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CHAPTER 1

Chemical evolution of autotaxin inhibitors: An introduction

Harald M.H.G. Albers and Huib Ovaa, Accepted for publication in Chemical Reviews.

Abstract. Autotaxin (ATX) is a potential drug target implicated in various diseases, including 

cancer. ATX was originally isolated as a tumor cell motility factor from melanoma cells in 1992. 

It then took a decade to find that ATX has lysophospholipase D activity and is responsible 

for the production of the bioactive lipid lysophosphatidic acid (LPA). The link between ATX-

LPA axis and disease has triggered the development of ATX inhibitors. This chapter focuses 

on the development of ATX inhibitors described in academic and patent literature covering 

both lipid-based and small molecule inhibitors, including the ATX inhibitors described in the 

following chapters of this thesis to place them in context of the current literature.
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1.1 Introduction

In 1992, autotaxin (ATX or ENPP2) was isolated as an autocrine motility factor from melanoma 

cells.1 The ~120 kDa glycoprotein ATX belongs to a small family named ecto-nucleotide 

pyrophosphatase and phosphodiesterase (ENPP) which consists of 7 family members.2 

ATX is the only ENPP family member with lysophospholipase D (lysoPLD) activity and is 

responsible for the hydrolysis of lysophosphatidylcholine (LPC) to produce the bioactive lipid 

lysophosphatidic acid (LPA) (Scheme 1).3,4 LPA 

acts on specific G protein-coupled receptors 

and thereby stimulates the migration, 

proliferation and survival of many cell types.5,6 

ATX is produced in various tissues and is the 

major LPA-producing enzyme in the circulation. 

After biosynthesis by ATX, LPA is subject 

to degradation by membrane-bound lipid 

phosphate phosphatases (LPPs).7,8

ATX is essential for vascular 

development9,10 and is found overexpressed in 

various human cancers.11 Forced overexpression 

of ATX or individual LPA receptors promotes 

tumor progression in mouse models,12-

15 while LPA receptor deficiency protects 

from colon carcinogenesis.16 In addition, 

to its role in cancer, ATX-LPA signaling has 

been implicated in lymphocyte homing and 

(chronic) inflammation,17 fibrotic diseases,18,19 

thrombosis20 and cholestatic pruritus.21 Given 

its role in human disease, the ATX-LPA axis is 

an interesting target for therapy that deserves 

significant attention. The fact that ATX is an 

extracellular enzyme makes it even more 

attractive as a drug target.

1.2 ATX protein 

Alternative splicing of the ATX gene (enpp2) 

results in three distinct isoforms (α, β and γ) 

which are differentially expressed.22,23 ATX 

β (863 aa) is the best studied isoform and is 

identical to plasma lysoPLD. ATX β is mainly 

expressed in peripheral tissues, whereas lower 
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Scheme 1: ATX is responsible for hydrolyzing 
LPC into LPA in an extracellular environment. 
This reaction is catalyzed by a threonine 
residue and two zinc ions present in the ATX 
active site. LPA activates specific G protein-
coupled receptors stimulating migration, 
proliferation and survival of cells. ATX is 
displayed as a cartoon representation of the 
crystal structure (PD ID 2XR9) with the SMB 
domains in purple, the PDE domain in green 
and the nuclease-like domain in blue.
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expression levels are observed in the central nervous system. In contrast, the ATX γ (889 aa) 

isoform is predominately expressed in the central nervous system. ATX α (915 aa), the original 

melanoma-derived isoform, exhibits the lowest expression levels in both the central nervous 

system and peripheral tissues. The ATX α isoform contains a non-specific protease cleavage 

site which is not present in the other isoforms.22 All the three ATX isoforms exhibit similar 

catalytic activities in vitro.22

ATX is produced initially as a pre-pro-enzyme that has an N-terminal signal peptide 

required for secretion.24 This signal peptide is removed by a signal peptidase and ATX 

is subsequently cleaved by proprotein convertases (PCs) like furin.24 The removal of an 

N-terminal octapeptide in ATX by PCs is associated with an enhancement of ATX activity.24 

The proteolytically processed ATX is secreted and it consists of several domains. Starting 

from its N-terminus ATX has two somatomedin B (SMB)-like domains, a central catalytic 

phosphodiesterase (PDE) domain and an inactive nuclease-like domain as displayed in 

Scheme 1. The hydrolytic activity of ATX predominately originates from a threonine residue 

and two zinc ions in the ATX active site located in the PDE domain.25 Extending from the ATX 

active site there is a hydrophobic pocket where the alkyl chain of its lipid substrates binds.26

1.3 Natural substrates of ATX

Next to LPC hydrolysis, ATX is also capable of hydrolyzing sphingosylphosphorylcholine 

(SPC, Figure 1) into sphingosine 

1-phosphate (S1P).27 S1P has 

signaling properties comparable to 

those of LPA while acting on S1P 

receptors.28-30 It is however, doubtful 

how relevant the contribution of 

ATX is to S1P production in vivo. S1P 

is thought to originate mainly from 

the phosphorylation of sphingosine 

by sphingosine kinases, rather than 

through SPC hydrolysis by ATX.31

Next to recognizing the lipids 

LPC and SPC as substrates, ATX can 

also hydrolyze nucleotides, like its 

family members ENPP1 and ENPP3. 

In vitro established nucleotide and 

nucleotide-derived substrates of ATX 

consist of adenosine-5'-triphosphate 

(ATP), diadenosine polyphosphates 

(ApnA), uridine diphosphate glucose 
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Figure 1: Identified natural substrates of ATX.
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(UDP-glucose), nicotinamide adenine dinucleotide (NAD+) and 3’-phosphoadenosine-5’-

phosphosulfate (Figure 1).2 The physiological relevance of ATX-mediated hydrolysis of these 

nucleotide substrates is still unclear.

1.4 Assays to study ATX activity

In the search for inhibitors, appropriate in vitro assays are required to monitor the activity 

of the enzyme of interest. Over the last ten years various assays have been developed and 

used to study the activity of ATX. ATX assays can roughly be divided in two classes depending 

on the kind of ATX substrate used for the activity measurement. The first class uses the 

physiological ATX substrate LPC and the second class uses unnatural ATX substrates.

1.4.1 LPC-based assays

As depicted in Table 1, ATX hydrolyzes LPC into LPA and choline. Both products can be used 

to measure ATX activity. When a 14C label is introduced in the lipid tail of LPC, ATX activity can 

be measured by radiometry.32,33 When radiolabeled LPC is hydrolyzed by ATX the produced 

LPA contains this radiolabel. After lipid extraction of the ATX-LPC incubation mixture and 

separation of LPC and LPA using thin layer chromatography (TLC),4  activity of ATX can be 

quantified from the 14C-LPA product. Although this classical method is robust and very 

sensitive it is not very suitable for high-throughput screening (HTS).

Another way to measure the formation of LPA is by using liquid chromatography–

tandem mass spectrometry (LC-MS/MS).34,35 From an ATX incubation mixture, LPC and LPA are 

separated by LC and detected by tandem MS. This method is very sensitive and suitable to 

detect naturally occurring LPA in biological fluids (i.e. plasma).34-36

ATX activity can also be measured by the detection of choline.4,37 When choline is 

released from the ATX-mediated LPC hydrolysis it can be converted by choline oxidase into 

betaine (trimethylglycine) and hydrogen peroxide. Subsequently, hydrogen peroxide is used 

by horseradish peroxidase (HRP) to convert a coloring substrate into its oxidized chromophoric 

state. Different HRP coloring substrates can be used like 2,2'-azino-bis(3-ethylbenzothiazoline-

6-sulphonic acid) (ABTS), homo-vanillic acid (HVA) or Amplex red. ABTS can be detected using 

absorbance while HVA and Amplex red are detected by fluorescence.36,38,39 The throughput of 

this assay is high and suitable for HTS screening.

A danger of the latter assay is that small molecules that don’t inhibit ATX may 

interfere with the readout by inhibiting the enzymes (HRP or choline oxidase) used in the 

coloring reaction, which will result in false positives. Another possibility what could result 

in false positives is that reactive compounds tested in this assay can react with the coloring 

agent or hydrogen peroxide that is generated during that coloring reaction. Incubating 

the molecules that are active in this assay with only choline and subsequently adding the 

coloring reagents should reveal if identified actives are interfering with the assay readout.38
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1.4.2 Unnatural ATX substrate-based assays

As a member of the ecto-nucleotide pyrophosphatase and phosphodiesterase (ENPP) family, 

ATX also hydrolyzes nucleotides. Therefore, the nucleotide thymidine 5’-monophosphate 

para-nitrophenyl ester (pNP-TMP) can be used as an ATX substrate (Table 1).3,25 Upon 

hydrolysis of pNP-TMP by ATX, 4-nitrophenol is released which has an absorbance at 405 

nm and is detectable by colorimetry. The same product is formed when bis-para-nitrophenyl 

phosphate (bis-pNPP) is hydrolyzed by ATX (Table 1).33,38  Bis-pNPP is a cheap ATX substrate 

that provides a direct readout. 
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Table 1: Substrates for ATX-activity assays.

a LPA can be detected by radiometry or mass spectrometry. Choline can be detected in a two-step enzymatic 
colorimetric reaction.
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Another artificial ATX-

substrate is CPF4, which has 

a similar core structure as 

bis-pNPP. In CPF4 the two 

nitro groups of bis-pNPP 

are replaced by coumarin 

and fluorescein (Table 

1).33,40 When the coumarin 

donor group in CPF4 is 

excited Förster fluorescence 

resonance energy transfer 

(FRET) between coumarin 

and the fluorescein acceptor 

occurs. After hydrolysis the 

FRET pair is separated and 

FRET is lost, providing a very sensitive assay reagent. Although this reagent was originally 

developed for phosphodiesterase I40 it provides a very sensitive ATX activity sensor as well.33

FS3 is another synthetic ATX substrate, which is based on LPC (Table 1).41 In this 

substrate a dabcyl moiety, a quencher of fluorescein, is connected via a lipid backbone to 

fluorescein. The fluorescein moiety in FS3 is quenched by the dabcyl moiety and becomes 

fluorescent when FS3 is hydrolyzed by ATX. A common advantage of the above mentioned 

assays is that they provide a realtime readout allowing direct kinetic studies of ATX activity.

In addition, a first generation ATX activity-based probe (ATX-ABP) has been reported 

(Table 1).42 This probe makes use of the activity of ATX to label ATX covalently. Upon the 

hydrolysis of the phosphodiester bond in ATX-ABP, the released intermediate undergoes an 

1,6-elimination of a fluoride atom (Scheme 2). This generates a reactive quinone methide 

species that traps nearby nucleophiles in the ATX active site resulting in covalent labeling 

of ATX with a fluorescent Cy5 dye in an activity-dependent manner. This ATX-ABP is able to 

label all the three known ATX isoforms.42 In addition, ATX-ABP can label ATX in human plasma, 

however, an additional affinity-purifying step with an anti-ATX monoclonal antibody is required 

to make Cy5 labeled ATX detectable. Further development of this type of probes could turn 

them into diagnostic reagents to monitor ATX activity in complex samples such as body fluids.

1.5 Inhibitory effect of metal chelators on ATX activity

L-histidine has been reported as the first in vitro ‘ATX inhibitor’ with millimolar IC50 values for 

ATX using LPC or pNP-TMP as assay substrate.43 It acts by scavenging metal ions in solution, 

such as zinc, which are essential for ATX activity. In addition, other metal chelating agents 

such as ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline also have an 

inhibitory effect on ATX activity.43
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1.6 Natural lipids and lipid-based inhibitors of ATX

A distinct class of ATX inhibitors are based on lipids. The discovery of product inhibition of ATX 

by its lipid products LPA and S1P33 triggered the development of lipid-based ATX inhibitors 

(Table 2). One class of lipid-based inhibitors includes thiophosphates.44-46 An example of 

this class is thiophosphate 3 (IC50 = 0.6 μM, bis-pNPP) depicted in Table 2. The reported 

thiophosphates also act as agonists or antagonists for LPA1-3 receptors.44-46 This is a general 

danger of lipid-based ATX inhibitors, that they may act on downstream LPA/S1P receptors due 

to their structural similarity with LPA and S1P. 

There is also a class of ATX inhibitors based on cyclic phosphatidic acid (cPA) which is 

a naturally occurring analog of LPA where the sn-2 hydroxy group forms a 5-membered 

ring with the sn-3 phosphate.47,48 cPA analog 4 (Table 2, IC50 = 0.14  μM, bis-pNPP) has no 

significant agonist activity at LPA receptors. Recently, a sulfur analog of cPA, 3-O-thia-cPA (5) 

has been reported as ATX inhibitor (Table 2).49

Another class of lipid-based ATX inhibitors is based on α-bromomethylene 

phosphonates like BrP-LPA (6, Table 2).50,51 In addition, phosphonate 6 acts as a pan LPA1-4 

receptor antagonist. α-Bromobenzyl phosphonates are well known protein tyrosine 

phosphatase inhibitors that target the active site covalently.52 Whether phosphonate 

6 inhibits ATX in a covalent manner is unknown. An inhibitor that is expected to bind ATX 

covalently is flouromethylphenyl phosphate 7 (Table 2).53 The binding mechanism of 7 with 

ATX is postulated to be the same as for the ATX-ABP as depicted in Scheme 2.

Interestingly, phosphorylated FTY720 (FTY720-P, 8, Table 2) inhibits ATX with a Ki of 0.2 

μM using pNP-TMP as an ATX assay substrate.54,55 FTY720-P is a synthetic analog of S1P and 

acts as an S1P1 receptor antagonist (EC50 = 5 nM)55 that activates this receptor, causing its 

internalization and subsequent polyubiquitination leading to proteasomal degradation of the 

S1P1 receptor. This results in unresponsiveness of lymphocytes to S1P.56

Potencies of the previously described lipid-based inhibitors all have been determined 

in assays using unnatural and different ATX substrates (bis-pNPP, pNP-TMP, CPF4 and FS3) as 

reporter molecules. Therefore it is difficult to compare potencies of distinct inhibitors measured 

in different assays. In addition, inhibitors in these assays that use unnatural substrates of 

ATX might have no effect on LPC hydrolysis by ATX due to alternate binding of the substrate. 

Using assays based on LPC hydrolysis gives a direct answer if ATX inhibitors could inhibit LPA 

production by ATX. The most potent (IC50 = 5.6 nM, LPC) lipid-based inhibitor measured in 

an LPC hydrolysis assay is S32826 (9, Table 2).39,57,58 This phosphonate inhibitor is a result of 

screening 13,000 small molecules for their ability to inhibit ATX. Unfortunately, the poor in 

vivo stability and/or bioavailability of the compound did not permit further use in animal 

models. A last lipid-like inhibitor class is based on a tyrosine building block and an example 

of this class is inhibitor 10, which has a micromolar potency (Ki = 1.0 μM, LPC, Table 2).59-61

A frequently observed phenomenon for ATX inhibitors is their incapability to fully inhibit ATX. 

Examples are inhibitors 3, 4 and 9 depicted in Table 2 that have residual ATX activity (RA) for ATX.
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Entry Inhibitor Substrate Activity References a 

1 

LPA 

CPF4 Ki = 0.11 μM [33] 

2 

S1P 

CPF4 Ki = 0.05 μM [33] 

3 

Thiophosphate 

Bis-pNPP 
IC50 = 0.60  μM 

RA = 27% b 
[44] [45] [46] 

4 

 

cPA-based 

Bis-pNPP 
IC50 = 0.14  μM 

RA = 9% 
[47] [48] 

5 

3-O-thia-cPA 

FS3 PI = 55% [49] 

6 

BrP-LPA 

FS3 PI = 94%  [50] [51] 

7 

Fluoromethylphenyl

FS3 PI = 95% [53] 

8 
 

FTY720-P 

pNP-TMP Ki = 0.2 μM [54] [55] 

9 

S32826 

LPC 
IC50 = 5.6 nM 

RA ≈ 10% 
[39] [57] [58] 

10 

 

Tyrosine-based 

LPC Ki = 1.0 μM [59] [60] [61] 
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Table 2: Lipid and lipid-based inhibitors of ATX.

a First reference corresponds with displayed structure the following references refer to similar inhibitor 
structures. b RA; residual ATX activity. c PI; percentage inhibition.
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1.7 Small molecule inhibitors of ATX

Since 2008 many small molecule inhibitors have been reported in both academic and 

patent literature (Table 3). The most potent inhibitor (IC50 = 1.7 nM, LPC) reported to date 

is PF-8380 (11).62,63 Interestingly, this compound reported by employees of Pfizer62 is based 

on an inhibitor described in a Merck KGaA patent application.63 Due to the high potency 

and favorable pharmacokinetic properties, PF-8380 is a suitable tool compound for in vivo 

evaluation of ATX inhibition.

Another very potent ATX inhibitor is the boronic acid HA155 (12, IC50 = 5.7 nM, LPC, 

Table 3), which is described in more detail in Chapter 3 of this thesis.36,38 This molecule 

resulted from screening ~40,000 small molecules followed by medicinal chemistry efforts 

on the resulting screening hit. In the original screening hit a carboxylic acid moiety was 

replaced by a boronic acid moiety, designed to target the threonine oxygen nucleophile in 

the ATX active site. HA130,36,38 a positional boronic acid isomer of HA155 that is described in 

Chapter 2 and 3, together with PF-8380 are the only two inhibitors to date that have been 

demonstrated to lower LPA levels in vivo (rat or mice).

Recently, other boronic acid-based inhibitors have been reported64 as a result of a 

structure-based study resulting in E-28 (13, Table 3), a potent inhibitor of ATX (IC50 = 5.3 nM, 

LPC). This study is described in Chapter 4 of this thesis.

A common feature of the three most potent inhibitors reported so far (11-13, Table 3) is 

that they share a long linear and flexible structure, which is also reflected in the structure of 

LPC and LPA. Probably this structural feature helps the inhibitors to accommodate to the lipid 

binding site since they bind to the ATX active site. Most of the other reported small molecules 

inhibitors lack this structural feature. 

Several Merck KGaA patent applications claim ATX inhibitors (15-18) with in vitro 

potencies between 0.1 and 10 µM (LPC).65-71 Structural diversity of these inhibitors is large as 

can be judged from Table 3.

Screening a phosphodiesterase targeted inhibitor library revealed that Vinpocetin 

(19, Table 3), a PDE type 1 inhibitor (IC50 = 8-50 µM), inhibits ATX with an IC50 value of 122 

µM using LPC as a substrate.72 In addition, screening a second library consisting of  kinase 

inhibitors known to target the ATP binding site in kinases resulted in the discovery of 

Damnacanthal (20, Table 3), a p56lck tyrosine kinase inhibitor (IC50 = 17-620 nM), as ATX 

inhibitor (IC50 = 139 µM, LPC).72

Several ATX screening programs used libraries from the National Cancer Institute (NCI). 

This led for example to the discovery of arsenic acid NSC-48300 (21, Table 3) as ATX inhibitor, 

reported by two independent groups.38,73,74 It is a competitive inhibitor which could suggest 

that the arsenic acid moiety in 21 acts as a non-hydrolyzable phosphate mimic. In addition, 

NSC-9616 (22, Table 3) has been identified as ATX inhibitor from screening an NCI library.75

The first virtual screen for ATX inhibitors led to the discovery of H2L-7905958 (23, 

Table 3).76 This inhibitor has a Ki value of 1.9 µM (FS3) for ATX.77 At the time of this virtual 
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11 

PF-8380 

LPC IC50 = 1.7 nM [62] [63] 

12 

HA155 

LPC IC50 = 5.7 nM [36] [38]  

13 

E-28 

LPC IC50 = 5.3 nM [64] 

14 LPC IC50 > 0.1 μM [65] [66] 

15 LPC IC50 = 0.1-1 μM  [67] [68] 

16 LPC IC50 > 1 μM [69] 

17 LPC IC50 > 5 μM [70] 

18 LPC IC50 = 1-10 μM [71] 

19 

Vinpocetin 

LPC IC50 = 122 μM [72] 

20 

Damnacanthal 

LPC IC50 = 139 μM [72] 

21 
NSC-48300 

FS3 Ki =  0.240 μM [ 73] [38 ] [74] 

22 

NSC-9616 

FS3 Ki =  0.271 μM [75] 

23 
 

H2L-7905958 

FS3 Ki = 1.9 μM [76] [77] 

24 FS3 Ki = 66 μM [73] [74] 
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Table 3: Activities of small molecule inhibitors of ATX.

a First reference corresponds with displayed structure the following references refer to similar inhibitor 
structures.
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screen the ATX structure was not resolved. Therefore, the authors generated a homology 

model of ATX based on a X. axonopodis pV. citri (Xac) ENPP structure and used this homology 

model for virtual screening. Recently, a follow-up study has been reported describing new 

analogs of 23.77

Another ATX inhibitor is bithionol (24, Table 3),73,74 a known metal ion chelating 

molecule like L-histidine and EDTA.78 The latter two inhibit ATX by scavenging metal ions in 

solution, which are required for ATX activity. However, inhibitor 24 appears to act directly on 

ATX and not via metal chelation since the Ki value of 24 for ATX is two orders of magnitude 

lower than the used metal ion concentration.

1.8 ATX structure and inhibitor design

In 2011, the crystal structure of ATX has been resolved independently by two groups.26,79 Next 

to the unliganded ATX structure, structures of ATX with different species of LPA26 and the 

inhibitor HA155 liganded ATX structure79 have been reported. Binding of HA155 to the ATX 

active site is predominately driven by hydrophobic interactions and by a boronic acid moiety 

binding to the threonine oxygen nucleophile in the ATX active site (Figure 2A and B).79 The 

latter binding was predicted because the boronic acid moiety in HA155 was designed and 

introduced to target the threonine oxygen nucleophile in the ATX active site. In addition, the 

ATX-HA155 structure showed that one of the boronic acid hydroxyl moieties is simultaneously 

tethered by the two zinc ions in the ATX active site (Figure 2B). Therefore, the boronic acid 

moiety not only targets the threonine oxygen nucleophile but also the two zinc ions that are 

essential for catalytic activity of ATX. Another feature of HA155 binding to the ATX active site 

is that its 4-fluorobenzyl moiety binds to the hydrophobic lipid binding pocket of ATX (Figure 

2A), preventing that the alkyl chain of the lipid binds to this pocket.26,79

Thr

C

A HA155-ATX structure B HA155 targetting the ATX active site

Zinc (II)

Figure 2: The inhibitor HA155 liganded ATX structure (PD ID 2XRG). (A) Binding of HA155 with 
ATX. (B) Boronic acid in HA155 targeting the threonine (Thr) oxygen nucleophile and two zinc ions 
in the ATX active site.
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The ATX structure liganded with HA155 triggered an ATX structure-based inhibitor 

design, which is described in Chapter 4 of this thesis.64 This study led to E-28 (IC50 = 5.3 nM, 

LPC, Table 3) a hydantoin analog of HA155 (IC50 = 5.7 nM, LPC, Table 3). Remarkably, E-28 is an 

E-isomer while HA155 is a Z-isomer. To understand how E-28 binds to ATX, molecular docking 

experiments were performed, which suggested a binding pose for E-28 different from that of 

the original binding pose of HA155 or from the Z-isomer of 28 for ATX. This study predicted 

that the 4-fluorobenzyl moiety in HA155 and E-28 binds differently to the hydrophobic 

pocket in ATX. This finding may be used to design new inhibitors that fully exploit the ATX 

hydrophobic pocket opening further options for inhibitor design.

 

1.9 Concluding remarks

ATX is an attractive therapeutic target for LPA-related diseases. In the past decade, several 

ATX inhibitors have been discovered and developed ranging from metal chelators, lipid and 

lipid-based inhibitors to small molecule inhibitors. Over the last three years many patents on 

ATX inhibitors have appeared from pharmaceutical industry and academia emphasizing the 

interest on ATX as drug target. Finally, the recently reported crystal structure of ATX will aid 

medicinal chemistry efforts to further develop ATX inhibitors into therapeutic agents.
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CHAPTER 2

Biological validation of a boronic acid-based inhibitor of au-
totaxin reveals rapid turnover of LPA in the circulation

Harald M.H.G. Albers, Anping Dong, Laurens A. van Meeteren, David A. Egan, Manjula Sunk-

ara, Erica W. van Tilburg, Karianne Schuurman, Olaf van Tellingen, Andrew J. Morris, Susan S. 

Smyth, Wouter H. Moolenaar and Huib Ovaa, Proceedings of the National Academy of Sciences 

of the United States of America 2010, 107, 7257-7262.

Abstract. Autotaxin (ATX or ENPP2) is a secreted ecto-nucleotide pyrophosphatase/ 

phosphodiesterase (ENPP) that functions as a lysophospholipase D to produce the lipid 

mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant and survival factor for 

many cell types. The ATX-LPA axis has been implicated in angiogenesis, chronic inflammation 

and tumor progression, making this system an attractive target for therapy. However, potent 

and selective non-lipid inhibitors of ATX were not available at the beginning of this study. 

By screening a chemical library, thiazolidine-2,4-diones have been identified that selectively 

inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was a 100-

fold increased (IC50 ~30 nM, HA130) after the incorporation of a boronic acid moiety, designed 

to target the active site threonine (T210) in ATX. Intravenous injection of this inhibitor into 

mice resulted in a rapid decrease in plasma LPA levels, indicating that turnover of LPA in the 

circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small 

molecules hold promise as candidate drugs to target ATX.
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2.1 Introduction 

Autotaxin (ATX or ENPP2) is a secreted ecto-nucleotide pyrophosphatase/ phosphodiesterase 

(ENPP) originally isolated as an autocrine motility factor from melanoma cells.1 ATX, a ~120 

kDa glycoprotein, is unique amongst the ENPPs in that it functions as a lysophospholipase 

D (lysoPLD) that converts extracellular lysophosphatidylcholine (LPC) into the lipid mediator 

lysophosphatidic acid (LPA).2-5 LPA acts on specific G protein-coupled receptors and thereby 

stimulates the migration, proliferation and survival of many cell types (Figure 1).6,7 ATX is 

produced by various tissues and is the major LPA-producing enzyme in the circulation. Newly 

produced LPA is subject to degradation by membrane-bound lipid phosphate phosphatases 

(LPPs).8,9 However, little is known about the dynamic regulation of steady-state LPA levels in 

vivo.  

ATX is essential for vascular development10,11 and is found overexpressed in various 

human cancers.12 Forced overexpression of ATX or individual LPA receptors promotes 

tumor progression in mouse models,13-16 while LPA receptor deficiency protects from colon 

carcinogenesis.17 In addition, to its role in cancer, ATX-LPA signaling has been implicated in 

lymphocyte homing and (chronic) inflammation,18 fibrotic diseases19,20 and thrombosis.21 

Therefore, the ATX-LPA axis qualifies as an attractive target for therapies. 
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Figure 1: The ATX-LPA receptor signaling axis. Secreted ATX hydrolyzes extracellular LPC into LPA, 
a reaction catalyzed by active site residue T210. LPA signals through multiple G protein-coupled 
receptors to stimulate the proliferation, migration and survival of many cell types. LPA is degraded 
to monoacylglycerol (MAG) by lipid phosphate phosphatases (LPPs), which are membrane-bound 
ecto-enzymes.
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Potent and selective ATX inhibitors are now needed as a starting point for the 

development of targeted anti-ATX/LPA therapy. Direct targeting of LPA receptors seems 

to be a less attractive strategy, since LPA acts on multiple receptors that show overlapping 

activities.5,7 Since the initial finding that ATX is subject to product inhibition by LPA and 

sphingosine 1-phosphate (S1P),22 various synthetic phosphate and phosphonate lipids have 

been explored as ATX inhibitors.23-26 However, such lipid inhibitors have the inherent danger of 

inadvertently activating downstream LPA/S1P receptors, thereby inducing the opposite of the 

intended effect. Furthermore, lipids offer relatively few avenues for chemical diversification 

and usually have poor pharmacokinetic properties. Non-lipid inhibitors of ATX have recently 

been identified, but their potencies are low.27 

In this study we screened small molecule libraries to search for novel ATX inhibitors. 

We identified thiazolidine-2,4-dione compounds that selectively inhibit ATX activity and are 

readily amenable to further chemical diversification. We have optimized these molecules 

by adopting an active site-targeted strategy that has proved successful for the development 

of the boronic acid-based proteasome inhibitor bortezomib,28 which is in clinical use.29 We 

show that a boronic acid-based inhibitor potently inhibits ATX both in vitro and in vivo.  When 

administered to mice, our inhibitor (HA130) induces a remarkably rapid fall in plasma LPA 

levels, indicating that the turnover of circulating LPA is much more dynamic than previously 

appreciated. We conclude that boronic acid-based inhibitors hold promise as candidate drugs 

to target the ATX-LPA axis in vivo.

2.2 Discovery of small molecule inhibitors of ATX 

The hydrolytic activity of ATX originates from a single catalytic site at threonine 210 (T210) in 

the central phosphodiester domain (Figure 1).2 To discover novel ATX inhibitors, we screened 

a collection of ~40,000 drug-like small molecules using the hydrolysis of bis-para-nitrophenyl 

phosphate (bis-pNPP) by ATX as a readout. Among the most potent hits, we selected a 
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Figure 2: ATX inhibitors discovered by high-throughput screening and validation of compound A. 
(A) IC50 values based on bis-pNPP (1 mM) hydrolysis. (B) TLC analysis of 14C-LPC to 14C-LPA 
conversion at different concentrations of A (range: 0-30 µM).
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thiazolidine-2,4-dione series for optimization since the thiazolidine-2,4-dione core is readily 

amenable to chemical diversification (Figure 2A). Inhibitor A showed an IC50 value of 56 nM 

using 1 mM bis-pNPP as substrate. For validation of A, we measured the inhibition of the ATX-

catalyzed release of choline from LPC. We established that recombinant ATX has a Km value 

for LPC of 94 µM (Supporting Figure S1). Compound A inhibited ATX with an IC50 value of 2.5 

µM using 40 μM LPC as a substrate (Figure 3A). However, it should be noted that A has a 35% 

residual ATX activity (Figure 3B). Inhibition of ATX-mediated LPA production was confirmed by 

measuring the conversion of 14C-LPC to 14C-LPA using thin-layer chromatography (Figure 2B). 

2.3 Boronic acid-based optimization

Having identified compound A as a novel ATX inhibitor, we set out to improve its potency. We 

engineered a synthetic route (see Chapter 3), which allowed the synthesis and isolation of 

more than 100 derivatives of A in a short time frame.  
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experiments showing that ATX inhibition is reversible. (D) Lineweaver-Burk plot analysis of ATX 
inhibition, showing competitive inhibition by A and HA51 and mixed-type inhibition by HA130.
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All derivatives were tested in the ATX-mediated choline release assay. Figure 3A shows 

the IC50 values of the three most important molecules in the optimization process. Omitting 

the methoxy group and replacing the carboxylic acid to the meta position (HA51) resulted 

in a 2.5-fold increase in potency, concomitant with a significant drop in residual ATX activity, 

from 35 to 7% (Figure 3A and B). Lineweaver-Burk analysis revealed that A and HA51 act 

as competitive inhibitors (Figure 3D), suggesting that they bind at or close to the catalytic 

threonine residue (T210). 

We next sought to target active site residue T210. We reasoned that the acid moiety of 

A and HA51 may bind to the phosphate ester acceptor site in ATX and that the T210 oxygen 

nucleophile could be targeted by a boronic acid moiety. Boronic acid is known for its high 

affinity for hard oxygen nucleophiles over soft nucleophiles, such as sulfur, which is found in 

many phosphate ester hydrolytic enzymes. This approach has an important precedent in the 

proteasome inhibitor and anti-cancer drug bortezomib (Velcade), which is a peptidyl boronic 

acid that targets the threonine oxygen nucleophile in the proteasome active site through its 

boronic acid moiety.28,30 We adopted a similar approach to target the T210 oxygen nucleophile 

in ATX. This improves selectivity over phosphate ester hydrolyzing enzymes that depend on a 

sulfur (cysteine) nucleophile. 

Replacing the carboxylic acid in HA51 by a boronic acid yielded compound HA130. 

This resulted in a ~100-fold increase in potency compared to screening hit A (IC50 = 28 nM) 

(Figure 3A). Furthermore, HA130 abolished the residual ATX activity observed with inhibitors 

A and HA51. Kinetic analysis revealed that HA130 is a mixed-type inhibitor, producing a 

reduction in Vmax and an increase in Km (Figure 3D). Thus, inhibition of ATX by HA130 results 

from a combination of a decreased turnover number and decreased affinity for its substrate. 

Washout of HA130 and the other inhibitors fully restored ATX activity, indicative of reversible 

inhibition (Figure 3C).

2.4 Selective inhibition of ATX

Since boronic acids can target the proteasome active site, we examined whether HA130 

may affect proteasome activity. HA130 did not affect the chymotryptic, caspase and tryptic 

activities of the proteasome (Supporting Figure S2B). Conversely, bortezomib did not affect 

ATX activity. We next tested our inhibitors for selectivity against recombinant ENPP1, 

which is the closest relative of ATX, alkaline phosphatase (AP) and a broad-spectrum 

phosphodiesterase (PDE). None of these enzymes were affected by the ATX inhibitors at 

doses up to 10 µM (Supporting Figure S2A). Furthermore, cell viability was not compromised 

by HA130 (Supporting Figure S2C).

2.5 Inhibition of ATX-driven melanoma cell migration  

ATX was originally identified as an autocrine motility factor for human A2058 melanoma 

cells.1 We examined the ATX-mediated chemotactic migration of A2058 cells using a Boyden 
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chamber assay. ATX hydrolyzes exogenously added LPC into LPA, a potent chemoattractant 

for A2058 cells. As shown in Figure 4A, ATX inhibitors A, HA51 and HA130 inhibited ATX-

mediated cell migration with increasing potencies. None of the inhibitors affected LPA-induced 

cell migration, indicating that they do not act on LPA receptor signaling pathways.

2.6 Inhibition of plasma ATX activity 

ATX is identical to plasma lysoPLD3,4 and responsible for virtually all LPA-producing activity in 

plasma and serum.31 Inhibitors were tested for their ability to inhibit ATX/lysoPLD activity in 

human plasma ex vivo. As shown in Figure 4B, all three inhibitors were found to inhibit plasma 

ATX activity with the expected ranking order of potency. Inhibition of plasma ATX activity was 

long-lasting (24 h), indicating that HA130 is stable in plasma (Supporting Table S1). 

2.7 HA130 decreases circulating LPA levels in mice

To investigate how ATX inhibition affects circulating plasma LPA levels, we administered HA130 

(1 nmol g-1) or vehicle as a single bolus injection into the jugular vein of anaesthetized mice. As a 

non-vehicle control we used compound HA51. Levels of HA130 or LPA in plasma samples rapidly 

isolated from venous blood were monitored before and after dosing.  As shown in Figure 5A, 

intravenous administration of vehicle or HA51 (Supporting Figure S3) had little or no effect on 

plasma LPA levels. Following administration of HA130 (t = 10 min), plasma levels of the inhibitor 

rose rapidly to a concentration approaching 0.35 μM. This was accompanied by a parallel 

decrease in plasma LPA levels (3.8-fold) which returned slowly towards baseline as plasma levels 

of HA130 declined. Figure 5B shows summarized data from replicate experiments in which mice 
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Figure 4: Effect of inhibitors on ATX-induced cell migration and on plasma ATX/lysoPLD 
activity. (A) ATX (1.2 nM), LPC (1 µM) and BSA (1 mg mL-1) were added to the lower chambers 
of 48-wells Boyden chambers and the trans-well migration of A2058 melanoma cells was 
assayed after 4 h in the presence or absence of ATX inhibitors. None of the compounds 
inhibited LPA-induced cell migration (inhibitor and LPA added at 0.3 μM). (B) Inhibition 
of endogenous ATX/lysoPLD activity in human plasma ex vivo, as measured by choline 
release from LPC. Inhibition was maintained for at least 24 h (see Supporting Table S1). 
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were dosed with vehicle or HA130 while plasma LPA levels were measured before, 2 and 10 

min post dosing (see also Supporting Figure S3). Administration of HA130 produced statistically 

significant decreases in plasma LPA levels compared to baseline, vehicle and HA51. The mean 

decrease in plasma LPA levels was 48% of the baseline control at 2 min post administration 

of HA130. Plasma HA130 levels correlated well (R2 = 0.751) with plasma LPA levels (Figure 
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Figure 5: Effects of HA130 on circulating LPA levels in mice. (A) Vehicle or HA130 was administered 
intravenously into an anaesthetized mouse and plasma levels of the inhibitor or total LPA were 
determined at the indicated time points. Compound HA51 was used as a non-vehicle control 
(see Supporting Figure S3). (B) Plasma levels of LPA were determined at baseline and at 2 and 
10 min post dosing of vehicle or HA130. The data shown are means +/- SD (6 mice treated 
with HA130; 5 mice treated with vehicle alone). The difference between baseline LPA levels 
and LPA levels at 2 min in HA130-treated mice are statistically significant (p < 0.01, **) by 
paired t-test. (C) Plasma levels of LPA and HA130 at 2 min post administration closely correlate 
(R2 = 0.751). (D)  C17-LPA (10 μL of a 10 mM solution in saline containing 0.1% fatty acid-free 
BSA) was injected into the jugular vein of anaesthetized mice and plasma levels of C17-LPA 
were determined at different time points. The inset shows a semi-log plot used to calculate 
the half-life for clearance of C17-LPA from the circulation. Data points are means +/- SD (n = 3).
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5C). Taken together, these findings suggest that continual production of LPA by ATX-catalyzed 

hydrolysis of circulating LPC is required to sustain plasma levels of LPA at their observed steady-

state level. To confirm this, we injected C17-LPA and found that the levels of this unnatural LPA 

analog were elevated at the earliest measurable time point, but then decayed rapidly following 

pseudo first-order kinetics with a half-life of approximately 3 min (Figure 5D).

2.8 Discussion and conclusions

In this study we have identified and optimized a class of thiazolidine-2,4-dione compounds as 

potent and selective inhibitors of ATX that can reduce LPA plasma levels in mice. Our chemical 

optimization strategy was based on targeting the catalytic T210 residue in ATX by introducing 

a boronic acid moiety. Boronic acid has previously been shown to be instrumental in the anti-

cancer drug bortezomib, which targets the threonine oxygen nucleophile in the active site of 

the proteasome.30 Strikingly, replacing the carboxylic acid in HA51 by a boronic acid increased 

the potency for ATX inhibition by two orders of magnitude compared to the screening hit A. 

This boronic acid inhibitor named HA130 did not affect either ENPP1 or proteasome activity, 

which have both a catalytic threonine residue. Injection of HA130 into mice resulted in a rapid 

fall in circulating LPA levels, which is in keeping with the rapid degradation of intravenous 

administered C17-LPA observed in these animals. This result indicates that maintenance of 

steady-state LPA levels in plasma involves a highly dynamic balance between its ATX-mediated 

synthesis and its degradation by LPPs. Consistent with this, LPP1-deficient mice show a 

significantly reduced rate of [32P]LPA degradation in the bloodstream.32 Thus, ATX and LPPs 

are key determinants of LPA turnover in vivo and their activity balance sets the steady-state 

level of LPA in the circulation and, most likely, in the interstitial space. 

Several questions concerning circulating ATX remain to be answered, including its 

tissue origin and metabolic fate, although recent evidence indicates that ATX is rapidly 

cleared from the circulation by liver sinusoidal endothelial cells.33 Circulating ATX and LPA 

do not, of course, reflect the levels in intercellular spaces, since ATX is produced locally by 

many different cell types while the LPC substrate level in interstitial fluids is much lower than 

that in plasma. Another key question concerns how ATX activity is regulated under (patho)

physiological conditions. Interestingly, ATX binds to activated lymphocytes and platelets in an 

integrin-dependent manner,18,21 which could lead to altered catalytic activity and serve as a 

mechanism for localized LPA production at sites of inflammation and injury. 

In conclusion, we have used a boronic acid-based inhibitor to demonstrate that ATX is a 

valid target for manipulating LPA levels in vivo. Further development of boronic acid inhibitors 

of ATX holds promise for therapeutic use in ATX/LPA-dependent pathologies, including chronic 

inflammation, tumor progression and fibrotic diseases. 
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2.9 Experimental section

Chemicals and enzymes. Small molecule libraries were obtained from the NCI and purchased from 
SPECS (Delft, The Netherlands). The compounds AN-988/40680277, AN-989/41697944 and AN-
989/40746701 are all from the SPECS collection and are abbreviated by A, B and C, respectively. 
1-Oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC, 18:1) and 1-heptadecanoyl-sn-glycero-3-
phosphate (C17-LPA) were purchased from Avanti Polar Lipids. Horseradish peroxidase (HRP), 
choline oxidase and phosphodiesterase I from Crotalus atrox were obtained from Sigma-Aldrich. 
Alkaline phosphatase from calf intestine was from Roche. Radiolabeled LPC (1-[1-14C]palmitoyl) was 
from Amersham Biosciences UK (specific activity 925 kBq mL-1). 

Recombinant ATX. HEK293 cells were transfected with the pcDNA3 vector containing a 6xHis-
tagged human teratocarcinoma ATX sequence. After transfection, cells were washed and serum-free 
medium was added and cells were allowed to secrete His-tagged ATX into the culture medium for 48 
h. Medium was collected and ATX was purified using TALON-affinity beads (Clontech) as described. 
Imidazole was removed by dialysis against Tris-buffered saline (140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 
mM MgCl2 and 50 mM Trizma, pH 8.0). Purity was verified by SDS-PAGE and Coomassie blue staining.

ATX/lysoPLD activity assay.34 ATX/lysoPLD activity was measured by choline release from LPC (18:1) 
(40 μM) in 96-well plates. Inhibitors in DMSO were added to recombinant ATX (20 nM) in Tris-HCl 
buffer (pH 7.4) at 310 K. After 3 h of incubation, 50 µL ABTS (2 mM) and horseradish peroxidase (10 
U mL-1) were added to 50 µL of the reaction mixture. Choline oxidase (50 µL, 10 U mL-1) was added 
for the colorimetric reaction. Absorbance was measured at 405 nm and data were analyzed using 
Graphpad Prism software. For a more detailed description of this assay see Experimental section 
Chapter 3.

Phosphodiesterase activity assays.22 ATX activity toward bis-pNPP hydrolysis was determined as 
follows. Inhibitors in 2 µL DMSO were added to a 384-wells plate containing 24 µL ATX (~40 nM) 
in buffer (140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 50 mM Tris, pH 7.8) containing fatty 
acid-free BSA (0.2 mg mL-1). Finally, 24 µL bis-pNPP (2 mM) was added to each well and the plate 
was incubated for 3 h at room temperature. Percentage inhibition (PI) was determined at a final 
concentration of 5 µM inhibitor. Absorbance was determined using a Perkin Elmer Envision plate 
reader (λ = 405 nm). ENPP1 activity was measured at an ENPP1 concentration of 180 nM. Reaction 
was carried out in 100 µL reaction buffer as described above and incubated at room temperature 
for 90 min. For PDE activity the same protocol was handed using 6 mU mL-1 of PDE incubating the 
reaction mixture at room temperature for 20 min. Graphpad Prism software was used for data 
analysis. 

14C-LPA formation. Incubations were carried out essentially as described in the choline release assay 
in the presence of 0.5 µM 1-[1-14C]palmitoyl-LPC. Reactions were terminated by adding 150 µL 
0.01 M acetic acid and 250 µL 1-butanol. After mixing and centrifugation, the 1-butanol phase was 
removed and the remaining water phase extracted with 1-butanol. The pooled butanol phases were 
washed and concentrated to dryness under vacuum. Reaction products were analyzed by thin layer 
chromatography (TLC). TLC plates were developed with CHCl3/MeOH/CH3COOH/H2O (50:30:8:4). 
Retardation factors for LPA and LPC were 0.5 and 0.13, respectively. Lipids were visualized by 
autoradiography.
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Selectivity and toxicity. Alkaline phosphatase activity was determined by hydrolysis of bis-para-
nitrophenyl phosphate (bis-pNPP). Inhibitors were added to 50 µl alkaline phosphate (0.4 U mL-1) 
in 50 mM Tris-HCl (pH 8.5) containing 0.1 mM EDTA. 50 µL bis-pNPP (0.6 mM) was added to each 
well and the plate was incubated at room temperature for 1.5 h. Absorbance was determined at a 
wavelength of 405 nm. 

Cell toxicity was determined using the CellTiter-Blue assay. Cells (1.5x105 mL-1) were incubated 
with or without inhibitors for 24 h. Phenylarsine oxide (PAO) was used as a control for cell death. 
After 19 h of incubation, 20 µL of resazurin (0.125 mg mL-1) was added for 5 h. Fluorescence was 
measured at λex/λem = 544/560 nm.

Proteasome activity. Purified bovine proteasome was preincubated with inhibitors for 30 min, 
followed by addition of AMC substrate.35 Fluorescence was measured every 10 min during 1 hr after 
substrate addition at 310 K. 1 µg of bovine proteasome was added to assay buffer (25 mM Tris pH 
7.4, 5 mM MgCl2, 1 mM DTT, 1 mM ATP). AMC substrates used: 100 µM LLVY-AMC (chymotryptic 
activity), 40 µM LLE-AMC (caspase-like activity) and 60 µM VGR-AMC (tryptic activity). Controls used 
for proteasome inhibition were MG132 (25 µM) and epoxomicin (1 µM).

Human plasma ATX activity. Plasma ATX activity was measured in 96-wells plates using LPC (18:1) 
as a substrate. Heparin-treated human plasma (2 µL) was added to 38 µL Tris-HCl buffer (100 mM 
Tris-HCl, pH 9, 500 mM NaCl, 5 mM MgCl2 and 0.05% Triton X-100). Subsequently, 0.8 µL inhibitor in 
DMSO was added. Finally, 40 µL of 2 mM LPC (18:1) in Tris-HCl buffer was added to each well and the 
plate was incubated at 310 K. The mixture with DMSO alone was used as a control. Plasma without 
added LPC was taken as control for endogenous LPA production. After 1.5 h of incubation, 150 µL 
homovanillic acid (2 mM) and horseradish peroxidase (1.6 U mL-1) in Tris-HCl (0.01% Triton X-100, 20 
mM CaCl2 and 50 mM Tris-HCl, pH = 7.4) was added to 20 µL of the reaction mixture. Choline oxidase 
was added (40 µL, 4 U ml-1) and fluorescence was determined at λex/λem = 320/450nm. 

ATX-mediated cell migration. A2058 melanoma cell chemotaxis was assayed using 48-well Boyden 
chambers. Fibronectin-coated polycarbonate membranes (8 µM pores, NeuroProbe Inc.) were used 
to separate the upper from the lower chamber. The lower chamber contained DMEM with BSA (1 
mg mL-1), ATX (1.2 nM) and LPC (1 µM). Cells (0.75 x 106 mL-1) were loaded in the upper wells and 
the chamber was incubated at 310 K for 4 h. Non-migrated cells were removed from the membrane 
and migrated cells were fixed and stained in Diff-Quick (Medion Diagnostics AG, Switzerland). The 
membrane was mounted on a glass slide and migrated cells were quantified.

Quantitation of HA130 by HPLC tandem mass spectrometry. HA130 was quantitated by HPLC 
tandem mass spectrometry using an ABI 4000 Q-Trap hybrid linear ion trap triple quadrupole mass 
spectrometer operating in triple quadrupole mode. The ion source settings were ion spray voltage 
+5500 V, declustering potential 126 V entrance potential 10 V ion spray voltage 5500 V, ion source 
temperature 823 K.  Material was separated by reverse phase HPLC on an Agilent Eclipse XDB 
C8 column (4.6 × 150 mm, 5 μM), flow rate 0.5 mL min-1 with a step gradient of solvent A 75/25 
methanol/water containing 0.5% formic acid and 0.1% ammonium formate, solvent B 99/1 methanol 
water containing 0.5% formic acid and 0.1% ammonium formate. HA130 was quantitated by selective 
reaction monitoring of precursor/product ion pairs with m/z 464/109, 464/135.1, 464/117.1 with 
optimized collision energies and colllision cell exit potentials for each ion pair. For analysis of HA130 
in mouse plasma, material was extracted/deproteinated using acidified organic solvents as detailed 
below. Recovery of HA130 was estimated to be ~70%; values were corrected for recovery of the C17-
LPA internal standard (see below).
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Quantitation of LPA molecular species by HPLC tandem mass spectrometry. Whole blood was 
sampled and transferred directly into anticoagulant, centrifuged and plasma added directly to 
acidified organic solvents. After extraction, organic solvent soluble material was separated by reverse 
phase HPLC and 16 abundant LPA molecular species quantitated by tandem mass spectrometry 
using an ABI 4000 Q-Trap hybrid linear ion trap triple quadrupole mass spectrometer. Recovery was 
determined using C17-LPA as an internal standard and quantitation accomplished by reference to 
calibration curves determined using a series of synthetic LPAs that were independently quantitated 
by phosphorous analysis following wet digestion in perchloric acid.

Studies in mice. For intravenous administration, HA130 and HA51 in DMSO were diluted 10-fold into 
saline to give a drug concentration solution of 1 mM and a final DMSO concentration of 10%. This 
material was kept at 310 K and bath sonicated for 30 s immediately prior to intravenous administration. 
Male FVB mice were anaesthetized with isofluorane and dissected to expose the jugular vein. HA130 
(1 µL g-1, 1 mM) or vehicle were injected intravenously. HA51 served as a non-vehicle control. Whole 
blood was sampled from the jugular vein and collected directly into anticoagulant, mixed, centrifuged 
and plasma transferred to glass tubes containing acidified solvents for extraction of HA130 and LPA. 
All animal experiments conformed to the recommendations of the “Guide for the Care and Use of 
Laboratory Animals” (Department of Health, Education, and Welfare publication number NIH 78-23, 
1996) and were approved by the institutional Animal Care and Use Committee.

Chemical synthesis inhibitors. See Chapter 3.
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2.11 Supporting information
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Supporting Figure S1: Saturation kinetics of 
ATX. Rates of choline release from LPC are 
plotted against increasing concentration of LPC. 
ATX activity data points (absorbance; arbitrary 
units (AU)) were fitted to the Michaelis-Menten 
equation, yielding an apparent Km value for LPC 
of 95 µM (n=5).

a Percentage inhibition (PI) by the three inhibitors (5 
µM) was measured at the indicated time points. ATX 
inhibition was constant over 24 h.

Supporting Table S1: Inhibition of ATX activity in 
human plasma over time. 
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Supporting Figure S2: Enzyme selectivity and toxicity of ATX inhibitors. (A) Lack of effect of ATX 
inhibitors on ENPP1, PDE and AP activity. (B) Lack of effect of HA130 (up to 10 µM) on the indicated 
proteasome activities. Proteasome inhibitors epoxomicin (epox) and MG132 were used as controls. 
(C) Toxic dose (TD50) of ATX inhibitors for human A2058, HEK293T and HepG2 cells. Phenylarsine 
oxide (PAO) was used as a control for cell death (nt: no toxicity below 100 µM).

Supporting Figure S3: Plasma levels of LPA 
were determined before and 2 min post 
dosing of mice treated with HA51 (n=4) 
and HA130 (n=6). The data shown are 
means +/- SEM.
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Discovery and optimization of boronic acid-based inhibitors 
of autotaxin: How did we exactly arrive at these inhibitors? 

Harald M.H.G. Albers, Laurens A. van Meeteren, David A. Egan, Erica W. van Tilburg, Wouter H. 

Moolenaar and Huib Ovaa, Journal of Medicinal Chemistry 2010, 53, 4958-4967.

Abstract. Autotaxin (ATX) is an extracellular enzyme that hydrolyzes lysophosphatidylcholine 

(LPC) to produce the lipid mediator lysophosphatidic acid (LPA). The ATX-LPA signaling axis 

has been implicated in diverse physiological and pathological processes, including vascular 

development, inflammation, fibrotic disease and tumor progression. Therefore, targeting 

ATX with small molecule inhibitors is an attractive therapeutic strategy. The previous 

chapter describes thiazolidine-2,4-diones that inhibit ATX activity in the micromolar range. 

Interestingly, inhibitory potency was dramatically increased by introduction of a boronic acid 

moiety, designed to target the active site threonine in ATX. Here the discovery and further 

optimization of boronic acid-based ATX inhibitors is described. The most potent of these 

compounds inhibits ATX-mediated LPC hydrolysis in the nanomolar range (IC50 = 6 nM). The 

finding that ATX can be targeted by boronic acids may aid the development of ATX inhibitors 

for therapeutic use.
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3.1 Introduction

Autotaxin (ATX or ENPP2), originally isolated as an autocrine motility factor from 

melanoma cells, belongs to the ecto-nucleotide pyrophosphatase and phosphodiesterase 

(ENPP) family.1-3 This extracellular enzyme acts as a lysophospholipase D, hydrolyzing 

lysophosphatidylcholine (LPC) into the lipid mediator lysophosphatidic acid (LPA), as depicted 

in Scheme 1.4,5  Hydrolytic activity of ATX originates from a threonine (T210) residue in the 

active site.1 LPA activates specific G protein-coupled receptors and thereby stimulates the 

migration, proliferation and survival of many cell types.6

The ATX-LPA axis has a vital role in vascular development.7,8 Furthermore, it has 

been implicated in various pathologies including tumor progression9 and metastasis,10 

inflammation11 and fibrotic disease.12 Given its role in human disease, the ATX-LPA axis is 

an obvious target for therapy. The fact that ATX is an extracellular enzyme makes it even 

more attractive as a drug target. Since there are at least six distinct LPA receptors, direct 

targeting of LPA receptors seems to be a less attractive strategy.13,14 On the basis of the initial 

discovery that ATX is inhibited by LPA and sphingosine 1-phosphate (S1P) under certain 

conditions,15 various synthetic phospholipid analogs have been explored as ATX inhibitors.16-

20 However, lipid-based inhibitors have the disadvantage that they could act as agonists or 

antagonists for any of the LPA/S1P receptors, thereby resulting in an effect opposite of the 

one intended. In addition, non-

lipid ATX inhibitors have been 

identified, but their inhibitory 

potential is low (IC50 ≥ 1 μM).21-23

The previous chapter 

describes a non-lipid ATX 

inhibitor (HA130)24 that rapidly 

lowers plasma LPA levels upon 

intravenous injection in mice. 

Using HA130 we found that 

the turnover of circulating LPA 

is much faster than expected, 

showing the usefulness of ATX 

inhibitors as tools to elucidate 

the role of ATX and LPA in vivo. 

Here we describe the 

discovery and optimization of 

boronic acid-based inhibitors 

of ATX. We screened ~40,000 

small molecules and identified 

thiazolidine-2,4-dione as ATX 
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Scheme 1. The hydrolysis of LPC by ATX into LPA and 
choline. The lysoPLD reaction is catalyzed by a threonine 
oxygen nucleophile (T210). Newly produced LPA triggers 
subsequent biological events via activation of specific G 
protein-coupled receptors.
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inhibitors, which proved to be suitable to further chemical optimization. In particular, we 

optimized these molecules by first introducing small systematic variations in the structure of 

a screening hit, followed by the introduction of more random variations. Finally, by targeting 

the T210 oxygen nucleophile in ATX through a boronic acid, the potency of the original 

thiazolidine-2,4-dione screening hit was increased over 400-fold (IC50 = 6 nM).

3.2 ATX inhibitor screen

To identify ATX inhibitors, a small molecule screen was carried out. We first used a collection of 

17,500 molecules from the National Cancer Institute (NCI) to optimize our screening protocol. 

This NCI library was initially screened using CPF4, an ATX activity reporter based on Förster 

resonance energy transfer (FRET) (Figure 1A).15,25 The phosphodiester bond which links the 

coumarin and fluorescein moieties in CPF4 is hydrolyzed by ATX, resulting in the loss of FRET. 

Since we have shown that LPA can inhibit ATX activity in this assay, it was used as a positive 

control for ATX inhibition.15 Approximately 250 active molecules were retested in a second 

assay using bis-para-nitrophenyl phosphate (bis-pNPP) as reporter substrate (Figure 1B).15 In 

Supporting Figure S1 the results of both assays are compared. Only a few compounds remained 

after retesting in the bis-pNPP assay. Since the CPF4 assay resulted in many false positives, 

we decided to reverse the assay order. The same NCI library was tested in the bis-pNPP assay 

using CPF4 as confirmation tool which led to reproducible hits corresponding to the findings of 

Saunders et al.26 Top three actives of the NCI screen can be found in Supporting Figure S2. 
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Figure 1. Three ATX assays used for screening and validation of ATX inhibitors. (A) CPF4 assay; This 
assay is based on Förster resonance energy transfer (FRET) between coumarin and fluorescein 
moieties of CPF4. (B) Bis-pNPP assay; In this assay bis-para-nitrophenyl phosphate (bis-pNPP) 
is hydrolyzed by ATX into the chromophore para-nitrophenol. (C) Choline release assay; The 
physiological substrate of ATX, LPC, is hydrolyzed by ATX to give LPA and choline. The release of 
choline can be detected in a two-step enzymatic coloring reaction.
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After setting up our screening protocol, we used a commercial library (SPECS) consisting 

of 23,000 small molecules with predicted drug-like properties. For active molecules in this 

screen the percentage inhibition (PI) at 5 µM and IC50 values (bis-pNPP assay) are shown in 

Figure 2. These actives were confirmed by the CPF4 assay (Figure 2). Among the confirmed 

active molecules were several thiazolidine-2,4-diones (1, 2, 4 and 5), a pyrano pyrazole (3) 

and a benzothiazole (6). Because the thiazolidine-2,4-diones are well represented among 

the positive hits and their amenability to fast chemical diversification, the most potent 

thiazolidine-2,4-dione 2 (IC50 = 56 nM) was selected for further optimization.

Structure Entry PI (%) IC50 (nM)
  

Bis-pNPP CPF4 Bis-pNPP 

1 92 89 161 

2 (A) 91 85 56 

3 87 77 46 

4 83 85 68 

5 75 55 111 

6 71 66 261 

LPA 80 67 442 
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Figure 2. ATX inhibitors discovered by high-throughput screening. Percentage inhibition (PI) at 5 
µM is based on the bis-pNPP or CPF4 assay. IC50 values are obtained using the bis-pNPP assay. LPA 
was used as a control for ATX inhibition.
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3.3 Chemistry

We next explored how to improve the potency of thiazolidine-2,4-dione 2 (compound A in 

Chapter 2) as an ATX inhibitor. We designed the convergent synthetic route toward inhibitor 

2 depicted in Scheme 2. The synthesis requires benzoic acid 7 which can be obtained via a 

one-pot-synthesis. First, vanillin was O-alkylated with methyl-4-(bromomethyl) benzoate.27 

The resulting benzoate was hydrolyzed to give benzoic acid 7. To afford the precursor 8, 

thiazolidine-2,4-dione was dissolved in DMF and N-alkylated with 4-fluorobenzyl chloride in 

the presence of sodium hydride. Finally, monosubstituted thiazolane-2,4-dione 8 was reacted 

via a Knoevenagel condensation with benzoic acid 7.28 Z-isomer 2 precipitated during reaction 

and washing the precipitate with ethanol resulted in homogeneous product (For 1H NMR 

and HPLC spectra see Supporting Figure S3). The synthetic route toward 2 appeared to be 

applicable for the fast parallel synthesis and purification of many analogs without the need 

for chromatography.

3.4 Systematic optimization

Inhibitor 2 contains two side chains attached to the thiazolidine-2,4-dione core, a benzyl and 

a benzylidene moiety (Scheme 2). To explore structure-activity relationships (SAR), we first 

generated a small library before embarking on a bigger effort. This resulted in the molecules 

listed in Table 1. LPA was used as a control that it inhibits the ATX-mediated hydrolysis of bis-

pNPP by ATX (IC50 = 0.4 µM).15

The best series of inhibitors are the benzoic acids (2 and 9-11), where the fluorinated 

compound 2 has the highest activity (IC50 = 56 nM) in the bis-pNPP assay (Table 1). 

Replacement of the 4-fluorine atom (2) for hydrogen (9), nitro- (10) or a tert-butyl group (11) 

reduced the potency of the inhibitor with increasing size of the functional group. With the 

replacement of the carboxylic acid in molecules 2 and 9-11 by a methyl ester (12-15), potency 

7
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Scheme 2. Convergent synthetic route towards thiazolidine-2,4-dione  2 (A). Reagents (i) KOH, 
DMSO, rt, 30 min. (ii) NaOH, DMSO/H2O (1:3, v/v), reflux, 4 h, 91%. (iii) NaH, DMF, rt, 22 h, 74%. 
(iv) Piperidine, EtOH, reflux, 20 h, 63%.
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is largely lost. Omitting the carboxylic acid 

(16-19) has the same effect. With removal 

of the methoxy group (R2) in molecules 

16-19, activity is regained (compare 16-19 

with 20-23). SAR analysis showed that the 

optimal combination of groups would be 

R1 = -OCH2-Ph-COOH, R2 = H and R3 = F. 

Encouraged by the SAR results sug-

gesting that the methoxy and carboxylic 

acid groups are important moieties, mol-

ecules 28-30 were synthesized (Figure 3A). 

Molecules 2, 9-11 and 28-30 were validat-

ed in the physiologically more relevant LPC 

hydrolysis (choline release) assay.17 The 

ATX-mediated release of choline from LPC 

is detected by a two-step enzymatic colori-

metric reaction (Figure 1C). In the first step 

choline is oxidized by choline oxidase into 

betaine (trimethylglycine) and hydrogen 

peroxide. Horseradish peroxidase (HRP) 

then consumes hydrogenperoxide to oxi-

dize 2,2’-azino-bis(3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS) to a radical cation 

species which absorbs at 405 nm. 

The data obtained from the choline 

release assay are summarized in Figure 3A. 

The IC50 values obtained were some 10-fold 

higher than observed in with bis-pNPP as a substrate. It is noteworthy that compound 10 is 

incapable of fully inhibiting ATX at high concentrations (Figure 3B). This residual ATX activity 

for 10 is about 60%. However, 10 shows inhibition at a lower concentration than 11 which 

was also observed in the bis-pNPP assay. LPA did not inhibit ATX in the choline release assay 

as observed by Ferry et al.19

The established SAR was confirmed by the more active molecule 28 (IC50 = 1.63 μM) in 

which the methoxy group in 2 (IC50 = 2.50 μM) is omitted. Changing the carboxylic acid of 2 

from para to the meta position results in the more potent inhibitor 29 (IC50 = 2.05 μM) but 

less potent than 28. Changing the carboxylic acid in 28 from para to meta (30 (HA51), IC50 = 

1.07 μM) results in the most active molecule in this systematic optimization with a 2.5-fold 

reduction in IC50 value compared to 2 and also to a further reduction in residual ATX activity 

(from 35 to 7%) in the choline release assay.

R1 R2 R3 Entry 

(µM) 

RA

(%) 
 

OMe H 9 0.248 9 
OMe F 2 0.056 10 
OMe NO2 10 0.442 33 
OMe C(CH3)3 11 18.2 33 

     
     

OMe H 12 2.69 24 
OMe F 13 >100 - 
OMe NO2 14 60.9 31 
OMe C(CH3)3 15 >100 - 

     
     

OMe H 16 >100 - 
OMe F 17 5.87 12 
OMe NO2 18 >100 - 
OMe C(CH3)3 19 na - 

     
     

H H 20 2.69 32 
H F 21 0.700 37 
H NO2 22 >100 - 
H C(CH3)3 23 >100 - 

H H 24 >100 - 

H H F 25 >100 - 
H NO2 26 na - 
H C(CH3)3 27 na - 
     
     

- - - LPA 0.442 39 

IC50

N S

O

O
R1

R2

R3

HOOC
O

MeOOC
O

O

O

Table 1. Structure-activity data for molecules 
of the systematic optimization. IC50 values and 
residual ATX activity (RA) of the synthesized 
thiazolidine-2,4-dione  derivatives using the 
artificial ATX substrate bis-pNPP (na: not active 
at 5 µM).
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3.5 Variation in the benzyl moiety

Since our initial systematic optimization of 2 provided good structure-activity correlations we 

varied either the benzyl or the benzylidene moiety (Scheme 2). In this approach, either the 

benzyl or the benzylidene moiety corresponds to the screening hit 2 while the other part is 

alternated. First, the effect of changes in the benzyl part of the molecule was investigated by 

introducing halogens. The percentage inhibition (PI) values at 5 µM of compounds 31-40, as 

measured by the choline release assay, are listed in Table 2. The most potent inhibitor was 

bromo compound 39 (PI = 73%). However, its IC50 (2.80 µM) is similar to that of screening hit 

2 (IC50 = 2.50 µM). Other substituents (41-71) that were explored did not result in significant 

improvements.

3.6 Variation in the benzylidene moiety.

Next, variations were incorporated into the benzylidene moiety, resulting in molecules shown 

in Supporting Table S1. In contrast to the variation in the benzyl moiety, few molecules were 

active; only 30% of the compounds tested showed inhibition (PImax = 12%). This indicates that 

variations in the benzylidene moiety of screening hit 2 are not well tolerated.

3.7 Boronic acid introduction and optimization

Because the benzyl and benzylidene moiety variations did not improve inhibition, we 

modified inhibitor 30 that resulted from the systematic optimization. Replacing the carboxylic 

acid in molecule 30 by a boronic acid resulted in molecule 72 (HA130, Table 3). We recently 

characterized 72 as a potent ATX inhibitor both in vitro and in vivo.24 We reasoned that the 

carboxylic acid moiety in molecule 30 could act as a phosphate mimic that binds near or at 

the active site threonine (T210). Replacing the carboxylic acid in molecule 30 by a boronic 

R1 R2 R3 Entry RA  
(%) 

  

 

OMe H 9 2.90 29 
OMe F 2 2.50 35 
OMe NO2 10 >5 56 
OMe C(CH3)3 11 13.6 27 

H F 28 1.63 40 

OMe F 29 2.05 42 
H F 30 

(HA51) 
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Figure 3. Validation of screening hit 2 and the benzoic acids of the systematic optimization in 
the choline release assay. (A) Structure-activity data of the systematic optimization. Residual ATX 
activity is abbreviated by RA (%). (B) Dose-response curves for the benzoic acids.
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acid could well be a good ATX targeting strategy. This strategy was inspired by the proteasome 

inhibitor bortezomib, which targets the N-terminal threonine oxygen nucleophile in the 

proteasome through a boronic acid.29 Furthermore, boronic acids have been reported to 

inhibit β-lactamases through targeting of the active site serine residue.30

The boronic acid modification resulted in a 100-fold more potent inhibitor (IC50 = 28 

nM) compared to screening hit 2 (IC50 = 2.50 μM). When the position of the boronic acid was 

changed from meta (72) to the para (73) position, potency increased by another 5-fold (IC50 

= 5.7 nM), while the potency of the ortho boronic acid 74 dropped (IC50 > 5.00 μM). Next, the 

  

2 / 55% 31 / 64% 32 / 41% 33 / 57% 34 / 29% 35 / 57% 

   
36 / 38% 37 / 23% 38 / 26% 39 / 72% 40 / 51% 41 / 21% 

42 / 44% 43 / 17% 44 / 48% 45 / 38% 46 / 13% 47 / 17% 

48 / 10% 49 / 32% 50 / 46% 51 / 28% 52 / 13% 53 / 12% 

54 / 10% 55 / 11% 56 / 20% 57 / 35% 58 / 23% 59 / 17% 

60 / 0% 61 / 4% 62 / 13% 63 / 11% 64 / 5% 65 / 19% 

 
66 / 15% 67 / 31% 68 / 49% 69 / 42% 70 / 31% 71 / 30% 
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Table 2. Derivatives of screening hit 2 with a structural variation in the benzyl moiety (R). 
Percentage inhibition (PI, %) has been determined in the choline release assay at 5 μM. Molecules 
that show more than 50% inhibition are in bold (compound / PI).
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3-benzyloxy boronic acids analogs 75-77 were synthesized. The meta boronic acid (75) proved 

to be more potent than the para (76) and the ortho boronic acid (77) has a low potency.

3.8 Effect inhibitors on readout choline release assay

An inherent danger of the choline release assay is that small molecules can interfere with 

the readout by inhibiting the enzymes (horseradish peroxidase or choline oxidase) used in 

the coloring reaction, resulting in false positives. Another way to interfere with the choline 

release assay is that compounds can react with the ABTS or hydrogen peroxide generated 

during the coloring reaction. The latter could be an issue for the boronic acids reported here 

because aliphatic and aryl boronic acids have the ability to react with hydrogen peroxide.31-33 

We investigated the effect of the inhibitors 72, 73, 75 and 76 on the coloring reaction, and no 

effect was observed (Supporting Figure S4). Therefore, the choline release assay is a valid way 

to test the synthesized compounds here on ATX inhibition.

3.9 Mode of inhibition

For inhibitors 2, 30, 72 and 73, the mode of inhibition was determined from a Lineweaver-

Burk plot (Supporting Figure S5). Inhibitors 2 and 30 inhibit in a competitive manner using 

LPC as substrate. Kinetic analysis for boronic acids 72 and 73 revealed a mixed type inhibition.

Because these inhibitors contain a Michael acceptor, it could be that these inhibitors 

react irreversibly with ATX (or other enzymes), which is undesirable.  When ATX is incubated 

with 5 µM inhibitor 2, 30, 72 or 73 for 20 min at 310 K and these solutions are then washed 

with ethyl acetate, ATX activity is restored up to 97% of its original activity in the choline 

release assay (Supporting Figure S6). This indicates that these inhibitors reversible bind to ATX.

72 (HA130) 73 (HA155) 74 75 76 77 
      

99% / 28.3 nM 99% / 5.67 nM 36% / >5.00 µM 100% / 11.9 nM 100% / 29.6 nM 11% / >5.00 µM 
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Table 3. Potent ATX inhibitors of the boronic acid optimization. For the boronic acids percentage 
inhibition (PI, %) at 5 μM and IC50 values have been determined in the choline release assay (PI / IC50). 
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3.10 Discussion and conclusions

This study shows that ATX can be targeted efficiently by boronic acid inhibitors. We discovered 

thiazolidine-2,4-diones as potent non-lipid ATX inhibitors. Replacing the carboxylic acid by 

a boronic acid in thiazolidine-2,4-dione screening hit 2 resulted in a 440-fold more active 

inhibitor (IC50 = 2.50 μM  6 nM).

We handed three different approaches for optimization of screening hit 2. The first is 

the systematic optimization of 2, which led to a 2.5-fold increase in potency in the choline 

release assay. The second is a randomized approach, changing separately the benzyl and the 

benzylidene parts of the molecule. This did not result in significantly more potent molecules. 

Finally, we replaced the carboxylic acid in screening hit 2 by a boronic acid. Our rationale was 

that the carboxylic acid could function as a phosphate mimic and thereby bind near or at the 

T210 oxygen nucleophile. In that case, the T210 oxygen nucleophile in ATX can be targeted 

via a boronic acid. A similar strategy has proven successful for the proteasome inhibitor 

bortezomib which binds to threonine oxygen nucleophile in the proteasome active site 

through the boronic acid moiety.29 Replacing the carboxylic acid moiety in screening hit 2 (IC50 

= 2.50 μM) by a boronic acid resulted in molecule 73 (IC50 = 6 nM), which is over 400-fold 

more potent than inhibitor 2. These results demonstrate that ATX activity can be targeted by 

boronic acids. Next, to their increased affinity for ATX, the boronic acids are also expected to 

improve selectivity over hydrolytic enzymes that depend on a sulfur (cysteine) nucleophile, as 

is commonly found in phosphate ester hydrolyzing enzymes. 

Kinetic analysis showed that inhibitors 2 and 30 inhibit in a competitive manner 

indicating that they bind at the active site of ATX. The acid moiety of these inhibitors 

likely mimics the phosphate group, facilitating inhibition.  Boronic acids 72 and 73 show a 

mixed-type inhibition. It is expected that the boronic acids have the same binding site as 

their carboxylic acid equivalents 2 and 30 based on their structural similarity. Binding of 

the boronic acid to the T210 oxygen nucleophile likely results in the Lineweaver-Burk plot 

ATX

T210

- H+

+ H+

R

R

B
HO OH

B
O

OH

OHO
H

Figure 4. Our hypothesis on the binding of boronic acid-based ATX inhibitors with the T210 oxygen 
nucleophile in the ATX active site.
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observed. The washout experiment reveals that inhibitors 2, 30, 72 and 73 all bind to ATX 

in a reversible manner. Figure 4 shows how the boronic acid inhibitors may bind to the T210 

oxygen nucleophile of ATX.

In summary, we have identified thiazolidine-2,4-diones as ATX inhibitors and have found 

that targeting ATX with a boronic acid moiety resulted in a >400-fold increase in potency. 

This strategy to target ATX with a boronic acid should assist the development of future ATX 

inhibitors.

3.11 Experimental section

Chemicals and enzymes. Small molecule libraries were obtained from the National Cancer Institute 
(NCI) and purchased from SPECS, Delft, the Netherlands. NCI compounds NSC101794, NSC148368 
and NSC48300 are abbreviated in the text of the Supporting information by I, II and III respectively. 
SPECS compounds AN-989/40746701, AN-988/40680277, AJ-292/40674401, AN-989/41697652, AN-
989/41697944 and AQ-088/4201464 are abbreviated in the text by 1, 2, 3, 4, 5 and 6 respectively. 
1-Oleoyl-2-Hydroxy-sn-Glycero-3-Phosphocholine (LPC, 18:1) was purchased from Avanti Polar Lipids. 
Oleoyl-L-α-lysophosphatidic acid sodium salt  (LPA, 18:1), horseradish peroxidase (HRP), choline 
oxidase, and all other chemicals were obtained from Sigma-Aldrich and used as received.

Recombinant ATX. See Experimental section Chapter 2.

Bis-pNPP assay.15 ATX activity toward bis-pNPP was determined as follows. In an opaque flat-bottom 
384-well plate an amount of 2 µL DMSO containing inhibitor was added to 24 µL recombinant ATX 
(~20 nM) in Tris-buffered saline (140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2 and 50 mM 
Tris-HCl, pH 7.8) which contained albumin from bovine serum fatty acid free (BSA-FAF) (0.2 mg 
ml-1). Finally, 24 µL of bis-pNPP (2 mM) was added to each well and the plate was incubated for 3 
h at room temperature. This mixture with DMSO alone was used as a control. For each inhibitor 
ten concentrations were measured covering a range of   0.025 to 100 µM to determine IC50 values. 
Percentage inhibition was determined for a final concentration of 5 µM of inhibitor. Absorbance was 
measured in a Perkin-Elmer Envision plate reader (λ = 405 nm). The absorbance at 0 h was used to 
correct for molecules that absorb at 405 nm. Data were analyzed using Graphpad Prism software. 
IC50 values and percentage inhibition were determined in three independent experiments for each 
inhibitor. Percentage of residual activity (RA) is given as bottom value for curve fit.

CPF4 assay.15 This assay was carried out in the same manner as the bis-pNPP assay using a substrate 
concentration of 2 µM. Fluorescence was monitored in a BMG Fluorstar 96-well plate reader (λex = 
355 nm, λem = 460 and 520 nm).

Choline release assay.17 Measuring ATX activity using LPC (18:1) as substrate was determined as 
follows. In an opaque flat-bottom 96-wells plate (Greiner) 1 µL of DMSO containing inhibitor was 
added to 49 µL of recombinant ATX (~20 nM) in Tris-HCl buffer (0.01% Triton X-100 and 50 mM Tris-
HCl, pH 7.4). Finally, 50 µL of 80 μM LPC (18:1) in Tris-HCl buffer (10 mM MgCl2, 10 mM CaCl2, 0.01% 
Triton X-100 and 50 mM Tris-HCl, pH 7.4) was added to each well and the plate was incubated at 310 
K. The above-described mixture with DMSO alone was used as a control. LPC without ATX was taken 
as control for autohydrolysis of LPC. For each inhibitor ten concentrations were measured covering 
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a range of   0.01 to 30 µM to determine IC50 values. Percentage inhibition (PI) was determined 
for a final concentration of 5 µM of inhibitor. After 3 h of incubation, 50 µL of ABTS (2 mM) and 
horseradish peroxidase (5 U mL-1) was added to 50 µL of the reaction mixture and absorbance was 
measured and used to correct for absorbance of the molecules. Finally, 50 µl choline oxidase (5 U 
mL-1) in Tris-HCl (0.01% Triton X-100 and 50 mM Tris-HCl, pH 7.4) was added for colorimetric reaction. 
Absorbance was measured in a Perkin-Elmer Envision plate reader (λ = 405 nm). Data were analyzed 
using Graphpad Prism software.

In addition, the effect of the inhibitors on the enzymatic coloring reaction was investigated using 
40 μM choline at 30 μM inhibitor using the above-described coloring reagents. No inhibition of the 
enzymatic reaction by inhibitors was observed.

Washout of inhibitors. ATX (~20 nM) in the same buffer used for the choline release assay was 
incubated with (5 µM) and without inhibitors at 310 K. After 20 min the incubation mixtures were 
washed out with ethyl acetate with 9 times the volume of the ATX solution. The ATX activity of these 
solutions was determined using the choline release assay.

Chemistry. All chemicals were obtained from Sigma-Aldrich and used without further purification. 
Dry N,N-dimethylformamide (DMF) from Biosolve was obtained by treatment with molecular 
molsieves (4 Å). Analytical thin layer chromatography was performed on aluminum sheets precoated 
with silica gel 60 F254. Column chromatography was carried out on silica gel (0.035-0.070, 90 Å, Acros).

For isolation by centrifugation a Heraeus Multifuge 3 S-R centrifuge was used. Products were 
spun at 4400g at 277 K for 5 min. Nuclear magnetic resonance spectra (1H NMR and COSY) were 
determined in deuterated dimethyl sulfoxide (d6-DMSO) using a Bruker ARX 400 Spectrometer (1H: 
400 MHz) at 298 K, unless indicated otherwise. Peak shapes in the NMR spectra are indicated with 
the symbols ‘d’ (doublet), ‘dd’ (double doublet), ‘s’ (singlet), ‘bs’ (broad singlet) and ‘m’ (multiplet). 
Chemical shifts (δ) are given in ppm and coupling constants J in Hz. DMSO (δ = 2.50 ppm) was used 
as internal reference.

HPLC-MS measurements were performed on a system equipped with a Waters 2795 Seperation 
Module (Alliance HT), Waters 2996 Photodiode Array Detector (190-750 nm), Waters Alltima C18 
Column (2.1 mm x 100 mm) and an LCTTM Orthogonal Acceleration Time of Flight Mass Spectrometer. 
Samples were run at a flowrate of 0.40 mL min-1 using gradient elution (water/acetonitrile/formic 
acid) from 950/50/10 (v/v/v) to 50/950/10 (v/v/v). Purity of all compounds was verified by HPLC-MS.
The purity of all tested compounds was determined by HPLC-MS analyses and was greater than 95%.

4-[(4-formyl-2-methoxyphenoxy)methyl]benzoic acid (7).
To a solution of vanillin (1.41 g, 9.24 mmol) and KOH (0.640 g, 11.4 mmol) in DMSO (10 mL), methyl-
4-(bromomethyl)benzoate (2.00 g, 8.73 mmol) was added. The reaction mixture was stirred at room 
temperature and after 30 min, water (50 mL) was added and the solution was heated at 393 K for 2 
h. Subsequently, 1M NaOH (aq) (10 mL) was added under relfux till solution becomes clear. Finally, 
the reaction mixture was poured into water and was acidified with 1 M HCl to pH 2. The precipitate 
was isolated by centrifugation, washed with water, and lyophilized resulting in the title compound. 
Yield: 91%. 1H NMR: δ = 12.99 (bs, 1H, OH), 9.85 (s, 1H), 7.98 (d, J 8.3, 2H), 7.58 (d, J 8.3, 2H), 7.55 
(dd, J 1.9 and 8.3, 1H), 7.44 (d, J 1.8, 1H), 7.26 (d, J 8.3, 1H), 5.32 (s, 2H), 3.86 (s, 3H). MS: m/z [M+H]+ 
calc. 287.09, obs. 287.11.

Synthesis of 3-(4-fluorobenzyl)-1,3-thiazolane-2,4-dione (8).
To a cooled solution (273 K) of thiazolidine-2,4-dione (5.87 g, 50 mmol) in DMF (100 ml) sodium 
hydride (60% in oil, 1.8 g, 45 mmol) was added. A solution of 1-(chloromethyl)-4-fluorobenzene (4.3 
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ml, 36.8 mmol) in DMF (25 ml) was added to the reaction mixture. The mixture was allowed to warm 
up to room temperature and was stirred for 4 h. Then the mixture was poured in ice water (250 ml) 
and hexane (100 ml) was added. After a night at 277 K the precipitated crystals were filtrated and 
dried to give a white solid. Yield: 74%. 1H NMR: δ = 7.34-7.14 (m, 4H), 4.65 (s, 2H), 4.26 (s, 2H). MS: 
m/z [M+H]+ calc. 226.03, obs. 226.04.

Experimental details on compounds 9-30. This data is available free of charge via the Internet at 
http://pubs.acs.org.

General method for the synthesis of (2,4-dioxo-1,3-thiazolan-5-yliden) benzoic acids and benzene 
boronic acids.
To a solution of 1,3-thiazolane-2,4-dione 8 (0.293 mmol) in ethanol (2.5 mL), piperidine (12 µL, 0.207 
mmol) and the appropriate aldehyde (0.352 mmol) were added and the solution was refluxed for 22 
h. Upon cooling to room temperature the product precipitated out of solution. Centrifugation and 
washing with ethanol gave homogeneous compound.

4-[(4-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}-2-methoxy-phenoxy)-methyl]ben-
zoic acid (2). Yield: 63%. COSY was used to assign chemical shifts. 1H NMR: δ = 12.99 (bs, 1H, OH), 
7.97 (d, J 8.3, 2H), 7.92 (s, 1H), 7.56 (d, J 8.3, 2H), 7.38-7.16 (m, 7H), 5.27 (s, 2H), 4.82 (s, 2H), 3.84 (s, 
3H). MS: m/z [M-H]- calc. 492.10, obs. 492.10.

3-[(4-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}phenoxy)methyl] benzene boronic 
acid (72). Yield: 64%. 1H NMR: δ = 8.08 (s, 2H, OH), 7.92 (s, 1H), 7.87 (s, 1H), 7.76 (d, J 7.4, 1H), 7.60 
(d, J 7.1, 2H), 7.50-7.16 (m, 10H), 5.18 (s, 2H), 4.82 (s, 2H). MS: m/z [M +H]+ calc. 464.11, obs. 464.25.

4-[(4-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}phenoxy)methyl] benzene bo-
ronic acid (73). Yield: 81%. 1H NMR: δ = 8.05 (s, 2H, OH), 7.93 (s, 1H), 7.81(d, J 8.0, 2H), 7.61 (d, J 8.9, 
2H), 7.42 (d, J 8.3, 2H), 7.41-7.16 (m, 6H), 5.21 (s, 2H), 4.82 (s, 2H). MS: m/z [M+H]+ calc. 464.11, obs. 
464.21.

2-[(4-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}phenoxy)methyl] benzene boronic 
acid (74). Yield: 48%. 1H NMR: δ = 8.10 (s, 2H, OH), 7.93 (s, 1H), 7.62-7.13 (m, 12H), 5.32 (s, 2H), 4.82 
(s, 2H). MS: m/z [M+H]+ calc. 464.11, obs. 464.12.

3-[(3-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}phenoxy)methyl] benzene bo-
ronic acid (75). Yield: 40%. 1H NMR: δ = 8.10 (bs, 2H, OH), 7.94 (s, 1H), 7.87 (s, 1H), 7.76 (d, J 7.3, 
1H), 7.51-7.16 (m, 10H), 5.16 (s, 2H), 4.82 (s, 2H). MS: m/z [M +H]+ calc. 464.11, obs. 464.13.

4-[(3-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}phenoxy)methyl] benzene bo-
ronic acid (76). Yield: 26%. 1H NMR: δ = 8.07 (s, 2H, OH), 7.93 (s, 1H), 7.81(d, J 8.0, 2H), 7.49-7.16 (m, 
10H), 5.19 (s, 2H), 4.82 (s, 2H). MS: m/z [M+H]+ calc. 464.11, obs. 464.12

2-[(3-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}phenoxy)methyl] benzene bo-
ronic acid (77). Yield: 32%. 1H NMR: δ = 8.09 (s, 2H, OH), 7.94 (s, 1H), 7.57-7.12 (m, 12H), 5.29 (s, 
2H), 4.83 (s, 2H). MS: m/z [M+H]+ calc. 464.11, obs. 464.13.
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3.13 Supporting information

ATX inhibitor screen NCI library

Screening a small molecule library of the National Cancer Institute (NCI) we identified 

xanthine and arsonate derivatives as moderate ATX inhibitors as depicted in Figure S2 using 

the bis-pNPP assay. Interestingly, aryl xanthines are known as phosphodiesterase 5 inhibitors.1 

The structure of arsonate II is related to a phenyldiazenylphenyl ATX inhibitors reported by 

Parrill et al.2 Arsonate III, also known as NSC48300, was recently reported as ATX inhibitor 

and we also found it as screening hit.3 However, in our hands quality control of different 

independent batches of arsonate III by HPLC-MS revealed that it contains mainly impurities 

while the presence of arsonate III could not be confirmed.

Supporting references

	1. 	 Arnold, R. et al. 8-Aryl xanthines potent inhibitors of phosphodiesterase 5. Bioorg. Med. Chem. 
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Supporting Figure S1. Primary hits obtained after screening 17,500 molecules from 
the NCI library using the ATX activity reporter CPF4. Bis-pNPP was used as a secondary 
assay to confirm the obtained hits from the initial screen. Significantly more inhibitors 
were identified with the CPF4 probe compared to the bis-pNPP assay. Interference with 
the CPF4 probe by small molecules likely leads to the many false positives observed. For 
this reason the bis-pNPP assay was used for further screening and the CPF4 assay for 
confirmation of screening hits.

Supporting Figure S2. Structures of the identified inhibitor classes of the NCI library screen using 
the bis-pNPP assay. Xanthine and arsonate derivatives were identified as ATX inhibitors in the bis-
pNPP assay. For each structure the percentage of ATX inhibition (PI, %) is given at an inhibitor 
concentration of 5 µM. 
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confirming the purity of inhibitor 2.
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Supporting Figure S4. Effect of the active 
boronic acids on the readout of the choline 
release assay. No effect was observed on the 
readout using 40 μM choline at a concentration 
of 30 μM inhibitor.

Supporting Figure S5. Lineweaver-Burk plots for the inhibitors of the optimization process. Kinetic 
analysis indicates competitive inhibition of ATX for 2 and 30. Boronic acids 72 and 73 seem to 
inhibit in a mixed manner. Lineweaver-Burk plots were obtained from the choline release assay.
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Supporting Figure S6. Washout experiment to study 
reversible binding the inhibitors with ATX. Incubating ATX 
with 5 µM of inhibitor 2, 30, 72 or 73 and washing out 
these solutions with ethyl acetate results in a recovery in 
ATX activity up to 97% in the choline release assay.

Supporting Table S1.  Derivatives of screening hit 2 with a structural variation in the benzylidene 
moiety (R). Percentage inhibition (PI, %) at 5 μM has been determined in the choline release 
assay (compound / PI).
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CHAPTER 4

Structure-based design of novel boronic acid-based inhibi-
tors of autotaxin 

Harald M.H.G. Albers, Loes J.D. Hendrickx, Rob J.P. van Tol, Jens Hausmann, Anastassis Perrakis 

and Huib Ovaa, Journal of Medicinal Chemistry 2011, 54, 4619-4626.

Abstract. Autotaxin (ATX) is a secreted phosphodiesterase that hydrolyzes the abundant 

phospholipid lysophosphatidylcholine (LPC) to produce lysophosphatidic acid (LPA). The 

ATX-LPA signaling axis has been implicated in inflammation, fibrosis and tumor progression, 

rendering ATX to an attractive drug target. Chapter 3 describes the development of a boronic 

acid-based inhibitor of ATX, named HA155 (1). This chapter reports the design of new 

inhibitors based on the crystal structure of ATX in complex with inhibitor 1. Furthermore, 

the syntheses and activities of these new inhibitors are described and the potency of these 

inhibitors can be explained by structural data. To understand the difference in activity between 

two different isomers with nanomolar potencies, molecular docking experiments were 

performed using the crystal structure of ATX binding to inhibitor 1. Intriguingly, molecular 

docking suggested a remarkable binding pose for one of the isomers, which differs from 

the original binding pose of inhibitor 1 for ATX, opening further options for inhibitor design. 
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4.1 Introduction

The secreted glycoprotein autotaxin (ATX) is a phosphodiesterase responsible for the 

hydrolysis of lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA) and choline, 

as depicted in Scheme 1.1,2 The bioactive lipid LPA stimulates migration, proliferation and 

survival of cells by activating specific G protein-coupled receptors.3 The ATX-LPA signaling axis 

is involved in cancer, inflammation and fibrotic disease.4-6 Potent and selective ATX inhibitors 

are needed to elucidate the contribution of ATX action to signaling cascades that may result 

in disease in case of malfunction. 

ATX, also known as ENPP2, is a unique member of the ecto-nucleotide pyrophosphatase/

phosphodiesterase (ENPP) family of proteins. It is the only family member capable of 

producing LPA by hydrolysis of LPC.7 Recently reported crystal structures of mouse8 and 

rat9 ATX confirmed that a threonine residue and two zinc ions are necessary for activity of 

ATX.10 Furthermore, these structures showed that ATX specifically binds its lipid substrates in 

a hydrophobic pocket extending from the active site of ATX. This pocket accommodates the 

alkyl chain of the lipids in different poses as was also shown in various crystal structures.8 

In Chapter 2 we described the discovery of a boronic acid-based ATX inhibitors that 

helped to reveal the short half life (~5 min) of LPA in vivo.11,12 We introduced a boronic acid 

moiety in the inhibitor structure to rationally target the threonine oxygen nucleophile of ATX 

with a hard matching Lewis acid. The crystal structure of ATX in complex with HA155 (1),9 

confirmed our hypothesis described in Chapter 3 that this inhibitor targets the threonine 

oxygen nucleophile in the ATX active site via the boronic acid moiety, while the hydrophobic 

4-fluorobenzyl moiety of inhibitor 1 targets the hydrophobic pocket responsible for lipid 

binding (Figure 1).

Here, we report a number of synthetic routes, systematically substituting the ether linker 

and the thiazolidine-2,4-dione core in 1, while keeping the boronic acid moiety untouched. 

The observed structure-activity relations could well be explained from the ATX structure in 

complex with inhibitor 1. A remarkable binding pose of a novel inhibitor, as predicted from 

molecular docking experiments, suggests additional avenues for further inhibitor design.
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Scheme 1: Autotaxin (ATX) is responsible for hydrolyzing the lipid lysophosphatidylcholine (LPC) 
into lysophosphatidic acid (LPA) and choline.
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4.2 Results and discussion

4.2.1 Design of inhibitors

The crystal structure of inhibitor 1 bound to the ATX active site (Figure 1) showed that its 

4-fluorobenzyl moiety binds into the hydrophobic lipid binding pocket of ATX (Figure 1C, 

1D).9 This pocket also accommodates the lipid tail of LPA, the hydrolysis product of LPC.8 

The thiazolidine-2,4-dione core of 1 and the conjugated aromatic ring are located between 

the hydrophobic pocket  and the catalytic site (Figure 1D). The ether linker, bridging the two 

aromatic rings in 1, and especially a methylene and arylboronic acid moiety are well accessible 

to solvent (Figure 1C). Binding of inhibitor 1 to the ATX active site is predominately driven 

by hydrophobic interactions (the interaction interface is approximately 500 Å2) and by the 

boronic acid binding to the threonine oxygen nucleophile of ATX.9 The boron-oxygen distance 

observed is ~1.6 Å, which is consistent with a covalent bond. As expected, this binding is 

reversible evidenced by the fact that ATX activity can be fully restored upon washing out the 

Threonine

Zinc(II)

C

1 (HA155)

Ether linker Thiazolidine-2,4-dione core

A B

C D

Figure 1: ATX crystal structure liganded with inhibitor 1 (PDB ID: 2XRG). (A) Surface representation 
of ATX with inhibitor 1 (magenta). (B) Binding of inhibitor 1 to the threonine oxygen nucleophile 
and two zinc ions. (C) Visualizing the ether linker of inhibitor 1 bound to ATX. (D)  Visualizing the 
degree of freedom for the thiazolidine-2,4-dione core of inhibitor 1 in the ATX binding site. Images 
were made using the program PyMol.
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inhibitor (see Chapter 3).13 In addition, one of the boronic acid hydroxyl moieties is tethered 

by the two zinc ions in the ATX active site. Thus, the boronic acid moiety targets not only the 

threonine oxygen nucleophile, but also the two zinc ions that are essential for catalytic activity 

of ATX (Figure 1B). Remarkably, there are no hydrogen bonds or salt bridges that participate in 

binding of inhibitor 1 to ATX. Inhibitor 1 is locked in a pose with reduced molecular flexibility, 

forming an ideal starting point for a structure based approach to further modifications.

Previously, we determined that the 4-fluorobenzyl moiety is preferred from over 40 

benzylic substituents tested (Chapter 3).13 For this reason, we left the 4-fluorobenzyl moiety 

untouched in this study. We investigated new design options, starting by modifying the ether 

linker in inhibitor 1. We decided to replace the ether linkage (OCH2) with various amides, an 

amine and an E-configured double bond (CONH (17), CONCH2 (18), NHCO (19), NHCH2 (36) and 

(E)-CH=CH (20); see Table 1). The thiazolidine-2,4-dione core was investigated also. The sulfur 

atom in this core was replaced with (substituted) amino and methylene moieties (NH (26), 

NCH3 (28), or CH2 (32); see Table 2). The carbon double bond conjugated to the thiazolidine-

2,4-dione carbonyl moiety forms a possible Michael acceptor. Although this Michael acceptor 

is resistant to nucleophilic additions in vitro (Supporting Figure S1) it may be a biologically 

active Michael acceptor in vivo and therefore, we investigated its removal.

4.2.2 Chemical synthesis of modified inhibitors

We first explored synthetic routes to replace the ether linkage in 1. The synthesis of target 

molecules 17-20 (Scheme 2) starts with palladium catalyzed borylation of appropriate 

aldehydes via a Suzuki-Miyaura reaction13 as depicted in Scheme 2 (for syntheses of aldehydes 

2-6 see Supporting Information). This reaction provided intermediates 7-11. Next, the pinacol 

protecting group was hydrolyzed under acidic conditions and oxidatively destroyed by NaIO4 

giving boronic acid aldehydes 12-16. In the final step, 3-(4-fluorobenzyl)thiazolidine-2,4-dione 

is reacted with the boronic acid aldehyde by Knoevenagel condensation to selectively give the 

Z-isomer of the final products (1 and 17-20).

In order to remove the potential Michael acceptor present, we reduced the double 

bond in inhibitor 1 using hydrogen and palladium on carbon (Scheme 3A), to give compound 

21. To reduce the carbonyl moiety also in the thiazolidine-2,4-dione core of 1, we used NaBH4 

resulting in hemiaminal 22. After addition of sulfuric acid to the reaction mixture to eliminate 

the hydroxyl moiety in 22, unsaturated inhibitor 23 was obtained.
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Scheme 2: Synthetic route toward linker modified inhibitors.
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For the syntheses of imidazolidine-2,4-dione-based inhibitors 26 and 28, imidazolidine-

2,4-dione (24) was mono N-alkylated with 4-fluorobenzyl bromide to give intermediate 25 

(Scheme 3B). Reaction of 25 by a Knoevenagel condensation with aldehyde 12 selectively 

resulted in the formation of the Z-isomer of 26. In parallel, intermediate 25 was methylated 

to give compound 27. Finally, 27 was condensed with aldehyde 12 resulting in target molecule 

28. Both the Z- and E-isomers were formed in a 1:4 (Z:E) ratio. To obtain and isolate solely the 

Z-isomer 28, we N-methylated compound 26.

Core-hopping from thiazolidine-2,4-dione to pyrrolidine-2,5-dione is depicted in Scheme 

3C. The route starts with the formation of a Wittig reagent starting from 2,5-pyrroledione 

(29), which is reacted with triphenylphosphine to form ylide 30.14 The Wittig reaction of the 

carbonyl stabilized ylide 30 with aldehyde 12 selectively leads to the E-isomer of intermediate 

31 as expected. Finally, compound 31 is N-alkylated with 4-fluorobenzyl bromide resulting in 

the pyrrolidine-2,5-dione product 32.

For the synthesis of a final tetrahydroisoquinoline-based core with a more rigid 

structure, the secondary amine in R- or S-tetrahydroisoquinoline 33 is reacted with 

4-fluorobenzyl isocyanate in the presence of sodium hydroxide to form a urea intermediate 

(Scheme 3D). The imidazolidine ring is then formed upon acidification with hydrochloric 

acid, resulting in compound R- or S-34. In the final step, intermediate 34 is O-alkylated with 

4-(bromomethyl)phenylboronic acid resulting in R- or S-35.

4.2.3 Structure-activity relations of inhibitors and autotaxin

Activity of the new molecules resulting from the linker and core modifications were 

determined in an LPC hydrolysis assay described previously,11,15 in which ATX-mediated release 

of choline from LPC is detected by a two-step enzymatic colorimetric reaction. The IC50 values 

observed for inhibitors with modified linkers and cores are listed in Tables 1 and 2.
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68

CHAPTER 4

When we replaced the ether 

moiety (OCH2, inhibitor 1, IC50 = 5.7 

nM) for an amide linker (CONH, 17), we 

observed a significant loss of activity (IC50 

= 147 nM). The dose-response curve of 

inhibitor 17 shows a biphasic curve16 that 

could suggest several binding sites of 

this inhibitor for ATX (Supporting Figure 

S2). Expanding the CONH linker (17) 

to a more flexible CONHCH2 linker (18) 

improved the IC50 value (71 nM) by two-

fold compared to inhibitor 17. Reversing 

the amide linker in 17 to yield compound 

19, results in high potency (IC50 = 10 

nM), similar to inhibitor 1. However, 

inhibitor 19 is not able to achieve full 

inhibition and 10% residual ATX activity 

is observed (Supporting Figure S3). 

Apparently, a more rigid amide linker 

results in suboptimal binding of the 

inhibitor. Therefore, we synthesized the 

more flexible amine analogue 36 (for the 

synthesis of inhibitor 36 see Supporting 

Information). This resulted indeed in a 

potent inhibitor (IC50 = 8.3 nM), similar 

to 1, and with no residual ATX activity 

(Supporting Figure S3). Introduction 

of an (E)-CH=CH linker resulted in 

compound 20, which was inactive in the nanomolar range (IC50 > 5 µM). This observation 

can be explained by the fact that the two aromatic rings linked with a flexible OCH2 linker in 

inhibitor 1 are positioned in an angle of roughly 90° in the ATX structure (see Figure 1B) which 

cannot be achieved by the (E)-CH=CH linker due to its rigid planar conformation.

Next, we explored the activity of compounds with a modified core (Table 2) in 

combination with the OCH2 linker, which had the highest activity of the linker modified 

molecules in Table 1. Reducing the carbon double bond in 1 resulted in little loss of activity 

in 21 with an IC50 value of 25 nM. Thus, although rigidity is preferred, the Michael acceptor 

can easily be removed without significant loss in activity. Reducing both the carbon double 

bond and the neighboring carbonyl in inhibitor 1 to hemiaminal 22, led to a significant 

loss in potency (IC50 = 1.6 μM). Inhibitor 23, where the hydroxyl moiety in compound 22 is 
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Entry Structure IC50 (nM) a 

1 

 

5.7 ± 0.4 

17 

 

147 ± 47 b 

18 

 

71 ± 17 

19 

 

10 ± 1 

36 

 

8.3 ± 0.9 

20 

 

> 5,000 

R1 = R2 = 

Table 1. IC50 values of the inhibitors resulting from 
the linker modification.

a IC50 values have been determined in the choline release 
assay using 40 μM LPC and 10 nM ATX. b The dose-
response curve of inhibitor 17 shows biphasic curve (see 
Supporting Figure S2).
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removed is not very potent either (IC50 

= 683 nM), indicates that the carbonyl 

moiety is important for binding. It 

appears from the crystal structure 

of inhibitor 1 bound to ATX that 

π-stacking between the phenyl ring of 

phenylalanine residue 274 (F274) and 

the carbonyl moiety in 1 is very likely 

seen their distance (4.1 Å, Supporting 

Figure S4).17 By removing the carbonyl 

moiety in 1 or by changing it into a 

hydroxyl moiety, π-stacking will be 

lost resulting in lower potencies as 

observed for inhibitor 22 and 23.

The sulfur heteroatom in the 

thiazolidine-2,4-dione core was 

replaced with other atoms and 

moieties. We started by replacing the 

sulfur atom in 1 with a methylene 

moiety gives compound 32 with an 

IC50 value of 7.3 nM, comparable to 

inhibitor 1. Replacement of the sulfur 

atom for an amino group (26, IC50 = 

26 nM) resulted in little loss in activity 

compared to inhibitor 1. When the 

amine in compound 26 is methylated, 

potency for the resulting inhibitor Z-28 

(IC50 = 6.7 nM) is slightly increased. 

Interestingly, the E-isomer of 28 (IC50 

= 5.3 nM) is marginally more potent 

than Z-28 or inhibitor 1, a finding that 

we did not anticipate. 

Intrigued by the characteristics 

of inhibitors Z-28 and E-28, we decided 

to calculate likely binding poses using 

molecular docking. In molecular 

docking the binding of the inhibitor to 

the protein is predicted by optimizing 

the inhibitor’s conformation such that the free energy of the overall system is minimized. 
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1 

 

5.7 ± 0.4 

21 

 

25 ± 2 
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683 ± 88 
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26 ± 4 
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5.3 ± 0.5 b 
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Table 2. IC50 values of the inhibitors resulting from the 
core modification.

a IC50 values have been determined in the choline release 
assay using 40 μM LPC and 10 nM ATX. b E-28 contains 20% 
of the Z-isomer.
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A          ATX-inhibitor 1 crystal structure B             Inhibitor 1 docked into ATX

D   Docking poses for E-isomer of inhibitor 28C   Docking poses for Z-isomer of inhibitor 28

3rd pose

2nd pose

1st pose

3rd pose

2nd pose

1st pose

Figure 2: (A) Focus from inside the protein on the thiazolidine-2,4-dione core of inhibitor 1 
bound to ATX. (B) Inhibitor 1 docked into the active site of ATX to validate our docking approach. 
(C) The three best docking poses for the Z-isomer of 28. (D) The three best docking poses for the 
E-isomer of 28. Docking poses were generated using the docking program Glide.
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For this purpose, we used the Glide docking software because it can dock boron-containing 

inhibitors.18-20 Many docking programs, like AutoDock, can not dock boron-containing 

inhibitors because the boron atom is not defined in the software. To validate our docking 

approach where we constrain the boronic acid moiety, we first docked inhibitor 1 back into 

the ATX active site, resulting in a pose (Figure 2B) very similar to the original crystal structure 

(Figure 2A) with a root-mean-square deviation (RMSD) of 1.1 Å (for superimposed image 

see Supporting Figure S5). Next, we docked the Z- and E-isomers of inhibitor 28 (the three 

best docking poses are depicted in Figure 2C and D). The docking poses of Z-28 are similar to 

the original pose of inhibitor 1 in the ATX structure. However, two of the best three docking 

poses for E-28 suggest that the 4-fluorobenzyl moiety likely binds to a different area in the 

hydrophobic pocket (Figure 2D). The imidazolidine-2,4-dione core of E-28 is flipped around 

the double bond axis in the ATX binding site compared to its Z-isomer (compare Figure 2C 

with D). This observation is in agreement with the conformations of both isomers. In addition, 

the binding poses of Z-28 and E-28 resulting from our docking study suggest that the current 

4-fluorobenzyl moiety could be expanded from the methylene moiety in the 4-fluorobenzyl 

moiety with other substituents in future ATX inhibitors.

Finally, we evaluated inhibitors in which we introduced a rigidified three-ring system 

(Table 2) incorporating a tetrahydroisoquinoline motif that we deemed likely to bind. This 

modification avoids the presence of a Michael acceptor, while introducing rigidity and a 

new core structure. This modification resulted in the chiral inhibitor 35, which is still very 

potent although some activity is lost compared to 1. No significant difference is observed in 

potency between the S- and R-enantiomers of inhibitor 35, with IC50 values of 55 and 59 nM, 

respectively.

In summary, we explored structure-activity relations building on boronic acid-based ATX 

inhibitor 1, which resulted in a number of potent inhibitors. We used the crystal structure 

of ATX liganded with inhibitor 1 to explain the structure-activity relationships observed for a 

rational inhibitor modification approach. Our results suggest that this approach allows rapid 

structure guided modification. Finally, molecular docking efforts proved useful to explain 

unexpected high potency of E-isomer 28 and suggested that the lipophilic pocket near the 

ATX active site may be better exploited in the future for the design of new inhibitors. 
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4.3 Experimental section

General. The S- and R-enantiomers of building block 33 were purchased from CSPS Pharmaceuticals, 
San Diego, USA. All other chemicals were obtained from Sigma-Aldrich and used without further 
purification unless otherwise noted. Analytical thin layer chromatography was performed on 
aluminum sheets precoated with silica gel 60 F254. Column chromatography was carried out on silica 
gel (0.035-0.070, 90 Å, Acros).

For isolation by centrifugation a Heraeus Multifuge 3 S-R centrifuge was used. Products were spun 
at 4400g at 298 K for 5 min. Nuclear magnetic resonance spectra (1H and 13C NMR) were determined 
in deuterated dimethyl sulfoxide (d6-DMSO) using a Bruker Avance 300 (1H: 300 MHz; 13C: 75 MHz) 
at 298 K, unless indicated otherwise. Peak shapes are indicated with the symbols ‘d’ (doublet), ‘dd’ 
(double doublet), ‘s’ (singlet), ‘bs’ (broad singlet) and ‘m’ (multiplet). Chemical shifts (δ) are given in 
ppm and coupling constants J in Hz. Dimethyl sulfoxide (δH = 2.50 ppm; δC = 39.51 ppm) was used as 
internal reference.

The purity of all tested compounds was determined by high-performance liquid chromatography 
coupled to mass spectrometry (HPLC-MS) and was greater than 95%. HPLC-MS measurements were 
performed on a system equipped with a Waters 2795 Seperation Module (Alliance HT), Waters 2996 
Photodiode Array Detector (190-750 nm), Atlantis® T3 C18 column (2.1 mm x 100 mm, 3 μm) and an 
LCTTM Orthogonal Acceleration Time of Flight Mass Spectrometer. Samples were run at a flowrate of 
0.40 mL min-1 at 313 K, using gradient elution (water/acetonitrile/formic acid) from 950/50/1 (v/v/v) 
to 50/950/1 (v/v/v).  

The preparative HPLC system was equipped with a Waters 1525 Binary HPLC Pump, a Waters 2487 
Dual λ Absorbance Detector and an Atlantis® C18 column (19 mm × 250 mm, 10 µm). Samples were 
run at a flowrate of 18 mL min-1 using gradient elution (water/acetonitrile) from 6/4 (v/v) to 1/9 (v/v).

General procedure for borylation of aldehydes and pinacol deprotection (12-16).
In a dry flask, bis(pinacolato)diboron (1.34 g, 5.28 mmol), the appropriate aldehyde (1.80 mmol) and 
potassium acetate (0.542 g, 5.52 mmol) were added to a solution of Pd(dppf)Cl2 (46.6 mg, 0.0637 
mmol) in dimethylformamide (15 mL). The reaction mixture was stirred under an atmosphere of 
argon for 18 h at 353 K. The reaction mixture was filtered over Hyflo Super Cel® medium and diluted 
with ethyl acetate (100 mL). The solution was washed with brine (50 mL and 25 mL), dried over 
magnesium sulfate and was concentrated. 

The crude product was dissolved in tetrahydrofuran (11 mL) and sodium periodate (2.22 g, 
10.4 mmol) and water (2.8 mL) were added. After stirring for 30 min, 1 M hydrochloric acid (1.1 
mL) was added, and after 2 h, additional sodium periodate (1.17 g, 5.47 mmol) was added and the 
solution was stirred for another 2 h. The reaction mixture was diluted with ethyl acetate (20 mL) and 
washed with water (10 mL). The water layer was extracted with ethyl acetate (15 mL). The combined 
organic layers were washed with brine (15 mL), dried over magnesium sulfate and the solution was 
concentrated under vacuum resulting in a light yellow solid. The resulting product was used without 
further purification. 

(4-((4-formylphenoxy)methyl)phenyl)boronic acid (12). Yield: 70%. 1H NMR: δ = 9.86 (s, 1H), 8.09 (s, 
1H), 7.87 (d, J = 8.8, 1H), 7.82 (d, J = 8.1, 1H), 7.42 (d, J = 8.1, 1H), 7.20 (d, J = 8.7, 1H), 5.24 (s, 1H). 
13C NMR: δ = 191.75, 163.73, 138.49, 134.74, 132.26, 130.22, 127.15, 115.76, 70.09, 39.95 (C-B(OH)2 
not visible). MS: m/z [M+H]+ calc. 257.10, obs. 257.10.

(4-(4-formylbenzamido)phenyl)boronic acid  (13). Yield: 81%. 1H NMR: δ = 10.47 (s, 1H), 10.12 (s, 
1H), 8.13 (d, J = 8.3, 2H), 8.06 (d, J = 8.5, 2H), 7.95 (s, 2H), 7.80 (d, J = 8.7, 2H), 7.75 (d, J = 8.7, 2H). 
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13C NMR: δ = 192.86, 164.74, 140.64, 139.93, 137.94, 134.70, 129.37, 128.38, 119.08 (C-B(OH)2 not 
visible). MS: m/z [M+H]+ calc. 270.09, obs. 270.11.

(4-((4-formylbenzamido)methyl)phenyl)boronic acid  (14). Yield: 72%. 1H NMR: δ = 10.09 (s, 1H), 
9.25 (t, J = 5.9, 1H), 8.08 (d, J = 8.3, 2H), 8.01 (d, J = 8.5, 2H), 7.75 (d, J = 8.1, 2H), 7.29 (d, J = 8.1, 2H), 
4.51 (d, J = 5.9, 2H). 13C NMR: δ = 192.85, 165.39, 141.10, 139.33, 137.74, 134.14, 129.39, 127.96, 
126.21, 42.78 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 284.11, obs. 284.11.

(4-((4-formylphenyl)carbamoyl)phenyl)boronic acid (15). Yield: 72%. 1H NMR: δ = 10.62 (s, 1H), 9.92 
(s, 1H), 8.26 (bs, 2H), 8.05-7.90 (m, 8H). 13C NMR: δ = 191.61, 166.22, 144.79, 135.65, 134.00, 131.57, 
130.59, 126.66, 119.82 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 270.09, obs. 270.11.

(E)-(4-(4-formylstyryl)phenyl)boronic acid (16). Yield: 75%. 1H NMR: δ = 9.99 (s, 1H), 8.06 (s, 2H), 7.97 
– 7.57 (m, 8H), 7.45 (dd, J = 16, 1H). 13C NMR: δ = 192.34, 143.05, 137.94, 135.08, 134.53, 131.97, 
129.98, 127.72, 127.02, 125.91 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 253.10, obs. 253.13.

General method for Knoevenagel condensation (1, 17-20, 26 and E-28).
To a solution of 3-(4-fluorobenzyl)thiazolidine-2,4-dione (0.293 mmol) in ethanol (2.5 mL), piperidine 
(20 µL, 0.207 mmol) and the appropriate aldehyde (0.352 mmol) were added and the solution was 
refluxed for 22 h. 

(Z)-4-[(4-{[3-(4-fluorobenzyl)-2,4-dioxo-1,3-thiazolan-5-yliden]methyl}phenoxy) methyl]benzene boronic 
acid (1). Upon cooling the reaction mixture to room temperature the product precipitated out of 
solution. Dissolving the product in dimethyl sulfoxide and precipitating it with 0.5 M hydrochloric 
acid resulted in pure compound. Yield: 81%. 1H NMR: δ = 8.03 (s, 2H), 7.92 (s, 1H), 7.80 (d, J = 8.1, 
2H), 7.60 (d, J = 8.9, 2H), 7.41 (d, J = 8.0, 2H), 7.39 – 7.31 (m, J = 5.5, 8.8, 2H), 7.26 – 7.09 (m, J = 4.5, 
8.9, 4H), 5.21 (s, 2H), 4.82 (s, 2H). 13C NMR: δ = 167.38, 165.59, 161.66 (d, 1JCF = 244), 160.33, 138.19, 
134.28, 133.48, 132.33, 131.81 (d, 4JCF = 3), 129.95 (d, 3JCF = 8), 126.67, 125.55, 117.89, 115.81, 
115.47 (d, 2JCF = 21), 69.52, 43.90 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 464.11, obs. 464.19.

(Z)-(4-(4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)benzamido) phenyl)boronic acid (17). 
Upon cooling the reaction mixture to room temperature the product precipitated out of solution. 
Crude compound was recrystallized from a dichloromethane/methanol mixture (4:1). Yield: 60%. 1H 
NMR: δ = 10.39 (s, 1H), 8.10-8.04 (m, 3H), 7.94 (s, 2H), 7.80-7.76 (m, 6H), 7.40-7.37 (m, 2H), 7.22-
7.16 (m, 2H), 4.84 (s, 2H). 13C NMR: δ = 167.12, 165.34, 164.66, 161.66 (d, 1JCF = 244), 140.57, 136.23, 
135.68, 134.69, 132.23, 131.60 (d, 4JCF = 3), 129.95 (d, 3JCF = 8), 129.94, 128.53, 123.04, 119.01, 
115.42 (d, 2JCF = 21), 44.04 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 477.11, obs. 477.08.

(Z)-(4-((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)benzamido) methyl)phenyl) boronic 
acid (18). Title compound was purified using preparative HPLC. Yield: 5%. 1H NMR: δ = 9.17 (t, J 6.0, 
1H), 8.04-8.00 (m, 3H), 7.97 (s, 2H), 7.74-7.70 (m, 4H), 7.41-7.16 (m, 6H), 4.83 (s, 2H), 4.50 (d, J 5.8, 
2H). 13C NMR: δ = 167.15, 165.35, 165.32, 161.66 (d, 1JCF = 244), 141.21, 135.64, 135.41, 134.13, 
132.30, 131.58 (d, 4JCF = 3), 129.94 (d, 3JCF = 8), 129.89, 128.11, 126.17, 122.82, 115.42 (d, 2JCF = 21), 
44.02, 42.72 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 491.12, obs. 491.17.

(Z)-(4-((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)phenyl)carbamoyl)phenyl) 
boronic acid (19). Title compound was purified using preparative HPLC. Yield: 21%. 1H NMR: δ =10.56 
(s, 1H), 8.25 (s, 2H), 8.00 (d, J 8.8, 2H), 7.93 (m, 5H), 7.66 (d, J = 8.8, 2H), 7.40-7.35 (m, 2H), 7.22-7.16 
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(m, 2H), 4.83 (s, 2H). 13C NMR: δ = 167.38, 166.05, 165.58, 161.64 (d, 1JCF = 244), 141.53, 135.73, 
134.00, 132.20, 131.76 (d, 4JCF = 3), 131.20, 129.92 (d, 3JCF = 8), 127.84, 126.61, 120.39, 118.97), 
115.44 (d, 2JCF = 21), 43.89 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 477.11, obs. 477.18.

(4-((E)-4-((Z)-(3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)styryl)phenyl)boronic 
acid (20). Upon cooling the reaction mixture to room temperature the product precipitated out of 
solution. Dissolving the product in dimethyl sulfoxide and precipitating it with 0.5 M hydrochloric acid 
resulted in pure compound. Yield: 47%. 1H NMR: δ = δ 8.04 (s, 2H), 7.96 (s, 1H), 7.88 – 7.52 (m, 8H), 
7.49 – 7.12 (m, 6H), 4.83 (s, 2H). 13C NMR: δ = 167.20, 165.48, 161.64 (d, 1JCF = 244), 139.43, 138.09, 
134.52, 133.01, 131.94, 131.69 (d, 4JCF = 3), 130.93, 130.71, 129.91 (d, 3JCF = 8), 127.78, 127.29, 125.77, 
120.38, 115.42 (d, 2JCF = 21), 43.94 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 460.10, obs. 460.06.

(Z)-(4-((4-((1-(4-fluorobenzyl)-2,5-dioxoimidazolidin-4-ylidene)methyl)phenoxy)methyl)phenyl) 
boronic acid (26). Final product was isolated by using preparative HPLC. Z-configuration confirmed 
by the chemical shift of the vinyl and amine proton reported in literature.21 Yield: 15%. 1H NMR: δ = 
10.68 (s, 1H), 8.06 (s, 2H), 7.80 (d, J = 8.1, 2H), 7.62 (d, J = 8.9, 2H), 7.41 (d, J = 8.1, 2H), 7.39 – 7.28 
(m, 2H), 7.24 – 7.10 (m, 2H), 7.04 (d, J = 8.9, 2H), 6.54 (s, 1H), 5.17 (s, 2H), 4.65 (s, 2H). 13C NMR: δ 
= 164.02, 161.49 (d, 1JCF = 244), 158.72, 154.89, 138.54, 134.22, 132.83 (d, 4JCF = 3), 131.30, 129.63 
(d, 3JCF = 8), 126.55, 125.43, 115.35 (d, 2JCF = 21), 110.30, 69.28, 40.60 (C-B(OH)2 not visible). MS: m/z 
[M+H]+ calc. 447.15, obs. 447.25.

(E)-(4-((4-((1-(4-fluorobenzyl)-3-methyl-2,5-dioxoimidazolidin-4-ylidene)methyl)phenoxy)methyl) 
phenyl)boronic acid (E-28). Title compound was purified using preparative HPLC. E-28 contains 20% 
of the Z-isomers which could not be separated. E-configuration confirmed by the chemical shift of 
the vinyl and methyl proton reported in literature.22 Yield: 28%. 1H NMR: δ = 8.04 (s, 2H), 8.01 (d, 
J = 9.0, 2H), 7.80 (d, J = 8.0, 2H), 7.41 (d, J = 7.9, 2H), 7.38 – 7.32 (m, 2H), 7.23 – 6.98 (m, 4H), 6.52 
(s, 1H), 5.16 (s, 2H), 4.65 (s, 2H), 3.15 (s, 3H), . 13C NMR: δ = 161.49 (d, 1JCF = 244), 161.18, 158.80, 
152.62, 138.54, 134.20, 132.74 (d, 4JCF = 3), 132.08, 129.83 (d, 3JCF = 8), 127.23, 126.59, 125.57, 
117.51, 115.31 (d, 2JCF = 21), 114.41, 69.23, 40.78, 26.36 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 
461.17, obs. 461.19.

(4-((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-yl)methyl)phenoxy)methyl) phenyl)boronic acid (21). 
A mixture of compound 1 (50.1 mg, 0.108 mmol) and 10 wt% Pd/C (24.0 mg) in degassed methanol 
(3 mL) was stirred under a hydrogen atmosphere for 2 h. Extra 10 wt% Pd/C was added (12.0 mg) 
and the reaction was allowed to continue for one night. The mixture was filtrated and concentrated 
to dryness.  Preparative HPLC afforded the title compound. Yield: 18.3 mg, 77%. 1H NMR: δ = 8.03 
(s, 2H), 7.80 (d, J = 8.1, 2H), 7.39 (d, J = 8.1, 2H), 7.28 – 6.99 (m, 6H), 6.88 (d, J = 8.7, 2H), 5.06 (s, 
2H), 5.00 (dd, J = 4.4, 8.0, 1H), 4.60 (dd, J = 15.0, 21.5, 2H), 3.14 (dd, J = 8.0, 14.2, 1H). 13C NMR: δ 
= 173.71, 171.00, 161.50 (d, 1JCF = 244), 157.44, 138.74, 134.16, 131.58 (d, 4JCF = 3), 130.56, 129.66 
(d, 3JCF = 8), 127.98, 126.52, 115.21 (d, 2JCF = 21), 114.57, 69.12, 50.94, 43.56, 35.79 (C-B(OH)2 not 
visible). MS: m/z [M+H]+ calc. 466.13, obs. 466.25, [M-H2O+H]+ calc. 448.12, obs. 448.23.

(4-((4-((3-(4-fluorobenzyl)-4-hydroxy-2-oxothiazolidin-5-yl)methyl)phenoxy) methyl)phenyl)boronic 
acid (22). To a solution of compound 1 (50.0 mg, 0.108 mmol) in dimethyl sulfoxide (0.5 mL), sodium 
borohydride (16.3 mg, 0.430 mmol) was slowly added. After 9 h of stirring the reaction mixture was 
diluted with ethyl acetate (4 mL) and was washed with water (2x2 mL). The organic layer was dried 
over calcium chloride and concentrated in vacuo, resulting in the title compound. Yield: 30.2 mg, 
60%. 1H NMR: δ = 8.06 (s, 2H), 7.80 (d, J = 8.1, 2H), 7.39 (d, J = 8.0, 2H), 7.36 – 7.11 (m, 5H), 6.94 (d, 
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J = 8.7, 2H), 6.87 (d, J = 8.7, 2H), 6.71 (d, J = 6.2, 1H), 5.06 (s, 2H), 4.72 (dd, J = 7.7, 15.1, 1H), 4.10 
(d, J = 15.1, 1H), 3.67 (t, J = 7.9, 1H), 3.35 (s, 1H), 2.81 (dd, J = 7.3, 13.9, 1H), 2.70 (dd, J = 8.4, 13.9, 
1H). 13C NMR: δ = 169.70, 161.55 (d, 1JCF = 244), 157.13, 138.85, 134.15, 133.14 (d, 4JCF = 3.0), 130.01, 
130.00 (d, 3JCF = 8), 129.73, 126.54, 115.38 (d, 2JCF = 21), 114.64, 84.02, 69.11, 51.42, 44.02, 39.65. 
(C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 468.15, obs. 468.23.

(4-((4-((3-(4-fluorobenzyl)-2-oxo-2,3-dihydrothiazol-5-yl)methyl)phenoxy) methyl)phenyl)boronic acid 
(23). To a solution of compound 1 (45.7 mg, 0.0989 mmol) in dimethyl sulfoxide (0.75 mL), sodium 
borohydride (29.1 mg, 0.769 mmol) was slowly added. After 7 h of stirring the reaction mixture, 
concentrated sulfuric acid (2x50 μl) was added over a 15 min interval. The reaction mixture was 
stirred for an additional 5 h. Ethyl acetate (25 mL) was added and the mixture was washed with water 
(4x10 mL). The organic layer was dried over calcium chloride and concentrated in vacuo, affording 
pure compound 23. Yield: 31.8 mg, 72%. 1H NMR: δ =8.05 (s, 2H), 7.79 (d, J = 8.1, 2H), 7.38 (d, J = 
8.1, 2H), 7.36 – 7.16 (m, 4H), 7.13 (d, J = 8.7, 2H), 6.95 (d, J = 8.7, 2H), 6.87 (s, 1H), 5.07 (s, 2H), 4.80 
(s, 2H), 3.73 (s, 2H). 13C NMR: δ = 170.43, 161.61 (d, 1JCF = 244), 157.13, 138.85, 134.17, 133.10 (d, 4JCF 
= 3), 130.63, 130.63, 129.76 (d, 3JCF = 8), 129.42, 126.48, 121.56, 117.78, 115.50 (d, 2JCF = 21), 114.86, 
69.16, 46.78, 32.91 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 450.13, obs. 450.22.

3-(4-fluorobenzyl)imidazolidine-2,4-dione (25).  To a cooled solution (273 K) of hydantoin (8.01 
g, 80.1 mmol) in dimethylformamide (140 mL) sodium hydride (60% in oil, 1.80 g, 45.0 mmol) was 
added. A solution of 1-(bromomethyl)-4-fluorobenzene (5.0 mL, 41 mmol) in dimethylformamide (5 
mL) was added to the reaction mixture. The mixture was allowed to warm up to room temperature 
and was stirred for 6 h. Then the mixture was poured into water (200 mL) and hexane (200 mL) was 
added. After a night at 277 K the precipitate was filtered and dried to give a white solid. Yield: 4.7 g, 
56%. 1H NMR: δ = 8.14 (s, 1H), 7.45 – 7.21 (m, 1H), 7.26 – 7.09 (m, 1H), 4.51 (s, 2H), 3.97 (s, 2H). 13C 
NMR: δ = 171.91, 161.45 (d, 1JCF = 244), 157.29, 133.04 (d, 4JCF = 3), 129.66 (d, 3JCF = 8), 115.21 (d, 2JCF 
= 21), 46.00, 40.29. MS: m/z [M+H]+ calc. 209.07, obs. 208.93.

3-(4-fluorobenzyl)-1-methylimidazolidine-2,4-dione (27).  To a cooled solution (273 K) of 3-(4-
fluorobenzyl)imidazolidine-2,4-dione (98.1 mg, 0.471 mmol) in dimethylformamide (0.5 mL), sodium 
hydride (60% in oil, 21.1 mg, 0.530 mmol) was added. Subsequently, iodomethane (33 µl, 0.53 mmol) 
was added to the reaction mixture. The mixture was allowed to warm up to room temperature and 
was stirred for 3 h. Then the mixture was poured into ice water (2.5 mL) and hexane (2.5 mL) was 
added. After a night at 277 K the precipitate was filtered and dried to give a white solid. Yield: 75 
mg, 72%. 1H NMR: δ = 7.34-7.12 (m, 4H), 4.52 (s, 2H), 4.01 (s, 2H), 2.86 (s, 3H). 13C NMR: δ = 170.20, 
161.46 (d, 1JCF = 244), 156.24, 132.92 (d, 4JCF = 3), 129.68 (d, 3JCF  = 8) , 115.21 (d, 2JCF = 21), 51.36, 
40.74, 29.21. MS: m/z [M+H]+ calc. 223.09, obs. 223.06.

(Z)-(4-((4-((1-(4-fluorobenzyl)-3-methyl-2,5-dioxoimidazolidin-4-ylidene)methyl) phenoxy)methyl)phenyl)
boronic acid (Z-28). To a cooled solution (273 K) of hydantoin 26 (10.1 mg, 0.0224 mmol) and sodium 
hydride (60% in oil, 1.46 mg, 0.0365 mmol) in DMF (0.15 ml), iodomethane (2.25 µl, 0.0361 mmol) 
was added. The mixture was allowed to warm up to room temperature and was stirred for 4 h. Final 
product was isolated by using preparative HPLC. Z-configuration confirmed by the chemical shift of 
the vinyl and methyl proton reported in literature.22 Yield: 6.97 mg, 68%. 1H NMR: δ = 8.11 (s, 1H), 
7.80 (d, J = 8.1, 2H), 7.50 – 7.30 (m, 6H), 7.26 – 7.10 (m, 2H), 7.05 (d, J = 8.8, 2H), 6.76 (s, 1H), 5.14 
(s, 2H), 4.67 (s, 2H), 2.92 (s, 3H). 13C NMR: δ = 163.01, 159.92, 156.78 (d, 1JCF = 249), 138.52, 134.19, 
132.55 (d, 4JCF = 3), 131.28, 129.75 (d, 3JCF = 8), 128.50, 126.58, 124.66, 115.31 (d, 2JCF = 21), 114.55, 
111.56, 69.30, 41.12, 30.35 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc. 461.17, obs. 461.12.
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(E)-(4-((4-((2,5-dioxopyrrolidin-3-ylidene)methyl)phenoxy)methyl)phenyl) boronic acid (31). To a 
heated (343 K) solution of compound 30 (159 mg, 0.442 mmol)14 in methanol (5 mL) aldehyde 12 
(106 mg, 0.414 mmol) was added. After 1 h of heating the reaction mixture was cooled using an ice 
bath resulting in precipitation of the title compound. The precipitate was filtered and washed with 
ice-cold methanol resulting in compound 31. Yield: 88 mg, 63%. 1H NMR: δ = 11.34 (s, 1H), 8.04 
(s, 2H), 7.80 (d, J = 8.0, 2H), 7.57 (d, J = 8.9, 2H), 7.41 (d, J = 8.0, 2H), 7.33 (t, 4J = 2.1, 1H), 7.10 (d, J 
= 8.8, 2H), 5.19 (s, 2H), 3.60 (d, 4J = 2.2, 2H). 13C NMR: δ = 175.80, 172.09, 159.47, 138.42, 134.22, 
132.00, 131.31, 126.96, 126.54, 124.16, 115.31, 69.31, 34.71 (C-B(OH)2 not visible). MS: m/z [M+H]+ 
calc. 338.12, obs. 338.11.

(E)-(4-((4-((1-(4-fluorobenzyl)-2,5-dioxopyrrolidin-3-ylidene)methyl)phenoxy) methyl)phenyl) boronic acid 
(32). To a solution of compound 31 (30 mg, 0.0890 mmol) in dimethylformamide (0.3 mL) sodium 
hydride (60% in oil, 3.65 mg, 0.0913 mmol) was added. After addition of 4-fluorobenzyl bromide 
(24 µl, 0.19 mmol), the reaction mixture was stirred for 4 h. In addition, potassium carbonate (2.04 
mg, 0.0148 mmol) was added and the reaction mixture was stirred overnight. Then the mixture was 
poured into ice water (0.9 mL) and hexane (0.3 mL) was added. After a night at 277 K the precipitate 
was filtered, dried and purified using preparative HPLC to give a white solid. E-configuration 
confirmed by the chemical shift of the vinyl proton reported in literature.14 Yield: 13 mg, 32%. 1H 
NMR: δ = 8.04 (s, 2H), 7.80 (d, J = 8.1, 2H), 7.61 (d, J = 8.9, 2H), 7.45 (t, 4J = 2.1, 1H ), 7.41 (d, J = 8.0, 
2H), 7.38 – 7.29 (m, 2H), 7.23 – 7.04 (m, 4H), 5.19 (s, 2H), 4.66 (s, 2H), 3.74 (d, 4J = 2.1, 2H). 13C NMR: 
δ = 174.19, 170.59, 161.44 (d, 1JCF  = 244), 159.65, 138.39, 134.22, 132.59 (d, 4JCF = 3), 132.31, 132.17, 
129.73 (d, 3JCF = 8), 126.85, 126.54, 122.27, 115.36, 115.22 (d, 2JCF = 21), 69.33, 40.71, 33.74 (C-B(OH)2 
not visible). MS: m/z [M+H]+ calc. 446.16, obs. 446.12.

(S)-2-(4-fluorobenzyl)-7-hydroxy-10,10a-dihydroimidazo[1,5-b]isoquinoline-1,3(2H,5H)-dione 
(S-34). Compound S-33 (100 mg, 0.518 mmol) was dissolved in a mixture of dioxane and water 
(3:1, 4 mL) and 30 wt% of sodium hydroxide solution was used to adjust the pH to 14. The reaction 
mixture was heated to 313 K and 4-fluorobenzyl isocyanate (100 μL, 0.785 mmol) was added. After 2 
h of stirring, the mixture was cooled to room temperature and the resulting solid was removed using 
centrifugation. From the resulting solution was dioxane evaporated and concentrated hydrochloric 
acid was used to adjust the pH to 1. After refluxing the reaction mixture for 2 h 30 it was cooled to 
278 K affording a white precipitate. Washing the precipitate with ice-cold water (3x1 mL) afforded 
pure compound S-34. Yield: 30 mg, 18%. 1H NMR: δ = 9.37 (s, 1H), 7.35 – 7.30 (m, 2H), 7.18 – 7.12 
(m, 2H), 7.06 – 7.03 (m, 1H), 6.65 – 6.63 (m, 2H), 4.77 (d, J = 16.8, 1H), 4.58 (s, 2H), 4.32 – 4.27 (m, 
2H), 3.05 (m, 1H), 2.82 – 2.64 (m, 1H). 13C NMR: δ = 172.76, 161.44 (d, 1JCF = 244), 156.07, 154.60, 
132.82 (d, 4JCF = 3), 132.35, 130.13, 129.51 (d, 3JCF = 8), 121.45, 115.26 (d, 2JCF = 21), 114.30, 112.67, 
54.54, 41.23, 40.56, 29.02. MS: m/z [M+H]+ calc.  327.11, obs. 327.09.

(R)-2-(4-fluorobenzyl)-7-hydroxy-10,10a-dihydroimidazo[1,5-b]isoquinoline-1,3(2H,5H)-dione 
(R-34). For reaction details see compound S-34. Yield: 29%.

(S)-(4-(((2-(4-fluorobenzyl)-1,3-dioxo-1,2,3,5,10,10a-hexahydroimidazo[1,5-b]isoquinolin-7-yl)oxy)
methyl)phenyl)boronic acid (S-35). To a heated solution (323 K) of compound S-34 (15.3 mg, 0.0469 
mmol) in acetone (0.3 mL), potassium carbonate (10.2 mg, 0.0738 mmol) and 4-(bromomethyl)
phenylboronic acid (12.4 mg, 0.0577 mmol) were added. After 4 h of stirring and heating, additional 
potassium carbonate (10.1 mg, 0.0730 mmol) was added and the suspension was stirred overnight. 
Finally, the reaction mixture was diluted with ethyl acetate and the organic layer was washed with 
1 M hydrochloric acid (2x0.5 mL) and brine (0.5 mL), dried over sodium sulfate and concentrated 
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in vacuo. The resulting solid was further purified using preparative HPLC affording pure compound 
S-35. Yield: 11 mg, 52%. 1H NMR: δ = 8.06 (s, 2H), 7.78 (d, J = 8.1, 2H), 7.50 – 7.27 (m, 4H), 7.27 – 
7.05 (m, 3H), 7.02 – 6.76 (m, 2H), 5.09 (s, 2H), 4.82 (d, J = 17.0, 1H), 4.58 (s, 2H), 4.42 – 4.20 (m, 2H), 
3.19 – 3.02 (m, 1H), 2.80 – 2.71 (m, 1H). 13C NMR: δ = 172.72, 161.46 (d, 1JCF = 244), 157.09, 154.60, 
138.74, 134.17, 132.81 (d, 4JCF = 3), 132.60, 130.23, 129.55 (d, 3JCF = 8), 126.49, 123.60, 115.28 (d, 2JCF 
= 21), 113.87, 112.47, 69.20, 54.40, 41.30, 40.60, 29.00 (C-B(OH)2 not visible). MS: m/z [M+H]+ calc.  
461.17, obs. 461.14.

(R)-(4-(((2-(4-fluorobenzyl)-1,3-dioxo-1,2,3,5,10,10a-hexahydroimidazo[1,5-b]isoquinolin-7-yl)oxy)
methyl)phenyl)boronic acid (R-35). For reaction details see compound S-35. Yield: 56%.
 
Spectral data on compounds. Spectral data (HPLC-MS, 1H and 13C NMR profiles) of all intermediates 
and target molecules is available free of charge via the Internet at http://pubs.acs.org.

Choline release assay.11 See Experimental section Chapter 3.

Docking Experiments, Protein and Ligand Preparation. The X-ray structure of ATX in complex with 
inhibitor 1 (PDB ID: 2XRG) was used for the docking studies. The protein structure was prepared 
using the Schrödinger Suite 2010 Protein Preparation Wizard (with Epik 2.1,23 Impact 5.6 and Prime 
2.2). The initial 3D structures of the ligands were generated using LigPrep 2.4 and the ligand partial 
charges were ascribed using the OPLS2005 force-field as performed by Glide 5.6.18-20 We defined the 
binding region by a 20 Å x 20 Å x 20 Å box centered on the central position of inhibitor 1 in the crystal 
ATX complex. We used positional constraints for the two oxygen atoms of the boronic acid and the 
arylic carbon direct next to the boron atom in inhibitor 1. The Glide Emodel score was used to rank 
the docking poses. Images were made using PyMOL 1.3.
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4.5 Supporting information
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Supporting Figure S1.  Michael acceptor study of inhibitor 1. We incubated 100 μM of inhibitor 1 
((M+H+) = 464.11) with 10 mM of l-glutathione (reduced) in a Tris-HCl buffer (50 mM, pH 7.4) at 310 
K for 19 h.  L-glutathione is a natural occurring reducing agent which is abundantly present in blood 
(1 mM) and can act as a Michael donor. After 19 h of incubation no Michael addition was observed 
(compare LC spectrum and MS profile in A] and B] with C] and D]).

Supporting Figure S2.  Dose-response graph for 
inhibitor 17 (n=5).

Supporting Figure S3. Dose-response curves for 
inhibitors 19 and 36. 
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4.1 Å 

F274

Supporting Figure S4.   The distance between the oxygen of the carbonyl 
moiety in inhibitor 1 and the center of the aromatic ring of ATX residue 
F274 is 4.1 Å, suggesting π-stacking between these two moieties.

Supporting Figure S5.  Docked (transparent blue) and X-ray (magenta) 
pose of inhibitor 1.
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Syntheses supporting information

Syntheses aldehydes 2-6

4-((4-bromobenzyl)oxy)benzaldehyde (2). To a solution of 4-hydroxybenzaldehyde (1.02 g, 8.33 
mmol) and potassium hydroxide (0.533 g, 9.50 mmol) in dimethyl sulfoxide (13 mL), 4-(bromomethyl)
phenyl bromide (1.38 g, 5.51 mmol) was added. The reaction mixture was stirred at room 
temperature and after 1 h the precipitate was isolated by centrifugation, washed with water (3x15 
mL) and lyophilized resulting in the title compound. Yield: 1.5 g, 91% 1H NMR: δ = 9.87 (s, 1H), 7.87 
(d, J = 8.8, 2H), 7.60 (d, J = 8.5, 2H), 7.43 (d, J = 8.5, 2H), 7.20 (d, J = 8.7, 2H), 5.22 (s, 2H). 13C NMR: 
δ = 191.23, 163.02, 135.77 (CAr-Br+CArCOH), 131.74, 131.40, 129.89, 121.16, 115.27, 68.79. MS: m/z 
[M+H]+ calc. 291.00, 293.00, obs. 291.01, 293.02.

N-(4-bromophenyl)-4-formylbenzamide (3). Thionyl chloride (0.75 mL, 10.3 mmol) was added to 
a suspension of 4-carboxy benzaldehyde (0.517 g, 3.44 mmol) in dry toluene (15 mL). The reaction 
mixture became clear after 4 h of refluxing. Concentrating the solution resulted in a light brown 
solid. The crude product was dissolved in dichloromethane (12.5 mL) and 4-bromo aniline (0.607 g, 
3.53 mmol) and triethylamine (1.3 mL, 9.3 mmol) were added. After 1 h 30 of refluxing under an 
atmosphere of argon the reaction mixture was diluted with ethyl acetate (40 mL) and washed with 1 
M hydrochloric acid (40 mL) and saturated bicarbonate solution (40 mL). The organic layer was dried 
over magnesium sulfate and was concentrated resulting in a yellow solid. Yield: 707.1 mg, 68%. 1H 
NMR: δ = 10.58 (s, 1H), 10.12 (s, 1H), 8.13 (d, J = 8.5, 2H), 8.06 (d, J = 8.5, 2H), 7.77 (d, J = 8.9, 2H), 
7.56 (d, J = 8.9, 2H). 13C NMR: δ = 192.89, 164.81, 139.64, 138.26, 138.04, 131.49, 129.42, 128.43, 
122.28, 115.69. MS: m/z [M+H]+ calc. 304.00, 306.00, obs. 303.96, 305.96.

N-(4-bromobenzyl)-4-formylbenzamide (4). In a dry flask, thionyl chloride (3.3 mL, 45.2 mmol) was 
added to a suspension of 4-carboxy benzaldehyde (1.07 g, 7.13 mmol) in dry toluene (30 mL). The 
reaction mixture was refluxed for 5 h and concentrated in vacuo.  The crude product was dissolved in 
dichloromethane (25 mL) and 4-bromobenzyl amine (1.0 mL, 7.92 mmol) and triethylamine (1.3 mL, 
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7.17 mmol) were added. The reaction mixture was refluxed for 2 h. Finally, the mixture was diluted 
with ethyl acetate (60 mL) and washed with 1 M hydrochloric acid (40 mL) and bicarbonate solution 
(40 mL). The organic layer was dried over magnesium sulfate and concentrated in vacuo. Yield: 1.65 
g, 73%. 1H NMR: δ = 10.08 (s, 1H), 9.30 (t, J = 5.9, 1H), 8.08 (d, J = 8.3, 2H), 8.00 (d, J = 8.5, 2H), 7.52 
(d, J = 8.5, 2H), 7.30 (d, J = 8.5, 2H), 4.47 (d, J = 5.9, 2H). 13C NMR: δ = 192.85, 165.45, 139.15, 138.79, 
137.84, 131.15, 129.53, 128.81, 127.98, 119.82, 42.19. MS: m/z [M+H]+ calc. 318.01, 320.01, obs. 
317.95, 319.96.

2-(4-nitrophenyl)-1,3-dioxolane (37). To a solution of 4-nitrobenzaldehyde (3.95 g, 26.1 mmol) 
in dry toluene (10 mL), molecular sieves (4 Å, 2 g), dry ethylene glycol (10.0 mL, 179 mmol) and 
p-toluenesulfonic acid monohydrate (2.04 g, 10.7 mmol) were added was refluxed for 25 h using 
a Dean-Stark apparatus. Toluene (50 mL) and water (50 mL) were added and the water layer was 
extracted with toluene (2x50 mL). The organic layers were combined and washed with brine (3x100 
mL), dried over magnesium sulfate and finally concentrating in vacuo. Yield: 3.87 g, 76%. 1H NMR: 
δ = 8.25 (d, J = 8.8, 2H), 7.71 (d, J = 8.5, 2H), 5.89 (s, 1H), 4.05-3.97 (m, 4H). 13C NMR: δ = 147.91, 
145.20, 127.79, 123.45, 101.38, 65.02. MS: m/z [M+H]+ calc. 196.06, obs. 196.06.

4-bromo-N-(4-formylphenyl)benzamide (5). Compound 37 (3.87 g, 19.8 mmol) was dissolved in 
degassed tetrahydrofuran (250 mL) and 10 wt% Pd/C (480 mg) was added. After stirring the reaction 
mixture for 16 h under a hydrogen atmosphere it was filtered over Hyflo Super Cel® medium and 
was concentrated. The crude product was used without any further purification and was dissolved 
in dry dichloromethane (75 mL) and 4-bromobenzoyl chloride (3.57 g, 16.3 mmol) was added. The 
solution was stirred for 2 h and triethylamine (0.4 mL, 2.87 mmol) was added. Additional triethyl 
amine (2.8 ml, 20 mmol) was added over 2 h with time intervals of 30 min. After stirring for another 
1 h 30 the solution was diluted with ethyl acetate (200 mL) and washed with 1 M hydrochloric acid 
(100 mL) and brine (100 mL). The solution was dried over magnesium sulfate and concentrated in 
vacuo. Crude product (922 mg) was deprotected in dichloromethane (100 mL) using perchloric acid 
(50 mL). After stirring the mixture for 2 h it was diluted with ethyl acetate (100 mL) and neutralized 
with 30 wt% sodium hydroxide solution which initiated separation. The oranic layer was dried over 
magnesium sulfate and the solvent was concentrated in vacuo which resulted in an orange solid. 
Yield: 464.1 mg, 66%. 1H NMR: δ =  10.69 (s, 1H), 9.92 (s, 1H), 8.02 (d, J = 8.3, 2H), 7.93 (d, J = 8.5, 
2H), 7.90 (d, J = 8.5, 2H), 7.77 (d, J = 8.5, 2H). 13C NMR: δ = 191.62, 165.13, 144.61, 133.55, 131.68, 
131.46, 130.59, 129.94, 125.74, 119.92. MS: m/z [M+H]+ calc. 304.00, 306.00, obs. 304.03, 306.04.

(E)-4-(4-bromostyryl)benzaldehyde (6). To a solution of terephthalaldehyde (8.06 g, 60.1 mmol) 
in tetrahydrofuran (420 mL) were added diethyl(4-bromobenzyl)phosphonate (5.10 g, 16.6 mmol) 
and potassium tert-butoxide (2.92 g, 26.0 mmol). After 40 min stirring under an argon atmosphere 
additional potassium tert-butoxide (2.92 g, 26.0 mmol) was added and stirred for another 30 min.  
The reaction mixture was filtered and concentrated in vacuo and the resulting solid was purified 
using column chromatography (hexane-dichloromethane, 1:1) to provide the title compound. Yield: 
2.1 g, 43%. 1H NMR (CDCl3): δ = 9.98 (s, 1H), 7.86 (d, J = 8.4, 2H), 7.63 (d, J = 8.3, 2H), 7.50 (d, J = 8.6, 
2H), 7.39 (d, J = 8.5, 2H), 7.14 (dd, J = 16.4, 23.2, 2H). 13C NMR (CDCl3): δ = 191.75, 143.23, 135.78, 
135.74, 132.22, 131.10, 130.49, 128.55, 128.28, 127.20, 122.60. MS: m/z [M+H]+ calc. 287.01, 
289.01, obs. 286.97, 288.97. 
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Synthesis amine linker-based inhibitor 36

4,4,5,5-tetramethyl-2-(4-nitrophenyl)-1,3-dioxolane (38). 
A mixture of 4-nitrobenzaldehyde (6.07 g, 40.2 mmol), 
pinacol (6.31 g, 53.4 mmol) and p-toluenesulfonic acid 
monohydrate (0.225 g, 1.18 mmol) was refluxed in dry 
toluene (65 mL) for 4 h using a Dean-Stark apparatus. 
After cooling to room temperature, sodium hydroxide 
(0.216 g, 5.40 mmol) in ethanol (3 mL) was added to 
the mixture and stirred for 30 min. The suspension 
was filtered and the residue was washed with toluene 
(125 mL). The filtrate was washed with brine (3x100 mL), dried over sodium sulfate and finally 
concentrated in vacuo to provide the title compound. Yield: 9.3 g, 92%. 1H NMR: δ = 8.23 (d, J = 8.8, 
2H), 7.70 (d, J = 8.4, 2H), 6.00 (s, 0H), 1.27 (s, 6H), 1.17 (s, 6H). 13C NMR: δ = 147.54, 147.04, 127.37, 
123.40, 97.76, 82.75, 23.84, 21.89. MS: m/z [M+H]+ calc. 252.12, obs. 252.11.

4-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)aniline (39).  A mixture of compound 38 (0.498 g, 1.98 
mmol) and 10 wt% Pd/C (50 mg) in degassed tetrahydrofuran (15 mL) under a hydrogen atmosphere 
was stirred for 7 h. The mixture was filtrated over Hyflo Super Cel® medium and the filtrate was 
concentrated in vacuo. Yield: 438 mg, 100%. 1H NMR: δ = 7.06 (d, J = 8.4, 2H), 6.51 (d, J = 8.5, 2H), 
5.71 (s, 1H), 5.10 (s, 2H), 1.21 (s, 6H), 1.19 (s, 6H). 13C NMR: δ =149.04, 127.44, 126.39, 113.12, 99.75, 
81.47, 24.34, 22.00. MS: m/z [M+H]+ calc. 222.15, obs. 222.14.

(4-(((4-formylphenyl)amino)methyl)phenyl)boronic acid (40). To a solution of amine 39 (1.06 
g, 4.79 mmol) in dry dimethylformamide (10 mL), potassium carbonate (0.612 g, 4.43 mmol) and 
4-bromomethylphenylboronic acid (0.880 g, 4.10 mmol) were added. After stirring overnight under 
an argon atmosphere the reaction mixture was diluted with ethyl acetate (100 mL). The mixture was 
washed with 0.1 M hydrochloric acid (3x50 mL), dried over magnesium sulfate and concentrated 
in vacuo. The resulting mixture of mono- and dialkylated products was purified using column 
chromatography (dichloromethane-methanol, 95:5) to isolate the monoalkylated intermediate 
(0.661 g, 45%).

The pinacol protecting group was removed as follows: To a solution of monoalkylated 
intermediate (0.140 g, 0.394 mmol) in tetrahydrofuran (3 mL), sodium periodate (0.107 g, 0.500 
mmol) and water (0.424 mL) were added. After 30 min of stirring under an atmosphere of argon, 1 M 
hydrochloric acid (0.284 mL) was added and stirred for one night. The reaction mixture was diluted 
with ethyl acetate (13 mL) and washed with brine (11 mL). The water layer was extracted with ethyl 
acetate and the combined organic layers were washed with brine (8 mL), dried over magnesium 
sulfate and concentrated in vacuo to afford the title compound in quantitative yield. Overall yield: 
100 mg, 45% (two steps). 1H NMR: δ = 9.58 (s, 1H), 7.97 (s, 2H), 7.74 (d, J = 8.1, 2H), 7.58 (d, J = 8.8, 
2H), 7.42 (t, J = 6.0, 1H), 7.30 (d, J = 8.0, 2H), 6.67 (d, J = 8.7, 2H), 4.39 (d, J = 6.0, 2H), . 13C NMR: δ 
= 189.55, 153.95, 140.88, 134.23, 131.77, 126.15, 125.05, 111.59, 45.79 (C-B(OH)2 not visible). MS: 
m/z [M+H]+ calc. 256.11, obs. 256.17.
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(Z)-(4-(((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)phenyl)amino) methyl)phenyl)
boronic acid (36). To a solution of 3-(4-fluorobenzyl)thiazolidine-2,4-dione (18.8 mg, 0.0835 mmol) 
in ethanol (0.2 mL), piperidine (8.2 µL, 0.0835 mmol) and aldehyde 40 (19.7 mg, 0.0772 mmol) 
were added and the solution was refluxed for 4 h. Upon cooling to room temperature the product 
precipitated out of solution. Pure compound was obtained after preparative HPLC purification. Yield: 
10 mg, 29%. 1H NMR: δ = 7.99 (s, 2H), 7.76 (s, 1H), 7.74 (d, J = 8.1, 2H), 7.47 – 7.23 (m, 7H), 7.20 
– 7.14 (m, 2H), 6.70 (d, J = 8.8, 2H), 4.79 (s, 2H), 4.37 (d, J = 5.8, 2H). 13C NMR: δ = 167.54, 165.66, 
161.59 (d, 1JCF = 244), 151.27, 141.03, 134.76, 134.24, 132.67, 132.01 (d, 4JCF = 3), 129.84 (d, 3JCF = 8), 
126.17, 119.94, 115.40 (d, 2JCF = 21), 112.57, 112.37, 45.84, 43.66 (C-B(OH)2 not visible). MS: m/z 
[M+H]+ calc. 463.13, obs. 463.20.
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5.1 Introduction

The previous chapters describe the discovery, optimization and biological validation of 

autotaxin (ATX) inhibitors. Next to the phosphodiesterase ATX, protein phosphatases are 

another interesting class of enzymes in drug discovery.1 Like ATX, protein phosphatases 

have the ability to hydrolyze phosphate esters, however, their substrates are intracellular 

phosphorylated proteins rather than lipids. Therefore, ATX and protein phosphatases have 

different functions in biology. Here a short introduction on protein phosphatases is provided 

with the main focus on dual specificity phosphatases as an introduction to the next chapter.

After protein synthesis, approximately one-third of mammalian proteins are 

phosphorylated by protein kinases (Figure 1).2 Dynamic protein phosphorylation is one of the 

major mechanisms by which cells regulate transcription, signal transduction, proliferation, 

differentiation, motility and metabolism.3-8 The phosphorylation state of cellular proteins 

is tightly controlled by the concerted and reversible action of protein kinases and protein 

phosphatases. The importance of controlling the activity of protein kinases in biology has 

long been recognized and this has resulted in the development of several clinically approved 

protein kinase inhibitors (e.g. Imatinib). A growing body of evidence now demonstrates that 

the regulation of protein dephosphorylation by protein phosphatases is equally important, 

which stimulates the development of protein phosphatase inhibitors.4 

Protein phosphatases have historically have classified as serine/threonine (PSP),9 

tyrosine (PTP),10 and dual specificity (DUSP)11 phosphatases based on their preference 

for specific phosphorylated hydroxyl amino acids (Figure 1) over others. The unique 

feature that distinguishes DUSPs from PSPs and PTPs is their ability to dephosphorylate 

both phosphorylated tyrosine and serine/threonine residues within a protein substrate. 

Both classical PTPs and DUSPs share a similar mechanism of catalysis for the hydrolysis of 

phosphorylated substrates that involves the formation of a phosphoryl-enzyme intermediate 

(Figure 2).11-13 The highly conserved catalytic domain in DUSPs contains the consensus 

sequence HCXXGXXRS(T) (Table 1). The cysteine residue (C), which is essential for catalytic 
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Figure 1: The phosphorylation status of proteins is regulated by both protein phosphatases 
and protein kinases. Protein phosphorylation occurs predominately on the amino acids serine, 
threonine and tyrosine.
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activity, is positioned at the centre of the catalytic pocket.11 The arginine (R) of the consensus 

sequence coordinates to the phosphate group of the protein substrate to assist with catalysis. 

There is also a conserved aspartic acid present upstream of this conserved motif that acts 

as a general acid/base catalyst. The serine (S) of the 

consensus sequence, threonine (T) in some other 

protein phosphatases (i.e. DUSP23), most likely 

plays a role in stabilizing the cysteinyl anion through 

hydrogen bonding.14-16 The catalytic pocket of a 

DUSP is shallow, but broader than that of classical 

PTPs, which is thought to be the mechanism how 

DUSPs can simultaneously accommodate more than 

one phosphorylated residue.13

Although a number of potent and selective 

inhibitors of PSPs isolated from natural sources are 

known, like tautomycin and fostriecin,17 selective 

PTP or DUSP inhibitors are still rare.18 Genetic 

approaches using small interfering RNA (siRNA) can 

provide some insight into the biological function 

of these protein phosphatases in cells. However, 

some PTPs and DUSPs interact with other proteins 

and regulate their function in a manner that is 

independent of their phosphatase activity.19 In 

addition, wrong gene annotations in commercial 

siRNA libraries and the difficulty of reproducible 

transfections of siRNA ask for independent controls. 

Therefore, potent and selective small molecule 

inhibitors of protein phosphatases are valuable to 
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Figure 2: Proposed catalytic mechanism for DUSPs and classical PTPs.

Table 1: Conserved Catalytic Domain 
for DUSPs and PTPs.

a Table displays the PTP signature 
sequence in DUSP3, a well studied DUSP, 
compared with the 20 closest human 
homologs. Conserved amino acids are 
depicted in blue. Serine (S) is partially 
conserved (purple).
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study the function of protein phosphatases, allowing immediate and reversible inhibition. 

The discovery of small molecule inhibitors of protein phosphatases has been challenging, 

especially the search for selective inhibitors. Selective inhibitors are difficult to obtain due to 

the highly conserved nature of the PTPs and DUSPs active site (Table 1).

In the next chapter we study the involvement of protein phosphatases in Salmonella 

typhimurium infection of human cells and we describe the discovery and development of 

inhibitors that target protein phosphatases that are essential for this infection process. 
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CHAPTER 6

Controlling bacterial infection by human dual specificity 
phosphatase inhibition 

Harald M.H.G. Albers, Coenraad Kuijl, Tiziana Scanu, Loes J.D. Hendrickx, Sharida Wekker, 

Nadha Farhou, Nora Liu, Patrick Celie, Huib Ovaa and Jacques J. Neefjes, Paper in preparation.

Abstract. Multidrug resistance (MDR) of bacteria is a serious social threat and a neglected 

area in the pharmaceutical industry. New intervention strategies besides conventional 

treatments are required to overcome MDR bacteria. Current treatments use antibiotics 

that target the pathogen but not the involved host protein pathway required for pathogen 

survival. Recently, it has been demonstrated by Kuijl et al. that H-89 inhibits intracellular 

growth of Salmonella (S.) typhimurium by inhibiting the host’s protein kinase PKB/Akt1. Here 

we describe an RNA interference screen of the human phosphatome that reveals several host 

dual specificity phosphatases (DUSP3, 11 and 27) that are essential for intracellular growth of 

S. typhimurium. In parallel, screening a tyrosine/dual specificity phosphatase targeted library 

of small molecules afforded inhibitors that reduced intracellular growth of S. typhimurium. 

One of these identified molecules inhibited the host proteins DUSP3, 11 and 27 confirming 

the target (DUSPs) lead (inhibitor) relationship for S. typhimurium infection. This inhibitor was 

further developed into a selective inhibitor for DUSP3 (IC50 = 0.33 μM) over DUSP27 (IC50 > 5 

μM) and molecular docking reveals a binding pose of this inhibitor for DUSP3 explaining this 

selectivity. In conclusion, targeting the host proteins required for pathogen survival appears to 

be a valid way to control bacterial infection and holds promise as a new therapeutic approach 

to treat bacterial infections in the clinic.
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6.1 Introduction

Bacterial infection is still a big social threat as proven by one of the world’s most severe outbreaks 

of Enterohaemorrhagic Escherichia coli (EHEC) in Europe last year.1 In addition, with multidrug 

resistance (MDR) of bacteria it becomes increasingly difficult to treat these bacterial infections.2 

New intervention strategies are required next to conventional treatments to overcome MDR in 

bacteria. Developing medicines that target host proteins essential for bacterial survival instead of 

killing bacteria directly with antibiotics could be an answer to this problem.

Many bacterial pathogens survive in intracellular compartments of host cells and use 

that location as a niche for growth while remaining undetected by the immune system.3 

These bacteria frequently remain in such compartments in a dormant state and are therefore 

difficult to reach by antibodies and antibiotics. For their survival, bacteria need to manipulate 

the host system to prevent transport from phagosomes to phagolysosomes where they can 

be degraded.4,5 

Using a combination of chemistry, small interfering RNA (siRNA) screening, 

biochemistry and cell biology, we have recently shown that the intracellular bacteria 

Salmonella (S.) typhimurium  activates a signaling network around the protein kinase PKB/

Akt1 to prevent delivery to lysosomal compartments where bacteria would otherwise have 

been degraded (Figure 1A).5 Bacteria activate the protein kinase PKB/Akt1 for their survival 
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Figure 1: (A) The PKB/Akt1 protein pathway involved in Salmonella (S.) typhimurium infection. By 
inhibiting PKB/Akt1 using small molecule inhibitor H-89, intracellular growth of S. typhimurium 
can be blocked. (B) Identified phosphatases by siRNA screening that reduce intracellular growth 
of S. typhimurium in human cells. (C) Novel identified S. typhimurium infection inhibitors by 
screening a tyrosine-based small molecule library (blue: tyrosine motif).
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and we inhibited this protein 

kinase with a commercial 

inhibitor (H-89, Figure 1A) 

which induced the bacterial 

elimination in human cells.5 

We now report the 

identification of protein 

phosphatases that control 

intracellular growth of S. 

typhimurium in the human 

host cell. The function of only 

few protein phosphatases 

is known and this class of 

enzymes is studied relatively 

poorly compared to protein 

kinases. Protein phosphatases 

are divided in three main 

classes based on their phosphorylated protein substrates; serine/threonine phosphatases, 

tyrosine phosphatases and dual specificity phosphatases (DUSP).6 The latter class is able to 

hydrolyze both phosphorylated serine, threonine and tyrosine residues and is member of the 

protein tyrosine phosphatase family. By silencing all protein phosphatases (Supporting Table 

S1) of the human host cell we have mainly identified protein tyrosine phosphatases, which 

control intracellular bacterial growth of S. typhimurium (Figure 1B). Among these identified 

protein tyrosine phosphatases several DUSPs were present (DUSP3, 11 and 27).

We tested a tyrosine-based small molecule library designed to target protein tyrosine 

phosphatases, including DUSPs. This library partly consisted of the previously described ATX 

inhibitors in Chapter 3. Compounds depicted in Figure 1C reduced the intracellular growth 

of S. typhimurium in host cells to a similar extent as obtained through phosphatase silencing. 

Important to note, these compounds were not toxic for S. typhimurium or the host cell alone 

(see Supporting Figures S1 and S2).

In this study we show that one of the identified inhibitors of intracellular growth of S. 

typhimurium act on the identified host DUSPs. Medicinal chemistry efforts then resulted in 

a selective DUSP3 inhibitor, which is a challenging task in the development of phosphatase 

inhibitors. The selectivity of this compound can be explained by molecular docking of this 

inhibitor into DUSP3 and 27 crystal structures.

6.2 Enzyme kinetics of DUSP3, 11 and 27

In order to test S. typhimurium inhibitors on DUSP activity we have developed an activity assay 

using 3-O-methylfluorescein phosphate (OMFP) as DUSP substrate (Figure 2A).7 The quenched 
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Figure 2: (A) DUSP activity assay using OMFP as substrate. (B) 
Saturation curves for DUSP3 and 11. (C) Linear relationship of 
the phosphate hydrolysis velocity of DUSP27 and substrate 
concentration.
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OMFP substrate is hydrolyzed by the DUSPs into the fluorophore 3-O-methylfluorescein (OMF) 

and phosphate. First we studied the enzyme kinetics of DUSP3, 11 and 27 (Figure 2B and C) 

using this assay. DUSP3 and 11 show normal Michaelis–Menten kinetics giving saturation at 

high substrate concentration (Figure 2B) while DUSP27 shows a linear relationship between 

enzyme velocity and substrate concentration (Figure 2C). The Michaelis constants (Km values) 

for DUSP3 and 11 are 50 μM and 59 μM, respectively. Due to the linear kinetics of DUSP27 its 

Km is infinite under these conditions.

6.3 Effect of S. typhimurium inhibitors on DUSP activity

The compounds that reduced intracellular growth of S. typhimurium in human host cells 

have been tested on their effect on the the activity of the three DUSPs.  DUSP activity was 

measured at an OMFP concentration of 20 μM using an inhibitor concentration of 5 μM 

(Figure 3). The most active compound that inhibited all the three DUSPs is LH65.3 with high 

percentage inhibitions (PI) between 85% and 97%. This inhibitor did not show any preference 

for a specific DUSP (Figure 4A).

6.4 Structure-activity relationships of DUSP inhibitors

In order to increase the potency and selectivity of LH65.3 for the three DUSPs we synthesized 

analogs of this inhibitor. For this purpose we changed the benzyl (R1) and benzylidene 

(R2) moieties as depicted in Table 1. Activities of the compounds for DUSP3, 11 and 27 

were measured as percentage inhibition (PI) at an inhibitor concentration of 5 μM. First 

we replaced the 4-tert-butyl benzyl (R1) moiety in LH65.3 by 4-nitroacetophenone (1), 

4-trifluoromethyl benzyl (2), diphenyl methane (3), 2-(methyl)naphthalene (4), 4-bromo 

benzyl (5) and  4-fluoro benzyl (6). None of the modifications improved the activity of the 

inhibitors (Table 1). Next, we changed the position of the nitro and hydroxyl moiety in 

LH65.3 (compounds 7 and 14) which 

had a negative effect on DUSP inhibition. 

However, introduction of a methoxy group 

on the meta position (21) afforded full 

inhibition for all the three DUSPs. We then 

explored structure-activity relationships 

(SAR) of all the possible combinations of 

the previously described R1 and R2 groups 

(Table 1). In general, having a 4-hydroxy-3-

methoxy-5-nitrophenyl moiety for R1 (21-

26) has a positive effect on the potency 

of the inhibitors leading to almost full 

inhibition for the three DUSPs. The nature 

of the R1 group doesn’t seem to have a 
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Figure 3: Effect of identified S. typhimurium 
infection inhibitors on the activity of DUSP3, 11 
and 27. DUSP activity (%) has been measured 
at an inhibitor concentration of 5 μM.
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large negative effect on the activity of the compounds when R2 is 4-hydroxy-3-methoxy-5-

nitrophenyl, with the only exception when R1 is 4-fluoro benzyl (27). Overall, poor activities 

were obtained for R1 as a 4-fluoro benzyl moiety (6, 13, 20 and 27), most of the activities (PI) 

for these compounds were below 15%.

6.5 Selectivity and mode of inhibition of inhibitor 8

For the most active compounds in Table 1 that evidenced full DUSP3 inhibition (dark 

green boxes) we have determined IC50 values for all the three DUSPs (Table 2) in order 

to find selective DUSP inhibitors. Obtained IC50 values for the inhibitors varied between 

0.33 and 2.4 μM. We were able to improve the activity of our reference inhibitor, 
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Table 1: Structure-activity relationships of DUSP inhibitors. Percentage inhibition (PI, %) at 5 μM 
of compound are given for DUSP3, 11 and 27, respectively.
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LH65.3, by a 5 fold for DUSP3 resulting in inhibitor 8. More importantly, inhibitor 8 is selective 

for DUSP3 (IC50 = 0.33 μM) compared to DUSP11 and 27 (IC50 = 0.73 μM and IC50 > 5 μM). In 

Figure 4A and 4B the dose-response curves for LH65.3 and 8 are depicted to visualize the gain 

in potency and selectivity of 8 for the three DUSPs compared to LH65.3.

Next, we studied the mode of inhibition of 8 using Lineweaver-Burk analysis. For DUSP3 

and 11, inhibitor 8 showed non-competitive inhibition (Figure 4C). Increasing the inhibitor 

concentration of inhibitor 8 did not change the Vmax or Km of DUSP27 (Figure 4C).

Entry R1 R2 DUSP3  DUSP1 1 DUSP27  

8 0.33 ± 0.06 0.73 ± 0.06 > 5.00 

23 0.59 ± 0.08 0.66 ± 0.03 0.94 ± 0.06 

25 0.93 ± 0.09 1.01 ± 0.09 0.70 ± 0.01 

24 1.21 ± 0.20 1.23 ± 0.02 1.45 ± 0.06 

4 1.27 ± 0.25 1.67 ± 0.09 2.53 ± 0.23 

21 1.36 ± 0.05 1.35 ± 0.08 1.79 ± 0.03 

26 1.40 ± 0.02 1.35 ± 0.07 1.65 ± 0.02 

1.53 ± 0.05 1.57 ± 0.06 1.86 ± 0.05 

5 1.62 ± 0.08 2.11 ± 0.10 1.81 ± 0.04 

22 1.74 ± 0.27 2.11 ± 0.17 2.43 ± 0.03 
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Table 2: IC50 values (μM) for the ten most potent DUSP inhibitors sorted by decreasing 
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6.6 Protein surface comparison between DUSP3 and 27

In order to explain the selectivity of inhibitor 8 for DUSP3 over DUSP27 we compared the 

protein surfaces of these two DUSPs. Several crystal structures of DUSP3 have been reported8-

10 but not for DUSP27 at the time of this study. Therefore we crystallized DUSP27 to make a 

structural comparison with DUSP3 (for details concerning the crystallization see Experimental 

section). In Figure 5 the electrostatic surfaces of DUSP3,10 inactive DUSP3 (C124S mutant) 

bound to a phosphorylated p38 peptide,8 and DUSP27 are displayed. In DUSP3 two pockets 

are clearly visible, the catalytic pocket (P1) and an arginine pocket (P2). The phosphorylated 

p38 peptide binds to these pockets with its phosphorylated tyrosine residue and 

phosphorylated serine residue to P1 and P2, respectively.8 The P1 and P2 pocket in DUSP3 are 

separated by a cleft were the p38 peptide still can bind. In DUSP27 this catalytic pocket P1 is 

clearly visible but the P2 pocket is not as abundantly present as in DUSP3. A clear difference 

between DUSP3 and 27 can be observed in the electrostatic surface potential. DUSP3 and 

inactive DUSP3 have identical electrostatic surfaces while DUSP27 is displaying a reversed 

electrostatic surface compared to DUSP3. This reversed electrostatic surface between DUSP3 

and 27 has been predicted using an DUSP27 homology model11 and confirmed by a recently 

resolved DUSP27 structure12 and our data.
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response curves for inhibitor 8. (C) Lineweaver-Burk analysis of inhibitor 8 for DUSP3, 11 and 27.
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6.7 Molecular docking of inhibitor 8 with DUSP3 and 27

Intrigued by the differences in the surfaces of DUSP3 and 27 we reasoned that molecular 

docking of inhibitor 8 with these two DUSPs could explain why this inhibitor is selective for 

DUSP3 over DUSP27. In our docking approach, using the program Autodock, we used a large 

docking site around 

catalytic pocket P1 

and arginine pocket 

P2 (docking space, 

30 Å x 30 Å x 30 Å) to 

see whether inhibi-

tor 8 has a preference 

for a different bind-

ing site than P1 and 

P2. However, the best 

binding site of inhibi-

tor 8 for DUSP3 and 

27 was catalytic pock-

et P1 (Figure 6). The 

best docking pose of 

inhibitor 8 for DUSP3 

+ 4V
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Figure 5: Surface representation displaying the electrostatic surface (blue is positive, red is 
negative) of the crystal structures of DUSP3 (PDB ID: 1VHR), inactive DUSP3 (C124S mutant) 
binding to a phosphorylated p38 peptide (PDB ID: 1J4X) and DUSP27. Catalytic site is indicated 
with P1 and an arginine pocket with P2.

Figure 6: Molecular docking suggests that inhibitor 8 (deep purple) 
binds in proximity of catalytic arginine residue (R) of DUSP3 and 27. A 
hydrogen bond is observed between a tyrosine residue (Y) in the DUSP3 
active site with the indicated carbonyl of inhibitor 8, this interaction is 
not possible in DUSP27.
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revealed an interaction with the catalytic arginine residue R130 of DUSP3 with the nitro group 

in 8. In addition, there is a hydrogen bond between the carbonyl of the 4-nitroacetophenone 

moiety in 8 with tyrosine residue Y128 (Figure 6). This hydrogen bond is not observed for the 

best docking pose of inhibitor 8 in DUSP27 because the tyrosine residue in not conserved 

in DUSP27 and is replaced by an arginine residue (Figure 6). This hydrogen bond of 8 with 

DUSP3 is a logical explanation why the affinity of 8 for DUSP3 (IC50 = 0.33 μM) is much higher 

than for DUSP27 (IC50 > 5 μM) and also for the higher predicted binding energy of inhibitor 8 

for DUSP3 (-8.0 kcal mol-1 versus -6.4 kcal mol-1).

6.8 Conclusions and Discussion

This study shows that the host proteins DUSP3, 11 and 27 of the host cell are essential 

for intracellular growth of the bacteria S. typhimurium. In our approach we used a small 

interfering RNA (siRNA) screen of the human phosphatome and a reversed chemical screen. 

In the latter methodology we screened tyrosine-based small molecules as a general tyrosine/

dual specificity phosphatase inhibitor library. One of the molecules (LH65.3) that resulted 

from the small molecule screen inhibited the identified DUSPs 3, 11 and 27 confirming the 

phosphatase target-inhibitor relationship.

Further development of LH65.3 resulted in a selective DUSP3 inhibitor (8) which has 

poor affinity for DUSP27. Molecular docking suggests that a hydrogen bond exists between 

inhibitor 8 and tyrosine residue Y130 in DUSP3 which is not present in DUSP27. This 

hydrogen bond probably explains the higher affinity of this inhibitor for DUSP3 over DUSP27. 

Binding site inhibitor 8
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Figure 7: Model proposing the binding of inhibitors and tyrosine phosphorylated substrate with 
DUSP family phosphatases. Here DUSP inhibitor 8 (purple) is depicted as example. Tyrosine 
moieties of a substrate (green) and inhibitor 8 are located in the active site while the remaining 
part of these molecules binds to a different site in DUSP. Only the catalytic residues cysteine and 
arginine are depicted for clarity.
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Development of selective phosphatase inhibitors is a challenging task because of their close 

homology.

Somewhat controversial is the fact that the mode of inhibition for this selective 

inhibitor 8 is non-competitive. The tyrosine moiety in this inhibitor is introduced to target 

the phosphatase active site. In addition, unbiased molecular docking of inhibitor 8 shows 

a preference for the catalytic site of DUSP3 and 27. Our hypothesis explaining our results 

is depicted in Figure 7. In this model the binding site of tyrosine moieties of a tyrosine 

phosphorylated DUSP substrate and selective inhibitor 8 are in proximity of each other in 

the large DUSP active site while the remaining parts of the molecules bind to different sites 

outside the DUSP active site. A crystal structure of inhibitor 8 in complex with DUSP3 or 27 

should reveal its true binding. 

In conclusion, targeting host DUSP proteins essential for bacterial growth seems to be 

a valid way to fight bacterial infection and holds promise as a new therapeutic strategy to 

treat these infections. This new approach could be a useful addition to the current bacterial 

infection treatments that target solely the bacteria itself.

6.9 Experimental section

General. See Experimental section Chapter 4.

Synthesis inhibitor library. Inhibitors were synthesized as previously described with minor 
adjustments to the protocol.13-15 In short, to a cooled solution (277 K) of thiazolidine-2,4-dione (5.87 
g, 50 mmol) in DMF (100 ml) sodium hydride (60% in oil, 1.8 g, 45 mmol) was added. A solution of 
the appropriate benzyl bromide (36.8 mmol) in DMF (25 ml) was added to the reaction mixture. The 
mixture was allowed to warm up to room temperature and was stirred for 4 h. Then the mixture 
was poured into of ice water (250 ml) and hexane (100 ml) was added. After a night at 277 K the 
precipitated crystals were filtrated and dried to give N-alkylated thiazolidine-2,4-dione.

The resulting N-alkylated thiazolidine-2,4-dione (0.317 mmol) was dissolved in ethanol (2.5 mL) 
containing piperidine (70 µL, 0.709 mmol) and the appropriate aldehyde (0.348 mmol) was added 
and the solution was refluxed overnight. Upon cooling to room temperature the product precipitated 
out of solution. Centrifugation and washing with ethanol gave homogeneous compound.

(Z)-3-(4-(tert-butyl)benzyl)-5-(4-hydroxy-3-nitrobenzylidene)thiazolidine-2,4-dione (LH65.3). Yield: 
20%. 1H NMR: δ = 8.20 (d, J = 2.3, 1H), 7.95 (s, 1H), 7.77 (dd, J = 2.3, 8.8, 1H), 7.37 (d, J = 8.5, 2H), 
7.25 (dd, J = 8.6, 11.0, 3H), 4.79 (s, 2H), 1.25 (s, 9H). 13C NMR: δ = 166.93, 165.37, 153.69, 150.28, 
137.43, 135.51, 132.46, 131.63, 127.80, 127.49, 125.40, 123.93, 120.15, 119.96, 44.38, 34.21, 31.02. 
MS: m/z [M+H]+ calc.  413.12, obs. 412.92.

(Z)-5-(3-hydroxy-4-nitrobenzylidene)-3-(2-(4-nitrophenyl)-2-oxoethyl)thiazolidine-2,4-dione (8). 
Yield: 26%. 1H NMR: δ = 8.41 (d, J = 9.0, 2H), 8.33 (d, J = 9.1, 2H), 8.02 (d, J = 8.5, 1H), 7.99 (s, 1H), 
7.39 (d, J = 1.7, 1H), 7.27 (dd, J = 1.6, 8.6, 1H), 5.45 (s, 2H). 13C NMR: δ = 190.94, 166.52, 164.77, 
152.44, 150.61, 138.63, 138.23, 137.53, 131.84, 129.89, 126.13, 124.36, 124.00, 120.47, 119.81, 
48.28. MS: m/z [M+H]+ calc.  430.03, obs. 429.87.
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Phosphatase siRNA screen. Gene silencing was performed in 96 well plates with a human breast 
cancer (MCF-7) and glioblastoma (A-172) cell line. Cells were seeded at a density of 5000 cells per 
well and reverse transfected with DharmaFECT transfection reagent #4 and 50 nM siRNA (Human 
siGenome SMARTpool phosphatase library, Dharmacon). Two days after transfection, cells were 
infected with S. Typhimurium expressing DsRed16 was performed based on the infection protocol 
described by Steele-Mortimer et al. with minor changes.17 In short, two days before infection a 
bacterial culture was streaked from the frozen stock on LB agar plate. The next day, an overnight 
bacterial culture was prepared by inoculating 5 mL LB medium with one colony from the agar plate. 
The overnight culture was incubated at 310 K and 200 rpm for 16-20 h and then diluted 1:33 in fresh, 
pre-warmed (310 K) ampicillin (100 μg mL-1) containing LB medium for a further incubation of 3.5 
h. The bacterial culture (4 mL) was transferred to a 15 ml Falcon tube and pelleted in 4000 rpm for 
10 min at room temperature. The pellet was washed once with DMEM/FCS and resuspended in 
DMEM/FCS full medium (310 K). The cells were infected with an MOI of 50 for 20 min. After infection 
the cells were washed 4 times with DMEM/FCS containing 100 μg mL-1 gentamycin and remaining 
extracellular bacteria were killed by addition of DMEM/FCS medium with 100 μg mL-1 gentamicin for 
60 min. For the remaining infection period, the antibiotic concentration was lowered to 10 μg mL-1. 
After overnight infection cells were washed once with PBS and 30 μL of trypsin/EDTA was added for 
5 min followed by addition of 30 μL PBS/BSA 1%. The sample was fixed by addition of 60 μL PBS 
formalin 7%. 

Samples were analyzed by flow cytometry (BD FACSArray) for DsRed fluorescence as marker 
for Salmonella infection and proliferation. The data were normalized (cellHTS2, Bioconductor) and 
transformed into Z-scores.18

Small molecule screen. The infection of mammalian cells (MCF-7 or A172) with S. typhimurium 
expressing DsRed16 was performed based on the infection protocol described by Steele-Mortimer et 
al. with minor changes.17 In short, two days before infection a bacterial culture was streaked from the 
frozen stock on an ampicillin containing LB agar plate. The next day, an overnight bacterial culture 
was prepared by inoculating 5 mL of ampicillin containing LB medium with one colony from the agar 
plate. The overnight culture was incubated at 310 K and 200 rpm for 16-20 h and then diluted 1:33 
in 5 mL fresh, pre-warmed (310 K) ampicillin containing LB medium for a further incubation of 3.5 
h. 4 mL the culture was transferred to 15 mL Falcon tube and pelleted at 4000 rpm for 10 min at 
room temperature. The pellet was washed once with DMEM/FCS and resuspended in DMEM/FCS 
(310 K). In order to infect the cells with the MOI 20 for 30 min, the bacterial culture was diluted 
according to the following assumption: OD595 of 1 ≈ 1.3 x 109 CFU mL-1. To infect cells with bacteria, 
the cell culture medium was aspirated and 100 µL of bacteria in DMEM/FCS was added to the wells. 
Plates were centrifuged at 1000 rpm at room temperature for 5 min and incubated at 310 K with 5% 
CO2 in a humidified cell culture incubator to allow invasion for 1 h. The cells were washed 4 times 
with DMEM/FCS containing 100 µg mL-1 gentamycin and incubated for another 1 h in DMEM/FSC 
containing 100 µg mL-1 gentamycin. For the remaining infection period, the media was replaced with 
DMEM/FCS containing 10 µg mL-1 gentamicin and compound if indicated. Compounds were tested at 
10 µM in triplicate.

After overnight infection cells were washed once with PBS and incubated in 30 µl of trypsin/
EDTA for 5-10 min. Subsequently, 30 µL PBS/1% BSA was added used to resuspend the cells. 60 µL 
PBS/formalin (7%) was added to fix cells and bacteria. After at least 2 h samples were measured by 
FACS as previously described.

Effect of compounds on S. typhimurium growth in LB medium. An overnight bacterial culture was 
prepared by inoculating 5 mL of ampicillin (100 μg mL-1) containing LB medium with one colony 
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from an agar plate. The overnight culture was incubated at 310 K and 200 rpm for 16-20 h and then 
diluted 1:33 in fresh ampicillin (100 μg mL-1) containing LB medium. In a 96-wells plate, 100 µL of the 
bacteria containing medium was pipetted to an LB medium (100 µL) containing 20 µM of inhibitor. 
Bacterial growth was monitored by measuring the optical density at 595 nm (OD595).

Cell toxicity. See Experimental section Chapter 2.

DUSP activity assay.7 Measuring DUSP activity using 3-O-methylfluorescein phosphate (OMFP) 
as a substrate19 was determined as follows. In a black flat-bottom 96-wells plate was added 0.9 µL 
DMSO containing inhibitor, to 45 µL recombinant DUSP (~0.1 U) in a Tris-HCl buffer (9 mM Tris-HCl, 
11 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.01% triton X-100, pH 7.4). Finally, 45 µL of 40 μM OMFP 
in the previously described Tris-HCl buffer was added to each well using a multichannel pipet and 
instantaneously fluorescence was measured at room temperature (λex/λem = 485/520 nm). The above 
described mixture with DMSO alone was used as a positive control. OMFP without DUSP was taken 
as control for auto-hydrolysis of OMFP. For each inhibitor percentage inhibition (PI) was determined 
at a final inhibitor concentration of 5 µM. IC50 values of inhibitors have been determined in an 
inhibitor concentration range of 0.01 to 6 µM. Data were analyzed using Graphpad Prism software. 
In addition, the effect of the inhibitors on the fluorescence of the produced OMF was investigated 
using ~1 μM OMF at an inhibitor concentration of 5 μM (Supporting Figure S3).

Cloning, expression and purification of DUSPs. PCR fragments of phosphatase domains of DUSP3, 
11 and 27 (Supporting Table S2) containing a His-tag sequence have been cloned into a pETNKI-His-
3c-LIC-kan vector20 and were sequence verified. The resulting constructs have been transformed into 
BL21 (DE3) cells. Transformed cells were grown overnight in LB medium (2 mL) containing kanamycin 
(30 μg mL-1) and were subsequently inoculated in LB medium (1 L) with kanamycin (30 μg mL-1) until 
an OD595 of 0.6 was reached. Protein expression was induced by IPTG (0.5 mM) overnight at 293 K. 
Cells were spun down (3,000 x g, 15 min, 277 K) and the resulting cell pellet was resuspended in 
a Tris buffer (40 mM Tris, 200 mM NaCl, 5 mM β-mercaptoethanol, 5 mM imidazol, pH 8.0). After 
sonification the resuspension the cell debris and insoluble proteins were removed by centrifugation 
(14,000 x g, 30 min, 277 K) and the soluble fraction was incubated with Talon beads and washed with 
the above described Tris buffer. The Talon beads were eluted with a Tris buffer (40 mM Tris, 200 mM 
NaCl, 5 mM β-mercaptoethanol, 300 mM imidazol, pH 8.0) and collected fractions were analyzed on 
an SDS-PAGE gel. Fractions containing solely DUSP protein were pooled and purified by resource Q 
anion-exchange chromatography. For crystallization purpose, the His-tag purification label of DUSP27 
was removed by GST-tagged 3C protease cleavage overnight at 277 K. A final purification step of all 
DUSPs involved a S75 gel filtration using as eluent a Tris buffer (40 mM Tris, 100 mM NaCl, 5 mM 
β-mercaptoethanol, pH 8.0) resulting in a pure protein solution which was concentrated using a 
Centriprep column.

DUSP27 Crystallization. Screening of crystallization conditions for DUSP27 was performed 
at nanoliter scale in 96-well format. 200 nL sitting drops (100 nL DUSP27 (5 mg mL-1) and 100 nL 
reservoir solution) were prepared by the Mosquito dispensing robot (TTP Labtech) using the PACT 
and JCSG+ screens.21 Crystallization plates were stored and imaged at 277 K by the RockImager 
(Formulatrix) and at 293 K by the CrystalFarm (Bruker-AXS). Initial microcrystals and needle-like 
crystals were observed at 277 K in conditions from the PACT screen containing 0.1 M bis-Tris propane 
(pH 6.5 and pH 7.5), 20% PEG 3350 and either 0.2 M sodium nitrate, 0.2 M sodium fluoride or 0.2 M 
sodium-potasium phosphate. These crystals were used in microseeding experiments against the PACT 
and JCSG+ screen. Briefly, crystals were transferred to 75 µL of reservoir solution in an eppendorf 
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tube and vortexed for 30 s. Sitting drops were prepared from 100 nL of DUSP27 (5 mg mL-1), 100 nL 
reservoir solution and 10 nL seed solution. Crystals were observed in multiple conditions and further 
optimization of these conditions was performed using the Formulator microfluidics liquid dispensing 
robot (Formulatrix) with microseeding. Suitable crystals for X-ray diffraction studies were obtained 
at 277 K in 0.1 M Tris pH 8.0, 21% PEG 3350, 0.2 M sodium sulphate; in 0.1 M Tris pH 7.2, 12% PEG 
8000; in 0.1 M Tris pH 7.5, 0.2 M magnesium chloride and 16% PEG 6000. Crystals appeared as 
needles and as plates, with typical dimensions of 0.05 x 0.1 x 0.3 mm and 0.1 mm x 0.2 mm x 0.25 
mm, respectively.

Data collection and structure refinement. DUSP27 X-ray diffraction data was collected at 100 K from 
a crystal grown in 0.1 M Tris pH 7.5, 0.2 M magnesium chloride and 16% PEG 6000 at our home 
source (Microstar Ultra II (Bruker-AXS) with Mar345 image plate detector (Marresearch)). The crystal 
was cryoprotected in 0.1 M Tris pH 7.5, 0.2 M magnesium chloride, 18% PEG 6000 and 20% glycerol 
before freezing in liquid nitrogen solution. 100 images were collected with 1 degree oscillation and 
120 s exposure per frame and a crystal to detector distance of 200 mm (2.21 Å resolution at the edge 
of the detector). The diffraction data set was indexed and integrated using Mosflm22 and scaled using 
SCALA.23 Molecular replacement using the structure of DUSP13 (PDB ID: 2PQ5) as search model, was 
performed in Phaser.24 An initial model was build and revealed 2 molecules in the asymmetric unit. 
The model was subjected to automated tracing in ARP/wARP25 and was further refined using the 
software programs Refmac in CCP426 interspersed with manual rebuilding in Coot.27 Data collection 
and refinement statistics can be found in Supporting Table S3.

Molecular docking, protein and ligand preparation. The X-ray structures of DUSP3 (PDB ID: 1VHR) 
and DUSP27 were used for docking studies. The protein and ligand structures were prepared using 
Autodock version 1.5.4. The initial 3D structures of the ligands were generated using CORINA. We 
defined a region for docking by a 30 Å x 30 Å x 30 Å box centered around the P1 and P2 pocket of 
DUSP3 and 27. Final docking experiments were done using Autodock Vina.28 Graphics were made 

using PyMOL 1.3.
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6.11 Supporting information
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Supporting Figure S1: Effect of compounds on S. typhimurium growth 
in LB medium. Bacterial growth of S. typhimurium was measured in the 
presence or absence of 10 μM of compound at a wavelength of 595 
nm. Data points have not been fitted for clarity.

Supporting Figure S2: Effect of compounds 
on cell viability of MCF-7 cells. Cell viability 
of MCF-7 cells was tested using the 
conditions of the S. typhimurium FACS assay. 
Compounds were incubated for 42 h at a 
concentration of 10 μM. Phenylarsine oxide 
(PAO) was used as a control for cell death. 

Supporting Figure S3: Effect of DUSP 
inhibitors on DUSP activity assay readout. 
Fluorescence of OMF was measured at an 
inhibitor concentration of 5 μM.



106

CHAPTER 6

Name Catalog number Locus id Accession id 

ENPP2 M-004601-01 5168 NM_006209 

PTPN6 M-009778-00 5777 NM_002831 

C7ORF16 M-018324-01 10842 NM_006658 

CDKN3 M-003879-00 1033 NM_005192 

DUSP1 M-003484-02 1843 NM_004417 

DUSP10 M-003965-01 11221 NM_007207 

DUSP2 M-003565-01 1844 NM_004418 

DUSP22 M-004517-00 56940 NM_020185 

DUSP4 M-003963-02 1846 NM_001394 

DUSP5 M-003566-01 1847 NM_004419 

DUSP6 M-003964-01 1848 NM_001946 

DUSP7 M-003567-00 1849 XM_037430 

DUSP8 M-003568-00 1850 NM_004420 

ILKAP M-010260-00 80895 NM_030768 

PFKFB1 M-006761-00 5207 NM_002625 

PFKFB2 M-006762-01 5208 NM_006212 

PFKFB3 M-006763-00 5209 NM_004566 

PFKFB4 M-006764-00 5210 NM_004567 

PPP1R1B M-012745-00 84152 NM_032192 

PPP2CA M-003598-00 5515 NM_002715 

PPP4C M-008486-01 5531 NM_002720 

PTPN5 M-003600-01 84867 NM_032781 

PTPRG M-008069-00 5793 NM_002841 

PTPRJ M-008476-01 5795 NM_002843 

PTPRR M-004017-01 5801 NM_002849 

PTPRT M-008072-01 11122 NM_007050 

TRIO M-005047-00 7204 NM_007118 

ACYP2 M-008864-00 98 NM_138448 

PPP1R16B M-004065-00 26051 NM_015568 

PPP2R3A M-017376-00 5523 NM_002718 

SAG M-011105-00 6295 NM_000541 

ZFHX1B M-006914-00 9839 NM_014795 

ACP5 M-009615-01 54 NM_001611 

PPP3CA M-008300-01 5530 NM_000944 

PSPH M-011888-01 5723 NM_004577 

ACP1 M-019058-00 52 NM_004300 

ACPP M-009262-00 55 NM_001099 

CDC14A M-003469-00 8556 NM_003672 

CDC14B M-003470-02 8555 NM_003671 

CDC25A M-003226-02 993 NM_001789 

CDC25B M-003227-02 994 NM_004358 

CDC25C M-003228-01 995 NM_001790 

DUSP11 M-007885-00 8446 NM_003584 

EPM2A M-006896-01 7957 NM_005670 

PPAP2B M-017312-01 8613 NM_003713 

PPAP2C M-011500-00 8612 NM_003712 

PPM1D M-004554-00 8493 NM_003620 

PPP1R3C M-017077-00 5507 NM_005398 

PTEN M-003023-01 5728 NM_000314 

PTPN14 M-008509-00 5784 NM_005401 

PTPRU M-009328-01 10076 NM_005704 

TPTE2 M-008107-00 93492 NM_130785 

CTDP1 M-009326-01 9150 NM_004715 

DUSP12 M-007886-01 11266 NM_007240 

Name Catalog number Locus id Accession id 

DUSP13 M-007887-00 51207 NM_016364 

DUSP14 M-007888-00 11072 NM_007026 

DUSP15 M-008484-01 128853 NM_080611 

DUSP18 M-007891-00 150290 NM_152511 

DUSP19 M-007892-01 142679 NM_080876 

DUSP21 M-007893-01 63904 NM_022076 

DUSP23 M-007909-00 54935 NM_017823 

MGC1136 M-008027-01 78986 NM_024025 

MGC26484 M-008030-00 168448 XM_171149 

MK-STYX M-008031-01 51657 NM_016086 

MTMR1 M-008037-01 8776 NM_003828 

MTMR2 M-008038-00 8898 NM_016156 

MTMR4 M-008040-01 9110 NM_004687 

MTMR7 M-008041-00 9108 XM_044727 

PDP2 M-022572-00 57546 NM_020786 

PPEF1 M-009479-00 5475 NM_006240 

PPEF2 M-012250-01 5470 NM_006239 

PPM1B M-008281-01 5495 NM_002706 

PPM1E M-008964-00 22843 NM_014906 

PPM1F M-009544-00 9647 NM_014634 

PPM1G M-005264-01 5496 NM_002707 

PPM1L M-008679-00 151742 NM_139245 

PPM2C M-008718-00 54704 NM_018444 

PPP1CA M-008927-00 5499 NM_002708 

PPP1CB M-008685-00 5500 NM_002709 

PPP2R1A M-010259-01 5518 NM_014225 

PPP2R5A M-009352-01 5525 NM_006243 

PPP2R5B M-009366-00 5526 NM_006244 

PPP2R5C M-009433-00 5527 NM_002719 

PPP2R5D M-009799-01 5528 NM_006245 

PPP2R5E M-008531-01 5529 NM_006246 

PPP3CC M-010005-00 5533 NM_005605 

PPP5C M-009259-00 5536 NM_006247 

PPP6C M-009935-01 5537 NM_002721 

PTP4A1 M-006333-01 7803 NM_003463 

PTP4A2 M-009078-00 8073 NM_003479 

PTP4A3 M-006859-01 11156 NM_007079 

PTPDC1 M-008584-00 138639 NM_152422 

PTPLA M-008742-00 9200 NM_014241 

PTPN1 M-003529-04 5770 NM_002827 

PTPN11 M-003947-01 5781 NM_002834 

PTPN12 M-008064-01 5782 NM_002835 

PTPN13 M-008065-00 5783 NM_006264 

PTPN21 M-009379-01 11099 NM_007039 

PTPN22 M-008066-00 26191 NM_012411 

PTPN23 M-009417-00 25930 NM_015466 

PTPN3 M-009372-01 5774 NM_002829 

PTPN4 M-009489-01 5775 NM_002830 

PTPN7 M-008394-00 5778 NM_002832 

PTPN9 M-008832-00 5780 NM_002833 

PTPRA M-004519-00 5786 NM_002836 

PTPRB M-004994-02 5787 NM_002837 

PTPRC M-008067-00 5788 NM_002838 

PTPRD M-008527-00 5789 NM_002839 

Supporting Table S1: List of screened phosphatase and phosphatase-like siRNAs
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Name Catalog number Locus id Accession id 

PTPRE M-008068-02 5791 NM_006504 

PTPRF M-008375-01 5792 NM_002840 

PTPRH M-009448-00 5794 NM_002842 

PTPRK M-004204-01 5796 NM_002844 

PTPRM M-006326-00 5797 NM_002845 

PTPRN M-009315-01 5798 NM_002846 

PTPRN2 M-008070-00 5799 NM_002847 

ACP2 M-008205-00 53 NM_001610 

INPP5B M-021811-01 3633 NM_005540 

ALPPL2 M-003455-01 251 NM_031313 

PPP3R1 M-009869-01 5534 NM_000945 

IGBP1 M-011298-01 3476 NM_001551 

ANP32E M-015844-00 81611 NM_030920 

LPPR4 M-009911-00 9890 NM_014839 

PPP2CB M-003599-02 5516 NM_004156 

ENPP1 M-003809-01 5167 NM_006208 

MAP3K7IP1 M-004770-00 10454 NM_006116 

ACP6 M-008665-00 51205 NM_016361 

INPP5D M-003013-01 3635 NM_005541 

DUT M-010258-00 1854 NM_001948 

SYNJ1 M-019486-01 8867 NM_003895 

PPP1R11 M-011917-01 6992 NM_021959 

DKFZP761G058 M-018772-00 152926 NM_152542 

FLJ40125 M-009006-00 147699 NM_178494 

AKAP11 M-009277-01 11215 NM_016248 

BPNT1 M-008664-01 10380 NM_006085 

PPM1A M-009574-01 5494 NM_021003 

ACPT M-008366-01 93650 NM_033068 

PHPT1 M-016904-00 29085 NM_014172 

ENPP3 M-004540-00 5169 NM_005021 

PTPN2 M-008969-00 5771 NM_002828 

PPP1R7 M-019589-00 5510 NM_002712 

LOC151242 M-023104-00 151242 XM_087137 

HSPC129 M-008272-00 51496 NM_016396 

MTM1 M-008036-01 4534 NM_000252 

ALPP M-003454-01 250 NM_001632 

MTMR3 M-008039-01 8897 NM_021090 

ENPP4 M-009214-01 22875 NM_014936 

PON1 M-009229-00 5444 NM_000446 

IMPA1 M-010172-01 3612 NM_005536 

PPP1R8 M-010903-00 5511 NM_002713 

PPP2R4 M-005214-00 5524 NM_021131 

Name Catalog number Locus id Accession id 

C21ORF6 M-013856-00 10069 NM_016940 

DUSP3 M-007894-00 1845 NM_004090 

ALPI M-008673-00 248 NM_001631 

TPTE M-008745-01 7179 NM_013315 

ENPP5 M-009805-01 59084 NM_021572 

PON2 M-009676-00 5445 NM_000305 

IMPA2 M-008348-00 3613 NM_014214 

PPP2R2A M-004824-01 5520 NM_002717 

OCRL M-010026-01 4952 NM_000276 

ENPP7 M-009059-00 339221 NM_178543 

PTPRS M-009662-01 5802 NM_002850 

SSH3 M-008937-00 54961 NM_017857 

FBP2 M-010139-01 8789 NM_003837 

PPAP2A M-019098-00 8611 NM_003711 

INPP1 M-008505-01 3628 NM_002194 

PR48 M-019459-00 28227 NM_013239 

PIB5PA M-009108-00 27124 NM_014422 

TENS1 M-009997-00 64759 NM_022748 

C14ORF24 M-018433-00 283635 NM_173607 

STYX M-009571-01 6815 NM_145251 

PTPN18 M-009385-00 26469 NM_014369 

RNGTT M-009782-00 8732 NM_003800 

FHIT M-004952-01 2272 NM_002012 

SYNJ2 M-012624-00 8871 NM_003898 

PPP1CC M-006827-00 5501 NM_002710 

PME-1 M-005211-00 51400 NM_016147 

CILP M-008295-00 8483 NM_003613 

FLJ23751 M-008557-00 92370 NM_152282 

FRMPD2 M-008854-00 143162 NM_152428 

MINPP1 M-009705-00 9562 NM_004897 

PTPRZ1 M-009685-00 5803 NM_002851 

INPP4B M-011539-00 8821 NM_003866 

ALPL M-008658-00 249 NM_000478 

PPP1R2 M-015361-00 5504 NM_006241 

I-4 M-012962-00 80316 NM_025210 

RWDD2 M-015117-00 112611 NM_033411 

DNAJC6 M-009885-00 9829 NM_014787 

ENPP6 M-008704-00 133121 NM_153343 

FBP1 M-008725-00 2203 NM_000507 

PPP2R2B M-003022-01 5521 NM_004576 

PTPRO M-008500-01 5800 NM_002848 
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DUSP  Amino acid sequence

MAHHHHHHSAALEVLFQGPGMSGSFELSVQDLNDLLSDGSGCYSLPSQPCNEVTPRIYVGN 
ASVAQDIPKLQKLGITHVLNAAEGRSFMHVNTNANFYKDSGITYLGIKANDTQEFNLSAYF 
ERAADFIDQALAQKNGRVLVHCREGYSRSPTLVIAYLMMRQKMDVKSALSIVRQNREIGPN 
DGFLAQLCQLNDRLAKEGKLKP 
 

 

 
MAHHHHHHSAALEVLFQGPGRFIAFKVPLQKSFEKKLAPEECFSPLDLFNKIREQNEELGL 
IIDLTYTQRYYKPEDLPETVPYLKIFTVGHQVPDDETIFKFKHAVNGFLKENKDNDKLIGV 
HCTHGLNRTGYLICIYLIDVEGVRPDDAIELFNRCRGHCLERQNYIEDLQNGPIRKNWNSS 
VPRSSDFEDSAHLMQPVHNKPVKQGPRYNLHQIQGHSAPRHFHTQTQSLQQSVRKFSENPH 
VY 
 
 
MAHHHHHHSAALEVLFQGPGYTHVNEVWPKLYIGDEATALDRYRLQKAGFTHVLNAAHGRW 
NVDTGPDYYRDMDIQYHGVEADDLPTFDLSVFFYPAAAFIDRALSDDHSKILVHCVMGRSR 
SATLVLAYLMIHKDMTLVDAIQQVAKNRCVLPNRGFLKQLRELDKQLVQQRRRSQRQDGEE 
EDGREL 

3

11

27 a

 
Data collection  

Space group P21212 

Cell dimensions    

    a, b, c (Å) 56.11, 60.62, 54.55 

    a, b, g  ()  90, 90, 90 

Resolution (Å) 2.2 (2.33-2.2) 

Rsym or Rmerge 0.094 (0.54) 

I / sI 4.0 (3.4) 

Completeness (%) 97.6 (97.6) 

Redundancy 3.8 (3.6) 

Refinement  

Resolution (Å) 20-2.2 

No. reflections 8598 

Rwork / Rfree 0.28/0.32 

R.m.s. deviations  

    Bond lengths (Å) 0.012 

    Bond angles () 1.508 

DUSP27

Supporting Table S2: Amino acid sequences of DUSP3, 11 and 27. The catalytic domain 
containing the HCXXGXXR motif is underlined.

a In bold the amino acid sequence removed by GST-tagged 3C protease for crystallization purposes. 

Supporting Table S3:  Data 
collection and refinement statistics 
for DUSP27.
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Summary and future prospects

Autotaxin inhibitors

The first part of this thesis describes the development of inhibitors of autotaxin (ATX 

or ENPP2), a phosphodiesterase that is responsible for the production of the lipid 

lysophosphatidic acid (LPA) in the circulation. ATX is implicated in several diseases including 

inflammation, fibrotic disease and cancer, making it an interesting potential drug target to 

study. ATX inhibitors are required in the validation process of ATX as a drug target. However, 

at the start of this study, small molecule ATX inhibitors did not exist. In order to discover ATX 

inhibitors, ~40,000 small molecules were screened and several structural classes of inhibitors 

were identified (Chapters 2 and 3). After validation experiments a class of small molecules 

called thiazolidine-2,4-diones proved to be the most promising. This class was amenable to 

chemical optimization, allowing the synthesis and isolation of ~100 analogs of the confirmed 

thiazolidine-2,4-dione screening hit (Figure 1). In the handed optimization approach variations 

were introduced in a benzyl moiety (green) and a benzylidene moiety (blue), which are linked 

via a thiazolidine-2,4-dione core (Figure 1). The key step in the optimization approach was 

the replacement of a carboxylic acid in one of the screening hit analogs by a boronic acid. 

The boronic acid was introduced to target the oxygen nucleophile in threonine 210 (T210), 

an amino acid in the ATX active site which is essential for the activity of this enzyme. This 

modification resulted in a boronic acid-based inhibitor (HA130; IC50 = 30 nM, Figure 1) with 

almost a 100-fold increase in potency compared to our original screening hit (IC50 = 2.5 µM).

Next, the biological properties of HA130 as ATX inhibitor were explored (Chapter 2). 

It was shown that HA130 is a selective inhibitor of ATX and that it does not inhibit ENPP1, 

the closest family member of ATX. Finally, it was demonstrated that HA130 instantaneously 

lowers plasma levels of LPA in mice after intravenous administration. This implies that the 

production of LPA by 

ATX and LPA degradation 

by other enzymes is 

tightly and dynamically 

regulated. Thus, ATX 

can be targeted in vivo 

using boronic acid-based 

inhibitors.

The development 

of ATX inhibitors 

described in Chapters 

2 and 3 was conducted 

before the ATX crystal 

structure was resolved. 

Screening hit HA130 HA155

IC50 (nM): 2500 30 6 5
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Figure 1: Selection of ATX inhibitors described in this thesis. Benzyl 
and benzylidene moiety in the screening hit are highlighted in green 
and blue, respectively.
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In 2011, we obtained a crystal structure of ATX in complex with boronic acid-based inhibitor 

HA155 (IC50 = 6 nM, Figure 1). HA155 is a positional boronic acid isomer of HA130 with a 

higher affinity for ATX compared to HA130 (Chapter 3). The structure of HA155 bound to ATX 

proved that the boronic acid in HA155 indeed targets the threonine oxygen nucleophile in the 

ATX active site. Next, this structure was used to design new boronic acid-based inhibitors and 

replaced the thiazolidine-2,4-dione core in HA155 with other cores (Chapter 4) and variations 

of the ether linker in HA155 were investigated. This study finally led to the discovery of 

a highly active imidazolidine-2,4-dione analog of HA155 (E-28, IC50 = 5 nM) which had an 

E-configured double bond instead of a Z-configuration as in HA155 and all other evaluated 

analogs (Figure 1). To explain how E-28 could bind to ATX molecular docking studies were 

performed. These studies suggested that E-28 binds differently to the hydrophobic pocket 

in ATX compared to HA155 and other Z-configured analogs, opening possibilities for new 

inhibitor designs.

New inhibitor designs that could fully exploit the hydrophobic pocket in ATX are designs 

based on E-28. Extension from the methylene moiety in the 4-fluorobenzyl group of E-28 

with other aromatic moieties could target both regions in the hydrophobic pocket that are 

separately targeted by E-28 and HA155 alone.  

Since the current series of ATX inhibitors contain a fluorine atom, the introduction of 

the positron-emitting radionuclide fluorine-18 (F18) is an option. This will allow tracing of 

inhibitors in vivo (e.g. mice) using Positron Emission Tomography (PET) imaging to gather 

information about the pharmacokinetics of these inhibitors.

To validate ATX as a drug target, besides to ATX inhibitors, proper animal model systems 

that mimic ATX-driven diseases are needed. Few of these models exist today, especially 

proper models regarding cancer are lacking. Generation of such models and using them in 

combination with ATX inhibitors is the next step in the validation of ATX as a drug target.

DUSP inhibitors

After a short introduction on dual specificity phosphatases (DUSP, Chapter 5) the involvement 

of host phosphatases in bacterial infection of human host cells was studied. In this study 

a small interfering RNA (siRNA) phosphatase library was screened to learn which host 

phosphatases are required for the bacterial growth of Salmonella (S.) typhimurium in human 

host cells (Chapter 6). Among the phosphatases identified many DUSPs (DUSP3, 11 and 

27) were present. In parallel, a tyrosine phosphatase-targeted small molecule library was 

tested in order to discover molecules that inhibit S. typhimurium growth in human cells. 

Several compounds inhibited S. typhimurium growth in human host cells and one of these 

compounds inhibited the DUSPs that were identified from the siRNA screen. The most 

promising compound was then further optimized to result in a potent and selective DUSP3 

inhibitor (IC50 = 0.33 μM), with a 15-fold increased potency compared to DUSP27 (IC50 > 5 

μM). Molecular docking of this compound in both DUSP3 and 27 suggests a hydrogen bond 
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between this inhibitor and a tyrosine residue in DUSP3, which cannot be formed in DUSP27, 

explaining the selectivity of this inhibitor. This tyrosine residue is present in the active site 

of DUSP3 but is not conserved in the DUSP active site consensus sequence (HCXXGXXR). 

Therefore, targeting non-conserved active site residues in DUSPs could be a valid strategy for 

the development of selective DUSP inhibitors. Developing selective phosphatase inhibitors is 

a challenging task due to the highly conserved active site residues in phosphatases.

For the optimization of DUSP inhibitors a similar approach was taken as for the first 

optimization method used for the ATX inhibitors. In this method only the outer parts (benzyl 

and benzylidene moieties) of the inhibitor were modified and the thiazolidine-2,4-dione 

core part was left untouched. For increasing affinity and/or selectivity of the DUSP inhibitors 

it would be useful to introduce variations in the thiazolidine-2,4-dione core of the DUSP 

inhibitors using, for example, modifications that are described in Chapter 4.

The approach taken in Chapter 6 to inhibit host DUSP proteins that are essential for 

bacterial growth, seems to be a valid way to control bacterial infection. This new approach 

could be a useful addition to the current treatment of bacterial infections that target solely 

the bacteria itself, and hold promise as a new therapeutic strategy to treat bacterial infections 

with less chance for the development of drug resistance.
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Ontwikkeling van ATX- en DUSP-remmers

ATX-remmers

Autotaxine (ATX) is een enzym met lysofosfolipase D activiteit en is verantwoordelijk voor de 

productie van het bioactieve lipide lysofosfatidezuur (LPA) in de bloedcirculatie. LPA activeert 

verschillende processen in de cel zoals proliferatie, migratie en overleving van de cel. ATX 

en LPA lijken betrokken te zijn bij diverse ziekten zoals kanker, (chronische) ontstekingen en 

fibrose. Het is tot op heden echter nog niet duidelijk wat de exacte functies van ATX en LPA zijn 

in de ontwikkeling van deze ziektes. ATX-remmers kunnen hierin duidelijkheid verschaffen door 

bijvoorbeeld ATX te remmen in diermodellen waarin ATX-gerelateerde ziektes zijn opgewekt. 

Indien deze ATX-remmers een positief effect vertonen in de genoemde diermodellen 

dan kunnen ze direct verder ontwikkeld worden tot nieuwe medicijnen voor de mens.

In het begin van dit onderzoek waren er nog geen actieve en selectieve remmers voor 

ATX bekend. Er is daarom eerst een bibliotheek van ~40.000 commercieel verkrijgbare kleine 

moleculen getest op hun mogelijkheid om ATX te remmen. Dat heeft geresulteerd in de 

identificatie van een chemische klasse van verbindingen van gesubstitueerde thiazolidine-

2,4-dionen, die ATX selectief bleken te remmen. De beste verbinding van deze klasse is 

geselecteerd en chemisch gemodificeerd om het vermogen als ATX-remmer te optimaliseren. 

Deze optimalisatie heeft uiteindelijk een ATX-remmer opgeleverd, genaamd HA130, met een 

100 maal sterkere activiteit voor ATX. De belangrijkste modificatie was de introductie van een 

boorzuurgroep, ontworpen om te binden aan het katalytische threonine-residu in het actieve 

centrum van ATX om zo de activiteit van ATX te blokkeren.

Vervolgens is het effect van HA130 op de productie van LPA in het bloed van muizen 

onderzocht. Toediening van deze remmer aan muizen resulteerde in een zeer snelle verlaging 

van het LPA-niveau in het bloed. Hieruit bleek dat de productie en degradatie van LPA in de 

bloedcirculatie veel dynamischer is dan eerder was aangenomen. ATX-remmers kunnen dus 

het LPA-niveau in de bloedcirculatie verlagen en hiermee een belangrijke bijdrage leveren om 

de rol van ATX en LPA in ziekten verder op te helderen.

Tijdens de voorgaande studies was de  ruimtelijke structuur van ATX nog niet bekend. 

Deze structuur is belangrijk om de functie en het mechanisme van ATX op atomair niveau 

te bestuderen. Recentelijk is er een kristalstructuur van ATX gebonden aan de ATX-remmer 

HA155 opgehelderd, welke laat zien hoe HA155 bindt aan ATX. HA155 is de naam van een 

actiever boorzuuranaloog van de hierboven beschreven HA130. Deze kristalstructuur 

bevestigt de hypothese dat het  boorzuur in HA155 het actieve centrum van ATX blokkeert 

door te binden aan het nucleofiele zuurstofatoom van het katalytische threonine-residu in 

ATX.  De 4-fluorobenzylgroep van HA155 bindt aan een hydrofobe (waterschuwe) uitsparing 
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waar normaal gesproken de hydrofobe staart van LPA aan bindt. De kennis van hoe het 

HA155 molecuul aan ATX bindt geeft een idee waar in de chemische structuur van HA155 

modificaties toegestaan zijn. Gebruikmakend van deze kennis zijn er verschillende nieuwe 

boorzuuranalogen van HA155 ontworpen en gemaakt. Dit heeft uiteindelijk geresulteerd 

in een zeer actief boorzuuranaloog van HA155, genaamd E-28, dat een E-geconfigureerde 

dubbele binding heeft in plaats van een Z-configuratie zoals in HA155 en alle andere 

geteste analogen van HA155. Dit betekent dat de 4-fluorobenzylgroep in E-28 een compleet 

andere ruimtelijke oriëntatie heeft dan in HA155. Men zou dan ook verwachten dat deze 

4-fluorobenzylgroep anders bindt aan de hydrofobe uitsparing in ATX, in vergelijking met 

HA155. Om te verklaren hoe E-28 zou kunnen binden aan ATX zijn er computersimulaties 

uitgevoerd. In deze studie hebben we de binding van E-28 aan het actieve centrum van ATX 

gesimuleerd. Dit suggereerde dat E-28 anders bindt aan de hydrofobe uitsparing in ATX in 

vergelijking met HA155 en andere Z-geconfigureerde analogen. Echter, een kristalstructuur 

van E-28 gebonden aan ATX zal dit moeten bevestigen. De vinding dat E-28 mogelijk 

anders bindt aan de hydrofobe uitsparing in ATX dan HA155, kan gebruikt worden voor het 

ontwerpen van nieuwe ATX-remmers.

DUSP-remmers

Een ander belangrijk onderwerp beschreven in dit proefschrift is de bestrijding van 

bacteriële infecties door middel van het remmen van duale specificiteit fosfatasen (DUSP). 

Bacteriële infecties zijn nog steeds een grote sociale bedreiging. Zo sterven jaarlijks ongeveer 

500.000 mensen aan buiktyfus veroorzaakt door de bacterie Salmonella Typhi. De meeste 

sterfgevallen van deze ziekten vinden plaats in de derde wereld. Ook de recente uitbraak van 

de Enterohemorragische Escherichia coli (EHEC) bacterie in Europa laat zien dat bacteriële 

infecties serieus genomen moeten worden. Door de resistentie van bacteriën voor meerdere 

typen antibiotica (multidrug resistance, MDR) wordt het steeds moeilijker om deze bacteriële 

infecties te behandelen. Nieuwe strategieën zijn daarom nodig om deze resistente bacteriën 

te overwinnen.

Dikwijls verschuilen pathogene (ziekmakende) bacteriën zich in de cellen van de 

gastheer om zo te kunnen ontsnappen aan het immuunsysteem. Daarnaast hebben 

deze bacteriën  bepaalde eiwitten van de gastheercel nodig om te kunnen overleven. 

Het ontwikkelen van geneesmiddelen die aangrijpen op deze gastheer eiwitten, kan een 

alternatieve strategie zijn om bacteriële infecties te behandelen. In deze studie is er gekeken 

naar welke fosfatasen, een klasse van eiwitten, van humane gastheercellen essentieel zijn 

voor de overleving van de bacterie Salmonella (S.) typhimurium. Dit bleken de fosfatasen 

DUSP3, 11 en 27 te zijn. 

Daarnaast zijn er moleculen, die ontworpen zijn om DUSP-fosfatasen te remmen, 

getest op de vermindering van de S. typhimurium-infectie van menselijke gastheercellen. Eén 

van deze verbindingen bleek de eerder geïdentificeerde DUSP-eiwitten van de gastheer die 
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essentieel zijn voor S. typhimurium-infectie te remmen. Deze verbinding werd vervolgens 

geoptimaliseerd, wat resulteerde in een actieve en selectieve remmer van DUSP3, met 

een minstens 15-voudig verhoogde activiteit in vergelijking met DUSP27. Tegenlijkertijd 

is de kristalstructuur van DUSP27 opgelost naast de al bekende structuur van DUSP3. Een 

computersimulatie van de binding van deze remmer met zowel DUSP3 als met DUSP27 

suggereert een waterstofbrug tussen deze remmer en een tyrosine residu in DUSP3, dat 

niet gevormd kan worden in DUSP27. Dit is een mogelijke verklaring voor de selectiviteit van 

deze remmer voor DUSP3. Het tyrosine residu van DUSP3 dat een waterstofbrug vormt met 

de selectieve DUSP3-remmer, is niet geconserveerd in de consensus sequentie (HCXXGXXR) 

die typerend is voor het actieve centrum van de DUSP-familie. Het gebruikmaken van niet-

geconserveerde actieve centrum residuen in de DUSP-familie kan mogelijk een goede 

strategie zijn voor de ontwikkeling van selectieve DUSP-remmers met antibacteriële werking. 

Het ontwikkelen van selectieve fosfataseremmers is een uitdagende taak door de sterk 

geconserveerde actieve centrum residuen in fosfatasen.

Concluderend, het remmen van de activiteit van DUSP-eiwitten in de gastheer die 

essentieel zijn voor bacteriële overleving, lijkt een goede strategie te zijn om bacteriële 

infecties te bestrijden. Deze nieuwe aanpak kan een nuttige aanvulling zijn op de huidige 

behandeling van bacteriële infecties die zich alleen richten op het direct doden van de 

bacterie. Deze nieuwe strategie is ook interessant omdat de ontwikkeling van bacteriële 

resistentie tegen deze remmers wellicht moeilijker is.
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In 2007 begon voor mij het nomadenbestaan tussen Helmond en Amsterdam. Uiteindelijk 

heeft dit geleid tot de totstandkoming van dit proefschrift wat gepaard is gegaan met veel 

samenwerking en steun van anderen. Daarom wil ik hier van de gelegenheid gebruik maken 

om bepaalde mensen in het bijzonder te bedanken.

Huib, het is ongelofelijk hoe jouw groep is gegroeid in de afgelopen jaren. Naast de 

prachtige artikelen en diverse beurzen heb je nu ook de prestigieuze Gouden KNCV medaille 

bemachtigd. Voor dit alles heb ik veel respect. Het autotaxine (ATX) project valt buiten het 

hoofdonderzoek van je groep, waardoor ik hier zelfstandig aan heb kunnen werken. Ik wil je 

bedanken voor de academische vrijheid die je me hebt gegeven in de afgelopen jaren en die 

uiteindelijk heeft geresulteerd in verscheidene artikelen en dit proefschrift.

Zoals de meesten in de inhoudsopgave hebben gelezen gaat het grootste gedeelte van 

mijn onderzoek over de ontwikkeling van ATX-remmers. Daarom wil ik binnen het ATX-

team verschillende mensen bedanken. Natuurlijk te beginnen met Wouter. Jouw kennis 

van ATX en LPA is ongelooflijk, hier heb ik dan ook veel van mogen leren. Laurens, bedankt 

voor al je hulp in het begin van mijn promotie. Anna, veel succes met het afronden van je 

promotieonderzoek en met je nieuwe baan in Barcelona. Olaf, bedankt voor alle in vivo 

experimenten. Leonie, welkom bij het ATX-team. Der Jens, Viel Glück in Anspruch nehmen. 

Dave, every successful inhibitor discovery program starts with a proper screen as we have 

proven. Andrew & colleagues, our collaboration was very fruitful. Tassos, I’m very grateful 

that you and your group have resolved the ATX-HA155 structure during my PhD study. This 

inspired me to further explore the wonders and beauty of the world of structural biology.

Van het bacterie/DUSP-team wil ik als eerste Sjaak bedanken. Jouw enthousiasme voor de 

wetenschap is aanstekelijk en ongeremd. Jouw oorverdovende lokroep net voor de Neefjes-

werkbespreking is niet meer weg te denken van onze afdeling. Tiziana and Petra, thank you 

for your help with the FACS experiments. Coen, het samenwerken met jou was erg prettig 

en heeft mooie resultaten opgeleverd. Ook heb ik veel plezier beleefd aan ons bezoek bij 

jullie in San Francisco. Veel geluk en succes gewenst samen met Diane en jullie dochtertje 

Anna. Patrick, ik wil je bedanken voor je bijdrage aan het DUSP gedeelte van mijn onderzoek. 

Voornamelijk het oplossen van de DUSP27 structuur geeft dit onderzoek een extra dimensie.

Erica, een van de pioniers van de Ovaa-groep, ik wil je bedanken voor de goede begeleiding en 

onze miniwerkbesprekingen die altijd erg verhelderend waren, maar ook gezellig. Helaas was 

onze samenwerking van korte duur aangezien je snel na mijn komst naar Rotterdam vertrok. 

Waarschijnlijk had ik nog veel meer van jou kunnen leren. Boris, jouw bijdrage aan de Ovaa-
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groep was en is groot. Naast je belangrijke bijdrage aan het opzetten van de infrastructuur 

binnen de Ovaa-groep wil ik je persoonlijk bedanken voor de talloze keren dat je naar de UvA 

bent gereisd voor onze NMR-metingen.

De kamergenootjes van het Ovaa-hoofdkantoor: Kim, jouw creativiteit is grenzeloos, zowel 

wetenschappelijk als grafisch. Diverse keren heb je mij advies gegeven over illustraties voor 

posters, presentaties en artikelen. Je was ook nooit te verlegen om een PNAS-grapje te maken 

en kon goed je vrouwtje staan tegenover onze kamerhopper, Farid. Ook Farid wil ik bedanken 

voor onze gesprekken over de wetenschappelijke politiek. Ik ben benieuwd welke kamer 

jouw volgende werkplek zal zijn. And I want to thank Dharjath for our nice conversations and 

breakfast cookies.

Henk, onze peptide-man. Je zit misschien qua locatie een beetje verstopt op onze afdeling, 

maar je bent onmisbaar voor de Ovaa-groep. De talloze peptides die je maakt zijn nodig 

in de meeste onderzoeksprojecten binnen onze groep. Jouw sarcasme en ironie kan ik erg 

waarderen. Ook heb ik erg genoten van je wereldse verhalen onder het genot van een kopje 

koffie.

Tijdens mijn promotieonderzoek heb ik ook de eer gehad om verschillende studenten te 

begeleiden. Sharida, bedankt voor de vele analogen die je voor mij hebt gemaakt. Rob, jij 

hebt een belangrijke bijdrage geleverd aan hoofdstuk 4. Bedankt voor de mooie ATX-remmers 

die je hebt gemaakt. Loes, mijn eerste studente, hoe jou te bedanken? Het was erg plezierig 

om je te begeleiden en ik heb er zelf ook veel van geleerd. Jouw (academische) aanwezigheid 

zal niet vergeten worden.

Veel mensen vergeten dat een succesvolle afdeling steunt op de schouders van de 

ondersteunende staf. Trudi, Suzanne, Patty, Lennert, Marieke en Hans bedankt voor al jullie 

hulp. Daarnaast wil ik alle huidige en voormalige collega’s, in het bijzonder Nalan en Silvia, 

bedanken voor hun hulp en gezelligheid.

Vrienden zijn erg belangrijk tijdens een promotieonderzoek en ze zorgen voor de nodige 

ontspanning. Appel en Tielke, Willy en Edith, Daan en Maura, ik wil jullie bedanken voor alle 

gezellige avondjes en activiteiten en ik hoop dat er nog vele mogen volgen. Appel, ik wil jou 

in het bijzonder bedanken voor al je hulp rondom dit proefschrift. Naast je nieuwe baan en je 

drukke gezinsleven was je nooit te beroerd om kritisch te kijken naar mijn proefschrift.

Alfa-onderzoekers kunnen als de beste het bèta-onderzoek in perspectief plaatsen. Hiervoor 

wil ik mijn zus Karianne en mijn schoonbroer Raymond bedanken.
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Pap en Mam, zonder jullie was dit proefschrift nooit mogelijk geweest. Jullie hebben me 

altijd gesteund tijdens mijn lange studietraject en jullie toewijding was dan ook groot. Alle 

congressen die ik bijwoonde en prijzen die ik won werden nauwkeurig gearchiveerd. Ook 

stonden jullie altijd klaar als ik weer eens een keer moest verhuizen. Het was vaak moeilijk 

uit te leggen waar ik qua onderzoek mee bezig was, maar dat werd gelukkig gecompenseerd 

door de vele verhalen binnen huize Albers. Ik ben dankbaar dat ik jullie beiden persoonlijk 

kan bedanken: Pap en Mam, bedankt woa!

Patricia, lieve schat, waar te beginnen. We kennen elkaar al zo lang dat woorden eigenlijk 

overbodig zijn. Toch wil ik je bedanken voor je steun en begrip, vooral omdat onze dagelijkse 

levens zo verschillend zijn. We hebben de afgelopen jaren veel moeten opgeven door mijn 

nomadenbestaan, maar het heeft ook mooie momenten opgeleverd zoals onze reis naar 

Amerika en onze motorritten. Hopelijk mogen we nog veel van deze mooie momenten samen 

delen.

Harald




