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CHAPTER 5

Testing against a high-dimensional
alternative

Abstract

As the dimensionality of the alternative increases, the power of classical tests
tends to diminish quite rapidly. This is especially true for high-dimensional
data in which there are more parameters than observations. In this paper we
discuss a score test on a hyperparameter in an empirical Bayesian model as an
alternative to classical tests. It gives a general test statistic which can be used to
test a point null hypothesis against a high-dimensional alternative, even when
the number of parameters exceeds the number of samples. This test will be
shown to have optimal power on average in a neighbourhood of the null, which
makes it a proper generalization of the locally most powerful test to multiple
dimensions. To illustrate this new locally most powerful test we investigate
the case of testing the global null hypothesis in a linear regression model in
more detail. The score test is shown to have significantly more power than the
F-test whenever under the alternative the large-variance principal components
of the design matrix explain substantially more of the variance of the outcome
than the low-variance principal components. The score test is also useful for
detecting sparse alternatives in truly high-dimensional data, where its power is
comparable to the test based on the maximum absolute t-statistic.

5.1 Introduction

In a linear regression model one traditionally uses the F-test to test the global
null hypothesis that all regression coefficients are zero. However, it is well
known that the F-test has low power when the number of covariates in the
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Chapter 5. Testing against a high-dimensional alternative

model is close to the number of samples. The F-test even breaks down com-
pletely when the number of covariates exceeds the number of samples. Similar
behaviour is known for the likelihood ratio test in generalized linear models.
In general, classical tests tend to perform badly when used against high dimen-
sional alternatives.

This paper explores testing of a simple null hypothesis against a high-
dimensional alternative. We shall formulate a simple test which can be used
in high-dimensional models regardless of the number of parameters. This test
is constructed as a locally most powerful test (score test) on the hyperparame-
ter in an empirical Bayesian model. The same type of test has been introduced
for specific models in the context of microarray gene expression data, where
it is used to generalize a test for association between a clinical variable and a
single gene to a test for association between a clinical variable and a group of
genes. Goeman et al. (2004) have applied this methodology in generalized lin-
ear models with a canonical link function and Goeman et al. (2005) in the Cox
proportional hazards model. For examples of real data applications we refer to
these papers.

In the present paper we explore the general power properties of this type
of test in more detail, adopting a purely frequentist point of view. The test
will be shown to have optimal average power in a neighbourhood of the null
hypothesis, a property which follows as a corollary to the Neyman-Pearson
lemma. This property makes the test a natural generalization of the locally
most powerful test to higher dimensions, and motivates us to refer this high-
dimensional version of the locally most powerful test simply as the locally most
powerful test.

We shall also look more closely into the relatively simple case of a high-
dimensional alternative in a linear model. In this model there are few distract-
ing details and many quantities can be explicitly calculated. We investigate the
regions of the parameter space where the empirical Bayes score test has most
and least power and situations where we may expect good power.

In the linear model it is also relatively easy to investigate links with other
tests, most notably the F-test. It turns out that the F-test can be formulated
as an empirical Bayesian score test with a different prior distribution, a fact
which gives insight into the power properties of the F-test. We also investigate
relationships between our empirical Bayes procedure with principal compo-
nents tests and with a typical multiple testing procedure from microarray data
analysis which uses the maximum of all absolute univariate T-statistics as a test
statistic for the global null. All these comparisons will be illustrated with sim-
ulations based on real microarray data (taken from Van de Vijver et al., 2002).
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Chapter 5. Testing against a high-dimensional alternative

5.2 Empirical Bayes testing

Suppose we have observations y (typically an n-vector), the distribution of
which is assumed to depend on a p-vector of parameters β. In this model we
want to test

H0 : β = 0

against HA : β 6= 0. There may also be some nuisance parameters, but we
assume them known for the moment.

If the dimension p of the alternative is large, the alternatives can range over
a huge space and HA typically allows many widely different distributions of
y. Some of the alternatives may even induce the same distribution of y as H0,
especially if p > n. In a generalized linear model, for example, the distribution
of y depends on β only through Xβ, where X is an n× p design matrix. If p > n,
there are many alternatives which have β 6= 0 but Xβ = 0. These alternatives
give rise to the same distribution of y as the null hypothesis, which means we
can never hope to have any power against these alternatives. This is typical for
high-dimensional alternatives: a minimax type approach which tries to have
power against all alternatives is bound to fail.

Therefore it seems a sensible approach to focus the power of the test on
what we choose to be the most interesting alternatives. This can be done in
a Bayesian fashion by assigning the vector β a distribution. This distribution
should give most probability mass to the alternatives which are perceived as
more likely (as in a prior distribution) or simply as more ‘interesting’ to detect.

What this distribution should be depends very much on the model and the
purpose of the test. However, a good choice for such a distribution is usually
one that is ‘unbiased’, i.e. it is symmetric around the null hypothesis and there-
fore has E(β) = 0. This is sensible, because we are usually equally interested in
detecting the alternative that β = β0 as in detecting β = −β0 for every β0. The
covariance matrix of β may then be chosen in general as E(ββ′) = τ2Σ for some
well-chosen positive (semi-)definite p× p matrix Σ. The choice Σ = I deserves
special attention, because it follows from an exchangeability assumption: the
density of all permutations of the vector β is equal (Bernardo and Smith, 1994,
p. 180). Under this exchangeable assumption one is not prejudiced as to which
elements of β are expected to be large or which elements of β are expected to
be similar. This assumption is useful when there is no structure or ordering in
the parameters that can be readily exploited and when the typical range of the
parameter values is similar.

One can complete the specification of the distribution of β by choosing a
value τ2

0 for τ2 and a distributional shape. In the generalized linear model set-
ting, taking the maximum likelihood estimate of β will then result in one of
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many familiar penalized regression methods, depending on the choice of the
distribution of β. Choosing β to have i.i.d. normal entries results in a (gener-
alized) ridge regression (Hoerl and Kennard, 1970). Choosing the regression
coefficients β i.i.d. double exponential results in the LASSO method (Tibshi-
rani, 1996). These methods are frequently used in estimation and prediction
problems in high-dimensional regression models.

We can also use the chosen distribution of β as a tool to rephrase our testing
problem, rewriting it in terms of the marginal distribution of y. Let f (β; y) be
the likelihood of β for given y. The marginal density of y is

f̄ (τ2; y) = Eβ|τ2 [ f (β; y)],

which can be interpreted as the likelihood of τ2 in a new marginal model of
y. In this new model, rejecting the new null hypothesis H̄0 : τ2 = 0 implies
rejecting the old H0 : β = 0, as the two imply the same distribution of y.

The testing procedure based on testing H̄0 : τ2 = 0 against H̄A : τ2 = τ2
1 can

be called “empirical Bayes testing”, because we have put a prior on the para-
meter vector β of the model, which depends on an unknown hyperparameter
τ2, and our inference on β proceeds through inference on τ2. On the other hand
it can also simply be called “Bayesian testing”, because once the shape of the
distribution and the value of τ2

1 are chosen, the model HA is fully Bayesian.
One important use of testing H̄0 in the marginal model of y lies in Lemma

1, a corollary to the Neyman-Pearson Lemma. It says that if we take a specific
distribution of β and construct a likelihood ratio test in the marginal model,
the resulting test has optimal power on average over the chosen distribution of
alternatives.

Lemma 1 (Empirical Bayes version of Neyman-Pearson) Let A1 be the critical
region of a likelihood ratio test of H̄0 : τ2 = 0 against H̄A : τ2 = τ2

1 in the marginal
model f̄ , with associated power function w̄τ2

1
(β) = Py|β[A1]; and let A be the critical

region of any test of H0 : β = 0, with power function w(β) = Py|β[A]. Then

w(0) ≤ wτ2
1
(0)

implies
Eβ|τ2

1
[w(β)] ≤ Eβ|τ2

1
[wτ2

1
(β)].

This is a well-known result. The proof is immediate from the Neyman-
Pearson Lemma when it is observed that Eβ|τ2

1
[w(β)] = Eβ|τ2

1
{Py|β[A]} =

Py|τ2
1
[A].

The result of Lemma 1 could immediately be used in practice if we were
willing to completely specify the distribution of β, or at least to specify the
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shape of the distribution up to a number of parameters which can be estimated.
In most cases, however, we should be reluctant to do this, for two reasons.
In the first place, the marginal likelihood is a complicated p-dimensional in-
tegral, which often makes it difficult to estimate hyperparameters and usually
almost impossible to find the distribution of the test statistic, except in very
special cases. Secondly, specifying the distributional shape of β means speci-
fying whether the interesting alternatives have a β with a few large entries or
many small ones. This is a kind of judgement which is typically very difficult
to make in high-dimensional data. In a high-dimensional regression model, for
example, it is usually not known whether there are few large or many small
regression coefficients. A wrong choice of the distribution of β could mean low
power. How can we avoid specifying the distributional shape of β?

5.3 The locally most powerful test

It turns out that we can design a test for H̄0 in the marginal model which man-
ages to avoid full specification of the distribution of β and avoids evaluation of
the complicated marginal likelihood as well. This can be done by constructing
the test as a score test.

The traditional score test is a one-sided test of H∗
0 : θ = θ0 against H∗

A :
θ > θ0 in a one parameter model with likelihood f ∗(θ; y). It rejects when the
score test statistic S∗(y) = d

dθ log f ∗(θ0; y) ≥ k for some constant k. If θ0 is
on the edge of the parameter space, S∗(y) should be taken as the right-sided
derivative. For typical values of the test size α the critical value k is almost
invariably positive, because, by the properties of the score function, S∗(y) has
zero expectation under the null hypothesis.

The score test is known as the “locally most powerful test” as a consequence
of Lemma 2. This lemma says that the score test has optimal slope of the power
function among all tests of at most the same size, so that it has optimal power
against local alternatives close to the null.

Lemma 2 (Score test property) Suppose that the derivative d
dθ f ∗(θ; y) exists a.e.

and is bounded in a (right-)neighbourhood of θ0. Then for any test of H∗
0 with critical

region A and power function w(θ) = Py|θ [A], the derivative d
dθ w(θ0) exists. More-

over, if w∗(θ) = Py|θ [S∗ ≥ k] is the power function of the score test, then either of

(i) w(θ0) = w∗(θ0)

(ii) w(θ0) ≤ w∗(θ0) and k ≥ 0

implies
d
dθ w(θ0) ≤ d

dθ w∗(θ0).
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Chapter 5. Testing against a high-dimensional alternative

The proof of this lemma is given in Section 5.12.
A more extensive treatment of locally most powerful tests in one dimension

is given in Cox and Hinkley (1974). They show that the score test can be in-
terpreted as the limit for θ1 ↓ θ0 of the likelihood ratio test of H∗

0 against the
point alternative H∗

1 : θ = θ1. Score tests are typically useful when testing an
‘easy’ null hypothesis against a ‘complicated’ alternative, because score testing
does not require estimation of θ. Our high-dimensional alternative is a good
example of such a complicated alternative.

We shall apply score testing in the empirical Bayesian setting by testing H̄0 :
τ2 = 0 against H̄A : τ2 > 0 in the marginal model using the score test statistic

S =
d

dτ2 log f̄ (0; y),

which is automatically a right-sided derivative as f̄ is only defined for τ2 ≥ 0.
This test has two very useful properties, which we have formulated as Lemma
3 and Lemma 4.

The first property is important both for computation and for modelling.
Lemma 3 says that the test statistic S can be found with simple matrix oper-
ations from the conditional likelihood f (β; y) and the covariance matrix of β.
This implies that we do not need numerical integration to find the value of the
test statistic and that we do not have to specify the distributional shape of the
distribution of β.

Lemma 3 (Score test statistic) Suppose β = τb, where Eb = 0 and E(bb′) =
Σ and the distribution of b does not depend on τ. Suppose also that loglikelihood
log f (β; y) and its first two derivatives exist a.e. and are bounded in a neighbourhood
of β = 0. Then the empirical Bayes score test statistic S = d

dτ2 log f̄ (0; y) exists and
is given by

S =
1
2

s′Σs− 1
2

trace[ΣI]

where s = ∂
∂β log f (0; y) is the score function and I = ∂2

∂β∂β′
log f (0; y) the observed

Fisher information of β in H0.

The proof of this lemma is a simple calculation, which is given in Section
5.12.

The second and most important property of the score test based on S is given
in Lemma 4. It is again an optimality property, which effectively combines the
statements of Lemmas 1 and 2. Lemma 4 says that the empirical Bayes score
test, which has optimal slope of the power function in the marginal model f̄ ,
has optimal expected slope of the power function in the conditional model f .

72



Chapter 5. Testing against a high-dimensional alternative

This lemma only holds for the exchangeable version of the test with Σ = I,
although a more general version can also be formulated.

Lemma 4 (Locally Optimal Power) Suppose the conditions of Lemma 3 hold with
Σ = I. Let w̄(β) = Py|β[S ≥ k] be the power function of the exchangeable score test
of H0. Let w(θ) = Py|β[A] be the power function of any test of H0. Then either of

(i) w(0) = w̄(0)

(ii) w(0) ≤ w̄(0) and k ≥ 0

implies
Eξ [ d

dτ2 wξ(0)] ≤ Eξ [ d
dτ2 w̄ξ(0)]

where wξ(τ) = w(τξ), w̄ξ(τ) = w̄(τξ) and ξ has a uniform distribution on the unit
p-ball (p = dim(β)). The same result holds when ξ has any other distribution on the
unit p-ball such that E(ξ) = 0 and E(ξξ′) ∝ I.

The proof of the lemma is given in Section 5.12. In fact, Lemma 4 follows
from Lemma 2 in more or less the same way as Lemma 1 follows from the
Neyman-Pearson Lemma.

By Lemma 4 we see that the score test in the exchangeable empirical Bayes-
ian model has optimal expected slope of the power function, where the expecta-
tion is with respect to taking a random direction in p-space. This is the property
that motivates its name of locally most powerful test. It is an interesting side-
note that even if p = 1, by Lemma 3 the high-dimensional score test based on
S is not the same as the ordinary one-dimensional score test based on S∗, be-
cause the test based on S is a two-sided test, whereas the test based on S∗ is
one-sided. By Lemmas 3 and 4 the test based on S is the proper generalization
of the one-dimensional score test from one-sided to two-sided alternatives.

5.4 Nuisance parameters

The presence of nuisance parameters complicates some of the issues described
above. When nuisance parameters are present, the null hypothesis is not simple
anymore but composite. In that case strict optimality in the sense of Lemma 4
is impossible.

The issue of nuisance parameters is usually tackled by switching to the pro-
file likelihood (Pawitan, 2001). When using a score test, switching to the profile
likelihood is very easy: one can simply plug in the maximum likelihood esti-
mate of the nuisance parameter under the null hypothesis. This can be easily
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seen in a simple two parameter model with loglikelihood g(θ, η) and profile
likelihood ĝ(θ) = g{θ, η̂(θ)}. In this situation

∂ĝ
∂θ

=
∂g
∂θ

+
∂g
∂η

∂η

∂θ
. (5.1)

The second term on the right hand side is zero, because ∂g/∂η is always zero
in η̂.

This simple plugging in of the null estimate of the nuisance parameters can
also be understood by viewing the score test again as a (profile) likelihood ratio
test of θ = θ0 versus θ = θ1 for θ1 ↓ θ0. In the limit the maximum likelihood
estimate of η is the same under the alternative as under the null.

In the empirical Bayes model of this paper the situation is basically the same.
A similar argument to (5.1) can be used to check in the proof of Lemma 3 that
plugging in the estimate under the null is equivalent to using the profile like-
lihood. For this derivation it makes no difference whether one uses the condi-
tional profile likelihood, starting with likelihood f and the maximum likelihood
estimate η̂(β; y) of the nuisance parameter η as a function of β, or whether one
uses the marginal likelihood f̄ and the maximum likelihood estimate η̄(τ2; y)
from the marginal model for given τ2. Both profile likelihoods lead to the same
test.

See section 5.6 for an example of a model with nuisance parameters.

5.5 Distribution of the test statistic

The specification of the locally most powerful test in the previous sections is
not fully complete, as it only provides us with the test statistic to be used. To
be able to use the test in practice, we must also know the distribution of the test
statistic under the null, so as to be able to find the cutoff for significance and/or
the p-value. There is no general method for finding the null distribution, and
this may require some extra work when the concept of the locally most power-
ful test is to be applied in the context of a specific model. We only give some
general comments here. See section 5.6 and Goeman et al. (2004) and Goeman
et al. (2005) for concrete examples.

First, we look at the null distribution of S. It should be noted that, aside from
having zero expectation under the null, the test statistic S is not yet standard-
ized and, in general, should not be expected to follow any standard textbook
distribution. It is usually not easy to directly apply asymptotic results on the
distribution of the score statistic, because the marginal likelihood f̄ , from which
the score statistic was derived, is not generally a product of n contributions of
the individuals. Asymptotic arguments may be used in specific models (as in
Goeman et al., 2005), but we have no general theory yet.

74



Chapter 5. Testing against a high-dimensional alternative

In many cases, however, one can find a reasonably good approximation to
the distribution of S because the expression for S, as given in Lemma 3, is rel-
atively easy. The mean of S and its variance can often be explicitly calculated.
This allows approximation of the null distribution by moment matching to a
tabulated distribution (this strategy was used in Goeman et al., 2004). Other
practical options for finding the distribution of S include numerical integration
or permutation methods. Exact calculation of the distribution function of S is
possible in special cases, such as testing the global null hypothesis in the linear
model with normal errors, which is the case we shall turn to now.

5.6 The linear model

The optimality property implied in Lemma 4 is very appealing, but it has its
limitations. Good power is guaranteed, but only locally near the null and
on average over many possible alternatives. To investigate more closely what
Lemma 4 is worth for specific alternatives, we shall examine the simplest case
of the linear model in detail.

Assume that y ∼ N (Xβ, σ2 I), where X is an n× p design matrix of full rank
min(n, p). For simplicity we ignore the intercept parameter α which would nor-
mally be included (See Goeman et al., 2004, on how to deal with the nuisance
parameter α). The score vector for this model is s = σ−2X′y and the observed
Fisher information is I = σ−2X′X, so the general empirical Bayes score test
statistic is

S̃Σ = 1
2σ4 y′XΣX′y− 1

2σ2 trace(XΣX′).

It is more convenient to work with the equivalent test statistic σ−2y′XΣX′y,
whose distribution does not depend on σ2. Because σ2 is not known, we plug
in its maximum likelihood estimate σ̂2

0 ∝ y′y under the null hypothesis. The
resulting test statistic is

SΣ =
y′XΣX′y

y′y
, (5.2)

whose distribution also does not depend on the nuisance parameter σ2. We
study the exchangeable case Σ = I, as ‘the’ locally most powerful test statistic

S =
y′XX′y

y′y
.

To find the distribution function of S, we can use the following identity
(Azzalini and Bowman, 1993):

P{S > t} = P{y′(XX′ − tI)y > 0}.
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The distribution function of the quotient S can therefore be found through the
distribution function of a quadratic form in normal variables. We use numeric
methods developed by Imhof (1961) to calculate the latter distribution func-
tion. Reasonably good approximations to the 5% and 1% cutoff values can also
be found by equating the moments of S to those of a gamma distribution, a
strategy which was used in Goeman et al. (2004).

It is interesting to note a connection between the test statistic S and the
method of partial least squares (PLS), which is often used for high-dimensional
data in chemometrics (Brown, 1993). The first component of a partial least
squares regression is XX′y, so the test statistic S can be viewed as a test for
correlation between the first PLS component and y.

5.7 Power of the score test

We want to gain insight in the power of the locally most powerful test in prac-
tice. It has already been said that when the alternatives are high-dimensional,
it is impossible to have power against all alternatives. To see which are the al-
ternatives that our score test cannot detect, we check which alternatives have
an expected test statistic that is smaller than expected under the null. These
alternatives have power below the size α of the test.

Under the null hypothesis, the test statistic S has expectation

Ey|0[S] =
1
n

trace(XX′).

Under the alternative the expectation of S can be well approximated by taking
the expectations of the numerator and the denominator separately

Ey|β[S] ≈ β′X′XX′Xβ + σ2trace(XX′)
β′X′Xβ + nσ2

.

This approximation is not only asymptotically exact, but also for small sample
size if y is either dominated by Xβ or by σ2 (i.e. in any of the limits n → ∞,
σ2 → 0, σ2 → ∞ or β → 0).

The difference between the expectations is

Ey|β[S]− Ey|0[S] ≈
β′X′XX′Xβ− 1

n β′X′Xβ · trace(XX′)
β′X′Xβ + nσ2

.

To interpret this expression we must look at the principal components of X
and the amount of variance of y that each principal component explains. Call

r2 =
β′X′Xβ

β′X′Xβ + nσ2
,
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the fraction of the variance of y explained by the alternative. We use the spec-
tral decomposition. Write X′X = ∑n

i=1 λiQi, where λ1 ≥ . . . ≥ λn ≥ 0 are
eigenvalues of X′X and Qi is the p × p projection matrix that projects onto
the eigenvector of X′X corresponding to the eigenvalue λi. Note that we
can stop the decomposition at the n-th component because the rank of X′X
is min(n, p) ≤ n. Use of the spectral decomposition gives r2 = ∑n

i=1 r2
i , with

r2
i = λiβ

′Qiβ/(β′X′Xβ + nσ2), and

Ey|β[S]− Ey|0[S] =
n

∑
i=1

λir2
i −

1
n

n

∑
i=1

λi

n

∑
j=1

r2
j .

This can be recognized as proportional to the covariance of the vector λ =
(λ1, . . . , λn)′ of variances of the principal components of X and the vector r =
(r2

1, . . . , r2
n)′, which gives the fraction of the variance of y explained by these

components.
This small exercise has a few interesting conclusions. In the first place there

are many alternatives, especially in the p ≥ n case, for which the locally most
powerful test has negligible power. These are the alternatives for which the
low-variance principal components of X explain most of the variance of y.
These undetectable alternatives may have any value of r2, even r2 = 1: an
alternative with Ey|β[S] ≤ Ey|0[S] and r2 = 1 will even have zero power.

Fortunately for the score test, a negative covariance of λ and r occurs only
seldomly in real data, because the measurements in X are often noisy or in-
accurate. The uninformative noise tends be dominant in the small-variance
principal components of X.

How can a test be most powerful on average if it has such low power against
many alternatives? The reason for this lies in the assumption of exchangeability
that underlies the test. By Lemma 4 the power is optimal on a small p-ball
with β′β = c. The alternatives on this ball have very diverse values of r2:
alternatives which have β in directions corresponding to the eigenvectors of the
large eigenvalues of X′X have large r2, others have small r2. It is very difficult
to have much power against alternatives with small r2. Even an ‘oracle’ which
knows the direction of β and only tests whether ‖β‖ = 0 will have low power
if the true β has low r2. Average power will increase, therefore, if some power
on the low-potential alternatives is sacrificed in exchange for a gain in power
for the high-potential alternatives. This is the advantageous trade-off that the
exchangeable empirical Bayes score test makes.

If negative covariance of λ and r leads to Ey|β[S] < Ey|0[S], conversely a pos-
itive covariance of the same λ and r leads to Ey|β[S] > Ey|0[S] and potentially
good power. Against some of these alternatives the score test must even have
very good power, as the test is locally most powerful on average by Lemma 4.
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We come back to this in Sections 5.8 and 5.10, where we compare the locally
most powerful test with the F-test.

It has to be remarked that the problems of lower expectation of the test sta-
tistic S under the alternative than under the null typically disappear when n is
large. If we let n grow to kn by observing k samples from each covariate pat-
tern, Ey|β[S] will eventually become larger than Ey|0[S], because letting n grow
in this setup means augmenting both λ and r with zeros, so that the correlation
between the two increases. Similarly, if we have p < n to begin with, there
are at least n − p zero elements of λ with corresponding zero elements of r, so
that the smallest elements of λ and r automatically coincide and there are few
alternatives with Ey|β[S] ≤ Ey|0[S].

5.8 A new look at the F-test

In the p < n situation it is possible to apply both the locally most powerful
test and the F-test, which makes it interesting to compare the two. The F-test
statistic in our linear model is a constant times

F̃ =
y′X(X′X)−1X′y

y′(I − X(X′X)−1X′)y
.

We find it convenient to transform F̃ by the strictly increasing function
g(x) = (x−1 + 1)−1 to the equivalent test statistic F = g(F̃), which is given
by

F =
y′X(X′X)−1X′y

y′y
.

Under the null the transformed F has a beta distribution with parameters 1
2 p

and 1
2 (n− p).

It is now easy to compare F with the locally most powerful test statistic
S = (y′XX′y)/(y′y). We can immediately notice that, if the design is orthog-
onal (i.e. X′X ∝ I) both tests are equivalent. Note that the design is always
orthogonal if p = 1, so the locally most powerful test for p = 1 is equivalent to
the F-test and hence to the two-sided t-test.

More fundamental insights follow when comparing F with the general
expression for the empirical Bayesian score test statistic given in (5.2): as
SΣ = y′XΣX′y/(y′y), we have F = S(X′X)−1 . It follows that we can look
at the F-test as the empirical Bayes score test based on the prior covariance
E(ββ′) = τ2(X′X)−1 for τ2 very small. By Lemma 1, the F-test therefore opti-
mizes the power on average over this distribution of β. The F-test is therefore
especially directed against alternatives in directions where the variance of the
distribution of β is large. These directions are the directions of the eigenvectors
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of small eigenvalues of X′X. These are also the directions where a large r2 re-
quires a very large ‖β‖. Vice versa, the directions of the eigenvectors of large
eigenvalues of X′X get a small prior variance of β. These are, therefore, of small
importance to the F-test: β is a priori not expected to lie in these directions. The
directions of the eigenvectors of large eigenvalues of X′X are the directions in
which a small investment of ‖β‖ results in a large r2.

We get a similar look at the power properties of the F-test if we orthogonal-
ize the design by taking β̃ = (X′X)1/2β and X̃ = X(X′X)−1/2. This results in
Xβ = X̃β̃ for all β so the distribution of y is unchanged. Unlike the F-test, the
locally most powerful test is not invariant under change of parametrization:
under the assumption of exchangeability E[β̃β̃

′] = τ2 I on β̃ we now get the
F-test as the locally most powerful test for the new parametrization. Applying
the reasoning of Section 5.6 to the new parametrization, we see that the F-test
optimizes power not over small balls with β′β = c, but on small ellipsoids with
β̃
′
β̃ = β′X′Xβ = c, which are ellipsoids of alternatives that have the same

r2. All alternatives with the same r2 have the same potential power, so there is
no trade-off and all alternatives in the ellipsoid are given equal power. The ex-
pected test statistic under the alternative minus the expected test statistic under
the null for the F-test is

Ey|β[F]− Ey|0[F] = r2(1− p
n

),

which only depends on β through r2. It is positive whenever r2 > 0 and p < n.
The main difference between the empirical Bayes score test and the F-test

is therefore that, while for the F-test all alternatives with the same r2 are as
credible and interesting to detect, the score test is explicitly directed at finding
parsimonious alternatives, which can explain y with minimal expenditure of
‖β‖.

There is no easy analytic expression which shows for which alternatives in
the p ≤ n situation the F-test has more power than the score test and vice versa.
However, it can be convincingly argued that for those alternatives in which
the large variance principal components of X explain most of the variance of
y, the score test has more power, while for the alternatives in which the small-
variance principal components explain most of the variance of y, the F-test is
more powerful. This can be seen by writing XX′ in a spectral decomposition as
XX′ = ∑n

i=1 λiPi, where Pi is the n × n projection matrix for projection on the
i-th principal component. Then

S =
n

∑
i=1

λi
y′Piy
y′y

,
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so the test statistic S is a weighted sum of the test statistics y′Piy which test
whether the i-th principal component is associated with y. The weights are
proportional to the variance of the principal components. In the same way

F =
n

∑
i=1

y′Piy
y′y

,

the statistic F is the unweighted sum of the same test statistics. Comparing the
two composite tests, one can argue that one has more power than the other if it
puts heavier weights on the terms with most power. We’ll illustrate this point
with simulations in Section 5.10.

An interesting type of alternative against which the locally most powerful
test can be expected to have more power than the F-test is a factor-analysis type
setup, in which a limited number of latent variables linearly determines both
the covariates X and the outcome variable y, but both are measured with error
(Bartholomew and Knott, 1999). In this case the latent variables tend to show
up in the large-variance principal components of X, while the uninformative
noise tends to dominate the small-variance principal components. This setup
is not unrealistic for many practical problems, especially in high-dimensional
data, as the covariates can often be seen as noisy measurements of more or less
the same underlying mechanisms. In this kind of alternative one would nor-
mally apply principal components testing: reducing the matrix X to its first
few principal components and then applying the F-test. An important advan-
tage of the locally most powerful test over principal components testing is that
there is no need to choose the number of principal components. We come back
to principal components testing in Section 5.10.

5.9 Sparse alternatives

In the previous sections we have established that the locally most powerful
test is especially directed against parsimonious alternatives with small ‖β‖. A
different type of parsimonious alternative is the sparse alternative, in which
only a few entries of β are non-zero. This type of alternative is especially of
interest in regression modelling.

A test which specifically aims to detect this type of sparse alternative in a
regression model is a multiple testing procedure. This type of testing procedure
is often used in microarray data analysis. There are many variants, but the most
basic form is the following: for i = 1, . . . , p a t-test statistic ti is calculated to test
for association of each covariate with the outcome y. The test statistic T̃max =
max(|t1|, . . . , |tp|) is used to test whether there is an association between any
covariate and y. The critical value of Tmax can be found either conservatively
using the Bonferroni adjustment, or using numerical methods.
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Different though this test may seem from the locally most powerful test,
there is still a connection. First, we can transform each |ti| to g(t2

i ), using the
function g(x) = (x−1 + 1)−1 also used in section 5.8. This results in test sta-
tistics with a beta distribution with parameters 1

2 and 1
2 (n − 1). As g(x2) is

increasing in |x|, the test statistic

Tmax = max{g(t2
1), . . . , g(t2

p)}

is equivalent to T̃max. Next, we write xi for the i-th column of X, then g(t2
i ) =

y′xix′iy/(y′y · x′ixi). However, as we can write XX′ = ∑
p
i=1 xix′i, we can say that

S =
p

∑
i=1

x′ixig(t2
i ),

so the locally most powerful test statistic is a weighted sum of the same (trans-
formed) t-test statistics over which Tmax is the maximum. The weights are pro-
portional to the variance of xi.

Perhaps surprisingly, by Lemma 4 the score test is more powerful than the
test based on Tmax in the situation where p is large and r2 is very small, even
when only a single regression coefficient is non-zero. Suppose β is given a sin-
gle non-zero entry at random, of fixed size, but with random sign. This distrib-
ution of β has E(β) = 0 and, if p is large E(ββ′) ≈ τ2 I for some τ2. By Lemma
4, the score test has optimal power on average to detect these alternatives if τ2

is small.
This optimality can again be understood in terms of the principal compo-

nents. If there are few principal components with large variance, it is probable
that the xi with the positive regression coefficient also has a major part of its
variance in the direction of these large-variance principal components. If y is
correlated with xi, it is therefore automatically correlated with these principal
components, and therefore with many other covariates xj, which also tend to
have a large part of their variance in the direction of the large-variance prin-
cipal components. A single regression coefficient may therefore lead to many
significant t-statistics. In this situation there may be more information in the
sum of the t-statistics than in the maximum.

Simulations in section 5.10 illustrate these points.

5.10 Simulations

Many of the points raised in the previous sections require some illustration.
We’ll do this using simulations in the linear model. The simulations are based
on real data in the sense that the design matrix X is a taken as a real biological
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data set: a microarray data set of gene expression measurements of p = 4911
genes, measured for n = 294 breast cancer patients (obtained from Van de Vi-
jver et al., 2002, after removing some genes and patients due to missing values).
The matrix X was normalized to have both row and column means zero. After
this normalization X has rank n − 1 and a ratio of the largest to the smallest
non-zero singular value of 26.6. Using this design matrix X, values of y are
simulated based on the models chosen below.

First we compare the locally most powerful test with the F-test, to illustrate
the statements from Section 5.8 that the score test has more power when the
large variance principal components of X explain most of the variance of y. As
we cannot use the F-test when p > n, we reduce the matrix X to X∗ by selecting
as covariates only the p∗ = 52 genes belonging to the apoptosis pathway.

The simulation setup is as follows. We write X∗ in a singular value de-
composition as X∗ = UΛ1/2V′, with U an n × p∗ semi-orthogonal matrix, V a
p∗ × p∗ orthogonal matrix and Λ a p∗ × p∗ diagonal matrix with diagonal el-
ements λ∗ = (λ1, . . . , λp∗)′, where each λi is the variance of the i-th principal
component. To vary the amount of variance explained by the principal com-
ponents, we choose the regression coefficients as β = VΛ(s/2−1)λ for various
values of s. In this setup the i-th principal component has regression coefficient
λs/2

i and explains a fraction r2
i of the variance of y proportional to λs+1

1 . Hence,
if s > 0, the large variance principal components have larger regression coeffi-
cients and therefore explain more of the variance of y; if −1 < s < 0, the large
variance principal components have smaller regression coefficients, but still ex-
plain more of the variance than the small-variance principal components, while
if s < −1, the small-variance principal components dominate y. By varying σ2

as a function of s we can obtain all values of r2 for every s.
To estimate the power for these alternatives, we generated 10000 y vectors

each from alternatives with various values of s and r2. The cutoff at level α for
the S statistic was found using the methods of Imhof (1961). The results are
given in table 5.1. They show that the power of the score test and the F-test is
comparable for s = −1/2, although the F-test still has a slight advantage here.
The score test is substantially more powerful for larger values of s, the F-test is
more powerful for smaller values. This is in line with the theoretical discussion
in section 5.8.

It is also interesting to compare the locally most powerful test with the test
P1, which is the F-test that tests whether the first principal component of X∗ is
correlated with y. The results are also given in table 5.1. We can see that the
locally most powerful test is comparable in power to the test P1 for high values
of s, but it is consistently better for all the alternatives considered.

In a second simulation experiment we look at sparse alternatives in high-
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TABLE 5.1: Monte Carlo power comparison between the locally most powerful test, the F-test
and the test P1, which uses only the first principal component for testing. The tests use
α = 0.05. The various alternatives are given by their r2 and a coefficient s: s > 0 means
that large-variance principal components get larger regression coefficients, s < 0 vice versa.

r2 = 0.02 r2 = 0.05
alternative F S P1 F S P1
s = 1.5 0.14 0.52 0.52 0.35 0.92 0.90
s = 1 0.14 0.46 0.44 0.35 0.88 0.82
s = 0.5 0.14 0.36 0.31 0.34 0.79 0.66
s = 0 0.13 0.24 0.19 0.34 0.58 0.39
s = −0.5 0.14 0.13 0.10 0.35 0.32 0.18
s = −1 0.14 0.08 0.06 0.34 0.14 0.08
s = −1.5 0.14 0.06 0.05 0.35 0.07 0.05

r2 = 0.10 r2 = 0.15
alternative F S P1 F S P1
s = 1.5 0.76 1.00 1.00 0.96 1.00 1.00
s = 1 0.76 1.00 0.99 0.96 1.00 1.00
s = 0.5 0.76 0.99 0.92 0.96 1.00 1.00
s = 0 0.75 0.92 0.67 0.96 0.99 0.86
s = −0.5 0.76 0.65 0.31 0.96 0.89 0.43
s = −1 0.76 0.27 0.10 0.96 0.44 0.13
s = −1.5 0.75 0.10 0.05 0.96 0.13 0.05

dimensional data. We compare the power of the locally most powerful test
with the power of the test based on Tmax, the maximum absolute t-statistic, as
discussed in Section 5.9.

For this we reverted back to the original high-dimensional data set with p =
4911 genes. We generated alternatives βm,j for j = 1, . . . , p and m = 1, 3, 10, 30,
such that each alternative βm,j has the m regression coefficients β j, . . . , β j+m−1
equal to 1 and all others equal to zero (taking βi = βi−p if i > p). Table 5.2
shows the power of the tests based on S and Tmax on average against the al-
ternatives βm,1, . . . , βm,p with m non-zero regression coefficients. In the simula-
tions the value of σ2 was taken to be equal for all alternatives βm,1, . . . , βm,p and
was chosen to get a certain average r2 over these alternatives. We generated 2
replicates for each of the alternatives, so that each power calculation is based
on 2p ≈ 10000 Monte Carlo samples of y.

A complicating factor in this simulation is the lack of a simple and accu-
rate method to find the distribution function of the statistic Tmax, because of
the dependence of the t-statistics. We used simulation to find the α cutoff of
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Tmax for the design matrix X. The 0.05-cutoff was found at 0.062, using 20000
simulations of y under the null. Note that this is only slightly below the crude
Bonferroni corrected cutoff for p beta( 1

2 , 1
2 (n− 1)) variables, which is at 0.064.

TABLE 5.2: Monte Carlo power comparison between the locally most powerful test and the test
based the maximum of p absolute t-statistics using α = 0.05. The reported power values
are on average over p different sparse alternatives with m non-zero regression coefficients.

alter- r2 = 0.01 r2 = 0.02 r2 = 0.05 r2 = 0.10 r2 = 0.20
native S Tmax S Tmax S Tmax S Tmax S Tmax

m = 1 0.12 0.10 0.17 0.16 0.33 0.40 0.54 0.74 0.76 0.97
m = 3 0.11 0.09 0.17 0.14 0.34 0.32 0.55 0.61 0.80 0.90
m = 10 0.11 0.09 0.17 0.14 0.35 0.29 0.58 0.54 0.83 0.84
m = 30 0.11 0.09 0.17 0.13 0.34 0.28 0.55 0.51 0.80 0.79

The table confirms the theoretical result of Section 5.9 that for sparse alter-
natives close to the null the score test is slightly superior to the test based on
Tmax. This superiority disappears quite quickly, however, when the single co-
variate explains a large portion of the variance of y. Looking at decreasingly
sparse alternatives, the Tmax statistic loses power, as can be expected, but the
score test remains more or less stable. What is perhaps most surprising about
table 5.2, is that even though the tests are constructed in a very dissimilar way,
the average power is still quite similar. The Tmax still has good power against
not-so-sparse alternatives, while the locally most powerful test has good power
against sparse alternatives far from the null.

5.11 Discussion

For testing against a multi-dimensional alternative there are no uniformly most
powerful tests. Tests may only be optimal locally for some alternatives, or op-
timal on average over a region of alternatives. When choosing a test against
multi-dimensional alternatives, it is therefore important to consider against
which alternatives the chosen test has good power. When constructing such
a test, one can use empirical Bayes modelling to design a test which has opti-
mal power on average against a chosen region of alternatives. Thinking about
these issues is especially relevant when the data are high-dimensional, because
the power of often-used classical tests tends to diminish rapidly when the di-
mensionality increases.

A drawback of empirical Bayes design of hypothesis tests, is that the con-
struction of the test requires integration over complicated distributions in pos-
sibly high-dimensional space. In this paper we have shown in general how to
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avoid this problem by using a score test. This test has the property that it is
locally most powerful: it has optimal average power in a well-defined neigh-
bourhood of the null hypothesis.

In the linear model, we have shown that this test has good power for many
important alternatives, even in the classical low-dimensional situation. The em-
pirical Bayes score test often has better power than the F-test in the situations
where there are errors in variables in the design matrix X, when a small set of
latent variables influences both the covariates in X and the outcome variable y,
or more generally when the large-variance principal components of X explain
more of the variance of y than the small-variance ones. We have also shown
that the empirical Bayes score test has good power in truly high-dimensional
situations, even against sparse alternatives. If the fraction of variance of y ex-
plained by the covariates is low, the test even outperforms the test based on the
maximum absolute t-statistics of all covariates, a test which is designed to find
sparse alternatives.

As high-dimensional data become more and more common, so will the need
for testing against high-dimensional alternatives. This paper has given a gen-
eral theoretical outline and presented a concrete example of a model in which
the test has good power. But locally most powerful testing in high dimensions
has many more potential applications, both in generalized linear models and
more generally.

5.12 Proofs of the lemmas

Proof of Lemma 2: To prove Lemma 2, we have to adopt a slightly more for-
mal notation. Shorthand fθ for the density of y and let µ be a dominating mea-
sure, so that we can write Py|θ(y ∈ A) =

∫
A fθ dµ. Also, let 1{·} denote an

indicator function.
To prove the existence, we write w(θ) =

∫
A fθ dµ, so by the dominated

convergence theorem d
dθ w(θ0) =

∫
A

d
dθ fθ0dµ < ∞.

Furthermore, noting that d
dθ fθ0 = S∗ fθ0 , and using 1A − 1B = 1A\B − 1B\A

twice, we can calculate

d
dθ w(θ0)− d

dθ w∗(θ0) =
∫

A
d
dθ fθ0 dµ−

∫
S∗≥k

d
dθ fθ0 dµ

=
∫

A,S∗<k
S∗ fθ0 dµ−

∫
Ac ,S∗≥k

S∗ fθ0 dµ

≤ k
∫

A,S∗<k
fθ0 dµ− k

∫
Ac ,S∗≥k

fθ0 dµ

= k
∫

A
fθ0 dµ− k

∫
S∗≥k

fθ0 dµ

= k{w(θ0)− w∗(θ0)}.
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The latter term is at most zero whenever condition (i) or (ii) holds. 2

Proof of Lemma 3: The assumptions of bounded derivatives combined with
the assumption that the distribution of b is free of τ allows us to interchange
limits and integrals in the following calculations. For simplicity we suppress
the dependence on y in the notation.

S = lim
τ2↓0

d
dτ2 Eb[ f (τb)]

Eb[ f (τb)]
= lim

τ2↓0

Eb[ d
dτ2 f (τb)]

Eb[ f (τb)]
= lim

τ2↓0

Eb[(d f (τb)
dβ )′b]

2τEb[ f (τb)]
.

The limit evaluates to 0/0, so we use l’Hôpital’s rule to get

S = lim
τ2↓0

Eb[b′ ∂2 f (τb)
∂β∂β′

b]

2Eb[ f (τb)] + 2τ ∂
∂τ2 Eb[ f (τb)]

=
Eb[b′ ∂2 f (0)

∂β∂β′
b]

2Eb[ f (0)]
.

Now it only remains to rewrite ∂2 f (0)
∂β∂β′

= f (0) · {ss′ − I}. 2

Proof of Lemma 4: Assume w(0) = w̄(0). By Lemma 3 every distribu-
tion of β with E(β) = 0 and E(β′β) ∝ τ2 I leads to the same test statistic
and therefore to the same power function. Without loss of generality we can
therefore assume that w̄ is the power function of the score test in the empir-
ical Bayesian model in which β is distributed as τξ. By Lemma 2 we have

d
dτ2 Eβ|τ2 [w(β)] ≤ d

dτ2 Eβ|τ2 [w̄(β)] in τ2 = 0. The boundedness assumptions of
Lemma 3 allow interchanging differentiation and integration, so we get

d
dτ2 Eβ|τ2 [w(β)] =

d
dτ2 Eξ [w(τξ)] = Eξ

[ d
dτ2 w(τξ)

]
,

both for w and for w̄, from which the result follows. 2
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