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CHAPTER 3

Testing Association of a Pathway
with Survival

Abstract

A recent surge of interest in survival as the primary clinical endpoint of mi-
croarray studies has called for an extension of the Global Test methodology
(Goeman et al., 2004) to survival. We present a score test for association of the
expression profile of one or more groups of genes with a (possibly censored)
survival time. Groups of genes may be pathways, areas of the genome, clus-
ters from a cluster analysis or all genes on a chip. The test allows one to test
hypotheses about the influence of these groups of genes on survival directly,
without the intermediary of single gene testing. The test is based on the Cox
proportional hazards model and is calculated using martingale residuals. It is
possible to adjust the test for the presence of covariates. We also present a di-
agnostic graph to assist in the interpretation of the test result, visualizing the
influence of genes. The test is applied to a tumour data set, revealing pathways
from the Gene Ontology database that are associated with survival of patients.
The global test for survival has been incorporated into the R-package globaltest
(from version 3.0), available from http://www.bioconductor.org.

3.1 Introduction

A microarray experiment typically results in many thousands of measure-
ments, each relating to the expression level of a single gene. Single genes, how-
ever, are often not the primary theoretical focus of the researcher, who might be

This is a pre-copy-editing, author-produced version of an article accepted for publication in
Bioinformatics following peer review. The definitive publisher-authenticated version : J. J. Goeman,
J. Oosting, A. M. Cleton-Jansen, J. Anninga, and J. C. van Houwelingen (2005). Testing association
of a pathway with survival using gene expression data. Bioinformatics 21(9), 1950–1957 is available
online at: http://dx.doi.org/10.1093/bioinformatics/bti267
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Chapter 3. Testing Association of a Pathway with Survival

more interested in certain pathways or genomic regions that are suspected to
be biologically relevant.

For this reason we have introduced the Global Test for groups of genes (Goe-
man et al., 2004), which allows the unit of analysis of the microarray experiment
to be shifted from the single gene level to the pathway level, where a “pathway”
may be any set of genes, e.g. chosen using the Gene Ontology database or from
earlier experiments. For every pathway, the Global Test can test (with a single
test) whether the expression profile of that pathway is significantly associated
with a clinical variable of interest. This allows researchers immediately to test
theoretical hypotheses on the clinical importance of certain pathways. Even
when such hypotheses are not directly available from biological theory or past
research, the Global Test can significantly reduce the multiple testing problem,
because there are typically much fewer pathways than genes.

In the original publication of the Global Test, the clinical variable could be
either a continuous measurement or a 0/1 group indicator. Recently, however,
there has been a surge of interest in survival time of patients as the primary
clinical outcome in a microarray experiment. Many studies focus on prediction
of survival, e.g. in breast cancer Van ’t Veer et al. (2002), Van de Vijver et al.
(2002) and Pawitan et al. (2004) and in lung cancer Wigle et al. (2002) and Beer
et al. (2002). Other studies use multiple testing methods to find genes which
are associated with survival (Jenssen et al., 2002).

The present paper extends the Global Test methodology to survival out-
comes. It allows the researcher to test whether the expression profile of a given
set of genes is associated with survival. More precisely, it tests whether individ-
uals with a similar gene expression profile tend to have similar survival times.
A significant pathway may be a mix of genes which are upregulated for pa-
tients with short survival time, genes which are downregulated for the same
patients, and other genes that show no association with survival at all.

The test of the present paper is based on the Cox proportional hazards
model. Therefore, it avoids the requirement of many analysis strategies to
choose an arbitrary cut-off (e.g. five years survival), but uses all survival in-
formation that is present in the data. Technically, the test is derived from the
goodness-of-fit test of the Cox model by Verweij et al. (1998). The original
Global Test was derived in a similar way from a goodness-of-fit test for gen-
eralized linear models (Le Cessie and van Houwelingen, 1995). The two Global
Tests are therefore highly comparable and allow quite similar interpretations.

In this paper we also show how the test can be adjusted for the presence of
covariates (possible confounders or competing risk factors). This allows better
use of the Global Test in observational studies. Furthermore, it allows the re-
searcher to establish that the microarray really adds something to the predictive
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Chapter 3. Testing Association of a Pathway with Survival

performance of known risk factors, showing that it is not simply an expensive
way to measure risk factors already known. It also allows the test to be used on
more complex designs than a simple one-sample follow up study. The approach
will be illustrated on a data set of 17 osteosarcoma patients, testing pathways
from the Gene Ontology database.

The new Global Test method presented in this paper has been incorporated
into the R-package globaltest, version 3.0, which is available from BioConductor
(Gentleman et al., 2004, www.bioconductor.org).

3.2 The model

The Global Test exploits the duality between association and prediction. By
definition, if two things are associated, knowing one improves prediction of
the other. Hence, if survival is associated with gene expression profile, this
means that knowing the gene expression profile allows a better prediction of
survival than not knowing the expression profile.

With this idea in mind we make a prediction model for prediction of sur-
vival from the gene expression measurements. The most convenient choice for
such a model is the Cox proportional hazards model, which is the most widely
used model for survival data in medical research. The Cox model uses the full
empirical distribution of the survival times and it can handle censored data, i.e.
samples for which the exact survival time is not known, but for which it is only
known that the patient is still alive at a certain moment (Klein and Moeschber-
ger, 1997). The use of the Cox model requires a true follow-up study design,
meaning that patients were not selected on their survival times in any way.
If such a patient selection was made, the methods of this paper may not be
appropriate: in Van ’t Veer et al. (2002), for example, where a selected group
of early metastases was compared to a selected group which was at least five
years metastasis-free, the original Global Test for a 0/1 outcome is preferable
(Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements for the
group of genes of interest is given by the n × m matrix X with elements xij,
where n is the sample size and m the number of genes in the group. Suppose
also that there is a number p ≥ 0 of covariates for each patient, which we put
in an n× p data matrix Z with elements zij. It will be assumed that p < n, but
no such restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997, chapter
8) assumes the hazard function at time t for individual i to relate to the covari-
ates as

hi(t) = h(t)eci+ri , (3.1)
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where h(t) is an unknown baseline hazard function and ci + ri is a linear func-
tion of the covariates, which is split up in our case into ri = ∑m

k=1 βkxik, relating
to the gene expressions, and ci = ∑

p
l=1 γlzil , relating to the covariates. The haz-

ard function determines the survival function Si(t), which gives the probability
that individual i survives up to time t, through

Si(t) = e−Hi(t),

where Hi(t) =
∫ t

0 hi(s) ds is the cumulative hazard up to time t.
In this model showing that the gene expressions are associated with survival

is equivalent to rejecting the null hypothesis

H0 : β1 = . . . = βm = 0,

that all regression coefficients relating to the gene expressions are zero. If m
were always small, we could test H0 using classical tests which were developed
for the Cox model. These tests do not work for general m, however (for an
overview of these classical tests see Klein and Moeschberger, 1997, section 8.2).

To obtain a test that works whatever the value of m, we put an extra as-
sumption on the regression coefficients β1, . . . , βm. We assume that the regres-
sion coefficients of the genes are random and a priori independent with mean
zero and common variance τ2. The null hypothesis now becomes simply

H0 : τ2 = 0,

so that the dimension of H0 does not depend on m anymore. Note that the
coefficients γ1, . . . , γp of the covariates are not assumed to be random.

The Cox model with random coefficients is an empirical Bayesian model
and is closely linked to penalized likelihood methods. It should be noted that
we have not assumed a specific distributional form for the regression coeffi-
cients; the derivation of our test is invariant to the choice of the shape of this
distribution. Choosing a Gaussian distribution results in a Cox ridge regression
model (Pawitan et al., 2004); choosing a double exponential distribution results
in a LASSO model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior distribution of
the regression coefficients as the focus of the power of the test. The test that will
be derived in the next section will be a score test, which has the property that
it has optimal power against alternatives with small values of the parameter
τ2. This property stems from the fact that the score test is equivalent to the
likelihood ratio test in the limit where the alternative τ2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ2 tend to have small values of ∑ β2

i ,
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so that the test can be said to be optimal on average against alternatives with
small values of ∑ β2

i . These alternatives are mainly alternatives which have
all or most regression coefficients non-zero but small. The test can therefore
be said to be optimized against alternatives in which all or most genes have
some association with the outcome. This alternative is precisely the situation in
which we are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coefficients with a more
complex covariance structure. If the vector β = (β1, . . . , βm)′ is assumed a pri-
ori to have mean zero and covariance matrix τ2Σ, the resulting test of H0 would
be optimal against alternative with small values of β′Σβ. The standard choice
of Σ = Im distributes power equally over all directions of β, while a different
choice will have more power against deviations from H0 in directions which
correspond to the larger eigenvalues of Σ. This property could be exploited in
the derivation of a test for a specific purpose or to incorporate prior knowledge.
In this paper we shall restrict ourselves to Σ = Im.

3.3 Derivation of the test

Testing association of a group of genes with survival can therefore be done by
testing H0 in the empirical Bayesian model (3.1) with random regression coef-
ficients. In this section we will derive the test statistic for this test. A score test
for the same model has also been studied by Verweij et al. (1998) in the context
of testing the fit of the Cox model. Their derivation was based on the partial
likelihood of the Cox model. In this paper we give an alternative derivation
based of the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters except τ2

are known, i.e. the regression coefficients γ1, . . . , γp and the baseline hazard
function h(t) are known. In this simplified situation it will be relatively easy to
derive the score test, which can be generalized to the situation with unknown
parameters later in this section.

The basic score test

By definition a score test is based on the derivative of the log-likelihood at the
value of the parameter to be tested. Suppose for each individual i we have
observed a survival time ti and a status indicator di, where di = 1 indicates
death (the patient died at ti) and di = 0 censoring (the patient was lost to follow-
up at ti). The loglikelihood of τ2 in the model (3.1) is

L(τ2) = log
{

Er
[

exp
( n

∑
i=1

fi(ri)
)]}

, (3.2)
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where
fi(ri) = di[log{h(ti)}+ ci + ri]− H(ti)eci+ri

is the contribution to the loglikelihood of individual i for fixed ri, and H(t) =∫ t
0 h(s) ds is the cumulative baseline hazard.

From the assumptions on the distribution of β1, . . . , βm we can derive the
distribution of r = (r1, . . . , rn)′, the vector of the linear effects of the gene ex-
pressions. This r has mean zero and covariance matrix τ2R, where R = XX′.
For the general likelihood (3.2) and an r of this form, Le Cessie and van Houwe-
lingen (1995) have used a Taylor approximation to derive that

∂L(0)
∂τ2 =

1
2

(
∑

i
Rii

∂2 fi(0)
(∂ri)2 + ∑

i,j
Rij

∂ fi(0)
∂ri

∂ f j(0)
∂rj

)
.

For the Cox model this becomes

∂L(0)
∂τ2 =

1
2

(
∑
i,j

Rij(di − ui)(dj − uj)−∑
i

Riiui

)
, (3.3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by individual i up to
time ti. Note that di − ui is the martingale residual of individual i at time ti
(Klein and Moeschberger, 1997, section 11.3).

For known H(t) and known c1, . . . , cn, the expression (3.3) can be standard-
ized to have unit variance and used as the score test statistic. When these para-
meters are unknown, we must plug in maximum likelihood estimates for them
under the null model in which τ2 = 0. Standardizing the score test is tradition-
ally done using the Fisher Information, calculated from the second derivatives
of the loglikelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance of the test
statistic.

Using estimated baseline hazard

We shall first plug in the estimate for the cumulative hazard H(t), but still as-
sume that γ1, . . . , γp and hence c1, . . . , cn are known. As the maximum likeli-
hood estimate of H(t) we can take the Breslow estimator (Klein and Moesch-
berger, 1997, section 8.6)

Ĥ(ti) = ∑
tj≤ti

dj

∑tk≥tj
eck

, i = 1, . . . , n,

and write ûi = eci Ĥ(ti), i = 1, . . . , n.
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Using twice the estimated derivative of the log-likelihood (3.3) as the test
statistic and writing it in matrix notation we get the test statistic

T = (d− û)′R(d− û)− trace(RÛ) (3.4)

where d = (d1, . . . , dn)′, û = (û1, . . . , ûn)′ and Û = diag(û), an n× n diagonal
matrix with Ûii = ûi.

The derivation of estimates for the mean and variance of T is quite technical
and will be given in the separate subsection on page 41. The estimated mean is

Ê(T) = −trace(RPP′), (3.5)

where P is an n× n matrix with i, j-th element

pij = 1{ti≥tj}
djeci

∑k 1{tk≥tj}eck
,

where 1{·} indicates an indicator function. Each pij is the increment of the cu-
mulative hazard incurred by individual i at time tj, so that ∑i pij = dj and
∑j pij = ûi.

The estimated variance of T is

V̂ar(T) =
n

∑
j=1

pj
′ diag(tjt′j), (3.6)

where pj is the j-th column of P and tj = (I − 1pj
′)[diag(R) + 2R(mj − pj)].

The diag of a square matrix is the column vector of its diagonal elements; 1 is
an n-vector of ones, and mj is the j-th column of the matrix M = (D − P)B,
where D = diag(d) is a diagonal matrix with Dii = di and B is an n× n matrix
with elements bij = 1{ti<tj}. The elements mij of M can be interpreted as the
estimated martingale residual of individual i just before time tj.

For purposes of interpretation it is often easier to take

T0 = (d− û)′R(d− û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP′) and
V̂ar(T0) = V̂ar(T), so that it leads to the same standardized test statistic:

Q =
T − ÊT
V̂ar(T)

=
T0 − ÊT0

V̂ar(T0)
.
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Using estimated regression coefficients

In general the regression coefficients γ1, . . . , γp of the covariates are not known
but must be estimated. Replacing γ1, . . . , γp by their maximum likelihood esti-
mates will still give a valid score test for H0, but with a different distribution of
the test statistic. We use the following approximation to this distribution which
is derived by Verweij et al. (1998).

The estimated martingale residuals d− ũ based on the estimated γ̂1, . . . , γ̂p
can be approximated in a first order Taylor approximation by

d− ũ ≈ (I −V)(d− û) (3.7)

with V = WZ(ZWZ′)−1Z′, W = Û − PP′ and Z the n × p data matrix of the
fixed covariates. Therefore the unstandardized test statistic T0 can be approxi-
mated as

T0 ≈ (d− û)′R̃(d− û)

with R̃ = (I − V)′R(I − V). The expectation of T0 can be estimated using the
formulae in section 3.3. They are approximately

ÊT0 ≈ trace(R̃W)

and

V̂ar(T0) ≈
n

∑
j=1

pj
′ diag(t̃j t̃′j),

with t̃j = (I − 1pj
′)[diag(R̃) + 2R̃(mj − pj)]. To evaluate ÊT0 and V̂ar(T0) we

replace the parameter values of γ1, . . . , γp by their estimates. Simulations in
Verweij et al. (1998) show this approximation to be quite accurate.

The distribution of the test statistic

There are two ways to calculate the p-value of the test: by asymptotic theory
and by permutation arguments. We outline both options and their advantages.

In equation (3.3) it will be shown that the centered test statistic T − ÊT can
be written as a linear combination of n martingales. Therefore by the martingale
central limit theorem (Andersen et al., 1993) the distribution of the standardized
Q converges to a standard normal distribution as n → ∞. This fact motivates
the use of a normal approximation to the distribution of Q for calculating the
one-sided p-value (see also simulation results by Verweij et al., 1998).

For small samples the asymptotic distribution may not be reliable enough.
An alternative is to calculate Q for all, or a random sample of many (10,000),
permutations of the martingale residuals of the n samples. This randomly re-
distributes the vectors of gene expression measurements over the individuals,
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while keeping the relationship between the fixed covariates and survival the
same. The resulting distribution is another approximation to the null distribu-
tion of Q, which can be used to find the p-value. Use of the permutation null
distribution requires the assumption that there is no relationship between the
gene expressions on the one hand and the covariates and the censoring mecha-
nism on the other hand: permuting destroys these associations. This makes the
permutation null distribution less useful when covariates are present.

The main advantage of the permutation-based p-value is that it gives an
“exact” p-value, which is guaranteed to keep the alpha level, provided enough
permutations are used. This is especially useful for smaller sample sizes, where
we may not trust the normality of the distribution of Q. The advantage of
the asymptotic theory p-value—aside from being much quicker to calculate—
is that it has more power: the permutation based p-value does not use the full
null distribution, but the null distribution conditional on the set of observed
martingale residuals. With this conditioning the test loses some power, as the
set of observed residuals is informative on the parameter τ2.

Counting process calculations

In this technical section we calculate the mean and variance of the test statistic
T under the null hypothesis for known c1, . . . , cn but estimated H(t), as given
in (3.5) and (3.6). For this we will use a counting process notation (Andersen
et al., 1993; Fleming and Harrington, 1991). The strategy we will use is com-
mon in martingale theory: we write our test statistic T as the limit of a process
T(t) as t → ∞ and decompose T(t) into a martingale and a compensator. The
limit of the compensator is the estimator of the mean of T and the limit of the
predictable variation process is the estimate of the variance. For an alternative
derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))′ be the vector of at-risk processes of indi-
viduals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))′ the vector of their counting
processes. Then N has intensity process Λ = CY(t)H(t), where C is a diag-
onal matrix with Cii = eci , i = 1 . . . , n. Write N(t) = 1′N(t), the total counting
process.

In the counting process notation, d = N(∞) and û = Λ̂(∞) with Λ̂(t) =∫ t
0 V(s)1′ dN(s), where V = CY(1′CY)−1. Wherever possible we will drop the

dependence on time for convenience of notation.
Note that the compensator of Λ̂ is Λ, which is also the compensator of N.

Write M̂ = N − Λ̂. Then d − û = M̂(∞) and M̂(t) =
∫ t

0 (I − V1′) dN is a
martingale vector. Subtracting the intensities and writing M = N−Λ,

M̂(t) =
∫ t

0
(In − Y1′) dM.
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The statistic T is T(∞), with

T(t) = trace[RM̂M̂′ − R diag(Λ̂)].

From the integration by parts formula (Fleming and Harrington, 1991, theorem
A.1.2) it follows that, almost surely,

M̂M̂′ =
∫ t

0
M̂− dM̂′ +

∫ t

0
dM̂ (M̂−)′

+
∫ t

0
(I − 1V′)diag(dN)(I −V1′) (3.8)

where M̂−(s) = M̂(s−) is a predictable process. Using (3.8) and some linear
algebra we can say that, almost surely,

T(t) =
∫ t

0
(diag(R)′ + 2(M̂−)′R−V′R)(I −V1′) dN−

∫ t

0
V′R dN.

Because
∫ t

0 (I − V1′) dN is a martingale and diag(R)′ + 2(M̂−)′R − V′R is
predictable, the compensator of the process T is −

∫ t
0 V′R dΛ, which we can

estimate by

ÊT = −
∫ t

0
V′R dΛ̂ = −

∫ t

0
V′RV1′ dN

The process S = T − ÊT is a martingale. It can be written in the following way

S =
∫ t

0
(diag(R)′ + 2(M̂− −V)′R)(I −V1′) dM (3.9)

as the integral of the predictable process vector

K = (diag(R)′ + 2(M̂− −V)′R)(I −V1′)

over the martingale vector M. The predictable variation process of S is therefore
〈S〉 =

∫ t
0 diag(KK′)′ dΛ, which we can estimate by

V̂ar(T) =
∫ t

0
diag(KK′)′ dΛ̂ =

∫ t

0
diag(KK′)′V1′ dN

To evaluate ÊT and V̂ar(T) we use

pij =
∫ ∞

0

eci Yi
Y

dNj = 1{ti≥tj}
eci dj

∑tk≥tj
eck

.

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj}di −
n

∑
k=1

1{tk<tj}pik

Writing P for the n× n matrix with elements pij and M for the n× n matrix
with elements mij, the results (3.5) and (3.6) follow.
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3.4 Interpretation

When testing a specific pathway for a specific sample of patients, it is usually
not satisfactory to only report the resulting p-value. In this section we will
discuss some issues related to interpretation of the test result. We show how to
calculate and visualize the influence of individual genes on the test result. We
also propose an diagnostic which can be used when many genes are associated
with survival, to assess whether a gene group is exceptional. We only give the
theory here; for an example see section 3.5.

Similarity

The test of this paper is derived from the Cox model in the same way as the
Global Test in Goeman et al. (2004) was derived from the generalized linear
model. The functional form of the test statistic is therefore quite similar, the
martingale residuals taking the place of the residuals from the generalized lin-
ear model in that paper. Much of the interpretation of the test statistic is also
quite similar.

Central to all interpretation of the test outcome is the matrix R = XX′ which
figures prominently in the formula for the test statistic. It is an n × n matrix
which can be seen as describing the similarities in expression profile between
the samples. The entry Rij is relatively large if samples i and j have a relatively
similar expression profile over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized test
statistic T0 as

T0 =
n

∑
i=1

n

∑
j=1

Rij(di − ûi)(dj − ûj),

which is the sum over the term-by-term product of the entries of R and the
entries of the matrix (d − û)(d − û)′. The i, j-th entry of the latter matrix is
large whenever samples i and j have similar martingale residuals. The test
statistic T0 is, therefore, relatively large whenever the entries of the matrices
R and (d − û)(d − û)′ are correlated, which happens when similarity in gene
expressions tends to coincide with similarity in the martingale residual. Hence,
the test statistic is large if individuals who die sooner than expected tend to be
relatively similar in their gene expression profile and, similarly, the individuals
who live longer than expected also tend to be similar in their gene expression
profile.

Gene plot

To investigate the influence of individual genes on the test outcome we can
rewrite R = ∑m

i=1 xix′i, where xi is the i-th column of X (i = 1, . . . , m), contain-
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ing the measurements for the i-th gene. The unstandardized test statistic then
becomes

T0 =
m

∑
i=1

Ti

where Ti = (d − û)′xix′i(d − û) is exactly the unstandardized ‘global’ test sta-
tistic for testing whether the ‘pathway’ containing only gene i is associated with
survival. The test statistic of a pathway is therefore a weighted average of the
test statistics for the m genes in the pathway.

In a plot we can visualize the influence of the individual genes by showing
the values Ti − ÊTi, with their standard deviation under the null hypothesis
(calculated using the methods of section 3.3). An example of such a ‘gene plot’
is given in figure 3.1. In this plot, large positive values indicate genes with
a large (positive or negative) association with survival and hence genes that
make the pathway more significant. As Ti ∝ ‖xi‖2, genes with more expression
variance tend to carry more weight in the pathway.

Note that the visualized values of the gene influences Ti in the gene plot are
essentially univariate: they only depend on the gene i itself. The multivariate
nature of the test statistic Q is therefore not visible in the gene plot. It comes
in because, although T0 is the sum of the Ti and ÊT0 is the sum of the ÊTi, the
variance of T0 is generally not the sum of the variances of the Ti.

The comparative p

The global test tests the null hypothesis that the pathway is not associated with
survival. This null hypothesis only depends on the observed survival and on
the genes in the pathway itself: the result is absolute, not relative to the other
pathways.

However, there are situations in which one would be more interested in a
relative result. If the global test on the set of all genes is very significant, we can
usually expect a sizeable proportion of the genes on the array to be associated
with survival. In that case we can expect many pathways to show association
with survival as well. This will hold especially for the larger pathways, which
will often include some of the genes which are associated with survival.

In such situations we propose a diagnostic called “comparative p”, which
can help interpret the p-value that comes out of the test. The comparative p for
a pathway of size m with p-value p̄ is defined as the proportion of randomly
selected sets of genes of the size m that have an global test p-value smaller than
or equal to p̄. To calculate this comparative p we draw 1,000 or 10,000 random
gene sets from the array without replacement.

The comparative p fulfills a role different from the p-value and should only
be used alongside it. It is a diagnostic, not a p-value in the statistical sense.
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It tells whether the p-value of a group of genes is much lower than could be
expected from a gene group of its size in this data set.

3.5 Application: osteosarcoma data

We applied the above methodology to a data set of 17 osteosarcoma patients
from the Leiden University Medical Center.

Data

A genome wide screen of gene expression in osteosarcoma was done using
Hu133a gene expression chips (Affymetrix, Santa Clara, CA). This chip con-
tains 22,283 genes. A successful hybridization was obtained for 17 osteosar-
coma biopsies. Three of the samples were amplified, labelled and hybridized
in duplicate, one sample in triplicate. These technical replicates were averaged
after gene expression measures were obtained, which was done using gcrma
(Wu et al., 2004). No pre-selection of genes was made.

The 17 patients were followed up to 10 years. Median survival time was 40
months. Available covariates included the presence of metastasis at diagnosis,
histology and response to neo-adjuvant chemotherapy. However, as treatment
was not uniform over all patients, these covariates were not prognostic and we
did not consider them.

Pathway information was obtained from the Gene Ontology (GO Ashbur-
ner et al., 2000) database, using the BioConductor (Gentleman et al., 2004) GO
package (Zhang, 2004). Pathways that were considered of specific interest were
cell cycle (GO: 7049), DNA repair (GO: 6281), Angiogenesis (GO: 1525), Skeletal
development (GO: 1501) and Apoptosis (GO: 6915).

Analysis

When testing pathways of interest, it is advisable to also test the ‘pathway’ of
all genes on the chip for association with survival. This shows whether the
overall gene expression profile is associated with survival. The results for the
pathway of all genes and for the five pathways of primary interest are given in
table 3.1. We calculated the p-value using both the asymptotic theory method
and the permutation method (using 100,000 permutations).

The permutation p-values tend to be somewhat more conservative than the
asymptotic p-values, reflecting both the slight loss of power for the permutation
test and a deviation from asymptotic normality due to the small number of
samples.

In this data set the expression profile over the set of all genes on the chip is
significantly associated with survival. Note that this does not mean that every
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TABLE 3.1: Global Test results for the Osteosarcoma data and the pathways of primary inter-
est. The p-values were calculated using the permutation and asymptotic method. The final
column gives the comparative p (see section 3.4) .

pathway genes Q perm. p asym. p comp. p
All genes 22283 2.446 0.0120 0.0072 —
Cell cycle 1115 2.957 0.0042 0.0016 0.006
DNA rep. 271 3.123 0.0006 0.0009 0.011
Angiogen. 66 0.917 0.1429 0.1795 0.774
Skel. dev. 185 0.002 0.4133 0.4992 0.998
Apoptosis 656 2.533 0.0093 0.0057 0.210

gene on the chip is associated with survival. It means that the patients who die
early are relatively similar to each other in terms of their overall expression pro-
file, while patients who live long are likewise relatively similar. It also means
that there is some potential for prediction of survival based on gene expression,
even before any pre-selection of genes. The cell cycle, DNA repair and apopto-
sis pathways are clearly associated with survival, while there is no evidence for
this association in angiogenesis and skeletal development.

Because the test for all genes was significant, we expect a sizeable propor-
tion of genes to be associated with survival, so that many pathways will be
associated with survival. The comparative p gives a measure whether the p-
value found for the pathway is unusually low given that it is a pathway of its
size from this data set (see section 3.4). For the results in table 3.1 10,000 gene
sets were sampled for each pathway. We used the asymptotic p-values for the
comparative p calculations.

We conclude that cell cycle and DNA repair are more clearly associated than
could be expected from a gene set of its size in this data set: only around 60 out
of 10,000 random gene sets of size 1,115 have a lower p-value than the cell cycle
pathway. The expression profile of the apoptosis pathway is clearly associated
with survival, as can be seen from the p-values; however it is not exceptional in
that: more than 20% of random gene sets have a lower p-value than apoptosis.
The Skeletal development pathway is interesting in its own way: it is clearly not
associated with survival (p = 0.5) and this is quite exceptional for a pathway of
this size in this data set: only around 20 in 10,000 random gene sets had a higher
p-value. The skeletal development pathway seems to include uncommonly few
genes which are associated with survival.

It can occur in some data sets that the set of all genes is not significant, while
some pathways (eg. DNA repair) are significant. This occurs in table 3.1 for
example if we use FDR-adjusted p-values with a threshold of 0.01 (Benjamini
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and Yekutieli, 2001). The result for all genes can be seen as a false negative
test result. However, another valid interpretation is that prediction of survival
without biological pre-selection of genes is uncertain, but if it is known a priori
that the genes in the DNA repair pathway are likely to be informative, some
prediction of survival is possible.

Mining the GO database

If it is not a priori known which pathways are of specific interest, one can also
use a data-mining approach, trying to find those pathways which are most sig-
nificantly associated with survival.

For the osteosarcoma data we explored the Gene Ontology database. Of all
GO terms, 4,032 matched at least one gene on the hu133a chip. We excluded
all terms which matched only one gene, because the interesting single genes
pathways would already have been found in single gene testing. This left 3,080
pathways, which we all tested for association with survival. We used the as-
ymptotic p-value, because due to the randomness in the permutation p-value it
does not give a unique list. Table 3.2 gives the ten GO-terms with the smallest
p-values.

To adjust for multiple testing, one can use the Benjamini and Hochberg FDR
(Benjamini and Yekutieli, 2001). All 10 pathways in table 3.2 are significant on
an FDR of 0.05. The p-values of the pathways tend to have positive correlations
because of pathway overlap and pathways being subsets of other pathways. A
FDR-controlling procedure that would make use of these dependencies would
potentially gain much power in this situation.

TABLE 3.2: Global Test results for the Osteosarcoma data on 3,080 Gene Ontology pathways,
showing the top 10 FDR-adjusted p-values.

pathway # genes Q FDR-adjusted p
GO:0015630 21 4.306 0.016
GO:0019932 8 4.176 0.016
GO:0045192 2 4.148 0.016
GO:0045595 17 4.060 0.016
GO:0042518 7 4.054 0.017
GO:0000158 8 3.993 0.018
GO:0040008 9 3.944 0.018
GO:0010033 10 3.844 0.023
GO:0006479 13 3.791 0.026
GO:0030111 9 3.766 0.026

The literature confirmed the importance of many of these GO-terms in tu-
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morigenesis. For example, both microtubule cytoskeleton (GO:0015630) and
phosphorylation of Stat3 protein (GO:0042518) are known to be involved in
growth and differentiation signaling, processes which are often disturbed in
tumors. Second-messenger mediated signaling (GO:0019932) is a superset of
the Stat3 pathway. Protein amino acid methylation (GO:0006479) is involved
in protein degradation. Alterations in the stability of proteins is often a hall-
mark of tumors and may affect the aggressiveness of a tumor and thereby the
patient’s survival.

A diagnostic plot

To learn more about the outcome of the Global Test than just the p-value one
can use the diagnostic plot described in section 3.4. We illustrate the use of this
plot on the microtubule cytoskeleton pathway, which emerged on top of table
3.2.

The gene plot for the 21 genes in this pathway is given in figure 3.1. Each
bar gives the global test statistic for testing whether the gene set containing
only that single gene is associated with survival. The test statistic for the whole
pathway is a weighted average of the bars of the genes (see section 3.4). The
colour of the bars distinguishes between positive and negative association with
survival.

Figure 3.1 shows that only four out of 21 genes in the microtubule cytoskele-
ton pathway show a significant association with survival on their own. Further,
the pathway is a mix of genes which are positively and negatively associated
with survival. Looking more closely at the gene plot can be a basis for inves-
tigating more deeply into the structure of the pathway, perhaps to formulate
hypotheses on interesting subpathways.

3.6 Discussion

It has often been remarked that the key to successful microarray data analysis
lies in an intelligent integration of advanced statistical methods with the vast
domain of biological knowledge that is already available. The global test for
survival presented in this paper is a step forward in this direction, combining
known biological pathway information with the statistical sophistication of the
Cox proportional hazards model.

Due to its complexity the Cox model has been slow to find its way to mi-
croarray methodology. Most methods require survival to be reduced to a two-
valued variable, using an arbitrary cut-off, resulting in unnecessary loss of in-
formation. By using the Cox model for survival, gene expression analysis can
improve performance and also become better connected to traditional medical
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FIGURE 3.1: Gene plot of microtubule cytoskeleton pathway, showing the sorted global test
statistics for testing the 21 single gene pathways which make up the pathway.

statistics.
Pathway information is available from many databases and is essential for

the understanding of the outcomes of a microarray experiment. The Global
Test methodology allows researchers to look directly for important pathways,
without first having to go through single gene testing. This may lead to a better
use of pathway information and more directly interpretable results.
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