Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/21790</u> holds various files of this Leiden University dissertation.

Author: Bae, Yuh Jin Title: Renewable energy and resource curse on the possible consequences of solar energy in North Africa Issue Date: 2013-09-25

Renewable Energy and Resource Curse

on the possible consequences of solar energy in North Africa

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker volgens besluit van het College voor Promoties te verdedigen op woensdag 25 september 2013 klokke 15.00 uur

door

Yuh Jin Bae Geboren te Dortmund, Duitsland In 1984 Promotiecommissie

Promotor Prof.dr. R.J. Ross

Leden Dr. J.Th. Lindblad Dr. F. Ali (University of Benghazi) Prof.dr. S. Ellis (VU University Amsterdam) Prof.dr. R.T. Griffiths

Acknowledgements

During my 4 years of PhD research, I have received a great deal of help and support from many people, and I here would like to thank them all. First, I would like to thank Professor Robert Ross, my supervisor, who has given me the opportunity to conduct my PhD research. Secondly, I would like to thank Leiden University for providing me with excellent facilities for me to carry out my work. Third, I wish to thank my colleagues and friends who have not only helped me with my thesis but have also kept me in great company. Fourth, I would like to thank all the experts and professionals in my field who I have met during several events and who have given me invaluable feedback. Fifth, I would like to thank my fiancé, Hsue-Ying Chang, who has always stood by my side and supported me. Sixth, and most importantly, I wish to thank my parents who have always supported me with their love. I hope my achievements can bring an extra smile to your face. More specifically, I wish to thank my father. It makes me sad that you are no longer with us. You will never know how much I wanted to share my achievements with you, but I am sure you would have been proud of me. Regardless of this PhD, I could not have come this far without you. This achievement is for you. Thank you so much. Both mom and I miss you and love you.

Abstract

The African continent possesses a vast amount of various types of natural resources. Accordingly, a large number of African countries export their natural resources. These natural resources include important energy sources such as oil and natural gas, in turn the export of these energy sources plays a crucial role in the economics and politics of many African countries. Despite its crucial role, the heavy reliance on natural resource exports by African countries is often related to the term 'resource curse'.

Unfortunately, negative terms such as 'resource curse', 'oil curse' and 'aid curse' have now become synonymous with the African continent and several studies have accentuated that such 'curses' exist in many African countries.

The world is facing a 'new energy era' as many countries, including African countries, are changing their policies to promote the use of renewable energy. Here, North Africa has been receiving attentions due to their enormous potential for solar energy production, as well as other renewable energies such as wind energy, from the Sahara desert. For example, organizations such as Desertec Industrial Initiative (DII), with the Moroccan Agency for Solar Energy (MASEN) signed a Memorandum of understanding regarding a large cooperative solar project in Morocco in May 2011.

Despite the potential benefits that North Africa can gain from the establishment of solar power in the region, it remains a matter of concern as solar energy is also a type of energy, and one cannot underestimate the possibility that this could become a new curse. As such, this thesis will deal with this crucial issue by presenting a projection of the potential for the five North African countries (Algeria, Egypt, Libya, Morocco, and Tunisia) to suffer from a solar energy curse.

As the use and study of solar energy in North Africa is still in its infancy, there is limited data and information available. As such the projection of the potential for solar energy to become a new curse is based on data and literature regarding the current and ongoing resource curse. To supplement this, data and information from other countries which have had more experience with renewable energy, such as Germany and Spain, is applied.

By looking at the current resource curse, under the assumption that a solar energy curse will be similar to the current resource curse, the combination of the poor institutional quality and the enormous size of resource rents is selected as the cause of the resource curse.

In the case of institutional quality, the institutional quality of the five North African countries in 2011 are compared to the five selected resource cursed boundary-countries and the five selected resource curse avoided/escaped boundary-countries by using the World Governance Indicator (WGI). The result is that their institutional qualities are closer to the resource cursed boundary-countries

which suggest that they have the potential to suffer from a solar energy curse if their institutional qualities are to remain poor in the future.

In the case of rent size, the solar energy rent is projected and compared to the average oil and natural gas rent size of the Middle East and North Africa (MENA) countries during the period of 1993-2009. The outcome of the comparison is that solar energy rent, or even when combined with wind energy based on a different study, is projected to be much lower than the average oil and natural gas rent size of the MENA countries.

When combining the two findings, solar energy is not projected to become a new curse for the five North African countries due to the small size of the projected solar energy rent. However, it is found that, under the assumption that the oil and natural gas will remain in the future in the three North African energy exporters (Algeria, Egypt, Libya), the successful establishment of the solar energy in these countries can prolong the time for them to rely on their fossil-fuels exports, therefore, prolonging the current resource curse.

The finding that the solar energy will not become a new curse for the five North African countries does not mean however that there is no future potential for them to suffer from this 'curse'. It is found that what are called the resource curse effects are not solely caused by the enormous resource rents but are often problems that many countries have already been suffering from for quite some time, regardless of the resource rent. As such, resource rents can be perceived as an element which has added extra fuel in intensifying the existing problems within the region. The enormous size of resource rents accentuates the problems that are related to the resources. This, however, results in a rather deceptive perspective as one will see the problems as the resource curse effects, when they are often existing problems that they have been suffering from irresponsive of the resource and its rent. In other words, the reason why existing problems, especially in energy exporting countries, are perceived as the effect of the resource curse is because the 'flame' created by enormous extent of resource rents has been concealing the core and existing issues.

This is not to say that the resource curse does not exist, or the enormous resource rent size is not the cause of the resource curse and its effects. What is important is that good institutional quality, which is an important factor that aids the improvement of accountability, transparency, democracy and other factors, played a crucial role in the countries that avoided/escaped the resource curse, and also can help in dealing with the existing problems which may appear, or become, a future 'curse'.

Unfortunately, by looking at the current chaotic events and complexities in the region, e.g the Arab Spring and its impacts, it is difficult to project whether institutional quality is to improve in the future. There are different ways in perceiving the current status of the region. For example, Tunisia's regime change is considered as a positive outcome of the Arab Spring (Hlepas, 2013), whereas Weill

(2012) finds that the impacts of the current consequences of the Arab Spring, i.e the regime change in Tunisia, is unpredictable and remains to reveal itself. In fact, the current chaotic events and uncertainties in the region make it difficult for one to project future institutional quality, and more importantly, possibility for the five North African countries to suffer from a new curse or the prolonging of the current resource curse for the North African energy exporters. Nevertheless, these countries are entering, or have already entered, the crucial turning point which can determine their path to the future. The five North African countries should take this turning point as the opportunity in improving their institutional quality which will help them to avoid possible 'curses' and, more importantly, lead them to sustainable development.

Contents

Acknowledgements	i
Abstract	ii
List of Figures	vii
List of Tables	. viii
Chapter 1. Introduction	1
Chapter 2. Resource Curse	6
2.1 Natural Resource in Africa	6
2.2 Resource Curse	9
2.3 Oil Curse	17
2.4 Case Study: Nigeria	18
2.4.1 Short Oil History in Nigeria	18
2.4.2 Conflicts: Oil Bunkering in Nigeria	20
2.4.3 Volatility & Debt	21
2.5 Existing Solutions Case Studies: Lessons from Norway and Botswana	24
2.5.1 Norway	24
2.5.2 Botswana	25
Chapter 3. Renewable Energy	29
3.1 Realization of the Importance of the Renewable Energy	29
3.1.1 Changes in Policies towards Renewable Energy	31
3.1.2 Growth of Renewable Energy Capacity	33
3.2 The Potential of Solar Energy in North Africa	35
3.3 DESERTEC Foundation & Desertec Industrial Initiative (DII) and Current Development in North Af	rica
	38
3.3.1 DESERTEC & Desertec Industrial Initiative (DII)	38
3.3.2 Current Development in North Africa	40
Chapter 4. Will Solar Energy Become a "New Curse", or Bring Development for Africa?	44
4.1 Solar Energy: Potential to Become a New Curse & Potential to Reduce the Resource Curse Effects	.44
4.2 Search for the Boundary-line(s) via Literature	50
4.2.1 Dutch Disease	51
4.2.2 Centralized (Patronage Politics) & Decentralized (Rent-Seeking) Political Models	53
4.2.3 Institutional Quality	54
4.2.4 Saving of Resource Income	56
4.3 The Need of Simplicity in Searching for the Boundary-line(s)	58
Chapter 5. Checking the Boundary-lines and Finding Limitations	61
5.1 Resource Rent and its Contribution to GDP & GDP Growth as the Boundary-line	61
5.2 Applying other 'Filters' on the GDP Growth Comparison Methods	69
5.2.1 Income Level	69
5.2.2 Development Status	73
5.3 The Institutional Level as the Boundary-line	78
5.3.1 Identifying Suitable Sources to Measure Institutional Quality	78
5.3.2 The Institutional Quality Comparison between Energy Exporters and Importers	82
5.3.3 Testing the Correlation between the Development Status and the Institutional Quality	86
5.3.4 Applying the Development Status on the Institutional Quality of the Energy Exporters	and
Importers	88

Chapter 6. Measuring the Resource curse and a Solar Energy Curse via the Institutional Quality Con	nparison
Method	93
6.1 Choosing the "Boundary-Countries" for the Institutional Quality Comparison Method	95
6.2 Identifying the Resource Curse & Solar Energy Curse Potential in the Five North African Court	ntries by
the Institutional Quality Comparison Method	102
6.2.1 Methodology	102
6.2.2 The Institutional Quality Comparisons with Six Different Dimensions	108
6.3 Results	120
6.3.1 Gathering the obtained Results from the Institutional Quality Comparisons based	d on Six
Dimensions	120
6.3.2. Limitations and Additional Findings	124
Chapter 7. Measuring the Rent Size from Solar Energy Exports for the Five North African Countries	126
7.1 Rent size and its Combination with Poor Institutional Quality	126
7.2 Rent from Solar Energy Exports for the Five North African Countries	127
7.2.1 Causes for the Increase in the Electricity Demand	127
7.2.2 Electricity Export from the Five North African Countries to Europe	128
7.3 The Rent Size from the Natural Resources in the Five North African Countries and the	e MENA
Countries	147
7.4 Comparison	154
7.4.1 Comparison with the Projected Solar Energy Rent Size of 1.18-3 US\$pense/	wh for
Individual North African Energy Exporters	154
7.4.2 Comparison between the Projected Solar Energy Rent of \$7.1-24billion and the	Sum of
Average & the Average Oil and Natural Gas Rent Size	155
7.4.3 Perceiving All Rent Sizes as the Proportion of GDP	157
Chapter 8. Solar Energy Prolonging the Resource Curse?	165
8.1 The Possible Impact of the Projected Solar Energy Rent	165
8.2 North African Countries and their Heavy Reliance on Fossil-Fuels in Generating Electricity	166
8.3 The Sources for the Electricity Production in the Five North African Countries	168
8.4 Hypothetical Situation	172
8.5 Projections of the Natural Gas Production and Consumption in the Three Energy Exporters	176
Chapter 9. Conclusion	181
Bibliography	186
Samenvatting	196
Curriculum Vitae	199

List of Figures

Figure 1: Total Renewable Electricity Net Generation by Regions 1990-2010	32
Figure 2: The World Total Renewable Electricity Net Generation 1990-2010 (Billion kWh)	32
Figure 3: Average Annual Growth Rates of Renewable Energy Capacity and Biofuels Production, 2006-201	L 1 34
Figure 4: High Solar Insolation Regions in the World	36
Figure 5: The Potential of the Sahara Desert to Provide Electricity for the World	37
Figure 6: The Allocation of Entrepreneurs	55
Figure 7: Growth Paths of Four Hypothetical Countries	56
Figure 8: The Resource Curse Effects and Causes	59
Figure 9: Index of Institutional Quality Changes in Recent Years in the of the Southern European	
Neighborhood Countries	94
Figure 10: Figure form of Table 22	.104
Figure 11: Institutional Quality based on Voice and Accountability 2011 (-2.5 to +2.5)	.108
Figure 12: Institutional Quality based on Political Stability and Absence of Violence 2011	. 110
Figure 13: Institutional Quality based on Government Effectiveness 2011	. 112
Figure 14: Institutional Quality based on Regulatory Quality 2011	.114
Figure 15: Institutional Quality based on Rule of Law 2011 (-2.5 to +2.5)	.116
Figure 16: Institutional Quality based on Control of Corruption 2011	. 118
Figure 17: Concentrating Solar Thermal power, Total World Capacity	.130
Figure 18: FiT Payments for a Range of Renewable Energy Technologies, Selected Countries, 2011/2012	.139
Figure 19: The Average MENA Oil Rents Proportions 1993-2009	.151
Figure 20: The Average MENA Natural Gas Rents Proportions 1993-2009	.152
Figure 21: The Average MENA Oil & Natural Gas Rent Proportions 1993-2009	. 152
Figure 22: The Projected EUMENA Electricity Production Shares in Connected Scenario and Reference	
Scenario (TWh)	.161
Figure 23: Generation and Interconnector Capacity, Connected Scenario	.161
Figure 24: Net Exporters and Net Importers in EUMENA, Connected Scenario	.162
Figure 25: Africa Natural Gas Production, 1990-2035 (Tcf)	.176
Figure 26: Net Electricity Generation in Africa by Fuel, 2008-2035 (TWh)	.177

List of Tables

Table 1: Natural Resources in African Countries	7
Table 2: Measures of Macroeconomic Volatility, 1960-2000	22
Table 3: Governance Research Indicator Country Snapshot (GRICS). 2002	26
Table 4: Share of Primary and Final Energy from Renewables, Existing in 2009/2010 and Targets	42
Table 5: Average GDP Growth between 1993 and 2011 in the Five North African Countries, the NA and the	е
MENA Countries	63
Table 6: Resource Rents (% of GDP) of the MENA Countries during the Period of 1993-2009	65
Table 7: Average GDP Growth Comparison between Energy Exporters of the NA and the MENA Countries	
1993-2011 (%)	66
Table 8: Average GDP Growth: Comparison among the Energy Importers of the MENA, ME, NA, and the	
North African Energy Importers 1993-2011	67
Table 9: Breaking the MENA Countries into Different Income Level Categories	70
Table 10: Dividing the MENA Countries according to the Income Level	70
Table 11: Dividing the MENA Countries according to the Income Level after adding the Two Filters 1993-20	011
	72
Table 12: Seeing the GDP Growth in the MENA Region: Dividing the MENA Countries according to the	
Development Status and Exporters/Importers 1993-2011	75
Table 13: WGI's Six Aspects of Governances and Descriptions.	81
Table 14: The Institutional Quality Comparison between the MENA Energy Exporters and the Importers 19	996-
2011, 2007-2011, 2011	84
Table 15: Separating the Countries according to the Development Status	86
Table 16: The Institutional Quality Comparison among the Three Development Statuses Groups of the ME	ENA
Region, and the Five North African Countries	87
Table 17: Dividing the Energy Exporters and the Importers based on the Development Status	89
Table 18: The Institutional Quality Comparison between the Developing Energy Exporters and the Import	ers
of the MENA, ME and NA Regions based on the Development Status	91
Table 19: Candidates for being the Boundary-Countries for the Resource Cursed and Resource Curse	
Avoided/Escaped Countries	96
Table 20: The Division of the Candidates by the Development Status	97
Table 21: Governance Scores, Number of Data Sources, and Standard Errors based on Government	
Effectiveness Dimension	.103
Table 22: Governance Score of Tunisia and Chile based on Political Stability & Absence of Violence and	
Standard Error based on Different Confidence Levels	. 104
Table 23: Governance Scores and Margin of Errors of the Five North African Countries and Boundary-	
Countries in 2011	. 107
Table 24: Details of Figure 11	. 108
Table 25: Details of Figure 12	. 110
Table 26: Details of Figure 13	. 112
Table 27: Details of Figure 14	. 114
Table 28: Details of Figure 15	. 116
Table 29: Details of Figure 16	. 118
Table 30: Results of the Institutional Quality Comparison in Six Dimensions	. 121
Table 31: UNPD's Prediction of the Population Growth in the Five North African Countries with Medium	120
Table 22: TRANS_CSD SCENADIO Drojected Amount of Electricity Transfer between Europe and MENA from	.129 n
2020 to 2050	120
Table 33: Vearly Average Exchange Rate between Fure and US Dollar 1990-2000	125
Table 33. Tearry Average Exchange Nate Detween Euro and 03 Double 1333-2003	. 122

Table 34: FiT and LCOE Range of CSP Parabolic Trough in Spain	136
Table 35: FiT, LCOE, and Rent for Spain and the Five North African Countries	138
Table 36: Renewable Electric Power Capacity, World and Top Regions/Countries, Total year-End 2011	140
Table 37: Total Installed Wind Power Capacity in Germany From 2001 to 2011	140
Table 38: The FiT changes from 2001 to 2012, and the Projected FiT until 2020 for Onshore Wind Energy	in
Germany	141
Table 39: PV FiT Changes in Germany 2009-2012 (€cents/kWh)	141
Table 40: Projected Onshore Wind Energy Rent Size and its Proportion Change in Germany 2009-2012	143
Table 41: Projected LCOE for Parabolic Trough from Various Sources	145
Table 42: Reduced LCOE for Parabolic Trough and the Rent Size and its Proportion for Spain	146
Table 43: The average GDP, Oil rent, Natural Gas Rent, and the Sum of Oil and Natural Gas Rents in Alger	ia,
Egypt and Libya 1993-2009 (US\$ Billion)	148
Table 44: The Average GDP, Oil Rent, Natural Gas Rent, and the Sum of Oil and Natural Gas Rents in MEN	A
Countries 1993-2009 (US\$ Billion)	149
Table 45: The Average GDP, Oil Rent, Natural Gas rent, and the Sum of Oil and Natural Gas rents in Resou	irce
Cursed Countries 1993-2009 (US\$ Billion)	150
Table 46: The Sum of Average Oil, Natural Gas, and Oil & Natural Gas Rent of MENA	153
Table 47: Projected Amount of Electricity Exported from the MENA Countries in 2050	154
Table 48: Projected Rent Size from Solar Electricity Exports for the Five North African Countries in 2050,	and
the Average Oil, Natural Gas, and Oil & Natural Gas Rent Size	155
Table 49: The Sum of Average Rent from Oil, Natural Gas, and Oil & Natural Gas of MENA Energy Exporte	ers,
and the Projected Solar Energy Rent Size for North Africa 1993-2010 (US\$ Billion)	156
Table 50: The Average Oil, Natural Gas, and Oil & Natural Gas Rent Sizes of the MENA Countries 1993-20	09
(US\$ Billion)	157
Table 51: Rent Sizes from Table 48 in the GDP Proportion Form	158
Table 52: Rent Sizes from Table 49 in the GDP Proportion Form	158
Table 53: Rent Sizes from Table 50 in the GDP Proportion Form	158
Table 54: Projected GDP for the Five North African Countries in the Future (US\$ Billion)	159
Table 55: Projected Total Amount of Exported Electricity, and via CSP from the Five North African Countr	ies
based on Zickfeld et al.'s (2012) Study	163
Table 56: Electricity Production via Coal, Natural Gas, and Oil in the Five North Countries 2004-2009	167
Table 57: Electricity Sources for Algeria 2004-2009	169
Table 58: Electricity Sources for Libya 2004-2009	170
Table 59: Electricity Sources for Egypt 2004-2009	171
Table 60: Electricity Sources for Morocco 2004-2009	171
Table 61: Electricity Sources for Tunisia 2004-2009	172
Table 62: Natural Gas Production, Consumption, Export/Import, and Proved Reserves in the Three Energ	y
Exporters (m ³)	173
Table 63: Oil and Natural Gas Consumption (Algeria)	174
Table 64: Oil and Natural Gas Supply (Algeria)	174
Table 65: Oil and Natural Gas Consumption (Egypt)	174
Table 66: Oil and Natural Gas Supply(Egypt)	174
Table 67: Oil and Natural Gas Consumption (Libva)	175
Table 68: Oil and Natural Gas Supply (Libya)	175
Table 69: % of the Consumed Natural Gas from the Total Natural Gas Production and Projected % of	-
'Additional Natural Gas' in the Total Projected Amount of Exported Natural Gas in the three Energy	
Exporters in 2010, 2015, and 2020	178
Table 70: Increase in the Domestic Consumption of Natural Gas in the Three Energy Exporters	179

List of abbreviations

bbl/d	Barrels Per Day
Bcf	Billion Cubic Feet
Bcm	Billion Cubic Meters
CSP	Concentrating Solar Thermal Power
DII	Desertec Industrial Initiative
DNI	Direct Normal Irradiance
EIA	U.S Energy Information Administration
EEG	Renewable Energy Sources Act
FiT	Feed in Tariff
GDP	Gross Domestic Product
GHG	Greenhouse Gases
GPF	Government Pension Fund
GW	Gigawatt
HVDC	High Voltage Direct Current grid
IMF	International Monetary Fund
JREF	Japan Renewable Energy Foundation
kWh	Kilowatt per hour
LCOE	Levelized Cost of Electricity
LNG	Liquefied Natural Gas
m²	Square meter
m³	Cubic meter
MASEN	Moroccan Agency for Solar Energy
mb/d	Million Barrels per day
MENA	Middle East and North Africa
ME	Middle East
Mtoe	Million Tonnes of Oil Equivalent
MW	Megawatt
MWh	Megawatt per hour
NA	North Africa
NDPVF	Niger Delta People's Volunteer Force
NDV	Niger Delta Vigilante
NNOC	Nigerian National Oil Corporation
NNPC	Nigerian National Petroleum Corporation
OPEC	Organization of Petroleum Exporting Countries
PV	Photovoltaic
RES	Renewable Energy Sources
SBI	Sustainable Budget Index
SSA	Sub-Saharan Africa
Tcf	Trillion cubic feet
TWh	Trillionwatt per hour
UAE	United Arab Emirates
UCM	Unobserved Components Model
WDI	World Development Indicators
WGI	The Worldwide Governance Indicators
У	Year