

Cover Page

Universiteit Leiden

The handle <http://hdl.handle.net/1887/20955> holds various files of this Leiden University dissertation.

Author: Djuardi, Yenny

Title: Development of immune responses in early life : a longitudinal study in Indonesia

Issue Date: 2013-06-12

Chapter 5

Maternal and child cytokine relationship is not altered by cytokine gene polymorphisms: A longitudinal study of young children in Indonesia

Manuscript in preparation for submission

**Yenny Djuardi^{1,2}, Taniawati Supali¹, Heri Wibowo¹,
Bas T Heijmans³, Eline P Slagboom³, Jeanine J Houwing-
Duistermaat⁴, Erliyani Sartono², Maria Yazdanbakhsh²**

¹Department of Parasitology, Faculty of Medicine, University of Indonesia,
Jakarta, Indonesia

²Laboratory of Parasitology, Leiden University Medical Center, Leiden,
The Netherlands

³Molecular Epidemiology, Department of Medical Statistics and
Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands

⁴Medical Statistics, Department of Medical Statistics and Bioinformatics,
Leiden University Medical Center, Leiden, The Netherlands

Abstract

Background: The development of immune responses in early life is influenced by the interaction between environmental and genetic factors. Our previous study on young infants showed a close association between maternal and child's cytokine responses. We have now addressed the question how this association evolves over time and the contribution of genetic polymorphisms to this association.

Methods: TH₁ (IFN- γ), TH₂ (IL-5, IL-13), pro- (TNF- α) and anti-inflammatory (IL-10) cytokines in mitogen-stimulated whole blood culture were measured from mothers during pregnancy and from their children aged 2, 5, 12, 24, and 48 months. Cytokine gene polymorphisms were determined (or investigated) from blood samples of paired mothers and children.

Results: High production of maternal IL-10, TNF- α and IFN- γ was significantly associated with higher levels of the corresponding cytokines in their children at 2 months of age (baseline/T0), however these associations decreased in magnitude with time. Using an additive genetic model, maternal IFN- γ gene polymorphism, rs3181032, was associated with child cytokine levels at T0 (β : -0.30, 95%CI: -0.58, -0.01) but this relationship disappeared with time (β : 0.01, 95%CI: 0.002, 0.03). Maternal IL-10 rs4579758 was not associated with child's cytokine at T0, however this association changed over time to become positively and significantly associated child's cytokine (β : 0.005, 95%CI: 0.0002, 0.01). The child's genotype for rs13215091 had a significant effect on TNF- α (β : -0.01, 95%CI: -0.02, -0.004) at later ages but not at T0. In the final models including measured gene polymorphisms, maternal cytokines were the strongest determinant of child cytokines.

Conclusion: Independently from gene polymorphism, child's cytokine production was significantly associated with maternal cytokine production at 2 months of age. Maternal cytokine during pregnancy, which could be a proxy for environmental factors for the child showed its highest impact at early age, without any influence from genetic factors.

Keywords: cytokines, single nucleotide polymorphism, pregnant mother, early life

Introduction

There has been an increasing number of studies looking at immune responses in early life and its modulation by environmental factors, which may predispose an individual to certain diseases in later life. Several studies have shown parallels in cellular immune responses between mothers and their children [1–5]. The mechanisms behind this have not been elucidated. Moreover, all these studies were conducted in developed countries, where infectious diseases are better controlled while allergic and autoimmune diseases are increasingly affecting the population. Specifically, the relationship between in utero exposure, early immune profiles after birth and the development of immune responses in early childhood has not been examined comprehensively in populations where chronic parasitic infections are endemic. In this regard, our previous study in a helminth-endemic area found that maternal cytokines (IL-10, IFN- γ) were associated with infant's cytokines at the age of 2 months, even after taking into account several environmental factors including maternal parasitic infections [6], in agreement with the findings from the studies in industrialized countries where maternal and child cytokine responses appear to be tightly linked.

Interaction between environment and genetic factors will determine the phenotypic outcome of an individual. To our knowledge, there has been no study looking at the changing pattern of the mother-child cytokine relationship over time and whether genetic factors can modify this relationship. To investigate this, we measured child' cytokine responses to mitogen at 5 time points, starting around 2 months and up to 4 years of age and examined the relationship with maternal cytokine responses during pregnancy. We genotyped single nucleotide polymorphisms (SNPs) from mothers and children and asked whether they modified the cytokine relationship of mother and child.

Methods

Study population

This study is part of the longitudinal study of children living in a peri-urban area in Bekasi District, West Java province, Indonesia. Children were followed up at 5 time points: 2 (T0), 5 (T5), 12 (T12), 24 (T24) and 48 (T48) months of age. Among all participants, there were 126 pairs of pregnant

mothers in second or third trimester and their children who had both cytokine measurements and genotyping data. All mothers provided written informed consent for themselves and their children. This study was approved by the Ethical Committee Faculty of Medicine University of Indonesia.

Whole blood culture and cytokine measurement

Whole blood culture and stimulation was performed as described previously [6]. Briefly, heparinized venous blood was diluted 1:10 with RPMI-1640 medium (added with 1mM pyruvate and 2mM glutamate), followed by incubation with phytohaemmaglutinin (PHA; 2 µg/ml; Wellcome Diagnostics, Dartford, UK) in 37°C and 5% CO₂. The concentrations of interleukin (IL)-10 and TNF- α were measured in day 1 supernatant, whereas IL-5, IL-13, IFN- γ were measured in day 6 supernatant. Supernatants were kept frozen at -20°C and later on were thawed for the measurement with in-house multiplex bead-based assay (Luminex IS 100, Luminexcorp, Austin, TX, USA) for IL-10, TNF- α , IL-13 and IFN- γ , while ELISA was performed for measurement of IL-5 [6]. The detection limits for IL-10, TNF- α , IL-13, IFN- γ and IL-5 were 6.5 pg/ml, 1.7 pg/ml, 12.5 pg/ml, 3.6 pg/ml and 2 pg/ml, respectively. All cytokine levels below detection limit were given half of the threshold value.

DNA purification and genotyping

Genomic DNA was purified from 200 ul of whole blood samples from pregnant mothers and their children which was kept frozen at -20°C, using QIAamp DNA Mini kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol. The purified DNA was quantified using NanoDropTM 1000 Spectrophotometer (Thermo Fischer Scientific).

The source of cytokine gene polymorphisms for Indonesian living in West Java were derived from Malays population in Singapore Variation Genome Project (SGVP) database (<http://www.statgen.nus.edu.sg/~SGVP>)[7], with some additional single nucleotide polymorphisms (SNP)s which were not found in the database but were associated with phenotypes in Asian or other population. A set of gene polymorphisms spanning from 20 kb upstream and 10 kb downstream from each cytokine gene region were included in the genotyping. Pairwise tagging SNPs were obtained from Haplovew's Tagger program (<http://www.broad.mit.edu/mpg/tagger>), with selection based on

minor allele frequency (MAF) $\geq 5\%$ and r^2 threshold = 0.8. In total there were 10 SNPs for IL-10, 4 SNPs for TNF- α , 6 SNPs for IFN- γ , 6 SNPs for IL-5, and 8 SNPs for IL-13. In addition to these cytokine genes, 4 SNPs of RAD50 genes were added since they occupy the region between IL-4, IL-5 and IL-13 genes (TH₂ cytokine locus) in chromosome 5q31. RAD50 gene encodes a DNA repair enzyme; it was recently found to have locus control region at its 3'end and is shown to be associated with asthma and eczema [8,9]. Genotyping of all SNPs were performed using Sequenom MassARRAY iPLEX Platform. Quality control was performed by including $\pm 10\%$ of successfully genotyped samples and positive controls in the repeated measurement of failed samples. At the end all SNPs were genotyped successfully with call rates $\geq 90\%$. After exclusion of 2 mother-child pairs who had call rates $< 95\%$ and 5 pairs with Mendelian inconsistencies, data were available for a total of 119 pairs.

Statistical analysis

Cytokine levels displayed skewed distributions, therefore log (base 10) transformation was used for all cytokines except for IL-5 for which a square-root transformation was used. To investigate the association between mother and child's cytokine productions, we divided maternal cytokines based on median levels into high or low producer mothers [6] and by using this category we compared child cytokine levels at each time point. Minor allele frequency (MAF), deviations from Hardy-Weinberg Equilibrium (HWE) and pairwise linkage disequilibrium (LD) were calculated for each mother or child's SNP using Haplovew software (<http://www.broadinstitute.org>).

First we modeled the association between maternal cytokines and child cytokines. Next we modeled the maternal cytokines together with maternal or child genotype. We used linear mixed models to study the effect of maternal cytokines and maternal or child genotypes over time on child cytokines. Using a likelihood ratio test, we tested whether the simplerfirst order autoregressive heterogenous (for IL-10, TNF- α) structure could be used to model correlation over time instead of the unstructured (for IFN- γ , IL-5, IL-13) covariance structure. Each genotype was coded 0, 1, 2 for the increasing number of minor allele and all SNPs were tested using an additive genetic model. First we used model with main effects and one interaction term between time and SNP (i.e. linear change over time) for all SNPs. For significant SNPs, we continued with a larger model where time was included as a categorical variable to obtain more insight of the effect of the SNP over

time. Bonferroni corrections were done for multiple testing, where a *p* value was considered significant if < 0.0028 . All models were adjusted for child gender as an *apriori* factor for child's cytokine responses [10]. The statistical analyses were performed using IBM SPSS version 20.

Result

Characteristics of mother-child pairs

The flow diagram of the entire study was described elsewhere (*Djuardi et al-Chapter 2*). There were 119 mothers and children included in the present study, with 54% (64/119) children being males. Among 107 children with data on breastfeeding, 83 children (78%) received breastfeeding exclusively for 6 months, followed by 21 (19%) children who were partially breastfed (mixed with formula milk) and 3 (3%) children who were not breastfed. While all 119 mother and child pairs had genotype data, the number of children with cytokine data was different at each time point: 111 at T0, 95 at T5, 90 at T12, 88 at T24, 86 at T48. The median and interquartile range (IQR) of maternal cytokine levels were as follows: IL-10 (91.7, IQR:46.9 – 167.1 pg/mL), TNF- α (274.2, IQR:54.7 – 915.6 pg/mL), IFN- γ (152.5, IQR:43.7 – 425.5 pg/mL), IL-5 (859.8, IQR:295.0 – 1673.8 pg/mL) and IL-13 (243.5, IQR:75.7 – 627.2 pg/mL).

Minor allele frequency (MAF) and *p*-values for testing the null hypothesis that Hardy-Weinberg Equilibrium (HWE) holds for all SNPs of the mother-child pairs are shown in Supporting Table 1. All genotyped SNPs were in HWE with exception of the two IL-5 gene polymorphism, rs4143832 and rs17690122 (both in perfect linkage disequilibrium/ $r^2=1$), which slightly deviated from HWE ($p=0.039$). The other SNPs which showed perfect LD were rs1878672 and rs1800896 in IL-10 gene. Several SNPs which were in high LD ($r^2>0.8$) as indicated in Supporting Table 1. The five SNPs which were in perfect LD or high LD were excluded from the analyses.

Association between maternal and child cytokines over time

Table 1 shows that high cytokine producer mothers were associated with higher child cytokine production at T0 or 2 months of age, this is true for IL-10 (estimate: 0.31; 95%CI: 0.19, 0.43), IFN- γ (estimate: 0.26; 95%CI: 0.03, 0.49) and to a lesser extent for TNF- α (estimate: 0.19; 95%CI: 0.02, 0.36). With increasing age, the mother-child relationship for IL-10 disappeared

(interaction between maternal IL-10 with time, $p = 0.002$). TH₂-type cytokine productions (IL-5, IL-13) were not significantly associated between mother and child at baseline or over time (Table 1).

Table 1. Effect of maternal cytokine on child's cytokine production over time.

	Estimate (95% CI)§	P value
IL10		
Maternal cytokine	0.31 (0.19, 0.43)	<0.0001
Time*maternal cytokine	-0.009 (-0.01, -0.003)	0.002
TNF-α		
Maternal cytokine	0.19 (0.02, 0.36)	0.030
Time*maternal cytokine	-0.006 (-0.01, 0.002)	0.146
IFN-γ		
Maternal cytokine	0.26 (0.03, 0.49)	0.027
Time*maternal cytokine	-0.009 (-0.02, 0.002)	0.093
IL-5		
Maternal cytokine	1.51 (-2.58, 5.60)	0.466
Time*maternal cytokine	0.15 (-0.04, 0.34)	0.121
IL-13		
Maternal cytokine	0.07 (-0.08, 0.23)	0.348
Time*maternal cytokine	0.0002 (-0.008, 0.009)	0.954

Time units are 2, 5, 12, 24 and 48 months. Bold: p value < 0.05

§adjusted for child gender. *interaction with time

Association between maternal cytokines or genetic factors and child's cytokines over time

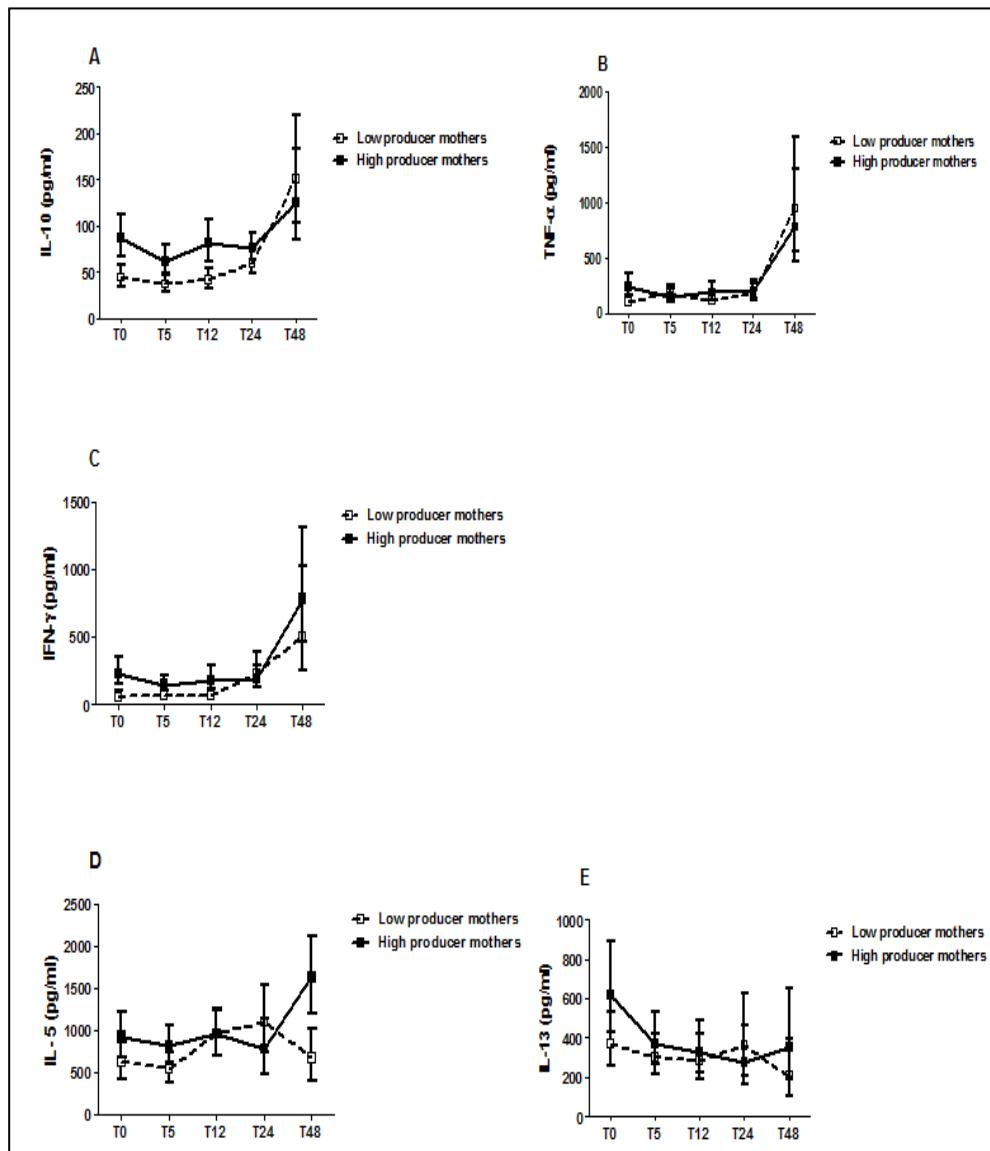
IL-10 and TNF- α

The estimated effect of maternal IL-10 and maternal or child's genotype on child's IL-10 production are shown in Table 2. Here only genotypes which revealed significant associations are presented. In this model, at 2 months of age the estimates for mother-child cytokine relationship were similar to the estimates in the previous model without genetic factors (Table 2 & Figure 1A; estimate: 0.31; 95%CI: 0.18, 0.43), indicating that gene polymorphisms

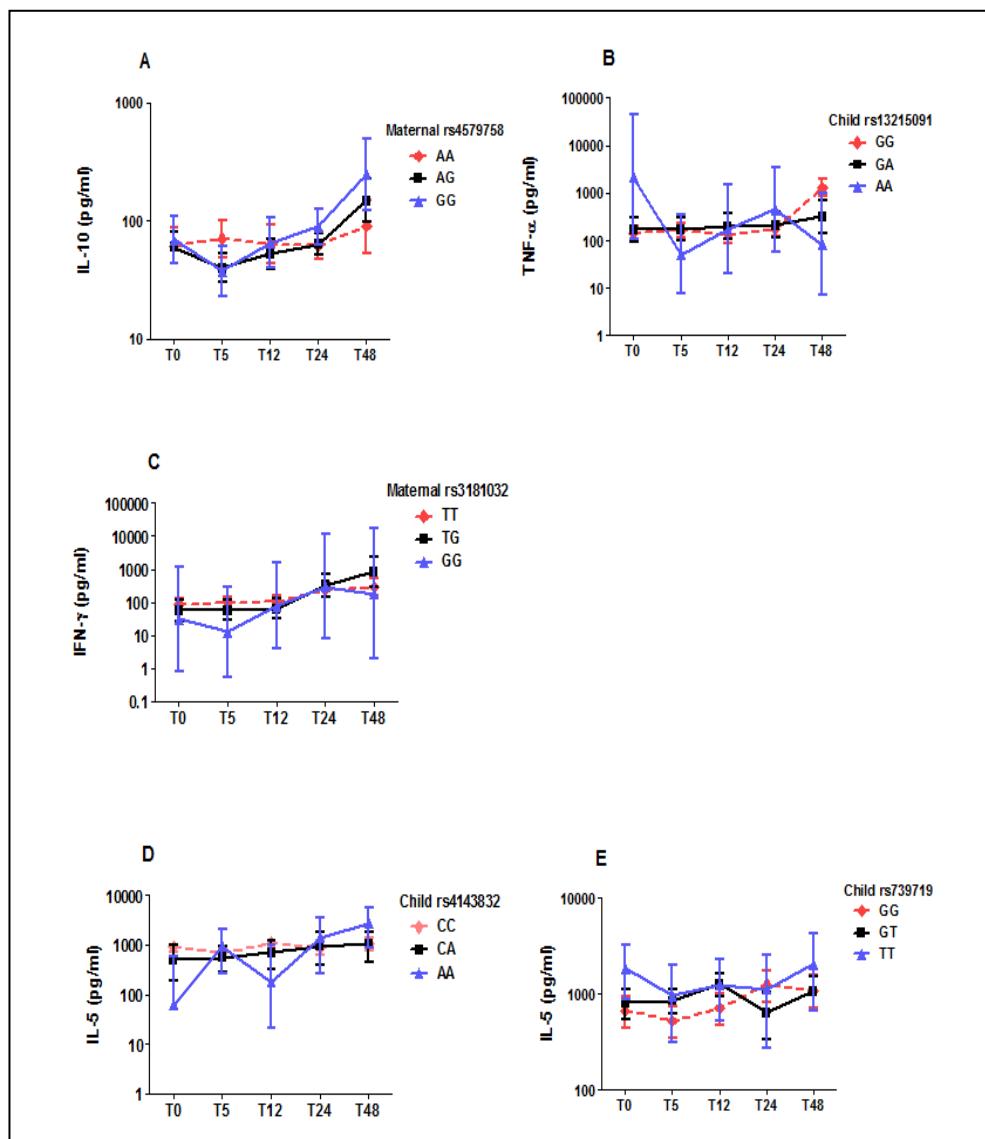
Table 2. Effect of maternal cytokine, maternal and child's genotype on child's PHA-induced cytokine production over time.

Child cytokine	Variable	Estimate (95% CI)§	P value
IL10 rs4579758	Maternal cytokine	0.31 (0.18, 0.43)	<0.0001**
	Maternal genotype	-0.05 (-0.16, 0.05)	0.321
	Child's genotype	-0.009 (-0.11, 0.10)	0.866
	Time*maternal cytokine	-0.008 (-0.01, -0.003)	0.004
	Time*maternal genotype	0.005 (0.0002, 0.01)	0.039
	Time*child's genotype	0.001 (-0.003, 0.006)	0.616
TNF-α rs13215091	Maternal cytokine	0.20 (0.03, 0.37)	0.024
	Maternal genotype	-0.005 (-0.21, 0.20)	0.961
	Child's genotype	0.17 (-0.02, 0.37)	0.080
	Time*maternal cytokine	-0.006 (-0.01, 0.001)	0.108
	Time*maternal genotype	0.004 (-0.005, 0.01)	0.354
	Time*child's genotype	-0.01 (-0.02, -0.004)	0.005
IFN-γ rs3181032	Maternal cytokine	0.26 (0.04, 0.48)	0.023
	Maternal genotype	-0.30 (-0.58, -0.01)	0.039
	Child's genotype	0.26 (-0.10, 0.61)	0.152
	Time*maternal cytokine	-0.009 (-0.02, 0.001)	0.077
	Time*maternal genotype	0.01 (0.002, 0.03)	0.024
	Time*child's genotype	-0.0008 (-0.02, 0.01)	0.919
IL-5 Rs4143832	Maternal cytokine	1.46 (-2.59, 5.51)	0.476
	Maternal genotype	4.32 (-1.27, 9.91)	0.129
	Child's genotype	-4.93 (-9.60, -0.27)	0.038
	Time*maternal cytokine	0.17 (-0.02, 0.36)	0.075
	Time*maternal genotype	-0.24 (-0.49, 0.02)	0.066
	Time*child's genotype	0.14 (-0.08, 0.35)	0.210
IL-5 Rs739719	Maternal cytokine	1.02 (-3.07, 5.10)	0.622
	Maternal genotype	-2.10 (-5.76, 1.56)	0.259
	Child's genotype	4.17 (0.12, 8.23)	0.044
	Time*maternal cytokine	0.14 (-0.05, 0.34)	0.143
	Time*maternal genotype	-0.02 (-0.19, 0.15)	0.799
	Time*child's genotype	-0.02 (-0.21, 0.17)	0.849

§adjusted for child gender. Bold: p value < 0.05. ** significant after Bonferroni's correction (p<0.0028)


did not modify the relationship between maternal and child cytokines. This result was similar across all models of SNPs (data not shown). In contrast to maternal cytokine status, maternal or child's IL-10 gene polymorphism were not significantly associated with child's cytokine at T0. There was a tendency for children born to mothers with more minor alleles in rs4579758 to have significantly higher production of IL-10 over time (Table 2 & Figure 2A). Child's genotype had no effect on IL-10 production over time.

In a similar manner to IL-10 but weaker, the production of child's PHA-induced TNF- α at 2 months of age was associated with maternal cytokine producer status during pregnancy (Table 2 & Figure 1B; estimate: 0.20, 95%CI: 0.03, 0.37) with decreasing trend over time. Although at the beginning there was a positive trend for association between polymorphism of child's rs13215091 and TNF- α levels (Table 2 & Figure 2B; estimate: 0.17; 95%CI: -0.02, 0.37), the direction of association reversed over time with significantly stronger effect exerted by child's decreasing number of minor allele (estimate: -0.01; 95%CI: -0.02, -0.004). For the other 3 SNPs of TNF- α maternal and child's genotype did not show significant associations with child's cytokine at baseline and over time (data not shown).


IFN- γ , IL-5 and IL-13

The production of TH₁-type responses (IFN- γ) in children after adjustment for genotypes was associated with maternal cytokine producer status at baseline (Table 2 & Figure 1C; estimate: 0.26; 95%CI: 0.04, 0.48) and this association did not change over time (estimate: -0.009; 95%CI: -0.02, 0.001). Among 6 IFN- γ polymorphisms, the only genotype found to be significantly associated with child's cytokine was rs3181032 of mother, which is an IFN- γ gene polymorphism located in promoter region. Mothers with increasing number of this SNP's minor allele were more likely to have children producing lower IFN- γ levels at T0 (Table 2 & Figure 2C; estimate: -0.30; 95%CI: -0.58, -0.01), however over time the direction of the association reversed (estimate: 0.01; 95%CI: 0.002, 0.03).

Among all genotyped IL-5 SNPs, only 2 child's IL-5 polymorphisms, rs4143832 and rs739719, were associated with child's cytokine production at T0 (Table 2 & Figure 2D, E; estimate: -4.93; 95%CI: -9.60, -0.27 and estimate: 4.17; 95%CI: 0.12, 8.23, respectively) with no significant difference of slopes with time. None of IL-13 or RAD50 gene polymorphisms were associated with child's IL-13 or with IL-5 and IL-13 levels, respectively (data not shown).

Figure 1. Child's PHA-induced cytokines over time, based on maternal cytokine producer status during pregnancy. Error bars represent geometric means of (A) IL-10, (B) TNF- α , (C) IFN- γ , (D) IL-5 levels, and mean of square of (E) IL-13 levels of children at the age of 2 months (T0), 5 months (T5), 12 months (T12), 24 months (T24) and 48 months (T48). Closed dots are children born to high producer mothers, while open dots are children born to low producer mothers. All values were adjusted for mother and child's gene polymorphism, village of residence and child's gender.

Figure 2. Child's PHA-induced cytokines over time, based on maternal or child genotypes. Only SNPs which showed significant associations in the multivariate models are shown. Error bars represent geometric means of (A) IL-10, (B) TNF- α , (C) IFN- γ and (D, E) IL-5 levels of children at the age of 2 months (T0), 5 months (T5), 12 months (T12), 24 months (T24) and 48 months (T48). Red dots/interrupted lines indicate the children having or born to mothers with major homozygote alleles, while black dots/solid lines for heterozygotes and blue dots and solid lines for minor homozygotes. All values were adjusted for maternal cytokines, village of residence and child's gender.

Discussion

In the present study we showed that genetic polymorphisms do not explain the strong association between maternal cytokine production during pregnancy with child's cytokine production in the first year of life. We also found that most of the mother-child cytokine relationships became weaker over time (IL-10, IFN- γ , and TNF- α) with the exception of IL-5. The association between maternal and child IL-5 production became significant when the child reached 4 years of age. These findings indicate that the strong association between cytokine responses of a pregnant mother and her child is not directly due to genetic factors but rather results from similar immune conditioning during gestational period extending into early childhood.

Earlier studies had found associations in cytokine production between mother (pre- or postpartum) and child at one or two time points, such as at birth in cord blood [1,2,5], at a time when infant was 3 months [3], 1 year [5,11] or 2 years of age [4]. The mother-child cytokine relationship was not always apparent directly after birth. For example, the birth cohort study by Halonen and coworkers showed no correlation of mitogen-stimulated IFN- γ and IL-13 between pregnant mother and fetus but instead with the child at 3 months of age [3]. Similarly, in another study with the lipopolysaccharides-induced IL-10 and TNF- α production, there was a significant association between pregnant mother and the child at the age of 1 year but not with cord blood [11]. Our results are in agreement with the previous two studies in that maternal IL-10 or IFN- γ production during pregnancy was positively associated with child's corresponding cytokines up to 1 year of age but with longer observation, the association was no longer present (Figure 1). This particular finding regarding IL-10 or IFN- γ may reflect intra uterine and nursing effect on child's developing immune system. While no trans-placental transfer of maternal cytokines in human are believed to occur [12]; the components of uterine microenvironment may modulate the fetal naïve immune cells. This might explain why maternal IL-10 during pregnancy showed the strongest association with child's IL-10. After birth, the maturing immune system of infants is believed to get compensations from breast milk which contains maternal humoral and cellular immune components including cytokines, chemokines and immune cells. Since the majority (97%) of the infants/children in our study was breastfed, breast milk may also contribute to the transfer of maternal immunological information to infants in this population. Both IL-10

and IFN- γ are present in breast milk [13,14]. In the case of IL-10 this is thought to be a continuation of immune regulation during gestation to avoid rejection of fetal allograft, while for IFN- γ the nursing can be the best way to complement the infant's immune system whose capacity to produce TH₁-type responses are less than in adults [15]. Interestingly, high levels of TNF- α are present in early milk but become almost undetectable after 1 month (reviewed in [14]). This might explain the weak association we observed in TNF- α production between mother and child in the first year of life. Interestingly, the pattern of mother-child relationship in IL-5 responses was different from other cytokines, in that the significant association was found only when the children reached 4 years of age.

It seems that at early age, the capacity of infant's immune cells to produce pro- and anti-inflammatory cytokines is more influenced by maternal cytokines, than gene polymorphisms which seem to have more influence at later age. On the other hand, we found that the production of TH₁-type cytokine at early age was independently associated with maternal cytokine and gene polymorphisms. Previous studies in twins showed that cytokines can have a low to high proportion of heritability, ranging from 30 – 75% for IL-10 [10,16,17], 40 – 85% for IFN- γ [10,18] and 17 – 80% for TNF- α [10,16–19]. The participants of these studies were adults. Our cohort study is unique in showing the effect of maternal cytokines on child cytokines in early age may overrule or mask the genetic effect during the maturation of child immune responses. This notion is supported by the finding in a twin study that the genetic effect on serum TNF- α increased with age [17].

In our previous study investigating factors that determined child cytokine production at 2 months of age, maternal TNF- α was not significantly associated with child TNF- α ($p=0.1$). However, the present study which analyzed a subset of whom there was both cytokine and genotype data showed a significant association ($p<0.05$). The discrepancy is not due to the method of analysis (child high/low producer status vs child continuous cytokine levels as the outcome), but rather in the different characteristics of participants. The participants from the present study were more often from Jati Karya village (71%), compared to the previous one (49%), which might contribute to the slight difference.

It is important to note that the significant associations between child cytokine production with SNPs detected in this study might also be caused by other unmeasured SNPs that were located in a larger distance but still in

LD. We realize that using single nucleotide analysis in this study may not entirely represent the genetic effect on child's cytokine responses since there are unmeasured genetic variations besides the measured SNPs, which may reveal a cytokine relationship between mother and child, such as copy number variation, haplotype, microsatellite alleles, as well as epigenetic processes (DNA methylation, histone modifications, small non-coding RNA). Nevertheless using the tagging SNPs we expected to limit the number of SNPs to be tested by covering those not genotyped which were in high LD with the tagging SNPs in the same gene [20].

Since the aim of the study was more focused on mother-child cytokine relationship, we consider the SNP analysis in relation to the child' cytokine responses exploratory. Therefore the weak associations ($p < 0.05$) found between genotypes and cytokine production before correction for multiple testing were not considered immediately as not significant. The confirmation of the gene association resultswould need replication with larger sample size in similar population/ race.

In conclusion, the close relationship of mother and child cytokine production, especially IL-10 and IFN- γ , was prominent in early life, before 1 year of age. This immunological relationship was independent of cytokine gene polymorphisms, suggesting that infant's cytokine responses were more influenced by the environment shared with the mother during intra uterine and breastfeeding period. Different cytokines can have different interaction with maternal cytokine and maternal/child genetic factors at certain time points, depending on the maturation of child immune responses and the challenges from the environment. Furthermore, whether the cytokine profile of children born to high or low producer mother is associated with clinical outcomes or only reflects physiological variation, needs to be further investigated.

Acknowledgement

We are very grateful to all families for their participation in the study and local health staff of Puskesmas Jati Sampurna for their assistance in blood collections. We also thank venipuncturists Sudirman and Heru, Erlinda Marthias for cytokine measurement and Dennis Kremer for his expertise and help in genotyping. This study was supported by The Netherlands Foundation for the Advancement of Tropical Research (W93-364 and W93-468), European Union Grant (MEST-CT-2005-020524-GALTRAIN) and Royal Netherlands Academy of Arts and Sciences (Ref.KNAW-05-PP-35).

References

1. Prescott SL, Taylor A, Roper J, Wahdan A, Noakes P, Thornton C, Dunstan J, Upham JW (2005) Maternal reactivity to fetal alloantigens is related to newborn immune responses and subsequent allergic disease. *Clin Exp Allergy* 35: 417-425.
2. Tse DB, Young BK (2012) Co-ordinate expression of Th1/Th2 phenotypes in maternal and fetal blood: evidence for a transplacental nexus. *J Perinat Med* 40: 165-170. 10.1515/jpm.2011.131 [doi];j/jpme.2012.40.issue-2/jpm.2011.131/jpm.2011.131.xml [pii].
3. Halonen M, Lohman IC, Stern DA, Spangenberg A, Anderson D, Mobley S, Ciano K, Peck M, Wright AL (2009) Th1/Th2 patterns and balance in cytokine production in the parents and infants of a large birth cohort. *J Immunol* 182: 3285-3293. 182/5/3285 [pii];10.4049/jimmunol.0711996 [doi].
4. Larsson AK, Nilsson C, Hoglind A, Sverremark-Ekstrom E, Lilja G, Troye-Blomberg M (2006) Relationship between maternal and child cytokine responses to allergen and phytohaemagglutinin 2 years after delivery. *Clin Exp Immunol* 144: 401-408.
5. Lappalainen M, Roponen M, Pekkanen J, Huttunen K, Hirvonen MR (2009) Maturation of cytokine-producing capacity from birth to 1 yr of age. *Pediatr Allergy Immunol* 20: 714-725. PAI865 [pii];10.1111/j.1399-3038.2009.00865.x [doi].
6. Djuardi Y, Wibowo H, Supali T, Ariawan I, Bredius RG, Yazdanbakhsh M, Rodrigues LC, Sartono E (2009) Determinants of the relationship between cytokine production in pregnant women and their infants. *PLoS One* 4: e7711.
7. Teo YY, Sim X, Ong RT, Tan AK, Chen J, Tantoso E, Small KS, Ku CS, Lee EJ, Seielstad M, Chia KS (2009) Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations. *Genome Res* 19: 2154-2162. gr.095000.109 [pii];10.1101/gr.095000.109 [doi].
8. Weidinger S, Gieger C, Rodriguez E, Baurecht H, Mempel M, Klopp N, Gohlke H, Wagenpfeil S, Ollert M, Ring J, Behrendt H, Heinrich J, Novak N, Bieber T, Kramer U, Berdel D, von BA, Bauer CP, Herbarth O, Koletzko S, Prokisch H, Mehta D, Meitinger T, Depner M, von ME, Liang L, Moffatt M, Cookson W, Kabesch M, Wichmann HE, Illig T (2008) Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. *PLoS Genet* 4: e1000166. 10.1371/journal.pgen.1000166 [doi].
9. Li X, Howard TD, Zheng SL, Haselkorn T, Peters SP, Meyers DA, Bleeker ER (2010) Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. *J Allergy Clin Immunol* 125: 328-335. S0091-6749(09)01735-7 [pii];10.1016/j.jaci.2009.11.018 [doi].
10. Hohler T, Reuss E, Adams P, Bartsch B, Weigmann B, Worns M, Galle PR, Victor A, Neurath MF (2005) A genetic basis for IFN-gamma production and T-bet expression in humans. *J Immunol* 175: 5457-5462. 175/8/5457 [pii].
11. Herberth G, Hinz D, Roder S, Schlink U, Sack U, Diez U, Borte M, Lehmann I (2011) Maternal immune status in pregnancy is related to offspring's immune responses and atopy risk. *Allergy* 66: 1065-1074. 10.1111/j.1398-9995.2011.02587.x [doi].
12. Aaltonen R, Heikkinen T, Hakala K, Laine K, Alanen A (2005) Transfer of proinflammatory cytokines across term placenta. *Obstet Gynecol* 106: 802-807. 106/4/802 [pii];10.1097/01.AOG.0000178750.84837.ed [doi].

Chapter 5

13. Garofalo R, Chheda S, Mei F, Palkowetz KH, Rudloff HE, Schmalstieg FC, Rassin DK, Goldman AS (1995) Interleukin-10 in human milk. *Pediatr Res* 37: 444-449. 10.1203/00006450-199504000-00010 [doi].
14. Agarwal S, Karmaus W, Davis S, Gangur V (2011) Immune markers in breast milk and fetal and maternal body fluids: a systematic review of perinatal concentrations. *J Hum Lact* 27: 171-186.
15. Labbok MH, Clark D, Goldman AS (2004) Breastfeeding: maintaining an irreplaceable immunological resource. *Nat Rev Immunol* 4: 565-572. 10.1038/nri1393 [doi];nri1393 [pii].
16. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI, Vandebroucke JP (1997) Genetic influence on cytokine production and fatal meningococcal disease. *Lancet* 349: 170-173. S0140673696064136 [pii].
17. Sas AA, Jamshidi Y, Zheng D, Wu T, Korf J, Alizadeh BZ, Spector TD, Snieder H (2012) The age-dependency of genetic and environmental influences on serum cytokine levels: a twin study. *Cytokine* 60: 108-113. S1043-4666(12)00181-0 [pii];10.1016/j.cyto.2012.04.047 [doi].
18. Stein CM, Guwatudde D, Nakakeeto M, Peters P, Elston RC, Tiwari HK, Mugerwa R, Whalen CC (2003) Heritability analysis of cytokines as intermediate phenotypes of tuberculosis. *J Infect Dis* 187: 1679-1685. JID20993 [pii];10.1086/375249 [doi].
19. Pantsulaia I, Trofimov S, Kobylansky E, Livshits G (2002) Genetic and environmental influences on IL-6 and TNF-alpha plasma levels in apparently healthy general population. *Cytokine* 19: 138-146. S1043466602919599 [pii].
20. Howie BN, Carlson CS, Rieder MJ, Nickerson DA (2006) Efficient selection of tagging single-nucleotide polymorphisms in multiple populations. *Hum Genet* 120: 58-68. 10.1007/s00439-006-0182-5 [doi].

Supporting Table 1. Genotypes of 119 pairs of mothers and children

Gene	Polymorphism	Region	Position	Mother		Child MAF	HWE, P value	MAS MAF
				N (%)	MAF			
IL-10	rs4579758	Intergenic	204997334	43 (36.4) 48 (40.7) 27 (22.9)	0.432 0.395	0.085 0.240	43 (36.1) 52 (43.7) 24 (20.2)	0.420 0.374 0.699
	AA AG GG							0.324 0.287 0.376
	rs4390174	Intergenic	204999074	47 (39.5) 50 (42.0) 22 (18.5)	0.395	0.240	48 (40.3) 53 (44.6) 18 (15.1)	0.374 0.699 0.287
	AA AG GG							
	rs1878672 [¶]	Intron	205010336	107 (89.9) 11 (9.3) 1 (0.8)	0.055	0.585	107 (89.9) 11 (9.3) 1 (0.8)	0.055 0.585 0.090
	CC CG GG							
	rs1554286 [§]	Intron	205010856	54 (45.4) 57 (47.9) 8 (6.7)	0.307	0.261	62 (52.1) 44 (37.0) 13 (10.9)	0.294 0.306 0.376
	TT TC CC							
	rs3021094	Intron 1 5'upstream	205011575	34 (28.6) 66 (55.4) 19 (15.0)	0.437	0.247	34 (28.6) 62 (52.1) 23 (19.3)	0.454 0.745 0.449
	CC CA AA							
	rs1800872 [§]	Intron 5'upstream	205013030	63 (52.9) 49 (41.2) 7 (5.9)	0.265	0.739	68 (57.2) 43 (36.1) 8 (6.7)	0.248 0.873 0.371
	AA AC CC							
	rs1800896 [¶]	5'upstream	205013520	107 (89.9) 11 (9.3) 1 (0.8)	0.054	0.585	107 (89.9) 11 (9.3) 1 (0.8)	0.055 0.585 0.090
	AA AG GG							
	rs10494879 [¶]	Intergenic	205018827	103 (86.6) 15 (12.6) 1 (0.8)	0.071	0.918	105 (89.0) 12 (10.2) 1 (0.8)	0.059 0.672 0.108
	CC CG GG							
	rs4072227	Intergenic	205024181	56 (47.1) 48 (40.3) 15 (12.6)	0.328	0.443	56 (47.1) 51 (42.8) 12 (10.1)	0.315 1.000 0.315
	TT TC CC							
	rs885334							

	GG	Intergenic	205029039	32 (26.9)	0.483	1.000	33 (27.7)	0.487	0.618	0.466
	GA			59 (49.6)			56 (47.1)			
	AA			28 (23.5)			30 (25.2)			
NFKBIL1	rs13215091	3'downstream	31636669	95 (79.8)	0.109	0.822	87 (73.1)	0.143	1.000	0.169
	GG			22 (18.5)			30 (25.2)			
	GA			2 (1.7)			2 (1.7)			
	AA									
TNF- α	rs2844482	5'upstream	31647746	59 (49.6)	0.282	0.408	69 (58.0)	0.235	1.000	0.230
	CC			53 (44.5)			44 (37.0)			
	CT			7 (5.9)			6 (5.0)			
LTA	rs1800683	5' UTR, upstream, intron	31648050	58 (48.7)	0.324	0.187	56 (47.1)	0.298	0.385	0.326
	GG			45 (37.8)			55 (46.2)			
	GA			16 (13.5)			8 (6.7)			
	AA									
LTA	rs2239704	5' UTR, upstream, intron	31648120	45 (37.8)	0.387	1.000	31 (26.1)	0.458	0.217	0.419
	CC			56 (47.1)			67 (56.3)			
	CA			18 (15.1)			21 (17.6)			
	AA									
IFN- γ	rs10878763†	3'downstream	66829965	98 (82.4)	0.088	0.761	96 (80.7)	0.105	0.738	0.148
	GG			21 (17.6)			21 (17.6)			
	GT			0 (0)			2 (1.7)			
	TT									
rs2069718	TT	Intron 3	66836429	47 (39.5)	0.378	0.811	46 (38.6)	0.399	0.308	0.327
	TC			54 (45.4)			51 (42.9)			
	CC			18 (15.1)			22 (18.5)			
rs2069705	TT	5'upstream	66841278	31 (26.1)	0.487	1.000	30 (25.2)	0.483	0.498	0.420
	TC			60 (50.4)			55 (46.2)			
	CC			28 (23.5)			34 (28.6)			
rs3181032	TT	5'upstream	66842442	88 (74.0)	0.134	0.685	100 (84.0)	0.080	0.917	0.093
	TG			30 (25.2)			19 (16.0)			
	GG			1 (0.8)			0 (0)			
rs10784683†	GG	Intron	66856790	97 (81.5)	0.092	0.687	97 (82.9)	0.085	0.824	0.125
	GA			22 (18.5)			20 (17.1)			
	AA			0 (0)			0 (0)			
rs12146822										

Mother-Child Cytokine Relationship and Gene Polymorphisms

	GG	?	66857933	47 (39.5) 50 (42.0) 22 (18.5)	0.395	0.240	42 (35.3) 56 (47.1) 21 (17.6)	0.412	0.864	0.453	
IL-5	GA										
	AA										
rs4143832*	CC	Intergenic	131890876	92 (77.3) 26 (21.9) 1 (0.8)	0.118	1.000	94 (79.0) 20 (16.8) 5 (4.2)	0.126	0.039	0.101	
	CA										
rs2706399	AA	3'UTR	131895601	77 (64.7) 39 (32.8) 3 (2.5)	0.189	0.710	68 (57.2) 48 (40.3) 3 (2.5)	0.227	0.173	0.258	
	AG	Intergenic									
rs17690122*	GG	3'UTR	131895734	92 (77.3) 26 (21.9) 1 (0.8)	0.118	1.000	94 (79.0) 20 (16.8) 5 (4.2)	0.126	0.039	0.101	
	AA	Intergenic									
rs743562	AG	3'downstream	131900282	59 (49.6) 53 (44.5) 7 (5.9)	0.282	0.408	51 (42.9) 55 (46.2) 13 (10.9)	0.340	0.950	0.343	
	GG										
rs739719	CC	3'downstream	131900764	56 (47.1) 50 (42.0) 13 (10.9)	0.319	0.834	61 (51.3) 52 (43.7) 6 (5.0)	0.269	0.349	0.253	
	CT										
rs2069812	TT	5'upstream	131907815	48 (40.3) 57 (47.9) 14 (11.8)	0.357	0.826	41 (34.5) 57 (47.9) 21 (17.6)	0.416	0.989	0.393	
	TC	intron									
	CC										
RAD50	rs17772565	CC	Inton	131980304	31 (26.0) 64 (53.8) 24 (20.2)	0.471	0.524	48 (40.3) 55 (46.2) 16 (13.5)	0.366	1.000	0.410
	CT	5'upstream									
	TT										
rs17772583	AA	Intron 20	131981409	82 (68.9) 35 (29.4) 2 (1.7)	0.164	0.708	74 (62.2) 42 (35.3) 3 (2.5)	0.202	0.482	0.185	
	AG	5'upstream									
rs2237060	GG	Intron 21	131998784	97 (81.5) 20 (16.8) 2 (1.7)	0.101	0.657	88 (73.9) 31 (26.1) 0	0.130	0.211	0.124	
	AA										
	AC										
	CC										
	rs2040704†										

IL-13	rs18814570	Intron 22	1320001076	72 (60.5) 43 (36.1) 4 (3.4)	0.214	0.648	68 (57.1) 44 (37.0) 7 (5.9)	0.244	1.000	0.180	
	AA										
	AG										
	GG										
	rs180092510	Intronic 5'upstream	132020308	68 (57.1) 44 (37.0) 7 (5.9)	0.244	1.000	66 (55.5) 47 (39.5) 6 (5.0)	0.248	0.737	0.213	
	CC										
	CT										
	TT										
	rs2066960	Intronic 5'upstream	132020708	74 (62.2) 41 (34.4) 4 (3.4)	0.206	0.820	70 (58.8) 43 (36.1) 6 (5.1)	0.231	1.000	-	
	CC										
	CA										
	AA										
	rs2069744	Intron 1	132022334	71 (59.7) 45 (37.8) 3 (2.5)	0.214	0.302	72 (60.5) 42 (35.3) 5 (4.2)	0.218	0.983	-	
	CC										
	CT										
	TT										
	rs1295686†	Intron 3	132022568	82 (68.9) 36 (30.3) 1 (0.8)	0.160	0.311	90 (75.6) 27 (22.7) 2 (1.7)	0.130	1.000	0.079	
	GG										
	GA										
	AA										
	rs20541‡	Exon 4	132023863	49 (41.2) 48 (40.3) 22 (18.5)	0.387	0.137	46 (38.7) 50 (42.0) 23 (19.3)	0.403	0.213	0.331	
	CC										
	CT										
	TT										
	rs2069757	Intron 3'downstream	132026312	70 (58.8) 42 (35.3) 7 (5.9)	0.235	0.979	73 (61.3) 42 (35.3) 4 (3.4)	0.210	0.732	0.135	
	GG										
	GA										
	AA										
	rs2243218	3'UTR 5'upstream	132029923	91 (76.5) 28 (23.5) 0	0.118	0.330	91 (76.5) 27 (22.7) 1 (0.8)	0.122	0.925	0.057	
	GG										
	GA										
	AA										

dbSNP: the Single Nucleotide Polymorphism database, MAF: minor allele frequency, HWE: Hardy-Weinberg equilibrium, MAS: Malay in Singapore.

Pairwise linkage disequilibrium within Haploview.

* $r^2=1$ † $r^2>0.8$; rs 2040704 in RAD50 is in strong LD with rs1800925 in IL-13.

‡ r^2 for mother >0.7, child >0.8. § r^2 for mother >0.8, child >0.7.