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Appendix A

A b b r e v ia tio n s

ACTH  a d re n o  c o rtic o tro p in  h o rm o n e

Ap E n   a p p ro x im a te  e n tro p y

AV P    a rg in in e  v a s o p re s s in  

AU C  a re a  u n d e r th e  c u rv e

B F   b o d y  fa t 

B M I   b o d y  m a s s  in d e x

CAR T    c o c a in e - a n d  a m p h e ta m in e -re g u la te d  

tra n s c rip t

CR H   c o rtic o tro p in  re le a s in g  h o rm o n e

CS F   c e re b ro  s p in a l fl u id

CV   in te r-a s s a y  c o e ffi c ie n ts  o f v a ria tio n

D 2R   d o p a m in e  2 re c e p to r 

D A   d o p a m in e

D E X A  d u a l e n e rg y  X -ra y  a b s o rp tio m e try

E 2  e s tro g e n

E E G   e le c tro  e n c e p h a lo  g ra m

F F As         fre e  fa tty  a c id s  

fT4  fre e  th y ro x in e  

G H   g ro w th  h o rm o n e  

G HR H  g ro w th  h o rm o n e  re le a s in g  h o rm o n e

HO M A   h o m e o s ta tic  m o d e l a s s e s s m e n t

HP A   h y p o th a la m ic -p itu ita ry -a d re n a l

HP T   h y p o th a la m ic  p itu ita ry  th y ro id  

ICV   in tra  c e re b ro v e n tric u la r

IG F -1   in s u lin  lik e  g ro w th  fa c to r ty p e  1

IV   in tra  v e n o u s

L P S   lip o p o ly s a c h a rid e

L U M C  le id e n  u n iv e rs ity  m e d ic a l c e n tre

M E T  m e to c lo p ra m id e

M R I  m a g n e tic  re s o n a n c e  im a g in g

m R NA  m e s s e n g e r rib o n u c le ic  a c id

N   n itro g e n

NE   n o re p in e p h rin e

NP Y   n e u ro p e p tid e  Y  

P O M C   p ro -o p io m e la n o c o rtin

P R L   p ro la c tin

T3  triio d o th y ro n in e

TG   trig ly c e rid e

TS H  th y ro id  s tim u la tin g  h o rm o n e

TR H  th y ro tro p in  re le a s in g  h o rm o n e

TB F M   to ta l b o d y  fa t m a s s  

T4  th y ro x in e

S E M   s ta n d a rd  e rro r o f th e  m e a n

S F M   s u b c u ta n e o u s  fa t m a s s

R E E   re s tin g  e n e rg y  e x p e n d itu re  

V CO 2  v o lu m e  o f c a rb o n  d io x id e

V D   d is trib u tio n  v o lu m e  

V F M   v is c e ra l fa t m a s s  

V L CD   v e ry  lo w  c a lo rie  d ie t

V M H  v e n tro m e d ia l h y p o th a la m u s

V O 2  v o lu m e  o f o x y g e n

W HO   w o rld  h e a lth  o rg a n iz a tio n
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Appendix B:

Analy sis 24 h  h orm one profi les

Endocrine glands secrete hormones in a temporal manner that is of major importance to achieve appropriate physiological 

functioning, e.g. the cellular response in target tissues. Q uantifying secretion profiles rather then merely inspecting plasma 

hormone concentration patterns reveals additional information about pulse duration, pulse shape, pulse height, pulse timing 

and clearance rates (1). The prominent intermittency of hormonal release can be either rhythmic (regularly repeating 

secretion episodes over time) or episodic (apparently randomly scattered secretion events over time). Calculation of 

regularity and circadian rhythmicity of hormone concentration time series data provides additional insight of hormonal 

release (2). Various validated mathematical techniq ues have been developed to appraise these parameters from hormone 

concentration patterns (for review see (3)). Diurnal concentration patterns of different neuroendocrine systems in obese 

premenopausal women enrolled in the clinical studies described in this thesis were analyzed using Cluster, Deconvolution, 

Cosinor, Cleveland robust fitting and Approximate Entropy (ApEn) algorithms. The operating principles and a general 

introduction of these mathematical techniq ues will be discussed in this appendix.

Cluster A n a ly sis

The first developed pulse detection method by Johnson and Veldhuis was the Cluster analysis method (4). This method uses 

a sliding pooled t-test to identify data points within the hormone time series that correspond to statistically significant 

increases and decreases in hormone concentrations (changes at the edges of times series are not identified). Thus, the 

Cluster program identifies locations and durations of significant plasma hormone peaks. In performing the analysis, one has 

to specify individual test cluster sizes for the nadir and the peak (i.e., number of points to be used in testing nadirs against 

peaks), a minimum and maximum of intra series coefficient of variation, a t-statistic to identify a significant increase and a 

t-statistic to identify a significant decrease. The following parameters are estimated: mean concentration, total area under 

the curve, peak freq uency, mean peak height (maximum value attained within a peak), peak amplitude (mean incremental 

peak height), incremental peak height as a percentage of nadir, mean peak area (above the baseline) and mean inter peak 

valley concentration (nadir).

D ec o n v o lutio n A n a ly sis

As the Cluster program does not provide information about the secretion and elimination of hormones, the deconvolution 

analysis was developed (1). Deconvolution analysis is a statistically based algorithm that estimates hormone kinetics and 

secretion rates from hormone concentration time-series (5 ;6 ). The general approach of the deconvolution techniq ue is to 

derive a mathematical model for the form of a hormone concentration pulse an then, using nonlinear least-sq uare methods, 

fit the actual experimental data to a series of these mathematical forms (secretory bursts) occurring at various times. Each 

secretory burst has a specific waveform (shape), which is dependent on the appearance, distribution and the clearance of 

the hormone from plasma or serum. Disappearance of hormones from plasma is best described by a two compartment 

model, characterized by a fast component half-life, a slow component half-life and a fractional contribution of the slow 

component to the overall decay. The Pulse algorithm is a waveform-independent deconvolution method, which can be used 

for calculation of hormonal secretion, without specifying shape, number and time of secretory events (1). The techniq ue 
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requires a priori specification of hormonal half-life in plasma, although the algorithm is relatively insensitive to the assumed 

values of elimination half-lives. Thus, before running the Pulse program, the fast and a slow component half-life and the 

fractional contribution of the slow component to the overall decay are entered for the hormone analyzed. Pulse can thus be 

used to quantify hormonal secretion. Secretion rates are expressed per liter distribution volume (VD).  One limitation of this 

method is that the program does not identify small secretory events and a large number of tenuous assumptions must be 

imposed to propagate the uncertainties of the experimental observations into the uncertainties of the secretory profile. 

However, Pulse can be used to assess the initial parameters required for the waveform- dependent deconvolution method, 

as amplitudes and locations of large secretory events are easily defined. After the initial guess by waveform-independent 

estimates of hormonal secretion using Pulse, subsequent analysis with a waveform-dependent multi-parameter deconvolution 

method is performed. Mean best fit values and statistical confidence limits for each secretory and clearance parameter are 

taken into account by the program. Thus, the probability that a secretory burst has a significant amplitude is estimated. 

Furthermore, all underlying relevant secretory events are evaluated simultaneously, which enhances the statistical power of 

the deconvolution procedure. This technique also requires a priori specification of hormonal half-life in plasma. The fast and 

a slow component half-lifes and the fractional contribution of the slow component to the overall decay have to be specified 

for the specific hormone analyzed. This technique estimates the combined rates of basal release, number, duration, amplitude 

and mass of randomly ordered secretory bursts and the subject-specific half-life. The daily pulsatile secretion is the product 

of secretory burst frequency and mean mass released per event. Total secretion is the sum of basal and pulsatile secretion. 

Results are expressed per liter distribution volume. For the calculation of production rates per liter, the distribution volume 

of the hormone has to be calculated. 

Cosinor and Cleveland rob ust fi tting

Nyctohemeral characteristics of hormone concentration patterns can be determined using cosinor or Cleveland robust 

fitting analysis. The cosinor test is the oldest method proposed for and applied to 24 h rhythms. Cosinor analysis entails 

trigonometric regression of a cosine function on the full 24 h plasma hormone concentration profile vs. time: y(t) =  M +  A 

cos ( t +  ø ) +  e (t)  with y(t) the value at time t of the periodic function of angular frequency  (degrees per time unit, 360  

degrees =  complete circle), defined by parameters M (mesor), A (amplitude) and ø  (acrophase). The cycle duration ( ) is 

fixed for each fit (e.g. 24 hours). This function is fitted to the data (using least squares method) to derive rhythm parameters 

estimates; the acrophase (clock time during 24 h at which hormone concentration is maximal), mesor (midline estimated 

statistic of rhythm, or the average value of the rhythmic cosine curve) and the amplitude (half of the total predictable change 

in the rhythm). The major disadvantage of this technique is that it assumes that the observed 24 h rhythm is best described 

by a symmetric sinusoidal curve. However, most 24 h concentration patterns have asymmetrical wave-shapes. Therefore, 

the robust curve (LOWESS) fitting algorithm described by Cleveland was used to determine the zenith, nadir and mesor of 

the day long hormone rhythms. The technique is described in more detail in ref (7 ). This program provides a more adequate 

description of asymmetrical wave shapes, based on periodogram calculations or non-linear regression procedures. 

Ap p rox im ate E ntrop y Analysis

Approximate entropy (ApEn) can be used to quantify the orderliness or regularity of serial hormone concentrations over 24 

h (2;8 ). ApEn is a scale- and model-independent statistic developed and formulated by Pincus (9 ), which is applicable to a 

wide variety of physiological and clinical time-series data. ApEn measures the logarithmic likelihood that runs of patterns in 

a time series that are close for m consecutive observations remain close when considered as m +  1 consecutive observations. 

Greater regularity (higher probability to remain close) yields smaller ApEn values. Higher absolute ApEn values denote 

greater relative randomness or lower regularity of hormone patterns. Calculation of ApEn requires prior definition of two 

parameters: m (length of the run to be compared) and r (filter or the magnitude that will discern “ close”  and “ not close” ). 

For optimal statistical validity ApEn is typically implemented in hormone time series by using m values of 1 or 2 and r values 

of approximately 0 .2 SD of the series being considered. The ApEn metric thus evaluates the consistency of recurrent 

subordinate (nonpulsatile) patterns in a time series. Regularity of hormonal secretion patterns mirrors the net result of feed 

forward signaling and feedback restraint (8 ). Thus, ApEn yields information about hormonal time series, distinct from and 

complementary to Cluster, deconvolution, cosinor and Cleveland analyses (2). 
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Some potential pitfalls of these mathematical techniques have been described (10). For example, the computer models 

require input of prolonged serial measurements of circulating hormone concentrations obtained by highly intensive sampling 

regimens. Furthermore, hormone concentration series can be noisy and experimental conditions may contribute to the 

uncertainty in the data (blood loss, subject manipulation, sample processing, assay methods). Another problem is that the 

waveform-independent deconvolution requires a priori knowledge of half-life. It is not possible to estimate secretion and 

clearance rates using waveform-dependent deconvolution analysis, without an initial assumption of the waveform. Finally, 

fluctuations of basal or tonic hormone secretion within the time series analyzed are not taken into account by the program, 

which in turn may yield different estimates of basal secretion rates. Secretion rates that are called basal (tonic secretion or 

inter-pulse secretion), cannot be interpreted as necessarily significant (i.e. distinct from zero or above assay noise and/ or 

experimental uncertainty). Unfortunately, at present there is no useful and critical information regarding the analysis of low 

levels of tonic hormonal secretion. 

Nevertheless, these techniques provide a way to obtain additional (physiologically relevant) information from hormone time 

series and these analyses are important non-invasive methods to calculate the temporal distribution of hormone pulses and 

secretion rates. In addition, the regularity of secretion (ApEn) can be measured, giving insight into the feedforward and 

feedback signaling of the particular neuroendocrine system. Finally, insight into the diurnal (circadian) properties of the 

neuroendocrine system can be obtained.
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