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Chapter 4

SDART: an algorithm for discrete
tomography from noisy projections

4.1 Introduction

In tomographic imaging, a three dimensional object is reconstructed from a series
of projection images that have been acquired over a range of angles. Tomography
has a wide variety of applications, ranging from medical imaging to materials
science [Grü+03; MD09; Neu97; Rop+03; Zen10]. In many of these applications,
the object under investigation consists of only a few different materials, each
corresponding to a particular gray level in the reconstructed image. Therefore,
the set of gray values in a reconstruction should be small and discrete. Most
common reconstruction algorithms, such as the Filtered Back Projection or SART,
produce a continuous range of gray values [KS01]. However, it has been shown
that incorporating this set of admissible gray values as prior knowledge can lead
to superior image quality in the reconstruction, especially if the set of projection
images is small [Bat05; BS11; CRT06; Sch+05]. This type of tomography is
known as discrete tomography.

The Discrete Algebraic Reconstruction Technique (DART) is one such algorithm
that exploits the discrete nature of the object. It assumes that the gray values
corresponding to the different compositions of the object are known a priori
[BS11]. If only the number of different gray values is known, and not their actual
values, these gray values can be adaptively estimated during reconstruction by
using PDM-DART [ABS12]. DART is an iterative method, which aims to solve a
system of linear equations that models the tomographic projection process. In each
iteration, a reconstructed image is segmented, i.e., the gray values are thresholded
to the nearest a priori known gray value. It is assumed that the interior regions

This chapter has been published with minor modifications as:
F. Bleichrodt, F. Tabak, and K. J. Batenburg. “SDART: An algorithm for discrete tomography from
noisy projections”. In: Computer Vision and Image Understanding 129 (2014), pp. 63–74
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48 4. SDART: an algorithm for discrete tomography from noisy projections

of this segmentation are segmented with high accuracy and that most errors are
located on the boundaries. The key idea behind DART is to reduce the system
of equations in each iteration by fixing or removing these interior pixels/voxels
(i.e., unknowns) from the equations. The governing equations in tomography
are ill-conditioned and rank deficient. Due to this dimension reduction, the
equation system becomes increasingly better determined. Nevertheless, removing
unknowns assumes that the gray values of the corresponding pixels are correct.
Only the remaining free pixels are iteratively refined. Therefore, the operation of
fixing a pixel imposes a hard constraint on the solution of the equation system
and can only be effective if the selection criterion for a pixel being fixed or free is
sufficiently accurate.

In practice, we see that the interior regions of the segmentation initially contain
many errors. However, since the boundaries evolve due to the update steps, these
pixels will be corrected eventually and the algorithm can converge to the correct
solution. A problem occurs when the projection data contain noise. Imposing
hard constraints on non-boundary pixels leads to noise being spread mainly over
boundary pixels. This leads to major errors in the update steps applied to the
boundary pixels. As a result, edges will be less resolved in the reconstruction and
convergence problems can arise.

In this chapter, we propose an alternative to the hard constraints imposed in
DART. We introduce a set of relaxation parameters that imposes soft constraints on
the pixel values. The parameters penalize deviation from the current segmented
value of a pixel. Subsequently, the relaxed system with soft constraints is solved
and the parameters are updated based on the intermediate reconstruction and
segmentation. The proposed method is called Soft DART, to indicate the use of
soft constraints. By using a penalty matrix, flexibility is increased in comparison
to DART. It enables us to impose confidence levels on individual pixels instead of
indicating if a pixel is correct or not. The results of our simulation experiments
suggest that for a suitably chosen set of relaxation parameters and for datasets
with low signal-to-noise ratios (SNR), SDART produces a reconstruction closer to
the ground truth when compared to DART.

The outline of this chapter is as follows: first we will briefly discuss the DART
algorithm in Section 4.2 and show some of its limitations. In Section 4.3 we will
introduce SDART: a new variant of DART that includes a soft constraint. Possible
choices for selecting the soft constraints are discussed. In Section 4.4 we compare
the behavior of DART and SDART to see the effect of the soft constraints. We
also discuss how to select an important regularization parameter that is used in
SDART. In Section 4.5 an overview is given of the experiments and the results are
discussed. We conclude the chapter in Section 4.6.

4.2 The original DART algorithm

In this section we will briefly introduce the notation and concepts of DART and
summarize the main details of the algorithm.
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4.2.1 Notation and concepts

The governing equations in tomography can be posed as a linear system, which
models the tomographic projection process. The linear model is generic, but for
simplicity we will focus on the reconstruction of a 2D slice of the object from 1D
detector measurements. The generalization to three dimensions is straightforward.
Throughout this chapter we consider a parallel beam geometry, which is illustrated
in Fig. 4.1. In our implementation the geometry can be easily changed to fan or
cone beam geometry. In fact, one of the experiments from Section 4.5 is based on
a cone beam dataset.

sources

detectors

FOV

object

Figure 4.1: Schematic of the parallel beam geometry. The incident rays are
parallel. The sources and detectors rotate around the object, indicated by the
projection angle θ , such that a circular field of view (FOV) is formed.

Let x ∈ RN denote a vector containing the gray value of each pixel in the
unknown object. The vector p ∈ RM contains the detector measurements. The
1D detector has D elements and K projections are available. The total number of
line projections is therefore M = KD. We now introduce the projection operator
W ∈ RM×N , which relates the object to its projections:

W x = p. (4.1)

Reconstruction methods aimed at solving Eq. (4.1) are referred to as algebraic
reconstruction methods. Examples of such methods based on Kaczmarz’ method
are ART, SIRT or SART [KS01]. Since the system of equations is usually underde-
termined, and in practice no solution exists due to noise, it is typically solved in a
least squares sense:

minimize
x∈RN

‖W x − p‖2
2, (4.2)
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such that an object is found that matches with the observed data optimally. In
discrete tomography, the small, discrete set of admissible gray values

R= {ρ1, . . . ,ρl}

is known a priori. We can include this prior knowledge as constraints in the
optimization problem:

minimize
x∈{ρ1,...,ρl}N

‖W x − p‖2
2. (4.3)

4.2.2 Algorithm details

DART combines a continuous algebraic reconstruction method (ARM) with a
segmentation step and uses heuristics to improve on this segmentation. The
ARM that is typically used is SIRT or SART [KS01]. In principle, any linear least
squares solver is suitable. Also the Krylov subspace methods such as CGLS or
LSQR [PS82].

The flowchart in Fig. 4.2a illustrates the algorithm and its computational steps.
We will briefly summarize these:

1. An initial continuous reconstruction xc is computed using an algebraic
reconstruction method.

2. The reconstruction is segmented by applying thresholding. All pixel values
are rounded to the nearest gray value in the set R.

3. Those pixels that have at least one (out of eight) neighbor with a different
gray value (called boundary pixels) are free. In addition, a random subset of
image pixels is also selected to be free. The columns of W corresponding
to the pixels that are not free (fixed pixels) are removed from Eq. (4.1) and
their projections are subtracted from the right-hand side.

4. The solution of the reduced system is refined by applying an ARM to the
free pixels.

5. If a stop criterion is not met, the free (boundary) pixels are smoothed.
The smoothing step is performed by means of a discrete convolution of a
3 × 3 kernel with the image. The middle pixel of the kernel is weighted
by a smoothing factor b, the other pixels in the kernel are weighted by
(1− b)/8. Although the smoothing is not used in every implementation of
DART [Alp+13], it is used in the original paper [BS11]. The process repeats
from step 2.

The thresholding step rounds the pixel values of the reconstruction to the nearest a
priori known gray value. We use the same notation for this operation as presented
in [BS11]:

T (x ) : RN 7→ R. (4.4)

Note that the discrete nature of the gray values is not exploited in the ARM itera-
tions. Instead, DART relies on the segmentation to produce solutions with discrete
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gray values. Nevertheless, the strength of DART is based on the observation
that pixels in the interior of a homogeneous region are likely to be thresholded
correctly [BS11]. This result can be found empirically. A possible explanation
is that least squares methods in general reconstruct low-frequent components
of the solution prior to the high frequencies. Since large homogeneous regions
(including the background) are part of the low-frequent components of the image,
the non-boundary pixels are better resolved compared to the boundary pixels.
This idea is used to classify the segmented image xs into the sets of fixed pixels F
and free pixels U .

Formally, the sets F and U are then defined as index sets:

F =
�

i | x i = x i+rn+q, for all q, r ∈ {−1,0, 1}
	

, (4.5)

U = F c , (4.6)

where F c denotes the mathematical complement of F . In addition, the set of free
pixels U is combined with a random subset of pixels. Each pixel has a probability
(1− p) to be included in the set of free pixels. The probability 0< p ≤ 1 is referred
to as fix probability. This random set of free pixels improves the reconstruction of
“holes” in the object, which are typically not found easily.

Since pixels in the interior regions are likely to be correct, they are removed
from the equation system Eq. (4.1) and subtracted from the right-hand side. To
fix a pixel i ∈ F , we apply the following operation on the linear system:





| | | |
w1 · · · wi−1 wi+1 · · · wN
| | | |
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x i−1
x i+1

...
xN



















= p − vi wi , (4.7)

where vi is the segmented gray value of pixel i. Subsequently, other pixels in F
are treated in an analogous way. This leads to a reduced system that has fewer
unknowns. The pixels in the free set U are refined by iterating an ARM on the
reduced system.

This process is repeated in each DART iteration. The boundary pixels are
determined from the complete image, not only from the free pixels corresponding
to the reduced system. Therefore, the elimination of pixels in the fixed set always
starts from the full system in Eq. (4.1). As a consequence, pixels that were
previously fixed can be free in a consecutive DART iteration. Therefore, errors
in the interior regions can be corrected in a later stage due to evolution of the
boundaries.

Batenburg and Sijbers show that with increasing noise levels, the DART recon-
structions have a large pixel error (i.e. the number of pixels that have a wrong
gray value in the reconstruction compared to the ground truth) [BS11]. Since
only boundary pixels are free, the noise has a large effect on the boundary update.
To remedy this problem, the fix probability can be decreased such that noise is
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Figure 4.2: The flowcharts illustrate the DART and SDART algorithms. The SIRT
update can be replaced by another ARM. The smoothing step in DART is used to
suppress the effect of noise on the boundary update. Note that SDART includes
a penalty matrix D, that represents the soft constraints used in the subsequent
reconstruction step. SDART does not include a smoothing step.

also spread over a large random subset of pixels. While this improves the accuracy
of DART with noisy projection data to some extent, it does introduce heavy salt
and pepper noise, as was also observed in [Alp+13].

4.3 Soft DART

The main contribution of this chapter is to introduce a different approach to
classify and improve incorrectly segmented pixels. Instead of fixing pixels and
updating free pixels, we propose to solve a relaxed system (i.e., under soft con-
straints) as an alternative to the ARM update step. In this section we will discuss
the main details of the new approach.

A flowchart of the new method is shown in Fig. 4.2b. SDART follows the same
steps as DART, but it does not eliminate unknowns (pixel values) from Eq. (4.1).

We propose to introduce a soft constrained optimization problem. Let v be the
segmentation of the intermediate reconstruction and let D ∈ RN×N

+ be a diagonal
matrix with nonnegative real entries (dii ≥ 0, it is referred to as penalty matrix).
We then introduce the relaxed reconstruction problem:

minimize
x∈RN

�

�

�

�

�

�

�

�

�

W
λD

�

x −
�

p
λDv

�

�

�

�

�

�

�

�

�

2

2

≡

minimize
x∈RN

‖W x − p‖2
2 +λ

2‖D(x − v)‖2
2. (4.8)

In this setting, the diagonal matrix element dii gives a penalty to pixel i for
deviating from its segmented value vi. If dii is large, only small deviations are
allowed, while the pixel can be considered “free” if dii = 0.

The system in Eq. (4.8) is solved by a linear least squares solver, e.g., a
reconstruction method such as SIRT or a Krylov subspace method such as CGLS.
The algorithm is started with initial guess x0 = xc , the reconstructed image (with
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continuous gray levels) that resulted from the previous SDART iteration. The
parameter λ is introduced both for regularization, as well as to compensate the
difference in scale of the two terms in the cost function in Eq. (4.8). Note that
the term ‖W x − p‖2

2 depends on the number of angles, whereas ‖D(x − v)‖2
2 does

not. As a result, the scaling between the two terms is important and the value of
λ needs to be adjusted accordingly.

The entries of D depend on the current reconstruction, so the matrix D needs
to be updated at each SDART iteration. The main advantage of this approach,
compared to using hard constraints, is that no pixel will be truly fixed. Therefore,
noise in the projection data will be distributed over the entire image (proportional
to D). Moreover, the relaxation parameters dii can express a confidence level for
the accuracy of pixel’s i gray value. The confidence level can be based on any
error measure for the reconstruction we have. Due to the generality of Eq. (4.8)
we can even choose a different reference image v instead of the segmented
reconstruction.

Naturally, the increased flexibility comes with a price. The system has gained
N unknowns as well as N equations, making it more costly to solve Eq. (4.8).
In addition, we lose the efficiency resulting from the removal of columns from
Eq. (4.1). Instead, each SDART iteration will be as costly as the first. As will be
explained in Section 4.3.2, an efficient implementation can still lead to satisfactory
performance. The full algorithm is presented in pseudo code in Algorithm 2. Note
that a stopping criterion is not included in the algorithm description. In general,
the question when to stop an algorithm to obtain the best solution is a very
difficult one. Therefore, a reasonable choice is to terminate the algorithm when
the relative change in the solution is small. This can be achieved by using a fixed
number of iterations. In the experiments section we use 30 to 50 iterations, which
is enough for all the datasets we considered.

4.3.1 Selecting a penalty matrix

In our simulation experiments in Section 4.5, we consider two different penalty
matrices, defined as follows:

DART criterion

For validation purposes, we introduce a penalty matrix that should result in
SDART mimicking the original DART algorithm. SDART does not allow us to fix
pixels, but instead we can give non-boundary pixels a very large weight. By giving
a weight of zero to boundary pixels, we do not put any restrictions on those pixels.
The resulting penalty matrix is given by

dii :=
§

106, i ∈ F
0, i ∈ U . (4.9)

These weights are found to be effective from preliminary simulation experiments.
We refer to SDART using this penalty matrix as SDART-ORIG, the first variant of
SDART.
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Neighbor criterion

In DART, a pixel is fixed when all 8 neighbors have the same gray value. If at least
one neighbor has a different gray value, the pixel is considered free. This leads
to a relatively fat boundary. Therefore, a logical choice for D would be to give a
penalty that is proportional to the number of neighbors bi that have a different
gray value, i.e.,

bi :=
1
∑

r=−1

1
∑

q=−1

1{x i 6=x i+rn+q}, (4.10)

where 1{} is an indicator function that is 1 if the condition is true and 0 otherwise.
In this way, boundary pixels have different weights that reflect their position in
the boundary. As a result, the boundary can be considered to be narrower. The
penalty matrix is then defined as

dii :=
100
3bi

. (4.11)

Note that dii is an exponential, monotonically decreasing function in bi. The
factor 3 in the denominator was chosen based on early simulation experiments.
If the factor is too small or too large, the reconstruction will either not change
much in each iteration or noise is distributed more on the boundary, respectively.
This version of SDART is referred to as SDART-NB.

4.3.2 Solving the soft constrained system

In this section we will go into more detail how the soft constrained optimization
problem in Eq. (4.8) is solved.

This optimization problem involves solving the system
�

W
λD

�

x =
�

p
λDv

�

(4.12)

in a least squares sense.
The matrix W has M rows and N columns and is typically very large, especially

in the three dimensional case, where the number of voxels/pixels in the recon-
struction grid and in the projection data, is large. In Eq. (4.12) we added another
N rows to the system matrix and right-hand side. However, in our implementa-
tion using the ASTRA toolbox [PBS13; PBS11], the full matrix is never formed
explicitly. If a matrix–vector product is computed, we split this operation in two
parts: W x and λDx . The first matrix–vector product is computed by generating
W on the fly to avoid high memory usage. This can be done efficiently due to our
GPU implementation. The second part λDx is simply an inner product, because
D is diagonal and is stored as a vector. Therefore, the computational overhead
compared to solving Eq. (4.2) is small.

For solving Eq. (4.12) we can apply any linear least squares solver. However,
we noticed during preliminary experiments that methods based on Kaczmarz’
method such as SIRT [KS01], have slow convergence and do not yield very
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Algorithm 2 SDART

Input: Projection data p
Output: Segmented reconstruction xs

1. Let xc be the initial CGLS reconstruction from projection data p.
Compute the initial segmentation xs = T (xc).

repeat

/* Setting up the soft constraints */
2. Compute the matrix D based on xs.
3. Set v = xs.
4. Set x0 = xc .

/* Soft constrained reconstruction */
5. Apply CGLS with initial solution x0 to solve:

minimize
xc

‖W xc − p‖2
2 +λ

2‖D(xc − v)‖2
2

/* segmentation */
6. Compute xs = T (xc).

until convergence

accurate results. Krylov subspace methods perform better in this case. We found
that the method CGLS performs very well and methods such as LSQR and LSMR
are suitable too [FS11; PS82], but they all have slightly different results. This is
why we have chosen to combine CGLS with SDART in our numerical experiments
in Section 4.5.

4.4 A numerical study

In this section we highlight differences in behavior of DART and SDART using
numerical experiments. We also introduce an experimental way to compute the
regularization parameter λ that has an important role in the convergence of
SDART. We want to point out that this section serves the reader to illustrate
the different behavior between DART and SDART. Therefore, the choice of our
phantom shown in Fig. 4.3 is somewhat arbitrary.

4.4.1 Behavior of DART compared to SDART

The effect of the hard versus soft constraints of DART and SDART can be visualized
by looking at the evolution of boundary pixels (i.e. free pixels in case of DART).
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Since SDART has no concept of free pixels, we show the penalty matrix D after
rescaling its values such that the elements are in the range [0,1], i.e., we show
the image {x i} such that

x i = 1−
dii

max
j
(d j j)

. (4.13)

In this example we consider the cylinder block phantom, shown in Fig. 4.3.
The projection data were computed by forward projecting the image, using a
parallel beam geometry. In total 25 projections were computed at equidistant
angles in the domain [0,π). The projection data were perturbed by Poisson noise.
Noise due to a limited photon count, which is encountered in many types of
tomography, follows a Poisson distribution. The intensity of the noise is quantified
by the photon count of the incident X-ray beam, when no object is between the
source and detector. In other words, this represents the total dose that is emitted
during the full scan of the object. In this case, noise was simulated corresponding
to a photon count of 103. In DART, the fix probability was set to 0.99. With very
low signal-to-noise ratios, a lower fix probability is preferred, but this would make
it difficult to show the boundary evolution.

Figure 4.3: The cylinder phantom of size 512× 512.

In Fig. 4.4 the boundary evolution of both DART and SDART-NB (using the
neighbor criterion) for the first three full iterations is shown. Note that for
SDART-NB, we show the weights represented in Eq. (4.13). A pixel is black if the
corresponding penalty of the pixel is maximum, maxi dii . This is comparable to a
fixed pixel in DART. A white pixel corresponds to a minimum penalty. The pixel
attains any other gray value if it is in between these extrema. This representation
of the “amount of fixedness” of pixels is not directly comparable to DART’s free
and fixed pixels. However, we think that these images give insight in the different
ways that DART and SDART update the reconstruction.

The initial boundary of DART in Fig. 4.4a is only slightly refined in the next
iterations. Although the boundary becomes thinner, many of the background
pixels are indicated as free pixels. In SDART-NB, we see a similar thinning of the
boundaries. Moreover, the contours of the ground truth image are approximated
more accurately. Background pixels have a large weight (indicated by black
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Comparison of the boundary evolution of “free” pixels in DART, (a) –
(c) and SDART-NB (d) – (f), for the first three iterations.

pixels). This shows that the background is more homogeneous rather than that
noise is producing clusters, as is the case in DART.

Images of the boundary evolution, do not give a clear insight in the quality
of the reconstructions. Therefore, we also show the segmented intermediate
reconstructions in Fig. 4.5. DART is distributing a significant part of the noise
throughout the background, where many pixels are free. Another consequence of
noise is visible in the jagged boundaries of the cylinder block. The reconstructions
of SDART-NB have finer and more distinct boundaries. In addition, background
noise is reduced within consecutive iterations.

The behavior shown in this example depends largely on the set of soft con-
straints imposed by the matrix D. For example, a strategy of fixing pixels similar
to DART (e.g. SDART-ORIG) is very effective for projection data without noise
[BS11], while it fails in cases with heavy noise. Therefore, finding a single penalty
matrix D that is accurate in all possible datasets is unlikely. An adaptive approach
might be more successful. For example, the order of magnitude of the weights
can be changed according to noise levels. In case of low noise levels, high weights
steer the solution more to the segmentation, while smaller weights prevent over-
fitting to noise. We see an important role here for the parameter λ in Eq. (4.8). It
can be used to assign a larger weight to the data fidelity term or to correspondence
to the segmented solution.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Comparison of the intermediate segmentations of the first three
iterations of DART, (a) – (c) and SDART-NB, (d) – (f). These correspond to the
boundaries in Fig. 4.4.

4.4.2 Selecting the regularization parameter

In this section we will discuss how to select a value for the regularization param-
eter λ that is close to optimal, where we use the term optimal reconstruction to
refer to the reconstruction with smallest pixel error over all possible choices for
λ. Recall that the pixel error indicates the number of pixels that do not have
the right gray value compared to the ground truth. We have chosen this error
norm over, e.g., a chi-squared or Jaccard distance, since our images are inherently
discrete. A chi-squared measure is more suitable when comparing two images
that are continuous with respect to their pixel values. Moreover, we expect that
our findings will not be changed significantly when another error norm is used.

Consider the second formulation of the cost function in Eq. (4.8). It consists
of two terms: a data fidelity term ‖W x − p‖2

2 and a discrete tomography prior
‖D(x − v)‖2

2. The order of magnitude of these terms is in general not directly
comparable. Therefore, a regularization parameter λ is added to properly adjust
the bias to the discrete tomography prior.

Note that the magnitude of the data fidelity term depends strongly on the
current solution x (and thus on the ground truth) as well as the number of
projection angles. Adding more projection angles results in more rows in W as
well as more elements in p. By making the assumption that a projection image



4.4. A numerical study 59

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
x 10

6

number of angles

s
q

u
a

re
d

 r
e

s
id

u
a

l 
n

o
rm

(a)

10
−2

10
−1

10
0

10
1

10
2

10
0

10
2

10
4

10
6

lambda

e
rr

o
r

 

 

pixel error

residual MSE

(b)

Figure 4.6: (a) Linear behavior of the data fidelity term ‖W x − p‖2
2 with respect

to the number of projection angles; (b) For simulated projection data without
noise, the residual mean squared error of an SDART reconstruction follows the
same curve as the true pixel error, if the regularization parameter is varied.

does not change in a small angular range, we can assume that the sum of squared
residuals ‖W x − p‖2

2 behaves linearly in the number of angles. (Provided that the
additional angles are close to the original angles.)

To verify this assumption, we perform a small numerical experiment. Consid-
ering the Shepp–Logan phantom, the bottom image in Fig. 4.10a, we simulate
projection data for a fixed number of angles (e.g. 50). For these projection data
we reconstruct the image by using 4 iterations of LSQR (as explained in the
previous section). This yields an approximate reconstruction. Consequently we
construct the projection operator W and corresponding right-hand side p (by
forward projecting the ground truth image) for a varying number of equidistant
projection angles. In Fig. 4.6a the squared residual norm is plotted for a varying
number of angles, indeed showing a linear curve.

The last term in Eq. (4.8) does not depend on the number of projection
angles. Instead it depends linearly on the number of pixels in the reconstruction.
Since this is also true, to some extent, for the data fidelity term, no adjustments
should be necessary if the number of reconstruction pixels is changed (e.g. a
value λ at low resolution can be found that is also suitable for high resolution
reconstructions).

Due to the linearity of the data fidelity term, we can extrapolate λ if a value is
known for a dataset with few projection angles.

We still lack a way of determining a good value for λ for a given dataset. For
this goal we can use the residual `2-norm. If the projection data are consistent
with the ground truth (no noise), there is usually a good correspondence between
the true (pixel) error and the residual of Eq. (4.1). We can exploit this to find a
value for λ for which the pixel error of the SDART reconstruction is minimal. In
Fig. 4.6b we have plotted the pixel errors of the SDART-NB reconstructions and
the value for λ that was used. The result suggests that there exists an optimal λ
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Figure 4.7: Choosing the optimal value for lambda. (a) The mesh plot of the pixel
error; (b) The pixel errors for λ = 0.24 are very close to the pixel errors for the
optimal λ∗.

at which the pixel error takes its minimum value. Moreover, the residual `2-norm
agrees with this minimum. Therefore, if an initial guess for λ is known, we can
compute several SDART reconstructions for different λ in a small range. If a
minimum of the residual is found, we also found the optimal λ.

Of course this method will fail if noise is present in the projection data. Then
the correspondence between the residual `2-norm and the true error is in general
very poor. Nevertheless, we will show that a value found for λ for a phantom
dataset (or a dataset with very low noise levels) may also give near-optimal results
when high noise levels are considered.

In Fig. 4.7a, a mesh plot is shown of the pixel error for a range of λ as well as
several photon counts. For these computations the cylinder phantom in Fig. 4.3
was used and projections at 20 angles were computed. We see that the minimum
pixel error is attained at λ≈ 0.5 for data with high signal-to-noise ratio (SNR). If
the SNR is decreased, the optimal value for λ does not seem to change much.

The optimal λ for each SNR still varies slightly. The corresponding pixel errors
are minimum at that specific SNR. We also selected a constant λ∗ ≈ 1 that attains
pixel errors closest to these minimum pixel errors in a least squares sense. This
is the optimal choice if we fix λ. The pixel errors are shown in Fig. 4.7b. We
also plotted these curves for λ = 1.38 and λ = 0.24 (which was optimal for the
noiseless case as shown in Fig. 4.6b). From this result we can see that while λ∗

is the better choice overall, choosing λ= 0.24, the same as in the noiseless case,
produces near-optimal results. The key conclusion is that the value for λ as in the
noiseless case also works well in low-dose datasets.

In Fig. 4.8, the pixel error and residual are plotted for a dataset with limited
noise (a photon count of 106), for varying λ. From these data we see that there
still is a good correspondence between the minimum pixel error and the minimum
of the residual MSE. This implies that we can effectively estimate λ for a dataset
with high SNR. Consequently, datasets collected from the same object with low
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Figure 4.8: Correspondence between the residual mean squared error (MSE) and
the true pixel error for relatively high photon count (= 106).

SNR can use the same λ.

4.5 Experiments and results

In this section we describe the experiments that were performed and their results.
The main focus is to compare DART with SDART and a variety of well established
reconstruction methods. In the experiments we focus on different conditions for
which SDART is more accurate in comparison with DART. In addition, we explore
the two sets of soft constraints D used in SDART-ORIG and SDART-NB. To validate
our findings in the simulation experiments, we apply (S)DART to an experimental
dataset with a low signal-to-noise ratio.

The results are compared to other well-known reconstruction methods. We
include as a reference the filtered back projection (FBP) method, which is widely
used for its speed and robustness[KS01]. However, a requirement for FBP is a
large amount of angles, to avoid under-sampling, a requisite that is not met in
the limited angle case. The algebraic reconstruction techniques SIRT and SART
are included as well. Both methods are derived from ART, but their update steps
are different. SART will update the reconstruction using one projection image
at a time, while SIRT updates the reconstruction using all angles. Finally, we
include the binary algebraic reconstruction technique BART, which is a method
for reconstructing binary images [Her73]. This algorithm is implemented in the
tomography package SNARK09 [KDH13], which we use in combination with the
script as presented in [Alp+13]. This code follows the same computational steps
as presented in the flowchart of the original paper in [Her73].

In the simulation experiments we consider three phantom datasets, shown in
Fig. 4.10a, referred to as: blob, cylinders and Shepp–Logan (from top to bottom).
The phantom images are of size 512 × 512. Projections were computed over
an equidistant set of angles in the range of [0,π). A parallel beam geometry
is simulated with a 1D detector of 512 pixels, the same width as the phantom
images. When noise is applied to projection data, it is sampled from a Poisson
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distribution. Intensity of the noise is expressed in simulated photon counts, a
lower photon count indicating more noise.

Each DART run is initialized by 40 iterations of the SIRT reconstruction algo-
rithm [KS01]. DART uses 40 intermediate SIRT iterations to refine the boundary
pixels. SDART is initialized by 40 CGLS iterations and uses 70 iterations to solve
the soft constrained system in Eq. (4.8). SDART uses more intermediate iterations,
since SDART solves the full equation system in Eq. (4.8), while DART solves a
system of equations that has significantly fewer unknowns. Therefore, increasing
the intermediate ARM iterations in DART will not significantly decrease the pixel
error. In fact, for noisy projection data it is preferred to decrease the number of
ARM iterations, to prevent overfitting to noise.

4.5.1 Experiment I – basic validation

In the first experiment we compare simulations of DART, the two variants of
SDART, BART, SART, FBP and SIRT on noiseless data. The projection data are
simulated using the forward model. This allows us to compare the reconstructions
with the ground truth.

Note that the BART algorithm can only be applied on datasets from binary
images, which rules out the Shepp–Logan phantom. The FBP, SART and SIRT
methods do not provide a segmented image, so we cannot directly measure the
pixel error. Therefore, we include a final segmentation step after the reconstruc-
tion. Similarly to the segmentation step in DART and SDART, the images are
thresholded.

The number of projection angles was chosen as follows: 10 for the blob
phantom, 25 for the cylinder phantom and 30 for the Shepp–Logan phantom.
Using these number of projection angles, accurate reconstructions can be obtained
in all three cases.

From the results of these experiments, shown in Fig. 4.9, we can conclude
the following. In all cases, the filtered back projection is not accurate in terms
of the pixel error. Clearly, the method is not suitable for the limited angle
case. The methods SIRT and SART are comparable in accuracy, although SIRT
converges slower to the minimum pixel error. For the Shepp–Logan phantom, the
number of angles is clearly not enough to properly reconstruct, without using
prior information. The BART algorithm achieves almost similar pixel errors when
compared to DART and SDART. As we have discussed previously, BART could not
be applied to the Shepp–Logan phantom.

Next, we focus on the differences between DART and SDART. SDART-NB with
the neighbor constraints is in each case more accurate than SDART-ORIG. The
accuracy of SDART-NB is comparable to DART in all datasets except for the blob
image with hole. Since DART uses a fix probability of 0.99, it is able to detect the
hole in the phantom. SDART has no random subset of free pixels and therefore is
unable to detect the hole. This random subset could, however, easily be added to
SDART to find holes such as in this case.

Based on the results in this experiment, we have decided not to include FBP
and SART in the remaining experiments. For FBP, the number of angles is not
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(b) Cylinders
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(c) Shepp–Logan

Figure 4.9: The graphs show the convergence of DART and SDART compared to
other common reconstruction algorithms.

enough to achieve a small pixel error. The SART algorithm achieves a similar
pixel error compared to SIRT, but converges faster. However, we prefer SIRT over
SART, because in each iteration, a back projection from all angles is performed.
This way, noise in the data is averaged over all projection angles, instead of only
one. Therefore, SIRT is expected to perform better in the case of high noise
levels. Moreover, SIRT and SART are from the same family of algorithms and are
expected to have similar results.

4.5.2 Experiment II – the effect of noise

In the second experiment, we compare the performance of DART, SDART and
BART over a large range of noise levels. As has already been indicated, DART
results in poor reconstruction accuracy if the signal-to-noise ratio is low [BS11].
We expect that SDART will be more robust in this case.

We varied the noise levels from a photon count of 102 (very high noise level)
to 106 (very low amount of noise). For each noise level a new sinogram was
generated and Poisson noise was applied. The number of projection angles, 10,
25 and 30 for the blob, cylinder and Shepp–Logan phantom images respectively,
was chosen such that a good reconstruction quality is possible when no noise is
present in the projection data.

As the start solution for DART, a segmented SIRT reconstruction is used based
on 40 iterations. The final (S)DART reconstruction should be an improvement of
this initial reconstruction. Therefore, we also compare the results with this initial
segmentation.

The results from experiment II are listed in Fig. 4.11. The errors, in percent-
ages, indicate the percentage of pixels that have been segmented to the wrong
gray value compared to the phantom image.

The pixel error of the (S)DART reconstructions are in general smaller than
those of the initial segmentation. However, in a small interval of noise levels,
DART shows a small regression in comparison with the initial segmentation.
Apparently DART has problems in convergence for this particular interval of noise.
This issue is especially visible in the case for the blob phantom for photon counts
in between 103 to 104.
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(a) (b) (c) (d) (e)

Figure 4.10: (a) Phantom images of dimension 512× 512 pixels used in simula-
tion experiments, referred to as: blob, cylinders and Shepp–Logan (from top to
bottom); (b) The segmented SIRT reconstructions. The pixel errors correspond-
ing from top to bottom reconstructions are: 27.6%, 18.2% and 41.9%; (c) The
final BART reconstruction for blob and cylinders phantoms. The corresponding
pixel errors, from top to bottom: 18.4% and 15.9%; (d) The final DART recon-
structions. The pixel errors are: 17.3%, 13.7% and 48.1%; (e) The final SDART
reconstructions. The pixel errors are: 3.9%, 7.7% and 39.9%.

The BART algorithm was also applied to the blob phantom and the cylinder
phantom. It is performing very similar to the DART algorithm with a fix probability
of 0.99. This leads us to the conclusion that BART is suitable for reconstructing
binary objects, if the noise level is not too high.

For the blob phantom at high SNRs (photon counts in the range 104-106), it
seems that 10 projection angles is enough to have very accurate reconstructions,
just by thresholding of the initial SIRT reconstruction. This is different, however,
for high noise levels. At a photon count of 102 we see that SDART produces
an accurate reconstruction. However, the pixel error of DART and BART is
increasing very rapidly if the photon count becomes smaller than 104. The same
trend, to some degree, can be observed in the other two phantom images. At
high SNR, DART and SDART-NB perform equally well. SDART-ORIG, using the
DART criterion, is performing badly. Instead of improving the initial segmented
reconstruction, the pixel error is increased. We can conclude that SDART-ORIG is
not suitable for noisy datasets.

The pixel errors do not give clear insight of the actual quality of the reconstruc-
tions. A pixel error of, say, 10% does not indicate where the incorrect pixels are
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(b) Cylinders
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(c) Shepp–Logan

Figure 4.11: The pixel error is expressed in terms of the noise level (in photon
count).

located and how the corresponding reconstruction looks. Therefore, we also show
the reconstructed images in Figs. 4.10b to 4.10e. The blob phantom projection
data has corresponding photon count of 100, the cylinder data 500 and for the
Shepp–Logan data the photon count was 1000. In the fourth column of Fig. 4.10d
we see DART reconstructions with fix probability 0.99. The SDART-NB recon-
structions are shown in the last column in Fig. 4.10e. The difference between
the reconstructions is clear, especially in the background. Moreover, the SDART
reconstructions suffer far less from salt and pepper noise that is clearly visible
in the DART reconstructions. The qualitative differences are supported by the
corresponding pixel errors as listed in the caption of Fig. 4.10. The quality of the
Shepp–Logan reconstruction is less impressive. Presumably, the number of gray
values (6 in total) in the reconstruction is too much. The strength of the prior is
reduced if the total number of distinct gray values is large.

From these data it becomes clear that employing SDART has an advantage
over DART and BART if the signal-to-noise ratio is very low. In some cases SDART
can generate good to reasonable reconstructions, while DART and BART perform
badly.

4.5.3 Experiment III – adding more projection angles

Datasets with very low signal-to-noise ratios and few projection angles, in general,
result in reconstructions with poor quality. Applying discrete tomography algo-
rithms such as DART might show slight improvements in accuracy, but it is known
that DART has problems with noisy datasets, which was also observed by Alpers
et al. [Alp+13]. We have seen from the previous experiment that SDART-NB is
favorable over DART in this case (from now on we do not include SDART-ORIG in
the experiments). It is not clear, however, if this benefit is maintained when the
number of projection angles is increased.

In the third experiment we compare the accuracy of DART, SDART and BART
on the phantom datasets for a fixed, low signal-to-noise ratio, but the number of
projection angles is varied. For the blob and cylinder phantom we chose a photon
count of 102. For the Shepp–Logan phantom a photon count of 103 was used.
Other details are the same as in experiment I. Since the performance of DART
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(a) Blob with hole, photon
count of 102
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(b) Cylinders, photon count
of 102
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(c) Shepp–Logan, photon
count of 103

Figure 4.12: Simulation experiment at high noise levels and an increasing number
of projection angles.

on noisy datasets depends strongly on the fix probability, we run DART for two
values of the fix probability.

From the results in Fig. 4.12 we see that increasing the number of projection
angles decreases the pixel error for DART, BART and the segmented SIRT recon-
struction. Especially for the cylinder phantom, a large decrease in the pixel error
can be achieved. In each case, SDART is still more accurate in comparison to
DART and BART. However, there are two surprising results shown in this plot.
First of all, DART with a fix probability of 0.5 is less accurate than DART with
a fix probability of 0.99. From Fig. 4.11, we see that this is indeed the case for
most noise levels. Apparently this behavior changes if the noise level is very high.
Secondly, the pixel errors of SDART are not decreasing monotonically with an
increasing number of projection angles. In fact, the pixel error is increasing for the
blob phantom. The weights of SDART-NB were determined for a dataset at a fixed
number of projections. Therefore, the number of projections is not incorporated in
the weights. These results suggest that such an approach should be taken in order
to avoid this behavior. Since the focus of this chapter is on discrete tomography
for the limited angle case, we leave this open for further research. We want to
emphasize that the weights defined in Eq. (4.10) do work well in the limited angle
case, which is the domain of discrete tomography.

The BART algorithm performs more consistently as the pixel error drops when
the number of projection angles is increased. For the Shepp–Logan phantom, the
pixel error of SDART-NB is more or less constant. We expect that there is still
significant room for improvement of the performance of SDART for cases where a
relatively large number of projection angles are available, by further exploring
the possible choices for the matrix D.

4.5.4 Experiment IV – experimental data

To validate the simulation experiments, we applied SDART to an experimental
dataset. For this experiment we used a hardware phantom. The hardware
phantom consists of plexiglass and has a nearly convex shape with three holes
drilled through it in the vertical direction. A SIRT reconstruction of the central
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(a) SIRT Reconstruction (b) segmentation

Figure 4.13: (a) A SIRT reconstruction from all 600 projection images; (b) Seg-
mentation of the SIRT reconstruction. The segmentation was manually improved
on the edges.

slice is shown in Fig. 4.13a. The large hole was filled with white spirit, the middle
hole with water and the last hole contains air. Note that air and water have very
similar attenuation coefficients, resulting in almost identical gray values in the
reconstruction.

The projection data were acquired by a Skyscan 1172 microtomography X-ray
scanner. A total of 600 projection images of 1000× 600 pixels were acquired over
a full tilt-range of 360°. The tilt increment between images was 0.6°. With a pixel
size of 25 µm, a slice (1000× 1000 pixels) has physical dimensions of 25×25 mm.

The scanner has a cone beam geometry, however, since the object is uniform
in the vertical direction, we focus on reconstructing the central slice using fan
beam geometry. The sinogram was extracted from the projection images.

The SIRT reconstruction from all 600 projections leads to an accurate seg-
mentation of the object (by thresholding). In Fig. 4.13b this segmentation is
shown. Manual adjustments were applied to the segmentation at the boundaries,
where the segmentation was distorted by noise. The gray values for this dataset
were estimated using the algorithm proposed by Batenburg et al. [BAS11]. The
segmentation can be used as a ground truth. Although it will differ from the
actual ground truth, we can assume that it is reasonably accurate to allow also
quantitative analysis of the accuracy of SDART.

For the (S)DART reconstructions we use a subset of 20 projections, with
equiangularly distributed projection angles in the range [0,π). The value of
λ = 2 in SDART is computed based on the residual norm using the full dataset,
as described in Section 4.4.2. The number of intermediate ARM iterations in
DART is 20, and the number of DART iterations is 300. For SDART-NB, we use
70 intermediate iterations and a total of 30 SDART iterations. The difference in
iterations between SDART and DART is large, because DART converges slowly in
terms of iterations, but iterations are fast. SDART converges quickly, but iterations
are far more costly.

In Fig. 4.14 we see the final SIRT, DART and SDART reconstructions. The
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(a) SIRT (b) DART (c) SDART

Figure 4.14: The dataset considered here consists of a subset of 20 projections
(from 600 total); (a) The final SIRT reconstruction; (b) The final DART recon-
struction; (c) The final SDART reconstruction.
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Figure 4.15: The pixel error of DART and SDART are plotted against the computa-
tion time. Note that DART requires far more iterations, but SDART takes three
times as long to converge.

SIRT reconstruction is very noisy. When compared to the DART and SDART
reconstructions the advantage of using prior knowledge is obvious. Although
the DART and SDART reconstructions look similar, we can also point out clear
differences. In the DART reconstruction, many gray areas are visible (white spirit)
in the whiter area (the plexiglass). These form large clusters of pixels. SDART
shows these clusters as well, but they are very small in comparison, just a few
pixels. The result is that SDART’s boundaries are sharper, but they look distorted
by salt and pepper noise. DART’s boundaries are smoother, but the presence of
gray areas might lead to the erroneous conclusion that there is actually liquid
there, instead of plexiglass.

In Fig. 4.15 we plotted the pixel error versus the computation time. Note that
we do not have the actual pixel error, but we compare the reconstructions with
the segmentation from Fig. 4.13b. The DART reconstruction has a pixel error
of 2.68% and the pixel error of SDART is 1.74%. This is a significant decrease
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in the pixel error of 35%. In terms of computation time we see that DART
finishes in one third of the time it takes SDART to converge although it requires
substantially more iterations. We should note that the DART implementation used
here was optimized. It should be possible to speed up SDART by moving more
computations, such as the detection of the boundaries, to the GPU. We want to
emphasize that we introduce SDART here as a method that is more robust than
DART on noisy data. Therefore we did not focus on computational efficiency,
but rather on accuracy. From the results in Fig. 4.14 we see that the SDART
reconstruction provides significantly different reconstructions. These may help in
better understanding the true morphological nature of the object.

4.6 Conclusions

We proposed a new variant of DART that introduces a set of soft constraints to
replace the hard constraints. We have seen that the hard constraints in DART
lead to problems if the projection data contain a high level of noise. Our new
method, named SDART, was introduced to enhance the robustness of DART for
noisy projection data. The soft constraints allow noise to be spread across the
whole image domain. As a result, boundaries of the object are less influenced by
the noise, leading to sharper edges.

Two sets of soft constraints, or penalty matrices, were introduced. The first
variant, SDART-ORIG, mimics the original DART algorithm. The other variant,
called SDART-NB, discriminates boundary pixels by the number of surrounding
pixels with a different gray value.

We performed several simulation experiments that compare the accuracy of
SDART with DART, BART and SIRT. The results from noiseless data show that
SDART has similar, but slightly less accuracy compared to DART. The accuracy
of SDART-NB compared to BART is slightly improved. On datasets with very
low signal-to-noise ratios, SDART-NB outperforms DART and BART by large.
The results of SDART-ORIG were not accurate in this case and SDART-NB is the
preferred method for noisy projection data. The qualitative results show that
SDART-NB is less prone to salt and pepper noise. Results from experimental
data, containing a large amount of noise, further support that SDART-NB is
more accurate compared to DART. For this particular dataset, the pixel error
of the SDART-NB reconstruction was approximately 35% smaller than that of
DART. In this case, the difference in quality between the DART and SDART-NB
reconstructions was less obvious visually. The SDART-NB reconstruction has
sharper edges, distorted by some salt and pepper noise. DART produces clusters
of a gray value on the edges that is different from the plexiglass interior. This
might lead to the false conclusion that liquid (white spirit) adhered to these edges.
From the SDART reconstruction it is clear that this is not the case. This shows that
the SDART reconstruction can give additional insight, when conclusions about
the DART reconstruction are not decisive.

So far, we have investigated only two possible choices for the penalty matrix D.
Compared to DART, SDART can encode a more specific representation of the prior
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by using continuous weights. We expect that SDART can be further improved by
using more sophisticated choices for this matrix, which will be investigated in
future research.


