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CHAPTER 2

Testing Association of a Pathway
with a Clinical Variable

Abstract

This paper presents a global test to be used for the analysis of microarray data.
Using this test it can be determined whether the global expression pattern of
a group of genes is significantly related to some clinical outcome of interest.
Groups of genes may be any size from a single gene to all genes on the chip
(e.g. known pathways, specific areas of the genome or clusters from a clus-
ter analysis). The test allows groups of genes of different size to be compared,
because the test gives one p-value for the group, not a p-value for each gene.
Researchers can use the test to investigate hypotheses based on theory or past
research or to mine gene ontology databases for interesting pathways. Multiple
testing problems do not occur unless many groups are tested. Special attention
is given to visualizations of the test result, focussing on the associations be-
tween samples and showing the impact of individual genes on the test result.
An R-package GlobalTest is available from http://www.bioconductor.org.

2.1 Introduction

The popularity of microarray technology has led to a surge of new statisti-
cal methods aimed at finding differentially expressed genes. A sophisticated
methodology has been developed to counter the multiple testing problem that
occurs when testing thousands of genes simultaneously (Benjamini and Hoch-
berg, 1995; Benjamini and Yekutieli, 2001; Dudoit et al., 2003; Storey, 2002;
Tusher et al., 2001).

This is a pre-copy-editing, author-produced version of an article accepted for publication in
Bioinformatics following peer review. The definitive publisher-authenticated version: J. J. Goeman,
S. A. van de Geer, F. de Kort, and J. C. van Houwelingen (2004). A global test for groups of genes:
testing association with a clinical outcome. Bioinformatics 20(1), 93–99 is available online at: http:
//dx.doi.org/10.1093/bioinformatics/btg382
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Chapter 2. Testing Association of a Pathway with a Clinical Variable

This paper looks at the problem of finding differentially expressed genes
from a different point of view. It presents a global test that can be used to
determine whether some pre-specified group of genes is differentially expressed.
This allows the unit of analysis to be shifted from individual genes to groupings
of genes. The question addressed is whether the gene expression pattern over
the whole group of genes is related to a clinical outcome. It does not matter
for the test whether the group consists of up- or downregulated genes or is a
mixture of both. The clinical outcome may be a group label or a continuous
measurement.

Often researchers who conduct microarray experiments have one or more
specific groups of genes that they are especially interested in, e.g. certain path-
ways or areas of the genome. Even if this is not the case, many pathways are
at least partially known from the scientific literature and it could sometimes
be more worthwhile to test a limited number of pathways or gene ontology
classes than an enormous number of individual genes. Other potentially inter-
esting groups of genes to be tested include the clusters from a cluster analysis
or all genes on the chip.

The first part of the paper presents the mathematical details, starting with
the empirical Bayesian generalized linear model on which the test is based.
Connections to other methods (especially prediction methods) are elaborated.

In the second part two elaborate applications are presented, showing dif-
ferent aspects of the test. One is the well-known public dataset by Golub
et al. (1999) with Affymetrix arrays of patients with Acute Lymphoic Leukemia
(ALL) and Acute Myeloid Leukemia (AML). Here the test is applied to the set
of all genes to show an enormous difference in overall expression pattern. The
second is a smaller in-house dataset with oligonucleotide arrays of cell lines, of
which some were exposed to a heat shock. The test is applied to two groups of
genes associated with heat shock.

In the applications, special attention is given to visualizations of the test re-
sult which make the results easier to interpret for the researcher. These include
graphs to search for outlying samples and diagnostic plots to judge how much
each individual gene contributes to a significant test result for the group.

2.2 The data

Proper normalization is very important for a meaningful analysis of microarray
data. The problem of normalization generates an enormous amount of litera-
ture (e.g. Dudoit et al., 2002; Huber et al., 2002; Kerr et al., 2000) and is fast
becoming a statistical specialization by itself. In this paper we will simply as-
sume that the data have been normalized beforehand in a way that fits the ex-
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perimental design and that possible confounding effects of array, dye etc. have
been removed as well as the experimental design allows. However, missing
values are allowed (see section 2.8).

We assume we have normalized gene expression measurements of n sam-
ples for p genes. Of these p genes, there is a subgroup of m (1 ≤ m ≤ p) genes,
which we want to test. It is important that the clinical outcome was not used
in the selection of these m genes. Define X = (xij) as the n × m data matrix
containing only of the m genes of interest. Note that we follow the statisti-
cal convention to use the rows for the samples and the columns for the genes,
instead of the transposed notation which is common in microarray literature.
Define Y as the clinical outcome (an n× 1 vector). Usually Y will be a 0/1 group
label (e.g. AML vs. ALL), but it may also be a continuous measurement.

2.3 The model

There is a close connection between finding differentially expressed genes and
predicting the clinical outcome. If a group of genes can be used to predict the
clinical outcome, the gene expression patterns must differ for different clinical
outcomes. This duality will be used to derive the test.

Modelling the way in which Y depends on X, we adopt the framework of
the generalized linear model (McCullagh and Nelder, 1989), which includes
linear regression and logistic regression as special cases. In this model there is
an intercept α, a length p vector of regression coefficients β and a link function
h (e.g. the logit function), such that

E(Yi|β) = h−1(α +
m

∑
j=1

xijβ j
)
. (2.1)

Here β j is the regression coefficient for gene j (j = 1, . . . , m).
Testing whether there is a predictive effect of the gene expressions on the

clinical outcome is equivalent to testing the hypothesis

H0 : β1 = β2 = . . . = βm = 0,

that all regression coefficients are zero. It is not possible to test this hypothesis
in a classical way (with β non-stochastic) because m may be large relative to n.
In this case there are too few degrees of freedom.

However, it is possible to test H0 if it is assumed that β1, . . . , βm are a sample
from some common distribution with expectation zero and variance τ2. Then a
single unknown parameter τ2 determines how much the regression coefficients
are allowed to deviate from zero. The null hypothesis becomes simply

H0 : τ2 = 0.
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Note that the choice of τ2 Im (with Im the m × m identity matrix) as the covari-
ance matrix of the stochastic vector β is not imperative. It is the most conve-
nient choice which will yield a test that treats all genes on an equal footing.
Any other m × m covariance matrix may be used to replace Im, if desired, re-
sulting in a different test with power against different alternatives. For example
a different diagonal matrix can be taken to reflect prior beliefs in the greater re-
liability of certain genes. Assuming positive correlations between the elements
of β results in more power against alternatives where they all coefficients of β

have the same sign.
The model (2.1) with β random may be looked at in various ways. Firstly,

the distribution of β can be seen as a prior, with unknown shape and with a
variance depending on an unknown parameter. Viewed in this way the model
(2.1) is an empirical Bayesian model.

A second interpretation is to view the model as a penalized regression
model, in which the estimated coefficients are shrunk towards a common mean.
The loglikelihood of Y can be written

loglik(Y, β) = loglik(Y|β) + loglik(β),

where the first term on the right is the likelihood of the ordinary generalized
linear model and the second term is known as the penalty. Well-known ex-
amples of penalized regression include ridge regression (Hoerl and Kennard,
1970), which arises when β is normally distributed and the LASSO (Tibshirani,
1996), which is a variant where β has a double exponential distribution. Ridge
regression with a logistic link function has been described by Le Cessie and van
Houwelingen (1992) and applied on microarray data by Eilers et al. (2001) with
promising results.

There is a third interpretation which will be the basis for the test in the next
section. For this we write ri = ∑j xijβ j, i = 1, . . . , n. Then ri is the linear
predictor, the total effect of all covariates for person i. Let r = (r1, . . . , rn), then
r is a random vector with E(r) = 0 and Cov(r) = τ2XX′. The model (2.1)
simplifies to

E(Yi|ri) = h−1(α + ri). (2.2)

This is a simple random effects model, in which each sample has a random ef-
fect that influences its outcome. The covariance matrix between the random
effects is known and is determined by the gene expression levels. If τ2 > 0,
two samples i and j with similar gene expression patterns have correlated ran-
dom effects ri and rj and therefore have a greater probability of having similar
outcomes Yi and Yj than samples with less similar expression patterns.
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2.4 The score test

A test for testing H0 in the model (2.2) is discussed in Le Cessie and van Houwe-
lingen (1995) and Houwing-Duistermaat et al. (1995). The marginal likelihood
of Y in this model depends on only two or three parameters. These are α and
τ2 and sometimes, depending on the specific model, an extra dispersion pa-
rameter (e.g. the residual variance σ2 of the outcome Y in an ordinary linear
regression model).

In this section we first suppose that α and the dispersion parameter are
known (the case where they are unknown is dealt with in section 2.6). In this
case a score test for τ2 = 0 can be calculated by taking the derivative of the
loglikelihood with respect to τ2 at τ2 = 0, divided by the standard deviation of
this derivative under H0. This yields the test statistic

T =
(Y − µ)′R(Y − µ)− µ2trace(R)[

2µ2
2trace(R2) + (µ4 − 3µ2

2) ∑i R2
ii
]1/2 ,

where R = 1
m XX′ is an n × n matrix proportional to the covariance matrix of

the random effects r, µ = h−1(α) is the expectation of Y under H0 and µ2 and
µ4 the second and fourth central moments of Y under H0.

It will be more convenient to use the equivalent, much simpler test statistic

Q =
(Y − µ)′R(Y − µ)

µ2

which has expectation
E(Q) = trace(R) (2.3)

and variance
Var(Q) = 2trace(R2) +

(µ4

µ2
2
− 3

)
∑

i
R2

ii. (2.4)

The statistic Q is a quadratic form which is non-negative, because R is non-
negative definite. It has been argued by Le Cessie and van Houwelingen (1995)
that for a good asymptotic approximation to the distribution of Q is a scaled
chi-squared distribution cχ2

ν, where c is a scaling factor and ν is the number of
degrees of freedom. This has been corroborated using simulations in Le Cessie
and van Houwelingen (1995). Equating the mean and variance of cχ2

ν and Q
yields c = var(Q)/[2E(Q)] and ν = 2[E(Q)]2/var(Q).

Note that the statistic Q and its distribution are easy to calculate for high-
dimensional data because they only involve the small n × n “covariance” ma-
trix R = 1

m XX′ between the samples and never the potentially large m × m
covariance matrix 1

n X′X between the genes. Testing a large number of genes
therefore never gives computational problems.
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2.5 Properties of the test

There are two ways of rewriting the test statistic Q to gain a better intuitive
understanding of the test. The first can be used to show the influences of the
genes, the second the influence of the samples. These two decompositions of
Q will be the basis of various illustrative graphs in sections 2.9 and 2.10. Fur-
thermore, the fact that the test is a score test also gives the test a nice optimality
property.

For the first interpretation rewrite

Q =
1
m

m

∑
i=1

1
µ2

[X′
i(Y − µ)]2

where Xi (i = 1, . . . , m) is the n× 1 vector of the gene expressions of gene i. Note
however that the expression Qi = 1

µ2
[X′

i(Y − µ)]2 is exactly the test statistic
that would have been calculated for a group of genes consisting only of the i-th
single gene in the group of interest. Therefore the test statistic Q for a group
of m genes is just the average of the statistics Q1, . . . , Qm, calculated for the m
single genes that the group consists of.

Each Qi can be written as (a multiple of) the squared covariance between the
expression pattern of the gene and the clinical outcome. Because the averaging
is done at this squared covariance level, genes with large variance have much
more influence on the outcome of the test statistic Q than genes with small vari-
ance. This is a nice property in the context of microarray analysis, because low
variance genes are generally seen as uninteresting. This low variance usually
implies that there is little biological variation in these genes.

For a different look at the test, the statistic Q can be written in the following
way

Q =
1

µ2

n

∑
i=1

n

∑
j=1

Rij(Yi − µ)(Yj − µ) (2.5)

as the sum over all terms of the Hadamard (term-by-term) product of the ma-
trices R and (Y − µ)(Y − µ)′. The matrix R = 1

m XX′ is the “covariance” of the
gene-expression patterns between the samples, and the matrix (Y − µ)(Y − µ)′

is the “covariance” matrix of the clinical outcomes of the samples. The statistic
Q has a high value whenever the terms of these two matrices are correlated.
This happens when the covariance structure of the gene-expressions between
samples resembles the covariance structure between their outcomes. The score
test can therefore be viewed as a test to see whether samples with similar gene-
expression patterns also have similar outcomes.

An interesting property of a score test in general is that it maximizes the
average power against all alternatives where the true value of the parameter is
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small. Equivalently, in this case it has optimal power against the range of alter-
natives Rt = {‖β‖2 ≤ t2} as t2 → 0. As Rt is an m-ball it contains relatively
many alternatives with all β’s nonzero but small, therefore the test is focussed
mostly on detecting alternatives where many genes play a part. This is a desir-
able property, because the test is designed to say something about the group of
genes as a whole.

2.6 Some technical adjustments

In the previous section it was assumed that α (and therefore µ) was known and
that the dispersion parameter (if any) was also known. In practice this is never
true. In this section some adjustments of the test are presented which correct
for using estimated parameters.

First suppose that µ is unknown, but µ2 and µ4 are known. It is easily veri-
fied that

Y − µ̂ = (I − H)(Y − µ),

where H = 1
n 11′ is the hat matrix for estimation of the mean µ of Y and 1 is a

length n column vector of ones. Therefore calculating Q using µ̂ in stead of µ

results in calculating

Q =
1

µ2
(Y − µ̂)′R(Y − µ̂)

=
1

µ2
(Y − µ)′(I − H)R(I − H)(Y − µ).

The mean and variance of Q are therefore simply given by (2.3) and (2.4) with
R replaced by R̃ = (I − H)R(I − H). This is equivalent to centering the genes
so that the average value of each gene over the samples is set to zero.

Correction for estimation of µ2 is not so easy. Simply replacing µ2 by its
estimate µ̂2 would generally lead to a test that is too conservative, because the
numerator (Y − µ̂)′R(Y − µ̂) and the denominator µ̂2 = 1

n (Y − µ̂)′(Y − µ̂) of
Q are positively correlated, so that the variance of Q is overestimated if this
dependency is not taken into account.

Corrections for the variance of Q are available from Houwing-Duistermaat
et al. (1995) for a the linear regression model (continuous clinical outcome) and
for the logistic regression model (two groups). For a linear regression Q =
(Y − µ̂)′R(Y − µ̂)/σ̂2, which has E(Q) = trace(R̃) and variance

Var(Q) =
2

n + 1
[
(n− 1)trace(R̃2)− trace2(R̃)

]
.
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For the logistic regression model Q = (Y − µ̂)′R(Y − µ̂)/[µ̂(1− µ̂)]. This also
has E(Q) = trace(R̃) and its variance can be approximated by

Var(Q) ≈ 1− 6µ + 6µ2

µ(1− µ)

[ n

∑
i=1

R̃2
ii −

1
n

trace2(R̃)
]

+ 2trace(R̃2)− 2
n− 1

trace2(R̃). (2.6)

2.7 Handling small sample size

If the sample size is small the asymptotic formulae used to calculate the p-
value may not be accurate. In this case a different approach could be to find
the p-value using a permutation method. The empirical distribution of Q can
be found by calculating Q for all permutations of the outcome Y or a random
sample from these. The permutation method also works for other distributions
of Y than normal or Bernoulli.

A drawback of the permutation method is that it is hard to demonstrate low
p-values. Showing that a p-value is lower than 10−7 for example, needs at least
107 permutations. Often if the sample size is small, the total number of permu-
tations is not large enough to attain very low significance levels. The minimum
sample size needed to attain α = 0.05 can be calculated as 2 × 4 samples if Y
takes two values and 5 samples if Y is continuous. The permutation method is
illustrated in section 2.9.

It is important to note that using permutations one calculates the distribu-
tion of Q under H0 conditional on the set of observed outcomes in Y. For Y
a group label this means that the sizes of the groups are taken as fixed; for a
continuous outcome each value in the observed vector Y is assumed to occur
exactly once. Therefore the permutation version is strictly speaking a different
test (although asymptotically equivalent). The expectation and variance of Q
under the null hypothesis and the p-value can therefore be systematically dif-
ferent, although in practice the difference is usually small except for very small
samples.

2.8 Handling missing values

Missing values for some genes in the data set are not a problem. If some genes
with missing values are too important to be left out of the analysis, the missing
values can be handled by simply imputing the mean expression value of the
same gene from the other samples (or the K-nearest samples). This allows the
matrix R̃ of covariance between the gene expression patterns of the samples to
be calculated using all available information. A nice property of this imputation
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is that genes or samples with many missing values get a small variance and are
therefore automatically given less weight in the analysis.

2.9 Application: AML/ALL

The first application is the well-known data set by Golub et al. (1999). These
data were collected to for the purpose of distinguishing between Acute Myeloid
Leukemia (AML) and Acute Lymphoic Leukemia (ALL) on the basis of gene ex-
pression. There are microarray data of 7,129 genes from 27 ALL and 11 AML
patients. A preselection of genes was made in the same manner as in earlier
publications on this data set (Eilers et al., 2001; Golub et al., 1999), truncating
very high and very low expression levels and removing genes whose truncated
expression showed no variation. This left 3,571 genes. There were no missing
values. This data set will be used here to illustrate the use of the score test on all
genes. The null hypothesis to be tested here is whether AML and ALL patients
are different with respect to their overall gene expression pattern.

Test result The ALL patients were coded 0 and the AML patients 1. Now
µ̂ = 11/38, which was used to calculate

Q ≈ 13.2.

Under the null hypothesis H0 the distribution has E(Q) ≈ 2.88 and s.e.(Q) ≈
0.78, calculated using (2.6). This results in a rejection of H0 with a p-value ≈
1.6× 10−14, calculated on the cχ2

ν-distribution with c ≈ 0.11 and ν ≈ 27.0.
This shows that AML and ALL patients do indeed differ enormously with

respect to their overall gene expression signature. The extremely low p-value
here can be seen as an explanation why many people using many different
methods have been able to find good discriminating rules between AML and
ALL on the basis of these data.

The permutation method Because the p-value is so extreme, it is prudent to
check the distribution of Q empirically. We do this by randomly taking 100,000
permutations of the vector Y of outcomes, calculating Q and making a his-
togram. The result is given in figure 2.1, with the observed value of Q in the
real data set indicated by an arrow. The empirical mean and standard devia-
tion are Q̄ ≈ 2.96 and s.e.(Q) ≈ 0.80, which are not very far from the theoretical
values.

The empirical p-value is the number of times the Q for the permuted Y
is as least as large as the ‘true’ Q, divided by the number of permutations. In
principle, because there are about 3.3× 1029 possible permutations of Y, this can
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FIGURE 2.1: Histogram of values of the test statistic Q for 100,000 permutations of Y, compared
with the observed value.

be calculated to almost any desired accuracy. But taking only 105 permutations
(about 10 seconds on a normal computer) we can only say that the p-value is
most probably below 10−5, although figure 2.1 suggests that it is much lower
than that.

The Regression and Checkerboard Plots It has already been explained using
(2.5) that the test statistic Q evaluates the resemblance between the covariance
between the gene expressions of all pairs of samples and the covariance be-
tween their clinical outcomes. This comparison might also be done by inspec-
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tion. Figure 2.2 is an image of the symmetric matrix R̃, with white denoting
that an entry is larger than the median off-diagonal element and black that it is
smaller.
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FIGURE 2.2: Checkerboard plot for the AML/ALL dataset, showing the matrix R̃ of covariance
between the gene expressions of all pairs of samples. White = above median; black = below
median.

From this image it is easy to recognize that the true outcomes Y have been
sorted, starting with the 27 ALL patients and continuing with the 11 AML pa-
tients. The block-like structure of the matrix R̃ strongly resembles the block
structure of the covariance matrix between the outcomes Y. This can be used as
an illustration of the low p-value that was found.
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This method of visualization works best when the outcome is a group in-
dicator. For continuous outcomes, two images of R̃ and S = (Y − µ̂)(Y − µ̂)′

might be placed side by side for comparison, perhaps with the samples sorted
by their outcomes to simplify the structure of the two matrices. In that case a
multi-color plot might be preferred over a black and white one.

Some interesting things can be learned from the plot in figure 2.2. In the
first place it can be seen from the image that the AML group is much more
homogeneous than the ALL group. Another thing that can be noticed is that
some arrays do not seem to fit very well into the block-like structure. The ALL
arrays #2 and #12 for example (second and twelfth row/column) seem at least
as similar to the AML group as to the ALL group. These arrays could have been
wrongly classified or be of poor quality.

A second way of visualizing the test is by plotting the off-diagonal entries
of R against those of S = (Y − µ̂)(Y − µ̂)′. This is a way of representing Q,
because Q is proportional to the covariance between the plotted entries and can
therefore be represented by the slope of the regression line of the off-diagonal
entries of R on those of S. This type of plot is also very useful when the outcome
Y is continuous.

For the AML/ALL dataset, the plot is shown in figure 2.3. Because Y only
takes the values 0 and 1, the matrix S takes only three values. From left to
right on the x-axis, these are ALL versus AML , ALL versus ALL and AML
versus AML. The AML/AML comparisons have a higher covariance between
outcomes than the ALL/ALL comparisons because there are fewer AML (so
that Yi − µ̂ = 27

38 for the AML and Yi − µ̂ = − 11
38 for the ALL). The large value

of Q is seen from the steep slope of the regression line.
Using this type of plot the possibly outlying arrays can be investigated fur-

ther. In figure 2.4 all points corresponding to pairs of arrays that involve array
#12 have been replaced by crosses. An extra dotted regression line is drawn for
reference, which is the least squares fit only through the crosses. This way it
can be seen that ALL array #12 actually resembles the AML arrays more than it
resembles the other ALL arrays. This is not suggestive of bad data quality (in
which case #12 would resemble none of the arrays very well) so it either indi-
cates a misclassification of #12, or perhaps it might be that ALL is quite diverse
and some forms are genetically closer to AML.

2.10 Application: Heat Shock

The second dataset contains six replicates each of a cell line treated with a
heat shock (hs+) and untreated (hs−). These samples were labelled with two
different fluorescent dyes and co-hybridized in hs+/hs− pairs on six spotted
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FIGURE 2.3: Regression plot I: visualization of Q as a regression between off-diagonal entries
of S and R̃.

oligonucleotide microarrays containing 20,160 genes. Normalization on the 12
samples was carried out using the variance stabilizing method VSN (Huber
et al., 2002).

In this dataset two groups of genes were of specific interest. One was a
group of 27 genes which were classified for biological process as heat shock
response genes by the Gene Ontology Consortium (Ashburner et al., 2000,
www.geneontology.org). Another group of 17 genes belonged to different bio-
logical processes but their gene names referred to heat shock.

The test on the total group of all 20,160 genes gave a non-significant result
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FIGURE 2.4: Regression plot II: visualization of Q as a regression between off-diagonal entries
of S and R̃. Crosses involve array #12

(p = 0.94). Looking at all genes, it could not be proved that any gene was
affected: the overall expression pattern was not notably different between the
hs+ and hs− groups. However, using the global test on the selected genes
gave a different picture. The global test on the 27 genes known to function in
heat shock response had an empirical p-value of 0.017. The expression pattern
of this group of genes was therefore different between the two experimental
conditions. The other group of 17 genes with heat shock’ in the name only had
a non-significant p-value of 0.25.

As an informal comparison, we did an analysis using SAM (Tusher et al.,
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2001). On the optimal false discovery rate, which was 11%, we could only find
a small set of nine differentially expressed genes. This set contained only a
single gene from the group of 27 heat shock genes (Gene NM 002155 in figure
2.5).

A gene diagnostics plot When testing a small group of genes for differential
expression of the group, it is often interesting to look at the single genes, even if
the group is the main focus of interest. A group of genes can yield a significant
test result because a few genes are very much differentially expressed or be-
cause most genes are a little differentially expressed. This can be an interesting
biological difference. In other cases single genes within the group may be of
interest in themselves.

The influence of single genes on the test result can be evaluated in a Gene
Influence Plot, as shown for the group of 27 genes in figure 2.5. The bars in the
figure indicate the values of Qi for each gene (see section 2.5). Each Qi gives
the value of the test statistic for a group of genes consisting only of that single
gene. A line is drawn for reference to indicate the expected length E(Qi) of the
bar under the null hypothesis.

From the figure it can be seen which genes contribute positively to a high
value of the test statistic and which do not contribute. The difference in ex-
pected contribution arises because genes which have greater variance among
all arrays are naturally expected to also have a greater discriminating power. In
this data set we can see that really only a minority of 5 or 6 genes out of 27 is
clearly above the reference line and that the majority of the genes do not show
any effect.

2.11 Discussion

The test presented in this paper is a useful new tool for the analysis of microar-
ray data. It allows researchers to use prior information on groupings of genes
and to specifically investigate groups of genes that interest them from a biolog-
ical point of view.

In cases where there is a single candidate group of interest, the global test
opens the door to real inference: testing hypotheses about biological mecha-
nisms based on theory or past research. In other cases, when researchers have
many candidate pathways available for example from the Gene Ontology data-
base (Ashburner et al., 2000, www.geneontology.org) or programs like GenMAPP
(www.genmapp.org), the global test can be used to find promising pathways. Al-
ternatively, the clusters from a cluster analysis can be assigned a p-value to
mark how much the cluster is co-regulated with the clinical outcome.
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FIGURE 2.5: Gene influence plot for the Heat Shock data. High bars indicate influential genes.
Reference line is the expected influence under the null hypothesis.

Test results for groups of different sizes are fully comparable. However,
when many groups of genes are to be tested, multiple testing procedures come
back into play (Benjamini and Hochberg, 1995). Nested groups may be tested
without adjustments to the α-level. Always keep in mind that groups of genes
may never be chosen with reference to the clinical outcome.

Furthermore, using the test on all genes could be a useful preliminary data
quality check. If the test is not significant, samples with a similar clinical out-
comes do not have very similar gene expression patterns. In this case it is un-
likely that there are many genes highly differentially expressed and it is un-
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likely that a good classification rule can be found on the basis of all genes. Be-
cause of the close connection of the global test to penalized regression methods,
the p-value that results from the test can be used as a quality label for the clas-
sification rule found with these methods.
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