Hydrogel based drug carriers for controlled release of hydrophobic drugs and proteins
Ke, P.

Citation

Version: Corrected Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/17833

Note: To cite this publication please use the final published version (if applicable).
Chapter 5

Light controlled protein release from a supramolecular hydrogel

Ke Peng, Itsuro Tomatsu and Alexander Kros

Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands

Published in: Chem. Commun., 2010, 46, 4094–4096
Abstract
Using the inclusion complex of trans azobenzene and cyclodextrin as a photo switchable crosslinker, a dextran based photo-responsive hydrogel system has been constructed and employed for a light controlled protein release system.
Introduction
In the past few years, a number of therapeutic proteins have been developed against a broad range of diseases such as cancers, autoimmune diseases and metabolic disorders.\(^1\) However, most of these effective therapeutic proteins are prevented from clinical use by fundamental technical hurdles particularly with regard to delivery.\(^2\) Hydrogels are an ideal candidate for protein delivery, as they contain large amounts of water in the polymer network in a way similar to body tissues. Thus it allows to retain the proteins in the protective 3-D network in their active forms and prevents them from denaturation during administrations.\(^3\) Recently, sustained delivery of proteins using hydrogel systems composed of a highly biocompatible biopolymer dextran\(^4\) or other polymers\(^5\) has been reported, in which the loaded proteins are released from the hydrogel matrix in a time dependent manner regulated by the change of mesh size due to the erosion of the hydrogel network.\(^6\)

On another front, stimuli-responsive hydrogels have been developed using supramolecular crosslinkers, whose network can be eroded responding to temperature,\(^7\) pH,\(^8\) light,\(^9\) and other stimuli.\(^10\) These stimuli-responsive hydrogels are potentially beneficial for an efficient drug delivery system because it can be employed to transport the entrapped drug to the target site and to trigger the release by a stimulus at the desired point and time.\(^11\) Among these stimuli, light is a particularly interesting option as it is a remote stimulus that can be controlled spatially and temporally with great ease and convenience.\(^12\) More importantly, the light irradiation does not have a harmful effect on the activity of most proteins.\(^13\)

Previously, we have functionalized dextran with maleimide moiety, which can react rapidly with thiols via the thiol–maleimide ‘‘click’’ reaction.\(^14\) We have shown that it can be used for in situ hydrogel formation\(^15\) and the resulting nanogel particles can be used as a drug carrier for hydrophobic drugs in zebrafish embryos exhibiting an excellent biocompatibility.\(^16\)

Taking the advantage of the efficient thiol–maleimide reaction, in the present work, we functionalized dextrans with either azobenzene (AB) or β-cyclodextrin (CD) moieties. These polymers can be used as building blocks of a supramolecularly crosslinked hydrogel for a light controlled release of proteins. Upon mixing these two polymers, an
inclusion of *trans* AB in CD induces the gel formation when the ABs are in the *trans* configuration. The inclusion complexes dissociate upon *trans–cis* isomerization of the ABs after irradiation with UV light (365 nm) resulting in a dissolution of the hydrogel.17,18 Furthermore, proteins can be physically entrapped in this supramolecular gel matrix simply by dissolving it into the polymer solutions before the gel preparation.

Fig. 1 (a) Preparation of azobenzene modified dextran (AB–Dex) and cyclodextrin modified dextran (CD–Dex) through the thiol–maleimide reaction. (b) Schematic representation of photoresponsive protein release from the gel composed of *trans* AB–Dex and CD–Dex. Upon the UV light irradiation azobenzene moieties isomerise from *trans* to *cis* configurations, resulting in the dissociation of crosslinking points, and allow the entrapped protein to migrate into the media.
Using green fluorescent protein (GFP) as a model protein the light controlled in vitro release was demonstrated. These characteristics of the current system will be beneficial for the future drug screening technology using zebrafish embryos as these are transparent for the 365 nm UV light used in this study.

Results and discussion

Azobenzene carrying dextran (AB–Dex) was prepared by the thiol–maleimide reaction of 3-[4-(phenylazo)-phenoxy]-propane-1-thiol (I) and maleimide functionalized dextran (Mal–Dex) in DMSO. The reaction was allowed to proceed for 12 hours at room temperature, and the resulting AB modified dextran was isolated by ultrafiltration and lyophilization (Fig. 1a).

Fig. 2 1H NMR spectra of 15 mg/mL AB-Dex in DMSO before (a), and after irradiation with UV light (b).
The conjugation of AB to dextran was confirmed by 1H NMR. On the spectra, besides signals attributed to dextran, peaks at $\delta = 7.2, 7.6$ and 7.9 due to the AB were observed. The reaction was further confirmed by the disappearance of the peak of maleimide at $\delta = 6.9$. The degree of substitution (DS: defined as the number of substituents per 100 anhydroglucosidic rings) was determined to be 6.

β-Cyclodextrin modified dextran (CD–Dex) was also obtained by the thiol–maleimide reaction of mono-6-thio-β-cyclodextrin (2) and Mal–Dex in water. The reaction mixture was stirred for 4 hours at room temperature. The resulting CD–Dex was obtained after ultrafiltration and lyophilization. The conjugation of CD was confirmed by the 1H NMR with a peak at $\delta = 5.1$ attributed to the anomeric protons of CD and disappearance of the maleimide peak at $\delta = 6.9$. The DS of CD–Dex was determined to be 5 in the same way as AB–Dex.

The photoisomerization of AB–Dex was confirmed by 1H NMR (Fig. 2). Before irradiation with UV light, peaks ascribable to the aromatic protons of trans-AB were observed with a trace amount of cis-AB indicated by the small peaks at $\delta = 6.8$ and 7.3. After 4 hour irradiation with UV light, the peaks due to trans-AB moiety were disappeared and the peaks ascribable to the aromatic protons of cis-AB were observed. From the ratios of the integrals in these spectra, fractions of trans configuration were determined to be ~95 and ~0% before and after UV irradiation, respectively.

We wondered if the newly synthesised AB functionalized polymer AB–Dex can also form inclusion complex strongly with CD only when AB is in trans configuration as seen in other reported systems.17,18 To address this issue, NOESY spectrum of the mixture of trans and cis AB–Dex was measured in the presence of CD. As shown in Fig. 3, correlation peaks between the protons attributed to trans AB and inner protons of CD were observed which shows the inclusion complex formation of trans AB and CD. There was no correlation peak between the protons of cis AB and CD. These data indicate that the inclusion complex formation of AB–Dex with CD occurs predominantly with the trans configuration and not with the cis configuration, indicating it can act indeed as a photoresponsive switch.
Fig. 3 NOESY spectrum of a mixture of the isomers of AB–Dex in D₂O in the presence of CD. NOE signals were observed between the protons attributed to trans AB and the inner (C-3, C-6, C-5) protons of CD.

Fig. 4 Photographs of a mixture of AB–Dex (67 mg mL⁻¹) and CD–Dex (100 mg mL⁻¹) in PBS; taken after mixing (a) and after irradiation with UV light (b).
A hydrogel was obtained from a mixture of solutions of \textit{trans} AB–Dex and CD–Dex. Since \textit{trans} AB binds inside the CD cavity as seen in Fig. 3, supramolecular crosslinking points were formed among the polymers. After UV irradiation, the gel mixture turned into a solution (Fig. 4). This is because \textit{trans}-AB moieties were isomerized into the \textit{cis} configuration, which did not show an interaction with CD–Dex. It is notable that the transition from gel to sol is reversible by changing the wavelength of the light.17

To investigate the potential of the hydrogel as a light controlled protein release system, green fluorescent protein (GFP) was used as a model protein and encapsulated inside the hydrogel. The GFP carrying gel (18 mg) was placed into a cuvette with 2 mL of fresh PBS and the fluorescence intensities of the solution part were measured as a function of time (Fig. 5). Prior to the UV light irradiation, the emission intensities of GFP were practically constant, indicating that the GFP remains entrapped inside the hydrogel network. After 10 minutes of UV light irradiation, the fluorescence intensity started to increase which was pronounced after 20 minutes. The release of GFP can be continued;
40% of the loaded proteins was released in 60 min under UV irradiation and reached ca. 65% in 2 hours. In contrast, a significant increase in the release of GFP was not observed without UV light irradiation even after 60 minutes (ca. 10%). Therefore we conclude that the release of GFP was in a UV light responsive manner (Fig. 1b).

The stability of the current gel can be enhanced by using a dextran polymer with a significant higher molecular weight and by increasing the number of cyclodextrins and azobenzenes per dextran chain. These two changes combined would result in a lowered release of protein before UV-irradiation.

Conclusion

In conclusion, a light responsive hydrogel system composed of azobenzene functionalized dextran (AB–Dex) and β-cyclodextrin functionalized dextran (CD–Dex) has been prepared for the light controlled release of proteins. AB–Dex and CD–Dex were prepared efficiently from maleimide modified dextran via thiol–maleimide “click” reaction. Using NMR techniques we confirmed that AB–Dex can be isomerized from *trans* to *cis* upon UV light irradiation and *trans* isomers can form inclusion complex with cyclodextrins more firmly than do *cis* isomers. Using this photoresponsive supramolecular interaction as a molecular switch, we constructed a photoresponsive hydrogel system. Upon UV light irradiation, *trans*-AB moieties were isomerized to *cis* configurations resulting in the dissociation of the network formed with CD–Dex, converting the hydrogel into a sol. The light responsive gel-to-sol transition was successfully employed for the controlled release of an entrapped model protein, green fluorescent protein (GFP). This hydrogel system equipped with both biocompatibility and stimuli-responsivity will contribute to the future protein administrations where UV irradiation is applicable such as a light controlled transdermal delivery system. Currently we are planning to apply this system for the light controlled protein delivery in transparent zebrafish embryos, which are relevant for the fast screening of new potential drugs.19
Experimental

Materials.

1,3-Dibromopropane, 4-phenylazophenol and sodium thiosulfate pentahydrate were obtained from Aldrich. β-cyclodextrin hydrate (β-CD) was supplied by Acros. Dextran (Mw = 20 000, Pharmacia Fine Chemicals, Sweden) was dried in the vacuum oven for several days before use. 1,4-dioxane, ethanol and dimethyl sulfoxide (DMSO) were previously dried with molecular sieves. Water used in all experiments was purified through deionization and filtration with a Millipore purification apparatus. Preparation of maleimide functionalized dextran was described elsewhere.¹⁶

Methods.

¹H NMR spectra were recorded on a Bruker AV-400 spectrometer operating at 400 MHz. The degree of substitution for AB-Dex and CD-Dex (DS; defined as the number of substituents per 100 AHG units) was calculated from the ¹H NMR spectrum of Mal-Dex in D₂O based on the glucosidic protons of dextran (δ 3.2 - 4.0, 5.1 and 5.3) and the protons of the maleimides (δ 6.9). AB-Dex was isomerized from trans to cis by irradiation with a 100 W high intensity UV lamp (Blak-Ray) at the wavelength of 365 nm with a fixed distance of 30 cm between the sample cell and the lamp. Fluorescence measurements were performed using a luminescence spectrometer LS50B (Perkin Elmer). All spectra were obtained at room temperature using a quartz cuvette with a 1 cm path length. Each spectrum was measured with the excitation and emission slits of 5 nm. The excitation wavelength was 475 nm.

Synthesis of 3-[4-(Phenylazo)phenoxy]propane-1-thiol.²⁰
[4-(3-Bromopropoxy)phenyl]phenyldiazene

4-(Pheny1azo)phenol (9.9 g, 50 mmol) and 1,3-dibromopropane (50.5 g, 250 mmol) were refluxed overnight in 150 mL of 1,4-dioxane together with 5 g of potassium carbonate and 0.25 g of potassium iodide. After the reaction mixture was filtered while still hot and the solid was washed with chloroform, solvent and unreacted 1,3-dibromopropane were removed by evaporation. Purification by flash chromatography (Dichloromethane/petroleum ether = 1:1) afforded 9.7 g [4-[(3-bromopropoxy)phenyl]phenyldiazene with a yield of 60%. 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 2.24 (m, 2H), 3.53 (t, $J = 6.4$, 2H), 4.05 (t, $J = 6.0$, 2H), 6.93 (m, 2H), 7.40 (m, 1H), 7.46 (m, 2H), 7.90 (m, 4H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 29.7, 32.0, 65.4, 114.5, 122.45, 124.6, 128.9, 130.3, 146.9, 152.5, 161.0.

3-[4-(Phenylazo)phenoxy]propane-1-thiol

1.6 g (5 mmol) of [4-[(3-bromopropoxy)phenyl]phenyldiazene was dissolved in 10 mL of ethanol and 3 mL of sodium thiosulfate pentahydrate (1.3 g) aqueous solution was added. The mixture was refluxed for 2 h. After cooling, the precipitate (the Bunte salt) was collected. To a mixture of 30 mL of chloroform and 30 mL of 1M HCl degassed with nitrogen, 1.6 g of the Bunte salt was added and refluxed for 2 h. After cooling to room temperature, the organic layer was collected and the aqueous layer was extracted with chloroform. The organic fraction was washed with water for 3 times and dried over anhydrous MgSO$_4$. The product was obtained after removing the solvent by evaporation; Yield: 1.0 g (74%). 1H NMR (CDCl$_3$): δ (ppm) 1.42 (t, $J = 8.0$, 1H), 2.15 (m, 2H), 2.70 (m, 2H), 4.07 (t, $J = 6.0$, 2H), 6.97 (m, 2H), 7.45 (m, 3H), 7.89 (m, 4H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) 21.1, 33.1, 65.8, 114.6, 122.5, 124.7, 128.9, 130.3, 146.8, 152.6, 161.2.

Azobenzene modified dextran (AB-Dex).

Maleimide modified dextran (DS = 6, 0.48 g) was dissolved in 15 mL of DMSO and 3-[4-(Phenylazo)phenoxy]propane-1-thiol (0.1 g, 2.2 eq to the maleimide) in 15 mL of DMSO was added slowly. The reaction mixture was stirred overnight at room temperature. After ultrafiltration (MWCO 3500) against DMSO and water, the product was obtained by lyophilization; Yield: 0.50 g, 96%. 1H NMR (400 MHz, DMSO-d$_6$): δ
2.1 (m, 2H), 3.1-3.8 (m, overlaps with HDO), 4.2-5.0 (m, 70H), 7.2 (d, J = 8.4, 2H), 7.6 (m, 3H), 7.9 (m, 4H).

Preparation of the mono-6-thio-β-cyclodextrin.

![Chemical structure diagram]

Mono-6-thio-β-cyclodextrin was obtained by a two step reaction according to literature.\(^{21}\)

\(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 2.1 (t, SH), 2.7–3.2 (m, 2H, H-6a), 3.2–3.5 (m, overlapping with HDO, H-2, H-4), 3.5–3.8 (m, 26H, H-3, H-5, H-6b), 4.8 (br d, 7H, H-1), 5.7 (br, OH).

β-Cyclodextrin modified dextran (CD-Dex).

Maleimide modified dextran (DS = 5, 0.60 g) was dissolved in 15 mL of water, 15 mL of mono-6-thio-β-cyclodextrin (0.4 g, 2 eq to the maleimide) aqueous solution was added slowly, the reaction mixture was stirred for 4 hours at room temperature. After purification by ultrafiltration (MWCO 3500) against water, the final product was collected by lyophilization. Yield: 0.76 g, 95%. \(^1\)H NMR (400 MHz, D\(_2\)O): \(\delta\) 3.5 - 4.0 (m, 190H), 5.0 (s, 25H), 5.1 (s, 7H).

Hydrogel Preparation.

Hydrogels were prepared by mixing the AB-Dex and CD-Dex. The molar ratio between CD and AB was kept at 1:1. Typically, AB-Dex (20 mg) and CD-Dex (30 mg) were dissolved into 200 µL phosphate buffered saline solution (PBS) and vortexed until a clear hydrogel was observed.

Photoresponse of the hydrogel.

PBS solution containing AB-Dex (67 mg/mL) and CD-Dex (100 mg/mL) was prepared as mentioned above. After mixing it was a gel and after 3 hours of irradiation with UV light it showed fluidic behavior. When the fluidic solution was placed overnight under normal light, gel was re-formed.
Photoisomerization of Dex-AB.

The photoisomerization of AB-Dex was investigated by \(^1\)H NMR. Before irradiation with UV light (a), peaks at \(\delta\) 7.2, 7.6 and 7.9 that were ascribable to the aromatic protons of *trans* AB moiety were observed with a trace amount of peaks ascribable to *cis* AB moiety. *Trans* AB moieties were transformed to *cis* configuration after 4 hour irradiation with UV light, thus only the peaks at \(\delta\) 6.8, 7.2 and 7.3 attributed to *cis* AB moiety were observed (b). From ratios of the integrals in these spectra, fractions of the *trans* configuration were determined to be 95% and 0, respectively.

NOESY.

2-Dimensional NOESY spectrum was recorded on a 600-MHz Bruker DMX-600 spectrometer (Bruker) with a mixing time of 200 ms at 25 °C. Sample was prepared by dissolving 20 mg of AB-Dex in 600 \(\mu\)L D\(_2\)O and then 45 mg of \(\beta\)-CD was added.

Release of GFP from the hydrogel.

AB-Dex (20 mg) and CD-Dex (30 mg) were dissolved into 200 \(\mu\)L PBS containing green fluorescent protein (GFP, 0.1 \(\mu\)g/\(\mu\)L) and vortexed until a clear hydrogel was observed. The hydrogel (18 mg) was placed into a cuvette, centrifuged for 10 minutes and stored overnight to form a thin layer at the bottom of the cuvette. After gentle washing with 1 mL PBS, 2 mL of fresh PBS was added. The released amount of GFP was monitored through the fluorescence from the solution part. The emission spectra were recorded every 10 mins while the cuvette was shaking at 200 rpm. After the experiment, the cuvette was shaken vigorously to make a homogeneous solution and check the fluorescence intensity of 100 % release.
References

