

The susceptibility of trichophyton rubrum to photodynamic treatment $\mathsf{Smijs}, \mathsf{G.M.T}$

Citation

Smijs, G. M. T. (2008, October 9). *The susceptibility of trichophyton rubrum to photodynamic treatment*. Retrieved from https://hdl.handle.net/1887/13138

Version:	Corrected Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/13138

Note: To cite this publication please use the final published version (if applicable).

Chapter

Trichophyton rubrum microconidia, 8 hours after inoculation on human stratum

_____ regel 1 _____ regel 2

____ regel 3

_ regel 4

___ regel 5

___ regel 6

___ regel 7

___ regel 8

___ regel 9

____ regel 10

____ regel 11

____ regel 12

__regel 13

____ regel 14

___ regel 15

__regel 16

____ regel 17

__ regel 18

____ regel 19

___ regel 20

_____ reael 21

__ regel 22

____ regel 23

____ regel 24

___ regel 25

____ regel 26

___ regel 27

____ regel 28

____ regel 29

_____ reael 30

___ regel 31

____ regel 32

____ regel 33

___ regel 34

____ regel 35

____ regel 36 ____ regel 37 ____ regel 38 ____ regel 39

1 PHOTODYNAMIC TREATMENT

1.1 Historical perspective within dermatology

The concept of photodynamic treatment (PDT) refers to a treatment with the use of light-activated agents, referred to as photosensitizers, in combination with light of a proper wavelength and molecular oxygen (1,2). Although the original use of photosensitized chemicals (obtained from plant extracts) for the treatment of skin diseases was already known from the ancient Egypt and Greece (3), the initial use of this treatment is usually ascribed to the work of Oscar Raab, as he was the first who published on the subject in detail (4). He reported the rapid killing of the protozoan, paramecium, upon illumination of dyes like acridine orange. Oscar Raab was a medical student who worked under supervision of Professor Hermann von Tappeiner. Von Tappeiner himself performed thorough investigations, discovered the presence of oxygen as a precondition required for the light reaction to occur and introduced the term photodynamic action (5,6). In a short time, the application of PDT for tissue destruction commenced and, in the same period, Jesionek and von Tappeiner reported the successful use of 5% eosine in the treatment of skin cancer (7). Soon after these pioneer studies, in 1909, the photosensitizing properties of the porphyrin hematoporphyrin were discovered (8). In these early days, the administration of hematoporphyrin was only systemic (9) to ensure a good uptake in different tumours and, consequently, an effective PDT. A large disadvantage of this systemic porphyrin PDT was the lasting cutaneous photosensitivity (10) which, however, stimulated interest in topical application of photosensitizers. The increasing use of clinical application of PDT was mainly inspired by the work of Dougherty and colleagues (11,12). From that period, the popularity of PDT as a treatment option for malignant tumours has grown enormously (13-15). This is reflected by a growth of the number of publications from this area (16-20).

Mainly due to the accessibility of skin to light, scientists have intensely investigated the use of PDT for both skin cancers and other, non-malignant skin conditions (3). As a result, not only oncologic but also non-oncologic applications of PDT are nowadays recognized in dermatology (12,14,19,21).

The non-malignant skin disorders that have been (experimentally) treated with PDT include psoriasis, lichen ruben planus, lichen sclerosus et atrophicus, scleroderma, alopecia areata, human papillomavirus infections and Darier's disease (3,14,22-24). Another important development in dermatology concerns the usage of PDT in bacterial and fungal skin infections (25-30).

1.2 Mechanism

1.2.1 Light

Chapter 1

Light can be defined as a natural phenomenon that can be described by means of an electromagnetic wavelike concept or particle concept. In the particle concept, light is represented by a flow of particles with energy levels at very discrete values, initially described by Planck as light quanta (31) and later by Lewis as photons (32). According to Planck's law, the energy corresponding to one photon is given by:

 $E = hv = hc/\lambda$

c = velocity of light $(3 \times 10^8 \text{ m s}^{-1})$

h = Planck's constant (6.63 x 10^{-34} J s)

 λ = wavelength (m)

v = light frequency (s⁻¹).

The spin multiplicity, an important aspect of molecules that can attain various energy states, is given by the relation M = 2S + 1. The total spin of state, S, can be found by adding the individual electron spin quantum numbers, S_1 and S_2 . In most molecules in the ground state, the highest occupied molecular orbital contains 2 electrons with opposite spin (spin quantum number of +1/2 and -1/2) and the total spin equals 0. In this case the spin multiplicity is 1 (a singlet, ¹S, state). If a molecule (¹S) absorbs light, one of the electrons may be promoted to a higher excited state. According to Wigner's rule, the spin is conserved and the excited state is a singlet-excited state (¹S*).

Subsequent to the excitation, one of the following events may occur:

- 1) Emission of a photon
- 2) Conversion to a different state. If there is no change in spin multiplicity, the change is called *internal conversion*. In case of an alteration of the spin multiplicity the term *intersystem crossing* is used
- A chemical reaction (see Fig. 1.1 for the possible photochemical reaction types)
- 4) An electronic excitation.

The chemical reaction (Fig. 1.1) that is important in PDT is photosensitization.

regel 1 ____ regel 2 regel 3 _ regel 4 . regel 5 _ regel 6 _ regel 7 _ regel 8 _ regel 9 🗕 regel 10 ____ regel 11 ____ regel 12 ____ regel 13 ____ regel 14 ____ regel 15 ____ reael 16 ____ regel 17 ____ regel 18 ____ regel 19 regel 20 ____ reael 21 _____ regel 22 ____ regel 23 regel 24 ____ reael 25 ____ regel 26 _____ regel 27 _____ regel 28 ____ regel 29 _____ reael 30 regel 31 ____ regel 32 _____ regel 33 ____ regel 34 ____ regel 35 _____ regel 36 🗕 regel 37 ____ regel 38 💻 reael 39 🔜

____ regel 1

_ regel 2

__ regel 3

_ regel 4

__ regel 5 __ regel 6

_ regel 7

___ regel 8

_ regel 9

__regel 10

__ regel 11

___ regel 12

___regel 13 ___regel 14

__ regel 15

__ regel 16 __ regel 17

_ regel 18

____ regel 19

__ regel 20

___ reael 21

__ regel 22

_ regel 23

___ regel 24

__ regel 25

___ regel 26

__ regel 27

__ regel 28

___ regel 29

____ reael 30

__ regel 31

____ regel 32

___ regel 33

__ regel 34

___ regel 35

___ regel 36 ___ regel 37 ___ regel 38 ___ regel 39

Figure 1.1. Important photochemical reaction types following excitation. The excited state, XYZ*, may be either singlet or triplet.

1.2.2 Photodynamic action

The term "photodynamic" refers to those photosensitized reactions that require molecular oxygen and occur within biological systems (6).

Following the absorption of light the photosensitizer is transformed from its ground state (S) to an excited singlet state (1S). By intersystem crossing the short-lived singlet excited state is transformed to the triplet excited state (3S). Subsequently, the excited triplet state can undergo two kinds of chemical reactions. The reaction types are commonly referred to as a type I and a type II reaction (see Fig. 1.2) (33,34). In a type I reaction, the triplet state activator 3S* can either abstract an electron from, or donate an electron to a substrate molecule (A). The sensitizer radicals (S⁻ and S⁺) can react in a way to regenerate the ground state sensitizer, while substrate radicals can react with other molecules to give oxidized forms of the substrate. Interaction of the anionic state of some sensitizers with oxygen can give the superoxide radical (O_3^{\cdot}) which can react with various types of biomolecules (35). In a type II reaction the triplet excited state sensitizer (3S*) reacts directly with groundstate oxygen (30,) (1). Provided the energy difference between 3S* and the ground state of the photosensitizer (1S) exceeds 94.5 kJ (the energy difference between 30, and ¹O₂), an allowed energy transfer leads to the formation of an excited singlet state of oxygen (10,).

Figure 1.2. Illustration of the photodynamic reaction types that may occur during photodynamic action.

Singlet oxygen is a powerful, short-lived, electrophilic particle and reacts rapidly with electron-rich molecules that can be present in a variety of biological molecules and assemblies (12,36). The lifetime of ${}^{1}O_{2}$ in water is 3-4 µs whereas in organic solvents the lifetime is about 4-50 times longer (34). However in cellular systems the lifetime of ${}^{1}O_{2}$ is considerably shorter, namely 100-250 ns (37). Thus the site of the generation of ${}^{1}O_{2}$ determines which cellular structures may be attacked. Although most photosensitizers can react both via charge transfer and energy transfer reactions, it is generally agreed that singlet oxygen is the key agent of cellular damage (34). Although the *type II* mechanism predominates over the *type I* mechanism it cannot be excluded that O_{2}^{-1} may also be involved in PDT damage (34,38-40). Ideal photosensitizers for PDT have the following properties (34,41-46).

- Chemical purity, photo-stability and constant composition.
- A high singlet oxygen yield.

regel 1 _

Chapter 1

regel 2

regel 3 _

regel 5 __ regel 6 __ regel 7 __ regel 8 __

regel 9 _

regel 10 ____

regel 12 _____ regel 13 _____

reael 14

regel 15 ____

reael 16 ____

regel 17 ____

regel 18 ____

regel 19

regel 20 ____

regel 22 ____

reael 23

regel 24 ____

regel 26 ____

regel 27 _____

regel 28 ____

regel 29 _____

regel 31 ___

regel 32 _____

regel 33 ____

reael 34 ____

regel 35 _____ regel 36 _____ regel 37 _____ regel 38 _____ reael 39 _____

reael 30

reael 21 _____

- The ability to absorb light at the long wavelength range. Since both absorption and scattering of light by tissue decreases as wavelength increases, the most efficient photosensitizers have strong absorption bands in the wavelength range above 600 nm.
- Minimal dark toxicity.
- Low photo-toxicity.
- Good solubility in injectable solvents
- A low-cost large-scale production.

_____ regel 1

_ regel 2

___ regel 3

__ regel 4

___ regel 5 ___ regel 6

__ regel 7

___ regel 8

__ regel 9

___ regel 10

___ regel 11

____ regel 12

__ regel 13

___ regel 14

__ regel 15

____regel 16 ____regel 17

____ regel 18 ____ regel 19 ____ regel 20 ____ regel 21

__ regel 22

___ regel 23

___ regel 24 ___ regel 25 ___ regel 26 ___ regel 27

regel 28

____ regel 29

____ regel 30 ____ regel 31

____ regel 32

___ regel 33

___ regel 34

___ regel 35 ___ regel 36 ___ regel 37 ___ regel 38 ___ regel 39

1.2.3 Porphyrin photosensitizers

Compounds that have been extensively used as photosensitizers are porphyrins. These compounds all contain a porphine macrocyclic ring, (Fig. 1.3). Porphyrins have very specific features that make them particularly useful as photosensitizers in biological systems:

- Porphyrins absorb light in a broad-spectrum range.
- Porphyrins normally have long-lived triplet states with high quantum yields (>0.7). This triplet state, the number of the singlet excite state sensitizer molecules that cross over to the triplet excites state, of porphyrins is successfully quenched by oxygen. This makes porphyrins typically *type II* photosensitizers causing cell damage through the generation of singlet oxygen (47).
- Porphyrin compounds can be synthesized and modified on demand. This offers the possibility to adjust the physico-chemical properties of the porphyrin molecules and control the positioning among subcellular compartments.

Figure 1.3. Structure of the unsubstituted porphine macrocycle ring.

Among the porphyrin photosensitizers used in medical PDT, hematoporphyrin (Hp) and its complex mixture of porphyrin derivatives (HpD) have been studied most intensively (11,36,48-51). In 1913 Meyer-Betz was the first to show photosensitization by Hp in man (52). Ten years later Policard observed the tendency of porphyrins to accumulate in tumor cells (53) and in 1942 Auler and Banzer showed that Hp accumulation in tumors caused photonecrosis (54). Hp was first synthesized in 1960 (48) and from 1960 to 1983 Hp and HpD were intensively used as photosensitizers in PDT. These porphyrins are usually designated as the first generation of photosensitizers (46,55). Although, Dougherty et al. successfully treated tumours in mice and rats using HpD PDT already in 1975 (56), it was not until 1987 when the commercial available form of HpD, named Photofrin, became available (57,58). Despite the success of HpD, there were serious limitations in the use of these photosensitizers. HpD is a complex mixture, consisting of both photoactive and non-photoactive compounds (48,55,59). Moreover, its composition is difficult to reproduce (46,60-62). Therefore, to improve the efficacy of PDT, a second-generation photosensitizers, including new porphyrins, has been developed (21,45,55,63,64). The most important characteristics of these compounds that make them excellent photosensitizers are the strong absorption band in the red part of the spectrum, the ability to generate a high ${}^{1}O_{2}$ yield and the lack of dark toxicity (45,55,63,65,66).

Another interesting development is the use of the endogenous photosensitizer, protoporphyrin (Pp), produced from its precursor 5-aminolevulinic acid (ALA) in the heme biosynthesis (12,42,45,46,67-72). Since the conversion of Pp into heme is slow, Pp can accumulate in cells upon their exposure to ALA. A commercial form for ALA, Levulan Kerastick was approved by the Food and Drugs Administration (FDA) in September 2000 (73) and in 2004 methyl 5-aminolevulinic acid (Metvix) was approved for the pre-cancer actinic keratoses (74).

The most novel category of photosensitizers, including porphyrins, that may be used for PDT in future comprises completely synthetic second-generation photosensitizers (45,63,75-81). Among the porphyrins, the meso-substituted porphyrins have been developed as particular interesting photosensitizers (45,63,77,82-86). In general, the cationic photosensitizers, including the meso- substituted porphyrins, appear to be more photoactive than the anionic ones (82,84,87-91).

1.3 Antimicrobial PDT

1.3.1 General introduction

Today, bacterial resistance to antibiotics is worldwide an increasing concern (92-94). Many human pathogens are now resistant to many antimicrobial drugs. This makes the treatment of microbial skin infections sometimes difficult. The grampositive *Staphylococcus aureus* and *Streptococcus pyogenes* and the gram-negative

 regel 2

 regel 3

 regel 4

 regel 5

 regel 6

 regel 7

 regel 8

 regel 9

 regel 10

 regel 11

 regel 12

 regel 13

regel 14 ____

regel 15 ___

reael 16 ____

regel 17 ____

regel 18 ____

regel 19 ____

regel 20 ____

regel 22 🔔

reael 23 ____

regel 24 ____

regel 25 ____

regel 26 ____

regel 27 ____

regel 28 ____ regel 29 ____

reael 30 _____

regel 32 _____

regel 33 ____

regel 34 ____

regel 35 _____ regel 36 _____ regel 37 _____ regel 38 _____ reael 39 _____

regel 31 _

reael 21 _____

95 | Chapter 1

regel 1

Pseudomonas aeruginosa are important causes of various bacterial skin infections (94-99). It was already in the late 1950's that 50% of all S. *aureus* strains were resistant to penicillin (98). Moreover, the methicillin-resitant *S. aureus* (MRSA) is since 1980 a problem (100). PDT could offer new and safe perspectives for the treatment of localized bacterial skin infections, including wound infections (91,101).

In case of anti-microbial PDT the photodynamic effect depends mainly on the physical and chemical properties of the photosensitizer, such as the maximum absorption wavelength, the molar extinction coefficient and the ${}^{1}O_{2}$ production (82,85,91,102-104). The chemical properties determine the binding affinity of photosensitizer to the surface of the microorganisms. Because the surface of bacteria is negatively charged, positively charged photosensitizers are commonly more effective than those that have a negative or no charge. Generally, gram-positive pathogens are more susceptible to PDT than gram-negative (88,89,91). So, the chemical structure and the morphology of the cell wall is an important determinant here in PDT efficacy (90,91,105). In general, when the photosensitizer does not penetrate the outer wall membrane antimicrobial PDT is thought to occur via a *type II* mechanism and when it is penetrating the cell PDT is likely to occur via a *type I* (91).

1.3.2 PDT of superficial fungal skin infections

Superficial skin mycoses either caused by the yeast *Candida* or by dermatophytes (dermatophytoses) are the most common of human infections (27,106-111). Dermatophytes are fungi that can cause infections of keratinized tissues of the skin, hair and nails because of their ability to feed on keratin (112-115). The most important limitations of the current therapeutic treatments for superficial mycoses are the frequent recurrences of the infection and the duration of the treatment (116-119). This demands strongly for new therapeutic options and PDT belongs to the new promising treatment possibilities (27). However, the reports about the successful application of PDT on fungal skin infection are still very scarce.

In case the fungal skin infection does not invade the stratum corneum (SC), the light used for antifungal PDT may be in the blue spectrum region. However, as dermatophytes often colonize both the SC and the hair follicles, photosensitizers absorbing in the red and near infrared spectral part are preferred, because light of longer wavelength exhibits better penetration than blue light. The photosensitizers studied for superficial fungal skin infections mainly comprise phenothiazine dyes, phthalocyanines and porphyrins (27).

It has been reported that Candida could be effectively killed by PDT with one of the phenothiazine dyes, methylene blue (MB) or toluidine blue (TB) (101,120). The efficacy appeared to be less compared to PDT of several prokaryotic bacteria but high when compared to the killing of keratinocytes (101,121). Recently, it was also demonstrated that Candida was susceptible to PDT with the porphyrin 5-phenyl-10,15,20-tris(N-methyl-4-pyridyl)porphyrin chloride. Candida could be successfully inactivated in vitro by this cationic porphyrin photosensitizer (84). As regards the dermatophytes, several strains (Trichophyton mentagrophytes, Trichophyton rubrum, Trichophyton tonsurans, Microsporum cookie, Microsporum canis, Microsporum qypseum, Epidermophyton floccosum, Nannizia cajetani) were exposed to UVA during the incubation with two different thiophenes (122). Although a strong dose-dependent growth inhibition could be observed, a fungicidal effect was not achieved in this study. Furthermore, Propst and Lubin reported the in vitro and in vivo (using albino guinea pigs) photosensitized killing of Trichophyton mentagrophytes and Microsporum gypseum. The authors used as a photosensitizer MB and proflavine dye, but the effective fungal kill observed in the in vitro tests could not be reproduced in the in vivo studies (25). Finally, the use of ALA-PDT is worth mentioning. Kamp and co-workers used ALA-PDT for the treatment of Trichophyton rubrum in liquid culture and reported a fungal growth inhibition of 50% (28). In addition, Calzavara-Pinton et al. observed a good therapeutic effect by ALA-PDT on interdigital mycoses of feet, but unfortunately the treatment could not prevent quick recurrences (26).

2 THE DERMATOPHYTE TRICHOPHYTON RUBRUM

2.1 Introduction to dermatophytes

regel 1

regel 2

regel 3

regel 4

regel 5 _

regel 6

regel 7 _

regel 8 _

regel 9 _

regel 10 ____

regel 11 ____

reael 12 ____

regel 13 _

reael 14

regel 15 ___

reael 16 ____

regel 17 ____

regel 18 ____

regel 19 ____

regel 20 🔜

regel 21 _____ regel 22 _____ regel 23 _____

regel 24 ____

regel 26 ____

regel 27 ____

regel 28 ____

regel 29 ____

regel 30 ____

regel 32 _____

regel 33 ____

reael 34 ____

regel 35 _____ regel 36 _____ regel 37 _____ regel 38 _____ reael 39 _____

regel 31 _

8 | Chapter 1

Dermatophytes are traditionally divided in three anamorphic genera, *Trichophyton, Microsporum* and *Epidermophyton*. Although some *Trichophyton and Microsporum* species may have a sexual (teleomorph) stage named *Arthroderma*, their role in epidemiology of mycoses has not been established (123). Therefore, in medical mycology the 3 genera are classified as the anamorphic class Hyphomycetes of the Deuteromycota (Fungi Imperfecti) (113,124). Two important features contribute to the manifestation of a disease caused by the dermatophytes, namely the ability to feed on keratin-rich substrates and host specialization (123,125). In interactions between host and dermatophyte, signals from the host can alter the dermatophyte's gene expression (126). In a clinical situation, persistent spores (arthroconidia or chlamydospores) are firmly attached to dermatophytes. These structures, embedded in hair or skin scales are heat resistant and may persist for many years (113,127-130). When germination takes place epidermal invasion will follow and dermatophyte hyphae will grow and penetrate the epidermal or hair structures (131-134). Keratinase enzyme production, induced by the presence of keratin, is thought to play an important role in the hyphae penetration during fungal invasion (125,134). Infections caused by dermatophytes are classified as dermatomycoses, or more correctly dermatophytoses (also named tinea), and their detailed name reflects the location on the body, e.g. tinea capitis (scalp) and tinea pedis (feet) (109,135,136). The treatment involves the use of an antifungal drug in either a topical or oral application (116,119,137) or a combination of both (117). The frequently used drugs can be divided into three different classes, the polyenes, the imidazoles and the allylamines (111,138). Apart from these classes griseofulvin (111) and cyclopiroxolamine (139) are occasionally used. Many of these antimycotics inhibit the synthesis of ergosterol, one of the building blocks of fungal membranes. This inhibition is only possible in growing microorganism. That is why the effect of many current antimycotics on spores is insufficient, leading to relatively frequent recurrences and the necessity of lengthy treatment (118).

2.2 Trichophyton rubrum

Trichophyton rubrum (Castellani) Sabouraud was first isolated from humans in 1910 by Bang (140-142). Currently,*T. rubrum* is the anthropophilic fungus that is most frequently isolated from patients suffering from mycotic skin diseases like tinea pedis, tinea corporis (107,143-146) and from tinea unquium (onychomycosis), representing the most prevalent nail infection (147).The infections caused by this world-wide distributed dermatophyte (135,148) can be very persistent and therefore difficult to treat, partly because a decreased efficiency of the host's immune response (149-152). As mentioned before, the present treatment strategies mostly affect the metabolic active fungus, not effecting the spores (116-118,138).

T. rubrum has several distinct colonial forms characterized by differences in produced pigments (153). When cultivated *in vitro*, both single cell microconidia (peg-shaped) and 1-8 celled macroconidia (cigar shaped) are produced. In *in vivo* situation *T. rubrum* mainly produces arthroconidia (brick-shaped) and to a lesser extent microconidia (154-156).

There are different reasons why *T. rubrum* can cause chronic infections in humans (150,157,158). First, in many patients the cell-mediated immunity to the dermatophyte antigen part that is specific to *T. rubrum* is lacking, due to differences in antigen skin penetration. Second, cell-wall components, like galactomannans may have immunosuppressive effects, inhibiting normal immune reactions (like lymphoprolifiration). Third, the ability of *T. rubrum* to evade host defense systems by remaining in superficial skin layers is also considered to be of importance. Finally, the possibility of *T. rubrum* to survive both in and off skin as a spore accounts for the high prevalence of infections caused by this fungus (150,159).

In the infection process the fungal wall (see Fig. 1.4) plays an essential role and is therefore also the target of many antifungals (111,117,160-162). The outermost layer of the wall constitutes of β -glucan, composed of α -glucopyranose units with predominantly β -1,3 - and β -1,6 -linkages (123,162-164). The second layer contains galactomannans, complex glycoproteins consisting of α - mannopyranose, mannofuranose, galactofuranose attached to a peptide backbone (150,158,162). In general Trichophyton species have two kinds of galactomannans, i.e. galactomannan I and II. In T. rubrum in galactomannan I the galactofuranose units are missing and galactomannan II contains α -1,2 en α -1,6 - linked mannopyranose and mannofuranose units (162). The third layer is known as chitin, a β -1,4 linked polymer of N -acetylglucosamine, giving the fungal wall its rigidity (123). The innermost layer is the cell membrane containing lipids, proteins and little carbohydrates. It resembles the cell membrane in eukaryotic cells except that in case of Trichophyton cholesterol is replaced by ergosterol. Due to this layered structure, the total wall thickness is approximately 100 to 300 nm, but it is thinner at the growing hyphal tips (123,165). In addition, dermatophyte hyphal walls contain relatively high levels of (negatively charged) phosphoproteins, potassium and sodium (160).

Although there are no reports on the wall architecture of the *T. rubrum* spores, microconidial walls of *Trichophyton mentagrophytes* were described in one study (166). This study reported a microconidial wall thickness up to 400 nm and the presence of a melanin-like pigment. The outer wall consists of a glycoprotein complex (15- 20 nm), the middle electron dense wall represents a rodlet layer embedded in polysaccharides (30-50 nm) and the inner wall consists of glucan and chitin (200-300 nm) (166). In general, fungal spores differ from somatic cells in the following way (123):

regel 5 _ regel 6 regel 7 _ regel 8 _ regel 9 _ regel 10 _ regel 11 _ reael 12 ____ regel 13 _ regel 14 ____ regel 15 _ reael 16 ____ regel 17 ____ regel 18 _ regel 19 ____ regel 20 🔜 regel 21 _____ regel 22 🔔 regel 23 regel 24 ____ regel 25 ____ regel 26 🗕 regel 27 ____ regel 28 ____ regel 29 ____

regel 30 ____

regel 31 _

regel 32 ____

regel 33 _____ regel 34 _____ regel 35 ____ regel 36 ____ regel 37 ____ regel 38 ____ regel 39 ____

regel 1

regel 2

regel 3

regel 4

S | Chapter 1

____ regel 1

__ regel 2

____ regel 3

_ regel 4

___regel 5

___ regel 6 ___ regel 7 ___ regel 8

___ regel 9

___ regel 10 ___ regel 11 ___ regel 12 ___ regel 13 ___ regel 14 ___ regel 15

____regel 16 ____regel 17

____regel 18 ____regel 19 ____regel 20 ____regel 21 ____regel 22 ____regel 23 ____regel 24

___ regel 25

____ regel 26

___ regel 27

____ regel 28 ____ regel 29 ____ regel 30

____ regel 31 ____ regel 32

___ regel 33

____ regel 34

____ regel 35 ____ regel 36 ____ regel 37 ____ regel 38 ____ regel 39

The wall is thicker. Additional layers include pigments such as melanin.

The water content is low and the rate of synthesis of proteins and nucleic

The cytoplasm is dense and poorly developed.

Figure 1.4. Diagrammatic representation of the wall structure of *Trichophyton rubrum*, including the chemical structure of the main units present within the layers that are characteristic for the fungal wall. (A) Outermost layer of β -1,3-glucans and β -1,6-glucans (B) Galactomannan, showing α -1,2 en α -1,6 - linked mannopyranose en mannofuranose units (C) Chitin micro-fibres, embedded within protein (D) The cell membrane, containing ergosterol.

3 AIM OF THE INVESTIGATIONS AND OUTLINE OF THIS THESIS

The aim of the research described in this thesis was to establish a formulation of porphyrin photosensitizers that, after a single application, cause a complete cure of tinea infection caused by *T. rubrum*.

This research started with the discovery of the excellent susceptibility of the dermatophyte *T. rubrum* to PDT when using several new types of porphyrin photosensitizers.

A high PDT efficacy was observed for Deuteroporphyrin monomethyl ester (DP mme) and the cationic meso-substituted porphyrin 5,10,15-tris (4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B, Fig. 1.5). Therefore, the studies described in this thesis mainly focus on these two photosensitizers.

Figure 1.5. Chemical structure of the porphyrin photosensitizer 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B, Fig. 1.5A) and deuteroporphyrin monomethylester present as a mixture of 50% with the propyl ester on the D-ring and 50% with this ester on the C-ring (DP mme, Fig. 1.5B).

reger	'	
regel	2	
regel	3	
regel	4	
regel	5	
regel	6	
regel	7	
regel	8	
regel	9	
regel	10	
regel	11	
regel	12	
regel	13	
regel	14	
regel	15	
regel	16	
regel	17	
regel	18	
regel	19	
regel	20	
regel	21	
regel	22	
regel	23	
regel	24	
regel	25	
regel	26	
regel	27	
regel	28	
regel	29	
regel	30	
regel	31	
regel	32	
regel	33	
regel	34	
regel	35	
regel	36	
regel	37	
regel	38	
reael	39	

Chapter 1

The results of the *in vitro* studies are described in chapter II and III. During these investigations, the PDT efficacy was tested in suspension cultures with broadband white light (chapter II) and with the red light corresponding to wavelengths between 850 to 870 nm (chapter III). The use of the red light in the photodynamic inactivation of the microconidia and the mycelium was considered to be of great importance as the red light exhibits very good skin penetration and therefore it could find its use also during the research regarding the PDT of onychomycoses. Moreover, *T. rubrum* colonizes both the superficial stratum corneum and the deeper hair follicles, so the good light penetration is of essential importance.

To investigate the proposed photodynamic treatment of *T. rubrum* in experimental setting resembling more closely the clinical situation, a novel *ex vivo* model was developed. This model is described in chapter IV. Of particular importance in this model are the use of human SC as the sole substrate for *T. rubrum* and the adherence of the fungus to this substrate. These are the factors that are known to influence the dermatophyte infection in *in vivo* situations. Additionally, this *ex vivo* model offers the possibility of applying PDT to different fungal growth stages. The model was used to investigate the susceptibility of *T. rubrum* to PDT with the use of two photosensitizers, Sylsens B and DP mme.

To select the optimal formulation for an effective PDT of *T. rubrum*, an additional study was performed to unravel the molecular mechanisms involved in PDT efficacy of both porphyrins. Different physical and chemical aspects of Sylsens B and DP mme concerning their photodynamic action towards *T. rubrum* in different fungal growth stages were investigated in the *ex vivo* situation. This mechanistic study is described in chapter V.

As the currently available drugs do not affect the spores produced by *T rubrum*, in our *in vitro* and *ex vivo* studies, special attention was paid to the PDT effectiveness on the spores produced by *T. rubrum*. The use of PDT could offer an effective solution to this shortcoming of most available treatments.

Chapter VI describes a scanning electron microscopic (SEM) study of morphological changes caused by PDT of *T. rubrum* with the cationic porphyrin Sylsens B. In this study, we focused especially on the effect of a lethal PDT dose on fungal wall morphology and compared it with the effect of the photosensitizer in the dark or with the light dose alone. Disturbances in wall morphology in different fungal growth stages were correlated to the differences in PDT susceptibility, as described in chapter V.

In the past few years, there has been a great improvement in the development of new photosensitizers and their application for medical purposes. However, their safety for medical use is still a matter of investigation. Especially their mutagenic potential is an important issue. Many different test systems for the detection of photochemical genotoxicity have been reported, but most of them have certain limitations. For instance, the well-known and internationally accepted Ames test, although correctly adjusted for light sensitisation experiments, indicated that broad band white light (without added photosensitizer) induced mutagenicity. Another problem is the lack of a reliable positive control for the photomutagenicity test system.

An important qualification for a photomutagenicity test system is that it detects (within one system) the photogenotoxicity caused by either the production of short-lived products, like reactive oxygen species (ROS), or the production of stable photoproducts. The chapter VII of this thesis describes the results of our tests with a newly developed photomutagenicity test system.

For the clinical treatment of tinea it is neither necessary nor desirable for the applied photosensitizer to penetrate the skin. With respect to this important issue, we investigated (described in chapter VIII) the skin penetration of Sylsens B, the best candidate for the PDT of *T. rubrum*. The penetration studies were performed not only using healthy skin but also with stratum corneum disturbed by fungal growth or be pre-treatment with a detergent. Special attention was paid to the porphyrin formulation that displayed the best inhibitory effect on *T. rubrum* grown on human SC.

REFERENCES

regel 1

regel 2

regel 3

regel 4

regel 6

regel 7

regel 8 _

regel 9 _

regel 10 _

regel 11 ____

reael 12 ____

regel 13 _

regel 14

regel 15 ___

reael 16 ____

regel 17 ____

regel 18 ____

regel 19

regel 20 ____

regel 22 ____ regel 23 ____ regel 24 ____

regel 25 ____ regel 26 ____

regel 27 _____

regel 28 ____

regel 29 _____

regel 31 _

regel 32 _____

regel 33 ____

reael 34 ____

regel 35 _____ regel 36 _____ regel 37 _____ regel 38 _____ reael 39 _____

reael 21 _____

regel 5 _

Chapter 1

- Henderson, B. W. and T. J. Dougherty (1992) How does photodynamic therapy work? *Photochem. Photobiol.* 55, 145-157.
- Marcus, S. L. and W. R. McIntyre (2002) Photodynamic therapy systems and applications. *Expert. Opin. Emerg.* Drugs 7, 321-334.
- Kalka, K., H. Merk, and H. Mukhtar (2000) Photodynamic therapy in dermatology. J. Am. Acad. Dermatol. 42, 389-413.
- 4. Raab O. (1900) Ueber die Wirkung fluorescierender Stoffe. Z. Biol. 39, 524.
- Tappeiner H.v and A.Joddlbauer (1904) Ueber die Wirkung der photodynamischen(fluoriescierenden) Stoffe auf protozoan und Enzyme. Dtsch. Klin. Med. 80, 427-487.

6.	Tappeiner H.v and A.Jodlbauer (1907) Die sensibilisierende Wirkung fluorescierender substanzen. Gesammelte	regel 1
	Untersuchungen über die photodynamische Erscheinung. F.C.W.Vogel.	regel 2
7.	Jesionek A. and H.v Tappeiner (1905) Zur Behandlung der Hautcarcinome mit fluorescierenden Stoffen. Dtsch.	regel 3
	Arch. klin. Med. 85, 223-227.	regel 4
8.	Hausmann W. (1909) Über die giftige Wirkung des Hämatoporphyrins auf Warmblüter bei Belichtung. Wien. klir.	regel 5
	Wchschr. 22, 1820-1821.	regel 6
9.	Malik, Z. and H. Lugaci (1987) Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins.	regel 7
	Br. J. Cancer 56, 589-595.	regel 8
10.	Wolf, P. (2001) Photodynamic therapy in dermatology: state of the art. J. Eur. Acad. Dermatol. Venereol. 15, 508-	regel 9
	509.	regel 10
11.	Dougherty, T. J., J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle, and A. Mittleman (1978) Photoradiation	regel 11
	therapy for the treatment of malignant tumors. Cancer Res. 38, 2628-2635.	regel 12
12.	Dougherty, T. J., C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng (1998) Photodynamic	regel 13
	therapy. J. Natl. Cancer Inst. 90, 889-905.	regel 14
13.	McCaughan, J. S., Jr., J. T. Guy, W. Hicks, L. Laufman, T. A. Nims, and J. Walker (1989) Photodynamic therapy for	regel 15
	cutaneous and subcutaneous malignant neoplasms. Arch. Surg. 124, 211-216.	regel 16
14.	Lui, H. and R. R. Anderson (1993) Photodynamic therapy in dermatology: recent developments. Dermatol. Clin. 11,	regel 17
	1-13.	regel 18
15.	Bissonnette, R. and H. Lui (1997) Current status of photodynamic therapy in dermatology. Dermatol. Clin. 15, 507-	regel 19
	519.	regel 20
16.	Szeimies, R. M., P. Calzavara-Pinton, S. Karrer, B. Ortel, and M. Landthaler (1996) Topical photodynamic therapy in	regel 21
	dermatology. J. Photochem. Photobiol. B 36, 213-219.	regel 22
17.	Vicente, M. G. (2001) Porphyrin-based sensitizers in the detection and treatment of cancer: recent progress. Curr.	regel 23
	Med Chem. Anticancer Agents 1, 175-194.	regel 24
18.	Metz, J. M. and J. S. Friedberg (2001) Endobronchial photodynamic therapy for the treatment of lung cancer. Chest	regel 25
	Surg. Clin. N. Am. 11, 829-839.	regel 26
19.	Dougherty, T. J. (2002) An update on photodynamic therapy applications. J. Clin. Laser Med Surg. 20, 3-7.	regel 27
20.	Moan, J. and Q. Peng (2003) An outline of the hundred-year history of PDT. Anticancer Res. 23, 3591-3600.	regel 28
21.	Dubbelman, T. M. A. R. and J. J. Schuitmaker (1992) Photosensitizers. In Selected Topics in Photobiology. (Edited by	regel 29
	V.Jain and H.Goel), pp. 95-107. Indian Photobiology Society, New Dehli, India.	regel 30
22.	Calzavara-Pinton, P. G., R. M. Szeimies, B. Ortel, and C. Zane (1996) Photodynamic therapy with systemic	regel 31
	administration of photosensitizers in dermatology. J. Photochem Photobiol. B 36, 225-231.	regel 32
23.	Boehncke, W. H., T. Elshorst-Schmidt, and R. Kaufmann (2000) Systemic photodynamic therapy is a safe and	regel 33
	effective treatment for psoriasis. Arch. Dermatol. 136 , 271-272.	regel 34
24.	Taub, A. F. (2007) Photodynamic therapy: other uses. Dermatol. Clin. 25, 101-109.	regel 35
		regel 36
		regel 37
		regel 38

_____ regel 39

regel 1		25.	Propst, C. and L. Lubin (1978) In vitro and in vivo photosensitized inactivation of dermatophyte fungi by
regel 2	τ.		heterotricyclic dyes. Infect. Immun. 20, 136-141.
regel 3	pter	26.	Calzavara-Pinton, P. G., M. Venturini, R. Capezzera, R. Sala, and C. Zane (2004) Photodynamic therapy of interdigital
regel 4	Cha		mycoses of the feet with topical application of 5-aminolevulinic acid. Photodermatol. Photoimmunol. Photomed.
regel 5	26		20, 144-147.
regel 6		27.	Calzavara-Pinton, P. G., M. Venturini, and R. Sala (2005) A comprehensive overview of photodynamic therapy in the
regel 7			treatment of superficial fungal infections of the skin. J. Photochem. Photobiol. B 78, 1-6.
regel 8		28.	Kamp, H., H. J. Tietz, M. Lutz, H. Piazena, P. Sowyrda, J. Lademann, and U. Blume-Peytavi (2005) Antifungal effect of
regel 9			5-aminolevulinic acid PDT in Trichophyton rubrum. <i>Mycoses</i> 48, 101-107.
regel 10		29.	Calzavara-Pinton, P., M. Venturini, and R. Sala (2007) Photodynamic therapy: update 2006 Part 1: Photochemistry
regel 11			and photobiology. J. Eur. Acad. Dermatol. Venereol. 21, 293-302.
regel 12		30.	Donnelly, R. F., P. A. McCarron, M. M. Tunney, and W. A. David (2007) Potential of photodynamic therapy in treatment
regel 13			of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue
regel 14			O. J. Photochem. Photobiol. B 86, 59-69.
regel 15		31.	Planck M. (1901) Über das Gezetz der Ergieverteilung im Normalspectrum. Ann. Phys. 309, 535-563.
regel 16		32.	Lewis G.N. (1926) The conservation of photons. <i>Nature</i> 118, 975.
regel 17		33.	Gollnick K. (1968) type II photooxygenation reactions in solution. Adv. Photochem. 6, 1-122.
regel 18		34.	Ravindra, K., R. K. Pandey, and G. Zheng (2000) Porphyrins as Photosensitizers in Photodynamic Therapy. In The
regel 19			Porphyrin Handbook volume 6.(Edited by K. M. Kadish, K.Smith, and R.Guilard), pp. 157-161. Academic Press.
regel 20		35.	Lee, P. C. and M. A. Rodgers (1987) Laser flash photokinetic studies of rose bengal sensitized photodynamic
regel 21			interactions of nucleotides and DNA. Photochem. Photobiol. 45, 79-86.
regel 22		36.	Dougherty, T. J. (1986) Photosensitization of malignant tumors. Semin. Surg. Oncol. 2, 24-37.
regel 23		37.	Ricchelli, F. (1995) Photophysical properties of porphyrins in biological membranes. J. Photochem. Photobiol. B 29,
regel 24			109-118.
regel 25		38.	Carraro, C. and M. A. Pathak (1988) Studies on the nature of in vitro and in vivo photosensitization reactions by
regel 26			psoralens and porphyrins. J. Invest. Dermatol. 90, 267-275.
regel 27		39.	Moore, J. V., C. M. West, and C. Whitehurst (1997) The biology of photodynamic therapy. Phys. Med. Biol. 42, 913-
regel 28			935.
regel 29		40.	Hoebeke, M., H. J. Schuitmaker, L. E. Jannink, T. M. Dubbelman, A. Jakobs, and A.van der Vorst (1997) Electron
regel 30			spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the
regel 31			photohemolysis of human erythrocytes with bacteriochlorin a. Photochem. Photobiol. 66, 502-508.
regel 32		41.	Bonnet, R. and M. C. Berenbaum (1989) Porphyrins and photosensitizers. In Photosensitizing compounds: their
regel 33			chemistry, biology and clinical use. (Edited by G. Bock and S.Harnett), pp. 40-59. S. John Wiley and sons LTD,
regel 34			Chinester.
regel 35			
regel 36			
regel 37			
regel 38			

regel 36 💻 regel 37 🔔 regel 38 ____ reael 39 _____

42.	Kreimer-Birnbaum, M. (1989) Modified porphyrins, chlorins, phthalocyanines, and purpurins: second-generation	regel 1
	photosensitizers for photodynamic therapy. Semin. Hematol. 26, 157-173.	regel 2
43.	Brown, S. B. and T. G. Truscott (1993) New light on cancer therapy. Chem. Br. 955-958.	regel 3
44.	Ochsner, M. (1997) Photodynamic therapy: the clinical perspective. Review on applications for control of diverse	regel 4
	tumorous and non-tumorous diseases. Arzneimittelforschung. 47, 1185-1194.	regel 5
45.	Sternberg, E. D., D. Dolphin, and C. Brückner (1998) Porphyrin-based photosensitizers for use in photodynamic	regel 6
	therapy . <i>Tetrahedron</i> 54, 4151-4202.	regel 7
46.	Bonnet, R. (1999) Photodynamic therapy in historical perspective. Contemp. Pharmacother. 10, 1-17.	regel 8
47.	Ricchelli, F., S. Gobbo, G. Jori, G. Moreno, F. Vinzens, and C. Salet (1993) Photosensitization of mitochondria by	regel 9
	liposome-bound porphyrins. Photochem. Photobiol. 58, 53-58.	regel 10
48.	Lipson, R. L. and E. J. Baldes (1960) The photodynamic properties of a particular hematoporphyrin derivative. Arch.	regel 11
	Dermatol. 82, 508-516.	regel 12
49.	Gomer, C. J. and T. J. Dougherty (1979) Determination of [3H]- and [14C]hematoporphyrin derivative distribution	regel 13
	in malignant and normal tissue. Cancer Res. 39, 146-151.	regel 14
50.	Dougherty, T. J. (1980) Hematoporphyrin derivative for detection and treatment of cancer. J. Surg. Oncol. 15, 209-	regel 15
	210.	regel 16
51.	Dougherty, T. J. (1981) Photoradiation therapy for cutaneous and subcutaneous malignancies. J. Invest. Dermatol.	regel 17
	77, 122-124.	regel 18
52.	Meyer-Betz, F. (1913) Investigations on the biological (photodynamic) action of heamatoporphyrin and other	regel 19
	derivatives of the blood and bile pigments. Deutsch Arch. Klin. Med. 112, 476-503.	regel 20
53.	Policard A. (1924) Studies of experimental tumours under Wood's light. Comp. Rend. Soc. Biol. 91, 1423-1428.	regel 21
54.	Auler, H. and G. Banzer (1942) Investigations on the rule of porphyrins in tumour-bearing humans and animals. Z.	regel 22
	Krebsforsch. 53, 65-68.	regel 23
55.	Milgrom, L. and S. MacRobert (1998) Light years ahead. Chem. Br. 34, 45-50.	regel 24
56.	Dougherty, T. J., G. B. Grindey, R. Fiel, K. R. Weishaupt, and D. G. Boyle (1975) Photoradiation therapy. II. Cure of	regel 25
	animal tumors with hematoporphyrin and light. J. Natl. Cancer Inst. 55, 115-121.	regel 26
57.	Dougherty, T. J. (1993) Photodynamic therapy. Photochem. Photobiol. 58, 895-900.	regel 27
58.	Axcan (2005) Photofrin. http://www. axcan. com.	regel 28
59.	Cowled, P. A. and I. J. Forbes (1985) Photocytotoxicity in vivo of haematoporphyrin derivative components. Cancer	regel 29
	<i>Lett.</i> 28, 111-118.	regel 30
60.	Byrne, C. J., L. V. Marshallsay, and A. D. Ward (1990) The composition of Photofrin II. J. Photochem. Photobiol. B 6,	regel 31
	13-27.	regel 32
61.	Mironov, A. F., A. N. Nizhnik, and A. Y. Nockel (1990) Hematoporphyrin derivatives: an oligomeric composition	regel 33
	study. J. Photochem. Photobiol. B 4, 297-306.	regel 34
		regel 35
		regel 36
		regel 37
		regel 38
		regel 39

regel 1		62.	Moger, G., T. Szito, M. Gyor, A. Darmanyan, G. Irinyi, and D. Gal (1991) Solvents effects in the photodegradation and
regel 2	, i		reactivity of the various ionic forms of haematoporphyrin. J. Photochem. Photobiol. B 10 , 147-158.
regel 3	apter	63.	Sternberg, E. D. and D. Dolphin (1993) Second generation photodynamic agents: a review. J. Clin. Laser. Med. Surg.
regel 4	Cha		11, 233-241.
regel 5	28	64.	Nyman, E. S. and P. H. Hynninen (2004) Research advances in the use of tetrapyrrolic photosensitizers for
regel 6			photodynamic therapy. J. Photochem. Photobiol. B 73, 1-28.
regel 7		65.	Kimel, S., B. J. Tromberg, W. G. Roberts, and M. W. Berns (1989) Singlet oxygen generation of porphyrins, chlorins,
regel 8			and phthalocyanines. Photochem. Photobiol. 50, 175-183.
regel 9		66.	Pushpan, S. K., S. Venkatraman, V. G. Anand, J. Sankar, D. Parmeswaran, S. Ganesan, and T. K. Chandrashekar (2002)
regel 10			Porphyrins in photodynamic therapy - a search for ideal photosensitizers. Curr. Med. Chem. Anticancer Agents 2,
regel 11			187-207.
regel 12		67.	Peng, Q., K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland (1997) 5-Aminolevulinic acid-based photodynamic
regel 13			therapy: principles and experimental research. Photochem. Photobiol. 65, 235-251.
regel 14		68.	Webber, J., D. Kessel, and D. Fromm (1997) Side effects and photosensitization of human tissues after aminolevulinic
regel 15			acid. J. Surg. Res. 68, 31-37.
regel 16		69.	Kennedy, J. C. and R. H. Pottier (1992) Endogenous protoporphyrin IX, a clinically useful photosensitizer for
regel 17			photodynamic therapy. J. Photochem. Photobiol. B 14, 275-292.
regel 18		70.	Taylor, E. L. and S. B. Brown (2002) The advantages of aminolevulinic acid photodynamic therapy in dermatology. J.
regel 19			Dermatolog. Treat. 13 Suppl 1, S3-11.
regel 20		71.	Friesen, S. A., G. O. Hjortland, S. J. Madsen, H. Hirschberg, O. Engebraten, J. M. Nesland, and Q. Peng (2002) 5-
regel 21			Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review). Int. J. Oncol. 21, 577-
regel 22			582.
regel 23		72.	Uzdensky, A., E. Kolpakova, A. Juzeniene, P. Juzenas, and J. Moan (2005) The effect of sub-lethal ALA-PDT on the
regel 24			cytoskeleton and adhesion of cultured human cancer cells. Biochim. Biophys. Acta 1722, 43-50.
regel 25		73.	Ackroyd, R., C. Kelty, N. Brown, and M. Reed (2001) The history of photodetection and photodynamic therapy.
regel 26			Photochem. Photobiol. 74, 656-669.
regel 27		74.	Galderma (2007) Metvix. http://www. Galderma. com.
regel 28		75.	Pandey, R. K. and T. J. Dougherty (1989) Syntheses and photosensitizing activity of porphyrins joined with ester
regel 29			linkages. <i>Cancer Res.</i> 49, 2042-2047.
regel 30		76.	Kessel, D., T. J. Dougherty, and C. K. Chang (1991) Photosensitization by synthetic diporphyrins and dichlorins in
regel 31			vivo and in vitro. <i>Photochem. Photobiol.</i> 53, 475-479.
regel 32		77.	Spesia, M. B., D. Lazzeri, L. Pascual, M. Rovera, and E. N. Durantini (2005) Photoinactivation of Escherichia coli using
regel 33			porphyrin derivatives with different number of cationic charges. FEMS Immunol. Med. Microbiol. 44, 289-295.
regel 34		78.	Yan, F., Z. Tao, T. Jia, B. Xiao, H. Chi, and S. Chen (2005) [The photodynamic therapy effect of a new cationic porphyrin
regel 35			on human laryngeal cancer Hep-2 cell in vitro]. <i>Lin. Chuang. Er. Bi Yan. Hou Ke. Za Zhi.</i> 19, 399-402.
regel 36			
regel 37			
regel 38			
reael 39			

79.	Banfi, S., E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri, and V. Orlandi (2006) Antibacterial activity of	regel 1
	tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria. J. Photochem.	regel 2
	Photobiol. B 85, 28-38.	regel 3
80.	Engelmann, F. M., S. V. Rocha, H. E. Toma, K. Araki, and M. S. Baptista (2007) Determination of n-octanol/water	regel 4
	partition and membrane binding of cationic porphyrins. Int. J. Pharm. 329, 12-18.	regel 5
81.	Engelmann, F. M., I. Mayer, D. S. Gabrielli, H. E. Toma, A. J. Kowaltowski, K. Araki, and M. S. Baptista (2007) Interaction	regel 6
	of cationic meso-porphyrins with liposomes, mitochondria and erythrocytes. J. Bioenerg. Biomembr. 39 , 175-185.	regel 7
82.	Lambrechts, S. A., M. C. Aalders, D. H. Langeveld-Klerks, Y. Khayali, and J. W. Lagerberg (2004) Effect of monovalent	regel 8
	and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins. Photochem.	regel 9
	Photobiol. 79, 297-302.	regel 10
83.	Lambrechts, S. A., K. R. Schwartz, M. C. Aalders, and J. B. Dankert (2005) Photodynamic inactivation of fibroblasts	regel 11
	by a cationic porphyrin. <i>Lasers Med. Sci.</i> 20, 62-67.	regel 12
84.	Lambrechts, S. A., M. C. Aalders, and J. Van Marle (2005) Mechanistic study of the photodynamic inactivation of	regel 13
	Candida albicans by a cationic porphyrin. Antimicrob. Agents Chemother. 49, 2026-2034.	regel 14
85.	Lambrechts, S. A., M. C. Aalders, F. D. Verbraak, J. W. Lagerberg, J. B. Dankert, and J. J. Schuitmaker (2005) Effect of	regel 15
	albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin. J. Photochem. Photobiol. B	regel 16
	79, 51-57.	regel 17
86.	Ricchelli, F., L. Franchi, G. Miotto, L. Borsetto, S. Gobbo, P. Nikolov, J. C. Bommer, and E. Reddi (2005) Meso-substituted	regel 18
	tetra-cationic porphyrins photosensitize the death of human fibrosarcoma cells via lysosomal targeting. Int. J.	regel 19
	Biochem. Cell. Biol. 37, 306-319.	regel 20
87.	Nitzan, Y., H. M. Wexler, and S. M. Finegold (1994) Inactivation of anaerobic bacteria by various photosensitized	regel 21
	porphyrins or by hemin. <i>Curr. Microbiol.</i> 29, 125-131.	regel 22
88.	Merchat, M., G. Bertolini, P. Giacomini, A. Villanueva, and G. Jori (1996) Meso-substituted cationic porphyrins as	regel 23
	efficient photosensitizers of gram-positive and gram-negative bacteria. J. Photochem. Photobiol. B 32, 153-157.	regel 24
89.	Merchat, M., J. D. Spikes, G. Bertoloni, and G. Jori (1996) Studies on the mechanism of bacteria photosensitization	regel 25
	by meso-substituted cationic porphyrins. J. Photochem. Photobiol. B 35, 149-157.	regel 26
90.	Demidova, T. N. and M. R. Hamblin (2004) Photodynamic therapy targeted to pathogens. Int. J. Immunopathol.	regel 27
	Pharmacol. 17, 245-254.	regel 28
91.	Hamblin, M. R. and T. Hasan (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease?	regel 29
	Photochem. Photobiol. Sci. 3, 436-450.	regel 30
92.	Hart, C. A. and S. Kariuki (1998) Antimicrobial resistance in developing countries. BMJ 317, 647-650.	regel 31
93.	Wise, R., T. Hart, O. Cars, M. Streulens, R. Helmuth, P. Huovinen, and M. Sprenger (1998) Antimicrobial resistance. Is	regel 32
	a major threat to public health. BMJ 317, 609-610.	regel 33
94.	Zeina, B., J. Greenman, W. M. Purcell, and B. Das (2001) Killing of cutaneous microbial species by photodynamic	regel 34
	therapy. Br. J. Dermatol. 144, 274-278.	regel 35
		regel 36
		regel 37
		regel 38
		regel 39

regel 1		95.	Trilla, A. and J. M. Miro (1995) Identifying high risk patients for Staphylococcus aureus infections: skin and soft
regel 2	⊢		tissue infections. J. Chemother. 7 Suppl 3, 37-43.
regel 3	Ipter	96.	Noble, W. C. (1998) Skin bacteriology and the role of Staphylococcus aureus in infection. Br. J. Dermatol. 139 Suppl
regel 4	Cha		53, 9-12.
regel 5	30	97.	Abeck, D. and M. Mempel (1998) Staphylococcus aureus colonization in atopic dermatitis and its therapeutic
regel 6			implications. Br. J. Dermatol. 139 Suppl 53, 13-16.
regel 7		98.	Maisch, T., R. M. Szeimies, G. Jori, and C. Abels (2004) Antibacterial photodynamic therapy in dermatology.
regel 8			Photochem Photobiol. Sci. 3, 907-917.
regel 9		99.	Fritsche, T. R., H. S. Sader, and R. N. Jones (2007) Potency and spectrum of garenoxacin tested against an international
regel 10			$collection \ of \ skin \ and \ soft \ tissue \ infection \ pathogens: report \ from \ the \ SENTRY \ antimic robial \ surveillance \ program$
regel 11			(1999-2004). Diagn. Microbiol. Infect. Dis. 58, 19-26.
regel 12		100.	Boyce, J. M. (1995) Strategies for controlling methicillin-resistant Staphylococcus aureus in hospitals. J. Chemother.
regel 13			7 Suppl 3, 81-85.
regel 14		101.	Zeina, B., J. Greenman, D. Corry, and W. M. Purcell (2002) Cytotoxic effects of antimicrobial photodynamic therapy
regel 15			on keratinocytes in vitro. Br. J. Dermatol. 146, 568-573.
regel 16		102.	Bertoloni, G., F. Zambotto, L. Conventi, E. Reddi, and G. Jori (1987) Role of specific cellular targets in the
regel 17			hematoporphyrin-sensitized photoinactivation of microbial cells. Photochem. Photobiol. 46, 695-698.
regel 18		103.	Lambrechts, S. A., T. N. Demidova, M. C. Aalders, T. Hasan, and M. R. Hamblin (2005) Photodynamic therapy for
regel 19			Staphylococcus aureus infected burn wounds in mice. Photochem. Photobiol. Sci. 4, 503-509.
regel 20		104.	Jori, G., C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci (2006) Photodynamic
regel 21			therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med.
regel 22			38 , 468-481.
regel 23		105.	Tegos, G. P., M. Anbe, C. Yang, T. N. Demidova, M. Satti, P. Mroz, S. Janjua, F. Gad, and M. R. Hamblin (2006) Protease-
regel 24			stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum
regel 25			antimicrobial photoinactivation. Antimicrob. Agents Chemother. 50, 1402-1410.
regel 26		106.	Taplin, D. (1976) Superficial mycoses. J. Invest Dermatol. 67, 177-181.
regel 27		107.	Hay, R. J. (1982) Chronic dermatophyte infections. I. Clinical and mycological features. Br. J. Dermatol. 106, 1-7.
regel 28		108.	Elewski, B. E. and P. G. Hazen (1989) The superficial mycoses and the dermatophytes. J. Am. Acad. Dermatol. 21,
regel 29			655-673.
regel 30		109.	Wagner, D. K. and P. G. Sohnle (1995) Cutaneous defenses against dermatophytes and yeasts. Clin. Microbiol. Rev.
regel 31			8 , 317-335.
regel 32		110.	Hainer, B. L. (2003) Dermatophyte infections. Am. Fam. Physician 67, 101-108.
regel 33		111.	Borgers, M., H. Degreef, and G. Cauwenbergh (2005) Fungal infections of the skin: infection process and antimycotic
regel 34			therapy. Curr. Drug Targets. 6, 849-862.
regel 35		112.	Haley, L. D. and M. Stonerod (1954) The isolation and identification of dermatophytes. Am. J. Med Technol. 20, 27-
regel 36			34.
regel 37			
regel 38			
reael 39			

113.	Weitzman, I. and R. C. Summerbell (1995) The dermatophytes. Clin. Microbiol. Rev. 8, 240-259.	regel 1
114.	Duek, L., G. Kaufman, Y. Ulman, and I. Berdicevsky (2004) The pathogenesis of dermatophyte infections in human	regel 2
	skin sections. J. Infect. 48, 175-180.	regel 3
115.	Graser, Y., S. De Hoog, and R. C. Summerbell (2006) Dermatophytes: recognizing species of clonal fungi. Med.	regel 4
	Mycol. 44, 199-209.	regel 5
116.	Gupta, A. K., T. R. Einarson, R. C. Summerbell, and N. H. Shear (1998) An overview of topical antifungal therapy in	regel 6
	dermatomycoses. A North American perspective. Drugs 55, 645-674.	regel 7
117.	Evans, E. G. (2001) The rationale for combination therapy. Br. J. Dermatol. 145 Suppl 60, 9-13.	regel 8
118.	Vera, J. R. and L. A. Cervera (2001) Advantages and disadvantages of topical antifungal agents. Rev. Esp. Quimioter.	regel 9
	14, 232-237.	regel 10
119.	Kyle, A. A. and M. V. Dahl (2004) Topical therapy for fungal infections. Am. J. Clin. Dermatol. 5, 443-451.	regel 11
120.	Paardekooper, M., A. W. De Bruijne, J. Van Steveninck, and P. J. Van den Broek (1993) Inhibition of transport systems	regel 12
	in yeast by photodynamic treatment with toluidine blue. Biochim. Biophys. Acta 1151, 143-148.	regel 13
121.	Zeina, B., J. Greenman, D. Corry, and W. M. Purcell (2003) Antimicrobial photodynamic therapy: assessment of	regel 14
	genotoxic effects on keratinocytes in vitro. Br. J. Dermatol. 148, 229-232.	regel 15
122.	Romagnoli, C., D. Mares, G. Sacchetti, and A. Bruni (1998) The photodynamic effect of 5-(4-hydroxy-1-butinyl)-2,2-	regel 16
	bithienyl on dermatophytes. Mycol. Res. 102, 1519-1524.	regel 17
123.	Deacon J.W. (2006) The moulds of man. In Fungal Biology. pp. 322-337. Blackwall Publishing Ltd., Oxford.	regel 18
124.	Emmons C.W. (1934) Dermatophytes: natural groupings based on the form of the spores and accessory organs.	regel 19
	Arch. Dermatol. Syphilol. 30, 337-362.	regel 20
125.	Raubitschek, F. (1961) Mechanical versus chemical keratolysis by dermatophytes. Sabouraudia. 1, 87-90.	regel 21
126.	Baeza, L. C., A. M. Bailao, C. L. Borges, M. Pereira, C. M. Soares, and M. J. Mendes Giannini (2007) cDNA representational	regel 22
	difference analysis used in the identification of genes expressed by Trichophyton rubrum during contact with	regel 23
	keratin. Microbes. Infect. 9, 1415-1421.	regel 24
127.	Stockdale, P. M. (1953) Requirements for the growth and sporulation of Trichophyton persicolor. J. Gen. Microbiol.	regel 25
	8 , 434-441.	regel 26
128.	Sinski, J. T., T. M. Moore, and L. M. Kelly (1980) Effect of moderately elevated temperatures on dermatophyte	regel 27
	survival in clinical and laboratory-infected specimens. Mycopathologia 71, 31-35.	regel 28
129.	Shimmura Y. (1985) Isolation of dermatophytes from human cases of dermatophytosis and from house dust. J.	regel 29
	Med. Mycol. 26, 74-80.	regel 30
130.	Rippon, J. W. (1988) The pathogenic fungi and the pathogenic actinomycetes. In Medical Mycology. (Edited by	regel 31
	W.B.Saunders), Philadelphia.	regel 32
131.	Aljabre, S. H., M. D. Richardson, E. M. Scott, A. Rashid, and G. S. Shankland (1993) Adherence of arthroconidia and	regel 33
	germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an	regel 34
	early event in the pathogenesis of dermatophytosis. Clin. Exp. Dermatol. 18, 231-235.	regel 35
		regel 36
		regel 37

regel 1		132.	Rashid, A., E. Scott, and M. D. Richardson (1995) Early events in the invasion of the human nail plate by Trichophyton
regel 2	T-		mentagrophytes. Br. J. Dermatol. 133, 932-940.
regel 3	pter	133.	Rashid, A., M. B. Hodgins, and M. D. Richardson (1996) An in vitro model of dermatophyte invasion of the human
regel 4	Cha		hair follicle. J. Med. Vet. Mycol. 34, 37-42.
regel 5	32	134.	Hay, R. J. (2006) How do dermatophytes survive in the epidermis? <i>Curr. Opin. Infect. Dis.</i> 19, 125-126.
regel 6		135.	Aly, R. (1994) Ecology and epidemiology of dermatophyte infections. J. Am. Acad. Dermatol. 31, S21-S25.
regel 7		136.	Djeridane, A., Y. Djeridane, and A. Ammar-Khodja (2006) Epidemiological and aetiological study on tinea pedis and
regel 8			onychomycosis in Algeria. <i>Mycoses</i> 49, 190-196.
regel 9		137.	Santos, D. A. and J. S. Hamdan (2006) In vitro antifungal oral drug and drug-combination activity against
regel 10			onychomycosis causative dermatophytes. Med. Mycol. 44, 357-362.
regel 11		138.	Hay, R. J. (1993) Therapy. In Fungi and Skin disease. pp. 67-82. Wolfe Publishing.
regel 12		139.	Aratari, E., G. Virno, and A. Persi (1983) [Cyclopiroxolamine (HOE 296), new antimycotic substance, in superficial
regel 13			mycosis]. G. Ital. Dermatol. Venereol. 118, I-VI.
regel 14		140.	Bang H. (1910) Sur une trichophytie cutanée à grands cercles, causée par un dermatophyte nouveau (Trichophyton
regel 15			purpureum Bang). Ann. derm. syph. 1, 225-238.
regel 16		141.	English, M. P. (1957) Trichophyton rubrum infection in families. Br. Med J. 1, 744-746.
regel 17		142.	Moreno-Gimenez, J. C. (1991) Infections by Trichophyton rubrum. J. Am. Acad. Dermatol. 24, 323-324.
regel 18		143.	Rippon, J. W. (1985) The changing epidemiology and emerging patterns of dermatophyte species. Curr. Top. Med.
regel 19			<i>Mycol.</i> 1, 208-234.
regel 20		144.	Odom, R. (1993) Pathophysiology of dermatophyte infections. J. Am. Acad. Dermatol. 28, S2-S7.
regel 21		145.	Kuijpers, A. F. and C. S. Tan (1996) [Fungi and yeasts isolated in mycological studies in skin and nail infections in The
regel 22			Netherlands, 1992-1993]. Ned. Tijdschr. Geneeskd. 140, 1022-1025.
regel 23		146.	Ploysangam, T. and A. W. Lucky (1997) Childhood white superficial onychomycosis caused by Trichophyton rubrum:
regel 24			report of seven cases and review of the literature. J. Am. Acad. Dermatol. 36, 29-32.
regel 25		147.	Baran, R. and A. Kaoukhov (2005) Topical antifungal drugs for the treatment of onychomycosis: an overview of
regel 26			current strategies for monotherapy and combination therapy. J. Eur. Acad. Dermatol. Venereol. 19, 21-29.
regel 27		148.	Effendy, I., M. Lecha, d. C. Feuilhade, N. Di Chiacchio, and R. Baran (2005) Epidemiology and clinical classification of
regel 28			onychomycosis. J. Eur. Acad. Dermatol. Venereol. 19 Suppl 1, 8-12.
regel 29		149.	Dahl, M. V. (1993) Suppression of immunity and inflammation by products produced by dermatophytes. J. Am.
regel 30			Acad. Dermatol. 28, S19-S23.
regel 31		150.	Dahl, M. V. and S. A. Grando (1994) Chronic dermatophytosis: what is special about Trichophyton rubrum? Adv.
regel 32			Dermatol. 9, 97-109.
regel 33		151.	Ludwig, R. J., J. A. Woodfolk, M. Grundmann-Kollmann, R. Enzensberger, U. Runne, T. A. Platts-Mills, R. Kaufmann,
regel 34			and T. M. Zollner (2001) Chronic dermatophytosis in lamellar ichthyosis: relevance of a T-helper 2-type immune
regel 35			response to Trichophyton rubrum. Br. J. Dermatol. 145, 518-521.
regel 36			
regel 37			
regel 38			
reael 39			

152.	Omero, C., Y. Dror, and A. Freeman (2004) Trichoderma spp. antagonism to the dermatophyte Trichophyton	regel 1
	rubrum: implications in treatment of onychomycosis. Mycopathologia 158 , 173-180.	regel 2
153.	Hay, R. J. and M. K. Moore (2006) Mycology. In Textbook of Dermatology IV.(Edited by D.A.Burns, .M.Breathnach,	regel 3
	N.Cox, and C.Griffiths), p. 31.44-31.48. Blackwall Publishing Ltd.	regel 4
154.	Hashimoto T. (1993) Infectious propagules of dermatophytes. In The fungal spore and disease initiation in Plants	regel 5
	and animals.(Edited by G. T. Cole and & H.C.Hoch), pp. 181-200. Plenum Publishing Corporation, New York.	regel 6
155.	Mares, D., C. Romagnoli, G. Sacchetti, C. B. Vicentini, and A. Bruni (1998) Morphological study of Trichophyton	regel 7
	rubrum: ultrastructural findings after treatment with 4-amino-3-methyl-1-phenylpyrazolo-(3,4-c)isothiazole.	regel 8
	Med. Mycol. 36, 379-385.	regel 9
156.	Yazdanparast, S. A. and R. C. Barton (2006) Arthroconidia production in Trichophyton rubrum and a new ex vivo	regel 10
	model of onychomycosis. J. Med. Microbiol. 55, 1577-1581.	regel 11
157.	Epstein S and S.Grunmandel (1930) Untersuchengen uben die spontane Abheilung von oserflachlein Trichophytien.	regel 12
	Archives of Dermatology 161, 395-428.	regel 13
158.	Blake, J. S., M. V. Dahl, M. J. Herron, and R. D. Nelson (1991) An immunoinhibitory cell wall glycoprotein (mannan)	regel 14
	from Trichophyton rubrum. J. Invest. Dermatol. 96, 657-661.	regel 15
159.	Ikuta, K., N. Shibata, J. S. Blake, M. V. Dahl, R. D. Nelson, K. Hisamichi, H. Kobayashi, S. Suzuki, and Y. Okawa (1997)	regel 16
	NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum. Biochem. J. 323 (regel 17
	Pt 1), 297-305.	regel 18
160.	Shah, V. K. and S. G. Knight (1968) Chemical composition of hyphal walls of dermatophytes. Arch. Biochem. Biophys.	regel 19
	127, 229-234.	regel 20
161.	Borgers, M. (1980) Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives.	regel 21
	Rev. Infect. Dis. 2, 520-534.	regel 22
162.	San Blas, G. (1982) The cell wall of fungal human pathogens: its possible role in host-parasite relationships.	regel 23
	Mycopathologia 79, 159-184.	regel 24
163.	Saferstein, H. L., A. A. Strachan, F. Blank, and C. T. Bishop (1968) Trichophytin activity and polysaccharides.	regel 25
	Dermatologica 136, 151-154.	regel 26
164.	Grappel, S. F., C. T. Bishop, and F. Blank (1974) Immunology of dermatophytes and dermatophytosis. Bacteriol. Rev.	regel 27
	38, 222-250.	regel 28
165.	Kitajma, Y. (2000) [Structural and biochemical characteristics of pathogenic fungus: cell walls, lipids and	regel 29
	dimorphism, and action modes of antifungal agents]. Nippon Ishinkin. Gakkai Zasshi 41, 211-217.	regel 30
166.	Wu-Yuan, C. D. and T. Hashimoto (1977) Architecture and chemistry of microconidial walls of Trichophyton	regel 31
	mentagrophytes. J. Bacteriol. 129, 1584-1592.	regel 32
		regel 33
		regel 34
		regel 35
		regel 36
		regel 37
		regel 38
		regel 39
		. —

