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Chapter 6

Robust artifact reduction in tomography
using Student’s t data fitting

6.1 Introduction

Tomography is a technique for reconstructing a 3D volume from 2D projection
images, such as X-rays obtained in CT scanners. A 3D reconstruction can be
obtained from the projection images by solving an inverse problem. In algebraic
reconstruction methods a linear system of equations is solved that represents a
discretization of the Radon transform [NW01; KS01]:

W x = p. (6.1)

The projection matrix W ∈ RM×N relates pixel values in the tomographic recon-
struction x ∈ RN (gray values) to discrete detector measurements p ∈ RM . In
experiments the projections are perturbed by an unknown noise vector ε,

p̃ = p + ε.

Most algebraic methods such as SIRT, CGLS or LSQR [Bjö96; GB08; PS82]
optimize the consistency of the reconstruction in the Euclidean norm, which leads
to a least squares solution:

x ∗ = arg min
x

1
2
‖W x − p̃‖2

2. (6.2)

It is well known that this approach is equivalent to finding the maximum likelihood
estimate (MLE) of x under the assumption that the error term or noise ε is
Gaussian distributed [Pre+07]. However, the `2-norm assigns a heavy penalty to
outliers in the projection data. Outliers may arise due to acquisition problems
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98 6. Robust artifact reduction in tomography using Student’s t data fitting

ranging from hardware problems to physical effects such as scattering or photon
starvation due to high density particles [BF12]. Because these errors are heavily
penalized by the `2-norm, the solution of Eq. (6.2) will be fitted to these outliers,
producing artifacts in the reconstruction.

In this chapter we propose the use of algebraic methods combined with the
Student’s t penalty function to solve the reconstruction problem in Eq. (6.1). The
Student’s t distribution has heavy tails meaning that outliers in the noise are
penalized less compared to the `2-norm. Therefore the Student’s t MLE of the
reconstruction should be influenced less by such outliers.

Many methods for artifact reduction are aimed to remove or suppress outliers
from the projection data [Gu+06; PDX12; Vel+10; Wan+96], which rely heavily
on the accuracy of segmentation techniques to locate outliers. By minimizing the
Student’s t penalty of the data-fit there is no need for segmentation and therefore
the method is not biased by the result of a segmentation step.

We explain the method for finding the Student’s t MLE of the reconstruction
in Section 6.2. Subsequently, results are presented for a series of 3D cone-beam
simulation experiments for reduction of several kinds of artifacts in Section 6.3.
Finally, we discuss the results and conclude the chapter in Section 6.4.

6.2 Methods

In general, maximum likelihood estimation of x in Eq. (6.1) gives rise to a
maximization problem

max
x
ρ(W x − p̃),

where ρ(·) is the probability density function (PDF) of the probability distribution
of the noise ε. In practice, the problem is posed as a minimization problem by
taking the − log:

min
x
− logρ(W x − p̃).

The resulting estimate bx can be interpreted as the most likely solution of Eq. (6.1)
under the assumption that the noise is indeed distributed according to ρ. When
ρ represents the Gaussian PDF, this leads to the conventional least squares formu-
lation, Eq. (6.2). When the data contain large outliers, the Gaussian assumption
is violated and a different PDF has to be employed. A possible choice is the
multivariate Student’s t distribution

ρ(r )∝
∏

i

(1+ r2
i /ν)

−(ν+1)/2
,

where ν is the variance. Such an assumption on the noise allows for large outliers
to be present in the residual, whereas under a Gaussian assumption large outliers
are extremely unlikely and thus the reconstruction will aim to fit them.

The penalty derived from the Student’s t distribution is

p(r ) =
∑

i

log(1+ r2
i /ν), (6.3)
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Figure 6.1: Least squares and Student’s t penalty functions and corresponding
influence-functions with ν= 0.5.

and a graph is shown in Fig. 6.1a. The maximum likelihood estimate is now
obtained by solving

min
x

p(W x − p̃)

using Newton’s method [NW06]. This leads to an iterative method of the form

x (k+1) = x (k) +αks (k),

where αk is the stepsize, determined by a backtracking linesearch and s (k) is
obtained by solving

WᵀH (k)W s (k) = −Wᵀg (k). (6.4)

Here, the gradient g (k) and diagonal matrix H k are given in terms of the residual
r (k) = W x (k) − p̃ as

g(k)i =
2ri

ν+ r2
i

,

and

h(k)ii =
2

ν+ r2
i

.

Note that we can use any algebraic method to solve Eq. (6.4), but in our case we
chose the CG method. In effect, the algorithm repeatedly performs a reconstruc-
tion with a weighted residual, where the weight (ν+ r2

i )
−1 down-weights large

residuals.
If we look at the so-called influence-function [Ham+05] of Eq. (6.3) in Fig. 6.1b

which is defined by the gradient, it is clear that the influence of large residuals
r2 � ν is small. However, for r2 < ν the influence behaves similar to a least
squares penalty. The role of ν can be seen as tuning parameter to indicate the
magnitude of outliers. This parameter can be adjusted automatically [AL12],
however, in our experiments we estimate the parameter empirically.
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(a) 3D rendering (b) slice

Figure 6.2: (a) 3D rendering of the Shepp–Logan head phantom with a wedge
cut out of the sample; (b) central slice of size 256× 256.

From this point forward we will refer to the methods for MLE estimation using
least squares and Student’s t penalties as LSQR-MLE and ST-MLE respectively,
where we use the method LSQR for minimizing the `2-norm.

6.3 Experiments and Results

In these simulation experiments we consider a 3D Shepp–Logan head phantom
of size 256× 256× 256 of which a central slice is shown in Fig. 6.2b. We used
the ASTRA tomography toolbox [PBS13] to generate 180 projection images with
1° angular separation using the cone-beam geometry. The detector has a size
of 284× 284 pixels and was positioned in the origin. The projection matrix is
generated on-the-fly by the GPU back end of the toolbox using a slice interpolation
kernel [Jos82].

In the following sections we will discuss several distortions or perturbations
in the projection images that cause severe artifacts in the reconstruction and we
compare a least squares approach to data fitting using the Student’s t penalty
function.

6.3.1 Metal artifact reduction

In this experiment we consider the 3D Shepp–Logan head phantom with six small
dense particles that represent metal implants (density is 10 times that of the outer
“skull” region). A single slice is shown in Fig. 6.3a, the six particles form the
vertices of an octahedron.

In the area of the detector where the metal implants are projected the data
becomes corrupted due to beam hardening, scatter and photon starvation. For
this experiment we focus on the effects of photon starvation. In the projection
data we simulated a saturation due to photon starvation by setting the region
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(a) slice of phantom (b) LSQR-MLE (c) ST-MLE

Figure 6.3: Metal particles Shepp–Logan head phantom and corresponding least
squares fit and Student’s t fit.
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Figure 6.4: Convergence of the `2-norm compared to Student’s t penalty. These
are relative residuals.

corresponding to the metal objects to a constant, large value. The effect of this
missing or corrupted data if we apply LSQR-MLE is shown in Fig. 6.3b. Usually,
these regions in the projection data are either ignored or filled in by interpolation
or inpainting techniques [Gu+06; Vel+10; Wan+96]. These methods rely on
sophisticated segmentation techniques in order to locate the metal implants.

We show a convergence plot in Fig. 6.4 of both penalty functions. This figure
shows that the ST-MLE method converges rapidly compared to LSQR-MLE. Note,
however, that the ST-MLE method requires solving of Eq. (6.4) in each iteration
and is therefore significantly more costly. In all of the following experiments, the
ST-MLE method converges in approximately 10 iterations.

Our proposed method ST-MLE is able to suppress most of the artifacts, as
shown in Fig. 6.3c, while still reconstructing the metal implants without needing
to locate the outliers in the projection images. There is an underestimation of the
gray value of the skull area, however, visually the reconstruction is very useful for
detecting also smaller details, such as the three ellipses below the bottom metal
particle. Moreover, the ST-MLE solution can be used initially to obtain a better
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(a) LSQR-MLE (b) ST-MLE

Figure 6.5: Defective camera pixels lead to semicircular reconstruction artifacts.
The Student’s t solution is much less affected by these artifacts.

segmentation of the metal particles.

6.3.2 Defective camera pixels

In the second experiment we simulate the effect of defective camera pixels. We
assume that the detector has several “dead” detector pixels which measure no
photons at all. This produces bright pixels in the projection images that are
constant between projections. The uncorrected projection data will produce ring
artifacts which are typically removed by inpainting of dead pixels [PDX12].

We simulated a dataset with 100 randomly selected dead pixels which we
set to a constant value of two times the maximum value of the projection data.
The least squares solution is shown in Fig. 6.5a. The artifacts are severe, but the
Student’s t approach in Fig. 6.5b is able to remove the artifacts almost completely.

In Fig. 6.6 we show the effect of increasingly many dead pixels on the mean
squared error of the reconstruction compared to the ground truth. Surprisingly,
even if the number of dead pixels is close to 50% of the total number of detector
pixels the ST-MLE solution does not seem to be influenced by this missing data.

6.3.3 Randomized projection images

In the final experiment we created a dataset of which we replaced 50 from the
180 projections by completely random images (white noise) with average intensity
similar to the other projection images. Although this is not a very realistic dataset,
we want to see how far we can stress our ST-MLE method and see if it can ignore
such inconsistent data.

The LSQR-MLE solution is shown in Fig. 6.7a, which is very noisy due to the
randomized projections. The ST-MLE solution (Fig. 6.7b) suffers far less from the
random projections and only shows mild noise. There are some streak artifacts
because the projection images in these directions are missing, but this is expected.
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Figure 6.6: Mean squared error of the reconstruction compared to the ground
truth for an increasing number of dead detector pixels.

(a) LSQR-MLE (b) ST-MLE

Figure 6.7: LSQR and Student’s t fit for dataset with 50 randomized projection
images out of 180 total projection images.

We also compared LSQR-MLE and ST-MLE on datasets with an increasing
number of random projections. Of course we cannot expect that the ST-MLE
solution will be unaffected by this as was the case in the previous experiment,
because we are essentially removing projections. However, the result shown in
Fig. 6.8 indicates that the ST-MLE method is beneficial for each of these dataset
and is a large improvement over the least squares solution.

6.4 Discussion and conclusions

In this chapter we have discussed the Student’s t penalty function that can be
used in combination with Newton’s optimization approach to produce the max-
imum likelihood estimate of the tomographic reconstruction problem Eq. (6.1)
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Figure 6.8: Mean squared error of the reconstructions for an increasing number
of random projections replacing the original projections.

corresponding to the Student’s t distribution. In our experiments we have seen
that perturbations introduced in the projection data due to hardware problems
or photon starvation from metal implements are significantly reduced using our
proposed method ST-MLE when compared to algebraic reconstruction methods
that minimize the Euclidean norm of the residual (LSQR-MLE). In contrast to
other methods for artifact reduction, there is no need to locate outliers in the
projection data by segmentation methods. Therefore, the ST-MLE method can
be applied effectively without any preprocessing steps. Moreover, the Student’s
t penalty can be used in combination with other reconstruction algorithms and
image priors and has other potential use cases such as artifact reduction from
diffraction effects.


