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Chapter 1 

General Introduction 
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Background 

Skeletal and cardiac muscle disorders are associated with substantial morbidity and 

mortality. Collectively, these diseases affect millions of people worldwide and 

enormous amount of time, effort and money have been spent to identify and improve 

recuperative strategies for prevention and treatment of such disorders. Although 

many striated muscle diseases manifest themselves only in the heart or skeletal 

musculature, others affect both tissues although the moment of onset, progression, 

severity of disease and specific disease symptoms may differ between skeletal and 

cardiac muscle tissue.1 The existence of a large number of disorders with both 

skeletal and cardiac muscle involvement is a direct consequence of the large overlap 

in gene expression profile between skeletal and cardiac myocytes, which relates to 

commonalities in their contractile systems. In many striated muscle diseases loss of 

functional myocytes eventually exceeds the tissue’s regenerative capacity. This 

causes gradual replacement of these parenchymal cells by adipocytes and/or 

(myo)fibroblasts leading to progressive wasting and pathological remodelling of 

skeletal and cardiac muscle tissue, respectively.  

 

Skeletal muscle wasting 

A common feature of many skeletal muscle disorders is gradual muscle 

degeneration leading to impairment or loss of mobility. In healthy individuals, skeletal 

muscle damage triggers the activation of a population of muscle-resident stem cells 

called satellite cells. Following their activation, satellite cells start to proliferate giving 

rise to myoblasts, which are responsible for skeletal muscle repair and regeneration 

by fusion with injured myofibers or formation of new myofibers. Hence, fusion plays a 

key role in the regeneration process.2-4 In muscular dystrophies, because of the 

repetitive cycles of degeneration and regeneration the myoregenerative potential of 

skeletal muscle tissue becomes progressively exhausted. As a consequence, 

damaged myofibers are gradually replaced by fibroblasts and adipocytes. One of the 

therapeutic options to overcome this problem is cell transplantation. The success 

rate of transplantation is highly dependent on the ability of the donor cells to fuse 

with each other and/or with the recipient’s skeletal myocytes in order to produce new 

myofibers and repair existing ones, respectively.5 Mechanistic studies on (myogenic) 
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cell fusion may thus be of great help to further optimize cell-based therapies for 

degenerative skeletal muscle diseases. 

 

 
Pathological cardiac remodelling 

Cardiac diseases are usually associated with distinct alterations of the expression 

and function of ion channels, Ca2+-handling proteins, metabolic enzymes and 

structural proteins including sarcomeric components, and intercellular adhesion 

molecules. These changes are often accompanied by pathological cardiac 

hypertrophy (PCH) and fibrosis leading to electrophysiological and structural 

remodelling, which have been identified to increase pro-arrhythmic risk.6-8  

An increase in cardiac demand due to physiological or pathological changes in 

hemodynamics makes the heart respond in several ways, including by the 

enlargement of cardiomyocytes. Such cardiac hypertrophy is essentially a beneficial 

compensatory process as it decreases wall stress, while increasing cardiac output.9 

This adaption by growth occurs under physiological conditions like exercise and 

pregnancy, but also in response to myocardial infarction and other cardiac 

pathologies (e.g. hypertension, aortic stenosis, aortic coarctation, valvular 

regurgitation, septal defects and arteriovenous fistulae).10 Physiological hypertrophy 

typically is a reversible process to fulfill a temporary need for additional cardiac 

output. Pathological hypertrophy, on the other hand, is essentially an irreversible 

process involving permanent changes in cardiac structure and function that initially 

secure but subsequently reduce cardiac output. Besides an increase in 

cardiomyocyte size, diseased hearts usually also display a decrease in 

cardiomyocyte number together with a (compensatory) fibrotic response. The 

changes in cardiac geometry, myocardial tissue composition and cardiomyocyte 

biology increase the risk of cardiac arrhythmias and thus both directly and indirectly 

contribute to a reduction in the pumping capacity of the heart, which may ultimately 

lead to heart failure.11,12 The exact pro-arrhythmic mechanisms of PCH are not well 

understood, partly because of the concurrent presence of fibrosis which is a pro-

arrhythmic feature by itself. 

Adult heart displays limited regenerative capacity.13 In case of cardiac injury, 

fibroblasts get activated, proliferate and form myofibroblasts, which secrete large 
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amounts of extracellular matrix.14 This process, which is called fibrosis, helps to 

maintain the heart’s integrity; but negatively affects heart function due to the 

replacement of contractile by non-contractile tissue, an increase in myocardial 

stiffness and disturbed impulse generation and propagation. The disturbances in the 

heart’s electrical activity are caused by the (electrical) isolation of cardiomyocytes by 

newly deposited extracellular matrix resulting in slowing or even block of conduction. 

Coupling of cardiomyocytes with (myo)fibroblasts may also add to disturbed impulse 

generation and propagation in fibrotic hearts. Taken together, structural and 

electrical remodelling in the heart could provide both the substrates and triggers for 

cardiac arrhythmias.15,16 

 

Cardiac arrhythmias 

Proper electrical cardiac function relies on coordinated and well-timed generation of 

electrical impulses (i.e. action potentials) by cardiomyocytes and propagation of 

these impulses from cell to cell through gap junctions. Disturbances in electrical 

impulse generation and propagation could contribute to cardiac arrhythmias.17 Such 

heart rhythm disturbances concern any type of condition in which the atrial and/or 

ventricular rhythm is irregular, slower than normal (bradycardia) or faster than normal 

(tachycardia). In general, tachyarrhythmias are maintained by reentrant electrical 

activity or high-frequency electrical signals originating from focal sources. The most 

dangerous types of cardiac arrhythmias are those which are maintained by fibrillatory 

conduction (i.e. by chaotic activation patterns) especially when this happens in 

ventricular myocardium. Although our understanding of heart rhythm disturbances 

has surely improved over time, more insight, especially related to the underlying 

molecular and cellular mechanisms, is needed in order to improve the diagnosis and 

treatment of these disorders.  

 

Focal tachyarrhythmias  

Disturbances in repolarization can lead to prolongation of action potential duration 

(APD) and, when occurring at the earlier phases of repolarization (between -40 and 

0 mV), may favor formation of aberrant electrical signals, referred to as early 

afterdepolarizations (EADs). These EADs, in combination with other pro-arrhythmic 
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conditions could give rise to focal or reentrant tachyarrhythmias. EADs are mainly 

Ca2+-dependent and can be induced by anachronistic reactivation of the L-type Ca2+ 

channel, sarcoplasmic Ca2+ release and inward Na+/Ca2+ exchanger activity.18-20 

EADs can occur during phase 2 (i.e. the plateau phase) or phase 3 of the cardiac 

action potential. The mechanisms involved in the generation of phase-2 and phase-3 

EADs are not the same as reflected by their different responsiveness to 

pharmacological inhibitors of ion channels. Since at the depolarized membrane 

voltages of phase 2, most Na+ channels are inactivated, the L-type Ca2+ current (ICaL) 

and the Na+/Ca2+ exchanger current (INCX) are the main currents responsible for 

phase-2 EADs. During the plateau phase of the action potential, L-type Ca2+ 

channels can undergo transitions between closed and open states. An increase in 

ICaL in this phase can provide enough depolarizing force for EAD formation. At the 

same time, the cardiac Na+/Ca2+ exchanger generates a net inward current by 

coupling the export of a single Ca2+ ion to the import of three Na+ ions, thereby 

resisting repolarization. The increase in the ICaL further increases the inward current 

of the Na+/Ca2+ exchanger, and thereby may increase the probability of an EAD-

triggered action potential.21 Forward mode of Na+/Ca2+ exchanger activity and 

possibly INa can promote phase-3 EAD generation. Finally, recent evidences suggest 

that electrotonic current flow in response to large voltage gradients resulting from 

heterogeneous repolarization are an important cause of phase-3 EADs.21,22  

 

Reentrant arrhythmias 

Reentrant arrhythmias are those electrical impulses which are propagated in self-

sustaining circuits that do not follow the normal cardiac conduction pattern, in which 

action potentials generated in the sinoatrial node move through the atrial 

myocardium and to the atrioventricular node and, after some delay, via the bundle of 

His and Purkinje fibers through the ventricular myocardium. Under normal 

conditions, impulses disappear automatically after the entire heart has been 

activated because the duration of the refractory period exceeds that of the excitation 

wave. However, if the heart contains an area of inexcitable tissue causing local 

conduction block and at the same time the tissue around this area shows large 

heterogeneity in repolarization or conduction, unidirectional block may develop 

forcing the wavefront of excitation to move in one direction which based on the 

timing may reenter the original site of excitation, establishing a reentrant circuit. 
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Reentry can occur in the presence (anatomical reentry),23 or absence (functional 

reentry)24 of an anatomical obstruction (e.g. myocardial scar tissue) or can be the 

result of both structural and functional disturbances in electrical impulse 

propagation.25,26 While anatomical reentry in many cases leads to reentrant circuits 

of constant wavelength and position, rotors caused by functional reentry often 

meander throughout the tissue.27,28  

 

Challenges in skeletal and cardiac muscle research 

Research in the field of skeletal and cardiac muscle diseases mainly focuses on 

unravelling the underlying pathogenic mechanisms and on developing (better) 

therapeutic interventions. Despite many improvements in the medical and surgical 

management of skeletal and cardiac muscle disorders, development of effective and 

durable treatments has proven to be challenging. In cardiac muscle disorders, device 

therapies and interventional procedures such as catheter ablation have multiple 

limitations and are associated with a risk of complications.29,30 Pharmacological 

therapies for skeletal and cardiac muscle diseases are largely directed toward 

palliation of the symptoms of the disease rather than targeting the underlying 

causes.31-33 Improvement in therapeutic modalities requires better understanding of 

molecular pathways involved in the initiation and progression of these diseases. 

Much of the available information about the underlying mechanisms of skeletal and 

cardiac muscles disorders is obtained from in vivo studies. These studies are, 

however, complicated by the complexity of three-dimensional (3D) tissues, the 

occurrence of disease symptoms secondary to the primary condition, primary causes 

directly affecting other organs besides the heart and skeletal muscles and the 

interplay between different organ systems. For example, Duchenne muscular 

dystrophy (DMD), the most common inherited myopathy affects different skeletal 

muscles to a different extent but may also impair cardiac and brain function to 

various degrees depending on the specific mutation involved.34-37 Also, the 

coincident presence of e.g. inflammation, hypoxia and fibrosis in PCH makes it very 

hard to determine its specific/mechanistic contribution to the occurrence of 

arrhythmias.38,39  

The development and use of dedicated cellular experimental models to study the 

mechanisms underlying skeletal and cardiac muscle diseases in combination with 



Chapter 1 | 13 
 

 
 

genetic interventions to investigate the role of specific factors, may resolve these 

limitations and lay the basis for the development of novel treatment options. 

 

Cellular models 

Cultures of skeletal myoblasts or cardiomyocytes offer the possibility to analyse 

cellular functions and molecular pathways in a highly specific and controllable 

manner, which is difficult to accomplish in vivo. Given the ease with which in vitro 

models can be established and manipulated to mimic physiological or pathological 

conditions, they are ideally suited for proof-of-concept studies and testing new 

therapeutic interventions targeting specific aspects of disease. Indeed, cellular 

models have greatly contributed to our current understanding of skeletal and cardiac 

muscle diseases.40,41 Although their relative simplicity facilitates data interpretation, 

cells in culture are not subjected to the complex regulatory systems controlling organ 

function in vivo. Accordingly, results obtained in in vitro experiments will always need 

to be validated in clinical studies. In spite of their shortcomings, in vitro models keep 

on being highly useful for mechanistic and therapy-directed skeletal and cardiac 

muscle research. This is particularly true when cell culture models are combined with 

genetic interventions to investigate the involvement of specific genes in physiological 

and pathophysiological processes. 

 

Genetic interventions 

Recently, there has been considerable interest in the application of gene therapy in 

the field of skeletal and cardiac muscle diseases. Many of these genetic 

interventions have focussed on counteracting the pathological processes in failing 

myocytes either directly by correction of the underlying genetic defect if applicable or 

indirectly by inhibition of pathogenic mechanisms or stimulation of physiological 

processes. Gene therapy has, for example, been used to complement gene 

mutations causing various types of muscular dystrophy including DMD as well as 

defects in several sarcomeric protein genes linked to PCH.42,43  Genetic intervention 

can be also employed for overexpression of a protein like sarcoplasmic reticulum 

Ca2+-ATPase pump (Serca2a) to improve cardiac function44 or downregulation of a 

protein like the acetylcholine-acticated K+ channel Kir3.4 to terminate atrial fibrillation 

(AF).45 Clinical and preclinical studies have shown beneficial effects of myocardial 
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gene transfer in neovascularization of ischemic myocardium, increasing myocardial 

contractility, induction of cardiac repair and reduction of AF and ventricular 

tachycardia vulnerability. 46-51 Gene therapy has also demonstrated improvements in 

skeletal muscle disorders.52-54 The safe and successful delivery of a gene is very 

important in order to gain high therapeutic efficacy. A large number of gene delivery 

methods have been developed using both viral and non-viral vectors, each of which 

have their own pros and cons. Non-viral methods include using naked DNA alone or 

in combination with cationic liposomes or polymers.55,56 Non-viral vectors are 

typically easy to synthesize and can be used for the transfer of genetic material of all 

kind of different sizes. Additional advantages of non-viral vectors are their safety and 

the ease with which they can be modified e.g. to alter their cell tropism. By applying 

non-viral gene delivery one can avoid disadvantages intrinsic to the use of viral 

vectors such as limited genetic payloads and expensive/laborious production 

methods. Also, nonviral vectors are generally less immunogenic and have a lower 

risk of insertional oncogenesis than viral vectors.57 Major limitations of non-viral 

vectors are their very low in vivo gene transfer activity and their difficulty to efficiently 

transduce differentiated cells both in vitro and in vivo. Viral vectors are much better 

suited for this purpose especially when high transduction rates and transgene 

expression levels are required.58  

 

 

Viral vectors 

Viral vectors are commonly used for the genetic modification of skeletal and cardiac 

muscle cells and tissues because they transfer genes much more efficiently than any 

of the non-viral vectors. The most commonly used viral vectors are derived from 

retroviruses (including lentiviruses), adenoviruses and adeno-associated virus, which 

belongs to the parvoviruses. These potentially harmful viruses are converted into 

innocuous viral vectors by the replacement of one or more essential viral genes by 

heterologous gene expression units, which renders the viral vectors replication-

deficient but still allows introduction and expression of their genetic cargo into target 

cells. The production of these vectors requires the missing viral genes to be provided 

in trans through packaging plasmids, complementing cell lines or helper viruses.  
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Retroviral vectors 

The first retroviral vectors were derived in the 1980s from gammaretroviruses. Since 

these vectors require cell division for efficient transduction, they are not suitable for 

the genetic modification of differentiated cell types like skeletal and cardiac 

myocytes. Unlike gammaretroviral vectors, lentivirus vectors (LVs) do not depend on 

cell division for efficient transduction of target cells. Following target cell entry, the LV 

genome, which consists of a positive-sense, single-stranded linear RNA molecule, is 

reverse transcripted into cDNA and subsequently integrated into the host cell 

genome. LV vectors can accommodate a fair amount of foreign DNA due to the 

absence of a strict upper packaging limit. There is, however, an inverse relationship 

between LV yields and genome lengths59 which practically restricts insert sizes to ± 5 

kb. LVs are generally produced in human embryonic kidney (HEK) 293T cells by a 

simple transfection procedure involved a LV shuttle plasmid and two or three so-

called helper or packaging plasmids. These features and the ease with which LVs 

can be generated may explain why LVs have become such popular gene delivery 

vehicles for the permanent ex vivo genetic modification of both differentiated and 

proliferating cell populations.60,61 LVs are much less suitable for in vivo gene 

therapies due to their large diameter, which hampers their spreading through tissues, 

and the preferential integration of LV genomes into transcriptionally active 

chromosome loci imposing a certain risk of insertional oncogenesis.62,63 Currently, 

much effort is put in the improvement of lentiviral vector design to reduce as much as 

possible the risk of insertional oncogenesis.64,65  

 

Adenoviral vectors 

Adenoviral vectors (AdVs) have the capacity to carry large DNA molecules (± 37 kb 

for human adenovirus type 5), can be produced in very large quantities and very 

efficiently transduce all kinds of cells, irrespective of their cell cycle status. AdV 

genomes are linear double-stranded DNA molecules covalently linked at their 5’ 

ends to the so-called terminal protein.66 These genomes normally do not integrated 

to the host chromosomal DNA but reside in the nucleus of the target cells as 

nonreplicating episomes, which causes transient expression especially in dividing 

cell populations but simultaneously limits concerns related to oncogene activation. 

The main disadvantages of AdVs are their large size limiting their dissemination 

through tissue and their relatively high immunogenicity, which may result in the in 
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vivo elimination of transduced cells by cell-mediated immune responses. This latter 

problem especially applies to first- and second-generation AdVs, which in contrast to 

their third-generation counterparts still contain adenoviral genes that are express at 

low levels in target cells. As a consequence, severe inflammation leading to toxicity 

and even, in very rare cases, organ failure has been reported following in vivo 

administration of early-generation AdVs.67 In recent year, AdV vector development 

has mainly focussed on lowering the immunogenicity of the adenovirus particle, 

reducing unintended interactions with host proteins and increasing target cell 

specificity by chemical or genetic modification of the adenoviral capsid/coat 

proteins.
68,69  

 

Adeno-associated virus vectors 

Adeno-associated virus vectors (AAVs) carry a single-stranded DNA genome with a 

T-shaped hairpin at both termini. Following their delivery in the target cell nucleus 

most AAV DNA is converted into highly stable double-strand circular monomers and 

concatemers. Moreover, AAVs are significantly less immunogenic than AdVs, which 

is partially explained by the absence in the vector genome of parvoviral genes. 

Because of these property AAVs can mediate long-term albeit not permanent gene 

expression.70 Another advantage of AAVs is their small diameter, which allows them 

to easily penetrate tissues. The downside of their small size is their limited packaging 

capacity, which does not allow incorporation of transgene > 4.7 kb. Other 

disadvantages of AAVs include the time-consuming and expensive procedures 

needed for their production and purification and their relatively low gene transfer 

activity requiring high amount of AAV particles to achieve efficient transduction.71 In 

addition, due to the slow onset of transgene expression AAVs cannot be used for 

studies with a short time course. Still, at present AAVs are the only viral vectors that 

can tranduce entire organs, including the heart.72 Therefore, currently, much effort is 

put in improving AAV production methods and in modifying the vector genome and 

capsid to increase the specific gene transfer activity of AAVs and to overcome their 

limited packaging capacity.73  
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Aim an outline of the thesis 

The limited suitability of existing experimental models for acquiring a thorough 

understanding of the mechanisms underlying skeletal and cardiac muscle diseases 

and the lack of efficiency and specificity of many of the currently available 

therapeutic interventions have made efficient treatment of these diseases 

challenging. Therefore, the aim of this thesis is to establish dedicated cellular models 

and use viral vector systems to study the biology of skeletal and cardiac muscles in 

healthy and diseased states and thereby identify potential targets for future 

therapeutic interventions. 

Chapter I of this thesis explains the common pathological features of skeletal and 

cardiac muscle diseases, the limitations of current therapies and advantages of 

cellular models and genetic interventions in improved treatment of these diseases. 

The successful deployment of cell transplantation in skeletal muscle disorders 

depends on the potential of the donor cells to engage in myotube formation 

(myogenesis), which is amongst others determined by the ability of the transplanted 

cells to fuse with cells present in the host tissue.5,74 Cell fusion also plays an 

important role in fertilization, syncytiotrophoblast production, bone remodelling, eye 

lens development and certain forms of tissue repair.75 Different methods can be used 

for monitoring cell fusion activity. These methods and a newly developed non-

destructive quantitative cell fusion assay are described in chapter II.  

Efficient engraftment of transplanted cells is another factor which determines the 

success rate of transplantation. Scaffolds provide a framework for cells to attach, 

proliferate, and form extracellular matrix in vivo. The scaffolds may also serve as 

carriers for cells, growth factors, and/or other biomolecular signals. Ideally, scaffolds 

should be degraded in vivo at an appropriate rate to allow its gradual replacement by 

regenerated host tissue. Therefore, the in vivo biodegradability of 

Gelatin/Siloxane/Hydroxyapatite scaffolds and their ability to support adhesion and 

proliferation of rat bone marrow mesenchymal stem cells have been studied in 

chapter III.  

Employment of 2D cell culture models makes it possible to study the contribution of 

PCH per se to arrhythmogenicity, which cannot be easily done in vivo due to the 

simultaneous presence of other pro-arrhythmic features. Induction of hypertrophy-

related pathological changes in cardiomyocyte cultures can be achieved by exposing 
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the cells to a variety of different peptide and non-peptide hormones and growth 

factors. It has been shown that phorbol 12-myristate 13-acetate (PMA), which 

activates protein kinases C and D, induces a gene expression program in cardiac 

muscle cells resembling that of cardiomyocytes in pathologically hypertrophied 

hearts.76-78 In chapter IV, the use of the PMA to establish an in vitro model of PCH 

based on ventricular neonatal rat cardiomyocytes is described and its pro-arrhythmic 

features are studied. 

Early- and no-reperfusion after myocardial infarction (MI) leads to formation of 

patchy and compact scars, respectively. These post MI scars facilitate circular 

conduction of the impulses in the heart. How scar composition affects 

arrhythmogenicity and arrhythmic phenotype has been investigated in an in vitro 

model in chapter V. 

Atrium-selective drugs and interventions with higher efficacy in AF rhythm control but 

fewer side effects such as ventricular pro-arrhythmia are paramount needs in AF 

treatment. In chapter VI, the role of acetylcholine-activated K+ channels, whose 

expression in mammalian hearts is largely restricted to the atria, has been studied in 

AF initiation, dynamics and termination in a cell culture and whole-heart model of AF.  

Finally, chapter VII summarizes the findings of this thesis and provides future 

perspectives based on the conclusions drawn from each study.  
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