therefore edges can be of the form
{x, x} = {x} — an edge of this form should be seen as an edge connecting x to x,
i.e., a ‘loop’ for x. Vertex x is isolated in G if there is no edge e of G with x ∈ e.
The restriction of G to E′ ⊆ E, denoted by G|E′ , is (V, E′).

A multigraph is a graph G = (V, E, ǫ), where parallel edges are possible. There-
fore, E is a finite set of edges and ǫ : E → {{x, y} | x, y ∈ V } is the endpoint
mapping. Clearly, if ǫ is injective, then such a multigraph is equivalent to a graph.
We let MGr denote the set of all multigraphs.

A 2-edge coloured graph is a graph G = (V, E1, E2, f, s, t) where E1 and E2 are
two finite (not necessarily disjoint) sets of edges, s, t ∈ V are two distinct vertices
called the source vertex and the target vertex, respectively, and there is a vertex
labelling function f : V \{s, t} → Γ for some finite set Γ. The elements of Γ are
the vertex labels. We use 2EGr to denote the set of all 2-edge coloured graphs.

Notions such as isomorphisms, paths, connectedness, and trees for graphs carry
over to these two types of graphs. For example, for a multigraph G = (V, E, ǫ)
and E′ ⊆ E, we have G|E′ = (V, E′, ǫ|E′). Care must be taken for isomorphisms.
Multigraphs G = (V, E, ǫ) and G′ = (V ′, E, ǫ′) are isomorphic if there is a bijec-
tion α : V → V ′ such that αǫ = ǫ′, or more precisely, for e ∈ E, ǫ(e) = {v1, v2} im-
plies ǫ′(e) = {α(v1), α(v2)}. Note that the sets of edges of G and G′ are identical.
Also, 2-edge coloured graphs G = (V, E1, E2, f, s, t) and G′ = (V ′, E′

1, E
′
2, f

′, s′, t′)
are isomorphic if there is a bijection α : V → V ′ such that α(s) = s′, α(t) = t′,
f(v) = f ′(α(v)) for all v ∈ V , and {x, y} ∈ Ei iff {α(x), α(y)} ∈ E′

i, for all
x, y ∈ V , and i ∈ {1, 2}.

For 2-edge coloured graphs G, we say that a path π = e1e2 · · · en in G is an
alternating path in G if, for 1 ≤ i < n, both ei ∈ E1 and ei+1 ∈ E2, or the other
way around.

3.3 String Pointer Reduction System

Three (almost) equivalent formal models for gene assembly were considered in
[15, 11, 12]. In this section we briefly recall the one that we will use in this
chapter: the string pointer reduction system. For a detailed motivation and other
results concerning this model we refer to [12].

We fix κ ≥ 2, and define the alphabet ∆ = {2, 3, . . . , κ}. For D ⊆ ∆, we define
D̄ = {ā | a ∈ D} with D ∩ D̄ = ∅, and we define Π = ∆ ∪ ∆̄. The elements of Π
will be called pointers. Since we work in the general framework of legal strings, the
exact identities of the elements in ∆ is irrelevant, in fact, any finite set ∆ would
suffice. However, we respect the convention of denoting a pointer by an integer
larger than 1 with possibly a bar. The name ‘pointer’ is lent from computer science
due to its similarities with pointers defined here (see, e.g., Chapter 16 in [12]).
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5 6437̄2652734

Figure 3.1: Sequence of pointers represented by the legal string u = 543725627̄346.

We use the ‘bar operator’ to move from ∆ to ∆̄ and back from ∆̄ to ∆. Hence,
for p ∈ Π, ¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ Π, the inverse of u is
the string ū = x̄nx̄n−1 · · · x̄1. For p ∈ Π, we define p to be p if p ∈ ∆, and p̄
if p ∈ ∆̄, i.e., p is the ‘unbarred’ variant of p. The domain of a string v ∈ Π∗

is dom(v) = {p | p occurs in v}. A legal string is a string u ∈ Π∗ such that for
each p ∈ Π that occurs in u, u contains exactly two occurrences from {p, p̄}. For
a pointer p and a legal string u, if both p and p̄ occur in u then we say that both
p and p̄ are positive in u; if on the other hand only p or only p̄ occurs in u, then
both p and p̄ are negative in u.

Let u = x1x2 · · ·xn be a legal string with xi ∈ Π for 1 ≤ i ≤ n. For a pointer
p ∈ Π such that {xi, xj} ⊆ {p, p̄} and 1 ≤ i < j ≤ n, the p-interval of u is
the substring xixi+1 · · ·xj . Two distinct pointers p, q ∈ Π overlap in u if both
q ∈ dom(Ip) and p ∈ dom(Iq), where Ip (Iq , resp.) is the p-interval (q-interval,
resp.) of u.

Example 1
String u = 4̄377̄4̄3 is a legal string. However, v = 424 is not a legal string. Also,
dom(u) = {3, 4, 7} and ū = 3̄477̄3̄4. The 3-interval of u is 377̄4̄3, and pointers 3
and 4 overlap in u.

A legal string is a representation of a sequence of pointers. The legal string
u = 543725627̄346 corresponds to the sequence of pointers in Figure 3.1. Each
gene in the micronucleus in ciliates can be represented by such a legal string. For
example, the legal string 344567567893̄2̄289 corresponds to the micronuclear form
of the gene that corresponds to the actin protein in the stichotrich Sterkiella nova
(see [22, 12, 8]). Gene assembly transforms each gene in micronuclear form to its
macronuclear form by three splicing operations which operate on the pointers.
These three operations are formally defined on legal strings through the string
pointer reduction system, where each is defined on a specific pattern of the point-
ers.

The string pointer reduction system consists of three types of reduction rules
operating on legal strings. For all p, q ∈ Π with p 6= q, we define:

• the string negative rule for p by snrp(u1ppu2) = u1u2,

• the string positive rule for p by sprp(u1pu2p̄u3) = u1ū2u3,

• the string double rule for p, q by sdrp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π. We also define
Snr = {snrp | p ∈ Π}, Spr = {sprp | p ∈ Π} and Sdr = {sdrp,q | p, q ∈ Π,p 6= q}
to be the sets containing all the reduction rules of a specific type.
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Note that each of these rules is defined only on legal strings that satisfy the
given form. For example, spr2̄ is defined on the legal string 2̄323, however spr2

is not defined on this legal string. Also note that for every non-empty legal string
there is at least one reduction rule applicable. Indeed, every non-empty legal string
for which no string positive rule and no string double rule is applicable must have
only non-overlapping negative pointers, thus there is a string negative rule which
is applicable. This is formalized in Theorem 1 below.

The domain of a reduction rule ρ, denoted by dom(ρ), is defined by dom(snrp)
= dom(sprp) = {p} and dom(sdrp,q) = {p,q} for p, q ∈ Π. For a composition
ϕ = ϕn · · · ϕ2 ϕ1 of reduction rules ϕ1, ϕ2, . . . , ϕn, the domain, denoted by
dom(ϕ), is defined by dom(ϕ) = dom(ϕ1) ∪ dom(ϕ2) ∪ · · · ∪ dom(ϕn).

Example 2
The domain of ϕ = snr2 spr4̄ sdr7,5 snr9̄ is dom(ϕ) = {2, 4, 5, 7, 9}.

Let S ⊆ {Snr, Spr, Sdr}. Then a composition ϕ of reduction rules from S is called
an (S-)reduction. Let u be a legal string. We say that ϕ is a reduction of u, if ϕ
is a reduction and ϕ is applicable to (i.e., defined on) u. A successful reduction ϕ
of u is a reduction of u such that ϕ(u) = λ. We then also say that ϕ is successful
for u. We say that u is successful in S if there is a successful S-reduction of u.
Note that if ϕ is a reduction of u, then dom(ϕ) = dom(u)\dom(ϕ(u)).

Example 3
Again let u = 4̄377̄4̄3. Then ϕ1 = sdr4̄,3 spr7 is a successful {Spr, Sdr}-reduction
of u. However, both ϕ2 = snr3 spr7 and ϕ3 = snr8 are not reductions of u.

Example 4
If we again consider the legal string 344567567893̄2̄289, which represents the mi-
cronuclear form of the gene corresponding to the actin protein in the stichotrich
Sterkiella nova, then spr3 sdr8,9 snr7 sdr5,6 snr4 spr2̄ is a successful reduction
of this legal string. Therefore, this sequence of operations transforms the gene
from its micronuclear form to its macronuclear form.

We say that a linear ordering L = (p1, . . . , pn) of a subset of dom(ϕ) is the
Snr-order of ϕ, if ϕ = ϕn+1 snrp̃n

ϕn snrp̃n−1
· · · ϕ2 snrp̃1

ϕ1 for some (possible
empty) {Spr, Sdr}-reductions ϕ1, ϕ2, . . . , ϕn+1 and p̃i ∈ {pi, p̄i} for 1 ≤ i ≤ n and
n ≥ 0. Moreover, we define snrdom(ϕ) = {p1, . . . , pn}.

Example 5
The Snr-order of ϕ = snr2 spr4̄ sdr7,5 snr9̄ is (9, 2), and snrdom(ϕ) = {2, 9}.

Since for every (non-empty) legal string there is an applicable reduction rule,
by iterating this argument, we have the following well-known result.

Theorem 1
For every legal string u there is a successful reduction of u.



52 Reduction Graph

3.4 Reduction Graph

In this section we recall the definition of reduction graph and some results con-
cerning this graph. First we give the definition of pointer removal operations on
strings, see also [6].

Definition 2
For a subset D ⊆ ∆, the D-removal operation, denoted by remD, is defined by
remD = eraseD∪D̄. We also refer to remD operations, for all D ⊆ ∆, as pointer
removal operations.

Note that for each legal string u, remD(u) is a legal string.

Example 6
Let u = 543725627̄346 be a legal string. We will use this legal string as our running
example for this chapter. For D = {4, 6, 7, 9}, we have remD(u) = 532523.

The next lemma is an easy consequence of Lemma 8 from [6]. It cannot be
extended to Snr rules: if snrp is applicable to remD(u), then it is not necessarily
applicable to u.

Lemma 3
Let u be a legal string, let ϕ be a composition of reduction rules that does not
contain string negative rules, and let D = dom(u)\dom(ϕ). Then ϕ is a reduction
of u iff ϕ is a (successful) reduction of remD(u).

The string negative rules in a reduction can be ‘postponed’ without affecting
the applicability. More precisely, if ϕ = ϕ2 ρ snrp ϕ1 is a reduction of a legal
string u, with p ∈ Π, ρ a string positive rule or string double rule, and ϕ1, ϕ2

arbitrary compositions of reduction rules, then there is a p̃ ∈ {p, p̄} such that
ϕ2 snrp̃ ρ ϕ1 is a reduction of u. Thus we can separate each reduction into a
sequence without Snr rules, and a tail of Snr rules. We often use this ‘normal
form’.

Example 7
We continue the example. Since ϕ = snr6 snr2 spr7̄ snr4 sdr5,3 is a successful
reduction of u, it follows that ϕ′ = snr6 snr2 snr4̃ spr7̄ sdr5,3 is also a successful
reduction of u for some 4̃ ∈ {4, 4̄}. One can verify that we can take 4̃ = 4.
However, ϕ′′ = snr4 snr6 snr2 spr7̄ sdr5,3 is not a successful reduction of u. If we
consider the legal string 72̄2̄7̄, for which spr7 snr2̄ is a successful reduction, then
by postponing the string negative rule, snr2 spr7 is also a successful reduction of
this legal string.

Figure 3.2 illustrates Lemma 3 when ϕ is in this normal form: ϕ = ϕ2 ϕ1

is a successful reduction of u, where ϕ1 is a {Spr, Sdr}-reduction and ϕ2 is a
{Snr}-reduction with dom(ϕ2) = D.

We are now ready to recall the definition of reduction graph. It was introduced
in [6], and we restate it here in a less general form. A reduction graph is a 2-edge
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u
ϕ1

remD

ϕ1(u)

ϕ2remD

remD(u)
ϕ1

λ

Figure 3.2: An illustration of Lemma 3: ϕ = ϕ2 ϕ1 is a successful reduction of u,
where ϕ1 is a {Spr, Sdr}-reduction and ϕ2 is a {Snr}-reduction with dom(ϕ2) =
D.

coloured graph where the two types of edges are called reality edges and desire
edges. Moreover, all vertices, except for two distinct vertices s and t, are labelled
by an element from ∆. Recall that the physical representation of our running
example u = 543725627̄346 is given in Figure 3.1. The reduction graph is defined
in such a way that (1) each (occurrence of a) pointer of u appears twice (in
unbarred form) as a vertex in the graph to represent both sides of the pointer in
Figure 3.1, (2) the reality edges (depicted as ‘double edges’ to distinguish them
from the desire edges) represent the segments between the pointers, (3) the desire
edges represent which segments should be glued to each other when operations are
applied on the corresponding pointers. Positive pointers are connected by crossing
desire edges (cf. pointer 7 in Figure 3.3), while negative pointers are connected
by parallel desire edges. We refer to [6] for a more elaborate motivation and for
more examples and results concerning this graph. The notion is similar to the
breakpoint graph (or reality-and-desire diagram) known from another branch of
DNA processing theory called sorting by reversal, see e.g. [23] and [21].

Definition 4
Let u = p1p2 · · · pn with p1, . . . , pn ∈ Π be a legal string. The reduction graph of
u, denoted by Ru, is a 2-edge coloured graph (V, E1, E2, f, s, t), where

V = {I1, I2, . . . , In} ∪ {I ′1, I
′
2, . . . , I

′
n} ∪ {s, t},

E1 = {e0, e1, . . . , en} with ei = {I ′i, Ii+1} for 1 < i < n, e0 = {s, I1}, en = {I ′n, t},

E2 = {{I ′i, Ij}, {Ii, I
′
j} | i, j ∈ {1, 2, . . . , n} with i 6= j and pi = pj} ∪

{{Ii, Ij}, {I
′
i, I

′
j} | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called reality edges, and the edges of E2 are called desire
edges. Notice that for each p ∈ dom(u), the reduction graph of u has exactly two
desire edges containing vertices labelled by p.

In depictions of reduction graphs, we will represent the vertices (except for s
and t) by their labels, because the exact identities of the vertices are not essential
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s 5 5 4 4 3 3 7 7 2 2 5 5 6 6 2 2 7 7 3 3 4 4 6 6 t

Figure 3.3: The reduction graph Ru of u from Example 8.

s 5 5 6 6 t 3 3

5 2 2 6 3 4 7 7

5 4 4 6 3 4 7 7

2 2

Figure 3.4: The reduction graph of Figure 3.3.

s 5 5 6 6 t

5 3 3 6 3 4

5 4 4 6 3 4

Figure 3.5: The reduction graph Rrem{2,7}(u) from the Example.
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for the problems considered in this chapter. We will also depict reality edges as
‘double edges’ to distinguish them from the desire edges.

Example 8
We continue the example. Reduction graph Ru is given in Figure 3.3. The same
graph is again depicted in Figure 3.4 – we have only rearranged the vertices. Also,
Rrem{2,7}(u) is given in Figure 3.5.

Each reduction graph has a connected component with a linear structure con-
taining both the source and the target vertex [6]. This connected component is
called the linear component of the reduction graph. The other connected compo-
nents are called cyclic components because of their structure.

The definition of reduction functions and the remaining results are also taken
from [6]. The p-reduction function removes vertices labelled by p and ‘contracts’
alternating paths via these vertices into a single edge.

Definition 5
For each vertex label p, we define the p-reduction function rfp : 2EGr → 2EGr, for
G = (V, E1, E2, f, s, t) ∈ 2EGr, by

rfp(G) = (V ′, (E1\Erem) ∪ Eadd, E2\Erem, f |V ′, s, t),

with

V ′ = {s, t} ∪ {v ∈ V \{s, t} | f(v) 6= p},

Erem = {e ∈ E1 ∪ E2 | f(x) = p for some x ∈ e}, and

Eadd = {{y1, y2} | e1e2 · · · en with n > 2 is an alternating path in G

with y1 ∈ e1, y2 ∈ en, f(y1) 6= p 6= f(y2), and

f(x) = p for all x ∈ ei, 1 < i < n}.

Reduction functions commute under composition. Thus, for a reduction graph
RremD(u) and pointers p and q, we have

(rfq rfp)(Ru) = (rfp rfq)(Ru).

Any reduction can be simulated, on the level of reduction graphs, by a sequence
of reduction functions with the same domain, cf. [6, Theorem 17].

Theorem 6
Let u be a legal string, and let ϕ be a reduction of u. Then

(rfpn
· · · rfp2

rfp1
)(Ru) ≈ Rϕ(u),

where dom(ϕ) = {p1, p2, . . . , pn}.

The next lemma is an easy consequence from Lemma 22 and Lemma 23 in [6].
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s p p q q p p q q t

Figure 3.6: The reduction graph of pqp̄q (and pqpq).

Lemma 7
Let u be a legal string and let p ∈ Π. Then Ru has a cyclic component C consisting
of only vertices labelled by p iff either pp or p̄p̄ is a substring of u. Moreover, if
C exists, then it has exactly two vertices.

One of the motivations for the reduction graph is the easy determination
of the number of string negative rules needed in each successful reduction [6,
Theorem 26].

Theorem 8
Let N be the number of cyclic components in the reduction graph of legal string
u. Then every successful reduction of u has exactly N string negative rules.

Example 9
We continue the example. Since Ru has three cyclic components, by Theorem 8,
every successful reduction ϕ of u has exactly three string negative rules. For ex-
ample ϕ = snr6 snr2 spr7̄ snr4 sdr5,3 is a successful reduction of u. Indeed, ϕ has
exactly three string negative rules. Alternatively, snr6 snr4 snr3 spr2 spr5spr7

is also a successful reduction of u, with a different number of (spr and sdr)
operations.

The previous theorem and example should clarify that the reduction graph
reveals crucial properties concerning the string negative rule. We now further
investigate the string negative rule, and show that many more properties of this
rule can be revealed using the reduction graph.

However, the reduction graph does not seem to be well suited to prove prop-
erties of the string positive rule and string double rule. If we for example consider
legal strings u = pqp̄q and v = pqpq for some distinct p, q ∈ Π, then u has a
unique successful reduction ϕ1 = sprq̄ sprp and v has a unique successful reduc-
tion ϕ2 = sdrp,q. Thus u must necessarily be reduced by string positive rules,
while v must necessarily be reduced by a string double rule. However, the re-
duction graph of u and the reduction graph of v are isomorphic, as shown in
Figure 3.6. Also, whether or not pointers overlap is not preserved by reduction
graphs. For example, the reduction graphs of legal strings pqpr̄qr and pqrp̄qr for
distinct pointers p, q and r are isomorphic, however p and r do not overlap in the
first legal string, but they do overlap in the latter legal string.

The next lemma is an easy consequence of Lemma 3 and Theorem 8.

Lemma 9
Let u be a legal string, and let D ⊆ dom(u). There is a {Spr, Sdr}-reduction ϕ
of u with dom(ϕ(u)) = D iff RremD(u) does not contain cyclic components.
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Proof
There is a {Spr, Sdr}-reduction ϕ of u with dom(ϕ(u)) = D iff there is a successful
{Spr, Sdr}-reduction of remD(u) (by Lemma 3) iff RremD(u) does not contain
cyclic components (by Theorem 8).

Using Theorem 8 and Lemma 9 we obtain a first characterization of the sets
of pointers that are used in string negative rules in successful reductions.

Lemma 10
Let u be a legal string, and let D ⊆ dom(u). There is a successful reduction ϕ of
u with snrdom(ϕ) = D iff RremD(u) and Ru have 0 and |D| cyclic components,
respectively.

Proof
We first prove the forward implication. Since we can postpone the string negative
rules, there is a successful reduction ϕ′ = ϕ′

2ϕ
′
1 of u, where ϕ′

1 is a {Spr, Sdr}-
reduction and ϕ′

2 is a {Snr}-reduction with dom(ϕ′
2) = D. By Lemma 9, RremD(u)

does not contain cyclic components. By Theorem 8, Ru has |D| cyclic components.
We now prove the reverse implication. By Lemma 9, there is a successful

reduction ϕ = ϕ2 ϕ1 of u, where ϕ1 is a {Spr, Sdr}-reduction and dom(ϕ2) = D.
Since Ru has |D| cyclic components, by Theorem 8, every pointer in D is used in
a string negative rule, and thus ϕ2 is a {Snr}-reduction.

3.5 Pointer-Component Graphs

If it is clear from the context which legal string u is meant, we will denote by
ζ the set of connected components of the reduction graph of u. We now define
a graph on ζ that we will use throughout the rest of this chapter. The graph
represents how the labels of a reduction graph are distributed among its connected
components. This graph is particularly useful in determining which sets D of
pointers correspond to strategies that apply loop recombination operations on
exactly the pointers of D.

Definition 11
Let u be a legal string. The pointer-component graph of u (or of Ru), denoted by
PCu, is a multigraph (ζ, E, ǫ), where E = dom(u) and ǫ is, for e ∈ E, defined by
ǫ(e) = {C ∈ ζ | C contains vertices labelled by e}.

Note that for each e ∈ dom(u), there are exactly two desire edges connecting
vertices labelled by e, thus 1 ≤ |ǫ(e)| ≤ 2, and therefore ǫ is well defined.

Example 10
We continue the example. Consider Ru shown in Figure 3.4. Let us define C1 to be
the cyclic component with a vertex labelled by 7, C2 to be the cyclic component
with a vertex labelled by 5, C3 to be the third cyclic component, and R to be
the linear component. Then ζ = {C1, C2, C3, R}. The pointer-component graph
PCu = (ζ, dom(u), ǫ) of u is given in Figure 3.7. As C1 contains all four vertices
labelled by 7, this results in a loop for C1 in PCu.
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C1
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C24
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Figure 3.7: The graph PCu from the Example.

By the definition of pointer-component graph and Theorem 8, every successful
reduction of a legal string u has exactly o(PCu) − 1 string negative rules (recall
that o(PCu) denotes the number of vertices of PCu). Let ρ be a reduction rule
applicable to u. Then by Theorem 1, there is a successful reduction ϕ′ of ρ(u).
Hence, ϕ′ρ is a successful reduction of u. Thus, if ρ is a string positive rule or
string double rule, then o(PCρ(u)) = o(PCu), and if ρ is a string negative rule,
then o(PCρ(u)) = o(PCu) − 1. Thus we have the following result.

Theorem 12
Let ϕ be a reduction of a legal string u with N = |snrdom(ϕ)|. Then o(PCϕ(u)) =
o(PCu) − N .

For a reduction ϕ of a legal string u, the difference between Ru and Rϕ(u) is
formulated in Theorem 6 in terms of reduction functions. We now reformulate this
result for pointer-component graphs. The difference (up to isomorphism) between
the pointer-component graph PC1 of Ru and the pointer-component graph PC2

of rfp(Ru) (assuming rfp is applicable to Ru) is as follows: in PC2 edge p is
removed and also those vertices v that become isolated, except when v is the
linear component (since the linear component always contains the source and
target vertex). Since the only legal string u for which the linear component in
PCu is isolated is the empty string, in this case we obtain a graph containing only
one vertex. This is formalized as follows. By abuse of notation we will also denote
these functions as reduction functions rfp.

Definition 13
For each edge p, we define the p-reduction function rfp : MGr → MGr, for G =
(V, E, ǫ) ∈ MGr, by

rfp(G) = (V ′, E′, ǫ|E′),

where E′ = E\{p} and V ′ = {v ∈ V | v ∈ ǫ(e) for some e ∈ E′} if E′ 6= ∅, and
V ′ = {∅} otherwise.

Therefore, these reduction functions correctly simulate (up to isomorphism) the
effect of applications of a reduction functions on the underlying reduction graph
when the reduction functions correspond to an applicable reduction. Note how-
ever, when these reduction functions do not correspond to an applicable reduction,
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u
ϕ

ϕ(u)

Ru

(rfpn ··· rfp1
)

Rϕ(u)

PCu

(rfpn ··· rfp1
)

PCϕ(u)

Figure 3.8: An illustration of Theorems 6 and 14 as a commutative diagram.
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Figure 3.9: Pointer-component graph PC1 from the Example.

the linear component may become isolated while there are still edges present. Thus
in general the reduction functions for pointer-component graphs do not faithfully
simulate the reduction functions for reduction graphs.

As a consequence of Theorem 6 we now obtain the following result.

Theorem 14
Let u be a legal string, and let ϕ be a reduction of u. Then

(rfpn
· · · rfp2

rfp1
)(PCu) ≈ PCϕ(u),

where dom(ϕ) = {p1, p2, . . . , pn}.

Thus, PCϕ(u) is obtained from PCu (up to isomorphism) by iteratively remov-
ing the edges pi and any isolated vertices that may appear after removing the
edges. Thus the only difference between PCϕ(u) and PCu|D with D = dom(ϕ(u))
is the possible existence of isolated vertices in PCu|D. The only exception is the
case ϕ(u) = λ, since we may not end up with the empty graph (without vertices),
and thus one vertex should always remain. Figure 3.8 illustrates Theorems 6 and
14.

Example 11
We continue the example. We have (snr4 sdr5,3)(u) = 627̄726. The pointer-
component graph PC1 of this legal string is shown in Figure 3.9. It is easy to see
that the graph obtained by applying (rf5 rf4 rf3) to PCu (Figure 3.7) is isomorphic
to PC1.
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3.6 Spanning Trees in Pointer-Component Graphs

In this section we consider spanning trees in pointer-component graphs, and we
show that there is an intimate connection between these trees and the Snr-orders
of successful reductions. First we separate loops from other edges in pointer-
component graphs.

Definition 15
Let u be a legal string and let PCu = (V, E, ǫ). We define bridge(u) = {e ∈ E |
|ǫ(e)| = 2}.

Thus, bridge(u) is the set of vertex labels p for which there are vertices labelled
by p in different connected components of Ru.

Example 12
We continue the example. We have bridge(u) = {2, 3, 4, 5, 6}, and dom(u) \
bridge(u) = {7}. Indeed, the only loop in Figure 3.7 is 7, indicating that this
pointer occurs only in one connected component of Ru.

The following corollary to Theorem 14 observes that an edge in dom(ϕ(u)) is a
loop in PCϕ(u) iff it is a loop in PCu.

Corollary 16
Let u be a legal string and ϕ a reduction of u. Then bridge(ϕ(u)) = dom(ϕ(u))∩
bridge(u) = bridge(u)\dom(ϕ).

We now characterize {Spr, Sdr}-reductions in terms of pointer-component
graphs.

Theorem 17
Let u be a legal string, and ϕ a reduction of u with D = dom(ϕ(u)). Then the
following statements are equivalent:

1. ϕ is a {Spr, Sdr}-reduction,

2. o(PCϕ(u)) = o(PCu),

3. PCϕ(u) ≈ PCu|D,

4. either o(PCu|D) = 1 or PCu|D has no isolated vertices.

Proof
Statements (1) and (2) are equivalent by Theorem 12. If (3) holds, then clearly
(2) holds. Assume now that (2) holds. Since an application of rfp that does not
remove vertices, only removes edge p, we have, by Theorem 14, PCϕ(u) ≈ PCu|D.
Thus (3) holds. Assume now that (3) holds. Since the pointer-component graph
of a legal string u does not have isolated vertices except when u = λ, it follows
that (4) holds. Finally, assume that (4) holds. If o(PCu|D) = 1, then o(PCu) = 1
and therefore 1 ≤ o(PCϕ(u)) ≤ o(PCu) = 1. Consequently, o(PCϕ(u)) = o(PCu),
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and (2) holds. On the other hand, if PCu|D has no isolated vertices, then by
Theorem 14 the reduction functions corresponding to ϕ do not remove vertices,
and hence (2) holds.

Thus, by Theorems 14 and 17, the effect of a rfp operation where p ∈ dom(ρ) for
some applicable Spr or Sdr rule ρ is the removal of edge p. We now discuss the
Snr case. By Lemma 7, we have the following result. Here v is identical to C in
Lemma 7.

Lemma 18
Let u be a legal string and p ∈ dom(u). Then snrp or snrp̄ is applicable to u iff
p ∈ bridge(u) and edge p in PCu has an endpoint v such that (1) v is not the
linear component and (2) p is the only edge with v as an endpoint (v is of degree
1).

Thus the effect of a rfp operation where p ∈ dom(ρ) for some applicable Snr rule
ρ is the removal of edge p and the removal of vertex v as in Lemma 18. Vertex v is
unique, otherwise PCρ(u) would have two vertices less than PCu – a contradiction
with Theorem 12.

The examples so far have shown connected pointer-component graphs. It turns
out that these graphs are always connected.

Theorem 19
The pointer-component graph of any legal string is connected.

Proof
Let ϕ be a successful reduction of a legal string u (ϕ exists by Theorem 1).
Assume that PCu is not connected. Since PCλ is connected, we have ϕ = ϕ2ρϕ1

for some reduction rule ρ, where PCϕ1(u) is not connected, but PCρϕ1(u) is. By
the paragraph below Theorem 17, ρ cannot be a string double rule or a string
positive rule, and therefore ρ is a string negative rule. By the paragraph below
Lemma 18, PCρϕ1(u) is obtained from PCϕ1(u) by removing edge p ∈ dom(ρ) and
removing one of the two endpoints of p. Therefore, PCρϕ1(u) has the same number
of connected components as PCϕ1(u) – a contradiction.

The next theorem characterizes successfulness in {Snr} using spanning trees.

Theorem 20
Let u be a legal string. Then u is successful in {Snr} iff PCu is a tree.

Proof
If u is successful in {Snr}, then, by Theorem 12, PCu has |ζ|−1 edges. Since PCu

has |ζ| vertices and is connected by Theorem 19, it follows that PCu is a tree.
If PCu is a tree, then PCu has |ζ| − 1 edges. Since the number of edges is

|dom(u)|, we have |dom(u)| = |ζ| − 1, and by Theorem 12 every p ∈ dom(u) is
used in a string negative rule, and thus u is successful in {Snr}.
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By Lemma 18 (and the paragraph below it), the possible orders of string
negative rules applicable to the legal string u in Theorem 20 is restricted by the
form of the tree PCu. Indeed, if we take the linear component of Ru as the root of
PCu, then a successful reduction corresponds to a sequence of reduction functions
that iteratively removes leaves and their connecting edges. We will discuss this in
more detail in Section 3.9.

It turns out that the pointers on which string negative rules are applied in a
successful reduction of a legal string u form a spanning tree of PCu.

Theorem 21
Let u be a legal string, and let D ⊆ dom(u). If there is a successful reduction ϕ
of u with snrdom(ϕ) = D, then PCu|D is a tree.

Proof
By postponing the string negative rules, there is a successful reduction ϕ′ =
ϕ′

2 ϕ′
1 of u, where ϕ′

1 is a {Spr, Sdr}-reduction and ϕ′
2 is a {Snr}-reduction with

dom(ϕ′
2) = D. By Theorem 20, PCϕ′

1
(u) is a tree. By Theorem 17 PCϕ′

1
(u) ≈

PCu|D.

Example 13
We continue the example. We saw that ϕ = snr6 snr4 snr2 spr7̄ sdr5,3 is a
successful reduction of u. By Theorem 21, PCu|{2,4,6} is a tree. This is clear from
Figure 3.7 where PCu is depicted.

In the next few sections we prove the reverse implication of the previous the-
orem. This will require considerably more effort than the forward implication.
The reason for this is that it is not obvious that when PCu|D is a tree, there is
a reduction ϕ1 of u such that D = dom(ϕ1(u)). We will use the pointer removal
operation to prove this.

First, we consider a special case of the previous theorem. Since a loop can
never be part of a tree, we have the following corollary to Theorem 21.

Corollary 22
Let u be a legal string and let p ∈ dom(u). If p ∈ snrdom(ϕ) for some (successful)
reduction ϕ of u, then p ∈ bridge(u).

Example 14
We continue the example. Since ϕ = snr6 snr4 snr2 spr7̄ sdr5,3 is a successful
reduction of u, we have 2, 4, 6 ∈ bridge(u).

We show in Theorem 30 below that the reverse implication of Corollary 22 also
holds. Hence, the pointers p ∈ bridge(u) are exactly the pointers for which snrp

or snrp̄ can occur in a (successful) reduction of u.

3.7 Merging and Splitting Components

In this section we consider the effect of pointer removal operations on pointer-
component graphs. It turns out that these operations correspond to the merging
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and splitting of connected components of the underlying reduction graph. We
now introduce the merge operation on pointer-component graphs. Intuitively, the
p-merge rule ‘merges’ the two endpoints of edge p into one vertex, and therefore
the resulting graph has exactly one vertex less than the original graph. Formally
the merge operation is as follows.

Definition 23
For each edge p, the p-merge rule, denoted by mergep, is a rule applicable to (i.e.,
defined on) G = (V, E, ǫ) ∈ MGr with p ∈ E and |ǫ(p)| = 2. It is defined by

mergep(G) = (V ′, E′, ǫ′),

where E′ = E\{p}, V ′ = (V \ǫ(p)) ∪ {v′} with a new vertex v′ 6∈ V , and ǫ′(e) =
{h(v1), h(v2)} iff ǫ(e) = {v1, v2} where h(v) = v′ if v ∈ ǫ(p), otherwise it is the
identity.

Again, we allow v1 = v2 in the previous definition. Note that p-merge rules
commute under composition. Thus, if (mergeq mergep) is applicable to G, then

(mergeq mergep)(G) = (mergep mergeq)(G).

Theorem 24
Let G = (V, E, ǫ) ∈ MGr, and let D = {p1, . . . , pn} ⊆ E. Then (mergepn

· · · mergep1
) is applicable to G iff G|D is acyclic.

Proof
(mergepn

· · · mergep1
) is applicable on G iff for all pi (1 ≤ i ≤ n), ǫ(pi) 6⊆

ǫ({p1, . . . , pi−1}) and |ǫ(pi)| = 2. Furthermore, the latter holds iff G|D is acyclic.

Surprisingly, the pointer removal operation is crucial in the proofs of the main
results. The next theorem compares PCu with PCrem{p}(u) for a legal string u
and p ∈ dom(u). We distinguish three cases: either the number of vertices of
PCrem{p}(u) is one less, is equal, or is one more than the number of vertices of
PCu. The proof of this theorem shows that the first case corresponds to merging
two connected components of Ru into one connected component, and the last
case corresponds to splitting one connected component of Ru into two connected
components.

Theorem 25
Let u be a legal string.

• If p ∈ bridge(u), then PCrem{p}(u) ≈ mergep(PCu)
(and therefore o(PCrem{p}(u)) = o(PCu) − 1).

• If p ∈ dom(u)\bridge(u), then o(PCu) ≤ o(PCrem{p}(u)) ≤ o(PCu) + 1.

Proof
Consider p ∈ bridge(u) first. Then the two desire edges with vertices labelled
by p belong to different connected components of Ru. We distinguish two cases:
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whether or not there are cyclic components consisting of only vertices labelled by
p.

If there is cyclic component consisting of only vertices labelled by p, then by
Lemma 7, pp or p̄p̄ are substrings of u, and Ru is

p p

. . . q1 p p q2 . . .

where we omitted the parts of the graph that are the same compared to Rrem{p}(u).
Now, Rrem{p}(u) is

. . . q1 q2 . . .

Therefore PCrem{p}(u) can be obtained (up to isomorphism) from PCu by applying
the mergep operation.

Now assume that there are no cyclic components consisting of only vertices
labelled by p. Then, Ru is

. . . q1 p p q2 . . .

. . . q3 p p q4 . . .

where we again omitted the parts of the graph that are the same compared to
Rrem{p}(u). Now, depending on the positions of q1, . . . , q4 relative to p in u and
on whether p is positive or negative in u, Rrem{p}(u) is either

. . . q1 q4 . . .

. . . q3 q2 . . .

or
. . . q1 q3 . . .

. . . q4 q2 . . .

Note that since a desire edge connects two ‘segments’ (each represented by a reality
edge) corresponding to different occurrences of p or p̄, it is not possible that q1

and q2 are connected by a reality edge (and also for q3 and q4) in Rrem{p}(u).
Therefore, we have only the above two cases. Since q1 and q2 remain part of the
same connected component (the same holds for q3 and q4), in both cases the two
connected components are merged, and thus PCrem{p}(u) can be obtained (up to
isomorphism) from PCu by applying the mergep operation.
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s 5 5 6 6 t

4 5 5 7 7 3 3 4

4 6 6 7 7 3 3 4

Figure 3.10: Reduction graph Rrem{2}(u) from the Example.

Finally, consider p ∈ dom(u)\bridge(u). Then the two desire edges with ver-
tices labelled by p belong to the same connected component of Ru. By Lemma 7,
there are no cyclic components consisting of four vertices which are all labelled by
p. We can distinguish two cases: whether or not there is a reality edge e connecting
two vertices labelled by p. If there is such a reality edge e then Ru is

. . . q1 p p p p q4 . . .

This occurs precisely when p̄p or pp̄ is a substring of u. Now, Rrem{p}(u) is

. . . q1 q4 . . .

Therefore, Rrem{p}(u) has N = o(PCu) cyclic components.
If there is no such a reality edge e, then Ru is

. . . q1 p p q2 L q3 p p q4 . . .

where L represents some (possibly empty) ‘linear subgraph’ of Ru. Now, Rrem{p}(u)

is either
. . . q4 q2 L q3 q1 . . .

or
L

q2 q3 . . . q1 q4 . . .

Therefore, Rrem{p}(u) has either N cyclic components (corresponding with the
first case) or N + 1 cyclic components (corresponding with the second case).

Example 15
We continue the example. By Theorem 25, we know from Figure 3.7 that PCrem{2}(u)

≈ merge2(PCu), merging components C1 and C2. Indeed, this is transparent from
Figures 3.7, 3.10 and 3.11, where PCu, Rrem{2}(u), and PCrem{2}(u) are depicted,
respectively.
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Figure 3.11: PCrem{2}(u) from the Example.

Again by Theorem 25, we know from Figure 3.10 that Rrem{2,7}(u) has two
or three cyclic components. Indeed, this is transparent from Figure 3.5, where
Rrem{2,7}(u) is depicted.

Note that by the definition of mergep, mergep is applicable to PCu precisely
when p ∈ bridge(u). Therefore, by Theorems 24 and 25, we have the following
corollary.

Corollary 26
Let u be a legal string, and let D ⊆ dom(u). If PCu|D is acyclic, then

PCremD(u) ≈ (mergepn
· · · mergep1

)(PCu),

where D = {p1, . . . , pn}.

3.8 Applicability of the String Negative Rule

In this section we characterize for a given set of pointers D, whether or not there is
a (successful) strategy that applies string negative rules on exactly these pointers.
First we will prove the following result which depends heavily on the results of the
previous section. The forward implication of the result states that by removing
pointers from u that form a spanning tree in PCu we obtain a legal string u′ for
which the reduction graph does not have cyclic components.

Lemma 27
Let u be a legal string, and let D ⊆ dom(u). Then PCu|D is a tree iff RremD(u)

and Ru have 0 and |D| cyclic components, respectively.

Proof
We first prove the forward implication. Let PCu|D be a tree. By Corollary 26,
PCremD(u) contains a single vertex. Thus RremD(u) has no cyclic components.
Since PCu|D is a tree, we have |D| = |ζ| − 1.

We now prove the reverse implication. Let RremD(u) not contain cyclic com-
ponents and |D| = |ζ| − 1. By Theorem 25 we see that the removal of each
pointer p in D corresponds to a mergep operation, otherwise RremD(u) would
contain cyclic components. Therefore, (mergepn

· · · mergep1
) is applicable to PCu

with D = {p1, . . . , pn}. Therefore, by Theorem 24, PCu|D is acyclic. Again since
|D| = |ζ| − 1, it is a tree.
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Figure 3.12: A subgraph of the pointer-component graph from the Example.

C1

2

C3

3

C24
R

Figure 3.13: A subgraph of the pointer-component graph from the Example.

s 4 4 6 6 7 7

t 6 6 7 7 4 4

Figure 3.14: The reduction graph RremD1
(u) from the Example.

s 5 5 6 6 t

5 7 7 6

5 7 7 6

Figure 3.15: The reduction graph RremD2
(u) from the Example.
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Example 16
We continue the previous example. Let D1 = {2, 3, 5} and D2 = {2, 3, 4}. Then
PCu|D1

(PCu|D2
, resp.) is given in Figure 3.12 (Figure 3.13, resp.). Notice that

|D1| = |D2| = |ζ| − 1. Since PCu|D1
is a tree and PCu|D2

is not a tree, by
Lemma 27, it follows that RremD1

(u) does not have cyclic components and that
RremD2

(u) does have at least one cyclic component. This is illustrated in Fig-
ures 3.14 and 3.15, where RremD1

(u) and RremD2
(u) are depicted respectively.

The next theorem is one of the main results of this chapter. It follows directly
from Lemma 27 and Lemma 10, and improves Theorem 21 by characterizing ex-
actly which string negative rules can be applied together in a successful reduction
of a given legal string.

Theorem 28
Let u be a legal string, and let D ⊆ dom(u). There is a successful reduction ϕ of
u with snrdom(ϕ) = D iff PCu|D is a tree.

Since there are many well known and efficient methods for determining span-
ning trees in a graph, it is easy to determine, for a given set of pointers D, whether
or not there is a successful reduction applying string negative rules on exactly the
pointers of D (for a given legal string u).

Example 17
We continue the example. By Theorem 28 and Figure 3.12, there is a successful
reduction ϕ of u with snrdom(ϕ) = {2, 3, 5}. Indeed, we can take for example
ϕ = snr5 snr2 snr3̄ spr7̄ sdr4,6.

By Theorem 28 (or Theorem 21) and Figure 3.13, there is no successful reduc-
tion ϕ of u with snrdom(ϕ) = {2, 3, 4}. For example, (spr5 spr7)(u) = 623̄4̄2̄346
and thus there is no string pointer rule for pointer 6 applicable to this legal string.

In the next corollary we consider the more general case |D| ≤ |ζ| − 1, instead
of |D| = |ζ| − 1 in Theorem 28, i.e., we consider acyclic graphs rather than trees.

Corollary 29
Let u be a legal string, and let D ⊆ dom(u). There is a (successful) reduction ϕ
of u with D ⊆ snrdom(ϕ) iff PCu|D is acyclic.

Proof
We first prove the forward implication. By Theorem 28, PCu|D is a subgraph of
a tree, and therefore acyclic.

We now prove the reverse implication. By Theorem 19, PCu is connected, and
since PCu|D does not contain cycles, we can add edges q ∈ dom(u)\D from PCu

such that the resulting graph is a tree. Then by Theorem 28, it follows that there
is a (successful) reduction ϕ of u with D ⊆ snrdom(ϕ).

The previous corollary with |D| = 1 shows that the reverse implication of
Corollary 22 also holds, since PCu|{p} acyclic implies that the edge p connects
two different vertices in PCu.
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Theorem 30
Let u be a legal string and let p ∈ dom(u). Then p ∈ snrdom(ϕ) for some (suc-
cessful) reduction ϕ of u iff p ∈ bridge(u).

This theorem can also be proven directly.

Proof
To prove the reverse implication, let no reduction of u contain either snrp or
snrp̄. We prove that p 6∈ bridge(u). By iteratively applying snr, spr and sdr on
pointers that are not equal to p or p̄, we can reduce u to a legal string v such that
for all q ∈ dom(v)\{p}:

• qq and q̄q̄ are not substrings of v.

• q is negative in v.

• q does not overlap with any pointer in dom(v)\{p}.

If rem{p}(v) = λ, then v is equal to either pp̄, p̄p, pp or p̄p̄. If rem{p}(v) 6= λ,
then, by the last two conditions, there is a q ∈ Π such that qq is a substring of
rem{p}(v). Then, by the first condition, either qpq, qp̄q, qpp̄q, qp̄pq, qppq or qp̄p̄q
is a substring of v.

Thus, either qpq, qp̄q, pp̄, p̄p, pp or p̄p̄ is a substring of v. Since no reduction
of u contains snrp or snrp̄, the last two cases are not possible. The first two cases
correspond to the following part of Rv.

... p p q q p p ...

The cases where pp̄ or p̄p is a substring of v correspond to the following part of
Rv

... p p p p ...

Consequently, in either case, the two desire edges of Rv with vertices labelled by
p belong to the same connected component. Thus p 6∈ bridge(v). By Corollary 16,
p 6∈ bridge(u).

3.9 The Order of Loop Recombination

According to Theorem 28 a set D of pointers can occur as the domain of Snr rules
in a successful reduction of a legal string u exactly when the graph PCu|D is a tree.
This result can be strengthened to incorporate the order in which the Snr rules are
applied. We show that in a successful reduction ϕ we can only apply Snr rules
in orderings determined by the tree PCu|D with the linear component as root,
where D is the domain of Snr rules in ϕ. These orderings are similar topological
orderings in a directed acyclic graph, however, here we order the edges instead of
the vertices.
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Definition 31
Let T = (V, E, ǫ) be a tree, and let R ∈ V . We define the relation ≺T,R over E
as follows. For e1, e2 ∈ E, we have e1 ≺ e2 iff ǫ(e1) = {Cx, Cy}, ǫ(e2) = {Cy, Cz},
and Cy (Cz , resp.) is the father of Cx (Cy , resp.) in T considering R as the root of
T . Also, an edge-topological ordering of T (with root R) is a topological ordering
of ≺T,R.

Example 18
We continue the example. Consider again tree PCu|D1

shown in Figure 3.12.
Taking R as the root of PCu|D1

, it follows that (3, 2, 5) is an edge-topological
ordering of PCu|D1

.

The next theorem characterizes exactly the possible orderings in which string
negative rules can be applied in a successful reduction of a given legal string.

Theorem 32
Let u be a legal string, let L be a linear ordering of a subset L′ of dom(u). There
is a successful reduction ϕ of u with Snr-order L iff PCu|L′ is a tree, where L
is an edge-topological ordering of PCu|L′ with the linear component R of Ru as
root.

Proof
Let L = (p1, p2, . . . , pn). We first prove the forward implication. Recall that we
can postpone the application of string negative rules, thus snrp̃n

snrp̃n−1
· · ·

snrp̃1
ϕ′ is also a successful reduction of u, where ϕ′ is a {Spr, Sdr}-reduction

and p̃i ∈ {pi, p̄i} for i ∈ {1, . . . , n}. By Theorem 28, PCu|L′ is a tree.
We prove that L is an edge-topological ordering of PCu|L′ with root R. By

Theorem 17, PCϕ′(u) ≈ PCu|L′ . If n > 0, then snrp̃1
is applicable to ϕ′(u). By

Lemma 18, edge p1 is connected to a leaf of PCϕ′(u). By Theorem 14 and the
paragraph below Lemma 18, PC(snrp̃1

ϕ′)(u) is isomorphic to the graph obtained
from PCϕ′(u) by removing p1 and its leaf. Now (assuming n > 1), since snrp̃2

is
applicable to (snrp̃1

ϕ′)(u), p2 is connected to a leaf in PC(snrp̃1
ϕ′)(u). By iterating

this argument, it follows that L is an edge-topological ordering of PCϕ′(u) ≈
PCu|L′ with root R.

We now prove the reverse implication. Since PCu|L′ is a tree, by Theorem 28
there is a successful reduction ϕ = ϕ2 ϕ1 of u, where ϕ1 is a {Spr, Sdr}-reduction
and ϕ2 is a {Snr}-reduction with dom(ϕ2) = L′. Let L be an edge-topological
ordering of PCu|L′ with the linear component R of Ru as root. Again, by Theo-
rem 17, PCu|L′ ≈ PCϕ1(u).

If n > 0, then p1 is connected to a leaf of PCϕ1(u). By Lemma 18, snrp̃1

is applicable to ϕ1(u) for some p̃1 ∈ {p1, p̄1}. Again by Theorem 14 and the
paragraph below Lemma 18, PC(snrp̃1

ϕ1)(u) is isomorphic to the graph obtained
from PCϕ1(u) by removing p1 and its leaf. By iterating this argument, it follows
that snrp̃n

snrp̃n−1
· · · snrp̃1

is a successful reduction of u for some p̃i ∈ {pi, p̄i}
and 1 ≤ i ≤ n with n ≥ 0.
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Figure 3.16: A subgraph of the pointer-component graph from the Example.

Example 19
We continue the example. Since (3, 2, 5) is an edge-topological ordering of tree
PCu|D1

with root R, by Theorem 32, there is a successful reduction ϕ of u with
Snr-order (3, 2, 5). Indeed, we can take for example ϕ = snr5 snr2 snr3̄ spr7̄

sdr4,6.

We say that two reduction rules ρ1 and ρ2 can be applied in parallel to u if
both ρ2 ρ1 and ρ1 ρ2 are applicable to u (see [18]).

Corollary 33
Let u be a legal string, and p, q ⊆ dom(u) with p 6= q. Then snrp̃ and snrq̃ can
be applied in parallel to u for some p̃ ∈ {p, p̄}, q̃ ∈ {q, q̄} iff there is a spanning
tree T in PCu such that p and q both connect to leaves (considering the linear
component of Ru as the root).

Let R be the linear component of Ru. Clearly, for spanning tree T in PCu

with root R that contains edges p and q, we have the following: p and q in T are
independent for ≺T,R iff there is no simple path in T from R to another vertex of
T containing both edges p and q. The next corollary considers the case whether
or not snrp̃ and snrq̃ can eventually be applied in parallel.

Corollary 34
Let u be a legal string, and p, q ⊆ dom(u) with p 6= q. Then snrp̃ and snrq̃ can
be applied in parallel to ϕ(u) for some p̃ ∈ {p, p̄}, q̃ ∈ {q, q̄}, and some reduction
ϕ of u iff there is a spanning tree T in PCu containing both edges p and q, where
p and q are independent for ≺T,R.

Example 20
We continue the example. Let D3 = {2, 4, 6}. Then in the tree PCu|D3

, depicted in
Figure 3.16, there is no simple path from R to another vertex of PCu|D3

containing
both edges 2 and 4. By Corollary 34, snr2̃ and snr4̃ can be applied in parallel to
ϕ(u) for some 2̃ ∈ {2, 2̄}, 4̃ ∈ {4, 4̄}, and some reduction ϕ of u. Indeed, if we take
ϕ = spr7̄ sdr3,5, then snr2 and snr4 can be applied in parallel to ϕ(u) = 622446.
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3.10 Conclusion

This chapter shows that one can efficiently determine the possible sequences of
loop recombination operations that can be applied in the transformation of a given
gene from its micronuclear to its macronuclear form. Formally, one can determine
the orderings of string negative rules that can be present in successful reductions
of u. This is a characterization in terms of a graph defined on the (components of
the) reduction graph. Future research could focus on similar characterizations for
the string positive rules and the string double rules. However, this would require
other concepts, since the pointer-component graph does not retain information
regarding positiveness or overlap of pointers, notions crucial for the applicability
of the other two operations.



Chapter 4

The Fibers and Range of

Reduction Graphs

Abstract
The biological process of gene assembly transforms a nucleus (the MIC) into a
functionally and physically different nucleus (the MAC). For each gene in the MIC
(the input), recombination operations transform the gene to its MAC form (the
output). Here we characterize which inputs obtain the same output, and moreover
characterize the possible forms of the outputs. We do this in the abstract and more
general setting of so-called legal strings.

4.1 Introduction

Ciliates form a large group of one-cellular organisms that are able to transform
one nucleus, called the micronucleus (MIC), into an astonishing different one,
called the macronucleus (MAC). This intricate DNA transformation process is
called gene assembly. Each gene occurs both in the MIC and MAC, but in very
different forms. During gene assembly each gene is transformed from its MIC form
to its MAC form.

Formally, the gene in MIC form (the input) can be described by a so-called
legal string [12], while the gene in MAC form, including additionally generated
structures, (the output) can be described by a so-called reduction graph [6, 5].
The reduction graph is based on the notion of breakpoint graph in the theory of
sorting by reversal [17, 1, 23].

Given the function R that assigns to each legal string u its reduction graph
Ru, we (1) characterize the range of R (up to graph isomorphism) in terms of
easy-to-check conditions on graphs (cf. Theorem 24), and (2) characterize the
fiber R−1(Ru) (modulo graph isomorphism) for each reduction graph Ru (cf.
Theorem 34). In fact we show that R−1(Ru) is the ‘orbit’ of u under two types
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of string rewriting rules.
Result (1) characterizes which graphs are (isomorphic to) reduction graphs.

Obviously, these graphs should have the ‘look and feel’ of reduction graphs. For
instance, each vertex label should occur exactly four times, and the second type of
edges connect vertices of the same label. Once these elementary and easy-to-check
properties are satisfied, reduction graphs are characterized as having a connected
pointer-component graph — a graph which represents the distribution of the
vertex labels over the connected components, originally defined in [4]. This last
condition can also be efficiently verified. The characterization implies restrictions
on the form of the MAC structures that can possibly occur.

Result (2) determines, given two legal strings, whether or not they have the
same reduction graph. This may allow one to determine which MIC genes obtain
the same MAC structure. It turns out that two legal strings obtain the same
reduction graph (up to isomorphism) exactly when they can be transformed into
each other by two types of string rewriting rules. We will see that, surprisingly,
these rules are in a sense dual to string rewriting rules in a model of gene assembly
called string pointer reduction system (SPRS) [12].

The latter characterization has additional uses for the specific model SPRS as
well. In this model, gene assembly is assumed to be performed by three types of
recombination (splicing) operations that are modeled as types of string rewriting
rules. The string negative rules form one of these types. It has been shown that
the reduction graph allows for a complete characterization of applicability of the
string negative rules during the transformation process [6, 4]. Moreover, it has
been shown that the reduction graph does not retain much information about the
applicability of the other two types of rules [4]. Therefore, the legal strings that
obtain the same reduction graph are exactly the legal strings that have similar
characteristics concerning the string negative rule.

To establish both main results, we augment the (abstract) reduction graph
with a set of merge-legal edges. We will show that some “valid” sets of merge-legal
edges for a reduction graph allows one to “go back” to a legal string corresponding
to this (abstract) reduction graph. In this way the existence of such valid set
determines which graphs are (isomorphic to) reduction graphs. The first main
result shows that the existence of such valid set is computationally easy to verify.
Moreover, the set of all sets of merge-legal edges can be transformed into each
other by flip operations. These flip operations can be defined in terms of the above
mentioned dual string pointer rules on legal strings. This will establish the other
main result.

This chapter is organized as follows. Section 4.2 fixes notation of basic math-
ematical notions. In Section 4.3 we recall notions related to legal strings, in Sec-
tion 4.4 we recall the reduction graph and the pointer-component graph, and in
Section 4.5 we generalize the notion of reduction graph and give an extension
through merge-legal edges. In Section 4.6 we provide a preliminary characteriza-
tion that determines which graphs are (isomorphic to) reduction graphs. In the
next three sections, we strengthen the result to allow for efficient algorithms: in
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Section 4.7 we define the flip operation on sets of merge-legal edges, in Section 4.8
we show that the effect of flip operation corresponds to merging or splitting of
connected components, and in Section 4.9 we prove the first main result, cf. Theo-
rem 24. In Sections 4.10 and 4.11 we prove the second main result, cf. Theorem 34.
We conclude this chapter with a discussion. A conference edition of this chapter,
containing selected results without proofs, was presented at DLT ’07 [2].

4.2 Mathematical Notation and Terminology

In this section we recall some basic notions concerning functions, strings, and
graphs. We do this mainly to fix the basic notation and terminology.

The symmetric difference of sets X and Y , (X\Y ) ∪ (Y \X), is denoted by
X ⊕ Y . As ⊕ is associative, one may define the symmetric difference of a finite
family of sets (Xi)i∈A – it is denoted by

⊕

i∈A Xi. The composition of functions
f : X → Y and g : Y → Z is the function gf : X → Z such that (gf)(x) = g(f(x))
for every x ∈ X . The restriction of f to a subset A of X is denoted by f |A. The
range f(X) of f will be denoted by rng(f). The fiber (or preimage) of y ∈ Y
under f , denoted by f−1(y), is {x ∈ X | f(x) = y}. The fibers form a partition of
X . If Y = X , then f is called self-inverse if f2 is the identity function. We will
use λ to denote the empty string.

We now turn to graphs. A (undirected) graph is a tuple G = (V, E), where V
is a finite set and E ⊆ {{x, y} | x, y ∈ V }. The elements of V are the vertices of
G and the elements of E are the edges of G. In this chapter we allow x = y, and
therefore edges can be of the form {x, x} = {x} — an edge of this form should
be seen as an edge connecting x to x, i.e., a ‘loop’ for x. The restriction of G to
E′ ⊆ E, denoted by G|E′ , is the subgraph (V, E′). The order |V | of G is denoted
by o(G).

A multigraph is a (undirected) graph G = (V, E, ǫ), where parallel edges are
possible. Therefore, E is a finite set of edges and ǫ : E → {{x, y} | x, y ∈ V } is
the endpoint mapping. Note that for multigraphs, E is not specified in terms of
V – the relationship between V and E is specified by ǫ.

A coloured base B is a 4-tuple (V, f, s, t) such that V is a finite set, s, t ∈ V ,
and f : V \{s, t} → Γ for some Γ. The elements of V , {{x, y} | x, y ∈ V, x 6= y},
and Γ are called vertices, edges, and vertex labels for B, respectively.

An n-edge coloured graph, n ≥ 1, is a tuple G = (V, E1, E2, · · · , En, f, s, t)
where B = (V, f, s, t) is a coloured base and, for i ∈ {1, . . . , n}, Ei is a set of edges
for B. We also denote G by B(E1, E2, · · · , En). We define dom(G) = rng(f).

The previously defined notions and notation for graphs carry over to multi-
graphs and n-edge coloured graphs. Isomorphisms between graphs are defined
in the usual way: graphs are considered isomorphic when they are equal mod-
ulo the identity of the vertices. However, the labels of the identified vertices in
n-edge coloured graphs must be equal. Therefore n-edge coloured graphs G =
(V, E1, .., En, f, s, t) and G′ = (V ′, E′

1, ..., E
′
n, f ′, s′, t′) are isomorphic, denoted

by G ≈ G′, if there is a bijection q : V → V ′ such that q(s) = s′, q(t) = t′,
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f(v) = f ′(q(v)) for all v ∈ V , and {x, y} ∈ Ei iff {q(x), q(y)} ∈ E′
i, for all

x, y ∈ V , and i ∈ {1, . . . , n}. Also, multigraphs G = (V, E, ǫ) and G′ = (V ′, E, ǫ′)
are isomorphic, denoted by G ≈ G′, if there is a bijection α : V → V ′ such that
αǫ = ǫ′, or more precisely, for e ∈ E, ǫ(e) = {v1, v2} implies ǫ′(e) = {α(v1), α(v2)}.
We assume the reader is familiar with the notions of cycle and connected com-
ponent in a graph. A graph is called connected if it has exactly one connected
component, and it is called acyclic when it does not contain cycles.

4.3 Legal strings

Gene assembly transforms each gene from its MIC form to its MAC form. For-
mally, the MIC form of a gene (the input) is represented by a legal string u, while
the MAC form of that gene, including the additionally generated structures, (the
output) is represented by the reduction graph of u. We define the notion of legal
string and some accompanying notions in this section, and the notion of reduction
graph in the next section. We refer to [12] for a detailed motivation of the notions
of this section.

We fix κ ≥ 2, and define the alphabet ∆ = {2, 3, . . . , κ}. For D ⊆ ∆, we define
D̄ = {ā | a ∈ D} and Π = ∆∪∆̄. The elements of Π will be called pointers. We use
the ‘bar operator’ to move from ∆ to ∆̄ and back from ∆̄ to ∆. Hence, for p ∈ Π,
¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ Π, the inverse of u is the string

ū = x̄nx̄n−1 · · · x̄1. For p ∈ Π, we define p =

{

p if p ∈ ∆

p̄ if p ∈ ∆̄
, i.e., p is the ‘unbarred’

variant of p. The domain of a string v ∈ Π∗ is dom(v) = {p | p occurs in v}. A
legal string is a string u ∈ Π∗ such that for each p ∈ Π that occurs in u, u contains
exactly two occurrences from {p, p̄}. For a pointer p and a legal string u, if both
p and p̄ occur in u then we say that both p and p̄ are positive in u; if on the other
hand only p or only p̄ occurs in u, then both p and p̄ are negative in u.

Let u = x1x2 · · ·xn be a legal string with xi ∈ Π for 1 ≤ i ≤ n. For a pointer
p ∈ Π such that {xi, xj} ⊆ {p, p̄} and 1 ≤ i < j ≤ n, the p-interval of u is
the substring xixi+1 · · ·xj . Two distinct pointers p, q ∈ Π overlap in u if both
q ∈ dom(Ip) and p ∈ dom(Iq), where Ip (Iq , resp.) is the p-interval (q-interval,
resp.) of u.

We say that legal strings u and v are equivalent, denoted by u ≈ v, if there is
homomorphism ϕ : Π∗ → Π∗ with ϕ(p) ∈ {p, p̄} and ϕ(p̄) = ϕ(p) for all p ∈ Π
such that ϕ(u) = v.

Example 1
Legal strings 22̄33 and 2̄233 are equivalent, while 22̄33 are 22̄3̄3 are not.

Note that ≈ is an equivalence relation. Equivalent legal strings are character-
ized by their ‘unbarred version’ and their set of positive pointers.
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s 2 2 7 7 4 4 7 7 3 3 5 5 3 3 4 4 2 2 6 6 5 5 6 6 t

Figure 4.1: The reduction graph Ru of u in Example 2.

4.4 Reduction Graph

We now recall the definition of reduction graph. This definition is equal to the
one in [4], and is in slightly less general form compared to the one in [6]. We
refer to [6], where it was introduced, for a more detailed motivation and for more
examples and results. The notion of reduction graph uses the intuition from the
notion of breakpoint graph (or reality-and-desire diagram) known from another
branch of DNA processing theory called sorting by reversal, see e.g. [23, 21]. From
a biological point of view, the reduction graph represents the MAC form of a gene
(including the additionally generated structures) given its MIC form. As the MIC
form of a gene is represented by a legal string, reduction graphs are defined on
legal strings.

Definition 1
Let u = p1p2 · · · pn with p1, . . . , pn ∈ Π be a legal string. The reduction graph of
u, denoted by Ru, is a 2-edge coloured graph (V, E1, E2, f, s, t), where

V = {I1, I2, . . . , In} ∪ {I ′1, I
′
2, . . . , I

′
n} ∪ {s, t},

E1 = {e0, e1, . . . , en} with ei = {I ′i, Ii+1} for 0 < i < n, e0 = {s, I1}, en = {I ′n, t},

E2 = {{I ′i, Ij}, {Ii, I
′
j} | i, j ∈ {1, 2, . . . , n} with i 6= j and pi = pj} ∪

{{Ii, Ij}, {I
′
i, I

′
j} | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called the reality edges, and the edges of E2 are called the
desire edges. Notice that for each p ∈ dom(u), the reduction graph of u has exactly
two desire edges containing vertices labelled by p. It follows from the construction
of the reduction graph that, given legal strings u and v, u ≈ v iff Ru = Rv.

In depictions of reduction graphs, we will represent the vertices (except for s
and t) by their labels, because the exact identity of the vertices is not essential
for the problems considered in this chapter. We will also depict reality edges as
‘double edges’ to distinguish them from the desire edges.
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s 2 2 6 6 t 6 6

2 7 7 7 7 3 5 5

2 4 4 4 4 3 5 5

3 3

Figure 4.2: The reduction graph of Figure 4.1 obtained by rearranging the vertices.

Example 2
The reduction graph of u = 27̄473534̄2656 is depicted in Figure 4.1. Note how
positive pointers are connected by crossing desire edges, while those for negative
pointers are parallel. By rearranging the vertices we can depict the graph as shown
in Figure 4.2.

Reality edges follow the linear order of the legal string, whereas desire edges
connect positions in the string that will be joined when performing reduction
rules, see [6].

We now recall the definition of pointer-component graph of a legal string,
introduced in [4]. The graph represents how the labels of a reduction graph are
distributed among its connected components. Surprisingly, this graph has different
uses in this chapter compared to its original uses in [4]. There it was used in a
specific model of gene assembly (which we do not assume here) to characterize a
type of splicing operation called loop recombination.

Definition 2
Let u be a legal string. The pointer-component graph of u (or of Ru), denoted by
PCu, is a multigraph (ζ, E, ǫ), where ζ is the set of connected components of Ru,
E = dom(u) and ǫ is, for e ∈ E, defined by ǫ(e) = {C ∈ ζ | C contains vertices
labelled by e}.

Since for each e ∈ dom(u), there are exactly two desire edges connecting vertices
labelled by e, 1 ≤ |ǫ(e)| ≤ 2, and therefore ǫ is well defined (recall that the case
|ǫ(e)| = 1 corresponds to a loop).

Example 3
The pointer-component graph of the reduction graph from Figure 4.2 is shown in
Figure 4.3.
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C1

5

6
R

2

C2

3
4

C3

7

Figure 4.3: The pointer-component graph of the reduction graph from Figure 4.2.

4.5 Abstract Reduction Graphs and Extensions

In this section we generalize the notion of reduction graph as a starting point to
consider which graphs are (isomorphic to) reduction graphs. Moreover, we extend
the reduction graphs by a set of edges, called merge edges, such that, along with
the reality edges, the linear structure of the legal string is preserved in the graph.

We will now define a set of edges for a given coloured base which has features
in common with desire edges of a reduction graph.

Definition 3
Let B = (V, f, s, t) be a coloured base. We say that a set of edges E for B is
desirable if

1. for all {v1, v2} ∈ E, f(v1) = f(v2),

2. for each v ∈ V \{s, t} there is exactly one e ∈ E such that v ∈ e.

We now generalize the concept of reduction graph.

Definition 4
A 2-edge coloured graph B(E1, E2) with B = (V, f, s, t) is called an abstract
reduction graph if

1. rng(f) ⊆ ∆, and for each p ∈ rng(f), |f−1(p)| = 4,

2. for each v ∈ V there is exactly one e ∈ E1 such that v ∈ e,

3. E2 is desirable for B.

The set of all abstract reduction graphs is denoted by G.
Clearly, if G ≈ Ru for some u, then G ∈ G. Therefore, for abstract reduction

graphs G = B(E1, E2), the edges in E1 are called reality edges and the edges in
E2 are called desire edges. For graphical depictions of abstract reduction graphs
we will use the same conventions as we have for reduction graphs. Thus, edges in
E1 will be depicted as “double edges”, vertices are represented by their label, etc.

Example 4
The 2-edge coloured graph in Figure 4.4 is an abstract reduction graph.
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2 2 5 5 9 8 8 s

5 5 4 4 9 7 7 9

2 2 3 3 8 8 3 3 9

4 4 7 7 6 6 6 6 t

Figure 4.4: An abstract reduction graph.

s 2 2 7 7 4 4 7 7 3 3 5 5 3 3 4 4 2 2 6 6 5 5 6 6 t

Figure 4.5: The extended reduction graph Eu of u given in Example 2.

Note that conditions (1) and (3) in the previous definition imply that for each
p ∈ rng(f), there is a partition {e1, e2} of f−1(p), denoted by CG,p or Cp when G
is clear from the context, such that e1, e2 ∈ E2.

We now introduce an extension to reduction graphs such that the ‘generic’
linear order of the vertices s, I1, I

′
1, . . . , In, I ′n, t is retained, even when we consider

the graphs up to isomorphism.

Definition 5
Let u be a legal string. The extended reduction graph of u, denoted by Eu, is a
3-edge coloured graph B(E1, E2, E3), where Ru = B(E1, E2) and E3 = {{Ii, I

′
i} |

1 ≤ i ≤ n} with n = |u|.

The edges in E3 are called the merge edges of u, denoted by Mu. In this way,
the reality edges and the merge edges form a unique path which passes through
the vertices in the generic linear order. This is illustrated in the next example. In
figures merge edges will be depicted by “dashed edges”.

Example 5
The extended reduction graph Eu of u given in Example 2 is shown in Figure 4.5,
cf. Figure 4.1.

Remark
The notion of merge edges for (extended) reduction graphs is more closely related
to the notion of reality edges for breakpoint graphs in the theory of sorting by
reversal [17] compared to the notion of reality edges for (extended) reduction
graphs. Thus in a way it would be more natural to call the merge edges reality
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s 2 2 3 3 t

2 3

2 3

Figure 4.6: An abstract reduction graph.

s 2 2 3 3 t

2 3

2 3

Figure 4.7: The abstract reduction graph of Figure 4.6 with a set of merge-legal
edges.

edges for (extended) reduction graphs, and the other way around. However, to
avoid confusion with earlier work, we do not change this terminology.

We now generalize this extension of reduction graphs to abstract reduction
graphs.

Definition 6
Let G = B(E1, E2) ∈ G, and let E be a set of edges for B. We say that E is
merge-legal for G if E is desirable for B, and E2 ∩ E = ∅. We denote the set
{E | E merge-legal for G} by MLG. The set of all E ∈ MLG where B(E1, E) is
connected is denoted by CONG.

For legal string u, we also denote MLRu
and CONRu

by MLu and CONu, respec-
tively. Notice that Mu ∈ CONu ⊆ MLu. Therefore, merge-legal edges will also be
depicted by “dashed edges”.

Example 6
Let us consider the abstract reduction graph G = B(E1, E2) of Figure 4.6. This
graph is again depicted in Figure 4.7 including a merge-legal set E for G. In
this way Figure 4.7 depicts the 3-edge coloured graph B(E1, E2, E). Notice that
E 6∈ CONG. In Figure 4.8, the abstract reduction graph is depicted with a merge-
legal set in CONG.

We now define a natural abstraction of the notion of extended reduction graph.
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s 2 2 3 3 t

2 3

2 3

Figure 4.8: The abstract reduction graph of Figure 4.6 with another set of merge-
legal edges.

s 2 2 6 6 t 6 6

2 7 7 7 7 3 5 5

2 4 4 4 4 3 5 5

3 3

Figure 4.9: A extended abstract reduction graph obtained by augmenting the
reduction graph of Figure 4.2 with merge edges.

Definition 7
Let G = B(E1, E2) ∈ G and E ∈ CONG. Then G′ = B(E1, E2, E) is called a
extended abstract reduction graph.

For each legal string u, Eu is an extended abstract reduction graph, since Mu ∈
CONu. Therefore, the edges in E (in the previous definition) are called the merge
edges (of G′). Since E ∈ CONG, B(E1, E) has the following form:

s p1 p1 p2 p2 · · · pn pn t

Thus the property that reality and merge edges in an extended reduction graph
induce a unique path from s to t that alternatingly passes through reality edges
and merge edges is retained for extended abstract reduction graphs G in general.
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Example 7
If we consider the reduction graph Ru = B(E1, E2) of Example 2 shown in Fig-
ure 4.2, then, of course, B(E1, E2, Mu) = Eu shown in Figure 4.5 is a extended
abstract reduction graph. In Figure 4.9 another extended reduction graph is shown
– it is Ru augmented with a set of merge edges E in CONu. It is easy to see that
indeed E ∈ CONu: simply notice that the path from s to t induced by the reality
and merge edges will go through every vertex of the graph.

4.6 Back to Legal Strings

In this section we show that for extended abstract reduction graphs G we can ‘go
back’ in the sense that there are legal strings u such that G is isomorphic to Eu.
Moreover we show how to obtain the set LG of all legal strings that corresponds
to G. We will show that the legal strings in LG are equivalent, and thus that
extended reduction graphs retain all essential information of the legal strings.

As extended abstract reduction graphs have a natural linear order of the ver-
tices given by their reality edges and merge edges, we can infer whether or not
desire edges ‘cross’ or not – thereby providing a way to define negative and positive
pointers for extended abstract reduction graphs. This is formalized as follows.

Definition 8
Let G = B(E1, E2, E3) be an extended abstract reduction graph, let G′ = B(E1, E2),
and let π = (s, v1, v

′
1, · · · , vn, v′n, t) be the path from s to t in B(E1, E3). We

say that p ∈ dom(G) is negative in G iff CG′,p = {{vi, v
′
j}, {v

′
i, vj}} for some

i, j ∈ {1, . . . , n} with i 6= j. Also, we say that p ∈ dom(G) is positive in G if p is
not negative in G.

Clearly, p ∈ dom(G) is positive in G iff CG′,p = {{vi, vj}, {v
′
i, v

′
j}} for some

i, j ∈ {1, . . . , n} with i 6= j. It is easy to see that p is negative in legal string u iff
p is negative in Eu.

Next, we assign to each extended abstract reduction graph G a set of legal
strings LG. We subsequently show that these strings are precisely the legal strings
u such that Eu ≈ G.

Definition 9
Let G = B(E1, E2, E3) be an extended abstract reduction graph, and let H =
B(E1, E3) be as follows:

s p1 p1 p2 p2 · · · pn pn t

The legalization of G, denoted by LG, is the set of legal strings u = p1p2 · · · pn

with pi ∈ {pi,pi} and pi is negative in u iff pi is negative in G.

Example 8
Let us consider the extended abstract reduction graph G of Figure 4.9. By re-
arranging the vertices we obtain Figure 4.10. From this figure it is clear that
v = 274265̄374356 ∈ LG.
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s 2 2 7 7 4 4 2 2 6 6 5 5 3 3 7 7 4 4 3 3 5 5 6 6 t

Figure 4.10: The extended abstract reduction graph G given in Example 8.

It is easy to see that, for a legal string u, we have u ∈ LEu
.

Note that LG, for extended abstract reduction graph G, is an non-empty
equivalence class w.r.t. to the ≈ relation (for legal strings). Since the definition
of LG does not depend on the exact identity of the vertices of G, we have, for
extended abstract reduction graphs G and G′, G ≈ G′ implies LG = LG′ .

Theorem 10
1. Let G and G′ be extended abstract reduction graphs. Then G ≈ G′ iff

LG = LG′ .

2. Let u and v be legal strings. Then u ≈ v iff Eu ≈ Ev.

Proof
We first consider statement 1. We have already established the forward impli-
cation. We now prove the reverse implication. Let G = B(E1, E2, E3), G′ =
B′(E′

1, E
′
2, E

′
3), and LG = LG′ . By the definition of legalization, B(E1, E3) ≈

B′(E′
1, E

′
3) and p is negative in G iff p is negative in G′ for p ∈ dom(G) = dom(G′).

Therefore, G ≈ G′.
We now consider statement 2. We have u ≈ v iff u, v ∈ LEu

= LEv
(since

legalizations are equivalence classes of legal strings w.r.t ≈) iff Eu ≈ Ev (by the
first statement).

Let G be an extended abstract reduction graph, and take u ∈ LG (such a u
exists since LG is nonempty). Since u ∈ LEu

and legalizations are equivalence
classes, we have LEu

= LG and therefore G ≈ Eu. Thus every extended abstract
reduction graph G is isomorphic to an extended reduction graph. In fact, it is iso-
morphic to precisely those extended reduction graphs Eu with u ∈ LG. Therefore,
this u is unique up to equivalence.

Corollary 11
Let u and v be legal strings. If Ru ≈ Rv, then there is a E ∈ CONu such that
Ev ≈ B(E1, E2, E) with Ru = B(E1, E2).

Proof
Since Ru ≈ Rv, there is a set of edges E for Ru such that Ev ≈ B(E1, E2, E).
Since Mv ∈ CONv, we have E ∈ CONu.

We end this section with a graph theoretical characterization of reduction
graphs.
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v1 v3

v2 v4

↔

v1 v3

v2 v4

Figure 4.11: Flip operation for p. All vertices are labelled by p

Theorem 12
Let G be a 2-edge coloured graph. Then G is isomorphic to a reduction graph iff
G ∈ G and CONG 6= ∅.

Proof
Let G ≈ Ru for some legal string u. Then clearly, G ∈ G. Also, Mu ∈ CONu and
hence CONu 6= ∅. Therefore, CONG 6= ∅.

Let E ∈ CONG. Then G′ = B(E1, E2, E) is an extended abstract reduction
graph with G = B(E1, E2). By the paragraph below Theorem 10, G′ ≈ Eu for
some legal string u (take u ∈ LG′). Hence, G ≈ Ru.

4.7 Flip Edges

In this section and the next two we provide characterizations of the statement
CONG 6= ∅. This allows, using Theorem 12, for a characterization that corre-
sponds to an efficient algorithm that determines whether or not a given G ∈ G
is isomorphic to a reduction graph. Moreover, it allows for an efficient algorithm
that determines a legal string u for which G ≈ Ru.

Let G ∈ G. Then a merge-legal set for G is easily obtained as follows. For each
p ∈ dom(G) with Cp = {{v1, v2}, {v3, v4}}, a merge-legal set for G must have
either the edges {v1, v3} and {v2, v4} or the edges {v1, v4} and {v2, v3}, see both
sides in Figure 4.11. By assigning such edges for each p ∈ dom(G) we obtain a
merge-legal set for G. Thus, MLG 6= ∅ for each G ∈ G. Note that in particular,
if dom(G) = ∅, then MLG = {∅}. However, CONG can be empty as the next
example illustrates.

Example 9
It is easy to see that the abstract reduction graph G of Figure 4.12 does not have
a merge-legal set in CONG.

We now formally define a type of operation that in Figure 4.11 transforms the
situation on the left-hand side to the situation on the right-hand side, and the
other way around. Informally speaking it “flips” edges of merge-legal sets.

Definition 13
Let G = B(E1, E2) ∈ G, let f be the vertex labeling function of G, and let p ∈
dom(G). The flip operation for p (w.r.t. G) is the function flipG,p : MLG → MLG
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s 2 2 2 2 t

3 3

3 3

Figure 4.12: An abstract reduction graph G for which CONG = ∅.

defined, for E ∈ MLG, by:

flipG,p(E) = {{v1, v2} ∈ E | f(v1) 6= p 6= f(v2)} ∪ {e1, e2},

where e1 and e2 are the two edges with vertices labelled by p such that e1, e2 6∈
E2 ∪ E.

When G is clear from the context, we also denote flipG,p by flipp.
Since by Figure 4.11, there are exactly two edges e1 and e2 with vertices

labelled by p that are not parallel to both the edges in E2 ∪ E, flipp is well
defined. It is now easy to see that indeed flipp(E) ∈ MLG for E ∈ MLG.

Example 10
Let G be the abstract reduction graph of Figure 4.6. If we apply flipG,2 to the set
of merge-legal edges depicted in Figure 4.7, then we obtain the set of merge-legal
edges depicted in Figure 4.8.

The next theorem follows directly from the previous definition and from the
fact that Figure 4.11 contains the only possible ways in which edges in merge-legal
sets for G can be connected.

Theorem 14
Let G ∈ G, and denote by F be the group generated by the flip operations w.r.t.
G under function composition. Then each element of F is self-inverse, thus F is
Abelian, and F acts transitively on MLG.

Let D = {p1, . . . , pl} ⊆ dom(G). Then we define flipD = flippl
· · · flipp1

. Since
F is Abelian, flipD is well defined. Moreover, since each each element in F is
self-inverse, F = {flipD | D ⊆ dom(G)}. Also, if D1, D2 ⊆ dom(G) and D1 6= D2,
then flipD1

(E) 6= flipD2
(E). Thus the following holds.

Theorem 15
Let G ∈ G. Then there is a bijection Q : 2dom(G) → F given by Q(D) = flipD.
Moreover, for each E ∈ MLG, MLG = {flipD(E) | D ⊆ dom(G)}.
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Figure 4.13: The pointer-component graph of the abstract reduction graph from
Figure 4.4.

4.8 Merging and Splitting Connected Components

Let G = B(E1, E2) be an abstract reduction graph and let E ∈ MLG. In this
section we consider the effect of the flip operation on the pointer-component graph
defined on the abstract reduction graph H = B(E1, E). If we are able to obtain,
using flip operations, a pointer-component graph consisting of one vertex, then
CONG 6= ∅, and consequently by Theorem 12, G is isomorphic to a reduction
graph.

However, first we need to define the notion of pointer-component graph for
abstract reduction graphs in general. Fortunately, this generalization is trivial.

Definition 16
Let G ∈ G. The pointer-component graph of G, denoted by PCG, is a multigraph
(ζ, E, ǫ), where ζ is the set of connected components of G, E = dom(G), and ǫ is,
for e ∈ E, defined by ǫ(e) = {C ∈ ζ | C contains vertices labelled by e}.

Example 11
The pointer-component graph of the graph from Figure 4.4 is shown in Figure 4.13.

Note that when G = B(E1, E2) ∈ G and E ∈ MLG, then E is desirable for B.
Hence, H = B(E1, E) is also an abstract reduction graph. Therefore, e.g., PCH

is defined.
It is useful to distinguish the pointers that form loops in the pointer-component

graph. Therefore, we define, for G ∈ G, bridge(G) = {e ∈ E | |ǫ(e)| = 2} where
PCG = (V, E, ǫ). In [4], bridge(G) is denoted as snrdom(G). However, this notation
does not make sense for its uses in this chapter.

Example 12
From Figure 4.13 it follows that bridge(G) = dom(G)\{3, 6} for the abstract
reduction graph G depicted in Figure 4.4.

Merge rules have been used for multigraphs, and pointer-component graphs in
particular in [4]. The definition presented here is slightly different from the one in
[4] – here the pointer p on which the merge rule is applied remains present after
the rule is applied.
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Definition 17
For each edge p, the p-merge rule, denoted by mergep, is a rule applicable to
(defined on) multigraphs G = (V, E, ǫ) with p ∈ bridge(G). It is defined by

mergep(G) = (V ′, E, ǫ′),

where V ′ = (V \ǫ(p)) ∪ {v′} with v′ 6∈ V , and ǫ′(e) = {h(v1), h(v2)} iff ǫ(e) =
{v1, v2} where h(v) = v′ if v ∈ ǫ(p), otherwise it is the identity.

It is easy to see that merge rules commute. We are now ready to state the following
result which is similar to Theorem 27 in [4].

Theorem 18
Let G = B(E1, E2) ∈ G, let E ∈ MLG, let H = B(E1, E), and let, for p ∈ dom(G),
Hp = B(E1, flipp(E)).

• If p ∈ bridge(H), then PCHp
≈ mergep(PCH)

(and therefore o(PCHp
) = o(PCH) − 1).

• If p ∈ dom(H)\bridge(H), then o(PCH) ≤ o(PCHp
) ≤ o(PCH) + 1.

Proof
First let p ∈ bridge(H). Let CH,p = {{v1, v2}, {v3, v4}}. Then, H has the following
form, where each of the two edges in CH,p are from different connected components
in H and where, unlike our convention, we have depicted the vertices by their
identity instead of their label:

. . . v1 v2 . . .

. . . v3 v4 . . .

Now, either {{v1, v4}, {v2, v3}} ⊆ E2 or {{v1, v3}, {v2, v4}} ⊆ E2. Thus Hp is of
either

. . . v1 v2 . . .

. . . v3 v4 . . .

or

. . . v1 v2 . . .

. . . v3 v4 . . .

form, respectively. Thus in both cases, the two connected components are
merged, and thus PCHp

can be obtained (up to isomorphism) from PCH by ap-
plying the mergep operation.
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Now let p ∈ dom(H)\bridge(H). Then the edges in CH,p belong to the same
connected component. Thus H has the following form

· · · v1 v2 · · · v3 v4 · · ·

where CH,p = {{v1, v2}, {v3, v4}}. Again, we have either {{v1, v4}, {v2, v3}} ⊆ E2

or {{v1, v3}, {v2, v4}} ⊆ E2. Thus Hp is of either

· · · v1 v2 · · · v3 v4 · · ·

or

· · · v1 v2 · · · v3 v4 · · ·

form, respectively. Thus, Hp has either the same number of connected com-
ponents of H or exactly one more, respectively. Thus, o(PCH) ≤ o(PCHp

) ≤
o(PCH) + 1.

Example 13
Let G = B(E1, E2) ∈ G be as in Figure 4.6. If we take E ∈ MLG as in Figure 4.7,
then 2 ∈ bridge(H) with H = B(E1, E). Therefore, by Theorem 18 and the
fact that G has exactly two connected components, H2 = B(E1, flip2(E)) is a
connected graph. Indeed, this is clear from Figure 4.8 (by ignoring the edges from
E2).

Informally, the next lemma shows that by applying flip operations, we can
shrink a connected pointer-component graph to a single vertex. In this way, the
underlying abstract reduction graph is a connected graph.

Remark
The next lemma appears to be similar to Lemma 29 in [4]. Although the flip
operation (defined on graphs) and the rem operation (defined on strings) are
quite distinct, they do have a similar effect on the pointer-component graph.

Lemma 19
Let G = B(E1, E2) ∈ G, let E ∈ MLG, let H = B(E1, E), and let D ⊆ dom(G) =
dom(H). Then PCH |D is a tree iff B(E1, flipD(E)) and H have 1 and |D| + 1
connected components, respectively.

Proof
Let D = {p1, . . . , pn}. We first prove the forward implication. If PCH |D is a tree,
then it has |D| edges, and thus |D| + 1 vertices. Therefore, PCH has |D| + 1
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vertices, and consequently, H has |D|+ 1 connected components. Since PCH |D is
acyclic, by Theorem 18,

PCB(E1,flipD(E)) = PCB(E1,(flippn
··· flipp1

)(E)) ≈ (mergepn
· · · mergep1

)(PCH).

Now, applying |D| merge operations on a graph with |D| + 1 vertices, results in
a graph containing exactly one vertex. Thus B(E1, flipD(E)) has one connected
component.

We now prove the reverse implication. Moving from H = B(E1, E) to graph
B(E1, flipD(E)) reduces the number of connected components in |D| steps from
|D| + 1 to 1. By Theorem 18, each flip operation of flipD corresponds to a merge
operation. Therefore (mergepn

· · · mergep1
) is applicable to PCH . Consequently,

PCH |D is acyclic. Since this graph has |D| + 1 vertices, PCH |D is a tree.

4.9 Connectedness of Pointer-Component Graph

In this section we use the results of the previous two sections to prove our first
main result, cf. Theorem 24, which strengthens Theorem 12 by replacing the
requirement CONG 6= ∅ by a simple test on PCG. We now characterize the
connectedness of PCG.

Definition 20
Let B = (V, f, s, t) be a coloured base. We say that a set of edges E for B is well-
coloured (for B) if for each partition ρ = (V1, V2) of V with f(V1) ∩ f(V2) = ∅,
there is an edge {v1, v2} ∈ E with v1 ∈ V1 and v2 ∈ V2.

We call G = B(E1, E2) ∈ G well-coloured if E1 is well-coloured for B.

Lemma 21
Let G ∈ G. Then PCG is a connected graph iff G is well-coloured.

Proof
Let G = B(E1, E2) with B = (V, f, s, t). We first prove the forward implication.
Let G be not well-coloured. Then there is a partition ρ = (V1, V2) of V with
f(V1) ∩ f(V2) = ∅ such that for each e ∈ E1, either e ⊆ V1 or e ⊆ V2. Since
for each {v1, v2} ∈ E2 we have f(v1) = f(v2), we have either {v1, v2} ⊆ V1

or {v1, v2} ⊆ V2. Therefore V1 and V2 induce two non-empty sets of connected
components which have no vertex label in common. Therefore, PCG is not a
connected graph.

We now prove the reverse implication. Assume that PCG = (ζ, E, ǫ) is not a
connected graph. Then, by the definition of pointer-component graph, there is a
partition (C1, C2) of ζ such that C1 and C2 have no vertex label in common. Let
Vi be the set of vertices of the connected components in Ci (i ∈ {1, 2}). Then for
partition ρ = (V1, V2) of V we have f(V1) ∩ f(V2) = ∅ and for each e ∈ E1 ∪ E2,
either e ⊆ V1 or e ⊆ V2. Therefore G is not well-coloured.
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Clearly, if G = B(E1, E2) ∈ G is well-coloured and E is desirable for B (e.g., one
could take E ∈ MLG), then H = B(E1, E) ∈ G and H is well-coloured. Therefore,
by Lemma 21, PCG is a connected graph iff PCH is a connected graph.

By Theorem 12 the next result is essential to efficiently determine which ab-
stract reduction graphs are isomorphic to reduction graphs.

Theorem 22
Let G ∈ G. Then PCG is a connected graph iff CONG 6= ∅.

Proof
Let G = B(E1, E2). We first prove the forward implication. Let PCG be a con-
nected graph and let E ∈ MLG. Then PCH with H = B(E1, E) is a connected
graph. Thus there exists a D ⊆ dom(G) such that PCH |D is a tree. By Lemma 19,
B(E1, flipD(E)) is a connected graph, and consequently flipD(E) ∈ CONG.

We now prove the reverse implication. Let E ∈ CONG. Thus, H = B(E1, E)
is a connected graph, and hence PCH is a connected graph. Therefore, PCG is
also a connected graph.

We can summarize the last two results as follows.

Corollary 23
Let G ∈ G. Then the following conditions are equivalent:

1. G is well-coloured,

2. PCG is a connected graph, and

3. CONG 6= ∅.

Example 14
By Figure 4.3 and Corollary 23, for (abstract) reduction graph G1 in Figure 4.2
we have CONG1

6= ∅. On the other hand, by Figure 4.13 and Corollary 23, for
abstract reduction graph G2 in Figure 4.4 we have CONG2

= ∅.

By Corollary 23 and Theorem 12 we obtain the first main result of this chapter.
It shows that one needs to check only a few computationally easy conditions to
determine whether or not a 2-edge coloured graph is (isomorphic to) a reduction
graph. Surprisingly, the ‘high-level’ notion of pointer-component graph is crucial
in this characterization.

Theorem 24
Let G be a 2-edge coloured graph. Then G isomorphic to a reduction graph iff
G ∈ G and PCG is a connected graph.

Note that in the previous theorem we can equally well replace “PCG is a connected
graph” by one of the other equivalent conditions in Corollary 23.

In Theorem 21 in [4] it is shown that the pointer-component graph of each
reduction graph is a connected graph. We did not use that result here – in fact it
is now a direct consequence of Theorem 24.
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Not only is it computationally efficient to determine whether or not a 2-edge
coloured graph G is isomorphic to a reduction graph, but, when this is the case,
then it is also computationally easy to determine a legal string u for which G ≈
Ru. Indeed, we can determine such a u from G = B(E1, E2) as follows:

1. Determine an E ∈ MLG. As we have mentioned before, such an E is easily
obtained.

2. Compute PCH with H = B(E1, E), and determine a set of edges D such
that PCH |D is a tree.

3. Compute G′ = B(E1, E2, flipD(E)), and determine a u ∈ LG′ .

As a consequence, pointer-component graphs of legal strings can, surprisingly,
take all imaginable forms.

Corollary 25
Every connected multigraph G = (V, E, ǫ) with E ⊆ ∆ is isomorphic to a pointer-
component graph of a legal string.

4.10 Flip and the Underlying Legal String

We now move to the second part of this chapter, where we characterize the fibers
R−1(Ru) modulo graph isomorphism. Thus, we describe the set of strings that
have the same reduction graph (up to isomorphism) as u. First we consider the
effect of flip operations on the set of merge edges.

Lemma 26
Let u be a legal string and let p ∈ dom(u). If p is negative in u, then flipp(Mu) ∈
CONu. If p is positive in u, then flipp(Mu) 6∈ CONu. In other words, flipp(Mu) ∈
CONu iff p is negative in u.

Proof
Let Ru = B(E1, E2). By the definition of flipp, flipp(Mu) ∈ MLu. It suffices to
prove that G = B(E1, flipp(Mu)) is a connected graph when p is negative in u
and not a connected graph when p is positive in u. Graph B(E1, Mu) has the
following form:

s p1 p1 · · · p p · · · p p · · · pn pn t

Now if p is negative in u, then G has the following form:

s p1 p1 · · · p p · · · p p · · · pn pn t

Thus in this case G is connected.
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If p is positive in u, then G has the following form:

s p1 p1 · · · p p · · · p p · · · pn pn t

Thus in this case G is not connected.

Lemma 27
Let u be a legal string and let p, q ∈ dom(u). If p and q are overlapping in u and
not both negative in u, then flip{p,q}(Mu) ∈ CONu.

Proof
Let Ru = B(E1, E2). Then B(E1, Mu) has the following form (we can assume
without loss of generality that p appears before q in the path from s to t):

s · · · p p · · · q q · · · p p · · · q q · · · t

Assume that p is positive in u – the other case (q is positive in u) is proved
similarly. By the proof of Lemma 26 it follows that B(E1, flipp(Mu)) has the
following form:

s · · · p p · · · q q · · · p p · · · q q · · · t

Therefore, q ∈ bridge(B(E1, flipp(Mu))). By Theorem 18, the pointer-component
graph of B(E1, flip{p,q}(Mu)) has only one vertex. Hence, B(E1, flip{p,q}(Mu)) is
connected and thus flip{p,q}(Mu) ∈ CONu.

Lemma 28
Let u be a legal string, and let D ⊆ dom(u) be nonempty. If flipD(Mu) ∈ CONu,
then either there is a p ∈ D negative in u or there are p, q ∈ D positive and
overlapping in u.

Proof
Let Eu = B(E1, E2, Mu) and let flipD(Mu) ∈ CONu. Then B(E1, flipD(Mu)) is a
connected graph. Assume to the contrary that all elements in D are positive and
pairwise non-overlapping in u. Then there is a p ∈ D such that the domain of
the p-interval does not contain an element in D\{p}. By the proof of Lemma 26,
B(E1, flipp(Mu)) consists of two connected components, one of which does not
have vertices labelled by elements in D\{p}. Therefore B(E1, flipD(Mu)) also
contains this connected component, and thus B(E1, flipD(Mu)) has more than
one connected component – a contradiction.

By the previous lemmata, we have the following result.
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Theorem 29
Let u be a legal string, and let D ⊆ dom(u) be nonempty. If flipD(Mu) ∈ CONu,
then either there is a p ∈ D negative in u with flipp(Mu) ∈ CONu or there are
p, q ∈ D positive and overlapping in u with flip{p,q}(Mu) ∈ CONu.

4.11 Dual String Pointer Rules

We now define the dual string pointer rules. These rules will be used to charac-
terize the effect of flip operations on the underlying legal string. For all p, q ∈ Π
with p 6= q, we define

• the dual string positive rule for p by dsprp(u1pu2pu3) = u1pū2pu3,

• the dual string double rule for p, q by dsdrp,q(u1pu2qu3p̄u4q̄u5) =
u1pu4qu3p̄u2q̄u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π. Notice that the
dual string pointer rules are self-inverse.

The names of these rules are due to their strong similarities with the two
of the three types of string rewriting rules of a specific model of gene assembly,
called string pointer reduction system (SPRS) [12]. In this model, gene assembly
is performed by three types of recombination (splicing) operations that are sub-
sequently modeled as string rewriting rules. For convenience we now recall these
string rewriting rules.

For all p, q ∈ Π with p 6= q, we define

• the string negative rule for p by snrp(u1ppu2) = u1u2,

• the string positive rule for p by sprp(u1pu2p̄u3) = u1ū2u3,

• the string double rule for p, q by sdrp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π.
Notice the strong similarities between dspr and spr, and between dsdr and

sdr. Both dsprp and sprp invert the substring between the two occurrences of
p or p̄. However, dsprp is applicable when p is negative, while sprp is applicable
when p is positive. Also, sprp removes the occurrences of p and p̄, while dspr
does not. A similar comparison can be made between dsdr and sdr.

The domain of a dual string pointer rule ρ, denoted by dom(ρ), is defined by
dom(dsprp) = {p} and dom(dsdrp,q) = {p,q} for p, q ∈ Π. For a composition
ϕ = ρn · · · ρ2 ρ1 of such rules ρ1, ρ2, . . . , ρn, the domain, denoted by dom(ϕ), is
dom(ρ1)∪dom(ρ2)∪ · · · ∪dom(ρn). Also, we define odom(ϕ) =

⊕

1≤i≤n dom(ρi).
Thus, odom(ϕ) ⊆ dom(ϕ) consists of the pointers that are used an odd number of
times. We call ϕ reduced if every p ∈ dom(ϕ) is used exactly once, i.e., dom(ρi)∩
dom(ρj) = ∅ for all 1 ≤ i < j ≤ n. Note that if ϕ is reduced, then dom(ϕ) =
odom(ϕ).
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Definition 30
Let u and v be legal strings. We say that u and v are dual, denoted by ≈d if there
is a (possibly empty) sequence ϕ of dual string pointer rules applicable to u such
that ϕ(u) ≈ v.

Notice that ≈d is an equivalence relation. Clearly, ≈d is reflexive. It is symmetrical
since dual string pointer rules are self-inverse, and it is transitive by function
composition: if ϕ1(u) ≈ v and ϕ2(v) ≈ w, then (ϕ2 ϕ1)(u) ≈ w.

Since dsprp is applicable when p is negative in u and dsdrp,q is applicable
when p and q are positive and overlapping, the following result is a direct corollary
to Lemma 28.

Corollary 31
Let u be a legal string, and let D ⊆ dom(u) be nonempty. If flipD(Mu) ∈ CONu,
then there is a dual string pointer rule ρ with dom(ρ) ⊆ D applicable to u.

Let G = B(E1, E2, E3) be an extended abstract reduction graph, and let
D ⊆ dom(G). Then we define flipD(G) = B(E1, E2, flipG′,D(E3)), where G′ =
B(E1, E2).

Lemma 32
Let u be a legal string, and let ϕ be a sequence of dual string rules applicable to
u. Then Eϕ(u) ≈ flipD(Eu) with D = odom(ϕ). Consequently, Rϕ(u) ≈ Ru.

Proof
It suffices to prove the result for the case ϕ = dsprp with p ∈ Π and for the case
ϕ = dsdrp,q with p, q ∈ Π. We first prove the case where ϕ = dsprp for some
p ∈ Π is applicable to u. Then by the second figure in the proof of Lemma 26
we see that the inversion of the substring between the two occurrences of p in u
accomplished by ϕ faithfully simulates the corresponding effect of flipp on Eu. We
only need to verify that p is negative in flipp(Eu). To do this, we depict Eu such
that the vertices are represented by their identity instead of their label:

s · · · v1 v2 · · · v3 v4 · · · t

where the vertices vi, i ∈ {1, 2, 3, 4}, are labelled by p. Then flipp(Eu) is

s · · · v1 v3 · · · v2 v4 · · · t

Therefore p is indeed negative in flipp(Eu), and consequently Eϕ(u) ≈ flipp(Eu).
We now prove the case where ϕ = dsdrp,q with p, q ∈ Π. Let Eu = B(E1, E2, E3),

then Eu has the following form

s · · · p p · · · q q · · · p p · · · q q · · · t
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where we omitted the edges in E2. Since p and q are positive in u, flip{p,q}(Eu)
has the following form:

s · · · p p · · · q q · · · p p · · · q q · · · t

where we again omitted the edges in E2. Thus, we see that interchanging the sub-
string in u between p and q and the substring in u between p̄ and q̄ accomplished
by ϕ faithfully simulates the corresponding effect of flipp,q on Eu. We only need
to verify that both p and q are positive in flipp,q(Eu). To do this, we depict Eu

such that the vertices are represented by their identity instead of their label:

s · · · v1 v2 · · · w1 w2 · · · v3 v4 · · · w3 w4 · · · t

where the vertices vi and wi, i ∈ {1, 2, 3, 4}, are labelled by p and q, respectively.
Then flipp,q(Eu) is

s · · · v1 v4 · · · w3 w2 · · · v3 v2 · · · w1 w4 · · · t

Therefore both p and q are indeed positive in flipp,q(Eu), and consequently Eϕ(u) ≈
flipp,q(Eu).

Thus, if ϕ1 and ϕ2 are sequences of dual string pointer rules applicable to a legal
string u with odom(ϕ1) = odom(ϕ2), then Eϕ1(u) ≈ Eϕ2(u) and thus ϕ1(u) ≈
ϕ2(u).

Lemma 33
Let u be a legal string, and let D ⊆ dom(u). There is a reduced sequence ϕ of dual
string pointer rules applicable to u such that dom(ϕ) = D iff flipD(Mu) ∈ CONu.

Proof
The forward implication follows directly from Lemma 32. We now prove the re-
verse implication. If D = ∅, we have nothing to prove. Let D 6= ∅. By Corol-
lary 31, there is a dual string pointer rule ρ1 with D1 = dom(ρ1) ⊆ D applicable
to u. By Lemma 32, Eρ1(u) ≈ flipD1

(Eu) and D1 = odom(ρ1) = dom(ρ1). Thus,
flipD\D1

(Mρ1(u)) ∈ CONρ1(u). Now by iteration, there is a reduced sequence ϕ of
dual string pointer rules applicable to u such that odom(ϕ) = dom(ϕ) = D.
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It follows from Lemmata 32 and 33 that reduced sequences of dual string pointer
rules are a normal form of sequences of dual string pointer rules. Indeed, by
Lemma 32, if ϕ is a sequence of dual string pointer rules applicable to a legal
string u with D = odom(ϕ), then flipD(Mu) ∈ CONu. By Lemma 33, there
is a reduced sequence ϕ′ of dual string pointer rules applicable to u such that
dom(ϕ′) = odom(ϕ′) = D. By the paragraph below Lemma 32, we have ϕ(u) ≈
ϕ′(u).

We are now ready to prove the second (and final) main result of this chapter.
It shows that the fiber R−1(Ru) for each legal string u is the ‘orbit’ of u under
the dual string pointer rules. Hence, the partition of the set of all legal strings
induced by the fibers under R, and the one induced by ≈d coincide. Equivalently,
the legal strings obtained from u by applying dual string pointer rules are exactly
those legal strings that have the same reduction graph as u (up to isomorphism).

Theorem 34
Let u and v be legal strings. Then Ru ≈ Rv iff u ≈d v.

Proof
The reverse implication follows directly from Lemma 32. We now prove the for-
ward implication. Let Ru ≈ Rv. By Corollary 11, there is a E ∈ CONu such that
Ev ≈ B(E1, E2, E) with Ru = B(E1, E2). By Theorem 15, E = flipD(Mu) for
some D ⊆ dom(u). Since flipD(Mu) ∈ CONu, by Lemma 33, there is a reduced
sequence ϕ of dual string pointer rules applicable to u such that dom(ϕ) = D. Now
by Lemma 32, Eϕ(u) ≈ flipD(Eu) ≈ Ev, and therefore, by Theorem 10, ϕ(u) ≈ v.

4.12 Discussion

This chapter characterizes, letting R be the function that assigns to each legal
string u its reduction graph Ru, the range of R (Theorem 24) and each fiber
R−1(Ru) (Theorem 34) modulo graph isomorphism.

The first characterization corresponds to a computationally efficient algorithm
that determines whether or not a graph G is isomorphic to a reduction graph.
Moreover, if this is the case, then the algorithm given below Theorem 24 allows
for an efficient determination of a legal string u such that G ≈ Ru. The first
characterization relies on the notion of merge-legal edges and its flip operation in-
troduced in this chapter. In particular, the connected components in the subgraph
induced by the reality edges and the merge-legal edges and the flip operation turn
out to be relevant in this context.

The second characterization determines, given u, the whole set R−1(Ru). It
turns out that R−1(Ru) is the orbit of u under the dual string pointer rules.
Moreover, each two legal strings u and v in such a fiber can be transformed into
each other by a sequence ϕ of dual string pointer rules without using any pointer
more than once. Therefore, the number of dual string pointer rules in ϕ can be
bounded by the size of the domain of u (and v). Surprisingly, the dual string
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pointer rules are very similar to those used in a specific model of gene assembly
called SPRS.

The second characterization has additional uses for SPRS. The reduction graph
of a legal string u in a certain sense retains all information regarding applicability
of string negative rules (defined in SPRS) in transformations of u to its end result,
while discarding almost all other information regarding the applicability of the
other rules, see [4]. Therefore, the fibers in a sense provide the equivalence classes
of legal strings having the same properties regarding the application of string
negative rules.

From a biological point of view, the first characterization provide requirements
on the structure of MAC genes, while the second characterization determines
which types of MIC genes obtain the same MAC structure.



Chapter 5

How Overlap Determines

Reduction Graphs for Gene

Assembly

Abstract
Ciliates are unicellular organisms having two types of functionally different nuclei:
micronucleus and macronucleus. Gene assembly transforms a micronucleus into
a macronucleus, thereby transforming each gene from its micronuclear form to
its macronuclear form. Within a formal intramolecular model of gene assembly
based on strings, the notion of reduction graph represents the macronuclear form
of a gene, including byproducts, given only a description of the micronuclear form
of that gene. For a more abstract model of gene assembly based on graphs, one
cannot, in general, define the notion of reduction graphs. We show that if we
restrict ourselves to the so-called realistic overlap graphs (which correspond to
genes occurring in nature), then the notion of reduction graph can be defined
in a manner equivalent to the string model. This allows one to carry over from
the string model to the graph model several results that rely on the notion of
reduction graph.

5.1 Introduction

Gene assembly is a process that takes place in unicellular organisms called ciliates,
which have two types of functionally different nuclei: micronucleus (MIC) and
macronucleus (MAC). Gene assembly transforms the genome of the MIC into the
genome of the MAC. The two genomes are dramatically different in both the
global form of their chromosomes and in the local form of single genes. During
gene assembly each gene in its MIC form gets transformed into the same gene in
its MAC form. See [12] for a detailed account of the biology of gene assembly.
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In this chapter we consider only intramolecular models of gene assembly – thus
here we do not consider the intermolecular models initiated by Landweber and
Kari [20], and further developed by Daley et al. [10, 9]. Among the formal mod-
els of intramolecular gene assembly the string pointer reduction system (SPRS)
and the graph pointer reduction system (GPRS), see [12], are of interest for this
chapter. The SPRS consist of three types of string rewriting rules operating on
so-called legal strings, while the GPRS consist of three types of graph rewriting
rules operating on so-called overlap graphs. The GPRS is an abstraction of the
SPRS: some information present in the SPRS is lost in the GPRS.

Realistic strings are strings that represent genes in their micronuclear form.
Legal strings are an abstraction of realistic strings. The reduction graph, which is
defined for legal strings, is a notion that describes the gene corresponding to the
legal string in its macronuclear form (along with its waste products: the substrings
“spliced out” in the process) – it is unique for a given legal string. It has been
shown that the reduction graph retains the information needed to characterize
which string negative rules (one of the three types of string rewriting rules) can
be used during the transformation of a MIC form of a gene to its MAC form [6, 4].
Therefore it would be useful to have a notion of the reduction graph also for the
GPRS. However, this is not so straightforward. We will demonstrate that, since
the GPRS loses some information concerning the application of string negative
rules, in general there is no unique reduction graph for a given overlap graph,
cf. Example 6. However, as we will show, when we restrict ourselves to “realistic”
overlap graphs then one gets a unique reduction graph. These overlap graphs are
called realistic since they correspond to (micronuclear) genes. In this chapter, we
explicitly define the notion of reduction graph for realistic overlap graphs (within
the GPRS) and show that it is equivalent to the notion of reduction graph for legal
strings (within the SPRS). Finally, we give a number of direct corollaries of this
equivalence, including an answer to an open problem formulated in Chapter 13 in
[12].

In Section 5.2 we recall some basic notions and notation concerning sets, strings
and graphs. In Section 5.3 we recall notions used in models for gene assembly, such
as legal strings, realistic strings and overlap graphs. In Section 5.4 we recall the
notion of reduction graph within the framework of SPRS and we prove some ele-
mentary properties of this graph for legal strings. In particular we establish a cal-
culus for the sets of overlapping pointers between vertices of the reduction graph.
In Section 5.5 we prove properties of the reduction graph for a more restricted
type of legal strings, the realistic strings. It is shown that reduction graphs of
realistic strings have a subgraph of a specific structure, the root subgraph. More-
over, we show (using the calculus from Section 5.4) that the existence of the
other edges in the reduction graph depends directly on the overlap graph. In Sec-
tion 5.6 we provide a convenient function for reduction graphs that allows one to
simplify reduction graphs without losing any information. In Section 5.7 we define
the reduction graph for realistic overlap graphs, and prove the main theorem of
this chapter: the equivalence of reduction graphs defined for realistic strings with
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the reduction graphs defined for realistic overlap graphs. In Section 5.8 we dis-
cuss some immediate consequences of this theorem. A conference version of this
chapter, which does not contain any proofs, was presented at FCT ’07 [7].

5.2 Notation and Terminology

In this section we recall some basic notions concerning functions, strings, and
graphs. We do this mainly to set up the basic notation and terminology for this
chapter.

The cardinality of a set X is denoted by |X |. The symmetric difference of sets
X and Y , (X\Y ) ∪ (Y \X), is denoted by X ⊕ Y . Since symmetric difference is
associative, we extend it to (finite) families of sets (Xi)i∈A, and denote this by
⊕

i∈A Xi. The composition of functions f : X → Y and g : Y → Z is the function
gf : X → Z such that (gf)(x) = g(f(x)) for every x ∈ X . The restriction of f to
a subset A of X is denoted by f |A.

We use λ to denote the empty string. For strings u and v, we say that v is a
substring of u if u = w1vw2, for some strings w1, w2; we also say that v occurs in
u. Also, v is a cyclic substring of u if either v is a substring of u or u = v2wv1 and
v = v1v2 for some strings v1, v2, w. We say that v is a conjugate of u if u = w1w2

and v = w2w1 for some strings w1 and w2. For a string u = x1x2 · · ·xn over Σ
with xi ∈ Σ for all i ∈ {1, . . . , n}, we say that v = xnxn−1 · · ·x1 is the reversal of
u. A homomorphism is a function ϕ : Σ∗ → ∆∗ such that ϕ(uv) = ϕ(u)ϕ(v) for
all u, v ∈ Σ∗.

We move now to graphs. A labelled graph is a 4-tuple G = (V, E, f, Γ), where
V is a finite set, E ⊆ {{x, y} | x, y ∈ V, x 6= y}, and f : V → Γ. The elements
of V are called vertices and the elements of E are called edges. Function f is the
labelling function and the elements of Γ are the labels. Note that our graphs are
not directed and do not have loops.

We say that G is discrete if E = ∅. Labelled graph G′ = (V ′, E′, f |V ′, Γ) is
a subgraph of G if V ′ ⊆ V and E′ ⊆ EV ′ = E ∩ {{x, y} | x, y ∈ V ′, x 6= y}.
If E′ = EV ′ , we say that G′ is the subgraph of G induced by V ′. A string π =
e1e2 · · · en ∈ E∗ with n ≥ 1 is a path in G if there is a v1v2 · · · vn+1 ∈ V ∗ such
that ei = {vi, vi+1} for all 1 ≤ i ≤ n. Labelled graph G is connected if there is
a path between every two vertices of G. A subgraph H of G induced by VH is a
component of G if both H is connected and for every edge e ∈ E we have either
e ⊆ VH or e ⊆ V \VH .

Labelled graphs G = (V, E, f, Γ) and G′ = (V ′, E′, f ′, Γ) are isomorphic, de-
noted by G ≈ G′, if there is a bijection α : V → V ′ such that f(v) = f ′(α(v)) for
all v ∈ V , and {x, y} ∈ E iff {α(x), α(y)} ∈ E′ for all x, y ∈ V . Any such bijection
α is then called an isomorphism from G to G′. It is important to realize that we
require that the labels of vertices identified by an isomorphism are equal.

In this chapter we will consider graphs with two sets of edges. Therefore, we
need the notion of 2-edge coloured graphs. A 2-edge coloured graph is a 5-tuple
G = (V, E1, E2, f, Γ), where both (V, E1, f, Γ) and (V, E2, f, Γ) are labelled graphs.
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The basic notions and notation for labelled graphs carry over to 2-edge coloured
graphs. However, to extend the notion of isomorphism care must be taken that
the two sorts of edges are preserved. Thus, if G = (V, E1, E2, f, Γ) and G′ =
(V ′, E′

1, E
′
2, f

′, Γ′) are 2-edge coloured graphs, and α is an isomorphism from G
to G′, then (x, y) ∈ Ei iff (α(x), α(y)) ∈ E′

i for x, y ∈ V and i ∈ {1, 2}.

5.3 Gene Assembly in Ciliates

Two models that are used to formalize the process of gene assembly in ciliates are
the string pointer reduction system (SPRS) and the graph pointer reduction sys-
tem (GPRS). The SPRS consist of three types of string rewriting rules operating
on legal strings while the GPRS consist of three types of graph rewriting rules
operating on overlap graphs. For the purpose of this chapter it is not necessary to
recall the string and graph rewriting rules; a complete description of SPRS and
GPRS, as well as a proof of their “weak” equivalence, can be found in [12]. We do
recall the notions of legal string and overlap graph, and we also recall the notion
of realistic string.

We fix κ ≥ 2, and define the alphabet ∆ = {2, 3, . . . , κ}. For D ⊆ ∆, we
define D̄ = {ā | a ∈ D} and ΠD = D ∪ D̄; also Π = Π∆. The elements of Π are
called pointers. We use the “bar operator” to move from ∆ to ∆̄ and back from
∆̄ to ∆. Hence, for p ∈ Π, ¯̄p = p. For p ∈ Π, we define p to be p if p ∈ ∆, and
p̄ if p ∈ ∆̄, i.e., p is the “unbarred” variant of p. For a string u = x1x2 · · ·xn

with xi ∈ Π (1 ≤ i ≤ n), the complement of u is x̄1x̄2 · · · x̄n. The inverse of u,
denoted by ū, is the complement of the reversal of u, thus ū = x̄nx̄n−1 · · · x̄1.
The domain of u, denoted by dom(u), is {p | p occurs in v}. We say that u is
a legal string if for each p ∈ dom(u), u contains exactly two occurrences from
{p, p̄}. For a pointer p and a legal string u, if both p and p̄ occur in u then we say
that both p and p̄ are positive in u; if on the other hand only p or only p̄ occurs
in u, then both p and p̄ are negative in u. So, every pointer occurring in a legal
string is either positive or negative in it. Therefore, we can define a partition of
dom(u) = pos(u) ∪ neg(u), where pos(u) = {p ∈ dom(u) | p is positive in u} and
neg(u) = {p ∈ dom(u) | p is negative in u}.

Let u = x1x2 · · ·xn be a legal string with xi ∈ Π for 1 ≤ i ≤ n. For a pointer
p ∈ Π, the p-interval of u is the substring xixi+1 · · ·xj with {xi, xj} ⊆ {p, p̄} and
1 ≤ i < j ≤ n. Substrings xi1 · · ·xj1 and xi2 · · ·xj2 overlap in u if i1 < i2 < j1 < j2
or i2 < i1 < j2 < j1. Two distinct pointers p, q ∈ Π overlap in u if the p-
interval of u overlaps with the q-interval of u. Thus, two distinct pointers p, q ∈ Π
overlap in u iff there is exactly one occurrence from {p, p̄} in the q-interval, or
equivalently, there is exactly one occurrence from {q, q̄} in the p-interval of u. Also,
for p ∈ dom(u), we denote the set of all q ∈ dom(u) such that p and q overlap in
u by Ou(p), and for 0 ≤ i ≤ j ≤ n, we denote by Ou(i, j) the set of all p ∈ dom(u)
such that there is exactly one occurrence from {p, p̄} in xi+1xi+2 · · ·xj . Also, we
define Ou(j, i) = Ou(i, j). Intuitively, Ou(i, j) is the set of p ∈ dom(u) for which
the substring between “positions” i and j in u contains exactly one representative
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3−

2− 4− 5−

Figure 5.1: The overlap graph of legal string u = 24535423.

from {p, p̄}, where position i for 0 < i < n means the “space” between xi and
xi+1 in u. For i = 0 it is the “space” to the left of x1, and for i = n it is the
“space” to the right of xn. A few elementary properties of Ou(i, j) follow. We
have Ou(i, n) = Ou(0, i) for i with 0 ≤ i ≤ n. Moreover, for i, j, k ∈ {0, . . . , n},
Ou(i, j) ⊕ Ou(j, k) = Ou(i, k); this is obvious when i < j < k, but it is valid in
general. Also, for 0 ≤ i ≤ j ≤ n, Ou(i, j) = ∅ iff xi+1 · · ·xj is a legal string.

Definition 1
Let u be a legal string. The overlap graph of u, denoted by γu, is the labelled
graph (dom(u), E, σ, {+,−}), where for p, q ∈ dom(u) with p 6= q, {p, q} ∈ E iff p
and q overlap in u, and σ is defined by: σ(p) = + if p ∈ pos(u), and σ(p) = − if
p ∈ neg(u).

Example 1
Let u = 24535423 be a legal string. The overlap graph of u is

γ = ({2, 3, 4, 5}, {{2, 3}, {4, 3}, {5, 3}}, σ, {+,−}),

where σ(v) = − for all vertices v of γ. The overlap graph is depicted in Figure 5.1.

Let γ be the overlap graph of a legal string u. We define dom(γ) as the set
of vertices of γ, pos(γ) = {p ∈ dom(γ) | σ(p) = +}, neg(γ) = {p ∈ dom(γ) |
σ(p) = −}, and for q ∈ dom(u), Oγ(q) = {p ∈ dom(γ) | {p, q} ∈ E}. We have
dom(γ) = dom(u), pos(γ) = pos(u), neg(γ) = neg(u), and Oγ(q) = Ou(q) for all
q ∈ dom(γ) = dom(u).

We define the alphabet Θκ = {Mi, M̄i | 1 ≤ i ≤ κ}, and say that δ ∈ Θ∗
κ

is a micronuclear arrangement if for each i with 1 ≤ i ≤ κ, δ contains exactly
one occurrence from {Mi, M̄i}. With each string over Θκ, we associate a unique
string over Π through the homomorphism πκ : Θ∗

κ → Π∗ defined by: πκ(M1) = 2,
πκ(Mκ) = κ, πκ(Mi) = i(i+1) for 1 < i < κ, and πκ(M̄j) = πκ(Mj) for 1 ≤ j ≤ κ.
A string u is a realistic string if there is a micronuclear arrangement δ such that
u = πκ(δ). We then say that δ is a micronuclear arrangement for u.

Note that every realistic string is a legal string. However, not every legal string
is a realistic string. For example, a realistic string cannot have “gaps” (missing
pointers): thus 2244 is not realistic while it is legal. It is also easy to produce
examples of legal strings which do not have gaps but still are not realistic — 3322
is such an example. Realistic strings are most useful for the gene assembly models,
since only these legal strings can correspond to genes in ciliates.
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An overlap graph γ is called realistic if it is the overlap graph of a realistic
string. Not every overlap graph of a legal string is realistic. For example, it can
be shown that the overlap graph γ of u = 24535423 depicted in Figure 5.1 is
not realistic. In fact, one can show that it is not even realizable — there is no
isomorphism α such that α(γ) is realistic.

5.4 The Reduction Graph

We now recall the notion of a (full) reduction graph, which was first introduced
in [6].

Remark
Below we present the notion of reduction graph in a slightly modified form: we
omit the special vertices s and t, called the source vertex and target vertex respec-
tively, which did appear in the definition presented in [6]. As shown in Section 5.5,
in this way a realistic overlap graph corresponds to exactly one reduction graph.
Fortunately, several results concerning reduction graphs do not rely on the special
vertices, and therefore carry over in a straightforward way to reduction graphs as
defined here.

Definition 2
Let u = p1p2 · · · pn with p1, . . . , pn ∈ Π be a legal string. The reduction graph of
u, denoted by Ru, is the 2-edge coloured graph

(V, E1, E2, f, dom(u)),

where
V = {I1, I2, . . . , In} ∪ {I ′1, I

′
2, . . . , I

′
n},

E1 = {e1, e2, . . . , en} with ei = {I ′i, Ii+1} for 1 ≤ i ≤ n − 1, en = {I ′n, I1},

E2 = {{I ′i, Ij}, {Ii, I
′
j} | i, j ∈ {1, 2, . . . , n} with i 6= j and pi = pj} ∪

{{Ii, Ij}, {I
′
i, I

′
j} | i, j ∈ {1, 2, . . . , n} and pi = p̄j}, and

f(Ii) = f(I ′i) = pi for 1 ≤ i ≤ n.

The edges of E1 are called the reality edges, and the edges of E2 are called
the desire edges. Intuitively, the “space” between pi and pi+1 corresponds to the
reality edge ei = {I ′i, Ii+1}. Hence, we say that i is the position of ei, denoted by
posn(ei), for all i ∈ {1, 2, . . . , n}. Note that positions are only defined for reality
edges. Since for every vertex v there is a unique reality edge e such that v ∈ e,
we also define the position of v, denoted by posn(v), as the position of e. Thus,
posn(I ′i) = posn(Ii+1) = i (while posn(I1) = n).
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Figure 5.2: The reduction graph of u from Example 2.

2 4 2 3 3 4

2 4 2 3 3 4

Figure 5.3: The reduction graph of u from Example 2 in the simplified represen-
tation.
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3 3 6 6 2 2

7 7 5 5 4 4

2 2 3 3 4 4

7 7 6 6 5 5

Figure 5.4: The reduction graph of u from Example 3.

Example 2
Let u = 324̄32̄4 be a legal string. Since 4̄32̄ can not be a substring of a realistic
string, u is not realistic. The reduction graph Ru of u is depicted in Figure 5.2.
The labels of the vertices are also shown in this figure. Note that the desire edges
corresponding to positive pointers (here 2 and 4) cross (in the figure), while those
for negative pointers are parallel.

We consider reduction graphs up to isomorphism. Therefore, the exact identity
of the vertices in a reduction graph is not essential for the problems considered in
this chapter, and in pictorial representations of reduction graphs we denote the
vertices by their labels. We also depict reality edges by double line segments to
distinguish them from the desire edges. Figure 5.3 shows the reduction graph of
Figure 5.2 in this simplified representation.

Example 3
Let u = π7(M7M1M6M3M5M2M4) = 726734563̄2̄45. Thus, unlike in the previous
example, u is a realistic string. The reduction graph is given in Figure 5.4. Note
that according to our convention, the vertices are represented by their labels.

The reduction graph is defined for legal strings. In this chapter, we show how
to directly construct the reduction graph of a realistic string from its overlap
graph. In this way we can define the reduction graph for realistic overlap graphs
in a direct way.

Next we consider sets of overlapping pointers corresponding to pairs of vertices
in reduction graphs, and we begin to develop a calculus for these sets that will
later enable us to characterize the existence of certain edges in the reduction
graph, cf. Theorem 15.

Lemma 3
Let u be a legal string. Let e = {v1, v2} be a desire edge of Ru and let p be the
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label of both v1 and v2. Then

Ou(posn(v1), posn(v2)) =

{

Ou(p) if p is negative in u,

Ou(p) ⊕ {p} if p is positive in u.

Proof
Let u = p1p2 . . . pn with p1, p2, . . . , pn ∈ Π and let i and j be such that i < j and
p = pi = pj . Without loss of generality, we can assume posn(v1) < posn(v2). Then,
v1 ∈ {Ii, I

′
i} and v2 ∈ {Ij , I

′
j}, hence posn(v1) ∈ {i−1, i} and posn(v2) ∈ {j−1, j}.

First, assume that p is negative in u. Then, by the definition of reduction
graph, the following two cases are possible:

1. e = {Ii, I
′
j}, thus Ou(posn(Ii), posn(I ′j)) = Ou(i − 1, j) = Ou(p),

2. e = {I ′i, Ij}, thus Ou(posn(Ii), posn(I ′j−1)) = Ou(i, j − 1) = Ou(p),

Thus in both cases we have Ou(posn(v1), posn(v2)) = Ou(p).
Now, assume that p is positive in u. Then, by the definition of reduction graph,

the following two cases are possible:

1. e = {Ii, Ij}, thus Ou(posn(Ii), posn(Ij)) = Ou(i − 1, j − 1) = Ou(p) ⊕ {p},

2. e = {I ′i, I
′
j}, thus Ou(posn(I ′i), posn(I ′j)) = Ou(i, j) = Ou(p) ⊕ {p},

Thus in both cases we have Ou(i1, i2) = Ou(p) ⊕ {p}.

Let u be a legal string. For P ⊆ dom(u), we define Πu(P ) = (pos(u) ∩ P ) ⊕
(⊕

t∈P Ou(t)
)
. Similarly, we define Πγ(P ) for an overlap graph γ (by replacing u

by γ in the definition).
The following result follows by iteratively applying Lemma 3 and using the

definition of Πu(P ).

Corollary 4
Let u be a legal string. Let

p0 p1 p1 p2 p2 .. pn pn pn+1

be a subgraph of Ru, and let e1 (e2, resp.) be the leftmost (rightmost, resp.) edge.
Then Ou(posn(e1), posn(e2)) = Πu(P ) with P = {p1, . . . , pn}.

Note that, in the above, e1 and e2 are reality edges and therefore posn(e1) and
posn(e2) are defined.

By the definition of reduction graph the following lemma holds.

Lemma 5
Let u be a legal string. If Ii and I ′i are vertices of Ru, then Ou(posn(Ii), posn(I ′i)) =
{p}, where p is the label of Ii and I ′i.
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2− 4−

3−

6− 5−

Figure 5.5: The overlap graph of both legal strings u and v from Example 5.

Example 4
We again consider the legal string u = 324̄32̄4 and its reduction graph Ru from
Example 2. Desire edge e = {I ′2, I

′
5} with vertices labelled by 2 is connected to

reality edges {I ′2, I3} and {I ′5, I6} with positions 2 and 5 respectively. By Lemma 3,
we have Ou(2, 5) = Ou(2)⊕ {2} = {2, 3, 4}. This can of course also be verified by
directly considering the corresponding substring 4̄32̄ between positions 2 and 5 of
u. Also, since I2 and I ′2 with positions 1 and 2 respectively are labelled by 2, by
Lemma 5 we have Ou(1, 2) = {2}.

5.5 The Reduction Graph of Realistic Strings

The next theorem asserts that the overlap graph γ for a realistic string u retains
all information of Ru (up to isomorphism). In this chapter, we give a method to
determine Ru (up to isomorphism), from γ. Of course, the naive method is to first
determine a legal string u corresponding to γ and then to determine the reduction
graph of u. However, we present a method that allows one to construct Ru in a
direct way from γ.

Theorem 6
Let u and v be realistic strings. If γu = γv, then Ru ≈ Rv.

Proof
By Theorem 1 in [19] (or Theorem 10.2 in [12]), we have γu = γv iff v can
be obtained from u by a composition of reversal, complement and conjugation
operations. By the definition of reduction graph it is clear that the reduction
graph is invariant under these operations (up to isomorphism). Thus, Ru ≈ Rv.

This theorem does not hold for legal strings in general — the next two exam-
ples illustrate that legal strings having the same overlap graph can have different
reduction graphs up to isomorphism.

Example 5
Let u = 2653562434 and v = h(u), where h is the homomorphism that inter-
changes 5 and 6. Thus, v = 2563652434. Note that both u and v are not realistic,
because substrings 535 of u and 636 of v can obviously not be substrings of re-
alistic strings. The overlap graph of u is depicted in Figure 5.5. From Figure 5.5
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2 6 5 6

2 6 5 6

2 4 4 3 3 5

2 4 4 3 3 5

Figure 5.6: The reduction graph of u from Example 5.

2 3 4 2 2 3

2 3 4 4 4 3

Figure 5.7: The reduction graph of u from Example 6.

and the fact that v is obtained from u by renumbering 5 and 6, it follows that
the overlap graphs of u and v are equal. The reduction graph Ru of u is depicted
in Figure 5.6. The reduction graph Rv of v is obtained from Ru by renumbering
the labels of the vertices according to h. Clearly, Ru 6≈ Rv.

Example 6
Let u = πκ(M1M2M3M4) = 223344 be a realistic string and let v = 234432 be
a legal string. Note that v is not realistic. Legal strings u and v have the same
overlap graph γ (γ = ({2, 3, 4}, ∅, σ, {+,−}), where σ(v) = − for v ∈ {2, 3, 4}).
The reduction graph Ru of u is depicted in Figure 5.7, and the reduction graph
Rv of v is depicted in Figure 5.8. Note that Ru has a component consisting of six
vertices, while Rv does not have such a component. Therefore, Ru 6≈ Rv.

2 4 2 3 3 4

2 4 2 3 3 4

Figure 5.8: The reduction graph of v from Example 6.
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For realistic strings the reduction graph has a special form. This is seen as
follows. For 1 < i < κ the symbol Mi (or M̄i) in the micronuclear arrangement
defines two pointers pi and pi+1 (or p̄i+1 and p̄i) in the corresponding realistic
string u. At the same time the substring pipi+1 (or p̄i+1p̄i, respectively) of u
corresponding to Mi (or M̄i, respectively) defines four vertices Ij , I

′
j , Ij+1, I

′
j+1 in

Ru. It is easily verified (cf. Theorem 8 below) that the “middle” two vertices I ′j
and Ij+1, labelled by pi and pi+1 respectively, are connected by a reality edge and
I ′j (Ij+1, respectively) is connected by a desire edge to a “middle vertex” resulting
from Mi−1 or M̄i−1 (Mi+1 or M̄i+1, respectively). This leads to the following
definition.

Definition 7
Let u be a legal string and let κ = |dom(u)| + 1. If Ru contains a subgraph L of
the following form:

2 2 3 3 .. κ κ

where the vertices in the figure are represented by their labels, then we say that
u is rooted and L is called a root subgraph of Ru.

Example 7
The realistic string u with dom(u) = {2, 3, . . . , 7} from Example 3 is rooted be-
cause the reduction graph of u, depicted in Figure 5.4, contains the subgraph

2 2 3 3 .. 7 7

The next theorem shows that indeed every realistic string is rooted.

Theorem 8
Every realistic string is rooted.

Proof
Consider a micronuclear arrangement for a realistic string u. Let κ = |dom(u)|+1.
By the definition of πκ, there is a reality edge ei (corresponding to either πκ(Mi) =
i(i+1) or πκ(Mi) = (i + 1) i) connecting a vertex labelled by i to a vertex labelled
by i+1 for each 2 ≤ i < κ. It suffices to prove that there is a desire edge connecting
ei to ei+1 for each 2 ≤ i < κ − 1. This can easily be seen by checking the four
cases where ei corresponds to either πκ(Mi) or πκ(Mi), and ei+1 corresponds to
either πκ(Mi+1) or πκ(Mi+1).

In the remainder of this chapter, we denote |dom(u)| + 1 just by κ for rooted
strings, whenever the rooted string u is understood from the context of consid-
erations. The reduction graph of a realistic string may have more than one root
subgraph: it is easy to verify that realistic string 234 · · ·κ234 · · ·κ for κ ≥ 2 has
two root subgraphs.

Example 2 shows that not every rooted string is realistic. The results in the
remainder of this chapter that consider realistic strings also hold for rooted strings,
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since we will not be using any properties of realistic string that are not true for
rooted strings in general.

For a given root subgraph L, it is convenient to uniquely identify every reality
edge containing a vertex of L. This is done through the following definition.

Definition 9
Let u be a rooted string and let L be a root subgraph of Ru. We define rsposL,k

for 2 ≤ k < κ as the position of the edge of L that has vertices labelled by
k and k + 1. We define rsposL,1 (rsposL,κ, resp.) as the position of the edge of
Ru not in L containing a vertex of L labelled by 2 (κ, resp.). When κ = 2, to
ensure that rsposL,1 and rsposL,κ are well defined, we additionally require that
rsposL,1 < rsposL,κ.

Thus, rsposL,k (for 1 ≤ k ≤ κ) uniquely identifies every reality edge containing a
vertex of L. If it is clear which root subgraph L is meant, we simply write rsposk

instead of rsposL,k for 1 ≤ k ≤ κ.
The next lemma is essential to prove the main result (Theorem 15) of this

chapter.

Lemma 10
Let u be a rooted string. Let L be a root subgraph of Ru. Let i and j be positions
of reality edges in Ru that are not edges of L. Then Ou(i, j) = ∅ iff i = j.

Proof
The reverse implication is trivially satisfied. We now prove the forward implica-
tion. The reality edge ek (for 2 ≤ k < κ) in L with vertices labelled by k and
k + 1 corresponds to a cyclic substring M̃k ∈ {p1p2, p2p1 | p1 ∈ {k, k}, p2 ∈
{k + 1, k + 1}} of u. Let k1 and k2 with 2 ≤ k1 < k2 < κ. If k1 + 1 = k2, then
reality edges ek1

and ek2
are connected by a desire edge (by the definition of L).

Therefore, pointer k2 common in M̃k1
and M̃k2

originates from two different oc-
currences in u. If on the other hand k1 + 1 6= k2, then M̃k1

and M̃k2
do not have

a letter in common. Therefore, in both cases, M̃k1
and M̃k2

are disjoint cyclic
substrings of u. Thus the M̃k for 2 ≤ k < κ are pairwise disjoint cyclic substrings
of u.

Without loss of generality assume i ≤ j. Let u = u1u2 · · ·un with ui ∈ Π. Since
u is a legal string, every ul for 1 ≤ l ≤ n is either part of a M̃k (with 2 ≤ k < κ) or
in {2, 2̄, κ, κ̄}. Consider u′ = ui+1ui+2 · · ·uj. Since i and j are positions of reality
edges in Ru that are not edges of L, we have u′ = M̃k1

M̃k2
· · · M̃km

for some
distinct k1, k2, . . . , km ∈ {1, 2, . . . , κ}, where M̃1 ∈ {2, 2̄} and M̃κ ∈ {κ, κ̄}.

It suffices to prove that u′ = λ. Assume to the contrary that u′ 6= λ. Then
there is a 1 ≤ l ≤ κ such that M̃l is a substring of u′. Because Ou(i, j) = ∅, we
know that u′ is legal. If l > 1, then M̃l−1 is also a substring of u′, otherwise u′

would not be a legal string. Similarly, if l < κ, then M̃l+1 is also a substring of u′.
By iteration, we conclude that u′ = u. Therefore, i = 0. This is a contradiction,
since 0 cannot be a position of a reality edge. Thus, u′ = λ.
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Lemma 11
Let u be a rooted string. Let L be a root subgraph of Ru. If Ii and I ′i are vertices
of Ru, then exactly one of Ii and I ′i belongs to L.

Proof
By the definition of reduction graph, Ii and I ′i have a common vertex label p but
are not connected by a desire edge. Therefore, Ii and I ′i do not both belong to
L. Now, if Ii and I ′i both do not belong to L, then the other vertices labelled
by p, which are Ij and I ′j for some j, both belong to L – a contradiction by the
previous argument. Therefore, either Ii or I ′i belongs to L, and the other one does
not belong to L.

The following result captures the main idea that allows for the determination
of the reduction graph from the overlap graph only. It relies heavily on the previous
lemmas.

Very roughly, the intuition is that there is a reality edge with vertices labelled
by p and q outside a fixed root subgraph L precisely when: we can make a “sidestep
over” p in the underlying string u “into” L and then “walk over” L to q and finally
make a sidestep over q in u in such a way that the accumulated overlap is the
empty set.

Theorem 12
Let u be a rooted string, let L be a root subgraph of Ru, and let p, q ∈ dom(u)
with p < q. There is a reality edge e in Ru with both vertices not in L, one labelled
by p and the other by q iff Πu(P ) = {p, q} where P = {p + 1, . . . , q − 1} ∪ P ′ for
some P ′ ⊆ {p, q}.

Proof
We first prove the forward implication. Let e = {v1, v2} with v1 labelled by p,
v2 labelled by q, and posn(e) = i. Thus e = {I ′i, Ii+1}. We assume that v1 = I ′i
and v2 = Ii+1, the other case is proved similarly. Let i1 = posn(Ii) and i2 =
posn(I ′i+1). By Lemma 5, Ou(i, i1) = {p} and Ou(i2, i) = {q}. By Lemma 11, Ii

(labelled by p) and I ′i+1 (labelled by q) belong to L. Thus i1 ∈ {rsposp−1, rsposp}
and i2 ∈ {rsposq−1, rsposq}. By applying Corollary 4 on L, we have Ou(i1, i2) =
Πu(P ) with P = {p + 1, . . . , q − 1} ∪ P ′ for some P ′ ⊆ {p, q}. By definition of
Ou(i, j) we have

∅ = Ou(i, i) = Ou(i, i1) ⊕ Ou(i1, i2) ⊕ Ou(i2, i)

Since p 6= q, we have {p} ⊕ {q} = {p, q}, and the desired result follows.
We now prove the reverse implication. By applying Corollary 4 on L, we have

Ou(i1, i2) = Πu(P ) for some i1 ∈ {rsposp−1, rsposp} and i2 ∈ {rsposq−1, rsposq}
(depending on P ′). By Lemma 5, there is a vertex v1 (v2, resp.) labelled by p (q,
resp.) with position i (j, resp.) such that Ou(i, i1) = {p} and Ou(i2, j) = {q}. By
Lemma 11 these vertices are not in L. We have now

∅ = Ou(i, i1) ⊕ Ou(i1, i2) ⊕ Ou(i2, j) = Ou(i, j)
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By Lemma 10, Ou(i, j) = ∅ implies that i = j. Thus, there is a reality edge
{v1, v2} in Ru (with position i), such that v1 is labelled by p and v2 is labelled
by q and both are not vertices of L.

Let γu be the overlap graph of some legal string u. Clearly we have pos(u) =
pos(γu) and for all p ∈ dom(u) = dom(γu), Ou(p) = Oγu

(p). Thus by Theorem 12
we can determine, given the overlap graph of a rooted string u, if there is a reality
edge in Ru with both vertices outside L that connects a vertex labelled by p to
a vertex labelled by q. We will extend this result to completely determine the
reduction graph given the overlap graph of a rooted string (or a realistic string in
particular).

5.6 Compressing the Reduction Graph

In this section we define the cps function. The cps function simplifies reduction
graphs by replacing the subgraph p p by a single vertex labelled by p. In this
way, one can simplify reduction graphs without “losing information”. We define
cps for a general family of graphs G which includes all reduction graphs. The
formal definitions of G and cps are given below.

Let G be the set of 2-edge coloured graphs G = (V, E1, E2, f, Γ) such that
f(v1) = f(v2) for all {v1, v2} ∈ E2. Note that for a reduction graph Ru, we have
Ru ∈ G because both vertices of a desire edge have the same label. For all G ∈ G,
cps(G) is obtained from G by considering the second set of edges as vertices in
the labelled graph. Thus, for the case when G is a reduction graph, the function
cps “compresses” the desire edges to vertices.

Definition 13
The function cps from G to the set of labelled graphs is defined as follows. If
G = (V, E1, E2, f, Γ) ∈ G, then

cps(G) = (E2, E
′
1, f

′, Γ)

is a labelled graph, where

E′
1 = {{e1, e2} ⊆ E2 | ∃v1, v2 ∈ V : v1 ∈ e1, v2 ∈ e2, e1 6= e2 and {v1, v2} ∈ E1},

and for e ∈ E2: f ′(e) = f(v) with v ∈ e.

Note that f ′ is well defined, because for all {v1, v2} ∈ E2, it holds that f(v1) =
f(v2).

Example 8
We are again considering the realistic string u defined in Example 3. The reduction
graph of Ru is depicted in Figure 5.4. The labelled graph cps(Ru) is depicted in
Figure 5.9. Since this graph has just one set of edges, the reality edges are depicted
by single line segments rather than double line segments as we did for reduction
graphs.
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3 6 2

7 5 4

2 3 4

7 6 5

Figure 5.9: The labelled graph cps(Ru), where Ru is defined in Example 8.

It is not hard to see that for reduction graphs Ru and Rv, we have Ru ≈ Rv iff
cps(Ru) ≈ cps(Rv). In this sense, the cps function allows one to simplify reduction
graphs without losing information.

5.7 From Overlap Graph to Reduction Graph

In this section we define (compressed) reduction graphs for realistic overlap graphs,
inspired by the characterization from Theorem 12, and then demonstrate their
equivalence to reduction graphs for realistic strings.

Definition 14
Let γ = (Domγ , Eγ , σ, {+,−}) be a realistic overlap graph and let κ = |Domγ |+1.
The reduction graph of γ, denoted by Rγ , is a labelled graph

Rγ = (V, E, f, Domγ),

where
V = {Jp, J

′
p | 2 ≤ p ≤ κ},

f(Jp) = f(J ′
p) = p, for 2 ≤ p ≤ κ, and

e ∈ E iff one of the following conditions hold:

1. e = {J ′
p, J

′
p+1} and 2 ≤ p < κ.

2. e = {Jp, Jq}, 2 ≤ p < q ≤ κ, and Πγ(P ) = {p, q}, where P = {p+1, . . . , q−
1} ∪ P ′ for some P ′ ⊆ {p, q}.

3. e = {J ′
2, Jp}, 2 ≤ p ≤ κ, and Πγ(P ) = {p}, where P = {2, . . . , p − 1} ∪ P ′

for some P ′ ⊆ {p}.
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2+

5− 4− 7−

3+

6−

Figure 5.10: The overlap graph γ of a realistic string (used in Example 9).

4. e = {J ′
κ, Jp}, 2 ≤ p ≤ κ, and Πγ(P ) = {p}, where P = {p + 1, . . . , κ} ∪ P ′

for some P ′ ⊆ {p}.

5. e = {J ′
2, J

′
κ}, κ > 3, and Πγ(P ) = ∅, where P = {2, . . . , κ}.

An algorithm that constructs Rγ is efficiently implemented by observing that
Πγ(P ) only needs to be calculated for all intervals P = [i, j] = {i, . . . , j} with
i ≤ j and i, j ∈ {2, . . . , κ}. These values can be stored in an upper-triangular
matrix A = (ai,j) having ai,j = Πγ([i, j]). Note that A can be defined recursively
as follows: we have ai,j = ai,j−1 ⊕ aj,j if i < j, and ai,i = Oγ(i) if i is negative in
γ, and ai,i = Oγ(i)⊕{i} if i is positive in γ. After calculating A, we can obtain the
edges of Rγ . If 2 < i and j < κ, then ai,j ∈ {{i, j}, {i−1, j}, {i, j+1}, {i−1, j+1}}
iff there is an edge e = {Jp, Jq} with ai,j = {p, q}. The cases 2 = i or j = κ are
handled similarly.

Example 9
The overlap graph γ in Figure 5.10 is realistic. Indeed, realistic string u =

π7(M7M1M6M3M5M2M4) = 726734563̄2̄45 introduced in Example 3 has this
overlap graph. Clearly, the reduction graph Rγ of γ has the edges {J ′

p, J
′
p+1} for

2 ≤ p < 7.

Now to obtain the remaining edges, we construct the upper-triangular matrix
A = (ai,j) having ai,j = Πγ([i, j]) with i ≤ j and i, j ∈ {2, . . . , κ} (as discussed
above, this can be done recursively). This matrix is given below, where the entries
corresponding to edges of Rγ are underlined.
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3 6 2

7 5 4

2 3 4

7 6 5

Figure 5.11: The reduction graph Rγ of the overlap graph γ from Example 9.

Πγ([i, j]) 2 3 4 5 6 7
2 {2, 4, 5, 7} {2, 3, 6, 7} {5, 7} {2, 3, 4, 5, 6, 7} {2, 6} ∅

3 {3, 4, 5, 6} {2, 4} {3, 6} {4, 5, 6, 7} {2, 4, 5, 7}

4 {2, 3, 5, 6} {4, 5} {3, 7} {2, 3, 6, 7}

5 {2, 3, 4, 6} {2, 5, 6, 7} {5, 7}

6 {3, 4, 5, 7} {2, 3, 4, 5, 6, 7}
7 {2, 6}

From matrix A we see that, a2,7 = ∅ corresponds to edge {J ′
2, J

′
7}, while the

other underlined values {2, 4}, {4, 5}, {5, 7}, {3, 7}, {3, 6}, and {2, 6} correspond
to edges {J2, J4}, {J4, J5}, . . . , {J2, J6}, respectively.

We have now completely determined Rγ ; it is shown in Figure 5.11 (again, as
we have done for reduction graphs of legal strings, in the figures the vertices of
reduction graphs of realistic overlap graphs are represented by their labels).

Figures 5.9 and 5.11 show that, for u = 726734563̄2̄45, cps(Ru) ≈ Rγ . The
next theorem shows that this is a general property for realistic strings u.

Theorem 15
Let u be a realistic string. Then, cps(Ru) ≈ Rγu

.

Proof
Let κ = |dom(u)| + 1, let γ = γu, let Rγ = (Vγ , Eγ , fγ , dom(γ)), let Ru =
cps(Ru) = (Vu, Eu, fu, dom(u)), and let L be a root subgraph of Ru. Recall that
the elements of Vu are the desire edges of Ru.

Let h : Vu → Vγ defined by

h(v) =

{

Jfu(v) if v is not an edge of L,

J ′
fu(v) if v is an edge of L.
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We will show that h is an isomorphism from Ru to Rγ . Since for every l ∈ dom(u)
there exists exactly one desire edge v of Ru that belongs to L with fu(v) = l and
there exists exactly one desire edge v of Ru that does not belong to L with
fu(v) = l, it follows that h is one-to-one and onto. Also, it is clear from the
definition of fγ that fu(v) = fγ(h(v)). Thus, it suffices to prove that {v1, v2} ∈
Eu ⇔ {h(v1), h(v2)} ∈ Eγ .

We first prove the forward implication {v1, v2} ∈ Eu ⇒ {h(v1), h(v2)} ∈ Eγ .
Let {v1, v2} ∈ Eu, let p = fu(v1) and let q = fu(v2). Clearly, v1 6= v2. By the
definition of cps, there is a reality edge ẽ = {ṽ1, ṽ2} of Ru with ṽ1 ∈ v1 and
ṽ2 ∈ v2 (and thus ṽ1 and ṽ2 are labelled by p and q in Ru, respectively). Let i
be the position of ẽ. We consider four cases (remember that v1 and v2 are both
desire edges of Ru):

1. Assume that ẽ belongs to L. Then clearly, v1 and v2 are edges of L. Without
loss of generality, we can assume that p ≤ q. From the structure of root
subgraph and the fact that ẽ is a reality edge of Ru in L, it follows that
q = p+1. Now, h(v1) = J ′

p and h(v2) = J ′
q = J ′

p+1. By the first condition of
Definition 14, it follows that {h(v1), h(v2)} = {J ′

p, J
′
p+1} ∈ Eγ . This proves

the first case. In the remaining cases, ẽ does not belong to L.

2. Assume that v1 and v2 are both not edges of L (thus ẽ does not belong to
L). Now by Theorem 12 and the second condition of Definition 14, it follows
that {h(v1), h(v2)} = {Jp, Jq} ∈ Eγ . This proves the second case.

3. Assume that either v1 or v2 is an edge of L and that the other one is not an
edge of L (thus ẽ does not belong to L). We follow the same line of reasoning
as we did in Theorem 12. Without loss of generality, we can assume that v1

is not an edge of L and that v2 is an edge of L. Clearly,

∅ = Ou(i, i) = Ou(i, i1) ⊕ Ou(i1, i)

for each position i1. By the structure of L we know that q = 2 or q = κ.
Let q = 2 (q = κ, resp.). By Lemma 5 and Lemma 11, we can choose i1 ∈
{rsposp−1, rsposp} such that Ou(i1, i) = {p}. By applying Corollary 4 to L,
we get Ou(i, i1) = Πu(P ) with P = {2, . . . , p−1}∪P ′ (P = {p+1, . . . , κ}∪P ′,
resp.) for some P ′ ⊆ {p}. By the third (fourth, resp.) condition of Defin-
ition 14, it follows that {h(v1), h(v2)} = {J ′

2, Jq} ∈ Eγ ({h(v1), h(v2)} =
{J ′

κ, Jq} ∈ Eγ , resp.). This proves the third case.

4. Assume that both v1 and v2 are edges of L, but ẽ does not belong to L.
Again, we follow the same line of reasoning as we did in Theorem 12. With-
out loss of generality, we can assume that p ≤ q. By the structure of L,
we know that p = 2 and q = κ > 3. By applying Corollary 4 to L, we
get ∅ = Ou(i, i) = Πu(P ) with P = {2, . . . , κ}. By the fifth condition of
Definition 14, it follows that {h(v1), h(v2)} = {J ′

2, J
′
κ} ∈ Eγ . This proves

the last case.
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This proves the forward implication.
We now prove the reverse implication {v1, v2} ∈ Eγ ⇒ {h−1(v1), h

−1(v2)} ∈
Eu, where h−1, the inverse of h, is given by:

h−1(Jp) is the unique v ∈ Vu with fu(v) = p that is not an edge of L,
h−1(J ′

p) is the unique v ∈ Vu with fu(v) = p that is an edge of L,

for 2 ≤ p ≤ κ. Let e ∈ Eγ . We consider each of the five types of edges in the
definition of reduction graph of an overlap graph.

1. Assume e is of the first type. Then e = {J ′
p, J

′
p+1} for some p with 2 ≤ p < κ.

Since h−1(J ′
p) is the desire edge of L with both vertices labelled by p and

h−1(J ′
p+1) is the desire edge of L with both vertices labelled by p + 1, it

follows, by the definition of root subgraph, that h−1(J ′
p) and h−1(J ′

p+1) are
connected by a reality edge in L. Thus, we have {h−1(J ′

p), h
−1(J ′

p+1)} ∈ Eu.
This proves the reverse implication when e is of the first type (in Defini-
tion 14).

2. Assume e is of the second type. Then e = {Jp, Jq} for some p and q with
2 ≤ p < q ≤ κ and Πu(P ) = Πγ(P ) = {p, q} with P = {p+1, . . . , q−1}∪P ′

for some P ′ ⊆ {p, q}. By Theorem 12, there is a reality edge {w1, w2} in
Ru, such that w1 has label p and w2 has label q and both are not vertices of
L. By the definition of cps, we have a {w′

1, w
′
2} ∈ Eu such that fu(w′

1) = p
(fu(w′

2) = q, resp.) and w′
1 (w′

2, resp.) is not an edge of L. Therefore w′
1 =

h−1(Jp) and w′
2 = h−1(Jq). This proves the reverse implication when e is of

the second type.

3. The last three cases are proved similarly.

This proves the reverse implication.
Altogether, we have shown that h is an isomorphism from Ru to Rγ .

Example 10
Consider again realistic string u = 726734563̄2̄45 from Example 9 (and Exam-
ple 3). The reduction graph Rγ of the overlap graph of u is given in Figure 5.11.
Recall that the reduction graph Ru of u is given in Figure 5.4. It is easy to see
that after applying cps to Ru one obtains a graph that is indeed isomorphic to
Rγ .

Formally, we have not yet constructed (up to isomorphism) the reduction graph
Ru of a realistic string u from its overlap graph. We have “only” constructed
cps(Ru) (up to isomorphism). However, it is clear that Ru can easily be obtained
from cps(Ru) (up to isomorphism) by considering the edges as reality edges and
replacing every vertex by a desire edge of the same label.
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5.8 Consequences

We can now apply our main theorem, Theorem 15, to carry over results that rely
on the notion of reduction graph for legal strings. To illustrate this, we characterize
successfulness for realistic overlap graphs in any given S ⊆ {Gnr, Gpr, Gdr}. To
accomplish this, we also use results from [13] (or Chapter 13 in [12]). The notions
of successful reduction, string negative rule and graph negative rule used in this
section are defined in [12].

First we restate a theorem of [6].

Theorem 16
Let u be a legal string, and N be the number of components in Ru. Then every
successful reduction of u has exactly N − 1 string negative rules.

Due to the “weak equivalence” of the string pointer reduction system and the graph
pointer reduction system, proved in Chapter 11 of [12], we can, using Theorem 15,
restate Theorem 16 in terms of graph reduction rules.

Theorem 17
Let γ be a realistic overlap graph, and N be the number of components in Rγ .
Then every successful reduction of γ has exactly N − 1 graph negative rules.

As an immediate consequence we get the following corollary. It provides an answer
to an open problem formulated in Chapter 13 in [12]: to provide a graph theoretic
characterization of successfulness in {Gpr, Gdr}. However, note that our answer
is only for the case where γ is a realistic overlap graph.

Corollary 18
Let γ be a realistic overlap graph. Then γ is successful in {Gpr, Gdr} iff Rγ is
connected.

Example 11
Every successful reduction of the overlap graph of Example 9 has exactly one
graph negative rule. For example gnr2 gpr4 gpr5 gpr7 gpr6 gpr3 is a successful
reduction of this overlap graph.

With the help of [13] (or Chapter 13 in [12]) and Corollary 18, we are ready
to complete the characterization of successfulness for realistic overlap graphs in
any given S ⊆ {Gnr, Gpr, Gdr}.

Theorem 19
Let γ be a realistic overlap graph. Then γ is successful in:

• {Gnr} iff γ is a discrete graph with only negative vertices.

• {Gnr, Gpr} iff each component of γ that consists of more than one vertex
contains a positive vertex.

• {Gnr, Gdr} iff all vertices of γ are negative.
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• {Gnr, Gpr, Gdr}.

• {Gdr} iff all vertices of γ are negative and Rγ is connected.

• {Gpr} iff each component of γ contains a positive vertex and Rγ is con-
nected.

• {Gpr, Gdr} iff Rγ is connected.

Proof
The cases where Gnr ∈ S (cf. the first four cases in the theorem) are known
from [13], and case {Gpr, Gdr} holds by Corollary 18. Case {Gdr} ({Gpr}, resp.)
is obtained by combining the results of cases {Gnr, Gdr} ({Gnr, Gpr}, resp.)
and {Gpr, Gdr}. Note that if γ has an isolated negative vertex, then Rγ is not
connected.

5.9 Discussion

We have shown a way to directly construct the reduction graph of a realistic
string (up to isomorphism) from its overlap graph γ. This allows one to (directly)
determine the number n of graph negative rules that are necessary to reduce γ
successfully. Surprisingly, although a lot a structural information is lost in the
overlap graph (compared to a string representation), this information can be re-
trieved from the overlap graph via its reduction graph. The main result allows for a
complete characterization of successfulness of γ in any given S ⊆ {Gnr, Gpr, Gdr}
by extending [13] for the cases where Gnr 6∈ S. It remains an open problem to
find a (direct) method to determine this number n for overlap graphs γ in general
(not just for realistic overlap graphs).
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Part II

Membrane Computing





Chapter 6

Membrane Systems with

Proteins Embedded in

Membranes

Abstract
Membrane computing is a biologically inspired computational paradigm. Moti-
vated by brane calculi we investigate membrane systems which differ from con-
ventional membrane systems by the following features: (1) biomolecules (proteins)
can move through the regions of the systems, and can attach onto (and de-attach
from) membranes, and (2) membranes can evolve depending on the attached mole-
cules. The evolution of membranes is performed by using rules that are motivated
by the operation of pinocytosis (the pino rule) and the operation of cellular drip-
ping (the drip rule) that take place in living cells.

We show that such membrane systems are computationally universal. We also
show that if only the second feature is used then one can generate at least the
family of Parikh images of the languages generated by programmed grammars
without appearance checking (which contains non-semilinear sets of vectors).

If, moreover, the use of pino/drip rules is non-cooperative (i.e., not dependent
on the proteins attached to membranes), then one generates a family of sets of
vectors that is strictly included in the family of semilinear sets of vectors.

We also consider a number of decision problems concerning reachability of
configurations and boundness.

6.1 Introduction

Membrane computing is a biologically inspired computational paradigm intro-
duced by Gh. Păun in 1998, [20]. The model is based on a hierarchical structure
of nested membranes, inspired by the structure of living cells. In each region
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(enclosed by a membrane) some objects are present, modeling the presence of
molecules inside the compartments of living cells. Moreover, each region has an
associated set of multiset rewriting rules. These rules are motivated by chemical
reactions that occur inside the regions of living cells. Membranes play a crucial role
in living cells: the cell membrane separates, and hence protects the cell from its
environment and the inner membranes delimit the structure of various organelles
of the cell, e.g., the nuclear membrane separates the nucleus from the rest of the
cell.

Membranes are not only “containers” but they also regulate the flow of mole-
cules into and out of the cell. This is facilitated by proteins that are embedded
in membranes and which provide channels for the transport of molecules through
membranes.

In brane calculi, presented in [5], several operations (pino, exo, phago, mate,
drip, bud) involving membranes with embedded proteins are considered and for-
malized in the framework of process calculi. The important difference with mem-
brane computing is that the evolution of the system happens on the membranes
and not inside the compartments (regions) delimited by them. The computational
power of several brane calculi operations has been investigated in [4] where univer-
sality has been obtained for systems using phago and exo. In [6] these operations
from brane calculi have been represented in the membrane computing framework
and then studied by using tools from formal language theory.

In this chapter we investigate operations involving membranes with embedded
proteins, but we also add the ability of proteins to attach/de-attach to/from the
membranes, and also to move through the membranes. Hence, in our case, the
evolution of the system takes place both on the membranes and inside the regions,
which is natural from a biological point of view.

More specifically, we consider protein-membrane rules – rules that modify the
structure of (the membranes of) the system where the modifications are based on
the multisets of proteins embedded in the membranes (we say that such multisets
mark the membranes). In particular, we consider the pino and drip rules inspired
by the operation of pinocytosis and the operation of cellular dripping, respectively.
Both pinocytosis and dripping split off a membrane from another membrane,
however, in pinocytosis, this new (empty) membrane is found inside the original
membrane, while in dripping, this new membrane is found outside the original
membrane. We also use protein movement rules, that model the attachment, de-
attachment and movement of the proteins. Also these rules are applied according
to the proteins marking the involved membranes. The protein movement rules
do not change the membrane structure of the system, but they can change the
multisets of embedded proteins marking the membranes of the system.

The chapter is structured in the following way. In Section 6.2 we provide
preliminaries concerning formal languages, recalling in particular the definition of
programmed grammars often used in the proofs. In Section 6.3 we recall the formal
definition of pino and drip rules, and introduce the protein movement rules, and
in Section 6.4 we introduce membrane systems based on these rules – the model
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is called membrane system with marked membranes, protein-membrane rules, and
protein movement rules, abbreviated as Ppp system.

In Section 6.5, we investigate the computational power of Ppp systems which
use only protein movement rules, and in Section 6.6 of Ppp systems using only
pino (or drip) rules. In Section 6.7, we discuss Ppp systems using both types of
rules. In Section 6.8 we prove several decidability results concerning reachability
of configurations and boundness of Ppp systems with pino, drip rules, and protein
movement rules. In the last section we discuss the results obtained in this chapter
and formulate a number of research directions.

6.2 Preliminaries

We will briefly recall the main notions and results of formal language theory used
in this chapter. For more details the reader can consult standard books, such as
[16], [25], [11], and the handbook [24].

Given a set A, we denote by |A| its cardinality and by P(A) the power set of
A. The empty set is denoted by ∅.

As usual, an alphabet V is a finite set of symbols. By V ∗ we denote the set of all
strings over V . The empty string is denoted by λ. The length of a string w ∈ V ∗ is
denoted by |w|, while the number of occurrences of a ∈ V in w is denoted by |w|a.
For a language L ⊆ V ∗, the set length(L) = {|w| | w ∈ L} is called the length
set of L. Given a string w, a string u is a subword of w if there exist two strings
x, y, possibly empty, such that w = xuy. The string u is a scattered subword of w
if and only if there exist strings x1, . . . , xk, and y0, . . . , yk, possibly empty, such
that u = x1 · · ·xk, and w = y0x1y1 · · ·xkyk. We use Sub(w) to denote the set of
all subwords of w, while Scub(w) denotes the set of the scattered subwords of w.

Given an alphabet V = {a1, a2, . . . , an}, with every string w ∈ V ∗ we can
associate the Parikh vector ΨV (w) = (|w|a1

, |w|a2
, . . . , |w|an

), where the ordering
(a1, . . . , an) of V is assumed. Given a language L ⊆ V ∗, the Parikh image of L is
defined as ΨV (L) = {ΨV (w) | w ∈ L}.

If FL is a family of languages, then PsFL denotes the family of Parikh images
of languages in FL (w.r.t. a given alphabet V ), and NFL denotes the family of
length sets of languages in FL. Note that each L ∈ PsFL is a set of vectors
with a fixed dimension. We denote by FIN , REG, CF , CS, and RE the fam-
ily of finite, regular, context-free, context-sensitive, and recursively enumerable
languages, respectively. Accordingly, the family of Parikh images of languages in
RE is denoted by PsRE (this is the family of all recursively enumerable sets of
vectors of natural numbers). The family of all recursively enumerable sets of nat-
ural numbers is denoted by NRE. As usual, two language generating/accepting
devices are called equivalent if they generate/accept the same language.

A generalized sequential machine (in short gsm) is a system Γ = (K, V1, V2,
s0, F, δ), where K is a finite set of states, s0 ∈ K is the initial state, F ⊆ K the
set of final states, and V1, V2 are the input and output alphabet, respectively. The
transition function δ is defined by δ : K × V1 −→ P(V ∗

2 × K). For s, s′ ∈ K, a ∈
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V1, y ∈ V ∗
1 , x, z ∈ V ∗

2 we write (x, s, ay) 7−→ (xz, s′, y) if (z, s′) ∈ δ(s, a). Then,
for w ∈ V ∗

1 , we define Γ(w) = {z ∈ V ∗
2 | (λ, s0, w) 7−→∗ (z, s, λ), s ∈ F}. The

mapping Γ is extended in natural way to languages over V1.
A context-free programmed grammar with appearance checking is a construct

G = (N, T, S, P ), where N (T , resp.) is a finite set of nonterminals (terminals,
resp.), S ∈ N is the start symbol, and P is a finite set of productions of the form
(b : A → x, Eb, Fb), where b is a label, A → x with A ∈ N and x ∈ (N ∪ T )∗ is a
context-free production, and Eb, Fb are two sets of labels of productions of G (Eb

is called the success field and Fb the failure field of the production). A production
(b : A → x, Eb, Fb) is applied as follows: if A is present in the sentential form,
then the production A → x is applied and the next production is chosen from
those with the labels in Eb, otherwise, the sentential form remains unchanged
and we choose the next production from the set of productions labeled by some
element of Fb. A derivation step is denoted by ⇒ while ⇒∗ denotes the reflexive
and transitive closure of ⇒. If no failure field is given for any of the productions,
then we obtain a programmed grammar without appearance checking.

We denote the set of labels as Lab(G) = {b | there exists (b : A → x, Eb, Fb) ∈
P}. Also, for X ∈ N , we denote {b | there exists (b : X → x, Eb, Fb) ∈ P} by
lG(X), or l(X) for short.

The language generated by a grammar G is denoted by L(G). By PR we
denote the family of languages generated by programmed grammars without ap-
pearance checking, and by PRac we denote the family of languages generated by
programmed grammars with appearance checking. Proofs of the following results
can be found in [11].

Lemma 1
CF ⊂ PR ⊂ PRac = RE.

In pure programmed grammars there is no distinction between terminals and
nonterminals. Consequently, the language generated by a pure programmed gram-
mar is defined as the set of all strings that can be generated from the axiom,
hence the set of all sentential forms. The family of languages generated by pure
programmed grammars without appearance checking is denoted by pPR. It is
easy to prove (in a constructive way) that

Lemma 2
pPR ⊂ PR.

The following normal form for programmed grammars, referred to as the lh-
normal form, will be useful in this chapter.

Lemma 3
For any programmed grammar G (with appearance checking) there exists an
equivalent programmed grammar G′ (with appearance checking, respectively)
such that there is a unique initial production (with label l0) and a unique final
production Z → λ (with label lh) in G′.
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Proof
Consider an arbitrary programmed grammar G = (N, T, P, S). We recall that l(S)
is the set of labels corresponding to productions having S at the left-hand side.
Given a set of labels L, we use L′ to denote the set of the primed version of the
labels in L.

Let G′ = (N ′, T, P ′, S′), where N ′ = N ∪ {S′, Z}, S′, Z /∈ N , Lab(G′) =
Lab′(G) ∪ {l0, lh}, and P ′ consists of the following productions:

{(l0 : S′ → ZS, l′(S), ∅), (lh : Z → λ, ∅, ∅)} ∪

{(l′i : A → α, E′
li
∪ {lh}, F

′
li
∪ {lh}) | (li : A → α, Eli , Fli) ∈ P}.

It is easily seen that L(G) = L(G′), and that the final production in any successful
derivation in G′ is the one labeled by lh (deletion of the nonterminal Z). The same
construction works for both programmed grammars with or without appearance
checking (in this last case the failure fields are removed from the productions in
P ′). It is worth to notice that the unsuccessful derivations in G′ are of the following
types: S′ ⇒∗ Z(N ∪ T )∗ or S′ ⇒∗ Z(N ∪ T )∗N(N ∪ T )∗ ⇒ (N ∪ T )∗N(N ∪ T )∗,
if G′ is without appearance checking while only of the second type if G′ is with
appearance checking.

We assume the reader to be familiar with the basic notions of membrane
computing, see, e.g., [21].

6.3 Operations for Marked Membranes

In [5] several membrane operations involving membranes and embedded proteins
have been modeled in the framework of process calculi. In [6] these operations
have been expressed in the framework of membrane systems.

We will briefly recall these operations, however in a slightly modified form:
while in [5] and [6] a region (enclosed by a membrane) can contain other mem-
branes but not objects, we allow a region to contain objects.

As usual in membrane computing, a membrane is represented by a pair of
square brackets, [ ]. To each membrane [ ] we associate a multiset u (over a
certain alphabet V ) and this is denoted by [ ]u. We say that the membrane is
marked with u (u is called a marking). The objects of V are called proteins or,
simply, objects. The contents of a membrane can consist of proteins and/or other
membranes.

The protein-membrane rules over V are of the following form (the subscript i
stands for internal, e for external):

pinoi : [ ]uav → [ [ ]ux]v,

pinoe : [ ]uav → [ [ ]v]ux,

drip : [ ]uav → [ ]ux[ ]v.
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where a ∈ V , and u, x, v ∈ V ∗ (thus the restriction of having the right-hand sides
of the rules nonempty, as in [6], has been relaxed here). If uv = λ, then we have
a non-cooperative rule; we add the prefix (ncoo) to denote it. Thus (ncoo)pinoi :
[ ]a → [ [ ]x] is a non-cooperative pinoi rule.

The described rules are applicable to any membrane whose marking includes
the multiset indicated on the left-hand side of the rules; all the proteins not
specified in the rules are not affected by the use of the rules, but they are randomly
distributed between the two resulting membranes. When using any rule of any
type, we say that the membrane from its left-hand side is involved in the rule; the
membrane involved is “consumed” while the membranes from the right-hand side
of the rule are “produced”. Similarly, the protein a specified on the left hand side
of the rules is consumed, and it is replaced by the multiset of proteins x (that
might be empty).

After the application of a pinoi or pinoe rule, the contents of the consumed
membrane is moved into the region of the created external membrane (thus, mem-
brane [ ]v for pinoi and membrane [ ]ux for pinoe), and after the application of
a drip rule, the contents of the consumed membrane is moved into the region of
the produced membrane [ ]v.

We also define rules that can attach/de-attach proteins to/from the mem-
branes, and rules to move the proteins through the membranes of the system.
The protein movement rules over V can have one of the following forms (the
subscript i stands for inside, o for outside):

attachi : [ a]u → [ ]ua, attacho : [ ]ua → [ ]ua,

de−attachi : [ ]ua → [ a]u, de−attacho : [ ]ua → [ ]ua,

moveout : [a]u → [ ]ua,

movein : [ ]u a → [a]u,

with a ∈ V , u ∈ V ∗.
The effect of the rules attachi and attacho is to attach the protein a to the

corresponding membrane if the marking of the membrane includes u.
The rules moveout (movein) move the protein a outside (inside, resp.) if the

marking of the corresponding membrane includes u. We use prot to denote the
set of protein movement rules.

6.4 Membrane Systems with Marked Membranes

In this section we define membrane systems (also called P systems) having mem-
branes marked with multisets of proteins, and using the protein-membrane rules
and the protein movement rules introduced in Section 6.3.

Formally, a membrane system with marked membranes, protein-membrane rules,
and protein movement rules, in short Ppp system, is a construct

Π = (V, µ, u1, . . . , um, R, F ),
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• V is a finite, nonempty alphabet of proteins;

• µ is a membrane structure with m ≥ 1 membranes;

• u1, . . . , um ∈ V ∗ are the markings of the m membranes of µ at the beginning
of the computation (the initial markings of Π);

• R is a finite set of protein-membrane rules and protein movement rules over
the alphabet V ;

• F ⊆ V is the set of protein-flags, simply called flags (marking the output
membranes).

We will also use VΠ, µΠ, RΠ, and FΠ to denote V , µ, R, and F respectively.
A configuration of Π consists of a membrane structure, the markings of the

membranes, and the multisets of proteins present inside the regions. In what
follows, configurations are denoted by writing the markings as subscripts of the
right-hand parentheses which identify the membranes, e.g., [ [ ]ab[aaa]b[ ]bb]a is
an example of a configuration.

We suppose that in the initial configuration the regions are empty, thus the
initial configuration is defined by µ and u1, . . . , um.

As standard for membrane systems, we assume the existence of a global clock
which marks the timing of steps (single transitions) for the whole system.

A single transition of Π from a configuration to a new one is performed by
applying, to each membrane of the system, either (i) the protein movement rules
in the nondeterministic maximally parallel manner, or (ii) one of the protein-
membrane rules.

The choice between using protein movement rules or using a protein-membrane
rule, for each membrane, is done in a nondeterministic way if both types of rules
can be applied for a given membrane. A membrane remains unchanged (only) if
no rules can be applied to it.

The application in the nondeterministic maximally parallel manner of the
protein movement rules means that, for the chosen membrane, the proteins (the
ones marking the membrane and those present in the enclosed region) are assigned
with the rules in such a way that, after the assignment is done, no other protein
movement rule is applicable to the proteins that have no rules assigned to them.
If a protein can be used by several rules, then it is assigned to one of them in a
nondeterministic way.

As usual, a sequence of transitions forms a computation. A computation which
starts from the initial configuration is successful if it halts, that is, it reaches a
halting configuration, i.e., a configuration where no rule can be applied, anywhere
in the system. In the halting configuration we consider the output membranes –
these are membranes whose markings contain at least one flag from F .
Then, the result of a successful computation is the set of vectors describing the
multiplicities of proteins present in the markings of the output membranes. Owing
to the nondeterminism in the choice of rules, one can get a set of (successful)
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computations, and thus a set of results.
Collecting all the results, for all possible successful computations, we get the set
of vectors generated by Π, and denoted by Ps(Π).

Since a halting configuration in a Ppp system can have several membranes
marked with F , we can have more than one output membrane. Therefore, the
output of a successful computation is a finite family of vectors (each vector cor-
responding to an output membrane). This differs from assigning the output in
“standard” membrane systems, where we have only one output vector. However
since the set of vectors Ps(Π) generated by a Ppp system is taken over the union
of results of all successful computations, this difference “disappears” in the sense
that we can compare the output Ps(Π) with the output of “standard” membrane
systems.

For α ∈ {pinoi, pinoe, drip, (ncoo)pinoi, (ncoo)pinoe, (ncoo)drip}, and m ≥ 1,
we denote the class of Ppp systems using protein-membrane rules of type α, using
protein movement rules, and having at most m membranes, by PPm(α, prot)
(α or prot are removed if the corresponding rules are not used). Therefore, the
family of sets of vectors generated by Ppp systems from PPm(α, prot) is denoted
by PsPPm(α, prot) (again, α or prot are removed if the corresponding rules not
used). If m is substituted by ∗, then the number of membranes considered is
arbitrary.

Since one cannot mark the empty multiset by a flag, we consider the equality
of families of multisets modulo the empty multiset, i.e., if two families differ only
by the empty multiset, then we consider them to be equal.

A configuration of a Ppp system Π that can be reached by a (possibly empty)
sequence of transitions, starting from the initial configuration, is called reachable.
A multiset w of proteins is a reachable marking for Π if there exists a reachable
configuration of Π which contains a membrane marked by w.

6.5 Preliminary Results

We begin with some preliminary results that follow directly from the definitions
and from the Turing-Church thesis.

Theorem 4

PsPP∗(α, prot) ⊆ PsRE, PsPP∗(α) ⊆ PsPP∗(α, prot).

P sPP∗((ncoo)α, prot) ⊆ PsPP∗(α, prot),

P sPP∗((ncoo)α) ⊆ PsPP∗(α),

α ∈ {pinoi, pinoe, drip}.

First we consider Ppp systems that use only the protein movement rules. The
power of such systems is very restricted, even when there is no bound on the
number of membranes to be used.
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Theorem 5
PsPP∗(prot) = PsFIN.

Proof
The inclusion PsPP∗(prot) ⊆ PsFIN comes from the fact that, using only pro-
tein movement rules, it is not possible to increase the total number of objects
(and membranes) present in a Ppp system during the computation.

On the other hand, the Parikh image of every finite language can be generated
by a Ppp system from PP∗(prot): in fact, the Parikh image of a finite language can
be represented in the initial markings, where each protein is a flag, and actually
there is no need to use protein movement rules. Therefore, also the inclusion
PsFIN ⊆ PsPP∗(prot) holds and then the theorem follows.

6.6 Membrane Systems Using Protein-Membrane

Rules

As stated by Theorem 5 the use of only protein movement rules results in a very
limited generative power. In this section we turn to the dual situation: the use of
protein-membrane rules only.

In this case the membrane structure can change during the computation, but
the proteins cannot move through the regions of the system.

First we investigate Ppp systems using the non-cooperative versions of the pino
and of the drip rules. In this case the power of the system is still very limited:
the family of the so generated sets of vectors is strictly included in the family of
Parikh images of context-free languages. Then we will study Ppp systems using
only pino and drip rules; in this case the power of the system increases: one can
generate now at least the family of Parikh images of the languages generated by
programmed grammars without appearance checking.

First we give an example.

Example 1
Consider the regular language L = {a2n | n ≥ 1}. It is easy to show that the
Parikh image of L, Ψ{a}(L) = {2n | n ≥ 1}, cannot be generated by a Ppp

system Π from PP∗((ncoo)pinoi). Indeed, suppose that there is such a Π. Since
L is infinite, there is a x ∈ L with |x| larger than the length of the right-hand
side of any pinoi rule of Π. Thus x has some proteins that were not involved in
the application of the last pinoi rule. Since during the application of a pinoi rule
one such protein could also have moved to the other membrane, we also have
x − 1 ∈ Ψ{a}(L), a contradiction.

The previous example illustrates that the “random splitting” of the proteins
that are not specified in the applied rule is a feature that can reduce the compu-
tational power of the system.
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Lemma 6
Let α ∈ {pinoi, pinoe, drip}. Then, PsPP1((ncoo)α) ⊆ PsCF iff PsPP∗((ncoo)α)
⊆ PsCF .

Proof
The “if” part of the statement obviously holds. We now prove the “only if” part. Let
Π = (V, µ, u1, . . . , um, R, M) ∈ PsPPm((ncoo)α) for some m > 1. Now, let Πi =
(V, µ′, ui, R, M) ∈ PsPP1((ncoo)α) for i ∈ {1, . . . , m}, with µ′ a single membrane
initially marked with ui. We have Ps(Π) = Ps(Π1) ∪ Ps(Π2) ∪ · · · ∪ Ps(Πm) if
each Πi has a halting configuration, and otherwise Ps(Π) = ∅. Since CF is closed
under finite union, we have the desired result.

Theorem 7
PsPP∗((ncoo)α) ⊂ PsCF, α ∈ {pinoi, pinoe, drip}.

Proof
By Example 7 and Lemma 6 it suffices to show that PsPP1((ncoo)α) ⊆ PsCF .
Given a Ppp system Π = (V, µ, u, R, M) from PP1((ncoo)pinoi), we show that
one can construct a context-free grammar G such that the Parikh image of
L(G) is exactly Ps(Π). Note that µ must be a single membrane. Let Lab(R) =
{r1, r2, . . . , rn} be a labeling of the elements of R with |R| = n.

We now construct a context-free grammar G = (N, T, P, S), dependent on Π,
with

N = {a ∈ V ∪ {S} | a → α ∈ P for some α}, where V ∩ {S} = ∅,

T = Lab(R) ∪ (V − N),

P = {a → rjx | rj : [ ]a → [ [ ]x ] ∈ R, 1 ≤ j ≤ n} ∪ {S → u}.

In this way G faithfully simulates Π (ignoring the elements of Lab(R)), assuming
that during each pinoi rule, all proteins move to the inner membrane. We now
define a nondeterministic gsm dependent on G which includes the possibility of
“random splitting” of proteins (as commented already after Example 7).

It is possible to construct a nondeterministic gsm ΓG, dependent on G, with
input alphabet T and output alphabet T , such that the set of output strings on
input y ∈ T ∗, denoted by ΓG(y), is

{w′x, w′ | y = w1rjxw2, a → rjx ∈ P, w′ ∈ Scub(w1w2)} ∪ U,

where U = {u} if u ∈ T +, and U = ∅ otherwise. For y ∈ L(G), each decomposi-
tion of y into w1rjxw2 with r = a → rjx ∈ P corresponds to a derivation in which
r is the last production applied. The other symbols, w1w2 were nondeterministi-
cally distributed to the outer membrane and the inner membrane. Therefore, w′x
(w′, resp.) represents the set of markings of the inner (outer, resp.) membrane. In
the special case when there is no such decomposition of y, we have y = u ∈ T +

and u is a marking of a “halting” membrane.
Let h be the morphism which deletes the elements of Lab(R), formally de-

fined by h(a) = λ for a ∈ Lab(R), and h(a) = a for a ∈ T − Lab(R). Now,



Chapter 6 137

ΨT (L) with L = h(ΓG(L(G))) precisely represents the set of multisets marking
the reachable halting membranes of Π. Since context-free languages are closed
under gsm mapping and applications of morphisms, we have L ∈ CF . We now
only need to select those multisets of L which contain proteins of M . Therefore,
ΨT (L′) = Ps(Π) for context-free L′ = L ∩ V ∗MV ∗ (context-free languages are
closed under intersection with regular languages).

The computational power of this class increases when one uses cooperative
pinoi, pinoe or drip rules. In this case the systems can generate at least the fam-
ily of Parikh images of languages generated by programmed grammars without
appearance checking – it is known that PsPR strictly contains PsCF because
it also contains non-semilinear vectors of natural numbers (see [11] for further
details).

Formally, we have the following result.

Theorem 8
PsPR ⊆ PsPP∗(α), α ∈ {pinoi, pinoe, drip}.

Proof
Consider a programmed grammar G = (N, T, P, S) without appearance checking
in the lh-normal form (see Lemma 3).

We construct a Ppp system Π from PP∗(pinoi) that generates exactly the
Parikh image of L(G) and it is defined as follows:

Π = (V, µ, u1, u2, R, F ),

where

• V = N ∪ T ∪ {E} ∪ Lab(G) ∪ {#},

• µ = [ [ ]ESl0 ]λ,

• F = T .

The pino rules in R are grouped as follows (the grouping is done according to
their intended use):

1. (simulation of the programmed grammar productions),
[ ]EAi → [ [ ]Exj ]i, for (i : A → x, Ei) ∈ P, j ∈ Ei, i 6= lh,

2. (used if a production of G cannot be applied),
[ ]A → [ [ ]E##], A ∈ N ,

3. (used for non-halting),
[ ]E## → [ [ ]E## ]#,

4. (used to keep the symbols from a sentential form on the same membrane),
[ ]Xi → [ [ ]E## ]i, for X ∈ (N ∪ T ), i ∈ Lab(G),
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5. (used to halt the computation),
[ ]EZlh → [ [ ] ]Elh .

The so-constructed system Π simulates G in the following way. The structure
of the system contains at any time during the computation a unique innermost
membrane. The marking of this membrane contains the object E (except in the
last step of the computation), the label of the next production of G to simulate
(at the beginning this label is l0), and the objects corresponding to the current
sentential form (at the beginning of a computation of Π only the object S).

The objects from N are called nonterminal objects, while the objects from T
are called terminal objects.

The simulation of the application of a production in G is done by using one
of the rules in group 1.

The object A is rewritten to x if (i : A → x, Ei) ∈ P .
Also the label j of the next production is produced while the old one, i, is stored

on the created external membrane. Note that we should “trash” the computation
of Π if no productions of G can be simulated and there are nonterminal objects
attached to the innermost membrane of Π. This is accomplished by the rules in
groups 2 and 3.

Indeed, if no rule from group 1 can be applied, then a rule of group 2 must
be applied, because of the maximal parallelism. If this rule is applied, then the
membrane [ ]E## is created and the rule in group 3 is applied forever; thus the
computation does not halt – the computation is “trashed”.

We have to guarantee that, after a rule of group 1 is applied (simulating the
application of a production from G), the objects not modified in the sentential
form do not go to the created external membrane. To this aim the rules of group 4
are used. In fact, if any object of the sentential form is attached to a membrane not
containing the object E (that is always attached only to the innermost membrane),
then the computation of Π never halts.

To make the computation halting, the symbols E and lh must be removed
from the innermost membrane, and the nonterminal object Z must be erased. To
this aim we use the rules of group 5. Notice that this should be done only when
the sentential form is composed by only terminal objects. In fact, if this is not
true, then in the next step, a rule of group 2 is applied, and then the computation
will never halt.

Thus, from the above explanation, it follows that, any successful derivation of
G producing w can be simulated by a successful computation in Π halting in a
configuration containing a unique innermost membrane, which is also the unique
output membrane which is marked by the multiset ΨV (w).

On the other hand, unsuccessful derivations of G can be of the type S ⇒∗

Z(N ∪ T )∗ or of the type S ⇒∗ Z(N ∪ T )∗N(N ∪ T )∗ ⇒ (N ∪ T )∗N(N ∪
T )∗. The simulation in Π of these two types of derivations results in non-halting
computations.

Therefore Ps(Π) is exactly the Parikh image of the language generated by the
grammar G.
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The proof given can be easily adapted using only pinoe or using only drip
rules. Therefore the theorem follows.

6.7 Using Protein-Membrane and Protein Move-

ment Rules

We will investigate now membrane systems using both protein-membrane rules
and protein movement rules. As we will demonstrate the ability to attach, de-
attach, and move proteins across the system in a controlled fashion increases the
generative power of the systems.

The first indications of the increased generative power is given by Theorem 9:
Ppp systems from PsPP∗((ncoo)α, prot), α ∈ {pinoi, pinoo, drip}, can generate
at least the family of Parikh images of context-free languages (compare this result
with Theorem 7).

Theorem 9
PsCF ⊆ PsPP∗((ncoo)α, prot), α ∈ {pinoi, pinoe, drip}.

Proof
Given a context-free grammar G = (N, T, P, S) one can construct a Ppp system Π
from PP∗((ncoo)pinoi, prot) such that Ps(Π) is exactly the Parikh image of L(G).
Without loss of generality we suppose that each nonterminal is at the left-hand
side of at least one production of the grammar.

We construct Π = (V, µ, u1, u2, R, F ) with V = N ∪ T ∪ {t, E}, F = T , and
µ = [ [ ]St ]E .

The rules of R are grouped according to their intended use:
1. (Pino rules),
[ ]a → [ [ ]tx ] for a → x ∈ P ,
2. (protein movement rules – movement of terminal objects),
[ ]ta → [ ]ta, for a ∈ T ,
[a] → [ ]a, for a ∈ T ,
[ ]a → [a], for a ∈ T ,
[a]E → [ ]aE , for a ∈ T ,
[ ]E → [ ]E,
3. (protein movement rules – movement for non-halting),
[ ]tt → [ ]tt,
[t] → [ ]t,
[ ]t → [t].
Intuitively, Π simulates the context-free productions of G using the pino rules,

and when terminal objects are created, they are collected on the skin membrane.
We will show that during the computation of Π the membrane structure is such
that the marking of the skin membrane contains exactly one copy of E and no
copies of t, while the markings of the other membranes contain exactly one copy
of t and no copies of E.
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The system Π works in the following way. The rules of group 1 simulate the
rewriting in G. Each time a pino rule is applied, then the “special” object t is also
attached to the created internal membrane. If a membrane with two (or more)
objects t attached is produced, then the computation will not halt because at
least a membrane with a marking containing two objects t is produced, and then
the rules from group 3 can be used forever.

This guarantees that each membrane present in the system, except the skin
membrane, is marked with objects from N ∪ T and exactly one t. This object t
is used to de-attach the terminal objects from the membranes and to make them
migrate toward the skin membrane where they remain attached. This is done by
using the rules from group 2 (this process of migration can start at any moment
during the computation; it does not interfere with the result of the computation).

Finally, the object E attached to the skin is removed; it can be removed only
when all objects from T present in Π have been moved and attached to the skin
membrane, otherwise these objects move through the regions of the system forever
and the computation will not halt.

In this way for any string w in L(G) one can obtain, at the end of a halting
computation, a marking of the skin membrane corresponding to the Parikh vector
of w. In fact, this can be done by applying the pino rules and then moving all the
objects from T to the skin membrane in the above described way.

On the other hand, each multiset w produced by Π is a marking of the skin
membrane in a halting configuration, and it can be only obtained in the way
described above – hence, there exists a derivation in G that produces a string
with its Parikh vector corresponding to w.

The proof can be adapted for systems using (ncoo)pinoe or (ncoo)drip rules
by adapting the protein movement rules. Hence, the theorem holds.

If Ppp systems are equipped with both protein-membrane and protein move-
ment rules, then they are computationally complete, in the sense that they are
able to generate the family of Parikh images of recursively enumerable languages.

So, informally, it seems that the ability to move the proteins (in a controlled
way) through the regions of the system is important for reaching computational
completeness. On the other hand, it is interesting to notice that the generative
power of protein movement rules, when used alone, is very “weak” (Theorem 5).

By comparing the following proof with the proof of Theorem 8 we clearly notice
similarities. The main difference is the second group of rules, used to simulate the
appearance checking mechanism present in the programmed grammar.

Theorem 10
PsPP∗(α, prot) = PsRE, α ∈ {pinoi, pinoe, drip}.

Proof
We first prove the theorem for systems from PP∗(pinoi, prot).

The inclusion PsPP∗(pinoi, prot) ⊆ PsRE follows from the Church-Turing
thesis. The reverse inclusion, PsRE ⊆ PsPP∗(pinoi, prot) can be proved by sim-
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ulating a programmed grammar with appearance checking G by a Ppp system Π
from PP∗(pinoi, prot).

To this aim, consider G = (N, T, P, S) in the lh-normal form. Let Lab′(G) =
{i′ | i ∈ Lab(G)}.

The Ppp system Π is defined as follows.

Π = (V, µ, u1, u2, R, F ), where

• V = N ∪ T ∪ {E}∪Lab(G)∪Lab′(G)∪ {#, d, d′, h}∪ {h′
i, h

′′
i | i ∈ Lab(G)};

• µ = [ [ ]ESl0h ]λ;

• F = T ;

• The pino rules and the protein movement rules in R are given in groups,
according to their intended use during the simulation of G by Π.

1. (simulation of the productions of the programmed grammar),
[ ]hEAi → [ [ ]hExj]i, for (i : A → x, Ei, Fi) ∈ P, j ∈ Ei, i 6= lh,

2. (simulation of the skipping of a production – appearance checking),
[ ]Ehi → [ [ ]Eh′

i
h′′

i
]i, i ∈ Lab(G), i 6= lh,

[ ]Eh′
i
h′′

i
→ [ ]Eh′

i
h′′

i , [ ]Eh′′
i
→ [ [ ]E##]h′′

i
, i ∈ Lab(G), i 6= lh,

[ ]Eh′
i
A → [ [ ]E##]h′

i
A , for (i : A → x, Ei, Fi) ∈ P ,

[h′′
i ]i → [ ]h′′

i
i, i ∈ Lab(G),

[ ]h′′
i

i → [ [ ]j′d]i, i ∈ Lab(G), j ∈ Fi,
[ ]j′d → [ ]dj

′, j ∈ Lab(G),
[ ]Ej′ → [ ]Ej′ , j ∈ Lab(G), j 6= l0, j 6= lh,
[ ]Ej′h′

i
→ [ [ ]Ejh]j′ , i, j ∈ Lab(G),

3. (used to produce non-halting),
[ ]E## → [ [ ]E##]#,

4. (used to keep the symbols from a sentential form on the same membrane),
[ ]Xi → [ [ ]E##]i, X ∈ (N ∪ T ), i ∈ Lab(G) ∪ Lab′(G),

5. (used to halt a computation),
[ ]Elh → [ ]lhE,
[ ]lhZ → [ ]lhZ,
[ ]lhh → [ ]lhh,
[ ]lh → [ ]lh,
[ ]Elh → [ ]Elh ,
[ ]Z lh → [ ]Zlh ,
[ ]hlh → [ ]hlh ,
[ ]X lh → [ ]Xlh , X ∈ N .
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The so-constructed system Π works as follows.
Each computation starts from the initial configuration [ [ ]ESl0h ]λ. At each

step, there is a unique membrane of Π marked by a multiset composed by the
object E, the objects corresponding to the current sentential form of G (only the
object S at the beginning of a computation), the label of the next production of
G to simulate (l0 at the beginning of a computation), and the “support” object h.

The pino rules of group 1 simulate the application of a production (i : A →
x, Ei, Fi) of G, not used in the appearance checking mode (i.e., the nonterminal
A is present in the multiset marking the membrane to which E is attached). In
this case the pino rule corresponding to the production A → x, with label i is
applied, and together with the objects x also the label of the next production to
simulate (j ∈ Ei) is produced.

If a production cannot be applied (because A is not present in the multiset
marking the membrane to which E is attached), then the production has to be
used in the appearance checking mode (i.e., has to be skipped) and, for this
goal, the rules of group 2 are used. The system “guesses”, by applying a rule
[ ]Ehi → [ [ ]Eh′

i
h′′

i
]i from group 2, that the production of G with label i that

should be currently simulated, cannot be executed.
For instance, consider the configuration [ · · · [ ]hExi · · · ], with x a string repre-

senting a multiset over N∪T (it represents the current sentential form of G) and i
the label of the next production of G to simulate. By applying [ ]Ehi → [ [ ]Eh′

i
h′′

i
]i

we obtain the configuration [· · · [ [ ]Eh′
i
h′′

i
x]i · · · ]. Then, the rule [ ]Eh′

i
h′′

i
→ [ ]Eh′

i
h′′

i

is applied (the other rules that could be applied lead to a non-halting computa-
tion). So the configuration [· · · [ [ ]Eh′

i
xh′′

i ]i · · · ] is obtained. In the next step,
in parallel, the rule [ ]Eh′

i
A → [ [ ]E##]h′

i
A with (i : A → x, Ei, Fi) ∈ P is

applied (if possible) and the rule [h′′
i ]i → [ ]h′′

i
i is applied (this is certainly pos-

sible). If the first rule is applied, then this means that the production with label
i could be simulated and the (guess) decision to skip it was wrong. In this case
the proteins E## are attached to the created membrane and the computation
never halts. If the first rule is not applied, then the next configuration reached
is [· · · [ [ ]Eh′

i
x ]h′′

i
i · · · ]. Now only the pino rule [ ]h′′

i
i → [ [ ]j′d]i, j ∈ Fi, can

be applied. Therefore, the next configuration obtained is the following one (no-
tice the movement of the contents in the pino operation): [· · · [ [ ]j′d[ ]Eh′

i
x]i · · · ].

Now the protein j′ is de-attached using the rule [ ]j′d → [ ]dj
′. So the next

configuration obtained is [· · · [ [ ]dj
′[ ]Eh′

i
x]i · · · ]. The protein j′ is added to the

marking of the membrane where the protein E is already attached, by using
[ ]Ej′ → [ ]Ej′ . In this way the configuration [· · · [ [ ]d[ ]j′Eh′

i
x]i · · · ] is obtained.

Finally, the pino rule [ ]Ej′h′
i
→ [ [ ]Ejh]j′ can be applied. So the next configura-

tion is [· · · [ [ ]d[ [ ]Ejhx]j′ ]i · · · ]. Therefore, the process can be iterated by applying
(or skipping) the production of G with label j, in the way described above. Also,
the rules of group 4 ensure that the sentential form is always entirely attached to
the membrane where E is attached, and it is never divided randomly between the
membranes created by the pino operation.

The correct halting of the computation is assured by applying the rules of
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group 5. The computation can be halted when the production with label lh should
be simulated. In this case, it is necessary to remove the nonterminal Z and to check
that the objects attached to the membrane containing the current sentential are
terminals.

For instance, consider the configuration [ · · · [ ]hExlh · · · ], where x is a string
representing a multiset over V (the current sentential form of G). First, the pro-
teins E, Z (present in x) and h are de-attached, obtaining the configuration
[ · · · [ ]x′lhhEZ · · · ]. Then, finally, also lh is released yielding to the configuration
[ · · · [ ]x′ lhhEZ · · · ]. The release of lh cannot be done earlier, since otherwise
lh would be re-attached because of the presence of E, Z or h. Once lh has been
released, it is attached again to the same membrane if and only if a nonterminal
object is attached to this membrane (rule [ ]X lh → [ ]Xlh); this label is released
again by the rule [ ]lh → [ ]lh and this attachment/de-attachment runs forever.
This guarantees that, when the computation halts, the unique output membrane
(the one where is attached at least a flag) contains only objects from T .

From the above explanation it is easily seen that any successful derivation of
G producing w can be simulated in Π by a successful computation halting in a
configuration with a unique output membrane marked with the multiset ΨT (w).
The simulation in Π of this type of derivation leads to a non-halting computation.

Therefore it follows that Ps(Π) is exactly the Parikh image of L(G).
Moreover the proof given can be easily adapted by using pinoe or by using

drip rules (by adjusting the protein movement rules). Thus the theorem follows.

6.8 Decision Problems

Since the set of proteins attached to a membrane determines the set of rules that
can be applied to this membrane, we will consider now the following decision
problem: Is it decidable whether or not an arbitrary multiset w is a reachable
marking for an arbitrary Ppp system?

We will demonstrate that this problem is decidable for Ppp systems using (i)
only pino and/or drip rules, or (ii) only protein movement rules, while it is not
decidable for Ppp systems using both pino (or drip) rules and protein movement
rules.

Theorem 11
It is undecidable whether or not, for any Ppp system Π and any multiset w of
proteins over VΠ, w is a reachable marking of Π.

Proof
Sketch. The result follows from the universality results proved in Theorem 10.

For any programmed grammar G with appearance checking it is possible to
construct a Ppp system Π that can simulate the derivations in G. Consider now
the construction given in Theorem 10. If there exists an algorithm to check if an
arbitrary multiset w is a reachable marking of Π, then the same algorithm together
with the construction from Theorem 10, could be used to decide whether or not
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for an arbitrary Parikh vector v a sentential form z with Parikh vector equal to v
can be generated in G. This, however, contradicts the universality of programmed
grammars with appearance checking (which has been proved in a constructive way,
see [11]).

If Ppp systems use only protein movement rules, only pino rules, or only drip
rules, then the above problem becomes decidable.

Theorem 12
It is decidable whether or not, for any Ppp system Π from PP∗(prot) and any
multiset w of proteins over VΠ, w is a reachable marking of Π.

Proof
Given a Ppp system Π from PP∗(prot) the number of possible distinct reachable
configurations for Π is finite and therefore the problem is decidable (e.g., by using
an exhaustive search).

Theorem 13
It is decidable whether or not, for any Ppp system Π from PP∗(α), α ∈ {pinoi,
pinoe, drip}, and any multiset w of proteins over VΠ, w is a reachable marking of
Π.

Proof
We first show that the set of strings representing all the reachable markings for Π ∈
PP∗(pinoi) can be generated by a programmed grammar G without appearance
checking.

Let Π = (V, µ, p1, p2, . . . , pm, R, F ) where R = {r1, · · · , rk}.
In what follows, in order to avoid writing an entire pino rule ri : [ ]uav →

[ [ ]ux ]v we will often refer directly to the strings u, v, and x and to the symbol
a. Thus, e.g., we may write “consider a string u of ri”.

We also use the morphism h : V −→ V ′ defined by h(x) = x′, x ∈ V , and
V ′ = {a′ | a ∈ V }.

Let G = (N, T, P, S) be a pure programmed grammar, thus N = T , where N
is the set V ∪ V ′.

In what follows, in order to simplify the notation, we assume that several
productions of G can have the same label (in this case the production to be
applied is chosen nondeterministically among the ones with the same label). Note
that this assumption is only a notational convenience: it is easy to see that for
each such G there is an equivalent pure programmed grammar having an injective
labeling of the productions.

For the sake of readability we will use lbeg to denote the set of labels of G
which correspond to productions that are used to initiate the simulation of pino
rules. Thus, lbeg (the set of beginning labels) is defined as

lbeg = {l′ri,1 | ri has u 6= λ, 1 ≤ i ≤ k}

∪ {l′ri
| ri has u = λ, 1 ≤ i ≤ k} ∪ {l′′ri,1 | ri has v 6= λ, 1 ≤ i ≤ k}

∪ {l′′ri,r+1 | ri has v = λ, 1 ≤ i ≤ k}.
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The label used to start the simulation of a pino rule ri can be different accord-
ing to the presence of strings u and v in the rule ri. In fact, if in the chosen rule
ri, u or/and v are missing, then some of the productions of G need to be skipped.

The set of productions P is divided into several groups, according to their
intended use during the simulation of Π.

1. (nondeterministic choosing of one membrane and of one pino rule),
(l0 : S → pi, lbeg), for 1 ≤ i ≤ n,

If the pino rule ri : [ ]uav → [ [ ]ux ]v, 1 ≤ i ≤ k, is present in R, with
u = u1u2 · · ·uj, v = v1v2 · · · vr and x = x1x2 · · ·xp, then we add to P the following
productions.

2(a). (prime the symbols of the string u),
(l′ri,1

: u1 → h(u1), {l
′
ri,2

}),
(l′ri,2

: u2 → h(u2), {l
′
ri,3

}),
· · ·
(l′ri,j

: uj → h(uj), {l
′
ri
}),

3(a). (prime the symbol a),
(l′ri

: a → h(a), {l′ri,j+1
}), if ri has v 6= λ,

(l′ri
: a → h(a), {l′ri,j+r+1

, l1,i}), if ri has v = λ,

4(a). (delete the symbols of v),
(l′ri,j+1

: v1 → λ, {l′ri,j+2
}),

(l′ri,j+2
: v2 → λ, {l′ri,j+3

}),
· · ·
(l′ri,j+r

: vr → λ, {l′ri,j+r+1
, l1,i}),

5(a). (delete nondeterministically),
(l1,i : d → d, {l′ri,j+r+2

}), d ∈ N , if ri has u 6= λ,
(l1,i : d → d, {l′ri,2j+r+2

}), d ∈ N , if ri has u = λ,
(l′ri,j+r+1

: d → λ, {l′ri,j+r+1
, l′ri,j+r+2

}), d ∈ V , if ri has u 6= λ,
(l′ri,j+r+1

: d → λ, {l′ri,j+r+1
, l′ri,2j+r+2

}), d ∈ V , if ri has u = λ,

6(a). (de-prime the symbols of u),
(l′ri,j+r+2

: u′
1 → u1, {l

′
ri,j+r+3

}),
(l′ri,j+r+3

: u′
2 → u2, {l

′
ri,j+r+4

}),
· · ·
(l′ri,2j+r+1

: u′
j → uj , {l

′
ri,2j+r+2

}),

7(a). (apply a → x and choose the next pino rule),
(l′ri,2j+r+2

: a′ → x, lbeg),
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2(b). (prime the symbols of v),
(l′′ri,1

: v1 → h(v1), {l
′′
ri,2

}),
(l′′ri,2

: v2 → h(v2), {l
′′
ri,3

}),
· · ·
(l′′ri,r

: vr → h(vr), {l
′′
ri,r+1

}),

3(b). (prime the symbol a),
(l′′ri,r+1

: a → h(a), {l′′ri,r+2
}), if ri has u 6= λ,

(l′′ri,r+1
: a → h(a), {l′′ri,r+j+2

, l2,i}), if ri has u = λ,

4(b). (delete the symbols of u),
(l′′ri,r+2

: u1 → λ, {l′′ri,r+3
}),

(l′′ri,r+3
: u2 → λ, {l′′ri,r+4

}),
· · ·
(l′′ri,r+j+1

: uj → λ, {l′′ri,r+j+2
, l2,i}),

5(b). (delete nondeterministically),
(l2,i : d → d, {l′′ri,r+j+3

}), d ∈ N ,
(l′′ri,r+j+2

: d → λ, {l′′ri,r+j+2
, l′′ri,r+j+3

}), d ∈ V ,

6(b). (delete the symbol a′),
(l′′ri,r+j+3

: a′ → λ, {l′′ri,r+j+4
}), if ri has v 6= λ,

(l′′ri,r+j+3
: a′ → λ, lbeg), if ri has v = λ,

7(b). (de-prime the symbols of v and choose the next pino rule),
(l′′ri,r+j+4

: v′1 → v1, {l
′′
ri,r+j+5

}),
(l′′ri,r+j+5

: v′2 → v2, {l
′′
ri,r+j+6

}),
· · ·
(l′′ri,r+j+4+r−1

: v′r → vr, lbeg),

The so-constructed grammar G simulates Π in the following way.
The underlying idea is that G stores in its sentential forms the strings corre-

sponding to reachable markings of Π (with one reachable marking stored in one
sentential form).

The grammar simulates, by using its productions, the evolution of a single
membrane from a reachable configuration of Π; if a membrane has several possible
evolutions then G “chooses” only one of them in a nondeterministic fashion. When
a pino rule is simulated, then the grammar chooses, nondeterministically, to follow
the evolution of either the created internal membrane or the created external
membrane.

Initially, the grammar G applies one of the productions present in the group 1,
having label l0. So the symbol S is rewritten in a nondeterministic way into one of
the strings p1, p2, · · · , pm corresponding to the initial markings of Π. The choice
can be done in a nondeterministic manner since in the systems we consider here,
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the evolution of a membrane present in a certain configuration is independent
from the evolution of the other membranes present in the same configuration.

The next production is selected by choosing, in a nondeterministic way, a label
in the set lbeg associated with the production with label l0.

We will discuss the functioning of G when it simulates a pino rule in which
both contexts u and v are nonempty (the reader can easily verify the functioning
of G in the case when one or both contexts are empty).

Given a pino rule ri : [ ]uav → [ [ ]ux ]v, the label l′ri,1
is used to start the

sequence of productions that simulate the pino rule ri, in the case G follows the
evolution of the created internal membrane; on the other hand l′′ri,1

is used to start
the sequence of productions that simulate the pino rule ri in the case G follows
the evolution of the created external membrane.

The productions in group (a) are used in the former case, while the productions
in group (b) are used in the latter case.

(i): We now analyze the former case. Thus we suppose that, after applying the
production labeled by l0, we have chosen the production with label l′ri,1

and ri is
the pino rule [ ]uav → [ [ ]ux ]v. Therefore, the grammar simulates the rule ri and
chooses to follow the evolution of the created internal membrane.

First, the productions of the group 2(a) are executed in sequence – they are
used to mark all the symbols in the sentential form corresponding to the objects
of the string u of the pino rule ri.

Then the production a → h(a) is applied, and the object a is primed (group
3(a)).

After that, the productions of group 4(a) are applied in sequence (we sup-
pose v 6= λ). This corresponds to the deletion from the sentential form of the
objects from the string v of the pino rule ri. These objects are deleted because
the grammar has chosen to follow the evolution of the created internal membrane.

When this phase is completed, then some (possibly none) of the symbols in
the sentential form are randomly deleted. This is used to simulate the random
distribution of the objects between the two newly created membranes, and in
particular the deletion simulates the nondeterministic distribution of some of the
objects to the created external membrane.

This deletion can be stopped by choosing to execute the production with label
l′ri,j+r+2

(notice that the deletion can be even totally skipped by choosing the
special “dummy” production with label l1,i).

When the deletion is stopped, then the introduced symbols of u are de-marked
by applying, in sequence, the productions from group 6(a), and finally the symbols
of the string x are introduced by using the rules of group 7(a). Moreover, when
this last production is applied, a new pino rule is nondeterministically selected by
choosing a label in lbeg and the above described process is repeated.

(ii): Now we analyze the latter case. Thus we suppose that, after executing the
production with label l0, we have chosen the production with label l′′ri,1

where the
pino rule ri is [ ]uav → [ [ ]ux ]v. Therefore, the constructed grammar simulates
the application of the pino rule ri with the choice to follow the evolution of the
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created external membrane.
This is done by applying, in a way analogous to the one described above, the

rules of the group (b), in the order described by groups 1, 2(b), 3(b), 4(b), 5(b),
6(b), and 7(b).

Since G is pure, the language L(G) consists of all reachable sentential forms.
Notice that during the intermediate steps of the simulation of a pino rule there
are always primed symbols in the sentential forms produced by G.

By Lemma 2, L(G) can also be generated by a programmed grammar without
appearance checking.

We are interested in the set of strings corresponding to reachable markings of
Π and to obtain this set, we only need to intersect L(G) with the regular set V ∗,
filtering out in this way the strings from L(G) containing primed symbols (note
that these are the only strings in L(G) not corresponding to reachable markings
of Π).

The family of languages generated by programmed grammars without ap-
pearance checking is closed under intersection with regular sets (see, e.g., [11]);
therefore, the language Lreach = L(G) ∩ V ∗ can also be generated by such gram-
mars (the proof of this closure property is constructive, i.e., we can construct the
grammar generating Lreach starting from G and from the automaton for V ∗).

Therefore to check if a multiset of proteins w is a reachable marking of Π, we
only need to decide if (any permutation of) the string w is in Lreach, and this is
decidable (see, e.g., [11]).

Since the membrane structure is not really important in the described simu-
lation then it is easy to adapt the given proof for Ppp systems using only pinoe

rules or using only drip rules. Therefore, the theorem holds.

We conclude this section by investigating two more decision problems. The
first problem concerns the reachability of a configuration in Ppp systems. The
second problem concerns the boundness of Ppp systems.

First, we observe that, given an arbitrary Ppp system Π and an arbitrary
configuration C of Π, one can compute an upper bound mapΠ(C) on the number
of applications of pino and drip rules that can be used in deriving C from the
initial configuration of Π (in case that C is reachable in Π).

Clearly, one can generate in a systematic fashion all reachable configurations of
Π containing no more than r membranes. Since each application of a pino or drip
rule increases the number of membranes this generation process takes a bounded
number of steps. If C appears among these configurations, then it is reachable,
otherwise C is not reachable in Π.

Thus, we have the following result:

Theorem 14
It is decidable whether or not, for any Ppp system Π and any configuration C of
Π, C is a reachable configuration of Π.

It is perhaps worthwhile to discuss Theorem 14 in the light of the universality
result stated in Theorem 10. The reason that Theorem 14 holds is that, for a
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given configuration C, one can, a priori, provide an upper bound mc such that C
is reachable in Π if and only if it is reachable by computations that do not exceed
mc steps.

On the other hand, if we want to check whether or not a particular multiset
w is in the output of a successful computation of Π, then, in general, there is no
upper bound mw such that: w ∈ Ps(Π) if and only if w is an output of a successful
computation which takes no more than mw steps.

In fact, in general, there is no relationship between the size of w and the
maximal size of a halting configuration in which w is marking one of the output
membranes.

A Ppp system Π is bounded if there exists an integer k, such that, any reachable
configuration of Π has less than k membranes.

Theorem 15
It is decidable whether or not an arbitrary Ppp system Π from PP∗(α), α ∈
{pinoi, pinoe, drip}, is bounded.

Proof
Given a Ppp system Π from PP∗(α) α ∈ {pinoi, pinoe, drip}, one can construct
a programmed grammar G without appearance checking such that L(G) consists
of strings corresponding to all the reachable markings of Π. Such a grammar G
can be constructed in the way described in the proof of Theorem 13.

Since it is decidable whether or not the language of an arbitrary programmed
grammar without appearance checking is finite (see, e.g., [11]), we can decide
whether or not L(G) is finite. If L(G) is infinite, then, obviously, Π is not bounded.
Assume now that L(G) is finite. Note that still Π can be unbounded because, e.g.,
many membranes can have the same marking in a certain configuration. It is easy
to see that L(G) can be effectively constructed from G: by iteration we can find a
k such that L(G)∩V kV ∗ = ∅, where V is the alphabet of G, and we now need to
check the membership of w in L(G) (which is decidable) for only a finite number
of w ∈ V k−1.

By analyzing L(G) it is possible to decide if a pino (or a drip) rule can be
applied an unbounded number of times. This is done by constructing a graph
having nodes labeled by the strings of L(G). We add directed edges between the
nodes in the following way. If a node x is labeled by w1 and a node y is labeled by
w2, then there is an edge between the two nodes, directed from w1 to w2, if and
only if there is a pino (or a drip) rule in Π that applied to the membrane [ ]w1

can produce two membranes where at least one of the them is marked by w2.
Clearly, if the so-constructed graph has a loop, then Π is unbounded; otherwise

Π is bounded.

6.9 Concluding Remarks

We have investigated membrane systems using operations involving membranes
marked with multisets of proteins. These systems use two different kinds of oper-
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w/o prot prot
w/o pinoi PsFIN

(ncoo)pinoi ⊂ PsCF ⊇ PsCF
pinoi ⊇ PsPR PsRE

Table 6.1: Computational power for Ppp systems using pinoi and protein move-
ment rules (prot). The same table holds also for pinoe and drip operations.

ations: the ones that involve membranes and proteins (pino and drip operations)
and the ones that attach, de-attach, and move the proteins across the regions of
the system (protein movement operations).

Membrane systems using both types of operations are shown to be compu-
tationally complete. When the protein-membrane rules are restricted to be non-
cooperative, then one generates at least the family of Parikh images of context-free
languages.

We have also analyzed membrane systems whose evolution is based on only
one of the two types of operations.

In particular we have shown that (in terms of Parikh sets) membrane sys-
tems using only pino (or only drip) rules are at least as powerful as programmed
grammars without appearance checking.

Our current knowledge about the computational power of membrane systems
considered in this chapter is summarized in Table 6.1.

A number of problems have to be settled in order to get a more complete
understanding of membrane systems with marked membranes. Some of them are
suggested by the results obtained in this chapter.

1. Is the inclusion of PsCF ⊆ PsPP∗((ncoo)α, prot) α ∈ {pinoi, pinoe, drip},
strict?

2. Is the inclusion PsPP∗((ncoo)α, prot) ⊆ PsRE, α ∈ {pinoi, pinoe, drip},
strict?

3. Is the inclusion PsPR ⊆ PsPP∗(α), α ∈ {pinoi, pinoe, drip}, strict?

4. Is the inclusion PsPP∗(α) ⊆ PsRE, α ∈ {pinoi, pinoe, drip}, strict?

Also the following “natural” decision problem should be settled for membrane
systems with marked membranes: is it possible to decide whether or not an arbi-
trary multiset of proteins is a reachable marking for an arbitrary Ppp system from
PP∗((ncoo)α, prot), with α ∈ {pinoi, pinoe, drip}?

The problem is challenging since it is proved to be decidable for Ppp systems
from PP∗(prot), i.e., using only protein movement rules (see Theorem 12), and
for Ppp systems from PP∗(α), α ∈ {pinoi, pinoe, drip}, i.e., using only protein-
membrane rules (see Theorem 13), while it is undecidable for arbitrary Ppp sys-
tems (Theorem 11).
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A more general research line is to consider a more realistic model of the way
that proteins are embedded in membranes. A possible starting point is to ac-
commodate within our model the concept of the parametric regular spherical
membrane presented in [2].

An interesting research topic is to consider protein rules with different execu-
tion times (following, for instance, the idea of timed P systems introduced in [7]).
Also, it would be interesting to consider proteins marking only one of two sides
of a membrane, similar as defined in [10]. In this way, these proteins would only
have an effect on one side of the membrane.





Chapter 7

Membrane Systems with

External Control

Abstract
We consider the idea of controlling the evolution of a membrane system. In par-
ticular, we investigate a model of membrane systems using promoted rules, where
a string of promoters (called the control string) “travels” through the regions, ac-
tivating the rules of the system. This control string is present in the skin region
at the beginning of the computation – one can interpret that it has been inserted
in the system before starting the computation – and it is “consumed”, symbol
by symbol, while traveling through the system. In this way, the inserted string
drives the computation of the membrane system by controlling the activation of
evolution rules. When the control string is entirely consumed and no rule can be
applied anymore, then the system halts – this corresponds to a successful compu-
tation. The number of objects present in the output region is the result of such
a computation. In this way, using a set of control strings (a control program),
one generates a set of numbers. We also consider a more restrictive definition of
a successful computation, and then study the corresponding model.

In this chapter we investigate the influence of the structure of control programs
on the generative power. We demonstrate that different structures yield generative
powers ranging from finite to recursively enumerable number sets.

In determining the way that the control string moves through the regions, we
consider two possible “strategies of traveling”, and prove that they are similar as
far as the generative power is concerned.

7.1 Introduction

Membrane systems (also referred to as P systems) were introduced in 1998 by
Gh. Păun as computing devices inspired by the structure and functioning of living
cells. Since their introduction, several models of P systems have been investigated,
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many of them being proved to be computationally complete. The reader is referred
to the monograph [21], and to an up-to-date bibliography of this research area
available at the P systems web-page, [1].

In nature, the behavior of cells can be influenced by the signals (controls) that
they receive from the “outside”. Thus, it may be possible to drive the evolution of
a living cell by providing the cell with a specific control.

With this motivation in mind, we introduce and investigate a model of P sys-
tems, called string-controlled P systems (in short, SC P systems). This model
is based (with some modifications) on membrane systems with promoters, in-
troduced in [3]. There, the presence of promoters is used to activate, during the
computation, certain rules of the system. The biological motivation is the fact that
chemical reactions in living cells can be promoted (or inhibited) by the presence
of various enzymes.

A string of promoters (called the control string), “produced” by the environ-
ment, is present in the skin region of the system at the beginning of a computa-
tion. This string (that acts like an external control) travels through the regions of
the system, possibly promoting (with its leftmost symbol) the rules of the region
where it currently resides. Each time the string moves from one region to another,
its leftmost symbol (used as a promoter) gets consumed. When the whole string is
consumed, and no rule can be applied in any region, then the system halts, com-
pleting a successful computation. The output of such computation is the number
of objects present in the output region when the system halts.

We shall also consider another sort of successful computation, which addi-
tionally has to satisfy a “clean ending condition” (which requires that an a priori
specified “undesirable” object is not present in any region upon the completion of
the computation).

In this way, an SC P system generates the set of numbers composed by the
outputs of all its computations. Also, a membrane system with a collection of
control strings (called the control program) generates a set of numbers, which is
defined as the union of the sets generated for each single string.

In this chapter we pay special attention to SC P systems where all evolution
rules of the system are promoted – hence, only the rules defined in the region where
the control string currently resides, and whose promoter matches the leftmost
symbol of the control string, may be active. In particular, we investigate how the
structure of the control program influences the generative power of such systems,
which are called fully-promoted SC P systems.

We show that if the control program is finite, then the generative power cor-
responds exactly to the family of finite sets of numbers. On the other hand, if
the family of recursively enumerable languages is used as the control program,
then, not surprisingly, the resulting generative power corresponds to the family
of Turing computable sets of numbers. Several intermediate results are obtained
by balancing the structure of the control program and the power of the evolution
rules used by the system.

We consider two different ways (operating modes) for a control string to travel
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through the regions of the system: either the string must move at each step (mode
(1)), or it is allowed to remain in the same region for several consecutive steps until
it decides (nondeterministically) to move again (mode (2)). We prove that, under
some natural conditions on the control program, these two modes are similar as
far as the generative power is concerned.

The chapter is organized as follows. Section 7.2 recalls some basic notions of
formal languages theory used throughout the chapter. A formal definition of SC
P systems is presented in Section 7.3. In Section 7.4 we show that the generative
power of classes of fully-promoted SC P systems with a natural condition on the
control program family are “almost” independent on the chosen operating mode
of the movement of the control string. In Section 7.5 we consider structures of
control that yield a generative power strictly weaker than RE, and in Section 7.6
structures that yield the computational completeness.

We conclude the chapter by suggesting a number of open problems and re-
search directions.

7.2 Preliminaries

Let us briefly recall some notions and results of formal languages to the extent
needed in this chapter– in this way we establish the basic notation and terminology
needed later on. For more details the reader can consult standard books, such as
[25], [11], and the handbook [24].

An alphabet V is a finite set of symbols. By V ∗ we denote the set of all strings
over V , the empty string is denoted by λ, and V + = V ∗ − {λ}.

The length of a string w ∈ V ∗ is denoted by |w|, while the number of oc-
currences of a ∈ V in w is denoted by |w|a. For a language L ⊆ V ∗, the set
length(L) = {|w| | w ∈ L} is called the length set of L.

If FL is a family of languages then NFL is the family of length sets of lan-
guages in FL.

We denote by FIN , REG, CF , CS and RE the families of finite, regular,
context-free, context-sensitive and recursively enumerable languages, respectively.
Accordingly, for instance, the family of length sets of languages in RE is denoted
by NRE (this is the family of all recursively enumerable sets of natural numbers).

A multiset over V is a mapping M : V −→ IN0; assigning to each a ∈ V a
multiplicity M(a). Commonly, multisets are represented by strings of symbols.
In this representation the order of symbols does not matter, because the number
of copies of an object in a multiset is given by the number of occurrences of
the corresponding symbol in the string. Hence, e.g., a4b3d denotes the multiset
consisting of 4 occurrences of a, 3 occurrences of b, and one occurrence of d; the
same multiset is also represented by, e.g., da2ba2b2.

An ET0L system is a construct G = (Σ, T, H, w), where Σ is the (total)
alphabet, T ⊆ Σ is the terminal alphabet, H = {h1, h2, . . . , hk} is a finite set
of finite substitutions (tables) over Σ, and w ∈ Σ∗ is the axiom; each hi ∈ H ,
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1 ≤ i ≤ k, can be represented by a list of context-free productions A → x, such
that A ∈ Σ and x ∈ Σ∗ (moreover, for each symbol A of Σ and each table hi,
1 ≤ i ≤ k, there is a production in hi with A as the left hand side). Then G
defines, for each 1 ≤ i ≤ k, a derivation relation ⇒hi

by x ⇒hi
y iff y ∈ hi(x).

We write x ⇒ y if x ⇒hi
y for some 1 ≤ i ≤ k. As usual, x =⇒∗ y denotes the

reflexive and transitive closure.
The language generated by G is L(G) = {z ∈ T ∗ | w =⇒∗ z}. We denote

by ET 0L the family of languages generated by ET0L systems, and by T 0L the
family of languages generated by ET0L systems such that Σ = T .

A regularly (context-free, respectively) controlled ET0L system, E(rc)T0L
system (E(cfc)T0L system, respectively) in short, is a pair Ω = (G, L) where
G = (Σ, T, H, w) is an ET0L system and L is a regular (context-free, respec-
tively) language over H .

The language generated by Ω is

L(Ω) = {z ∈ T ∗ | w = w0 ⇒hi1
w1 ⇒hi2

· · · ⇒him
wm = z, hi1 · · ·him

∈ L}.

We denote by E(rc)T 0L the family of languages generated by E(rc)T0L sys-
tems, and by E(cfc)T 0L the family of languages generated by E(cfc)T0L systems.

The following known inclusions between families of languages will be used in
this chapter (see, e.g., [25]):

FIN ⊂ CF ⊂ ET 0L ⊂ CS ⊂ RE.

From [14] we recall the following result.

ET 0L = E(rc)T 0L.

Moreover, it is known that for each L ∈ ET 0L there exists an ET0L system
G, with only 2 tables, such that L = L(G) (see, e.g., [23]).

A regularly controlled grammar with appearance checking is a tuple

G = (N, T, S, P, K, F )

where N, T, S, and P are the set of nonterminals, the set of terminals, the starting
symbol and a finite set of context-free productions, respectively. Each production
in P has a uniquely associated label, and the set of all these labels is denoted by
lab(P ). K is a regular language over lab(P ) and F ⊆ lab(P ). Let V = N ∪ T . We
say that x ∈ V + derives y ∈ V ∗ in the appearance checking mode by application
of A → w with label p (written as x ⇒ac

p y) if either x = x1Ax2 and y = x1wx2,
or A does not appear in x, p ∈ F , and x = y.

The language L(G), generated by G, consists of all strings w ∈ T ∗ such that
there is a derivation S ⇒ac

pi1
w1 ⇒ac

pi2
w2 ⇒ac

pi3
. . . ⇒ac

pin
wn = w, for some n ≥ 1

and pi1pi2 · · · pin
∈ K.

By rCac we denote the family of languages generated by regularly controlled
grammars with appearance checking and erasing productions, and by rC we de-
note the family of languages generated by regularly controlled grammars with
erasing productions and without appearance checking (the set F is empty).
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The following lemma holds (see, [11]):

Lemma 1
rCac = RE.

In what follows we assume that the reader is familiar with the membrane
computing area, in particular with the class of P systems with rewriting rules and
symbol-objects, and with the notions of P systems using promoters/inhibitors; for
instance as presented in [3, 17, 22] or in Chapter 3 of [21].

7.3 String-Controlled P Systems

A string-controlled P system, as informally described in Introduction, is defined
as follows.

Definition 2
A string-controlled P system (in short, SC P system) is a construct

Π = (V, C, P, L, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where:

• V is the alphabet of Π; its elements are called objects;

• C ⊆ V is the set of catalysts;

• P is the set of promoters; P ∩ V = ∅;

• L ⊆ P ∗ is the control program (each string in L is a control string);

• µ is a membrane structure consisting of m membranes labeled 1, . . . , m;

• wi, 1 ≤ i ≤ m, are strings that represent the multisets over V initially
associated with the regions 1, 2, . . . , m of µ;

• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules associated with the regions
1, 2, . . . , m of µ. Each evolution rule is either of the form u → v or of the
form u → v|p, where u ∈ V +, p ∈ P , and v ∈ V ∗

tar with Vtar = V × TAR,
for TAR = {here, out} ∪ {inj | 1 ≤ j ≤ m};

• i0 ∈ {1, . . . , m} specifies the output region of Π.

As usual, the membrane structure is a hierarchical arrangement of membranes,
embedded in a skin membrane, which separates the system from the environment.
A membrane without any membrane inside is called elementary. Each membrane
defines a region. For an elementary membrane this is the space enclosed by it,
while for a non-elementary membrane, is the space in-between the membrane and
the membranes directly included in it. As usual, labels 1, . . . , m identify both
membranes and their corresponding regions.
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Evolution rules of the form u → v|p are called promoted, and evolution rules
of the form u → v are called non-promoted. An evolution rule is called non-
cooperative if u ∈ V . Also, an evolution rule is called catalytic if it is either of the
form ca → cv or of the form ca → cv|p, where a ∈ (V − C), c ∈ C, p ∈ P , and
v ∈

(
(V − C) × TAR

)∗
. The elements of TAR are called targets. It is convenient

to denote (a, t) ∈ Vtar by a if t = here, and by at otherwise.
A configuration of Π is a description of the membrane structure and of the

contents of all the regions. An initial configuration of Π consists of the membrane
structure µ, the objects initially present in the regions of the system, as described
by w1, . . . , wm, and by one string from L, present in the skin region (this string
is called control string). Notice that Π has a set of initial configurations, one for
each element of L.

As standard, we suppose the existence of a global clock that marks the steps
of the system.

At each step, the control string moves, in a nondeterministic way, across the
regions of Π. We distinguish two possible modes of operation for Π: (1) at each
step the string moves passing from one region to an adjacent one; (2) at each step
the string may move to an adjacent region or remain in the same region. In both
cases the control string cannot move to the environment, and when it moves from
a region to another one, it loses its leftmost symbol. The leftmost symbol of the
control string is called the head.

At each step the head of the current control string is used as a promoter for
the rules present in the region where the string resides. A promoted rule is active
if its promoter is present. The rules that are not promoted are always active.

A transition between two configurations of Π is obtained by applying in one
step the active rules in each region of Π in a maximally parallel nondeterministic
manner. More precisely, if a rule u → v ∈ Ri or u → v|p ∈ Ri is active and the
multiset u is present in region i, then the application of this rule means removing
u from region i and adding the objects specified by v in the regions indicated by
the corresponding target commands.

A sequence of transitions, starting from an initial configuration of Π, is called
computation. A computation halts when there is no applicable rule in any re-
gion of Π and the control string is entirely consumed (Π has reached a halting
configuration).

We shall consider two definitions of successful computation for Π:

• in the standard case, we say that all halting computations of Π are successful,

• in the # case, we consider that a halting computation of Π is successful if
and only if a special a priori designated symbol # ∈ V is not present in the
halting configuration in any region of Π.

The result of a successful computation ω is the number of objects present in
the output region i0 in the halting configuration of ω. Depending on the definition
of successful computation that is considered, we shall say that the system collects
the result in the standard way, or in the # way.
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We use the notation Pm(α, FL), where α ∈ {ncoo, coo}∪{catk | k ≥ 1} and FL
is a family of languages, to denote the class of SC P systems which use at most m
membranes, use only non-cooperative (ncoo), cooperative (coo), or catalytic with
at most k catalysts (catk) evolution rules (promoted or not), and use a control
program in FL. We call FL the control program family of the class. In the coo
case, there is no restriction on the form of the evolution rules. The prefix (pro) is
added if only promoted rules are used (such systems are called fully-promoted SC
P systems).

We denote by N (i)(Π), i ∈ {1, 2}, the set of results of all successful computa-
tions of Π starting from any possible initial configuration, operating in mode (i),

and collecting the result in the standard way. Similarly, we denote by N
(i)
# (Π), i ∈

{1, 2}, the set of results of all successful computations of Π operating in mode (i)
and collecting the result in the # way. Moreover, N (i)Pm(α, FL) = {N (i)(Π) |
Π ∈ Pm(α, FL), i ∈ {1, 2}} denotes the family of sets of natural numbers gen-
erated by SC P systems from Pm(α, FL) operating in mode (i), i = 1, 2, and

collecting the result in the standard way. The family N
(i)
# Pm(α, FL) is similarly

defined.

The following inclusions follow directly from the definitions.

Lemma 3

(pro)N (i)Pm(α, FL) ⊆ (pro)N
(i)
# Pm(α, FL),

(pro)N
(i)
# Pm(α, FL1) ⊆ (pro)N

(i)
# Pm(α, FL2), if FL1 ⊆ FL2,

(pro)N
(i)
# Pm(ncoo, FL) ⊆ (pro)N

(i)
# Pm(catj , FL)

⊆ (pro)N
(i)
# Pm(catj+1, FL) ⊆ (pro)N

(i)
# Pm(coo, FL),

for j ≥ 1, i ∈ {1, 2}, α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}, and FL, FL1, FL2 families
of languages.

7.4 Fully-Promoted SC P Systems

In this section we start the investigation of fully-promoted SC P systems. Notice
that for such systems in each time step there is activity in at most one region (the
region where the control string currently resides). First we give an example that
illustrates the functioning of an SC P system. Then we prove the equivalence (as
far as the generative power is concerned) between modes (1) and (2).

The following example shows that a given SC P system Π can produce different
results according to its functioning mode.

Example 1
Let Π be the SC P system:

Π = (V, C, P, L, µ, w1, w2, R1, R2, i0),
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where:

• V = {A},

• C = ∅,

• P = {a, b},

• L = {ab},

• µ = [1 [2 ]2 ]1,

• w1 = λ; w2 = A,

• R1 = ∅,

• R2 = {A → AA|b},

• i0 = 2.

The system collects the result in the standard way.
When Π operates in mode (1), the unique control string of L is initially present

in the skin region and moves, in the next step, to region 2, losing its head a.
Therefore, now the rule A → AA|b is activated. In the following step the control
string exits region 2, entering region 1, and then its last symbol, b, is consumed.
Therefore, there is only one successful computation and we have N (1)(Π) = {2}.

If Π operates in mode (2), then the unique control string of L is initially
present in the skin region and it may remain there for a certain number of steps;
meanwhile nothing is produced in region 2. At a certain step the string moves
into region 2, losing its head a. Then, the rule A → AA|b is activated in region 2
and it will double the number of objects A at each step, until the string b moves
back to region 1. When this happens the computation halts and the number of
objects produced in region 2 is a power of two, that is, N (2)(Π) = {2n | n ≥ 1}.

Example 1 illustrates that for a given fully-promoted SC P system the gener-
ated sets under operating modes (1) and (2) may differ (even drastically). How-
ever, the family of sets of numbers generated by a class of fully-promoted SC
P systems with a control program family that is closed under non-erasing regu-
lar substitution is “almost” independent on the chosen operating mode. In fact,
we show that any fully-promoted SC P system operating in mode (2) [(1), re-
spectively] can be simulated (in a weak sense) by a fully-promoted SC P system
operating in mode (1) [(2), respectively] using the same type of rules, the same
type of control program, and using a double number of membranes.

Theorem 4
Let Π ∈ (pro)Pm(α, FL), where m ≥ 1, α ∈ {ncoo, coo}∪{catk | k ≥ 1}, and FL is
closed under non-erasing regular substitution. There exists Π′ ∈ (pro)P2m(α, FL),
such that

N
(1)
# (Π′) = {x + 1 | x ∈ N

(2)
# (Π)}.
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Proof
Let Π = (V, C, P, L, µ, w1, . . . , wm, R1, . . . , Rm, i0) ∈ (pro)Pm(α, FL), and let us
construct Π′ = (V ′, C, P ′, L′, µ′, w′

1, . . . , w′
2m, R′

1, . . . , R′
2m, i0) ∈ (pro)P2m(α, FL)

as follows.
Let V ′ = V ∪ {Z}, with Z /∈ V and P ′ = P ∪ {d}, with d /∈ P . We consider

the regular substitution φ defined by φ(p) = p(dp)∗ for each p ∈ P ; we define
L′ = φ(L) (notice that the substitution is non-erasing and so every family of
languages in {REG, CF, CS, RE} is closed under this operation). The structure µ′

has 2m membranes and is obtained from µ by adding, in each region i, 1 ≤ i ≤ m,
of µ an (elementary) membrane with label m+i. Furthermore we define w′

i = wiZ,
for 1 ≤ i ≤ m, and w′

i = Z, for m + 1 ≤ i ≤ 2m.
We define R′

i = Ri ∪{Z → #|d}, for 1 ≤ i ≤ m, and R′
i = {Z → #|p | p ∈ P},

for m + 1 ≤ i ≤ 2m.
We shall now show that for every successful computation C of Π with result x

operating in mode (2) there exists a successful computation C′ of Π′ with result
x + 1 operating in mode (1).

Consider an arbitrary computation of Π and consider one of its configurations.
Now, suppose that in such configuration the current control string w is in region i
of Π and has p as its head. Then, there exists a computation in Π′, starting with
an “appropriate” control string from L′ in the skin, that reaches a configuration
having the control string w′ = p(dp)nx present in region i of Π′.

Suppose now that w does not move in Π (Π operates in mode (2)) but remains
in the same region for several consecutive steps. This is simulated in Π′ by mov-
ing w′ back and forth between region i and the adjacent dummy region m + i,
consuming for each movement a symbol p and a dummy promoter d. In this way,
an arbitrary computation in Π can be simulated in Π′ by a computation starting
with an appropriate control string from L′.

On the other hand, Π′ does not have other successful computations except
those simulating successful computations of Π as described above. In fact, since
there is a rule Z → #|d in every set R′

i, for 1 ≤ i ≤ m, which guarantees
that the dummy symbol d cannot be used to move the control string into non-
dummy regions, otherwise the computation would not be successful. Moreover, if
the promoter present immediately to the right of the head of the current control
string is non-dummy (i.e., the string is of type pqx, with p, q ∈ P , and x ∈ P ∗),
then the string must move in a non-dummy region, because otherwise the rules
R′

i = {Z → #|p | p ∈ P}, for m + 1 ≤ i ≤ 2m, would make the computation
unsuccessful, if applied. From the above discussion it should be clear that the
theorem holds.

Conversely, a fully-promoted SC P system operating in mode (1) can be sim-
ulated (in a weak sense) by a fully-promoted SC P system operating in mode (2),
using a structure having a double number of membranes.

Theorem 5
Let Π ∈ (pro)Pm(α, FL), where m ≥ 1, α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}, and FL
is closed under non-erasing morphism. There exists Π′ ∈ (pro)P2m(α, FL), such
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that
N

(2)
# (Π′) = {x + 2 | x ∈ N

(1)
# (Π)}.

Proof
Given Π = (V, C, P, L, µ, w1, . . . , wm, R1, . . . , Rm, i0) we construct Π′ = (V ′, C,
P ′, L′, µ′, w′

1, . . . , w′
2m, R′

1, . . . , R′
2m, i0) as follows.

Let V ′ = V ∪ {c, c′, Z} and P ′ = P ∪ {d, d′}, with c, c′, Z /∈ V , and d, d′ /∈
P . We consider the non-erasing morphism φ defined by φ(p) = pdd′, for each
p ∈ P – then we set L′ = φ(L) (notice that every family of languages in
{FIN, REG, CF, CS, RE} is closed under non-erasing morphisms). The mem-
brane structure µ′ has 2m membranes and is obtained from µ in the following
way. In each region i, 1 ≤ i ≤ m, of µ an (elementary) membrane with label m+ i
is added.

The initial multisets of Π′ are w′
i = cZwi, for 1 ≤ i ≤ m, and w′

i = Z, for
m + 1 ≤ i ≤ 2m.

Finally, the evolution rules of Π′ are defined in the following way: R′
i = Ri ∪

{c′ → c|d′ , Z → #|d} ∪ {c′ → #|p, c → c′|p | p ∈ P}, for 1 ≤ i ≤ m. R′
i = {Z →

#|p | p ∈ P}, for m + 1 ≤ i ≤ 2m.
We will prove now that for every computation of Π operating in mode (1) and

producing x, there exists a computation of Π′ operating in mode (2) producing
x + 2.

Consider an arbitrary computation of Π and suppose that, after a certain step
k during that computation, the control string pi1pi2 · · · pij

, with pi1 , pi2 , . . . , pij

∈ P , is present in region i of Π.
Then, there is a computation of Π′ (starting with an “appropriate” control

string from L′) such that the control string pi1dd′pi2dd′ · · · pij
dd′ is present in

region i of Π′ after a given step k′.
In Π, at step k+1, the string must exit region i (Π operates in mode (1)), enter-

ing one of the adjacent regions, chosen nondeterministically, losing the promoter
pi1 and getting the promoter pi2 as its new head.

This single step of Π is simulated by Π′ in the following consecutive steps. The
rules activated by promoter pi1 present in region i of Π′ are executed at step k′,
together with the rule c → c′ present in every region of Π′ and activated by any
promoter of P . Therefore, at step k′ + 1 the control string must exit region i, as
otherwise in the next step the rule c′ → #|pi1

would be applied and the entire
computation would not be successful.

The only region of Π′ where the control string can go to is the dummy region
m + i present inside region i (otherwise the promoter d that follows pi1 would
activate the rule Z → #|d present in any of the non-dummy adjacent regions of
region i and the computation would not be successful). Therefore, suppose the
control string goes to region m+ i, losing in this way the promoter pi1 ; the control
string may remain in region m+ i for an unbounded number of steps (no rule can
be applied there). At a certain step k′′ the control string comes back to region
i, losing the promoter d and having now the promoter d′ as its head; therefore,
in the step k′′ + 1 the rule c′ → c|d′ is applied. The control string having now d′
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as head may remain in region i for an unbounded number of steps (no rule can
be applied). Eventually, the control string exits region i moving to an adjacent
region, losing the promoter d′, and having the promoter pi2 (the next non-dummy
promoter) as its new head.

Thus, all possible movements of the control string in Π (i.e., all possible com-
putations) are correctly captured by the functioning of Π′; consequently, every
successful computation of Π can be simulated by Π′.

Notice that, in Π′, if the promoter adjacent to the head of the control string
is non-dummy (i.e., it belongs to the set P ), then the control string must move
in a non-dummy region; otherwise a rule from R′

i = {Z → #|p | p ∈ P}, m + 1 ≤
i ≤ 2m, is applied and that would make the computation unsuccessful.

Therefore there are no other successful computations of Π′ except those that
simulate, in the above described way, successful computations of Π. Thus, the
theorem holds.

7.5 The Influence of the Control Program

Now we analyze in more detail the class of fully-promoted SC P systems operating
in mode (1). We show how the structure of the control program and the type
of evolution rules influence the generative power of the constructed membrane
system. A series of results, ranging from finite power to computational universality,
is obtained.

It is worth to remark that one can easily obtain the length set of any language
L as output of an SC P system using non-cooperative rules and having L as
the control program. Hence, the structure of the control program influences the
generative power of SC P systems as the following theorem states.

Theorem 6
NFL ⊆ (pro)N (1)P2(ncoo, FL).

Proof
Given an arbitrary language L over the alphabet Σ = {a1, . . . , an}, let us consider
a symbol ∗ /∈ Σ, and let L′ = h(L) where h is the morphism defined by h(a) = ∗a,
for every a ∈ Σ.

Now let us construct an SC P system that generates length(L) as follows:

Π = (V, C, P, L′, µ, w1, w2, R1, R2, i0),

where:

• V = {a′
1, . . . , a

′
n},

• C = ∅,

• P = Σ,

• µ = [1 [2 ]2 ]1,
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• w1 = λ; w2 = a′,

• R1 = ∅,

• R2 = {a′ → a′
outa

′|a | a ∈ Σ},

• i0 = 1.

At the beginning of the computation one of the strings from L′, nondetermin-
istically chosen, is present in the skin region of Π (i.e., region 1). The string moves
back and forth between region 1 and region 2 of the system, losing alternatively
the symbol ∗ (when passing from region 1 to region 2) and a symbol a ∈ Σ (when
moving in the opposite direction). When the string is in region 2, its head a ∈ Σ
activates exactly the rule that produces and sends out the symbol a′. Therefore,
the number of symbols contained in the output region when the computation halts
(the string is entirely consumed) is equal to the number of symbols from Σ that
occurred in the inserted control string. Thus Π generates exactly the length(L).

Now, from Corollary 3, Theorem 6 and the Turing-Church thesis, we have that
the class of fully-promoted SC P systems using arbitrary RE languages as control
program is universal, even when only non-cooperative rules are used. Hence, the
following theorem holds.

Theorem 7
(pro)N (1)P2(ncoo, RE) = (pro)N

(1)
# P2(ncoo, RE) = NRE.

It is now natural to ask what happens if we increase the “power” of the evo-
lution rules used by the P system and we decrease the “power” of the control
program.

First we consider SC P systems that use cooperative evolution rules and finite
control programs.

Theorem 8
(pro)N

(1)
# P∗(coo, FIN) = (pro)N (1)P∗(coo, FIN) = NFIN .

Proof
Given an SC P system Π, it is sufficient to notice that the number of distinct
nondeterministic computations using only a finite number of steps is bounded by a
constant that only depends on Π. Therefore, if Π has a finite control program, then
the set of numbers produced is finite. The other inclusion follows from Theorem 6.

Let us prove next that the class of fully-promoted SC P systems using arbitrary
context-free (regular, respectively) languages as control program generates exactly
the family NE(cfc)T 0L (or the family NE(rc)T 0L, respectively), even with non-
cooperative rules.
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Theorem 9

(pro)N
(1)
# P2(ncoo, REG) ⊇ NE(rc)T 0L = NET 0L.

(pro)N
(1)
# P2(ncoo, CF ) ⊇ NE(cfc)T 0L.

Proof
Given Ω = (G, L) an arbitrary E(rc)T0L system (or E(cfc)T0L system, respec-
tively) we construct a SC P system Π in (pro)P2(ncoo, REG) (in (pro)P2(ncoo, CF ),

respectively) such that N
(1)
# (Π) = length(L(Ω)) as follows.

Let G = (Σ, T, H, w) with H = {h1, . . . , hk}. Let

Π = (V, C, P, L, µ, w1, w2, R1, R2, i0),

where:

• V = Σ,

• C = ∅,

• P = {t1, . . . , tk, d, p}, with d, p /∈ {t1, . . . , tk},

• L′ = φ(L)dp with the morphism φ defined by φ(ti) = dti, 1 ≤ i ≤ k,

• µ = [1 [2 ]2 ]1,

• w1 = λ; w2 = w,

• R1 = ∅,

• R2 = {X → α|ti
| X → α ∈ hi, 1 ≤ i ≤ k} ∪ {N → #|p | N ∈ Σ − T },

• i0 = 2.

Now Π simulates in region 2 the productions of G, applying the tables according
to the strings in L′, in such a way that each table hi has an associated promoter
ti, for every 1 ≤ i ≤ k.

The dummy promoter d is only used to be consumed while the control string
moves from region 1 to region 2. In this way, the new head of the control string is
a symbol ti, for some 1 ≤ i ≤ k. The final promoter p added as last symbol of any
string in L′ is used to check whether or not there are still nonterminals in region
2 in the last step of the computation. If this is the case, then the special object
# is produced and the computation is not successful. Consequently, the theorem
follows.

We continue now to prove that the reverse inclusions also hold.
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Theorem 10

(pro)N
(1)
# P∗(ncoo, REG) ⊆ NE(rc)T 0L = NET 0L.

(pro)N
(1)
# P∗(ncoo, CF ) ⊆ NE(cfc)T 0L.

Proof
Consider a fully-promoted SC P system Π of the form

Π = (V, C, P, L, µ, w1, . . . , wm, R1, . . . , Rm, i0),

such that C = ∅ and L is a regular (context-free, respectively) language over
P = {p1, p2, . . . , pk}.

We consider the morphisms ϕi, 1 ≤ i ≤ m, defined by ϕi(X) = (X, i), for all
X ∈ V , 1 ≤ i ≤ m. By using these morphisms, we associate with each occurrence
of any object X the index of the region where the occurrence resides.

We also use the morphisms ϕt
i, 1 ≤ i ≤ m, defined by

ϕt
i(Xtar) =







(X, i) if tar = here,
(X, j) if tar = out,
(X, k) if tar = ink,

for all X ∈ V , where j is the label of the surrounding region of i.
We construct now an E(rc)T0L system (or an E(cfc)T0L system, respectively)

Ω = (G, L′) simulating the computations of Π.
First we construct G. Let G = (Σ, T, H, w′), where Σ = {(X, i) | X ∈ V, 1 ≤

i ≤ m}, T = Σ − {(#, i) | 1 ≤ i ≤ m} and w′ = ϕ1(w1) · · ·ϕm(wm).
Each table hi,pj

∈ H , 1 ≤ i ≤ m, 1 ≤ j ≤ k, is constructed in the following
way:

• for each X ∈ V , if X → α|pj
∈ Ri, for some pj ∈ P , then the rule (X, i) →

ϕt
i(α) is added to the table hi. Otherwise, if X is not present as the left

hand side of any rule in Ri, then the rule (X, i) → (X, i) is added to the
table hi;

• for each X ∈ V and 1 ≤ l ≤ m, l 6= i, the rule (X, l) → (X, l) is added to
the table hi.

Notice that H has mk tables and each one of them is complete.
Finally we construct L′. To this aim we define the finite substitution ϕ′ by

ϕ′(pj) = {t(i,pj) | 1 ≤ i ≤ m} for each 1 ≤ j ≤ k. We also define the nonde-
terministic finite state automaton A = (Q, VA, s0, F, δ), where Q = {0, 1, . . . , m},
VA = {t(i,pj) | 1 ≤ i ≤ m, 1 ≤ j ≤ k}, s0 = 0, F = Q and δ is defined by
δ(0, t(1,pj)) = 1, δ(i1, t(i1,pj)) = {i2 | 1 ≤ i2 ≤ m, and region i1 is adjacent to
region i2 in µ} for every 1 ≤ j ≤ k and 1 ≤ i1 ≤ m. Without loss of generality,
we assume 1 to be the label of the skin membrane of Π.
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Now, L′ = ϕ′(L) ∩ L(A) is regular (context-free, respectively) since regular
(context-free, respectively) languages are closed under intersection with regular
languages, see e.g. [25].

The underlying idea of the proof is the following.
Each table t(i,pj) of G with 1 ≤ i ≤ m, 1 ≤ j ≤ k, simulates the rewriting in

parallel of the objects present in region i of Π, by using rules activated by the
promoter pj . All the objects present in the same region that cannot be rewritten
by any active rule, as well as those present in the other regions of the system, are
left unchanged by the application of the table.

The language ϕ′(L) is used to pass from one table to another, in the way
described by the strings of promoters present in the control program L. More
specifically, if the string w = pj1 · · · pjl

is present in L, then ϕ′(L) contains all
the strings of the set Sw = {t(i1,pj1

), . . . , t(il,pjl
) | i1, . . . , il ∈ {1, . . . , m}}. In this

way, each computation of Π starting with the control string w = pj1 · · · pjl
can

be simulated in G by applying the tables following the order of an appropriate
string in Sw. On the other hand, not every string in the set Sw simulates a correct
computation in Π starting with the control string pj1 · · · pjl

. In fact, the control
string in Π can only move through adjacent regions – this has to be “encoded” in
the way that the passage from one table of G to another one is done. For this reason
the appropriate regular (context-free, respectively) language L′ that controls G is
obtained by intersecting the language ϕ′(L) with the regular language L(A).

From the above explanation it follows that each string in L(Ω) contains pairs
(object, region) corresponding to the objects present in the halting configurations
of successful computations of Π. In order to get the exact contents of the output
region of Π, we apply to L(Ω) the morphism ϕo, defined by:

ϕo((X, i)) =

{
X if i = i0,
λ otherwise.

Since the family E(rc)T 0L (or the family E(cfc)T 0L, respectively) is clearly

closed under arbitrary morphisms, it follows that N
(1)
# (Π) belongs to the fam-

ily NE(rc)T 0L (or to the family NE(cfc)T 0L, respectively). Thus the theorem
holds.

From Theorems 9 and 10 we obtain

Corollary 11

(pro)N
(1)
# P∗(ncoo, REG) = NE(rc)T 0L = NET 0L.

(pro)N
(1)
# P∗(ncoo, CF ) = NE(cfc)T 0L.

On the other hand, if SC P systems collect the result in the standard way,
then one gets the following results.
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Theorem 12

(pro)N (1)P2(ncoo, REG) ⊇ N(rc)T 0L = NET 0L.

(pro)N (1)P2(ncoo, CF ) ⊇ N(cfc)T 0L.

Proof
In the proof of Theorem 9 the special symbol # is only used to check if any
nonterminal of G is still present when the computation of Π halts. Therefore this
checking can be avoided during the simulation of a (rc)T0L system (or a (cfc)T0L
system, respectively). Hence the theorem holds.

Analogously, note that in Theorem 10 the set of nonterminals used by the
ET0L system constructed in the proof contains only the special object # included
in the alphabet of the corresponding SC P system Π. Therefore if Π collects the
output in the standard mode (i.e., it does not use #), then one gets the following
results.

Theorem 13

(pro)N (1)P∗(ncoo, REG) ⊆ N(rc)T 0L = NET 0L.

(pro)N (1)P∗(ncoo, CF ) ⊆ N(cfc)T 0L.

Theorems 12 and 13 yield the following corollary.

Corollary 14

N(rc)T 0L = (pro)N (1)P∗(ncoo, REG) = NET 0L.

N(cfc)T 0L = (pro)N (1)P∗(ncoo, CF ).

7.6 Fully-Promoted SC P Systems: Universality

If SC P systems use arbitrary regular control programs, and only one catalyst,
then they generate the family of recursively enumerable sets of natural numbers.

In [13], P systems using two catalysts and two membranes have been proved to
be universal. This proof can also be applied for non fully-promoted SC P systems
to obtain the following universality result.

Corollary 15
N

(1)
# P2(cat2, {{λ}}) = NRE.

In case of fully-promoted SC P systems, the computational universality can be
obtained using arbitrary regular control programs and catalytic rules with only
one catalyst.

Theorem 16
(pro)N

(1)
# P2(cat1, REG) = NRE.
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Proof
The inclusion in NRE follows from Church-Turing thesis. The opposite inclu-
sion can be proved by simulating regularly controlled grammars with appearance
checking, as follows.

Given a regularly controlled grammar with appearance checking G = (N,

T, S, P, K, F ), we construct Π ∈ (pro)P
(1)
2 (cat1, REG), collecting the output in

the # way, that simulates G. Let

Π = (V, C, P ′, L, µ, w1, w2, R1, R2, i0),

where:

• V = N ∪ T ∪ {c, Z},

• C = {c},

• P ′ = lab(P ) ∪ {d, d′}, d, d′ /∈ lab(P ),

• L = φ(K)dd′ with non-erasing morphism φ defined by φ(p) = dp for each
p ∈ lab(P ),

• µ = [1 [2 ]2 ]1,

• w1 = λ; w2 = SZc,

• R1 = ∅,

• R2 = {cA → cα|p | p : A → α ∈ P} ∪ {cZ → c#|p | p /∈ F}
∪ {Z → Zout|d′},

• i0 = 2.

We show that Π simulates the derivations of G. Note that, by definition, for every
pi1 · · · pik

∈ K, we have dpi1 · · · dpik
dd′ ∈ L. The promoters d are dummies, they

are only used to let the control string to enter and exit region 2, passing in this way
from a promoter pij

as the current head to the promotor pij+1
, for 1 ≤ j ≤ k − 1.

The derivations of G are simulated by the execution of rules from R2.
Notice that, because of the catalyst c that inhibits the parallelism, at most

one rule is executed in region 2 when the control string resides in that region.
If a rule cannot be applied and the label of the corresponding production is not
in F , then the computation is unsuccessful (# is produced by applying the rule
cZ → c# that is activated by any promoter p ∈ (lab(P )− F )) and this is correct
since the simulated derivation in G cannot be continued. On the other hand, if a
rule cannot be applied and the label of the corresponding production is in F (so
the production has to be used in the appearance checking mode), then no rule
is applied in region 2, the control string leaves the region and the computation
continues. The last promoter d′ present for any control string in L is used to move,
at the end of the computation, the symbol Z into region 1. It should be clear from
the above description that N

(1)
# (Π) is exactly the length set of L(G). Thus the

theorem holds.
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We conclude this section by presenting some preliminary results concerning
the class of non fully-promoted SC P systems.

By definition, it is clear that

Lemma 17

(pro)N
(i)
# Pm(α, FL) ⊆ N

(i)
# Pm(α, FL),

(pro)N (i)Pm(α, FL) ⊆ N (i)Pm(α, FL),

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}, FL a family of languages, and i ∈ {1, 2}.

It is easy to notice that systems from P1(ncoo, FIN) can generate infinite sets
of numbers when operating in mode (1) and collecting the result in the standard
way. This observation and Theorem 8 yield the following result.

Theorem 18

(pro)N
(1)
# P∗(α, FIN) = (pro)N (1)P∗(α, FIN) ⊂ N (1)P∗(α, FIN),

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}.

On the other hand, if one can use any RE language as the control program, then
both classes of SC P systems have the same computational power. In particular,
from Theorem 7 and Corollary 17, one gets the following result.

Theorem 19

(pro)N (1)Pm(α, RE) = N (1)Pm(α, RE) = NRE,

for α ∈ {ncoo, coo} ∪ {catk | k ≥ 1}.

7.7 Concluding Remarks and Open Problems

We have introduced and investigated SC P systems where the computations are
driven by control strings (present in their skin region at the beginning of compu-
tations). We have mainly investigated fully-promoted SC P systems, where all the
rules are promoted (hence controlled by the control strings). Most of the results
proved in this chapter concern systems operating in mode (1), although this is
just a matter of convenience, because we have proved the equivalence between
both operating modes (under some conditions).

Table 7.1 gives an overview of the results obtained for fully-promoted SC P
systems operating in mode (1) and collecting the result in the # way.

The results obtained for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way are summarized in Table 7.2.

Several problems, mainly concerning non fully-promoted systems, remain open.
Are non-fully promoted SC P systems more powerful than fully-promoted SC P
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RE CF REG FIN
ncoo NRE NE(cfc)T 0L NET 0L NFIN
cati, i ≥ 1 NRE NRE NRE NFIN
coo NRE NRE NRE NFIN

Table 7.1: Computational power of fully-promoted SC P systems operating in mode (1)
and collecting the result in the # way. Rows specify the types of evolution rules, and

the columns specify the types of control programs.

RE CF REG FIN
ncoo NRE N(cfc)T 0L N(rc)T 0L NFIN
cati, i ≥ 1 NRE ⊇ N(cfc)T 0L ⊇ N(rc)T 0L NFIN
coo NRE ⊇ N(cfc)T 0L ⊇ N(rc)T 0L NFIN

Table 7.2: Computational power for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way. Again, rows specify the types of evolution

rules, and the columns specify the types of control programs.

systems? The answer is positive for SC P systems operating in mode (1) and hav-
ing a finite control program (Theorem 18). We conjecture that the strict inclusion
also holds when the control program is regular and the result is collected in the
standard way.

Another open problem is to find a non-trivial upper bound for the generative
power of fully-promoted SC P systems operating in mode (1), collecting the result
in the standard way, and using cooperative or catalytic rules (see Table 7.2).
We only know that these classes of systems can generate at least the family of
length sets of languages from (rc)T 0L (if the control program is regular) and from
(cfc)T 0L (if the control program is context-free). We doubt that these two classes
are universal – as a matter of fact they may be incomparable with the classical
Chomsky classes.

Finally, another interesting issue to be investigated is having the control pro-
grams produced by another bio-inspired generative device (as for instance, another
membrane system, or a DNA-based system).
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Communication Membrane

Systems with Active Symports

Abstract
We consider membrane systems where the generation/transformation of objects
can take place only if it is linked to communication rules.

More specifically, all the rules move objects through membranes and, more-
over, the membranes can modify the objects as they pass through. The intuitive
interpretation of such rules is that a multiset of objects can move from a region
to an adjacent one, and moreover objects can engage into (biochemical) reac-
tions while passing through (are in “contact” with) a membrane. Therefore such
“twofold” rules are called symport-rewriting (in short, sr) rules, where symport
refers to a coordinated passage of a “team” of molecules through a membrane.

In this chapter we investigate the influence of the form of sr rules on the power
of membrane systems that employ them (sometime in combination with simple
antiport rules which allow a synchronized exchange, through a membrane, of two
molecules residing in two adjacent regions). A typical restriction on the form of
an sr rule requires that the passage described by the rule is such that the sort
of exiting molecules is a subset of the sort of entering molecules (however the
multiplicities of sorts do not have to be related).

We also compare the sequential passage mode with the maximally parallel
passage mode.

8.1 Introduction

Membrane computing, introduced in [20], is a computational model inspired by
the functioning of membranes in living cells. The biological membranes within
a cell divide the cell in a number of compartments (regions). This is the basic
feature of this model with each region containing its own set of evolution rules,
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where each rule prescribes both the transformation and generation of molecules as
well as the transport of molecules through membranes. In this way each evolution
rule has both a rewriting and a communication component.

An important class of membrane systems allows only communication, i.e., their
rules prescribe only the passage of objects (molecules) through membranes. Such
systems are called symport/antiport membrane systems where both “symport”
and “antiport” refer to types of rules that allow for a synchronized passage of
molecules through a membrane. For symport rules this passage is unidirectional (a
multiset of molecules is passing through a membrane together), while for antiport
rules this passage is bidirectional (a passage of a multiset of molecules in one
direction is synchronized with a passage of molecules in another direction through
the same membrane).

In this chapter we enrich symport rules by coupling them with a generative
component: a multiset of molecules passing a membrane synchronously in the
unidirectional fashion can be changed to a different multiset. Such rules are called
symport-rewriting rules, or sr rules for short – they are biologically motivated, as
the biological membranes do not only allow for the passage of molecules, but can
also change them during a passage. Membrane systems using sr rules and antiport
rules are called communication membrane systems with active symports, or CAS
P systems for short.

In this chapter we study the influence of the form of sr rules (sometimes in
combination with antiport rules) on the generative power of resulting membrane
systems. We also study the influence of the communication mode (sequential ver-
sus maximally parallel) on the generative power. In sequential mode, at any given
time, at most one sr rule can be active for any given membrane, while (as usual)
in maximally parallel mode an application of the rules is such that no more rules
can be applied to the objects that are not already involved in the passage through
membranes.

The chapter is organized as follows. Section 8.2 recalls some basic notions
from language theory – more specifically those of matrix grammars and register
machines. Section 8.3 formally defines CAS P systems. Section 8.4 considers “al-
phabetically restricted” CAS P systems which can use only sr rules in which the
type of every generated object (i.e., an object occurring at the right hand side)
is already present at the “entrance to the membrane” (i.e., occurring at the left
hand side). In Section 8.5 we consider CAS P systems operating in sequential
mode. Section 8.6 considers CAS P systems that use only unary rules, i.e., the
rules that describe the passage of one single molecule and allow this molecule to
multiply during this passage (technically, this corresponds to the rules a → v,
where v ∈ a∗).

A natural restriction on communication can be formulated through the use
of uni-directional membranes, i.e., membranes such that, for any symbol a, if a
may cross a given membrane in one direction (as specified by one of the rules),
then a cannot cross this membrane in the opposite direction. These systems are
considered in Section 8.7. Unary rules are a special case of non-cooperative rules,
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i.e., rules that describe the passage of a single object (which during the passage can
be changed into a multiset of objects). CAS P systems using only non-cooperative
rules are considered in Section 8.8 both with and without the use of antiport rules.
In Section 8.9 we consider bounded CAS P systems, i.e., CAS P systems for which
there exists a positive integer k such that in any computation and any region the
cardinality of the multiset of objects present in the region does not exceed k. In
the last section we discuss the results obtained in this chapter and we formulate
a number of open problems.

8.2 Preliminaries

We assume the reader to be familiar with basic notions of formal languages and
automata theory (which can be found, e.g., in [25]). In this section we briefly recall
some notions and results concerning matrix grammars and register machines that
will be used in some proofs in this chapter.

8.2.1 Matrix Grammars

A matrix grammar is a construct G = (N, T, S, M, F ), where N is the nonterminal
alphabet, T is the terminal alphabet (N∩T = ∅), S ∈ N is the axiom, M is a finite
set of sequences (called matrices) of context-free productions (A1 → x1, . . . , An →
xn), n ≥ 1 with Ai ∈ N, xi ∈ (N ∪T )∗, 1 ≤ i ≤ n, and F is a set of occurrences of
rules in M (note that one may have the same rule in different entries of a matrix
and only some of these entries in F ).

Given two strings w ∈ (N ∪ T )∗N(N ∪ T )∗ and z ∈ (N ∪ T )∗, we write
w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) ∈ M and there exist strings
wi ∈ (N ∪ T )∗, for 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1 and, for each
1 ≤ i ≤ n, either wi = w′

iAiw
′′
i and wi+1 = w′

ixiw
′′
i for some w′

i, w
′′
i ∈ (N ∪ T )∗,

or wi = wi+1, Ai does not appear in wi, and (the given occurrence of) production
Ai → xi appears in F . Thus, the productions of a matrix are applied in the order
in which they are listed, except that one skips the rules in F if they cannot be
applied – therefore we say that these productions are applied in the appearance
checking mode. If the set F is empty, then G is said to be without appearance
checking. The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗

w}. The family of languages generated by matrix grammars with appearance
checking is denoted by MATac. The family of languages generated by matrix
grammars without appearance checking is denoted by MAT . It is known (see [24,
Chapter 12]) that MAT ⊂ MATac = RE.

We say that a matrix grammar is pure if there is no distinction between
terminals and nonterminals, i.e., each string derived from S belongs to L(G).
The family of languages generated by pure matrix grammars without appearance
checking is denoted by pMAT . It is known (see [11, Lemma 5.1.1]) that pMAT ⊂
MAT .
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8.2.2 Register Machines

Intuitively, a register machine is an automaton with a number of registers (each
storing a natural number) that is executing labelled instructions of several simple
types. More precisely:

A register machine is a construct M = (k,P , l0, lh), where:

• k is the number of registers,

• P is a set of labelled instructions (the program) that can be of the following
forms:

1. (l : add(r), li, lj),
2. (l : sub(r), li, lj),
3. (lh : halt),

with l, lh, li, lj from the set lab(P) of labels associated with the instructions
in a one-to-one manner,

• l0 ∈ lab(P) is the label of the initial instruction,

• lh ∈ lab(P) is the label of the halting instruction.

The execution of an instruction (l : add(r), li, lj) increments by one the value
stored in register r and then the machine proceeds, in a nondeterministic way,
either to the instruction with label li or to the instruction with label lj . An
instruction (l : sub(r), li, lj) is executed as follows. If the value stored in register
r is not zero, then it subtracts one from this value, and the machine proceeds to
the instruction labelled by li; otherwise it proceeds to the instruction labelled by
lj . A halting instruction (lh : halt) stops the machine; its label is always the final
label lh.

We say that a vector (n1, . . . , nα) ∈ N
α is generated by M (where α is fixed

for M) if, starting from the instruction labelled by l0 with the value of all registers
equal to zero, it halts with value nj in register j for all 1 ≤ j ≤ α, and with the
values of the registers α + 1, . . . , k equal to zero. The set of all vectors obtained
in this way constitutes the set generated by M . The family of all sets of vectors
generated by register machines is denoted by RegM . It is known (see [19]) that
register machines can generate the family of Turing computable sets of vectors of
natural numbers, that is, RegM = PsRE.

A register machine without checking for zero is a register machine where all
subtraction instructions are of the form (l : sub(r), lj , lh∗), where lh∗ is the non-
successful halting label – the machine stops but the computation is not considered
successful. The family of languages generated by register machines without check-
ing for zero is denoted by RegM 6=0. The computational power of this model is the
same, in terms of Parikh images of languages, as that of matrix grammars without
appearance checking. That is, RegM 6=0 = PsMAT (see, e.g., [12]).
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8.3 Communication Membrane Systems with Ac-

tive Symports

In what follows we assume that the reader is familiar with the area of mem-
brane computing, in particular with membrane systems using symport/antiport
rules, see, e.g., [21]. We will still use a rather informal terminology describing the
nested relationship between membranes or regions, such as, e.g., (immediately)
inner membrane of membrane i or (immediately) outer membrane of membrane
i, however, if needed, this can be always made precise by, e.g., considering a tree
representation of the nested structure of membranes (thus an immediately inner
membrane of membrane i becomes a direct descendent of membrane i).

The model of membrane systems studied in this chapter is defined as follows.

Definition 1
A communication membrane system with active symports (in short, a CAS P
system) is a construct

Π = (Γ, µ, w1, . . . , wm, R1, . . . , Rm, Ra
1 , . . . , Ra

m, i0),

where:

• Γ is the alphabet of objects,

• µ is a tree structure representing a membrane structure with m membranes
(labelled in a one-to-one manner by 1, . . . , m),

• w1, . . . , wm are the multisets of objects initially present in the regions of the
system,

• R1, . . . , Rm are finite sets of symport-rewriting (in short, sr) rules associated
with membranes 1, 2, . . . , m, respectively; each rule is of the form (u, v, out)
or (u, v, in), where u ∈ Γ+, v ∈ Γ∗,

• Ra
1 , . . . , Ra

m are finite sets of antiport rules associated with membranes
1, 2, . . . , m, respectively; each rule is of the form (u, in; v, out) where u ∈
Γ+, v ∈ Γ+,

• i0 ∈ {1, . . . , m} is the label of the output membrane of Π.

We also use ΓΠ to denote Γ. As usual, the root of µ is called the skin membrane.
The skin membrane separates the system from the environment. The leaves of
µ are called elementary. Each membrane i delimits a region i: it is the space
between it and its direct descendants. The surrounding region of membrane i is
the environment if i is the skin membrane, and otherwise it is the region of the
direct ancestor of i.

We now define the semantics of symport-rewriting rules. An sr rule r =
(u, v, out) ∈ Ri, 1 ≤ i ≤ m, can only be applied if multiset u is present in
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region i (we say then that rule r is applicable). The effect of applying this rule
is as follows: multiset u is deleted from region i and simultaneously multiset v is
added to its surrounding region. This formalizes the following intuition: multiset
u is moved out of region i by crossing through membrane i and while crossing,
it is transformed into multiset v. An sr rule (u, v, in) from the set Ri is applied
analogously, however multiset u is moved into region i by crossing through mem-
brane i and while crossing u is transformed into multiset v. Rules (u, v, out) ∈ Ri

and (u, v, in) ∈ Ri will also be denoted by u ]
i

−→ v and u [
i

−→ v, respectively.
The (standard) effect of applying an antiport rule (x, in; y, out) ∈ Ra

i , 1 ≤
i ≤ m, is as follows: multiset x crosses membrane i from the surrounding region
into region i, while, at the same time, multiset y moves in the opposite direction
through membrane i.

Before going on, it is worth to remark that CAS P systems do not assume a
potentially infinite supply of objects available in the environment, although this
is the case in the classical definition of symport/antiport P systems, which have a
set E of objects available in the environment in an unbounded number of copies.

In this chapter we consider several restrictions for the sr rules of CAS P sys-
tems, and so we give now notation and terminology to describe these restric-
tions. Symport-rewriting rules (u, v, out) and (u, v, in) are called cooperative if
|u| ≥ 2, and noncooperative if |u| = 1. Also, sr rules are called alph-restricted
if alph(v) ⊆ alph(u), where alph(x) is the smallest alphabet Ψ ⊆ Γ such that
x ∈ Ψ∗. Thus, such sr rules cannot introduce new types of objects. Noncoopera-
tive alph-restricted sr rules are also called unary sr rules (because there is only
one type of object, one symbol, present in these rules). The weight of an antiport
rule (u, in; v, out) is defined as max{|u|, |v|}.

As usual, a configuration of a membrane system is an instantaneous descrip-
tion of the membrane structure and the contents of all the regions. The initial
configuration consists of the membrane structure µ and the multisets of objects
initially present in the regions of the system, given by w1, . . . , wm.

The system evolves from one configuration to another by performing a tran-
sition step. In one mode of operation, the most usual one for P systems, the
transition steps are performed by applying the rules in a nondeterministic, maxi-
mally parallel manner. However, we will also consider another mode of operation,
called sequential, where no antiport rules are present and at most one sr rule is
applied at each step for each membrane, allowing a membrane to be inactive even
when there is an applicable sr rule.

All the possible sequences (finite or infinite) of transition steps that the sys-
tem is able to perform from the initial configuration are the computations of the
system. A given configuration is called reachable if it results from a computation
of the system. A reachable configuration is a halting configuration, if there is no
rule applicable to it. The output of a CAS P system, denoted by Ps(Π), is the
set of vectors of natural numbers which are the Parikh images of the multisets
present in region i0 in all possible halting configurations.

We also want to make a comment concerning the outputs of computations in
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membrane systems. They are traditionally either vectors expressing the multiplici-
ties of various objects present in the output region at the conclusion of a successful
computation or numbers expressing the cardinality of all objects present in the
output region at the conclusion of a successful computation. The common dimen-
sion of the vectors is the cardinality of a fixed a priori alphabet of output objects.
This alphabet may be different from the total alphabet Γ of objects, however it
is not explicitly given. This also happens in this chapter, however as usual the
output alphabet is always well understood from the context of considerations.

Example 1
It is easy to see that the (unique) halting configuration of the CAS P sys-
tem Π from Figure 8.1 is (in both sequential and maximally parallel mode)
[ [ ]2 [ aaaaaaaa]3 ]1 and so, we have Ps(Π) = {(8)}.

3aa

c

a

c

b

bb
aa

1

2

Figure 8.1: A graphic representation of a communication membrane system Π with
active symports (CAS P system). The initial configuration is [ [ ]2 [ ]3 a a]1. The
output region is the one enclosed by membrane 3 and the output alphabet is {a}.
The sets of sr rules associated with regions 2 and 3 are: R2 = {b ]

2
−→ c, a [

2
−→ bb}

and R3 = {c [
3

−→ aa}, respectively.

We denote by CAS(α, anti) the class of CAS P systems with sr rules of type
α, and antiports of weight at most i. In this chapter we consider α ∈ {coo,
ncoo, cooAR, ncooU} to denote general (non-restricted), noncooperative, cooper-
ative alph-restricted, and unary sr rules, respectively. We use PsCASm(α, anti)
to denote the family of sets of vectors computed by CAS P systems from the class
CAS(α, anti) with at most m membranes. Besides, we denote PsCAS∗(α, anti) =
⋃

m∈N
PsCASm(α, anti). Moreover, when we consider systems working in the se-

quential mode we will add the prefix seq (obtaining in this way the notation
seqPsCASm(α, anti)).

In what follows, to simplify the notation, in the definition of CAS P systems
that do not use antiport rules we will omit the specification of the sets of antiport
rules.
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8.4 Alphabetic Restriction

In this section we investigate systems using cooperative alph-restricted sr rules,
cooAR sr rules for short, without antiport rules. We show that this restriction does
not decrease the generative power of the model – CAS P systems using cooAR sr
rules are computationally universal.

Theorem 2
PsCAS2(cooAR, ant0) = PsRE.

Proof
In order to demonstrate the computational universality of the model, we will
prove that any register machine can be simulated by it. To this aim, consider
an arbitrary register machine M = (k,P , l0, lh), generating a set of vectors over
N

α (i.e., registers from 1 to α are output registers and registers from α + 1 to k
are working registers), where lab(P) consists of n labels. We construct the CAS
P system Π = (Γ, µ, w1, w2, R1, R2, i0) satisfying the required conditions that
generates the same set of vectors as M does, as follows.

• Γ = {ci | 1 ≤ i ≤ k} ∪ {li, l
′
i, l

′′
i , l′′′i | 0 ≤ i ≤ n − 1}.

• µ = [ [ ]2 ]1.

• w1 = λ and w2 = l0c1 . . . ckl0l
′
0l

′′
0 l′′′0 . . . ln−1l

′
n−1l

′′
n−1l

′′′
n−1.

• R1 = ∅,

• The set R2 of cooperative alph-restricted sr rules is defined as follows:

– for every instruction
(
li1 : add(j), li2 , li3

)
∈ P , R2 contains the sr rules

li1 li1 li2cj ]
2

−→ li2 li2 li1cjcj and li1 li1 li3cj ]
2

−→ li3 li3 li1cjcj ,

– for every instruction rs =
(
li1 : sub(j), li2 , li3

)
∈ P , R2 contains the sr

rules rs1 = li1 li1 l
′
i1

l′′i1 ]
2

−→ li1 l
′
i1

l′i1 l
′′
i1

l′′i1 l
′′
i1

,
rs2 = l′i1 l

′
i1

l′′i1 ]
2

−→ l′i1 l
′′
i1

l′′i1 ,
rs3 = l′′i1 l

′′
i1

l′′′i1
cjcj ]

2
−→ l′′i1 l

′′′
i1

l′′′i1
cj ,

rs4 = l′′i1 l
′′
i1

l′′i1 l
′′′
i1

l′′′i1
li2 ]

2
−→ li2 li2 l

′′
i1

l′′′i1
,

rs5 = l′′i1 l
′′
i1

l′′i1 l
′′
i1

li3 ]
2

−→ li3 li3 l
′′
i1

.

– in addition, R2 contains the following sr rules:
x [

2
−→ x, for every x ∈ Γ, and

rs6 = lhc1 · · · ckl0l
′
0l

′′
0 l′′′0 · · · ln−1l

′
n−1l

′′
n−1l

′′′
n−1 ]

2
−→ λ.

• i0 = 2.

The simulation of M by Π is performed as follows. The current label of M is
represented by exactly one symbol li that appears in region 2 with multiplicity
two. Therefore, the initial label l0 of M appears twice in w2. The number ni

stored in a register i of M is encoded in Π by multiplicity ni +1 of symbol ci. The
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reason for these encodings is that since only cooAR sr rules are available, during
the computation, the multiplicity of ci and li may never be zero. Thus, only one
copy of cj corresponds to the case that register j is zero. Since in the initial
configuration of M every register is zero, each symbol ci appears in multiplicity
one in w2.

The interpretation of the sr rules that simulate the addition instruction
(
li1 :

add(j), li2 , li3
)
∈ P is quite straightforward: we modify the amount of objects li1

and li2 (or li3) to simulate the transfer of control from li1 to li2 (or to li3 , respec-
tively). We also generate one more copy of object cj to simulate the increment by
1 of the value of register j. Note that by applying this sr rule we move objects
from region 2 to region 1. In the next step all the objects are put back to region
2 without modifying their multiplicities. This is accomplished by sr rules x [

2
−→ x,

for every x ∈ Γ.
The simulation of the subtraction instruction is more complicated since we

need to check whether or not the value stored in the specified register is zero
in order to select the next control label of the machine. Given rs =

(
li1 :

sub(j), li2 , li3
)
∈ P , we proceed in three steps (as before, after each of these steps

all objects are put back into region 2) depending on whether or not the value of
register j in P is zero (or, equivalently, on whether or not the multiplicity of cj

in Π is one):
step register j is not zero register j is zero
1 rs1 rs1

2 rs2, rs3 rs2

3 rs4 rs5

The end result is that the multiplicity of li1 is changed from two to one, and
the multiplicity of li2 (li3) is changed from one to two when the value stored in
register j was not zero (was zero, resp.). Moreover, when register j was not zero,
the multiplicity of cj was decreased by one.

Thus, Π simulates M step by step until arriving at the label lh (in case of
a successful computation). Then, Π performs one last step deleting all auxiliary
objects through the application of sr rule rs6. Thus, in the halting configura-
tion region 1 will be empty, and the multiplicity of objects cj , 1 ≤ j ≤ α, in
region 2 represents exactly the contents of the corresponding output registers of
the machine in the halting state. Consequently, since RegM = PsRE we have
proved that PsCAS2(cooAR, ant0) ⊇ PsRE. Invoking the Turing-Church thesis
we obtain also the converse inclusion; hence PsCAS2(cooAR, ant0) = PsRE.

Note that the maximal parallelism of the system is fundamental in the above
proof, as it allows to simulate the zero checking in a register. Indeed, rule rs3 is
applicable in step 2 iff the value stored in the corresponding register is not zero.

Remark
The above proof can be modified in order to decrease the cardinality of the alpha-
bet of Π. Actually, all the elements in the set Λ = {li, l

′
i, l

′′
i , l′′′i | i = 0, . . . , n − 1}

can be encoded by using only two symbols. The idea is to establish a correspon-
dence between elements from Λ and pairs of numbers, each pair being represented



182 The Sequential Mode

by the multiplicities of two symbols (e.g., a and b). This must be done in such
a way that if l1 ∈ Λ is represented by a smaller multiplicity of a than used for
representing l2, then the multiplicity of b in the representation of l1 must be
greater than the multiplicity of b in the representation of l2. In this way, a given
multiplicity of a and b (encoding l1 ∈ Λ), can trigger only l1.

Corollary 3
PsCAS2(coo, ant0) = PsRE.

Proof
Since the set of CAS P systems using cooperative sr rules includes the set of CAS P
systems using cooAR sr rules, we have PsCAS2(cooAR, ant0) ⊆ PsCAS2(coo, ant0).
Thus, the corollary follows from the previous theorem and the Turing-Church the-
sis.

8.5 The Sequential Mode

The application of sr rules in a maximally parallel way is a powerful way to reg-
ulate the communication. This fact will become even more clear in this section
where we consider CAS P systems working in the sequential mode: in each mem-
brane at most one sr rule is applied at each step, allowing a membrane to remain
inactive even when there is an applicable sr rule for it. The notion of a sequential
mode of operation for P systems with carriers is studied in [15], and the computa-
tional power of these systems is shown to be equal to the family of Parikh images
of the languages generated by matrix grammars without appearance checking.
We show that the generative power of CAS P systems with cooperative sr rules
working in the sequential mode is also equal to PsMAT . First, we prove the result
for cooperative alph-restricted sr rules, and later we extend it to cooperative sr
rules.

Lemma 4
seqPsCAS∗(cooAR, ant0) ⊆ PsMAT.

Proof
Let Π = (Γ, µ, w1, . . . , wm, R1, . . . , Rm, i0) be a CAS system with cooperative
alph-restricted sr rules and working in the sequential mode. We prove that there
exists a matrix grammar without appearance checking generating a language
whose Parikh image is Ps(Π).

First of all, as matrix grammars can only handle strings, we need to find a
string-representation for the configurations of Π (which indicates for each object
the region in which it occurs). To this aim, we introduce a notation that assigns
to each object a pair (object, location) explicitly mentioning the region where
the object resides. That is, for each object x present in region i, we include the
pair (x, i) in the string. Note that the so-constructed string may contain many
occurrences of a pair (x, i) – this represents the multiplicity of x in region i.
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Note also that the order of such pairs in a string is not relevant, so any per-
mutation of the string could be used as well. We will use pure matrix grammars
to generate every reachable configuration of Π, and later filter out the halting
configurations.

In order to correctly simulate the transition steps in Π by means of matrices of
context-free productions, we have to avoid that the pairs (x, i) corresponding to
objects produced in a given step are used to trigger rules in the same transition
step. Furthermore, we have to take into account all the sr rules that are applied
in Π (recall that Π works in the sequential mode, so at most one sr rule is applied
in each membrane at each step). We will introduce one matrix for each possible
applicable multiset of sr rules. That is, we will have a specific matrix to simulate
each one of the (|R1|+1)·(|R2|+1) · · · (|Rm|+1) possible combinations of selecting
at most one sr rule from each one of the sets of sr rules associated with the m
membranes of Π.

We are ready now to specify the pure matrix grammar without appearance
checking GΠ = (N, S, M) that simulates Π. Let N = (Γ×{1, . . . , m})∪{S}∪{Aj,i |
1 ≤ i ≤ m, 1 ≤ j ≤ |Ri|} and S /∈ Γ. The set of matrices M is defined as
follows. Let Ri = {ri

1, . . . , r
i
ni
}, for 1 ≤ i ≤ m, and consider an arbitrary set C

consisting of c ≤ m sr rules taken from R1, . . . , Rm (at most one from each set),
C = {ri1

j1
, · · · , ric

jc
}. For each sr rule ri

j : u ]
i

−→ v in C we define

avail(ri
j) = {(x1, i) → Aj,i; (x2, i) → λ; . . . ; (xk, i) → λ},

prod(ri
j) = {Aj,i → (y1, i

′)(y2, i
′) · · · (yk′ , i′)},

where u = x1 . . . xk, v = y1 . . . yk′ , and i′ is the surrounding region of i (we proceed
analogously for sr rules u [

i
−→ v, by just exchanging i and i′). Then, for each C as

above, we let M contain the matrix

(
avail(ri1

j1
); . . . ; avail(ric

jc
); prod(ri1

j1
); . . . ; prod(ric

jc
)
)

that simulates the application of rules in C. The set M also includes a matrix
(S → w0), where w0 is a string-representation of the initial configuration of Π.

Thus, we simulate Π by GΠ, in such a way that the language generated by
GΠ corresponds to the string-representation of the reachable configurations of Π.
Now, taking into account the inclusion pMAT ⊂ MAT (cf. Section 8.2), we know
that there exists a matrix grammar without appearance checking G such that
L(G) = L(GΠ).

Next, we need to filter out words from L(G) corresponding to the halting con-
figurations of Π. Note that the number of sr rules of Π is finite, and each one of
them has a finite number of symbols on its left hand side. Therefore, the set of
all configurations to which no rules of Π are applicable forms a regular language.
In this way, it is possible to obtain the halting configurations of Π as the inter-
section of L(G) and a regular language. Since the family of languages generated
by matrix grammars without appearance checking is closed under intersection
with regular languages (see [11], Lemma 1.3.5), we deduce that there exists a ma-
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trix grammar without appearance checking G′ such that L(G′) contains all the
string-representations of the halting configurations of Π.

Finally, we apply the following erasing morphism over the set of halting con-
figurations:

γ((x, i)) =

{
λ if i 6= i0,
x if i = i0,

and we get exactly the contents of the output region for every halting configura-
tion, the Parikh image of which are the vectors generated by Π. Thus, taking into
account that MAT is closed under morphisms (see [11], Theorem 1.3.1), we con-
clude that there exists a matrix grammar without appearance checking G′′ that
generates, in the Parikh image sense, the same set of vectors as Π. Therefore, we
have that seqPsCAS∗(cooAR, ant0) ⊆ PsMAT.

Lemma 5
PsMAT ⊆ seqPsCAS2(cooAR, ant0).

Proof
Since RegM 6=0 = PsMAT (see Section 8.2) we prove that any register machine
without checking for zero can be simulated by a CAS P system.

Consider an arbitrary register machine M = (k,P , l0, lh) with k registers and
without checking for zero, generating a set of vectors over N

n (that is, registers
from 1 to n are output registers and registers from n+1 to k are working registers).
We define the CAS P system Π = (Γ, µ, w1, w2, R1, R2, i0) as follows:

• Γ = {c1, . . . , ck, l, l0, . . . , ln−1},

• µ = [ [ ]2 ]1,

• w1 = λ, w2 = l0ll0l1 . . . ln−1c1 . . . ck,

• R1 = ∅,

• the set R2 of cooperative alph-restricted sr rules is defined as follows:

1. for every instruction (li1 : add(j), li2 , li3) ∈ P , R2 contains the following
sr rules: li1 li1 li2cj ]

2
−→ li1 li2 li2cjcj ,

li1 li2 li2cjcj [
2

−→ li1 li2 li2cjcj ,
li1 li1 li3cj ]

2
−→ li1 li3 li3cjcj ,

li1 li3 li3cjcj [
2

−→ li1 li3 li3cjcj .

2. for every instruction (li1 : sub(j), li2 , lh∗) ∈ P , R2 contains the follow-
ing sr rules: li1 li1 li2cjcj ]

2
−→ li1 li2 li2cj and li1 li2 li2cj [

2
−→ li1 li2 li2cj .

3. in addition, R2 contains the following sr rules:
cj ]

2
−→ cj and cj [

2
−→ cj for every j ∈ {n + 1, . . . , k},

l ]
2

−→ l, l [
2

−→ l,
c1 . . . cklhll0l1 . . . ln−1 ]

2
−→ λ.

• i0 = 2.
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Since we again deal with cooAR sr rules, we use the same encodings for the
contents of the registers and for the current label of M as we did in the proof of
Theorem 2. The current label of M is represented by exactly one symbol li that
appears in region 2 with multiplicity two (the others have multiplicity one), and
the number ni stored in a register i of M is encoded in Π by multiplicity ni + 1
of symbol ci.

The intuition behind the construction of Π is as follows. The addition instruc-
tion is simulated by just generating one more object for the corresponding register
and replacing a copy of li1 nondeterministically by a copy of either li2 or li3 . For
the subtraction instruction, if the register to which we try to apply the instruc-
tion is zero, then the rule li1 li1 li2cjcj ]

2
−→ li1 li2 li2cj cannot be applied. Instead of

getting a non-accepting halting label lh∗ , in Π we avoid halting and accepting in
Π by using the infinite loop given by the execution of the rules l ]

2
−→ l, l [

2
−→ l. The

only case when the loop can be interrupted is when the corresponding computa-
tion of M is successful, that is, if the label lh is reached. In this case, Π deletes
l, together with the additional elements cj for all the registers by applying the
rule c1 . . . cklhll0l1 . . . ln−1 ]

2
−→ λ. Then, we can get the output (the contents of

the registers) from the multiset of objects present in region 2 in the halting con-
figuration. Notice that if any of the working registers rj with j ∈ {n + 1, . . . , k}
is not zero when lh is reached, then Π will not halt, because the corresponding
rules cj ]

2
−→ cj and cj [

2
−→ cj will run forever.

Theorem 6
seqPsCAS2(cooAR, ant0) = seqPsCAS∗(cooAR, ant0) = PsMAT.

Proof
By definition, the inclusion seqPsCAS2(cooAR, ant0) ⊆ seqPsCAS∗(cooAR, ant0)
holds. By Lemma 4 and Lemma 5 we have the desired result.

Corollary 7
seqPsCAS2(coo, ant0) = seqPsCAS∗(coo, ant0) = PsMAT.

Proof
The proof follows easily from the previous theorem. On the one hand, the same
construction of the matrix grammar used for proving Lemma 4 can be used for the
general cooperative case. On the other hand, it is clear that seqPsCAS2(cooAR,
ant0) ⊆ seqPsCAS2(coo, ant0).

8.6 Unary Rules

We now consider unary sr rules instead of cooperative alph-restricted sr rules.
Recall that unary sr rules are sr rules of the form a ]−→ v with v ∈ a∗. Hence, one
object a can move from one region to another and, while crossing the membrane,
it can produce several copies of itself. It turns out that if we also allow standard
antiport rules of weight one, then we get computational universality.
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Theorem 8
PsCAS∗(ncooU , ant1) = PsRE.

Proof
In order to prove the computational universality of the model, we rely on the proof
in [26] which provides a construction of a universal P system Π with symport and
antiport rules of weight 1, and with an environment containing an unbounded
supply of objects.

We construct a CAS P system Π′ that simulates the computations of Π as
follows. Since symport rules of weight 1 are a particular case of unary sr rules, we
can include Π as a subsystem of Π′.

In the proof from [26], during the initial steps of a computation the system
receives as an input arbitrarily many objects from the environment, but only one
at each step. Thus, we simulate the “infinite environment” condition by using
repetitive applications of rules that are able to generate an unbounded number of
objects.

More precisely, we consider a new skin membrane surrounding Π that will play
the role of the environment of Π, and two additional elementary membranes in
the new skin region. Let e0, e1, and e2 be the labels for these three membranes,
respectively, and let E = {a1, . . . , an} be the alphabet of the environment of Π
(we refer again to [26]). Finally, we include in our system the initial multiset
we1

= a1ā1 . . . anān, and we consider the following sets of rules:

• Re1
= {ai ]

e1
−→ a2

i , āi [
e1

−→ āi | 1 ≤ i ≤ n}.

• Ra
e1

= {(ai, in; āi, out) | 1 ≤ i ≤ n}.

• Re2
= {āi [

e2
−→ āi | 1 ≤ i ≤ n}.

These rules behave as loops that are able to generate new objects ai for every
1 ≤ i ≤ n as long as they continue (the loop for a given i halts when the object
āi gets inside membrane e2). Therefore, such construction can produce nondeter-
ministically arbitrarily many copies of objects ai for 1 ≤ i ≤ n that will be used
by the original system Π to implement the simulation described in the proof from
[26].

We conclude that PsRE ⊆ PsCAS∗(ncooU , ant1), and since
PsCAS∗(ncooU , ant1) ⊆ PsRE is assumed to be true, the theorem holds.

Based on the above theorem we have the following result.

Corollary 9
PsCAS∗(α, ant1) = PsRE, for α ∈ {ncooU , ncoo, cooAR, coo}.

We conclude this section with a preliminary result concerning the generative
power of systems from CAS(ncooU , ant0).

Theorem 10
PsCAS∗(ncooU , ant0) is incomparable with PsFIN .
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Proof
On one hand it is clear that PsCAS∗(ncooU , ant0) contains an infinite set of
vectors. Moreover PsCAS∗(ncooU , ant0) does not contain, for instance, the finite
set {(2, 3), (3, 4)}. Every system from CAS(ncooU , ant0) that generates the vectors
(2, 3) and (3, 4) can also generate the vectors (2, 4) and (3, 3) because the rules
producing distinct symbols are noncooperative and unary, hence independent.

8.7 Unidirectional Membranes

In this section we consider a constraint on the form of the rules for systems in
CAS(ncooU , ant1), which strengthens the selective role of membranes in regulating
the traffic of molecules through them. More specifically, this restriction makes
the traffic strictly unidirectional: if a molecule can pass through a membrane in
one direction, then it cannot pass through the same membrane in the opposite
direction. Such a restriction is natural from the biological point of view: e.g., if
a toxic substance is secreted from a cell through its membrane, then it should
not be allowed to go back. This is interesting also from mathematical point of
view, because it turns out to be a real restriction: we get a model that is not
computationally universal.

This restriction is formally defined as follows. Let

Π = (Γ, µ, w1, . . . , wm, R1, . . . , Rm, Ra
1 , . . . , Ra

m, i0)

be a CAS(ncoo, ant1) P system. Let, for i ∈ {1, . . . , m},

Ini = {a ∈ Γ | (a, v, in) ∈ Ri, v ∈ Γ∗ or (a, in; b, out) ∈ Ra
i , b ∈ Γ},

Outi = {a ∈ Γ | (a, v, out) ∈ Ri, v ∈ Γ∗ or (b, in; a, out) ∈ Ra
i , b ∈ Γ}.

Then Π is called unidirectional if Ini and Outi are disjoint for all i ∈ {1, . . . , m}.
The class of all unidirectional systems in CAS(ncoo, ant1) is denoted uniCAS(ncoo,
ant1). Moreover, for a set of sr rules R, we define max(R) = max{|v| | (a, v, in) ∈
R or (a, v, out) ∈ R}. For a configuration C we use tob(C) to denote the total
number of objects (thus with multiplicities counted) present in all the regions in
C. The main consequence of unidirectionality is expressed in the following lemma.

Lemma 11
Let Π ∈ uniCAS(ncooU , ant1), let w be the multiset of objects initially present in
Π, and let R be the set of all sr rules in Π. Then for every reachable configuration
C in Π, tob(C) ≤ |w| · (weight(R))m.

Proof
The unidirectionality of Π implies that no object in Π during any computation can
cross the same membrane twice. Therefore, the upper bound on the total number
of membranes crossed by an object in any computation is given by m. Since in
one crossing each object cannot generate more than weight(R) objects and |w| is
the number of objects in the initial configuration, |w| · (weight(R))

m is indeed an
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upper bound on the total number of objects in every reachable configuration in
Π.

The next theorem shows that unidirectional P systems with unary sr rules and
antiport rules of weight 1 generate only finite sets of vectors.

Theorem 12
uniPsCAS∗(ncooU , ant1) = PsFIN.

Proof
Consider an arbitrary Π ∈ uniCAS(ncooU , ant1). By Lemma 11 the total number
of objects in Π is bounded, and so the number of possible reachable configurations
is finite. Therefore, uniPsCAS∗(ncooU , ant1) is also finite.

In order to prove the reverse inclusion, consider a finite set A of vectors of
dimension n, and let m = |A|. We construct ΠA ∈ uniCAS(ncooU , ant1) that
generates A as follows.

ΠA = (Γ, µ, w1, . . . , w2m+2, R1, . . . , R2m+2, R
a
1 , . . . , Ra

2m+2, i0),

where:

• Γ = {S, a1, . . . , an};

• µ = [ [ [ ]3 ]2 . . . [ [ ]2m+1 ]2m [ ]2m+2 ]1;

• w1 = S, w2m+2 = λ, and w2j = λ, w2j+1 = a1 . . . an, for 1 ≤ j ≤ m;

• The output membrane is i0 = 2m + 2;

• R1 = ∅, R2m+2 = {(ai, ai, in) | 1 ≤ i ≤ n}, and Ra
1 = Ra

2m+2 = ∅. For
1 ≤ j ≤ m we have
R2j = {(S, Sn, in)} ∪ {(ai, a

xji

i , out) | 1 ≤ i ≤ n, vj = (xj1, . . . , xjn)},
Ra

2j = ∅,
R2j+1 = ∅,
Ra

2j+1 = {(S, in; ai, out) | 1 ≤ i ≤ n}.

The alphabet Γ consists of one symbol ai for each component of the vectors, plus
an additional starting symbol S. The membrane structure is set up as follows.
For each vector vj ∈ A we have two membranes (labelled by 2j and 2j +1) in the
membrane structure, and we also have another membrane to collect the output.
The initial configuration contains object S in the skin, and the multiset a1 . . . an

placed in all the regions delimited by elementary membranes (except for region
2m + 2).

The computation in ΠA proceeds as follows. In the first step, the object S
enters a nondeterministically chosen membrane labelled by 2j, 1 ≤ j ≤ m, and it
produces n copies of itself. Then, objects a1, . . . , an present in region 2j + 1 are
exchanged via antiport rules against the n copies of S. In the next step, all those
objects ai cross membrane 2j towards the skin region, producing several copies
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of themselves, according to the components of vector vj . Finally, all these objects
go to the output region (via sr rules of weight 1), and the computation stops.
Consequently, we have PsFIN ⊆ uniPsCAS∗(ncooU , ant1), and so the theorem
follows.

The unidirectional restriction has the intuitive meaning of letting each object
cross a membrane only in one direction. Note that it is easy to overcome this
restriction in the case when the objects can be rewritten. Indeed, we will see in
the next section that the unidirectional restriction does not decrease the power of
the model if the sr rules are not unary.

8.8 Noncooperative Rules

We turn now to CAS P systems using noncooperative sr rules (without antiport
rules). We will prove that such systems are not universal. In this proof we will use
the class of P systems with symbol rewriting noncooperative rules using targets
[21], which we denote by OP (ncoo). Let PsOP (ncoo) be the family of sets of
vectors generated by the P systems in the class OP (ncoo).

Theorem 13
uniPsCAS2(ncoo, ant0) = PsCAS∗(ncoo, ant0) = PsCF.

Proof
First of all we recall (from [21]) that PsOP (ncoo) = PsCF . Using this result we
need to prove two more inclusions in order to demonstrate the theorem.

1. P sCAS∗(ncoo, ant0) ⊆ PsOP (ncoo).

This inclusion holds because any Π ∈ CAS(ncoo, ant0) can be reformulated as
a P system Π′ ∈ OP (ncoo) with symbol-objects and noncooperative rules using
targets in such a way that Ps(Π′) = Ps(Π). This reformulation is done as follows.

The system Π′ has the same alphabet, membrane structure and output region
as Π. The sr rules a ]

i
−→ v from Π are reformulated as a → (y1, out)(y2, out) . . .

(yk, out) ∈ Ri in Π′ where v = y1 . . . yk. Analogously, sr rules a [
i

−→ v from Π are
reformulated as rules a → (y1, ini)(y2, ini) . . . (yk, ini) ∈ Rj in Π′, where j is the
surrounding region of i.

Obviously, Ps(Π′) = Ps(Π), and hence the inclusion holds.

2. P sOP (ncoo) ⊆ uniPsCAS2(ncoo, ant0).

Let Π = (Γ, µ, w1, . . . , wm, R1, . . . , Rm, i0) ∈ OP (ncoo). Let then

Π′ = (Γ′, µ′, w′
1, w

′
2, R

′
1, R

′
2, 2) ∈ CAS2(ncoo, ant0)

be defined as follows

• Γ′ = Γ × {1, . . . , m}.
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• µ′ = [ [ ]2 ]1.

• w′
1 = λ and w′

2 = h1(w1) · · ·hm(wm), where for 1 ≤ i ≤ m, hi is the
morphism defined by hi(x) = (x, i) for x ∈ Γ.

• There are no sr rules associated with the skin (R′
1 = ∅).

• For each rule rt : a → u ∈ Ri of Π, we include in R′
2 two sr rules:

– (a, i) ]
2

−→ At,

– At [
2

−→ v,

where v is obtained by adding (x, i) for each (x, here) ∈ u, adding (x, k)
for each (x, ink) ∈ u, and adding (x, j) for each (x, out) ∈ u where j is the
surrounding region of i.

• i′0 = 2.

Note that in Π′ we have collapsed the membrane hierarchy of Π: for each
object x in Π a pair (x, i) is introduced which specifies the region i of object x.

The simulation of Π by Π′ proceeds as follows. First, we encode into w′
2 the

multisets w1, . . . , wm present in the initial configuration of Π using the morphisms
hi, 1 ≤ i ≤ m. Then, each transition step of Π is simulated in Π′ in two steps: a
special object is sent out to region 1 for each rule from Π that has been triggered,
and then this object returns into region 2 generating the products of the applica-
tion of that rule in Π, taking into account the target indicators. This process is
iterated until the system stops, and the output is collected in region 2 (the inner
region). Consequently, we have that PsOP (ncoo) ⊆ uniPsCAS2(ncoo, ant0).

8.9 Deciding Boundness

We say that a membrane system is bounded if there exists a positive integer k such
that in any region of any reachable configuration the cardinality of the multiset
of objects present in the region does not exceed k.

It is easily seen that the boundness property is undecidable for arbitrary CAS
P systems. In this section we show that it is decidable for CAS P systems using
noncooperative sr rules.

In the proof of this result we will use the notion of dependency graph. This
idea comes from classical formal language theory, but it has not been used in the
P systems framework until recently (see [9]).

Definition 14
Let Π = (Γ, µ, w1, . . . , wm, R1, . . . , Rm, i0) be a CAS P system with noncoopera-
tive sr rules. The dependency graph associated with it, gΠ, is defined as follows:

• Nodes: Γ × {1, . . . , m} and a special node O.
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• Edges: First, we include an edge O
p
→ (a, i) for every a ∈ Γ and 1 ≤ i ≤ m

such that |wi|a = p. In this way we include in the graph information about
the initial configuration.
Then, we add an edge (a, i)

p
→ (b, j) for any sr rule a ]

i
−→ u ∈ Ri, where

|u|b = p > 0 and j is the surrounding region of i.
Analogously, we add an edge (a, j)

p
→ (b, i) for any sr rule a [

i
−→ u ∈ Ri,

where |u|b = p > 0 and j is the surrounding region of i.

We also add one edge from (a, j) to itself with weight 1 (a, j)
1
→ (a, j), if

there is no sr rule a ]
j

−→ u and no sr rule a [
i

−→ u for any i such that j is its
surrounding region.

Clearly, the labels of the edges represent the multiplicity of the created objects.
Since sr rules are applied in parallel, it is natural to define the weight of a path
in gΠ as the multiplication of the labels of its edges.

Theorem 15
Let Π ∈ CAS(ncoo, ant0), and let D ⊆ ΓΠ. It is decidable whether or not there
exists k ∈ N such that no region in any reachable configuration of Π contains
more than k objects.

Proof
We present a constructive proof, describing an algorithmic procedure to decide
if there exists such k for an arbitrary region ρ of Π. To this aim we will use the
dependency graph associated with Π, denoted by gΠ.

We say that in a given dependency graph there is a “growing loop” for objects
from D in region ρ if there exists a circular path in gΠ such that:

1. at least one of its edges has a label greater than 1,

2. at least one node of the form (a, ρ) with a ∈ D is reachable from any of the
nodes in the circular path,

3. at least one node of such a circular path is reachable from the special node
O of gΠ.

The algorithm consists of checking if there exists a “growing loop” that is able
to eventually produce an unbounded number of objects from D in region ρ. Since
gΠ is finite, this can be decided.

If such a loop exists, then we conclude that the number of objects from D in
ρ is not bounded.

Conversely, if such a loop does not exist, then there exists an upper bound on
the number of objects from D in region ρ.

Thus, applying the above described algorithm for all the regions of Π we can
decide the existence of a bound on the number of objects.

Corollary 16
It is decidable whether or not an arbitrary Π ∈CAS(ncoo, ant0) is bounded.
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Proof
The proof follows from Theorem 15, by simply setting the entire alphabet of Π
as the set D.

In this section we provided a direct proof that the boundness property is
decidable for CAS P systems with noncooperative sr rules. Note that one can
also construct an indirect proof of this result using Theorem 13. Indeed, one can
construct for each such CAS P system a context-free grammar generating the
same language. Now using well known results from context-free grammars one
obtains the boundness result.

8.10 Discussion

In standard membrane systems, the evolution (of objects) takes place in regions,
and communication happens across membranes. In this chapter we have defined a
class of membrane systems where membranes play a more central role: both com-
munication and evolution are associated with membranes, and moreover evolution
happens only as a result of communication.

We have presented an investigation of the generative power of CAS P systems.
In particular, we have attempted to find out, in a systematic way, how various
features/mechanisms of such systems influence their power.

First of all, we have shown that if there is some context-sensitivity in the system
(that is, if we allow cooperative sr rules) then one obtains the computational
universality, even if only cooperative alph-restricted sr rules (cooAR) are used:

PsCAS2(cooAR, ant0) = PsRE.

Also, allowing antiport rules makes the CAS P systems computationally universal,
irrespectively of the type of sr rules used:

PsCAS∗(ncooU , ant1) = PsRE.

Since antiports are rules where two objects residing in different sides of a mem-
brane cooperate to exchange their positions, this supports the “context-sensitive”
intuition of universality.

Thus “cooperation” is crucial for the control of communication in order to reach
computational universality (this cooperation can be achieved by using antiport
rules or by using cooperative sr rules).

We turned then to other ways of controlling communication. First, we studied
the consequences of not allowing the parallel application of several sr rules on
the same membrane (seq mode), and then we also explored the case when the
communication channels are only unidirectional for each object. In both cases the
computational universality is lost:

seqPsCAS∗(cooAR, ant0) = PsMAT,

uniPsCAS∗(ncooU , ant1) = PsFIN.
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Finally, we have shown that computational universality is also lost if we ex-
plicitly required that the sr rules are noncooperative. This remains true even if
we control the communication through membranes by unidirectionality:

PsCAS∗(ncoo, ant0) = PsCF,

uniPsCAS2(ncoo, ant0) = PsCAS∗(ncoo, ant0).

These results are summarized in Figure 8.2. To avoid too cumbersome nota-
tion we omit here the subscripts indicating the number of membranes used. The
identities involving cooAR are also omitted, since they are equivalent to the coo
case.

In order to get a better understanding of various features/mechanisms used
in membrane systems, an even more systematic study is needed. Hence, e.g., one
could consider “basic models” such as CAS P systems with unary sr rules (and
without antiports), and determine their generating power.

It is somehow surprising to find out that PsCAS(ncooU , ant0) is incomparable
with PsFIN .

Another interesting line of research is to study different ways of restricting
the parallelism. In Section 8.7 we have studied membrane systems where at most
one sr rule is applied on each membrane, but we allow that a membrane remains
inactive even if there are applicable sr rules for it (sequential mode). If we impose
the maximality condition to such sequential mode, which forces that at least one
sr rule is applied on each membrane (provided that there are applicable rules for
it), then we get some control over the application of the sr rules in the systems,
and we again reach computational universality for the cooperative case. Thus,
max-seqPsCAS(coo, ant0) 6= seqPsCAS(coo, ant0). What is the situation in the
noncooperative case?

Finally, it would be interesting to investigate the effect of minimal parallelism
(see, [8]) in the framework of CAS P systems.
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PsCAS(coo, ant0) = PsCAS(ncooU , ant1) = PsRE

seqPsCAS(coo, ant0) = PsMAT

uniPsCAS(ncoo, ant0) = PsCAS(ncoo, ant0) = PsCF

uniPsCAS(ncooU , ant1) = PsFIN

Figure 8.2: Hierarchy of families of sets of vectors computed by CAS P systems.
Arrows indicate strict inclusions of the lower family in the upper family.
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Nederlandse Samenvatting

Binnen het omvangrijke onderzoeksgebied Natural Computing kan men twee richt-
ingen onderscheiden. Eén richting bestudeert processen in de natuur door ze op
te vatten als rekenkundige bewerkingen. De andere onderzoeksrichting analyseert
en ontwikkelt rekenkundige methoden en modellen geïnspireerd op de natuur. Dit
proefschrift bestudeert uit beide bovengenoemde zijden van Natural Computing
een representant.

Het onderwerp van Deel 1 van het proefschrift is gene assembly, een repre-
sentant uit de eerste onderzoeksrichting. Gene assembly vindt plaats in ciliaten
– een zeer oude groep eencellige organismen die in grote diversiteit van soorten
verspreid over de aarde aanwezig is. Ciliaten hebben de opmerkelijke eigenschap
dat ze twee typen celkernen hebben, de micronucleus en de macronucleus, die
uitermate verschillend van elkaar zijn, zowel functioneel als fysiek. Tijdens de
seksuele reproductie van ciliaten verandert een (nieuw gevormde) micronucleus
in een macronucleus. Dit proces heet gene assembly. Gedurende het proces wordt
ieder gen op een complexe wijze geknipt en geplakt. Het onderliggende principe
van het knippen en plakken wordt recombinatie genoemd. Door middel van re-
combinatie wordt ieder gen in de micronucleus getransformeerd in een gen in de
macronucleus.

Centraal in Deel 1 staat een graaf die, op basis van een beschrijving van
een gen in de micronucleus (de beginsituatie), het resultaat na recombinatie
weergeeft. Dit eindresultaat bevat naast een lineaire DNA-structuur mogelijk di-
verse cirkelvormige DNA-structuren. Deze structuren zijn in de graaf eenvoudig
terug te vinden. Het corresponderende gen in de macronucleus bevindt zich op
een van deze structuren en wordt daardoor ook door de graaf gerepresenteerd.
In Hoofdstuk 3 blijkt bovendien dat door middel van de graaf de mogelijke volg-
ordes waarin de cirkelvormige DNA-structuren ontstaan gedurende gene assembly
gekarakteriseerd kunnen worden. Dit is opmerkelijk aangezien de graaf enkel op
basis van de beginsituatie geconstrueerd wordt. In Hoofdstuk 4 worden de ontstane
lineaire en cirkelvormige DNA-structuren als uitgangspunt genomen, en worden
de mogelijke beginsituaties beschreven die deze DNA-structuren opleveren. Het
blijkt dat meerdere beginsituaties hetzelfde eindresultaat kunnen hebben. Tevens
blijkt dat de beginsituaties met hetzelfde eindresultaat in elkaar over te voeren
zijn door middel van string-herschrijfregels. Opvallend daarbij is dat deze her-
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schrijfregels veel gelijkenis vertonen met een bekend model van gene assembly dat
drie typen van recombinatie onderscheidt. Ook worden in dit hoofdstuk de mo-
gelijke grafen die eindsituaties representeren beschreven in termen van eenvoudig
te verifiëren condities. In Deel 1 dient gene assembly als motivatie; er wordt gew-
erkt binnen een abstracte setting gebaseerd op strings. Uitzondering hierop is
Hoofdstuk 5, waarin de bovengenoemde graaf op equivalente wijze gedefinieerd is
in termen van grafen in plaats van strings.

Het onderwerp van Deel 2 van het proefschrift is membrane computing, een
representant uit de tweede onderzoeksrichting. Binnen deze onderzoeksrichting
worden systemen geïnspireerd op de werking van membranen binnen een cel (of
tussen cellen) bestudeerd. Membranen verdelen een cel in diverse compartimenten
en laten bepaalde moleculen of ionen alleen op een gecontroleerde wijze van een
compartiment naar de andere door. Deze moleculen (of ionen) zijn daardoor in
een juiste hoeveelheid aanwezig in de compartimenten. Binnen membrane com-
puting wordt de werking van membranen opgevat als een rekenkundig proces. De
membranen vormen hier een hiërarchische structuur die de cel in diverse compar-
timenten verdeelt. Ieder van deze compartimenten bevat een aantal objecten, en
deze kunnen door middel van voorgeschreven regels getransformeerd worden in
andere objecten en/of verplaatst worden naar andere compartimenten. Belang-
rijke eigenschap hierbij is dat de regels op een maximaal parallelle wijze worden
uitgevoerd. Hieronder wordt verstaan dat de verzameling regels (preciezer: regel-
instanties) die worden gebruikt in een tijdstap maximaal is – er is geen regel meer
die (een gedeelte van) de ongebruikte objecten had kunnen transformeren. Deze
maximale parallelle wijze van regeluitvoering biedt het membraansysteem soms
onverwachte rekenkracht.

Men kan diverse klassen van membraansystemen onderscheiden. In Hoofd-
stuk 6 worden membraansystemen bekeken waarbij objecten niet alleen in de
compartimenten kunnen voorkomen, maar ook op de membranen. De objecten
beïnvloeden op deze wijze het functioneren van de membranen. Een membraan
kan bijvoorbeeld de verplaatsing van bepaalde objecten alleen toestaan als er
op het membraan een specifiek object bevindt. Ook kan een membraan al dan
niet gesplitst worden afhankelijk van de aanwezigheid van objecten op het mem-
braan. Vervolgens beschrijft Hoofdstuk 7 membraansystemen waarbij de evolutie
van het systeem afhangt van signalen van buiten. Het signaal bestaat hierbij
uit een reeks objecten die één voor één actief worden en daarmee de activatie
van de (evolutie)regels beïnvloedt. Het signaal verplaatst zich door het systeem
totdat alle objecten van het signaal verbruikt zijn. Tenslotte bestudeert Hoofd-
stuk 8 een specifieke klasse van symport/antiport membraansystemen. Essentieel
bij (standaard) symport/antiport systemen is dat iedere evolutieregel precies twee
voorgeschreven objecten tegelijkertijd door een membraan heen laat gaan. In dit
hoofdstuk staan we binnen een dergelijk membraansysteem toe dat de twee ob-
jecten tijdens het verplaatsen tevens kunnen veranderen. Motivatie hiervoor is dat
moleculen gedurende de doorgang van een membraan betrokken kunnen zijn bij
chemische reacties, waardoor de moleculen op cruciale wijze kunnen veranderen.
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Het centrale onderzoeksonderwerp van Deel 2 is het bepalen van de rekenkracht
van de bovengenoemde klassen van membraansystemen (en van natuurlijke res-
tricties op deze klassen) door ze zowel onderling als met andere bekende en uitvoe-
rig bestudeerde klassen te vergelijken. Daaruit blijkt dat de rekenmogelijkheden
van de verschillende membraansystemen aanzienlijk kunnen verschillen. Bijvoor-
beeld blijkt uit Hoofdstuk 6 dat er geen algoritme bestaat die bepaalt of gedurende
de evolutie van het systeem er een membraan is die een gegeven verzameling ob-
jecten bevat. Echter, als we de splitsing van membranen niet toestaan, dan bestaat
een dergelijk algoritme wel.
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