
Statistical methods for microarray data
Goeman, Jelle Jurjen

Citation
Goeman, J. J. (2006, March 8). Statistical methods for microarray data.
Retrieved from https://hdl.handle.net/1887/4324
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4324
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4324


CHAPTER 4

A goodness-of-fit test for
multinomial logistic regression

Abstract

This paper presents a score test to check the fit of a logistic regression model
with two or more outcome categories. The null hypothesis that the model fits
well is tested against the alternative that residuals of samples close to each other
in covariate space tend to deviate from the model in the same direction. We
propose a test statistic that is a sum of squared smoothed residuals, and show
that it can be interpreted as a score test in a random effects model. By specifying
the distance metric in covariate space, users can choose the alternative against
which the test is directed, making it either an omnibus goodness-of-fit test or a
test for lack of fit of specific model variables or outcome categories.

4.1 Introduction

The multinomial logistic regression model is a generalization of logistic regres-
sion to outcomes with more than two levels. The model is also known as poly-
tomous or polychotomous logistic regression in the health sciences and as the
discrete choice model in econometrics (Hosmer and Lemeshow, 2000). Two
variants exist: one for nominal and one for ordinal scale outcomes. This paper
considers only the nominal scale version.

When fitting a model it is important to have tools to test for lack of fit. This is
especially important for the multinomial logistic model, whose fit is notoriously
difficult to visualize. The modelling toolbox should include general tests for
the fit of the whole model, but also more specific tests for lack of fit in specific

This chapter will appear as: J. J. Goeman and S. le Cessie (2006). A goodness-of-fit test for
multinomial logistic regression. Biometrics 62, in press. The definitive version will be available at
http://www.blackwell-synergy.com.
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Chapter 4. A goodness-of-fit test for multinomial logistic regression

covariates or outcome categories. Such tools are remarkably scarce in multino-
mial logistic regression. Hosmer and Lemeshow (2000) suggested looking at
the multinomial model as if it were a set of independent ordinary logistic mod-
els of each outcome against the reference outcome, and testing the fit of each
of these separately. Lesaffre and Albert (1989) give diagnostics for detecting in-
fluential, leverage and outlying samples in multinomial logistic regression, but
provided no explicit goodness-of-fit test. The only actual test for the fit of the
multinomial logistic regression model is given by Pigeon and Heyse (1999). It
is an extension of the test of Hosmer and Lemeshow (2000) for binary regres-
sion, which is well known to have low power for detecting quadratic effects
(Le Cessie and Van Houwelingen, 1991).

In this paper we present an alternative and flexible goodness-of-fit test for
the multinomial logistic regression model. It can be directed against the gen-
eral alternative that the model does not fit or against more specific alternatives.
The test extends the goodness-of-fit test of Le Cessie and Van Houwelingen
(1991) for ordinary logistic regression to the multinomial case. The approach is
to smooth the regression residuals and to test whether these smoothed residu-
als have more variance than expected under the null hypothesis, which occurs
when residuals which are close together in the covariate space are correlated.
This type of test was shown by Le Cessie and van Houwelingen (1995) to be
equivalent to a score test in a random effects model, which tests for the presence
of a pre-specified correlation structure between the residuals. Their approach
to goodness-of-fit testing is quite generally applicable, and has already been
extended to generalized linear models (Le Cessie and van Houwelingen, 1995)
and to the Cox proportional hazards model (Verweij et al., 1998). This paper
extends the methodology to multinomial logistic regression.

The properties of the resulting test are verified using simulated data and
illustrated on a liver enzyme data set (Albert and Harris, 1987). Software in
R for fitting and testing the fit of the model is available on request from the
authors.

4.2 The multinomial logistic regression model

Suppose the multinomial outcome variable Y takes values in the unordered set
{1, . . . , g}. The multinomial logistic regression model assumes that the proba-
bility for observation i to have outcome s depends on i’s covariates xi1, . . . , xip
as

P(Yi = s) =
eηis

∑
g
t=1 eηit

(4.1)
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Chapter 4. A goodness-of-fit test for multinomial logistic regression

where ηis = ∑
p
k=1 xikβks is a linear predictor. In this formulation of the model

we have a regression coefficient βks for each combination of covariate k and
outcome category s, and a separate linear predictor ηis for each outcome cate-
gory (for a more detailed description of the model, see Hosmer and Lemeshow,
2000).

The model as defined in (4.1) is overparametrized. Replacing (βk1, . . . , βkg)
with (βk1 + c, . . . , βkg + c), for any c ∈ R and k ∈ {1, . . . , p}, leads to exactly the
same probabilities. The most common way to solve this overparametrization is
to designate one outcome category, say outcome 1, as the “reference” category,
setting all regression coefficients β11, . . . , βp1 to zero. A good choice of the ref-
erence category will usually facilitate interpretation of the resulting parameter
estimates. However, in this paper we are not concerned with estimation but
rather with assessment of the fit, which does not depend on the choice of the
reference category. We will therefore refrain from choosing a reference cate-
gory, but instead treat the outcome categories symmetrically, leaving the model
overparametrized.

Suppose we have sampled outcomes Y1, . . . , Yn and a corresponding n × p
design matrix X. Then let yis be the indicator of the event {Yi = s}, for
i = 1, . . . , n, and s = 1, . . . , g, and call the corresponding probabilities µis =
P(Yi = s). Let µ̂is be the maximum likelihood estimates of µis for all i and
s. The fitted model has n × g residuals r̂is = yis − µ̂is, one for each individ-
ual i and outcome category s. These residuals fulfill ∑

g
s=1 r̂is = 0. It will be

convenient to gather the residuals together in a long vector r̂ = y − µ̂, where
y = (y11, . . . , yn1, . . . , y1g, . . . , yng)′ and µ = (µ11, . . . , µn1, . . . , µ1g, . . . , µng)′.

4.3 Testing goodness-of-fit by smoothing

A goodness-of-fit test tests a model against the alternative that the model ‘does
not fit’. This is an extremely broad class of alternatives: lack of fit comes in
many different shapes and sizes. A linear model, for example, can display lack
of fit when the distribution of the residuals is skewed or heavy-tailed, or when
there are non-linear relationships which fit the data better. Typically, there is
no single goodness-of-fit test which has good power against all kinds of lack of
fit. For better interpretation, a goodness-of-fit test should therefore be specific
about the type of lack of fit is directed against.

The goodness-of-fit test of this paper is directed against the alternative that
any non-linearities or interaction effects have been missed. Such neglected ef-
fects can be detected by looking for patterns in the residuals: observations close
to each other in covariate space which deviate from the model in the same di-
rection. One looks for this same kind of behaviour when making a scatterplot
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of the residuals against a covariate. The test can also detect different kinds of
lack of fit which show up as patterns of correlation in the residuals, such as
over-dispersion.

One can formally test for patterns in the residuals by smoothing the resid-
uals: the smoothed residuals are a weighted average of the residual itself and
the other residuals which are close to it in covariate space. If residuals close to
each other are strongly correlated, the smoothing will not affect the magnitude
of the residuals much, while if they are not correlated smoothing will shrink
the residuals toward zero. The sum of squares of the smoothed residuals is
therefore a good measure of the correlations of residuals close to each other in
covariate space (Le Cessie and Van Houwelingen, 1991).

Based on these arguments we propose to reject for large values of the test
statistic

Q =
g

∑
s=1

n

∑
i=1

[ n

∑
j=1

uij(yjs − µ̂js)
]2

(4.2)

where uij ≥ 0 is the i, j-th entry of a smoothing matrix U, fulfilling ∑n
j=1 uij = 1

for all i. The statistic Q is a sum of squared smoothed residuals, as each r̃is =
∑n

j=1 uij(yjs − µ̂js) is a smoothed version of the residual r̂is. Note that smoothing
of the residual r̂is only involves residuals of the same outcome category s, as the
residuals corresponding to different categories are not expected to be positively
correlated.

There are various possibilities for the choice of the smoothing matrix U.
This choice has two aspects: the choice of a distance measure and the choice
of a smoothing method. Of these two, the choice of distance measure deserves
most consideration. To test globally for lack of fit one could take euclidian
distance using all covariates. As euclidian distance is sensitive to the scaling of
the variables, it is wise to rescale the variables to unit variance to prevent one
covariate dominating the distance measure. If, on the other hand, the interest is
in testing lack of fit for a specific subset of the covariates, one should only use
that subset for constructing the distance measure. The choice of a smoothing
method is less of an issue. Let dij be the chosen distance between observations
i and j. Following Le Cessie and van Houwelingen (1995) one could choose
a kernel smoother based on this distance. A convenient choice is the uniform
kernel which has K(t) = 1 if −1 ≤ t ≤ 1, and K(t) = 0 otherwise. The resulting
smoothing matrix U will have entries

uij =
K(dij/h)

∑n
k=1 K(dik/h)

.

Here h is the bandwidth, which should be chosen carefully: taking h too large
results in oversmoothing, while taking h too small results in undersmoothing.
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Both will lead to low power. The choice of h can be related to the distribution of
the distances dij, i 6= j: our experience is that taking h as the 25-th percentile of
this distribution is a often good choice. Using a kernel smoother, the smoothed
residual r̃is will be the average of all residuals r̂js with dij ≤ h.

4.4 Distribution of the test statistic

To be able to use the test statistic Q for testing we must calculate or approximate
its distribution function.

Write U = Ig ⊗U, where ⊗ denotes the Kronecker product and Ig the g× g
identity matrix, and write R = UU′. Then we can write r̃ = U′ r̂ and

Q = ‖r̃‖2 = (y− µ̂)′R(y− µ̂),

which is a non-negative quadratic form.
There is no exact expression for the null distribution function of Q, but there

are various approaches for finding an approximation. The most promising
approach follows asymptotic arguments. Assuming that as n grows new ob-
servations are added which have the same covariate patterns as those already
present, it can be shown that Q converges in distribution to a linear combina-
tion of chi-squared variables with one degree of freedom. There is no simple
explicit expression for the distribution function of a such a distribution, but
it is known that it can be well approximated by a general scaled chi-squared
(or gamma) distribution. This is often used as an approximate distribution for
quadratic forms (Cox and Hinkley, 1974, p. 462–463), although more accurate
approximations exist (Solomon and Stephens, 1978). The gamma approxima-
tion was also used for the test of Le Cessie and van Houwelingen (1995) which
this paper extends. It should be calibrated to have the same mean and vari-
ance as Q as well as to the fact that Q ≥ 0, resulting in a gamma distribution
with parameters α = (EQ)2/Var(Q) and λ = EQ/Var(Q). The accuracy of this
approximation will be checked with a simulation example in section 4.7.

To use this approximation we have to calculate expectation and variance of
Q. This involves the distribution of the estimated residuals y − µ̂, which can
be related to the easier distribution of the true residuals y − µ through its first
order approximation, using standard theory from generalized linear models
(McCullagh and Nelder, 1989). If n is not too small,

y− µ̂ ≈ (I −H)(y− µ) (4.3)

where H is the asymmetric form of the hat matrix for the multinomial logistic
regression model. It is defined as H = WX(X′WX)−X′, where X = Ig ⊗ X,
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superscript minus denotes a generalized inverse, and W is given by

W =


W11 W12 · · · W1g

W21 W22 ...
...

. . .
Wg1 · · · Wgg

 , (4.4)

where each Wij is an n× n diagonal matrix with

diag(Wst) = diag(Wts) =

{
(−µ1sµ1t, . . . ,−µnsµnt)′ if s 6= t

(µ1s(1− µ1s), . . . , µns(1− µns))′ if s = t

The hat matrix H also plays an important role in the paper of Lesaffre and
Albert (1989), where it is used to detect influential observations. From the ap-
proximation (4.3) it follows that if n is not too small, the distribution of Q is
approximately the same as the distribution of

Q̃ = (y− µ)′R̃(y− µ),

where R̃ = (I −H)′R(I −H).
Under the null hypothesis, E[(y− µ)(y− µ)′] = W, so that

EQ̃ = trace(R̃W).

The variance under H0 of Q is calculated in Section 4.10. It is given by

Var(Q̃) = 2trace(R̃WR̃W) +
g

∑
s=1

g

∑
t=1

g

∑
u=1

g

∑
v=1

n

∑
i=1

R̃st
ii R̃uv

ii κstuv
i (4.5)

In this expression, R̃st
ij is the i, j-th element of the submatrix R̃st of R̃, which is

similarly decomposed as W in (4.4). The value of κstuv
i does not depend on the

order of s, t, u and v: it can be calculated with

κssss
i = µis − 7µ2

is + 12µ3
is − 6µ4

is

κssst
i = −µitµis + 6µitµ

2
is − 6µitµ

3
is

κsstt
i = −µisµit + 2µisµ2

it + 2µ2
isµit − 6µ2

isµ2
it

κsstu
i = 2µisµitµiu − 6µ2

isµitµiu

κstuv
i = −6µisµitµiuµiv, (4.6)

after recoding s, t, u and v to denote unique outcomes.
The mean and variance of Q involve the unknown vector µ, which should

be estimated by its maximum likelihood estimate µ̂ in applications.
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4.5 Testing for the presence of a random effect

The test proposed in Section 4.3 was motivated by heuristic arguments. These
arguments give a good impression of the type of alternative the test can be
expected to have good power against, but the alternative was not yet precisely
specified. In this section we present a fully specified alternative model from
which the goodness-of-fit test proposed in Section 4.3 can be derived as a score
test. This model explicitly lets observations which are close to each other in
covariate space have correlated residuals.

We propose to add an extra random effect zis to the linear predictor ηis for
each combination of observation i and outcome category s. Given the random
effect, the distribution of Y becomes

P(Yi = s | z) =
eηis+zis

∑
g
t=1 eηit+zit

(4.7)

where z = (z11, . . . , zn1, . . . , z1g, . . . , zng)′ is the vector of all random effects. We
do not specify a distributional form for z, but we specify its first and second
moments as E(z) = 0 and Var(z) = τ2R, where τ2 is an unknown parameter.
The matrix R = UU′ here is the same matrix as defined in section 4.4. It can be
written R = Ig ⊗ R where R = UU′. Let Rst

ij be the element of R corresponding
to the covariance of the random effects zis and zjt. If U is a smoothing matrix,
Rst

ij is positive when s = t and the distance dij is small, and zero otherwise.
For example, when using a uniform kernel with bandwidth h, Rst

ij > 0 if s = t
and there is a k such that dki ≤ h and dkj ≤ h; Rst

ij is zero otherwise. If τ2 >

0, the presence of the random effect causes extra variation in the regression
residuals with a covariance structure similar to R: correlated random effects
cause correlated residuals. Therefore, if τ2 > 0 observations which are close to
each other tend to have correlated residuals.

The null hypothesis that the multinomial logistic regression model fits well
can be phrased in terms of the above random effects model (4.7) as

H0 : τ2 = 0,

which implies z = 0, against the one-sided alternative

HA : τ2 > 0.

We test H0 with a score test. An advantage of score testing is that it only
requires fitting the model under the null hypothesis, not under the alternative
hypothesis. This is an important advantage for our HA, because the random
effects model (4.7) is difficult to fit. Furthermore, the score test is by definition
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a one-sided test, so problems due to a null hypothesis on the boundary of the
parameter space do not arise.

The score test statistic is the derivative of the loglikelihood `(τ2) with re-
spect to τ2 at τ2 = 0. If nuisance parameters are present, as in this case the
model parameters β, the loglikelihood is replaced by the profile loglikelihood
ˆ̀(τ2) = `(τ2, β̂(τ2)). We have

∂ ˆ̀

∂τ2 =
∂`

∂τ2 +
∂`

∂β
· ∂β̂

∂τ2 .

As ∂`/∂β is zero if β = β̂, the score test statistic of the profile likelihood is sim-
ply the score test statistic of the ordinary likelihood with maximum likelihood
estimates of the nuisance parameters under the null plugged in.

The loglikelihood of the general model (4.7) is given by

`(τ2) = log
[
Ez

{
exp

( n

∑
i=1

g

∑
s=1

yis log{νis(z)}
)}]

, (4.8)

where νis(z) = P(Yi = s | z) and Ez denotes taking the expectation over z. In
Section 4.11 we calculate the derivative of this likelihood with respect to τ2 at
τ2 = 0, in the spirit of Le Cessie and van Houwelingen (1995), using a Taylor
approximation of νis(z) with respect to z at z = 0. This results in the score test
statistic

T =
∂ ˆ̀(0)
∂τ2 = 1

2 (y− µ̂)′R(y− µ̂)− 1
2 trace(RŴ). (4.9)

We see that the score test statistic in this model is equivalent to the test sta-
tistic proposed in (4.2), as, ignoring the constants, T is simply Q minus the
estimated expectation of Q.

This alternative construction of Q as a score test statistic gives interesting
insights in the power properties of the test. A score test is a locally most pow-
erful test (Cox and Hinkley, 1974) in the sense that it optimizes the slope of the
power function at the test value of τ2 = 0. It is therefore the optimal test to
use against the alternative model (4.7) when the value of τ2 is small. These al-
ternatives tend to have small, but non-zero values of the random effect z. The
goodness-of-fit test proposed in this paper is therefore the optimal test for de-
tecting a small, but consistent deviation from the model.

The random effects model of this section is interesting in its own right as
a general test for the existence of a random effect with a specified covariance
structure R, which may be any positive semi-definite matrix. This type of test
has many applications outside the context of goodness-of-fit testing, for exam-
ple in variance components analysis in genetics (Houwing-Duistermaat et al.,
1995) and in high-dimensional data analysis in genomics (Goeman et al., 2004).
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4.6 Connection to binary logistic regression

Here we show that for g = 2, when multinomial logistic regression becomes
binary logistic regression, the test in this paper is exactly the same as the
goodness-of-fit test of Le Cessie and van Houwelingen (1995), so that it is a
generalization of that test.

Take g = 2. Call R = UU′, W = W11, as defined in (4.4), and H =
WX(X′WX)−1X′. Call y1 = (y11, . . . , yn1)′, µ1 = (µ11, . . . , µn1)′, using the no-
tation of Section 4.2. Then the test statistic of Le Cessie and van Houwelingen
(1995) is given by

Q1 = (y1 − µ̂1)
′R(y1 − µ̂1)

To show that this test statistic is equivalent to the test statistic in this paper for
g = 2, remark that y − µ̂ = f ⊗ (y1 − µ̂1) where f = (1,−1)′. Combining this
with R = Ig ⊗ R, it follows that

Q = f′f⊗ (y1 − µ̂1)
′R(y1 − µ̂1) = 2Q1.

The test statistics are therefore equivalent.
To show that also the approximations to the distribution of the test statistic

are the same, we must show that also Q̃ = 2Q̃1, where

Q̃1 = (y1 − µ̂1)
′(I − H)′R(I − H)(y1 − µ̂1)

This can be shown by remarking that W = F ⊗W, where

F =
(

1 −1
−1 1

)
.

Writing X = I ⊗ X, remarking that F has generalized inverse F− = (1/4)F
and expanding the Kronecker products, we get H = (1/2)F ⊗ H, from which
(I −H)(y− µ) = f⊗ (I − H)(y1 − µ1). Finally, combining this with R = I ⊗ R,
the result Q̃ = 2Q̃1 follows. Therefore the two test statistics and the approxi-
mations to their distribution are completely equivalent in case of binary logistic
regression.

4.7 Simulation results

To check the adequacy of the gamma approximation to the distribution of Q in
a concrete case and to give an illustration of the power of the test, we conducted
a small simulation experiment (compare Le Cessie and van Houwelingen, 1995,
for the case g = 2).

We constructed a data set of 108 observations and three covariates x1, x2
and x3, each taking values 1, 0 and -1. The 108 observations were taken as
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TABLE 4.1: Fraction rejected for the goodness-of-fit test of this paper, based on 10,000 simulated
data sets under the null hypothesis (t = 0) and under alternatives with a quadratic effect
(t > 0).

alternative nominal test size α

0.10 0.05 0.01 0.005 0.001
t = 0 0.125 0.061 0.014 0.007 0.002
t = 1 0.243 0.148 0.046 0.026 0.009
t = 2 0.618 0.487 0.259 0.189 0.088
t = 3 0.882 0.800 0.581 0.485 0.300
t = 4 0.979 0.954 0.844 0.781 0.606

four replicates from each of the 27 possible combinations of the three covariate
values. We modelled the probabilities of three possible outcomes as in (4.1)
with

η1 = 2x1 + tx2
1

η2 = 2x2

η3 = 2x3

By varying the value of t we can generate outcomes both from the null hypoth-
esis that a multinomial logistic regression model in x1, x2 and x3 fits well, and
various alternative hypotheses.

We generated 10,000 multinomial outcome vectors Y from the model, taking
t = 0, 1, 2, 3 and 4. For each realisation of Y we fitted a multinomial logistic
regression model in x1, x2 and x3 and calculated the goodness-of-fit test statis-
tic Q, estimated its expectation and variance, and calculated the p-value using
the gamma approximation. The smoothing matrix U was constructed using a
uniform kernel with a bandwidth at the 25-th percentile of the distance distribu-
tion, which meant that each smoothed residual was the average of all residuals
at most

√
2 distance away. The results are given in table 4.1, rounded to three

decimal places.
Judging from this table, it seems that the gamma approximation to the dis-

tribution of the test statistic performs quite well, although it is slightly anti-
conservative. The rejection rates for t = 0 are close to the nominal α level. It
can also be concluded that the goodness-of fit test has good power for detecting
deviations from the null hypothesis. It would be interesting to look at the effect
of different choices of the bandwidth and to study different alternatives, but we
lack space in this paper.
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TABLE 4.2: The p-values of the goodness-of-fit test for the liver enzyme data, with different
choices of bandwidth (measured as percentiles of the distribution of distances between obser-
vations).

model bandwidth (percentile)
10 20 30 40 50 60 70

non-log-transformed 0.004 0.001 0.000 0.000 0.013 0.022 0.091
log-transformed 0.491 0.576 0.341 0.297 0.579 0.580 0.397

4.8 Application: liver enzyme data

We applied the goodness-of-fit test to a dataset of patients with liver disease
(Albert and Harris, 1987). This data set has 218 patients in four disease cate-
gories: acute viral hepatitis (57 patients), persistent chronic hepatitis (44), ag-
gressive chronic hepatitis (40) and post-necrotic cirrhosis (77). For each patient
the concentrations of three liver enzymes was measured: aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT) and glutamate dehydrogenase
(GLDH). All these variables had markedly skewed distributions. The data were
analyzed with a multinomial logistic regression model by Albert and Harris
(1987), but Lesaffre and Albert (1989) argued for a multinomial logistic regres-
sion model with log-transformed covariates.

We tested the fit of the model with AST, GLDH and ALT using the goodness-
of-fit test of this paper and kernel smoothing using a uniform kernel with band-
width equal to the 25-th percentile of the distribution of the distances between
observations. We found Q = 8.41 with EQ = 2.78 and sd(Q) = 1.27. On
a scaled chi-squared distribution with 9.52 degrees of freedom (gamma{4.76,
1.71}), this gave a p-value of 0.001, clearly indicating lack of model fit.
Log-transforming the covariates before fitting the model gives a clearly non-
significant p-value of 0.37.

To investigate the sensitivity of this result to the choice of the smoothing
method, we calculated the p-value for different choices of the bandwidth para-
meters (table 4.2). Bandwidth values are given as percentiles of the distribution
of distances between the observations. From table 4.2 it can be seen that the test
is quite robust to the choice of bandwidth.

There are various ways of making use of the flexibility of the goodness-of-fit
test of this paper for looking more closely into a more significant test result. One
is to break down the omnibus test for all variables to see which variables are re-
sponsible for the lack of fit. This can be done by using subsets of the original
covariates AST, ALT and GLDH for constructing the distance measure for use
by the test, testing whether the relationship between that subset of the covari-
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TABLE 4.3: Results of goodness-of-fit test of the liver enzyme data in which the distance measure
between observations depends on different subsets of the covariates. The table gives raw p-
values and multiplicity adjusted p-values from a closed testing procedure.

Distance based on p-value adjusted p-value
AST, ALT and GLDH 0.001 0.001
AST and GLDH 0.003 0.003
AST and ALT 0.001 0.001
GLDH and ALT 0.000 0.001
AST 0.000 0.003
GLDH 0.314 0.314
ALT 0.001 0.001

ates and the outcome has been adequately modelled. Taking all 23 − 1 subsets,
we can set up a closed testing procedure (Marcus et al., 1976) to control for mul-
tiple testing. In this procedure each subset of covariates is only tested when all
its supersets are significant (for example the subset {ALT} is only tested when
tests based on the subsets {AST, ALT}, {GLDH, ALT} and {GLDH, ALT, AST}
are all significant). In that case all tests can be performed at level α, while still
keeping the family-wise error rate at α (Marcus et al., 1976). The multiplicity
adjusted p-values (Dudoit et al., 2003) for this procedure are the maximum of
the p-values of the test itself and all supersets. These multiplicity-adjusted p-
values are never smaller than the p-value for the test for global lack of fit. We
performed these tests using kernel smoothing with a bandwidth at the 25-th
percentile of the distance distribution as above. The raw and multiplicity ad-
justed p-values are given in table 4.3. The lack of fit is most clear in ALT and
AST, while there is no evidence for lack of fit in GLDH. This is in line with the
analysis of Lesaffre and Albert (1989), who concluded that there was no real
need to log-transform GLDH.

Just as the test result can be split up in its component variables, it can be
split into its component outcome categories. The test statistic can be written as

Q =
g

∑
s=1

Qs

where Qs is the sum of the squared smoothed residuals r̃1s, . . . , r̃ns, correspond-
ing to outcome category s. We plotted the Qs, s = 1, . . . , 4 in figure 4.1, stan-
dardized to z-scores. From the plot we can see that the lack of fit is clear in
the residuals of categories 1, 2 and 3 (acute viral, persistent chronic and aggres-
sive chronic hepatitis), but that there is no clear evidence for lack of fit in the
residuals of category 4 (post-necrotic cirrhosis).
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FIGURE 4.1: Influence of the four outcome categories on the goodness-of-fit test result. Depicted
are the sum of squared smoothed residuals Qs of each outcome category s, standardized to
z-scores. The total goodness-of-fit test statistic is the sum of the unstandardized Qs-scores.

4.9 Discussion

Formal goodness-of-fit testing is important in model-building of the multino-
mial logistic regression model, because the fitted model is very difficult to visu-
alize. So far, however, only one goodness-of-fit test was available for this model
(Pigeon and Heyse, 1999), which stands in the tradition of the goodness-of-fit
test of Hosmer and Lemeshow (2000) for binary logistic regression. In this pa-
per we have presented a very different goodness-of-fit test based on a sum of
squared smoothed residuals, extending a test of Le Cessie and Van Houwelin-
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gen (1991). It has power against consistent patterns of non-linearity: observa-
tions close to each other in covariate space which deviate in the same direction.

To illustrate the power properties of the test, we have constructed a random
effects model for which the proposed test is optimal. Such a precise specifica-
tion of the alternative hypothesis against which the test is optimal clarifies the
type of lack of fit the test is directed against and therefore gives some insight
into its power properties. Tools were also provided to look more closely into a
significant test result.

Just like the test of Le Cessie and van Houwelingen (1995), the test pro-
posed in this paper has potential applications outside the goodness-of-fit test-
ing context, for example in genetics (Houwing-Duistermaat et al., 1995) and in
high-dimensional data analysis (Goeman et al., 2004). This paper allows these
applications to be generalized to the case of multinomial outcome variables.

4.10 Variance of the test statistic

We calculate the variance of Q̃ as given in (4.5). Write Q̃ = ∑
g
s=1 ∑

g
t=1 Qst, where

Qst = ∑n
i=1 ∑n

j=1 R̃st
ij (yis − µis)(yjt − µjt) for s, t = 1, . . . g. We will calculate the

g4 covariances of all Qst terms and sum them to find the variance of Q̃.
Define Sst

ij = (yis − µis)(yjt − µjt). Then Cov(Sst
ij , Suv

kl ) = 0 unless i = k and
j = l or i = l and j = k, due to the independence of the samples under the null
hypothesis. Therefore

Cov(Qst, Quv) = ∑
i

R̃st
ii R̃uv

ii Cov(Sst
ii , Suv

ii ) + ∑
i

∑
j 6=i

R̃st
ij R̃uv

ij Cov(Sst
ij , Suv

ij )

+ ∑
i

∑
j 6=i

R̃st
ij R̃uv

ji Cov(Sst
ij , Suv

ji ).

If i 6= j, E(Sst
ij ) = 0, for all s and t, so that

Cov(Sst
ij , Suv

ij ) = E[(yis − µis)(yiu − µiu)] · E[(yjt − µjt)(yjv − µjv)]

= Wsu
ii Wtv

jj ,

while if i = j,

Cov(Sst
ii , Suv

ii ) = E[Sst
ii Suv

ii ]− E[Sst
ii ]E[Suv

ii ] = E[Sst
ii Suv

ii ]−Wst
ii Wuv

ii .

Using these expressions,

Cov(Qst, Quv) =
n

∑
i=1

R̃st
ii R̃uv

ii κstuv
i +

n

∑
i=1

n

∑
j=1

R̃st
ij R̃vu

ji Wsu
ii Wtv

jj

+
n

∑
i=1

n

∑
j=1

R̃st
ij R̃uv

ji Wsv
ii Wtu

jj
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where κstuv
i = E(Sst

ii Suv
ii )−Wst

ii Wuv
ii −Wsu

ii Wtv
ii −Wsv

ii Wtu
ii . It is easy to check that

the value of κstuv
i does not depend on the order of s, t, u and v. Calculation of

the values of κstuv
i as given in (4.6) is straightforward but tedious.

Taking all covariances of the Qst terms together, we have

Var(Q̃) =
g

∑
s=1

g

∑
t=1

g

∑
u=1

g

∑
v=1

Cov(Qst, Quv).

The result (4.5) follows by rewriting
n

∑
i=1

n

∑
j=1

R̃st
ij R̃vu

ji Wsu
ii Wtv

jj = trace(R̃stWtvR̃vuWsu)

and
g

∑
s=1

g

∑
t=1

g

∑
u=1

g

∑
v=1

trace(R̃stWtuR̃uvWsv) = trace(R̃WR̃W).

4.11 Derivation of the test statistic

We derive the expression (4.9) for the score test statistic from the random effects
model (4.7). The likelihood L(τ2) = exp{`(τ2)} can be written

L(τ2) = Ez
[ n

∏
i=1

fi(z)
]
,

where fi(r) = exp{li(z)} and

li(z) =
g

∑
s=1

yis log{νis(z)}.

Compare (4.8). Note that fi(z) only depends on (zi1, . . . , zig). Therefore, Taylor
expanding L(τ2) with respect to z at z = 0 gives

L(τ2) = Ez

[ n

∏
i=1

fi(0) +
g

∑
s=1

n

∑
i=1

zis
∂ fi(0)

∂zis
∏
j 6=i

f j(0)

+
1
2

g

∑
s=1

g

∑
t=1

n

∑
i=1

ziszit
∂2 fi(0)
∂zis∂zit

∏
j 6=i

f j(0)

+
1
2

g

∑
s=1

g

∑
t=1

n

∑
i=1

∑
j 6=i

ziszjt
∂ fi(0)

∂zis

∂ f j(0)
∂zjt

∏
k 6=i,j

fk(0) + o(zz′)
]

=
n

∏
i=1

fi(0) +
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

Rst
ii

∂2 fi(0)
∂zis∂zit

∏
j 6=i

f j(0)

+
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

∑
j 6=i

Rst
ij

∂ fi(0)
∂zis

∂ f j(0)
∂zjt

∏
k 6=i,j

fk(0) + o(τ2).
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Using ∂ fi(z)
∂zis

= fi(z) ∂li(z)
∂zis

and ∂2 fi(z)
∂zis∂zit

= fi(z)
[

∂2li(z)
∂zis∂zit

+ ∂li(z)
∂zis

∂li(z)
∂zit

]
, this expres-

sion can be rewritten to

L(τ2) =
n

∏
i=1

fi(0)
[

1 +
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

Rst
ii

∂li(0)
∂zis∂zit

+
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

n

∑
j=1

Rst
ij

∂li(0)
∂zis

∂lj(0)
∂zjt

]
+ o(τ2)

Because ∂`(0)
∂τ2 = 1

L(0)
∂L(0)
∂τ2 , the score function at τ2 = 0 is

∂`(0)
∂τ2 =

1
2

[ g

∑
s=1

g

∑
t=1

n

∑
i=1

Rst
ii

∂2li(0)
∂zis∂zit

+
g

∑
s=1

g

∑
t=1

n

∑
i=1

n

∑
j=1

Rst
ij

∂li(0)
∂zis

∂lj(0)
∂zjt

]

The result (4.9) follows from ∂li(0)
∂zis

= yis − µis and ∂2li(0)
∂ziszit

= −Wst
ii .
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