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By this it appears how necessary it is for any man that aspires to true knowledge, to 

examine the definitions of former authors; and either to correct them, where they are 

negligently set down, or to make them himself. For the errors of definitions multiply 

themselves according as the reckoning proceeds, and lead men into absurdities, which at 

last they see, but cannot avoid, without reckoning anew from the beginning - 
 

Thomas Hobbes, Leviathan 
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From the time that we are young and obtain frequent cuts and bruises till later years when 

trauma, surgery, or illness may result in more extensive tissue damage, we repeatedly go 

through a series of events leading to repair of injured tissue. In most cases, wounds heal in 

a seemingly spontaneous manner. In some circumstances, however, the process of wound 

healing is interrupted and scar formation is delayed.  Wound healing is a complex process 

that can be roughly divided into three overlapping phases:  inflammation, proliferation and 

remodelling (Figure 1). To ensure a positive outcome, wound healing processes are strictly 

regulated by cell-cell contact and the action of multiple cytokines, chemokines and growth 

factors released at the site of injury. Unfortunately, wound healing is fragile and subject to 

failure, and may lead to the formation of chronic wounds. Such wounds may benefit from 

maggot therapy, i.e. the application of the larvae of certain flies to the open wound. In this 

thesis, the effects of maggot excretions/secretions on various processes of wound healing 

are investigated. 
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Figure 1 The three phases of wound healing (adapted from S. Enoch and P. Price. Cellular, molecular 
and biochemical differences in the pathophysiology of healing between acute, chronic and aged 
wounds. World Wide Wounds, August 2004) 

 

 

The inflammatory phase 

Four major plasma enzyme systems play a role in the control of inflammation: the clotting, 

kallikrein-kinin, complement and fibrinolytic systems. Following damage to capillary blood 

vessels an immediate reflex promotes vasoconstriction which slows the blood flow. This 

enhances platelet adhesion and activation through exposure to thrombogenic components, 

such as collagen, at the damaged site and leads to the formation of a platelet clot
1,2

. The 

damaged tissue and activated platelets then produce factors that activate a coagulation 

signalling cascade leading to the formation of a fibrin clot. The clot contains plasma-derived 



Chapter 1 

 12 

glycoproteins, such as fibronectin and vitronectin
3
, and plasminogen amongst others, and 

traps platelets, leucocytes and red blood cells
4
. The blood clot serves as a provisional 

extracellular matrix allowing cells to migrate into the injured area; fibrin and fibronectin are 

the most abundant proteins in the provisional matrix. The activated kallikrein-kinin system 

triggers the release of vasoactive kinins which are involved in vasodilatation and increased 

vascular permeability
5
. This process resembles that of histamine released from mast cells. 

The complement system comprises three distinct pathways leading to the formation of 

factors involved in opsonisation of micro-organisms for ingestion by phagocytes, lysis of 

micro-organisms, chemotactic attraction of phagocytes, processing of immune complexes 

and the activation of immune cells
6
. Finally, the fibrinolytic system is responsible for the 

degradation of fibrin clots and plays a role throughout the different phases of the wound 

healing process. Hallmarks of fibrinolysis are the formation of plasmin from fibrin-attached 

plasminogen by plasminogen activators and the subsequent degradation of fibrin by this 

enzyme
2
. 

      The cellular response to tissue damage starts with the activation of resident cells. Within 

24 h of injury, neutrophils are the first to arrive at the injury site in response to chemotactic 

factors derived from activated platelets, resident (dying) cells and infectious micro-

organisms as well as fibrin degradation products and complement factors (C5a and C3a). 

Efficient recruitment of cells from the circulation into the site involves tethering, rolling and 

firm adhesion to the endothelial cell surface and finally diapedesis. Regulation of these initial 

steps involves selectins and integrins that recognize cell surface receptors or matrix proteins 

such as fibrin, fibronectin and vitronectin
3,7

, whereas different molecules are involved in 

diapedesis (e.g. PECAM and CD99)
8
.  Neutrophils are predominant in the first 2-3 days after 

injury and the numbers peak at around 48 h. Their main function is to eliminate dead cells 

and micro-organisms by phagocytosis and subsequent destruction in the phagolysosome 

using oxygen-dependent and -independent mechanisms. The oxygen-dependent 

mechanisms involve NAPDH oxidases which use molecular oxygen to produce superoxide 

anions (O2
-
) and which can be converted to hydrogen peroxide (H2O2)

9
. The enzyme 

myeloperoxidase, present in azurophil granules, converts H2O2 to hypochlorous acid. The 

oxygen-independent mechanisms involve degranulation of the granule subsets (azurophil, 

specific and gelatinase granules and secretory vesicles) into the phagolysosome
10

 as well 

as the extracellular micro-environment. Taken together, the actions of reactive oxygen 

species and granule contents, including enzymes, antimicrobial peptides and proteins, lead 

to the destruction of ingested as well as extracellular micro-organisms. 

      Within 48 h after injury, monocytes are initially attracted to the wound by some of the 

same chemoattractants that trigger neutrophils. Whereas neutrophil numbers decline after a 

couple of days, the recruitment of monocytes continues through monocyte-specific 

chemoattractants
11

. In response to local factors at the wound, monocytes may differentiate 

to macrophages which then become the predominant cell type later in the inflammatory 
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phase (around day 5). In addition to clearing the wound of bacteria and tissue debris, 

monocytes and macrophages in particular regulate the inflammatory process by secreting 

cytokines, chemokines and growth factors. Initially, monocytes differentiate mainly into pro-

inflammatory macrophages. These cells display high levels of pro-inflammatory cytokines 

and chemokines, which are responsible for the recruitment and activation of additional 

leucocytes
12

 and Th1 lymphocytes. Activation of Th1 cells is further induced by the 

expression of co-stimulatory molecules on the macrophages and by antigen processing and 

presentation
13,14

. Th1 lymphocytes activate pro-inflammatory macrophages, thus further 

enhancing the pro-inflammatory responses. At the end of the inflammatory phase, when 

most of the infectious agents and tissue debris are cleared, the balance shifts from pro-

inflammatory macrophages to macrophages with anti-inflammatory/pro-angiogenic cytokine 

and growth factor activities. These cells suppress inflammatory responses both directly
15-17

 

and indirectly by inducing regulatory T cells
18

. They also mediate the clearance of apoptotic 

cells
16,19

 and induce neovascularisation and fibroblast and epidermal cell proliferation
20

, 

thereby playing a pivotal role in the transition from inflammation to repair.  

 

The proliferation phase 

The main characteristic of the proliferation phase is the replacement of the provisional matrix 

with newly formed granulation tissue. This process lasts for about two weeks after 

wounding.  

      Granulation tissue formation, the process that ensures reconstitution of the dermis, 

starts within 4 days after injury. In response to growth factors derived from macrophages 

and keratinocytes, fibroblasts at the wound edges proliferate and migrate into the provisional 

matrix, which they then degrade by activation of the fibrinolytic system. In the meantime, 

secretion of basement membrane components, such as collagen, glycosaminoglycans and 

glycoproteins such as fibronectin and tenascin
21-23

, results in the synthesis of a new 

collagen-rich matrix, a process termed fibroplasia. Fibroblasts that have migrated to the 

wound site produce growth factors to further facilitate protein and extracellular matrix (ECM) 

synthesis. The main function of fibroblasts is the production of new ECM which serves as a 

scaffold for collagen fibrils and facilitates migration of keratinocytes, fibroblasts and 

endothelial cells. Binding of these cells to the ECM is mainly facilitated by integrin receptors. 

The ECM serves also as a reservoir and modulator for (inactive) growth factors
24

 and 

mediates wound contraction
25,26

.  

       To provide nutrients and oxygen to the newly formed granulation tissue, new 

capillaries/blood vessels are formed by sprouting of pre-existing ones. This process, termed 

angiogenesis, consists of the activation of endothelial cells by macrophages, degradation of 

their basement membrane, outgrowth into the wound/new tissue, cell proliferation and 

migration into the perivascular space, tubule formation, basement membrane reconstitution, 

formation of new capillary loops and finally re-establishment of the blood flow
27

. There are 
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several factors that stimulate angiogenesis including growth factors, hypoxic and high-

lactate wound environment and low concentrations of reactive oxygen species
28

. Clearly, 

granulation tissue formation and angiogenesis are overlapping processes. New vessels are 

essential to support the forming matrix, which in turn supports the new capillary network 

      Re-epithelialisation is the process of restoring the epidermis and is induced by the 

presence of several growth factors produced by macrophages, fibroblasts and keratinocytes. 

Within 24 h after injury keratinocytes start migrating from the wound edges using surface 

integrin receptors to interact with the provisional matrix while separating eschar and debris 

that may cover the wound from the newly developing granulation tissue
22

. This process, 

which involves the degradation of the matrix, is part of the fibrinolytic system. In addition to 

cleaving plasminogen to form plasmin, plasminogen activators also activate collagenases, 

which together facilitate the degradation of the ECM and fibrin eschar in the direction of the 

migration of the cells
1
. To ensure sufficient cell numbers for coverage of the wound, 

proliferation of keratinocytes located close to the migrating cells is increased while the 

proliferation potential of migrating keratinocytes is inhibited
29

. When migration ceases, due 

to contact inhibition, keratinocytes attach to the underlying substratum and differentiate to 

generate a stratified epidermis. 

  

The remodelling phase 

Remodelling occurs throughout the entire wound healing process. The provisional matrix is 

replaced by granulation tissue which contains type III collagen and newly formed blood 

vessels, and subsequently is replaced by a collagenous scar predominantly containing type I 

collagen with less mature blood vessels
26

.  

      Wound contraction is the process that leads to the reduction of the wound area. The 

degree of contraction depends on the depth of the wound. During granulation tissue 

formation, fibroblasts undergo phenotypic modulation and differentiate to myofibroblasts, 

which are characterised by the presence of α-smooth muscle actin fibrils along the plasma 

membrane. The classical view is that these cells are primarily responsible for contraction by 

extension of pseudopodia. These facilitate the binding of cytoplasmic actin to extracellular 

fibronectin and collagen fibres, leading to retraction which draws the collagen fibres to the 

cell
25,30,31

. However, two contrasting studies reported myofibroblasts are not required for 

contraction
32,33

. Instead, fibroblasts were shown to influence contraction by reorganizing 

collagen fibrils rather than pull on the surrounding tissue. Therefore, the mechanisms of 

wound contraction are unclear and need further exploration.  

      Approximately 80% (dry weight) of the normal dermis consists of collagen fibres which 

provide structure, strength and rigidity to the tissue
34

. Within the first week after injury, 

fibroblasts produce type III collagen to form granulation tissue. However, this collagen is 

unstructured and does not provide the necessary strength. Therefore, the collagen fibres 

have to be remodelled and this occurs by degradation of type III collagen and subsequent 
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synthesis of type I collagen. The degradation of type III collagen depends on the presence of 

matrix metalloproteinases (MMPs) and their inhibitors produced by macrophages, 

keratinocytes and fibroblasts in response to cytokines, growth factors and/or cell contact 

with the ECM
35

. In addition, the newly formed vasculature undergoes remodelling by 

regression and involution leading to fewer mature vessels
27

. Remodelling continues for up to 

2 years but the resulting scar contains fewer cells than normal skin and only reaches up to 

70% of its pre-injury strength.  

  

 

Impaired wound healing 

 

Wound healing is a well-orchestrated but fragile process and is subject to failure to progress 

through one of its phases (Figure 2), leading to the development of chronic, non-healing 

wounds. This may result in decreased physical, emotional and social function of patients 

and therefore a reduced quality of life. In addition, such wounds, which are one of the most 

common causes of non-traumatic amputation, result in major economic costs for the 

patients, their families and Society as a whole
36

. Chronic wounds mostly affect people over 

the age of 60 and the incidence of these wounds is expected to increase.  

      Impaired healing of wounds can be induced by numerous factors both local and 

systemic. Local factors include the presence of foreign particles or micro-organisms, 

ischaemia, tissue maceration, callus formation, pressure and infection whereas systemic 

factors comprise malnutrition, age, vascular insufficiencies, immune suppressive medication 

and underlying conditions such as diabetes mellitus. The majority of chronic wounds occur 

at the lower extremities and can be classified into three categories: venous ulcers, diabetic 

ulcers and pressure ulcers.  

 

Bacterial infection 

Colonisation and infection of the wound surface by bacteria contribute to the failure of 

wound healing
37-39

. High levels of several bacteria can induce lysis of clots and/or the 

extracellular matrix
40,41

. This results in impaired cell migration and/or proliferation of 

leucocytes and fibroblasts, which leads to a delayed immune response. Consequently, 

bacteria can spread more easily thereby establishing an infection. When leucocytes arrive at 

the affected site, they initiate a substantial pro-inflammatory response to fight the bacterial 

infections. However, the bacteria may have formed biofilms, as is often observed in chronic 

wounds
42

. Due to altered growth characteristics and gene expression profiles
43

, these 

bacteria are protected against the actions of antibiotics
44,45

 and cells and effecter molecules 

of the immune system
39,46

.  Stimulation of pro-inflammatory responses therefore continues 

unabated. In general, bacterial levels above 10
5
 organisms/gram of tissue are associated 
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with poor healing
28

. Clearly, open wounds, especially the presence of necrotic tissue, offer 

an opportunity for bacterial entry and proliferation. 

      A large variety of bacterial species have been identified in chronic wounds. Commonly 

found organisms include gram-positive Staphylococcus aureus, Enterococcus spp, and 

Streptococcus spp, and gram-negative species such as Pseudomonas aeruginosa, 

Enterobacter spp and Serratia spp. Furthermore, anaerobic bacteria have also been 

reported including Peptoniphilus spp, Finegoldia magna and Clostridium spp
47,48

.  
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Figure 2 Processes in chronic wounds 
ROS, reactive oxygen species; TIMPs, tissue inhibitor of metalloproteinases. 

 

 

Enhanced inflammatory responses   

Although pro-inflammatory responses are essential for wound healing, they become 

detrimental in wounds where inflammation persists. In the cases where bacteria cannot be 

eliminated, leucocytes in the wound continue to produce pro-inflammatory mediators. 

Consequently, the influx of new leucocytes, such as neutrophils, monocytes and 

macrophages,  increases
49-51

. This leads to excessive pro-inflammatory responses in these 

wounds, which attract even more cells that also produce pro-inflammatory cytokines
52,53

. 

Phagocytes are activated to release proteolytic enzymes and also to produce large amounts 

of reactive oxygen species (ROS)
54,55

 as a consequence of pro-inflammatory cytokines 

and/or bacterial products present in the wound. In agreement with this, chronic leg ulcers 

are associated with elevated expression of pro-inflammatory cytokines, such as TNF-α, 
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compared to normal healing wounds
56-58

; the levels of these cytokines decrease when the 

wound begins to heal. Moreover, neutrophils of patients with chronic conditions, such as 

chronic venous insufficiency
59

 and posttraumatic osteomyelitis
60

, are primed to produce high 

amounts of superoxide anion upon exposure to stimuli.  

 

Enhanced proteinase activity 

Increased levels of pro-inflammatory cytokines enhance the synthesis and/or release of 

several matrix metalloproteinases and serine proteases
3,53,61

, whereas ROS augment the 

effects of these proteinases
62,63

. In agreement with this, increased proteolysis has been 

observed in chronic wounds. Elevated levels of MMP-1, MMP-2, MMP-8 and MMP-9 have 

been reported for diabetic
64

, pressure
65

 and venous ulcers
66,67

, as compared to normal 

healing wounds. Altered distribution of proteinase-producing cells in specific wound areas 

has been observed
68

. In addition, levels of TIMPs are found to be decreased in chronic 

wounds
64,66

. A possible explanation for this could be that excess levels of proteinases
3,69-71

 

and ROS
62,63

 cause proteinase inhibitor inactivation. Taken together, in chronic wounds the 

balance between MMPs and TIMPs appears to be disturbed favouring wound degradation. 

Of note, some contrasting reports have been published
72

.  

      Other proteinases, such as elastase released from azurophil granules, have been 

reported to be elevated as well in chronic wounds
59,73

 due to the large numbers of activated 

neutrophils. Interestingly, one study showed that elastase degrades MMPs in vivo and the 

authors suggested that elastase is the main cause of ECM destruction
74

.  

 

Impaired matrix synthesis and composition  

Excess proteinase activities cause destruction of the matrix (and newly formed granulation 

tissue) by degradation of its components, such as fibronectin, vitronectin and tenascin-

C
3,64,75,76

. This leads to impaired cell migration and/or proliferation of fibroblasts, 

keratinocytes and endothelial cells. Consequently, the mechanical obstruction of re-

epithelialisation, wound contraction and remodelling may enhance bacterial infection and 

prolong the inflammatory response. Moreover, this may lead to the development of fibrin 

slough and necrotic tissue.  

      Ulcers may be caused by decreased fibrinolytic activity. In chronic conditions such as 

obesity and diabetes, levels of plasminogen activator inhibitor 1 (PAI-1) are enhanced
77,78

, 

probably due to elevated levels of inflammatory mediators such as TNF-α and C5a
79,80

. PAI-

1 binds to and inactivates plasminogen activators, resulting in impaired lysis of pericapillary 

fibrin cuffs and subsequent causes ulcer formation
77,81

. In addition, enhanced levels of 

methylglyoxal are found in diabetic patients resulting in decreased activation of plasminogen 

activators
82

, thereby decreasing fibrinolysis even more. In addition to inducing ulcer 

formation, decreased fibrinolysis of the provisional matrix has been associated with delayed 

re-epithelialisation and reduced migration of fibroblasts and keratinocytes
83-86

. 
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Altered growth factor production and/or signalling 

Chronic wounds may differ in the levels of growth factors and/or in the cellular responses to 

these factors from normal healing wounds. It has been reported that growth factors such as 

PDGF, TGF-β, IGF, FGF and VEGF, which are involved in the recruitment and stimulation of 

cells that are responsible for repair, are decreased in chronic wounds
87-90

. However, other 

reports mention no local growth factor deficiency in chronic wounds
57,91,92

, whereas 

increased levels of PDGF and VEGF have been found as well
93,94

. Of note, increased levels 

of VEGF in chronic wounds were accompanied by increased levels of the VEGF inhibitor
95,96

 

and/or its degradation
70

. These contrasting results for the levels of growth factors may be 

caused by differences in wound pathology and cell types or localisation of the cells within 

the wound and should be further investigated. Furthermore, the mechanisms underlying the 

imbalances in growth factors and their inhibitors in chronic wounds remain to be elucidated. 

Excess levels of proteinases
69-71,97

 and ROS
62,63

 may cause growth factor 

degradation/inactivation. Furthermore, growth factors may bind to protein macromolecules 

and become ‘trapped’ so that they are unable to bind and activate cells
28

. Another possible 

explanation is that an impaired ECM composition diminishes the actions of growth factors 

via a decrease in integrin binding
3
. Finally, intracellular signal transduction may be 

dysfunctional in the cells
98

. 

 

Changes in cellular profile and activity 

Cellular profiles and activities in chronic wounds differ from those in normal healing wounds. 

Leucocytes produce excessive pro-inflammatory mediators, as indicated above. Pro-

inflammatory cytokines have been shown to inhibit proliferation and induce morphological 

changes in normal skin fibroblasts
99

. These cells become senescent (the process of growing 

old) as a consequence and have a diminished or even lost the ability to respond to growth 

factors
100,101

. Additionally, these cells may also be in a state of cell cycle arrest and therefore 

unresponsive to signalling proteins
102

. In agreement with this, fibroblasts derived from 

chronic ulcers display a decreased proliferative response to growth factors due to impaired 

intracellular signalling
98,103,104

.  

      Angiogenesis is impaired in chronic wounds despite enhanced levels of VEGF and, as 

indicated above, enhanced levels of VEGF inhibitor or degradation of VEGF could be 

responsible. Another possible explanation is that excess levels of MMPs degrade the ECM 

thereby impairing endothelial cell migration. In agreement with this, a MMP inhibitor partly 

restored tubule formation in the presence of chronic wound exudate
105

. However, the effects 

of factors present in chronic wounds on endothelial cells are unknown.  

      Finally, epithelialisation is often impaired in chronic wounds, due to impaired migration of 

keratinocytes. A possible explanation could be the protease-induced degradation of the 

ECM. Furthermore, impaired signalling, decreased expression of surface receptors 
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necessary for (growth factor) binding and migration, or increased apoptosis have been 

proposed
3
. 

 

 

Treatment modalities 

 

Many treatments are available that may induce healing of chronic wounds. These treatments 

may involve different aspects of wound bed preparation including a restoration of the 

bacterial balance (e.g. antibacterial agents and dressings), the management of necrosis 

(debridement), the management of exudate (e.g. dressings, high compression bandaging 

and vacuum-assisted closure), and the correction of cellular dysfunction and biochemical 

balances (e.g. growth factors [PDGF-BB], ECM components and bioengineered skin 

containing fibroblast and/or keratinocytes)
106

. Debridement refers to the removal of 

damaged, infected and/or dead tissue from the wound bed. Removal of necrotic tissue 

makes it easier to obtain a moist environment and leads to a better assessment of the 

wound or ulcer. Furthermore, many bacteria are removed simultaneously, which reduces the 

bacterial load in the wound. Additionally, debridement removes senescent cells. Besides the 

clinical relevance, debridement reduces psychological stress due to the bad odour and the 

appearance of the wound, and it leads to an improved clinical and cosmetic outcome. There 

are several ways to debride a wound including surgical, mechanical, chemical, enzymatic 

and autolytic methods. In this thesis maggot debridement therapy is considered in detail.  
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A history of maggot therapy 

 

Although it has been reported
107

 that maggot therapy was used by several peoples such as 

the aboriginals in Australia, the hill peoples of Northern Burma and possibly the Maya in 

Central America, the beneficial effects of myasis (maggot infestation) are not universally 

recognised or appreciated.  

      Most knowledge about the treatment of wounds in 16
th

 Century Europe is obtained from 

a book written by Ambroise Paré (1509-1590), chief surgeon to Charles IX and Henri III. In 

his first ‘Journey’ he describes a passage from the book ‘Of wounds in General’ eighth 

chapter written by John de Vigo stating a frequently applied method to cure wounds made 

by firearms: “…to cauterize them with oyl of Elders scalding hot, in which should be mingled 

a little treacle...”
108

. In the same period, a surgeon from Turin, who was famous for his 

treatment of gunshot wounds, used a balm made of new born whelps boiled in the oil of lilies 

and prepared earthworms with Venetian turpentine
108

. Paré is the first Western surgeon who 

described human myasis on several occasions. He stated, in reference to a patient with a 

bad skull wound: “Now to take away this corruption, I applied at certain times actual 

cauteries…: but mark, after some months space, a great number of worms came forth by 

the holes of the rotten bones from underneath the putrified skull…The bone which nature 

separated was of the bigness of the palm of ones hand… and yet the patient not dye 

thereof; for he recovered yet beyond all means of expectation”
109

. Due to this sentence, 

Paré is regarded by many as one of the first surgeons to recognize the beneficial effects of 

maggots in the healing of wounds. However, the following two statements make clear that 

this is not the case: “what marvail was it, if in these late civil wars, the wounds which were 

for their quantity small… have caused so many and grievous accidents... Especially, feeling 

that the Air which encompasseth us, tainted with putrefaction, corrupts and defiles the 

wounds by inspiration and exspiration… And the corruption was such, that if any changed to 

be undrest for one day, ... the next day the wound would be full of worms”
110

. The second 

statement from Paré, when describing the battle of St. Quintin in 1557 is: “The wounds of 

the hurt people were greatly stinking and full of worms with gangrene and putrefaction; so 

that I was constrained to come with my knife to amputate that which was spoiled. Now their 

were not any medicines… neither was there half enough to dress so great a number of the 

people, … and to kill the worms that were entred into their wounds…”
111

.  

      The first known description of beneficial effects of myasis was recorded by Baron D.J. 

Larrey (1766-1842), inspector-general of the medical department of Napoleon’s army. He 

wrote: “The presence of these maggots in the wounds appears to hasten the completion of 

the suppuration; it caused also an inconvenient itching to the patient, and obliged us to 

dress the wounds three or four times in the day”
112

. Further observations of favourable 

wound myasis, made during the American civil war, came from the confederate surgeons 

Joseph Jones
113

, who investigated the causes of disease and death in confederate prisons 
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and hospitals, and John F. Zacharias, who is regarded as the first Western physician to 

intentionally introduce maggots into wounds for debridement (as described in his 

obituary)
114

.        

      The founder of modern maggot therapy is the orthopaedic surgeon William Baer (1872-

1931). During the First World War, Baer treated two soldiers who had lain on the battlefield 

for seven days. Although having serious injuries, “…they had no fever and there was no 

evidence of septicaemia or blood poisoning. … On removing the clothing from the wounded 

part, much was my surprise to see the wound filled with thousands and thousands of 

maggots, apparently those of the blow fly. …these wounds were filled with the most beautiful 

pink granulation tissue that one could imagine”
115

. In 1928, Baer put his observations into 

practice by successfully treating his first patients with maggots and, after having some 

problems with maggot-induced infections, developed a method to sterilize and cultivate the 

larvae. From 1930 on, maggot therapy became a popular and widespread method for the 

treatment of infected wounds leading to over 53 publications within the first 5 years
116

. 

Several reports were published on cheaper ways of capturing, rearing and sterilising 

maggots as well as on comparing different ways of applying the maggots
117-120

, as Baer’s 

method of rearing and sterilising maggots was relatively expensive. In addition, reports were 

published comparing maggot therapy to several other treatments
121

. Furthermore, the 

bactericidal activities of maggots
122,123

 and the wound healing properties
121,124-126

 were 

investigated thoroughly.  Although observations by different researchers led to contrasting 

conclusions
122,123,126-128

, it was generally agreed on that the beneficial effects of maggots 

were not solely caused by mechanical removal of necrotic tissue but that other factors were 

involved as well.  

      In 1935, the results were published of a questionnaire which was sent out to 947 

surgeons known to have used maggot treatment both in the USA and Canada
116

. 605 

surgeons returned the form leading to a total of 5750 cases; 91.2% of the users expressed a 

favourable opinion (95.3% of the cases) while the remaining 8.8% was neutral or critical. 

The major objections of the latter group were the costs of obtaining the maggots, pain and 

discomfort of patients, along with the time and trouble in applying the treatment. Most 

research on the use of maggot therapy during this time period was probably published by 

S.K. Livingston. In 1936, he published a report on the clinical application of maggots and/or 

maggot ‘active principle’ in 567 patients
121

. Granulation tissue formation was observed in 

88% of the cases leading to hospital discharge. This success rate was 38% higher as 

compared to other treatments. In addition to maggot treatment, a vaccine therapy was 

administered intramuscularly consisting of pyogenic organisms suspended in the ‘active 

principle’ as a vehicle. However, no results were mentioned and no further references were 

made about this vaccine therapy possibly due to unfavourable systemic reactions. In 1937, 

Livingston published another report on the use of ‘active principle' of maggots; of the 1020 

cases, 415 were treated with living maggots in combination with the active principle while 
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605 cases were treated by maggot extract alone
129

. The results showed a 60 to 100% 

clinical improvement, depending on the type of wound, although the extent of improvement 

differed between the wound types. A year later, Livingston published a preliminary report on 

the use of a grease-free jelly containing 5% of the ‘active principle’; although he reported 

beneficial effects on healing, no information was given on the consistence of the jelly
127

.   

      At the end of the 1930s, the development of improved surgical techniques and the 

discovery and distribution of antibiotics made maggot therapy obsolete
107,128,130

. In the 

following 50 years, maggot therapy was used only as a last resort and became largely 

forgotten
131

. In 1986, E. Chernin wrote a short review on maggot therapy as he found the 

‘story of the maggots brief and largely forgotten moment on the surgical stage’ worth 

retelling: “However unlikely they may seem now as agents of human health, the lowly 

maggots worked diligently and well. We have since then restored them to their accustomed 

place as vermin”
132

. Amusingly, Chernin refers to an article published in 1983 by Pechter 

and Sherman as “maggot therapy came and went within a decade or so, though some 

suggest that the technique may one day reappear”.   

 

 

Research into maggot therapy 

 

In the 1930s a large number of experiments were carried out to optimise maggot therapy 

and also to isolate active components from maggots and their excretions/secretions. Since 

its re-introduction in the late 1980s and early 1990s, the number of publications dedicated to 

this therapy has been rising.  

 

Type of flies 

Many species of the Diptera family Calliphoridae (blowfly) are capable of infesting living 

hosts (myasis). These myasis-causing flies can be grouped into two categories: obligate and 

facultative parasites. Obligate parasites can cause severe damage to healthy tissue as 

these larvae need living tissue and are therefore unsuitable for maggot therapy. Facultative 

parasites can feed on living tissue but more commonly use dead/necrotic tissue as their 

source of nutrition.  

      Already in the 1930s, practitioners understood the importance of selecting the most 

suitable fly for maggot therapy. Baer reported the satisfactory use of the blue-black bottle fly 

Phormia regina, the green bottle fly Sucilia (Lucilia) sericata and Lucilia ceaesar
115

. In 

addition, Weil et al reported that the large blue bottle flies (Calliphora vomitans and C. 

erythrocephala) could be used as well
117

, whereas Fine and Alexander were more in favour 

of Lucilia cuprina
119

. The most common type of fly used for therapy was Lucilia sericata 

probably because this species was shown to starve on clean granulation tissue
117

. Choosing 

the right type of fly was not always easy, as noted by Buchman and Blair
117,133

. One of their 
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batches of larvae bored large cavities in the healthy granulation tissue thereby increasing 

the size of the wound; instead of using L. sericata larvae they probably used the similar 

looking Texas screw-worm larvae which are obligate parasites
119

.   

      The first commercial supplier of maggots was Lederle (1932), which sold 1000 maggots 

for five dollars
117,118

. This led to an average treatment cost of 55 dollars per patient. 

Practitioners searched for ways to rear the larvae cheaper themselves as this was too 

expensive for many hospitals. For example, Fine and Alexander reported that they obtained 

their original laying stock by exposing fresh meat in the open near a meat market
117,119

. 

Nowadays, the maggots of Lucilia sericata are used most frequently and are easily available 

from commercial suppliers such as BioMonde in Germany, Zoobiotic in the United Kingdom 

and MonarchLabs in the United States. However, hospitals in many countries still rear their 

own maggots due to costs or transportation problems. 

 

Debridement   

The effects of maggots on wounds can be divided into three general mechanisms: 

debridement, antibacterial effects and stimulation of wound healing.  

      Debridement is the most known and widely accepted mechanism of action by maggots. 

This is emphasized by the FDA’s 2004 approval of maggots as a medical device to clean out 

wounds (hence the name maggot debridement therapy). Maggots likely debride wounds by 

secreting proteolytic enzymes/peptides which dissolve the necrotic tissue. Numerous 

enzymes have been reported including collagenases
134,135

 and serine proteases (trypsin-like 

and chymotrypsin-like)
136,137

, carboxypeptidases A and B, leucine aminopeptidase
138

, 

lipases
139

, a metalloproteinase and an aspartyl proteinase
136

. Subsequently, maggots ingest 

the liquefied tissue which may contain bacteria, cellular debris, and serous drainage of the 

wound. In addition, the mechanical action of wriggling maggots might enhance debridement, 

as the maggots probe and macerate the necrotic tissue with their mouth hooks. Together, 

the secretion of proteolytic enzymes, the ingestion of the resulting liquefied tissue and 

possibly the mechanical action of maggots result in an efficient debridement of necrotic 

wounds.  

 

Antibacterial effects 

Debridement by maggots results in a wound environment that is less susceptible to bacterial 

colonisation. Furthermore, as maggots ingest the dissolved tissue, they take up large 

numbers of bacteria. In 1933, Robinson and Norwood observed that ingested bacteria were 

abundant in the fore stomach of maggots while the hind stomach showed only slight growth 

in one-third of the cases
122

. The intestines of the maggots were sterile in all cases
122

. In 

2000, similar experiments were performed with a GFP-expressing E. coli
140

. The killing of 

bacteria may be caused partially by proteolytic enzymes which are present in the fore-

stomach, but are more abundant in the hind stomach of the maggots as a decrease in 
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bacterial numbers was seen to be related to the level of enzyme activity
141

. In addition to 

bacterial killing in the digestive tract, maggots produce antimicrobial molecules in their 

excretions/secretions (ES). Many reports can be found on the killing of a broad range of 

microbes by ES including Gram-negative bacteria like Pseudomonas aeruginosa, 

Escherichia coli and Salmonella spp, and Gram-positive bacteria such as Staphyloccus 

aureus, Staphylococcus epidermis, Listeria monocytogenes and clinical isolates of 

MRSA
123,142-145

. Unfortunately, reports either do not mention the amount of ES that was 

used, or they used very high amounts of ES, i.e. the equivalent of the production by more 

than 500 maggots in 1 hour. Obviously, the relevance of such amounts of ES would be a 

subject of debate. Taken together, the ES-induced altered wound pH, the ingestion and 

subsequent killing of bacteria in the digestive tract of the maggots, and perhaps antibacterial 

components within ES, could be instrumental in reducing the bacterial load in wounds. 

 

Wound healing 

The third effect of maggots on chronic wounds is induction of wound healing. Although many 

reports describe the appearance of granulation tissue, hardly any research has been 

published on how maggots induce healing. Chambers et al reported that, besides 

debridement, proteases in maggot ES degrade a variety of ECM components and concluded 

that enhanced lysis of the ECM could lead to increased healing
136

. Prete et al reported 

enhanced proliferation of fibroblasts in the presence of different maggot preparations
146

, 

whereas Horobin et al focused on the effect of maggots on fibroblast adhesion and 

migration. They reported that ES significantly reduced fibroblast adhesion to both fibronectin 

and to a lesser extent collagen, due to proteolytic fragmentation of the fibronectin protein 

surface. Based on these results, it was concluded that fibronectin fragmentation products 

may activate fibroblasts and enhance their migration
147

. Using a 2D assay, they reported 

that fibroblast migration across fibronectin is accelerated by serine proteases present in 

ES
148

. In a later study, they used a 3D assay and showed similar results
149

. In wounds going 

through the normal phases of healing, these effects of ES would probably enhance healing. 

However, one of the characteristics of chronic wounds is the presence of enhanced 

protease activity which disrupts the ECM and the provisional matrix to such an extent that 

cell migration is impaired. Therefore, degradation of ECM components most likely does not 

explain the maggot-induced healing. Accordingly, Horobin et al. reported that 1 and 5 µg of 

ES/ml enhanced migration of fibroblasts (both the number of cells and distance covered) 

while 10 µg of ES/ml actually inhibited migration
149

.   
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Scope of this thesis 

 

In an attempt to obtain insight into the mechanisms underlying the beneficial actions of 

maggot therapy, we determined the effects of maggot excretions/secretions on several 

processes involved in wound healing. Chapter 1 describes the various phases of the wound 

healing process, the possible mechanisms involved in failure of wound healing and finally 

the treatment of chronic wounds with medicinal maggots. The healing process in chronic 

wounds is often complicated by bacterial infections, especially when the bacteria reside in 

biofilms thus protecting them from the actions of antibiotics and the immune system. We 

therefore investigated the effects of maggot excretions/secretions (ES) on biofilm formation 

and breakdown of established Staphylococcus aureus and Pseudomonas aeruginosa 

biofilms. Additionally, the antimicrobial activity of ES against planktonic (free-living) bacteria 

is described, using two different techniques (Chapter 2). There was no killing of bacteria 

released from the biofilms and we therefore studied the synergistic effects of maggot ES and 

different antibiotics on the elimination of planktonic S. aureus, in both exponential and 

‘biofilm’ phases and describe the effects of these antibiotics on biofilm formation itself 

(Chapter 3).  

      Although maggots are known primarily for debridement of chronic wounds, little 

information is available concerning the effects of maggots on haemostatic processes. We 

therefore investigated the effect of maggot secretions on blood clot formation and on the 

plasminogen activator induced breakdown of these fibrin clots (Chapter 4). Furthermore, we 

investigated the nature of the active component in the maggot secretions responsible for the 

observed effects.  

      The final part of this thesis focuses on the effects of maggot excretions/secretions on 

inflammatory cells. We report on the effects of ES on the inflammatory responses of 

neutrophils in reaction to the stimuli fMLP and PMA (Chapter 5). For this purpose, we 

studied chemotaxis, degranulation, H2O2-production and phagocytosis and intracellular 

killing of Candida albicans by these cells as well as signal transduction. Besides neutrophils, 

monocytes also play an important role in fighting invading bacteria. In Chapter 6 the effects 

of maggot secretions on the inflammatory responses (cytokine and chemokine production, 

cell surface receptor expression, chemotaxis, phagocytosis, intracellular killing and signal 

transduction) of naïve, LPS- or LTA-stimulated monocytes are reported. Monocytes in 

tissues may differentiate to macrophages with a pro-inflammatory signature or to 

macrophages with an anti-inflammatory/pro-angiogenic signature; we therefore studied the 

effects of secretions on monocyte-macrophage differentiation (Chapter 7). The main focus 

of this chapter is on secretions-induced alterations in the regulatory activity of macrophages, 

using as a read-out the production of cytokines, chemokines and growth factors in response 

to LPS or LTA. In addition, the expression of various cell-surface receptors was measured. 
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Finally, the findings from our studies are summarised and discussed in Chapter 8, and a 

summary in Dutch can be found in Chapter 9.  



 General introduction 

 27 

References 
 

 1. Clark, R. A. 2001. Fibrin and wound healing. Ann. N. Y. Acad. Sci. 936:355-367. 
 2. Lasne, D., B. Jude, and S. Susen. 2006. From normal to pathological hemostasis. Can. J. Anaesth. 

53:S2-11. 
 3. Agren, M. S. and M. Werthen. 2007. The extracellular matrix in wound healing: a closer look at 

therapeutics for chronic wounds. Int. J. Low Extrem. Wounds. 6:82-97. 
 4. Kolev, K. and R. Machovich. 2003. Molecular and cellular modulation of fibrinolysis. Thromb 

Haemost 89:610-621. 
 5. Moreau, M. E., N. Garbacki, G. Molinaro, N. J. Brown, F. Marceau, and A. Adam. 2005. The 

kallikrein-kinin system: current and future pharmacological targets. J Pharmacol. Sci. 99:6-38. 
 6. Gasque, P. 2004. Complement: a unique innate immune sensor for danger signals. Mol. Immunol. 

41:1089-1098. 
 7. Berton, G. and C. A. Lowell. 1999. Integrin signalling in neutrophils and macrophages. Cell Signal. 

11:621-635. 
 8. Vestweber, D. 2007. Adhesion and signaling molecules controlling the transmigration of leukocytes 

through endothelium. Immunol. Rev. 218:178-196. 
 9. Roos, D., R. van Bruggen, and C. Meischl. 2003. Oxidative killing of microbes by neutrophils. 

Microbes. Infect. 5:1307-1315. 
 10. Faurschou, M. and N. Borregaard. 2003. Neutrophil granules and secretory vesicles in 

inflammation. Microbes. Infect. 5:1317-1327. 
 11. DiPietro, L. A. 1995. Wound healing: the role of the macrophage and other immune cells. Shock 

4:233-245. 
 12. Park, J. E. and A. Barbul. 2004. Understanding the role of immune regulation in wound healing. 

Am. J. Surg. 187:11S-16S. 
 13. Makino, M., Y. Maeda, Y. Fukutomi, and T. Mukai. 2006. Contribution of GM-CSF on the 

enhancement of the T cell-stimulating activity of macrophages. Microbes. Infect. 9:70-77 
 14. Verreck, F. A., T. de Boer, D. M. Langenberg, M. A. Hoeve, M. Kramer, E. Vaisberg, R. 

Kastelein, A. Kolk, R. Waal-Malefyt, and T. H. Ottenhoff. 2004. Human IL-23-producing type 1 
macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. 
Proc. Natl. Acad. Sci. USA 101:4560-4565. 

 15. Leibovich, S. J. and R. Ross. 1975. The role of the macrophage in wound repair. A study with 
hydrocortisone and antimacrophage serum. Am. J. Pathol. 78:71-100. 

 16. Fadok, V. A., D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson. 1998. 
Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production 
through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest 101:890-
898. 

 17. Tassiulas, I., K. H. Park-Min, Y. Hu, L. Kellerman, D. Mevorach, and L. B. Ivashkiv. 2007. 
Apoptotic cells inhibit LPS-induced cytokine and chemokine production and IFN responses in 
macrophages. Hum. Immunol. 68:156-164. 

 18. Savage, N. D. L., T. de Boer, K. V. Walburg, S. A. Joosten, K. van Meijgaarden, A. Geluk, and 
T. H. Ottenhoff. 2008. Human anti-inflammatory macrophages induce Foxp3

+
GITR

+
CD25

+
 regulatory T 

cells, which suppress via membrane-bound TGFb-1. J. Immunol. 181:2220-2226. 
 19. Xu, W., A. Roos, N. Schlagwein, A. M. Woltman, M. R. Daha, and C. van Kooten. 2006. IL-10-

producing macrophages preferentially clear early apoptotic cells. Blood 107:4930-4937. 
 20. Sunderkotter, C., K. Steinbrink, M. Goebeler, R. Bhardwaj, and C. Sorg. 1994. Macrophages 

and angiogenesis. J. Leukoc. Biol. 55:410-422. 
 21. Wahl, S. M. 1985. Host immune factors regulating fibrosis. Ciba Found. Symp. 114:175-195. 
 22. Tsirogianni, A. K., N. M. Moutsopoulos, and H. M. Moutsopoulos. 2006. Wound healing: 

immunological aspects. Injury 37 Suppl 1:S5-12. 
 23. Kurkinen, M., A. Vaheri, P. J. Roberts, and S. Stenman. 1980. Sequential appearance of 

fibronectin and collagen in experimental granulation tissue. Lab Invest 43:47-51. 
 24. Taipale, J. and J. Keski-Oja. 1997. Growth factors in the extracellular matrix. FASEB J 11:51-59. 
 25. Singer, I. I., D. W. Kawka, D. M. Kazazis, and R. A. Clark. 1984. In vivo co-distribution of 

fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies 
of the fibronexus at the myofibroblast surface. J. Cell Biol. 98:2091-2106. 

 26. Li, J., J. Chen, and R. Kirsner. 2007. Pathophysiology of acute wound healing. Clin Dermatol. 
25:9-18. 



Chapter 1 

 28 

 27. Distler, J. H., A. Hirth, M. Kurowska-Stolarska, R. E. Gay, S. Gay, and O. Distler. 2003. 
Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q. J. Nucl. Med. 47:149-
161. 

 28. Whitney, J. 2005. Overview: Acute and Chronic wounds. Nurs Clin N Am 40:191-205. 
 29. Santoro, M. M. and G. Gaudino. 2005. Cellular and molecular facets of keratinocyte 

reepithelization during wound healing. Exp Cell Res. 304:274-286. 
 30. Welch, M. P., G. F. Odland, and R. A. Clark. 1990. Temporal relationships of F-actin bundle 

formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound 
contraction. J Cell Biol. 110:133-145. 

 31. Follonier, L., S. Schaub, J. J. Meister, and B. Hinz. 2008. Myofibroblast communication is 
controlled by intercellular mechanical coupling. J Cell Sci. 121:3305-3316. 

 32. Berry, D. P., K. G. Harding, M. R. Stanton, B. Jasani, and H. P. Ehrlich. 1998. Human wound 
contraction: collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg 102:124-131. 

 33. Ehrlich, H. P., K. A. Keefer, R. L. Myers, and A. Passaniti. 1999. Vanadate and the absence of 
myofibroblasts in wound contraction. Arch. Surg 134:494-501. 

 34. Bernstein, E. F. and J. Uitto. 1996. The effect of photodamage on dermal extracellular matrix. Clin 
Dermatol 14:143-151. 

 35. Steffensen, B., L. Hakkinen, and H. Larjava. 2001. Proteolytic events of wound-healing--
coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix 
molecules. Crit Rev. Oral Biol. Med. 12:373-398. 

 36. Boulton, A. J., L. Vileikyte, G. Ragnarson-Tennvall, and J. Apelqvist. 2005. The global burden 
of diabetic foot disease. Lancet 366:1719-1724. 

 37. Gjodsbol, K., J. J. Christensen, T. Karlsmark, B. Jorgensen, B. M. Klein, and K. A. Krogfelt. 
2006. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int. Wound. J. 3:225-
231. 

 38. Harrison-Balestra, C., A. L. Cazzaniga, S. C. Davis, and P. M. Mertz. 2003. A wound-isolated 
Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. 
Dermatol. Surg. 29:631-635. 

 39. Davis, S. C., L. Martinez, and R. Kirsner. 2006. The diabetic foot: the importance of biofilms and 
wound bed preparation. Curr. Diab. Rep. 6:439-445. 

 40. Bergmann, S. and S. Hammerschmidt. 2007. Fibrinolysis and host response in bacterial 
infections. Thromb Haemost 98:512-520. 

 41. Degen, J. L., T. H. Bugge, and J. D. Goguen. 2007. Fibrin and fibrinolysis in infection and host 
defense. J. Thromb Haemost 5 (suppl 1):24-31. 

 42. Edwards, R. and K. G. Harding. 2004. Bacteria and wound healing. Curr. Opin. Infect. Dis. 17:91-
96. 

 43. Stoodley, P., K. Sauer, D. G. Davies, and J. W. Costerton. 2002. Biofilms as complex 
differentiated communities. Annu. Rev. Microbiol. 56:187-209. 

 44. Sheldon, A. T.  2005. Antibiotic resistance: a survival strategy. Clin. Lab Sci. 18:170-180. 
 45. Gilbert, P., D. G. Allison, and A. J. McBain. 2002. Biofilms in vitro and in vivo: do singular 

mechanisms imply cross-resistance? Symp. Ser. Soc. Appl. Microbiol.98S-110S. 
 46. Leid, J. G., M. E. Shirtliff, J. W. Costerton, and A. P. Stoodley. 2002. Human leukocytes adhere 

to, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun. 70:6339-6345. 
 47. Dowd, S. E., Y. Sun, P. R. Secor, D. D. Rhoads, B. M. Wolcott, G. A. James, and R. D. Wolcott. 

2008. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome 
shotgun sequencing. BMC. Microbiol. 8:43. 

 48. Dowd, S. E., R. D. Wolcott, Y. Sun, T. McKeehan, E. Smith, and D. Rhoads. 2008. Polymicrobial 
Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX 
Amplicon Pyrosequencing (bTEFAP). Plos One 3:e3326. 

 49. Rosner, K., C. Ross, T. Karlsmark, A. A. Petersen, F. Gottrup, and G. L. Vejlsgaard. 1995. 
Immunohistochemical characterization of the cutaneous cellular infiltrate in different areas of chronic leg 
ulcers. APMIS 103:293-299. 

 50. Loots, M. A., E. N. Lamme, J. Zeegelaar, J. R. Mekkes, J. D. Bos, and E. Middelkoop. 1998. 
Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus 
acute wounds. J. Invest Dermatol. 111:850-857. 

 51. Wetzler, C., H. Kampfer, B. Stallmeyer, J. Pfeilschifter, and S. Frank. 2000. Large and sustained 
induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged 
persistence of neutrophils and macrophages during the late phase of repair. J. Invest Dermatol. 
115:245-253. 



 General introduction 

 29 

 52. Hirano, Y., M. Shichijo, M. Deguchi, M. Nagira, N. Suzuki, Y. Nishitani, M. Hattori, and A. 
Arimura. 2007. Synergistic effect of PGD2 via prostanoid DP receptor on TNF-alpha-induced 
production of MCP-1 and IL-8 in human monocytic THP-1 cells. Eur. J. Pharmacol. 560:81-88. 

 53. Calandra, T. and T. Roger. 2003. Macrophage migration inhibitory factor: a regulator of innate 
immunity. Nat. Rev. Immunol. 3:791-800. 

 54. Gauss, K. A., L. K. Nelson-Overton, D. W. Siemsen, Y. Gao, F. R. DeLeo, and M. T. Quinn. 
2007. Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor 
necrosis factor-alpha. J. Leukoc. Biol. 82:729-741. 

 55. Meier, B. 2001. Superoxide generation of phagocytes and nonphagocytic cells. Protoplasma 
217:117-124. 

 56. Goren, I., H. Kampfer, M. Podda, J. Pfeilschifter, and S. Frank. 2003. Leptin and wound 
inflammation in diabetic ob/ob mice: differential regulation of neutrophil and macrophage influx and a 
potential role for the scab as a sink for inflammatory cells and mediators. Diabetes 52:2821-2832. 

 57. Trengove, N. J., H. Bielefeldt-Ohmann, and M. C. Stacey. 2000. Mitogenic activity and cytokine 
levels in non-healing and healing chronic leg ulcers. Wound. Repair Regen. 8:13-25. 

 58. Yabunaka, N., J. Nishihira, Y. Mizue, M. Tsuji, M. Kumagai, Y. Ohtsuka, M. Imamura, and M. 
Asaka. 2000. Elevated serum content of macrophage migration inhibitory factor in patients with type 2 
diabetes. Diabetes Care 23:256-258. 

 59. Stvrtinova, V., E. Jahnova, S. Weissova, M. Horvathova, and M. Ferencik. 2001. Inflammatory 
mechanisms involving neutrophils in chronic venous insufficiency of lower limbs. Bratisl. Lek. Listy 
102:235-239. 

 60. Wagner, C., A. Kaksa, W. Muller, B. Denefleh, V. Heppert, A. Wentzensen, and G. M. Hansch. 
2004. Polymorphonuclear neutrophils in posttraumatic osteomyelitis: cells recovered from the inflamed 
site lack chemotactic activity but generate superoxides. Shock 22:108-115. 

 61. Lobmann, R., G. Schultz, and H. Lehnert. 2005. Proteases and the diabetic foot syndrome: 
mechanisms and therapeutic implications. Diabetes Care 28:461-471. 

 62. Chen, W. Y. and A. A. Rogers. 2007. Recent insights into the causes of chronic leg ulceration in 
venous diseases and implications on other types of chronic wounds. Wound. Repair Regen. 15:434-
449. 

 63. Wlaschek, M. and K. Scharffetter-Kochanek. 2005. Oxidative stress in chronic venous leg ulcers. 
Wound. Repair Regen. 13:452-461. 

 64. Lobmann, R., A. Ambrosch, G. Schultz, K. Waldmann, S. Schiweck, and H. Lehnert. 2002. 
Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic 
patients. Diabetologia 45:1011-1016. 

 65. Yager, D. R., L.-Y. Zhang, H.-X. Liang, R. F. Diegelmann, and I. Kelman Cohen. 1996. Wound 
fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity 
compared to surgical wound fluids. J. Invest Dermatol. 107:743-748. 

 66. Subramaniam, K., C. M. Pech, M. C. Stacey, and H. J. Wallace. 2008. Induction of MMP-1, MMP-
3 and TIMP-1 in normal dermal fibroblasts by chronic venous leg ulcer wound fluid*. Int. Wound. J. 5:79-
86. 

 67. Beidler, S. K., C. D. Douillet, D. F. Berndt, B. A. Keagy, P. B. Rich, and W. A. Marston. 2008. 
Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous 
insufficiency before and after compression therapy. Wound. Repair Regen. 16:642-648. 

 68. Mirastschijski, U., U. Impola, T. Jahkola, T. Karlsmark, M. S. Agren, and U. Saarialho-Kere. 
2002. Ectopic localization of matrix metalloproteinase-9 in chronic cutaneous wounds. Hum. Pathol. 
33:355-364. 

 69. Chen, S. M., S. I. Ward, O. O. Olutoye, R. F. Diegelmann, and C. Kelman, I. 1997. Ability of 
chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase 
activity and diminished levels of proteinase inhibitors. Wound. Repair Regen. 5:23-32. 

 70. Lauer, G., S. Sollberg, M. Cole, I. Flamme, J. Sturzebecher, K. Mann, T. Krieg, and S. A. 
Eming. 2000. Expression and proteolysis of vascular endothelial growth factor is increased in chronic 
wounds. J. Invest Dermatol. 115:12-18. 

 71. Trengove, N. J., M. C. Stacey, S. MacAuley, N. Bennett, J. Gibson, F. Burslem, G. Murphy, and 
G. Schultz. 1999. Analysis of the acute and chronic wound environments: the role of proteases and 
their inhibitors. Wound. Repair Regen. 7:442-452. 

 72. Cook, H., P. Stephens, K. June Davies, K. G. Harding, and D. W. Thomas. 2000. Defective 
extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, 
TIMP-2, and MMP-2 activity. J Invest Dermatol 115:225-233. 

 73. Shields, D. A., S. K. Andaz, S. Sarin, J. H. Scurr, and P. D. Coleridge Smith. 1994. Plasma 
elastase in venous disease. Br. J. Surg. 81:1496-1499. 



Chapter 1 

 30 

 74. Grinnell, F. and M. Zhu. 1996. Fibronectin degradation in chronic wounds depends on the relative 
levels of elastase, alpha1-proteinase inhibitor, and alpha2-macroglobulin. J Invest Dermatol 106:335-
341. 

 75. Briggaman, R. A., N. M. Schechter, J. Fraki, and G. S. Lazarus. 1984. Degradation of the 
epidermal-dermal junction by proteolytic enzymes from human skin and human polymorphonuclear 
leukocytes. J. Exp. Med. 160:1027-1042. 

 76. Herrick, S., G. Ashcroft, G. Ireland, M. Horan, C. McCollum, and M. Ferguson. 1997. Up-
regulation of elastase in acute wounds of healthy aged humans and chronic venous leg ulcers are 
associated with matrix degradation. Lab Invest 77:281-288. 

 77. Agirbasli, M. 2005. Pivotal role of plasminogen-activator inhibitor 1 in vascular disease. Int. J. Clin. 
Pract. 59:102-106. 

 78. Wysocki, A. B., A. O. Kusakabe, S. Chang, and T. L. Tuan. 1999. Temporal expression of 
urokinase plasminogen activator, plasminogen activator inhibitor and gelatinase-B in chronic wound 
fluid switches from a chronic to acute wound profile with progression to healing. Wound. Repair Regen. 
7:154-165. 

 79. Kastl, S. P., W. S. Speidl, C. Kaun, G. Rega, A. Assadian, T. W. Weiss, P. Valent, G. W. 
Hagmueller, G. Maurer, K. Huber, and J. Wojta. 2006. The complement component C5a induces the 
expression of plasminogen activator inhibitor-1 in human macrophages via NF-kappaB activation. J. 
Thromb. Haemost. 4:1790-1797. 

 80. Skurk, T. and H. Hauner. 2004. Obesity and impaired fibrinolysis: role of adipose production of 
plasminogen activator inhibitor-1. Int. J. Obes. Relat Metab Disord. 28:1357-1364. 

 81. Zollner, T. M., J. C. Veraart, M. Wolter, S. Hesse, B. Villemur, A. Wenke, R. J. Werner, W. H. 
Boehncke, S. S. Jost, I. Scharrer, and R. Kaufmann. 1997. Leg ulcers in Klinefelter's syndrome--
further evidence for an involvement of plasminogen activator inhibitor-1. Br. J. Dermatol. 136:341-344. 

 82. Lerant, I., K. Kolev, J. Gombas, and R. Machovich. 2000. Modulation of plasminogen activation 
and plasmin activity by methylglyoxal modification of the zymogen. Biochim. Biophys. Acta 1480:311-
320. 

 83. Romer, J., T. H. Bugge, C. Pyke, L. R. Lund, M. J. Flick, and J. L. Degen. 1996. Impaired wound 
healing in mice with a disrupted plasminogen gene. Nat Med 2:287-292. 

 84. Greiling, D. and R. A. Clark. 1997. Fibronectin provides a conduit for fibroblast transmigration from 
collagenous stroma into fibrin clot provisional matrix. J. Cell Sci. 110 ( Pt 7):861-870. 

 85. Bugge, T. H., K. W. Kombrinck, M. J. Flick, C. C. Daugherty, M. J. Danton, and J. L. Degen. 
1996. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 
87:709-719. 

 86. Lund, L. R., K. A. Green, A. A. Stoop, M. Ploug, K. Almholt, J. Lilla, B. S. Nielsen, I. J. 
Christensen, C. S. Craik, Z. Werb, K. Dano, and J. Romer. 2006. Plasminogen activation 
independent of uPA and tPA maintains wound healing in gene-deficient mice. EMBO J. 25:2686-2697. 

 87. Pierce, G. F., J. E. Tarpley, J. Tseng, J. Bready, D. Chang, W. C. Kenney, R. Rudolph, M. C. 
Robson, B. J. Vande, P. Reid, and . 1995. Detection of platelet-derived growth factor (PDGF)-AA in 
actively healing human wounds treated with recombinant PDGF-BB and absence of PDGF in chronic 
nonhealing wounds. J Clin Invest 96:1336-1350. 

 88. Shukla, A., M. P. Dubey, R. Srivastava, and B. S. Srivastava. 1998. Differential expression of 
proteins during healing of cutaneous wounds in experimental normal and chronic models. Biochem. 
Biophys. Res. Commun. 244:434-439. 

 89. Jude, E. B., R. Blakytny, J. Bulmer, A. J. Boulton, and M. W. Ferguson. 2002. Transforming 
growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers. Diabet. Med 19:440-447. 

 90. Blakytny, R., E. B. Jude, G. J. Martin, A. J. Boulton, and M. W. Ferguson. 2000. Lack of insulin-
like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J 
Pathol. 190:589-594. 

 91. Galkowska, H., W. L. Olszewski, and U. Wojewodzka. 2005. Keratinocyte and dermal vascular 
endothelial cell capacities remain unimpaired in the margin of chronic venous ulcer. Arch. Dermatol. 
Res. 296:286-295. 

 92. Harris, I. R., K. C. Yee, C. E. Walters, W. J. Cunliffe, J. N. Kearney, E. J. Wood, and E. Ingam. 
1995. Cytokine and protease levels in healing and non-healing chronic venous leg ulcers. Exp Dermatol 
4:342-349. 

 93. Drinkwater, S. L., K. G. Burnand, R. Ding, and A. Smith. 2003. Increased but ineffectual 
angiogenic drive in nonhealing venous leg ulcers. J Vasc Surg 38:1106-1112. 

 94. Tian, Y. W. and M. C. Stacey. 2003. Cytokines and growth factors in keratinocytes and sweat 
glands in chronic venous leg ulcers. An immunohistochemical study. Wound. Repair Regen. 11:316-
325. 



 General introduction 

 31 

 95. Hazarika, S., A. O. Dokun, Y. Li, A. S. Popel, C. D. Kontos, and B. H. Annex. 2007. Impaired 
angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular 
endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ. Res. 
101:948-956. 

 96. Eming, S. A., G. Lauer, M. Cole, S. Jurk, H. Christ, C. Hornig, T. Krieg, and H. A. Weich. 2004. 
Increased levels of the soluble variant of the vascular endothelial growth factor receptor VEGFR-1 are 
associated with a poor prognosis in wound healing. J Invest Dermatol 123:799-802. 

 97. Wlaschek, M., D. Peus, V. Achterberg, W. Meyer-Ingold, and K. Scharffetter-Kochanek. 1997. 
Protease inhibitors protect growth factor activity in chronic wounds. Br. J Dermatol 137:646. 

 98. Kim, B. C., H. T. Kim, S. H. Park, J. S. Cha, T. Yufit, S. J. Kim, and V. Falanga. 2003. Fibroblasts 
from chronic wounds show altered TGF-beta-signaling and decreased TGF-beta Type II receptor 
expression. J Cell Physiol 195:331-336. 

 99. Mendez, M. V., J. D. Raffetto, T. Phillips, J. O. Menzoian, and H. Y. Park. 1999. The proliferative 
capacity of neonatal skin fibroblasts is reduced after exposure to venous ulcer wound fluid: A potential 
mechanism for senescence in venous ulcers. J Vasc Surg 30:734-743. 

 100. Agren, M. S., W. H. Eaglstein, M. W. Ferguson, K. G. Harding, K. Moore, U. K. Saarialho-Kere, 
and G. S. Schultz. 2000. Causes and effects of the chronic inflammation in venous leg ulcers. Acta 
Derm. Venereol. Suppl (Stockh) 210:3-17. 

 101. Agren, M. S., H. H. Steenfos, S. Dabelsteen, J. B. Hansen, and E. Dabelsteen. 1999. 
Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers 
is ulcer-age dependent. J Invest Dermatol 112:463-469. 

 102. Vande Berg, J. S. and M. C. Robson. 2003. Arresting cell cycles and the effect on wound healing. 
Surg Clin North Am 83:509-520. 

 103. Lal, B. K., S. Saito, P. J. Pappas, F. T. Padberg, Jr., J. J. Cerveira, R. W. Hobson, and W. N. 
Duran. 2003. Altered proliferative responses of dermal fibroblasts to TGF-beta1 may contribute to 
chronic venous stasis ulcer. J Vasc Surg 37:1285-1293. 

 104. Raffetto, J. D., R. Vasquez, D. G. Goodwin, and J. O. Menzoian. 2006. Mitogen-activated 
protein kinase pathway regulates cell proliferation in venous ulcer fibroblasts. Vasc Endovascular. Surg 
40:59-66. 

 105. Ulrich, D., F. Lichtenegger, F. Unglaub, R. Smeets, and N. Pallua. 2005. Effect of chronic 
wound exudates and MMP-2/-9 inhibitor on angiogenesis in vitro. Plast Reconstr Surg 116:539-545. 

 106. Vowden, K. and P. Vowden. 2002. Wound bed preparation. World Wide Wounds. 
 107. Sherman, R. A., M. J. R. Hall, and S. Thomas. 2000. Medicinal maggots: An ancient remedy for 

some contemporary afflictions. Annu. Rev. Entomol. 45:55-81. 
 108. Pare, A. 1665. Book XXIX The Apology or Treatise, containing the voyages made into divers 

places. The voyage of Thurin, 1535., p. 756-757. The workes of that famous chirurgion Ambrose Parey; 
Translated out of Latine by T. Johnson and compared with the French. 

 109. Pare, A. 1665. Book X; Of the Green and Bloudy Wounds of each part. Chapter XX: Of the 
Corruption and Caries, or Rottenness of the Bones of the Head, p. 264. The workes of that famous 
chirurgion Ambrose Parey; Translated out of Latine by T. Johnson and compared with the French. 

 110. Pare, A. 1665. Book XI: Of Wounds made by Gunshot, and other fiery Engines, and all Sorts of 
Weapons. Another Discourse of these things, which King Charles the Ninth, returning from the 
expedition and taking of Rouen, inquired of me concerning wounds made by Gunshot., p. 294. The 
workes of that famous chirurgion Ambrose Parey; Translated out of Latine by T. Johnson and compared 
with the French. 

 111. Pare, A. 1665. Book XXIX The Apology or Treatise, containing the voyages made into divers 
places. The battle of S Quintin, 1557., p. 771-772. The workes of that famous chirurgion Ambrose 
Parey; Translated out of Latine by T. Johnson and compared with the French. 

 112. Larrey, D. J.  1815. Memoirs of military surgery. abridged and translated by J. Waller. 1, 48.  
 113. Jones, J. 1867. Confederate military prison hospital at andersonvill,GA., p. 520-521. In A. Flint 

(ed.), Sanitary memoirs of the rebellion. Contributions relating to the causation and prevention of 
disease, and to camp diseases; together with a report of the diseases, etc., among the prisoners at 
Andersonvill, GA. Hurd; Houghton; New York. 

 114. Editorial. 1904. Obituary. JAMA Sept. 
 115. Baer, W. S. 1931. The treatment of chronic osteomyelitis with the maggot (larva of the blowfly). J. 

Bone Jt. Surg 13:438-475. 
 116. Robinson, W. 1935. Progress of maggot therapy in the united states and canada in the treatment 

of suppurative diseases. Am. J. Surg. 29:67-71. 



Chapter 1 

 32 

 117. Weil, G., R. Simon, and Sweadner WR. 1933. A biological, bacteriological and clinical study of 
larval or maggot therapy in the treatment of acute and chronic pyogenic infections. Am. J. Surg. 19:36-
48. 

 118. McKeever, D. C. 1933. Maggots in treatment of osteomyelitis: a simple inexpensive method. J 
Bone Joint Surg Am 15:85-93. 

 119. Fine, A. and H. Alexander. 1934. Maggot therapy: Technique and Clinical Application. J Bone 
Joint Surg Am 16:572-582. 

 120. Hobson, R. P. 1932. Studies on the nutrition of blow-fly larvae. II. Role of the intestinal flora in 
digestion. J Exp Biol 9:128-138. 

 121. Livingston, S. K. 1936. The therapeutic active principle of maggots: with a description of its 
clinical application in 567 cases. J Bone Joint Surg Am 18:751-756. 

 122. Robinson, W. and V. H. Norwood. 1933. The role of surgical maggots in the disinfection of 
osteomyelitis and other infected wounds. J Bone Joint Surg Am 15:409-412. 

 123. Simmons, S. W. 1935. A Bactericidal Principle in Excretions of Surgical Maggots which Destroys 
Important Etiological Agents of Pyogenic Infections. J. Bacteriol. 30:253-267. 

 124. Robinson, W. 1935. Stimulation of healing in non-healing wounds: by allantoin occuring in maggot 
secretions and of wide biological distribution. J Bone Joint Surg Am 17:267-271. 

 125. Greenbaum, F. R. 1936. Allantoin; a new granulation tissue stimulating substance with especial 
emphasis on allantoin in ointment form. Am. J. Surg. 34:259-265. 

 126. Robinson, W. 1940. Ammonium bicarbonate secreted by surgical maggots stimulates healing in 
purulent wounds. Am. J. Surg. 47:111-115. 

 127. Livingston, S. K. 1938. Clinical results following the use of a surgical jelly containing the maggot 
active principle; a preliminary report. Am. J. Surg. 36:49-50. 

 128. Dickson, F. D., R. L. Diveley, and R. Kiene. 1941. The use of sulfathiazole in the treatments of 
subacute and chronic osteomyelitis. J Bone Joint Surg Am 23:516-520. 

 129. Livingston, S. K. 1937. Therapeutics of maggot active principle; clinical application in 1020 cases. 
Am. J. Surg. 35:554-556. 

 130. Omer, G. E. 1987. Orthopaedics in 1921-1953: Advances and Current Problems. J Bone Joint 
Surg Am 69:1262-1264. 

 131. Horn, K. L., A. H. Cobb, and G. A. Gates. 1976. Maggot Therapy for Subacute Mastoiditis. Arch 
Otolaryngol 102:377-379. 

 132. Chernin, E. 1986. Surgical maggots. South. Med. J 79:1143-1145. 
 133. Buchman, J. and J. E. Blair. 1932. Maggots and their use in the treatment of chronic 

osteomyelitis. Surg. Gynec. Obstet.177. 
 134. Ziffren, S. E., H. E. Heist, S. C. May, and N. A. Womack. 1953. The secretion of collagenase by 

maggots and its implication. Ann. Surg. 138:932-934. 
 135. Hobson, R. P. 1931. On an enzyme from blow-fly larvae (Lucilia sericata) which digests collagen 

in alkaline solution. Biochem 25:1458-1463. 
 136. Chambers, L., S. Woodrow, A. P. Brown, P. D. Harris, D. Phillips, M. Hall, J. C. Church, and 

D. I. Pritchard. 2003. Degradation of extracellular matrix components by defined proteinases from the 
greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br. J. 
Dermatol. 148:14-23. 

 137. Schmidtchen, A., H. Wolff, V. Rydengard, and C. Hansson. 2003. Detection of serine proteases 
secreted by Lucilia sericata in vitro and during treatment of a chronic leg ulcer. Acta Derm. Venereol. 
83:310-311. 

 138. Vistnes, L. M., R. Lee, and G. A. Ksander. 1981. Proteolytic activity of blowfly larvae secretions 
in experimental burns. Surgery 90:835-841. 

 139. Andersen, A., B. Joergensen, T. Karlsmark, M.J.A.  van der Plas, and K.A. Krogfelt. 2008. 
Novel Lipase Activity detected in induced Lucilia sericata excretions/secretions. 18th European Tissue 
Repair Society Meeting, Malta. Abstract.  

 140. Mumcuoglu, K. Y., J. Miller, M. Mumcuoglu, M. Friger, and M. Tarshis. 2001. Destruction of 
bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera : Calliphoridae). J. Med. Entomol. 
38:161-166. 

 141. Hobson, R. P. 1931. Studies on the nutrition of blow-fly larvae. I. Structure and function of the 
alimentary tract. J Exp Biol 8:109-123. 

 142. Bexfield, A., Y. Nigam, S. Thomas, and N. A. Ratcliffe. 2004. Detection and partial 
characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot 
Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes. 
Infect. 6:1297-1304. 



 General introduction 

 33 

 143. Daeschlein, G., K. Y. Mumcuoglu, O. Assadian, B. Hoffmeister, and A. Kramer. 2007. In vitro 
antibacterial activity of Lucilia sericata maggot secretions. Skin Pharmacol. Physiol 20:112-115. 

 144. Dissemond, J., M. Koppermann, S. Esser, T. Schultewolter, M. Goos, and S. N. Wagner. 
2002. [Treatment of methicillin-resistant Staphylococcus aureus (MRSA) as part of biosurgical 
management of a chronic leg ulcer]. Hautarzt 53:608-612. 

 145. Kerridge, A., H. Lappin-Scott, and J. R. Stevens. 2005. Antibacterial properties of larval 
secretions of the blowfly, Lucilia sericata. Med. Vet. Entomol. 19:333-337. 

 146. Prete, P. E. 1997. Growth effects of Phaenicia sericata larval extracts on fibroblasts: mechanisms 
for wound healing by maggot therapy. Life Sciences 60:505-510. 

 147. Horobin, A. J., K. M. Shakesheff, S. Woodrow, C. Robinson, and D. I. Pritchard. 2003. 
Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae 
upon interactions between human dermal fibroblasts and extracellular matrix components. Br. J. 
Dermatol. 148:923-933. 

 148. Horobin, A. J., K. M. Shakesheff, and D. I. Pritchard. 2005. Maggots and wound healing: an 
investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal 
fibroblasts over a fibronectin-coated surface. Wound. Repair Regen. 13:422-433. 

 149. Horobin, A. J., K. M. Shakesheff, and D. I. Pritchard. 2006. Promotion of human dermal 
fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D 
model by Lucilia sericata larval secretions. J. Invest Dermatol. 126:1410-1418. 

 



34 

 



 

 

 

Maggot excretions/secretions are differentially effective 

against biofilms of Staphylococcus aureus and 

Pseudomonas aeruginosa 

 
 
 
 
 
 
 
 
 
 

Mariena J.A. van der Plas
1,2

, Gerrolt N. Jukema
2
, Sin-Wen Wai

1,3
,  

Heleen C.M. Dogterom-Ballering
1
, Ellen L. Lagendijk

3
, Co van Gulpen

1
, Jaap T. van Dissel

1
, 

Guido V. Bloemberg
3,a 

and Peter H. Nibbering
1,a

 

 

 
1 

Department of Infectious Diseases and 
2 

Department of Surgery, Leiden University Medical 

Center, Leiden, The Netherlands
   

3
 Institute of Biology, Leiden University, Leiden, The Netherlands 

a
 These authors contributed equally to this study   

 
 
 
 
 

Journal of Antimicrobial Chemotherapy 2008, 61: 117-122 



Chapter 2 

 36 

Abstract 

 

Objectives: Lucilia sericata maggots are successfully used for treating chronic wounds. As 

the healing process in these wounds is complicated by bacteria, particularly when residing in 

biofilms which protect them from antibiotics and the immune system, we assessed the 

effects of maggot excretions/secretions (ES) on Staphylococcus aureus and Pseudomonas 

aeruginosa biofilms, the clinically most relevant species.  

Methods: We assessed the effects of ES on biofilms using microtiter plate assays, on 

bacterial viability using in vitro killing and radial diffusion assays, and on quorum sensing 

systems using specific reporter bacteria. 

Results: As little as 0.2 µg of ES prevented S. aureus biofilm formation and 2 µg of ES 

rapidly degraded biofilms. In contrast, ES initially promoted P. aeruginosa biofilm formation, 

but after 10 h the biofilms collapsed. Degradation of P. aeruginosa biofilms started after 10 h 

and required 10-fold more ES than S. aureus biofilms. Boiling of ES abrogated their effects 

on S. aureus, but not P. aeruginosa biofilms, indicating that different molecules within ES 

are responsible for the observed effects. Modulation of biofilms by ES did not involve 

bacterial killing or effects on quorum sensing systems.  

Conclusion: Maggot excretions/secretions are differentially effective against biofilms of 

Staphylococcus aureus and Pseudomonas aeruginosa.  
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Introduction 

 

Chronic wounds cause considerable morbidity and present the health care system with 

significant costs
1
. Such wounds are common in patients suffering from acute, extended 

trauma as well as patients with vascular insufficiencies and underlying chronic conditions 

like diabetes mellitus
2,3

 in which even minor wounds become infected and show little 

tendency to heal. The healing process is often complicated by bacterial infections of the 

wound surface
4-6

. Bacteria within chronic wounds often reside in biofilms
7
 and these bacteria 

exhibit altered growth characteristics and gene expression profiles as compared with 

planktonic bacteria
8
. Biofilm formation has been associated with a number of diseases, such 

as endocarditis
9
, cystic fibrosis

10
 and osteomyelitis

11
. An important practical consequence of 

biofilm formation is that the bacteria are protected against the actions of antibiotics
12,13

 and 

cells and effecter molecules of the immune system
6,14

. Moreover, bacterial fragments/ 

products released from biofilms will continuously attract host immune cells, like neutrophils, 

to the wound. As these cells cannot remove the infectious cause of inflammation, this will 

eventually lead to tissue destruction through the actions of bioactive products like reactive 

oxygen species and proteases released by activated phagocytes
15

.  

      Nowadays, the use of sterile larvae of the green bottle blowfly Lucilia sericata in the 

management of sores, ulcers, and other chronic wounds is becoming increasingly 

widespread
16-18

. Especially in trauma surgery these maggots can prevent or at least reduce 

major disabling amputations. Maggots may contribute to wound healing by removing cell 

debris and non-viable tissue
19

, inhibiting the pro-inflammatory responses of phagocytes
20

 

and promoting tissue remodelling
21

. The molecules involved in these actions are believed to 

be contained in the excretions/secretions (ES) of the maggots. Interestingly, clinical 

observations indicated that maggot therapy is more effective in patients with wounds 

infected with Gram-positive bacteria, like Staphylococcus aureus, than those infected with 

Gram-negative bacteria, like Pseudomonas aeruginosa. Additionally, more maggots are 

needed to accomplish healing of wounds infected with the latter bacterium
22

. Since 

modulation of bacterial biofilms will have a major impact on the healing process of 

chronically infected wounds the aim of this study was to investigate the effects of ES on the 

formation of S. aureus and P. aeruginosa biofilms and on established biofilms. 

 

 

Materials and methods 

 

Maggots and maggot excretions/secretions 

ES of sterile second- and third-instar larvae of Lucilia sericata (a kind gift from BioMonde 

GmbH, Barsbüttel, Germany) were collected as described
20

. In short, larvae were incubated 

in water for 60 min.  Next,  collected ES preparations were checked for sterility and stored at  
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-20°C. For comparison, we also collected ES according to the method described by Kerridge 

et al
23

. 

 

Bacterial strains and growth conditions 

Staphylococcus aureus ATCC 29213 (Manassas, VA, USA) were grown in Tryptone Soya 

Broth (TSB) at 37°C and Pseudomonas aeruginosa PAO1
24

 in Luria Bertani (LB) medium at 

28°C, both under vigorous shaking. The reporter bacteria Chromobacterium violaceum 

CVO26
25

 and Escherichia coli DH5α strains pAK211
26

 and pSB1075
27

 were grown in LB 

medium at 28°C.  

 

Biofilm assay  

Biofilm formation of S. aureus and P. aeruginosa in 96-wells polyvinyl chloride (PVC) plates 

was conducted as described
28

. In short, bacteria from overnight cultures were diluted with 

medium 1:1,000 for S. aureus and 1:100 for P. aeruginosa and 5 µL of these bacterial 

suspensions were added to each well containing 100 µL of the medium with or without ES 

(range 0.2-20 µg): the medium for S. aureus was 0.5x TSB supplemented with 0.2% (w/v) 

glucose and for P. aeruginosa 0.7x M63. At the indicated intervals, planktonic cells were 

removed and the wells were washed with tap water. Subsequently, biofilms were exposed to 

a 1% (w/v) crystal violet solution for 15 min, washed and then incubated in absolute ethanol 

for 15 min to extract the crystal violet retained by the cells. Next, this solution was 

transferred to 96-wells plates (Greiner Bio-One, Alphen aan de Rijn, The Netherlands) and 

used to quantify the amount of biofilm by measuring at OD590 nm. In addition, at various 

intervals after the start of the experiment, the planktonic cells were harvested and then the 

bacteria residing in these biofilms were recovered by sonicating three times for 15 s on ice 

with 30 s between each sonication step. Next, the number of viable bacteria in the 

suspensions of planktonic cells and of bacteria dispersed from the biofilms was determined 

microbiologically using serial dilutions of these suspensions plated in six-fold onto COS 

blood agar plates.  

      To investigate the effects of ES on established biofilms, we first formed biofilms for 24 h, 

then the planktonic cells were removed and 100 µL of medium with or without ES (range 

0.2-20 µg) were added to the wells. 

 

In vitro killing assay 

To further determine the bactericidal effect of ES on planktonic cells, in vitro killing assays 

were conducted as described
29

 with minor modifications. Bacteria in mid-log phase were 

centrifuged at 2,000xg for 10 min, washed with PBS and suspended in 10 mM sodium 

phosphate buffer (pH 7.4) supplemented with 1% (v/v) TSB to a concentration of 1x10
6 

cells/mL. Subsequently, 200 µL of the bacterial suspension were transferred to Eppendorf 
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tubes containing vacuum dried ES (range 2-400 µg). After 1 h and 3 h, the number of 

surviving bacteria was determined microbiologically as described above. 

 

Radial Diffusion Assay (RDA)    

To further investigate the antibacterial activity of ES, we used the more sensitive RDA as 

described
30

  with minor modifications. In short, bacteria in mid-log phase were centrifuged at 

2,000xg for 10 min and washed with PBS. Next, 1x10
5
 bacteria/mL were dispersed in agar 

consisting of 1% (w/v) agarose (Sigma-Aldrich, St. Louis, MO, USA) and 1% (w/v) TSB in 10 

mM sodium phosphate buffer at 42°C. Subsequently, the agar was poured into petridishes 

(Greiner Bio-One) and solidified. Next, wells of 3 mm in diameter were made in this agar and 

5 µL of vacuum dried ES (range 2-400 µg) solubilised in 0.01% (v/v) acetic acid were 

transferred to the wells. After 3 h incubation, an overlay agar was poured on top of the 

bacterial agar. The following day, the diameters of the growth inhibition zones were 

measured. We validated the assay using 50 µg/mL of human neutrophil peptide 1-3 (hnp1-3) 

and human lactoferrin-derived peptide (hLF1-11). 

 

Detection of autoinducer activity  

Autoinducer activity was measured using the reporter strains C. violaceum CVO26 and E. 

coli DH5α containing pAK211 or pSB1075 as described
31

. In short, bacteria were grown 

overnight in LB medium supplemented with respectively kanamycin (25 µg/mL), 

chloramphenicol (20 µg/mL) or carbomycin (200 µg/mL). Subsequently, plates were overlaid 

with top agar existing of LB medium containing 0.8% (w/v) agar (Bacto™agar, BD, Sparks, 

MD, USA) and 10 µL of the bacterial suspension per mL. Next, 5 µL of vacuum dried ES 

(range 2-400 µg) solubilised in water or, as a negative control, only water were transferred to 

the agar and incubated at 28°C for 16 h. As a positive control 0.5 µg of synthetic acyl 

homoserine lactone autoinducers (kindly provided by Prof. P. Williams, University of 

Nottingham, UK) was used. Autoinducer activity was detected by the production of a purple 

pigment (violacein) by C. violaceum and by the emission of light when using E. coli after 

applying a Fuji medical X-Ray (Fuji Photo Film Co., Ltd., Tokyo, Japan) on the plates.  

 

Statistical analysis  

Results are means ± SEM of at least three experiments using in each experiment two 

different batches of ES. Differences between the values for ES-exposed and non-exposed 

bacteria were analyzed using a one-way ANOVA with Dunnett’s post-test for multiple 

comparisons. The level of significance was set at p<0.05. 
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Results 

 

Effect of ES on biofilm formation 

To find out if ES can prevent biofilm formation, we determined the amount of biofilm at 

various intervals after addition of 0-20 µg of ES. The results revealed that after a lag time of 

8 h, S. aureus started to form a detectable biofilm and that the biofilm formation levelled off 

after 14 h (Figure 1A). In addition, as little as 0.2 µg of ES completely blocked S. aureus 

biofilm formation. The kinetics of P. aeruginosa biofilm formation during the first 24 h were 

similar to those found for S. aureus, but thereafter P. aeruginosa biofilms became unstable 

in several experiments (Figure 1B). Furthermore, enhanced P. aeruginosa biofilm formation 

was seen at 8-10 h after addition of 2 and 20 µg of ES, but thereafter the biofilms formed in 

the presence of 20 µg of ES, but not 2 µg of ES, collapsed. In agreement, we observed that 

the number of bacteria in the biofilms exposed to ES for 8-10 h was almost ten-fold higher 

than in unexposed biofilms (Table 1). Further experiments with higher doses of ES (up to100 

µg) revealed that the start of the P. aeruginosa biofilm breakdown was dose-dependently 

enhanced by ES, yet all these biofilms were broken down within 48 h (data not shown). In 

addition, replacing the medium of biofilms developed in the presence of 20 µg of ES for 8 h 

with fresh ES-containing medium resulted after 24 h in the breakdown of P. aeruginosa 

biofilms,  whereas  no  breakdown  was  seen  in  the  wells  reincubated with medium alone, 

indicating that components in ES degraded the biofilms. Of note, S. aureus formed biofilms 

mostly  on the bottom of  the wells  while  P.  aeruginosa  formed  biofilms on the wall of  the 

 

 
Table 1 The number of bacteria present in the wells of the biofilm formation experiments at 8 and 24 h 
after starting the experiments. 

 

 

  Biofilm  Planktonic cells 

ES (µg/mL)  0  20  0  20 

S. aureus    

 t = 8 h 3.2 ± 1.7 (x 10
6
) no  4.2 ± 0.6 (x10

7
) 3.8 ± 0.8 (x10

7
) 

 t = 24h 6.7 ± 1.1 (x 10
6
) no  3.8 ± 0.8 (x10

7
) 5.1 ± 0.5 (x10

7
) 

P. aeruginosa      

 t = 8 h 7.0 ± 1.2 (x 10
5
) 5.4 ± 2.6 (x 10

6
)*  1.6 ± 0.7 (x 10

7
) 1.9 ± 1.1 (x 10

7
) 

 t = 24h 2.9 ± 1.0 (x 10
7
) no  4.0 ± 2.4 (x 10

8
) 4.4 ± 2.0 (x 10

8
) 

 

Results are means ± SEM of 4-6 experiments. ‘no’ indicates that no biofilm was detectable. *Significant 
(p<0.05) differences between the values for bacteria exposed to ES and those for non-exposed 
bacteria.  



 Maggot excretions/secretions versus biofilms 

 41 

 

A

0              5            10            15            20      25        72     (h)  

0.5

0              5            10            15            20      25       (h)  

P
. 
a
e
ru

g
in

o
s
a

b
io

fi
lm

(O
D

 5
9
0
n

m
)

0.0

0.5

0.1

0.2

0.3

0.4

0.7

0.6

B

0.1

0.2

0.3

0.4

0.0

S
. 

a
u
re

u
s

b
io

fi
lm

(O
D

 5
9

0
n
m

)

A

0              5            10            15            20      25        72     (h)  

0.5

0              5            10            15            20      25       (h)  

P
. 
a
e
ru

g
in

o
s
a

b
io

fi
lm

(O
D

 5
9
0
n

m
)

0.0

0.5

0.1

0.2

0.3

0.4

0.7

0.6

0              5            10            15            20      25       (h)  

P
. 
a
e
ru

g
in

o
s
a

b
io

fi
lm

(O
D

 5
9
0
n

m
)

0.0

0.5

0.1

0.2

0.3

0.4

0.7

0.6

0.0

0.5

0.1

0.2

0.3

0.4

0.7

0.6

B

0.1

0.2

0.3

0.4

0.0

S
. 

a
u
re

u
s

b
io

fi
lm

(O
D

 5
9

0
n
m

)
0.1

0.2

0.3

0.4

0.0

S
. 

a
u
re

u
s

b
io

fi
lm

(O
D

 5
9

0
n
m

)

 
 
Figure 1 Effect of maggot excretions/secretions on biofilm formation by S. aureus (A) and P. aeruginosa 

(B). Results are means ± SEM of 4-5 experiments. Open circles = no ES; filled squares= 0.2 µg of ES; 
filled diamonds = 2 µg of ES; filled triangles = 20 µg of ES.  
A: From 10 h on, all values are significantly (p<0.05) different from those for biofilms without ES.  
S. aureus mainly formed biofilms at the bottom of the wells (insert). 
B: Values for 20 µg of ES are significantly higher at 8 h and 10 h, and significantly lower at 18 h and 24 
h than those for biofilms without ES. P. aeruginosa formed a ring on the wall of the wells at the air-liquid 
interphase (insert). 

 
Table 2 Effect of heat-treatment on the activity of 20 µg of ES against biofilms.  

                            

Treatment 
 

    no ES 
     native ES  boiled ES 

   

 

S. aureus 

      Biofilm formation 

      Biofilm breakdown 

 

P. aeruginosa 

      Biofilm formation 

      Biofilm breakdown 

 

 

0.37 ± 0.04 

0.38 ± 0.07 

 

 

0.29 ± 0.01 

0.42 ± 0.03 

 

 

0.09 ± 0.01 

0.10 ± 0.06 

 

 

0.15 ± 0.02 

0.22 ± 0.06 

 

 

0.29 ± 0.03* 

0.46 ± 0.07* 

 

 

0.12 ± 0.02 

0.16 ± 0.01 

 

Results are means ± SEM of 3-5 experiments. *Significant (p<0.05) differences between the values for 
biofilms exposed to boiled ES and those to native ES. 
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wells at the air-liquid interphase (Figure 1 A,B inserts). Interestingly, treatment of 20 µg of 

ES for 2 h at 100°C completely abrogated the effects on S. aureus biofilm formation, but not 

on P. aeruginosa biofilm formation (Table 2), indicating that different molecules within ES 

modulate S. aureus and P. aeruginosa biofilm formation.  

 

Effect of ES on established biofilms  

Next, we determined the effects of ES on established biofilms. The results showed that 

within 2 h after addition of ES the amount of S. aureus biofilm was dose-dependently 

reduced and a complete breakdown was seen with 2 and 20 µg of ES (Figure 2A). 

Furthermore, 0.2 µg of ES gradually reduced the amount of biofilm within the first 6 h and 

thereafter the amount of biofilm remained constant. Established P. aeruginosa biofilms were 

initially stimulated by ES and after 10 h gradually broken down by 20 µg of ES, while 2 µg of 

ES did not cause an effect (Figure 2B). Heat treatment of ES completely abrogated their 

effects on established S. aureus biofilms, but not on established P. aeruginosa biofilms 

(Table 2).  
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Figure 2 Effect of maggot excretions/secretions on established biofilms of S. aureus (A) and P. 
aeruginosa  (B). 

Results are means ± SEM of 5-6 experiments. Open circles = no ES; filled squares = 0.2 µg of ES; filled 
diamonds = 2 µg of ES; filled triangles = 20 µg of ES.  
A: All values of 2 and 20 µg ES are significantly (p<0.05) different from those for biofilms without ES. 

From 10 h on, 0.2 µg of ES are significantly different from those for biofilms without ES.  
B: Values for 20 µg of ES are significantly higher at 8 h and 10 h, and significantly lower at 18 h and 24 
h compared to biofilms without ES. 
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Effect of ES on bacterial viability 

Since ES may have bactericidal activities against Gram-positive and Gram-negative 

bacteria,
23,32

 we determined the effect of ES on the number of viable biofilm-associated and 

planktonic S. aureus and P. aeruginosa in our biofilm experiments. The results revealed that 

at the current doses and conditions ES did not kill planktonic bacteria (Table 1). In addition, 

the total number of bacteria in the wells was not significantly altered indicating that ES did 

not disrupt biofilms simply by killing bacteria. Furthermore, 20 µg of ES were not bactericidal 

against S. aureus and P. aeruginosa in in vitro killing and radial diffusion assays. In vitro 

killing experiments revealed that only the largest dose of ES studied (400 µg) reduced  the 

number of viable  S. aureus after 3 h by 73 ± 10%, but not after 1 h, as compared with the 

control (n = 7). Using RDAs we found that ES killed S. aureus in a dose-dependent fashion 

with as little as 40 µg of ES being effective (Figure 3). Heat-treatment abolished the 

bactericidal effects of ES on S. aureus in the in vitro killing assays and it reduced the effects 

in the RDAs by 79 ± 16% (n = 4). In contrast, ES (up to 800 µg) did not reduce the number 

of viable P. aeruginosa. Finally, no differences in the antibacterial activity between ES 

preparations obtained by the method of Kerridge et al 
23

 and our ES preparations were 

noted. 
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Figure 3 Antimicrobial activity of maggot excretions/secretions against S. aureus using a radial diffusion 

assay. Results are means ± SEM of 6 experiments. The diameter of the clearance zone was corrected 
for the diameter of the well.  

 

 

Effect of ES on quorum sensing systems of Gram negative bacteria 

As quorum sensing systems control bacterial functions, such as biofilm formation
33

, 

interference with these bacterial systems could explain the effects of ES on biofilms. 

Therefore, we determined the ability of ES to mimic or antagonize the actions of various N-

acyl homoserine lactones (AHLs) using specific reporter bacteria. The results showed that 
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ES (0.2-200 µg) had neither mimicking nor antagonizing effects on quorum sensing systems 

detecting short chain (C6/C8) AHLs, as assayed with the reporter bacteria C. violaceum 

CVO26 and E. coli DH5α containing pAK211. The positive control (synthetic C6 AHLs) 

showed zones of approximately 5 cm in both systems (n = 3). Furthermore, ES had no effect 

on quorum sensing systems responding to long chain (C10/C12) AHLs assayed in E. coli 

DH5α containing pSB1075; the positive control (synthetic C10 AHLs) caused a zone of 5 ± 

0.4 cm (n = 3).  

 

 

Discussion 

 

The main conclusion from the present study is that maggot excretions/secretions are 

differentially effective against biofilms of Staphylococcus aureus and Pseudomonas 

aeruginosa. This conclusion is based on the following observations. First, S. aureus biofilm 

formation was blocked by as little as 0.2 µg of ES per well, whereas 2 µg of ES per well was 

sufficient to degrade established biofilms within 2 h. Secondly, P. aeruginosa biofilm 

formation was initially enhanced by ES and after 10 h biofilms treated with 20 µg of ES, but 

not 2 µg of ES, degraded and during the remaining period of the analysis no biofilms could 

be detected. Interestingly, others reported  similar effects of the prokaryotic predator 

Micavibrio aeruginosavorus on P. aeruginosa biofilm formation and suggested that 

increased cell-cell interactions may explain the initial enhancement of biofilms
34

. Thirdly, the 

doses of ES used in this study were within the therapeutic range, i.e., those present at the 

surface of maggot-treated wounds
35,36

. For instance, 20 µg of ES were obtained after 

incubating approximately 10 maggots in distilled water for 1 h. It should be realized that in 

our in vitro experiments ES were added only once to the bacteria and/or bacterial biofilms, 

whereas in wounds, maggots are continuously present. Furthermore, ES were obtained from 

sterile maggots. Since it is likely that ES of maggots exposed to bacteria in a wound have an 

altered composition, it is of interest that ES obtained from bacteria-exposed maggots were 

as effective against bacterial biofilms as sterile ES (MJA van der Plas et al, unpublished 

observations).  

      The second conclusion pertains to the mechanism(s) underlying the prevention of biofilm 

formation and the breakdown of bacterial biofilms by ES. The possibility that ES modulate 

biofilms simply by killing the bacteria is highly unlikely since in our biofilm experiments ES 

did not affect the number of viable bacteria in the wells. However, it is reported by several 

groups
23,32,37

 that ES have bactericidal properties against planktonic bacteria, although the 

used amounts are not within the therapeutic range or not mentioned at all. Therefore, we 

decided to investigate the bactericidal activity further by using two different methods 

described in these reports; the RDA being the most sensitive assay but the in vitro killing 

assay resembling the biofilm experiments more. In agreement with our biofilm data, S. 
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aureus were not killed at the biofilm-effective amounts of ES while P. aeruginosa was not 

killed at all.  Investigation into the effects of ES on quorum sensing signalling pathways in 

several Gram-negative reporter strains showed that ES do not mimic or antagonize short 

and long chain N-acyl homoserine lactones. However, these data do not exclude the 

possibility that ES interfere with quorum sensing signalling of bacteria in the wound. 

Although no definitive explanation for the differences in effects of ES on S. aureus and P. 

aeruginosa biofilms can be offered on the basis of our data, we concluded that the observed 

effects are mediated by different molecules and mechanisms, since heat-treatment 

completely abrogated the effects of ES on S. aureus, but not on P. aeruginosa, biofilms. 

This suggests that proteins or heat sensitive peptides within ES may be responsible for the 

breakdown of S. aureus, but not of P. aeruginosa biofilms. More research, including 

purification of these compounds, is needed to gain a detailed understanding of the 

mechanisms involved in the modulatory effects of ES on biofilms. 

      We are the first to report that ES disrupt bacterial biofilms. It should be kept in mind that 

we required more ES to disrupt P. aeruginosa biofilms than S. aureus biofilms and that low 

doses of ES can result in enhancement of P. aeruginosa biofilms. In addition, it has been 

shown in vitro that P. aeruginosa, but not S. aureus, impairs maggot survival
38

. Together, 

these data are in agreement with clinical findings
22

 indicating that more maggots should be 

used for wounds infected with P. aeruginosa (compared to S. aureus). Furthermore, as a 

result of biofilm breakdown, the bacteria become susceptible to actions of antibiotics and the 

immune system as well as to actions of maggots
39

. Therefore, ES (especially in combination 

with antibiotics) are a very promising source of candidates for the development of new 

treatments for biofilm-associated diseases, including cystic fibrosis, infected medical 

devices, like catheters and prosthesis, and chronic wounds.      

 

 

 



Chapter 2 

 46 

References 
 

 1. Thomas, D. W. and K. G. Harding. 2002. Wound healing. Br. J. Surg. 89:1203-1205. 
 2. Bartus, C. L. and D. J. Margolis. 2004. Reducing the incidence of foot ulceration and amputation in 

diabetes. Curr. Diab. Rep. 4:413-418. 
 3. Ferrell, B. A., K. Josephson, P. Norvid, and H. Alcorn. 2000. Pressure ulcers among patients 

admitted to home care. J. Am. Geriatr. Soc. 48:1042-1047. 
 4. Gjodsbol, K., J. J. Christensen, T. Karlsmark, B. Jorgensen, B. M. Klein, and K. A. Krogfelt. 

2006. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int. Wound. J. 3:225-
231. 

 5. Harrison-Balestra, C., A. L. Cazzaniga, S. C. Davis, and P. M. Mertz. 2003. A wound-isolated 
Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. 
Dermatol. Surg. 29:631-635. 

 6. Davis, S. C., L. Martinez, and R. Kirsner. 2006. The diabetic foot: the importance of biofilms and 
wound bed preparation. Curr. Diab. Rep. 6:439-445. 

 7. Edwards, R. and K. G. Harding. 2004. Bacteria and wound healing. Curr. Opin. Infect. Dis. 17:91-
96. 

 8. Stoodley, P., K. Sauer, D. G. Davies, and J. W. Costerton. 2002. Biofilms as complex differentiated 
communities. Annu. Rev. Microbiol. 56:187-209. 

 9. Presterl, E., A. J. Grisold, S. Reichmann, A. M. Hirschl, A. Georgopoulos, and W. Graninger. 
2005. Viridans streptococci in endocarditis and neutropenic sepsis: biofilm formation and effects of 
antibiotics. J. Antimicrob. Chemother. 55:45-50. 

 10. Starner, T. D., N. Zhang, G. Kim, M. A. Apicella, and P. B. McCray, Jr. 2006. Haemophilus 
influenzae Forms Biofilms on Airway Epithelia: Implications in Cystic Fibrosis. Am. J. Respir. Crit Care 
Med. 174:213-220. 

 11. Gristina, A. G., M. Oga, L. X. Webb, and C. D. Hobgood. 1985. Adherent bacterial colonization in 
the pathogenesis of osteomyelitis. Science 228:990-993. 

 12. Sheldon, A. T., Jr. 2005. Antibiotic resistance: a survival strategy. Clin. Lab Sci. 18:170-180. 
 13. Gilbert, P., D. G. Allison, and A. J. McBain. 2002. Biofilms in vitro and in vivo: do singular 

mechanisms imply cross-resistance? Symp. Ser. Soc. Appl. Microbiol.98S-110S. 
 14. Leid, J. G., M. E. Shirtliff, J. W. Costerton, and A. P. Stoodley. 2002. Human leukocytes adhere 

to, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun. 70:6339-6345. 
 15. Wagner, C., A. Kaksa, W. Muller, B. Denefleh, V. Heppert, A. Wentzensen, and G. M. Hansch. 

2004. Polymorphonuclear neutrophils in posttraumatic osteomyelitis: cells recovered from the inflamed 
site lack chemotactic activity but generate superoxides. Shock 22:108-115. 

 16. Mumcuoglu, K. Y., A. Ingber, L. Gilead, J. Stessman, R. Friedmann, H. Schulman, H. 
Bichucher, I. Ioffe-Uspensky, J. Miller, R. Galun, and I. Raz. 1998. Maggot therapy for the treatment 
of diabetic foot ulcers. Diabetes Care 21:2030-2031. 

 17. Sherman, R. A. 2003. Maggot therapy for treating diabetic foot ulcers unresponsive to conventional 
therapy. Diabetes Care 26:446-451. 

 18. Stoddard, S. R., R. A. Sherman, B. E. Mason, D. J. Pelsang, and R. M. Sherman. 1995. Maggot 
debridement therapy. An alternative treatment for nonhealing ulcers. J. Am. Podiatr. Med. Assoc. 
85:218-221. 

 19. Sherman, R. A., M. J. R. Hall, and S. Thomas. 2000. Medicinal maggots: An ancient remedy for 
some contemporary afflictions. Annu. Rev. Entomol. 45:55-81. 

 20. van der Plas, M. J. A., A. M. van der Does, M. Baldry, H. C. Dogterom-Ballering, C. van 
Gulpen, J. T. Van Dissel, P. H. Nibbering, and G. N. Jukema. 2007. Maggot excretions/secretions 
inhibit multiple neutrophil pro-inflammatory responses. Microbes. Infect. 9:507-514. 

 21. Horobin, A. J., K. M. Shakesheff, and D. I. Pritchard. 2006. Promotion of human dermal fibroblast 
migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by 
Lucilia sericata larval secretions. J. Invest Dermatol. 126:1410-1418. 

 22. Steenvoorde, P. and G. N. Jukema. 2004. The antimicrobial activity of maggots: in-vivo results. J. 
Tissue Viability. 14:97-101. 

 23. Kerridge, A., H. Lappin-Scott, and J. R. Stevens. 2005. Antibacterial properties of larval 
secretions of the blowfly, Lucilia sericata. Med. Vet. Entomol. 19:333-337. 

 24. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. 
Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. 
Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. 
Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, 



 Maggot excretions/secretions versus biofilms 

 47 

and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an 
opportunistic pathogen. Nature 406:959-964. 

 25. Milton, D. L., A. Hardman, M. Camara, S. R. Chhabra, B. W. Bycroft, G. S. Stewart, and P. 
Williams. 1997. Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and 
identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. J. Bacteriol. 179:3004-3012. 

 26. Kuo, A., N. V. Blough, and P. V. Dunlap. 1994. Multiple N-acyl-L-homoserine lactone autoinducers 
of luminescence in the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 176:7558-7565. 

 27. Winson, M. K., S. Swift, L. Fish, J. P. Throup, F. Jorgensen, S. R. Chhabra, B. W. Bycroft, P. 
Williams, and G. S. Stewart. 1998. Construction and analysis of luxCDABE-based plasmid sensors for 
investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 163:185-192. 

 28. O'Toole, G. A. and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens 
WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 
28:449-461. 

 29. Nibbering, P. H., E. Ravensbergen, M. M. Welling, L. A. van Berkel, P. H. van Berkel, E. K. 
Pauwels, and J. H. Nuijens. 2001. Human lactoferrin and peptides derived from its N terminus are 
highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 69:1469-1476. 

 30. Lehrer, R. I., M. Rosenman, S. S. Harwig, R. Jackson, and P. Eisenhauer. 1991. Ultrasensitive 
assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137:167-173. 

 31. Dubern, J. F., B. J. Lugtenberg, and G. V. Bloemberg. 2006. The ppuI-rsaL-ppuR quorum-
sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling 
biosynthesis of the cyclic lipopeptides putisolvins I and II. J. Bacteriol. 188:2898-2906. 

 32. Bexfield, A., Y. Nigam, S. Thomas, and N. A. Ratcliffe. 2004. Detection and partial 
characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot 
Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes. 
Infect. 6:1297-1304. 

 33. Hardman, A. M., G. S. Stewart, and P. Williams. 1998. Quorum sensing and the cell-cell 
communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria. 
Antonie Van Leeuwenhoek 74:199-210. 

 34. Kadouri, D., N. C. Venzon, and G. A. O'Toole. 2007. Vulnerability of pathogenic biofilms to 
Micavibrio aeruginosavorus. Appl. Environ. Microbiol. 73:605-614. 

 35. Baer, W. S. 1931. The treatment of chronic osteomyelitis with the maggot (larva of the blowfly). J. 
Bone Jt. Surg 13:438-475. 

 36. Jukema, G. N., A. G. Menon, A. T. Bernards, P. Steenvoorde, A. T. Rastegar, and J. T. van 
Dissel. 2002. Amputation-sparing treatment by nature: "Surgical" maggots revisited. Clin. Infect. Dis. 
35:1566-1571. 

 37. Daeschlein, G., K. Y. Mumcuoglu, O. Assadian, B. Hoffmeister, and A. Kramer. 2007. In vitro 
antibacterial activity of Lucilia sericata maggot secretions. Skin Pharmacol. Physiol 20:112-115. 

 38. Andersen, A., B. Joergensen, T. Karlsmark, K. Kirketerp-Moeller, T.B. Rasmussen, T. 
Bjarnsholt, M. Givskov, and K.A. Krogfelt. Maggot debridement therapy (MDT) in diabetic foot 
wounds-Quorum sensing dependent bacterial niches may promote infection or MDT failure. 6th Diabetic 
Foot Study Group Meeting, Helsingoer, Dk . 2006. Abstract 021. European Association for the study of 
Diabetes. 

 39. Mumcuoglu, K. Y., J. Miller, M. Mumcuoglu, M. Friger, and M. Tarshis. 2001. Destruction of 
bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera : Calliphoridae). J. Med. Entomol. 
38:161-166.



 

48 

 



 

 

Synergistic actions of maggot excretions/secretions  

and antibiotics against 

biofilm-associated Staphylococcus aureus  

 
 
 
 
 
 
 
 
 
 

Mariena J.A. van der Plas
1,2

, Cheryl Dambrot
1
, Heleen C.M. Dogterom-Ballering

1
, Simone 

Kruithof
1
, Jaap T. van Dissel

1
, and Peter H. Nibbering

1
 

 

 

 
1 

Department of Infectious Diseases and 
2 

Department of Surgery, Leiden University Medical 

Center, Leiden, The Netherlands 

 
 

 

 

 

 

 

 

Submitted 



Chapter 3 

 50 

Abstract 

Objectives: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic 

wounds. Earlier we reported that maggot excretions/secretions (ES) breakdown 

Staphylococcus aureus biofilms but do not kill the bacteria. As many antibiotics are not 

effective against biofilms and the associated bacteria we assessed the effect of combining 

ES and antibiotics on Staphylococcus aureus biofilms and on the survival of the bacteria 

released from the biofilms.  

Methods: Combinations of ES and vancomycin, daptomycin or clindamycin on S. aureus 

ATCC 29213 biofilms and bacterial viability were tested using microtitre plates and in vitro 

killing assays.   

Results: Vancomycin and daptomycin dose-dependently enhanced biofilm formation, 

whereas clindamycin reduced S. aureus biofilm size. Adding ES to antibiotic incubations 

caused a complete biofilm breakdown. There was a lag time before bacteria released from 

biofilms became susceptible to vancomycin and clindamycin, which was also dependent on 

refreshing medium and allowing time to restart bacterial replication. Daptomycin showed 

direct activity against biofilm-derived bacteria. In exponentially growing bacteria, ES did not 

affect the bactericidal activity of antibiotics whereas ES increased the activity of daptomycin 

against bacteria upon release from the biofilms.  

Conclusions: Maggot excretions/secretions release biofilm-associated S. aureus into the 

surrounding milieu allowing them to become exposed to the action of antibiotics; the effect 

depends on the pharmacodynamic property of the specific antibiotic drug.   
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Introduction 

Chronic wounds are common in patients with vascular insufficiencies and underlying chronic 

conditions such as diabetes mellitus, as well as patients suffering from acute, extended 

trauma
1,2

. These wounds and consequent amputations result in decreased physical, 

emotional and social function of patients, a reduced quality of life and major economic costs 

for patients, their families and society
3,4

. A severe complication of the healing process is 

bacterial colonization and subsequent infection of the wound surface
5-7

, especially when the 

bacteria are residing in biofilms
8
. These bacteria exhibit altered growth characteristics and 

gene expression profiles, as compared to those present freely in the environment, the so 

called planktonic bacteria
9
. Importantly, biofilm formation and the consequences thereof for 

bacterial growth characteristics render microorganisms resistant to the action of many 

antibiotics
10,11

 as well as cells and effecter molecules of the host’s immune system
7,12

. 

Bacterial fragments/products released from biofilms continuously attract host cells to the 

wound. As phagocytes cannot ingest the biofilm-associated bacteria and therefore are 

unable to eliminate the cause of infection, the subsequent accumulation of inflammatory 

cells and enhanced release of pro-inflammatory cytokines, proteases and reactive oxygen 

species eventually lead to inactivation of growth factors and tissue destruction
13,14

 thereby 

contributing to the establishment and/or maintenance of chronic wounds.  

      Sterile larvae -maggots- of the green bottle blowfly Lucilia sericata are used as a 

treatment of various types of chronic wounds
15-17

. Earlier we reported maggot 

excretions/secretions (ES) to breakdown Staphylococcus aureus and Pseudomonas 

aeruginosa biofilms
18

. However, the bacteria released from these biofilms were not killed by 

ES. On the other hand, many antibiotics cannot break down bacterial biofilms but effectively 

kill planktonic bacteria. Therefore, we assessed the effect of combinations of maggot ES 

and antibiotics on Staphylococcus aureus biofilms and on the survival of the bacteria 

released from these biofilms.  

 

 

Materials and methods 

 

Maggots and maggot excretions/secretions 

ES of sterile second- and third-instar larvae of Lucilia sericata (a kind gift from BioMonde 

GmbH, Barsbüttel, Germany) were collected as described
19

. In short, larvae were incubated 

in H2O for 60 min. Sterile ES preparations were harvested, pooled and stored at -20°C.  

 

Antibiotics 

Vancomycin (Pharmachemie B.V., Haarlem, The Netherlands), daptomycin (Cubicin, Chiron 

Corporation Limited, Uxbridge, UK), and clindamycin (Upjohn GmbH, Heppenheim, 

Germany) were dissolved in distilled water to a final concentration of 10 mg/mL.  
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Staphylococcus aureus cultures 

Staphylococcus aureus ATCC 29213 (Manassas, VA, USA) were grown in Tryptone Soya 

Broth (TSB) at 37°C under vigorous shaking. The MIC-values for this strain are 0.5-2 µg/mL 

for vancomycin, 0.25-1 µg/mL for daptomycin and 0.06-0.25 µg/mL for clindamycin
20

.   

 

Biofilm assay 

Biofilm formation of S. aureus in 96-wells polyvinyl chloride (PVC) plates was conducted as 

described
18

. In short, bacteria from overnight cultures were diluted 1:1,000 and 5 µL of these 

bacterial suspensions were added to each well containing 100 µL of ‘biofilm medium’ 

consisting of 0.5x TSB supplemented with 0.2% (w/v) glucose. After 24 h, planktonic cells 

were removed and 100 µL of biofilm medium with or without antibiotics (1-400 µg/mL) and/or 

ES (20-200 µg/mL) were added to the biofilms. At the indicated time intervals, planktonic 

cells were harvested from these wells and the numbers of viable bacteria were determined 

microbiologically using serial dilutions of these suspensions plated in six-fold onto agar 

plates. The reliable lower detection limit of this method is 100 cfu/well. In addition, after 

washing the wells with tap water, biofilms were exposed to a 1% (w/v) crystal violet solution 

for 15 min, washed and then incubated in absolute ethanol for 15 min to extract the crystal 

violet retained by the cells. Next, this solution was transferred to 96-wells plates (Greiner 

Bio-One, Alphen aan de Rijn, The Netherlands) and used to quantify the amount of biofilm 

by measuring the absorbance at 590 nm. 

      Furthermore, we investigated the effect of antibiotics on bacteria derived from the 

biofilms and subsequently transferred to fresh biofilm medium. For this purpose, the 

planktonic cells were removed from 24 h old biofilms and fresh biofilm medium was added to 

the wells containing ES (20 - 200 µg/mL) or H2O as a control. After an additional 24 h, the 

bacteria released from the biofilms were harvested and 25 µL of these bacterial suspensions 

were transferred to wells of a PVC plate containing 75 µL of TSB medium supplemented 

with antibiotics; the final concentrations of the medium was 0.5 x TSB and 0.2% glucose. 

After 3 h and 24 h, the numbers of surviving bacteria were determined microbiologically as 

described above.  

 

Influence of maggot ES on the concentration-effect relationship for antibiotics on exponential 

growing S. aureus 

To further determine the concentration-effect relationship for antibiotics on planktonic S. 

aureus in the presence or absence of ES, in vitro killing assays were conducted as 

described
21

 with minor modifications. Bacteria in mid-log phase were centrifuged at 2,000xg 

for 10 min, washed twice with PBS and resuspended in biofilm medium supplemented with 

antibiotics (0.005 - 500 µg/mL) and/or ES (20 - 200 µg/mL) to a concentration of 1 x 10
7
 

bacteria/mL. Subsequently, 100 µL aliquots of these bacterial suspensions were transferred 
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to wells of a 96-wells PVC plate and incubated at 37°C.  After 1, 2 and 3 h, the numbers of 

surviving bacteria were determined microbiologically as described above. 

Next, the differences between the logarithms (base 10) of the numbers of CFU in the 

absence and presence of antibiotics and/or ES were calculated for each time point
22

. For 

further calculations, the highest value of the net killing rate during the 3 h of exposure was 

used (ER). The concentration-effect relation was established by using the Hill Equation:  

 

ER = ER,max  ×  C / (EC50 + C)  

 

where ER,max is the estimated maximal killing rate, C the antibiotic concentration (µg/mL), 

and EC50 the estimated antibiotic concentration at which 50% of the maximal killing is 

reached. The parameters of this pharmaco-dynamic model were calculated in SPSS using 

non-linear regression analysis.  

 

Statistical analysis  

Statistical analyses were performed using Graphpad Prism version 4.02. Statistical 

differences between the values for ES-incubated and control-incubated bacteria were 

analyzed using a paired t-test. The level of significance was set at p-values < 0.05. 

 

 

Results 

 

Effect of antibiotics and ES on S. aureus biofilms 

Planktonic cells from 24 h biofilms were removed and mixtures of fresh biofilm medium 

containing antibiotics (1 – 400 µg/mL) were added to the wells for 3 h or 24 h.  

The results showed a dose-dependent increase in biofilm size by vancomycin and 

daptomycin already within 3 h (Table 1). This effect persisted over the next 21 h. In contrast, 

clindamycin dose-dependently decreased the amount of biofilm; after 3 h of incubation the 

biofilm partly vanished although total breakdown was not observed (Table 1). As reported 

earlier
18 

within 3 h ES degraded the S. aureus biofilms completely and this effect was not 

counteracted by any of the antibiotics (data not shown).    

 

Effect of combining ES and antibiotics on the viability of S. aureus released from biofilms 

To investigate whether the antibiotics eradicate the bacteria released from the biofilms and if 

ES influence this process, planktonic cells were harvested from the wells and their viability 

tested. Preliminary experiments revealed no reduction in the number of viable bacteria when 

using ≤10 µg/mL of vancomycin and daptomycin.  
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Table 1 Effect of antibiotics on established biofilms of Staphylococcus aureus 
      

 

Results (Abs at 590 nm) are means ± SEM of ≥ 4 experiments. *Values are significantly (*p<0.05) 
different from those for control biofilms. For all samples, the addition of ES resulted in total breakdown 
of the biofilms (Abs < 0.10). 

 

 

Vancomycin at concentrations of 50 µg/mL or higher significantly reduced the number of 

viable bacteria by 24 h (Figure 1A), but not yet after 3 h (data not shown). Daptomycin dose-

dependently reduced the number of biofilm-derived bacteria within 3 h, up to 99.9 ± 0.02% 

at a concentration of 400 µg/mL (data not shown). This reduction in bacterial numbers 

continued the next 21 h (Figure 1B). After 3 h of incubation, the number of viable bacteria 

was 90% lower in the presence of clindamycin compared with control incubations of bacteria 

derived either from ES-treated or untreated biofilms (data not shown). The following 21 h, no 

bacterial outgrowth was observed in the presence of clindamycin (Figure 1C). Furthermore, 

a dose-dependent effect of clindamycin was observed at the lowest concentrations used in 

the experiments (i.e., 1, 5 and 10 µg/mL, resulting in a reduction of viable bacteria by 53 ± 

9%, 78 ± 4% and 80 ± 14%, respectively), whereas at clindamycin concentrations above 10 

µg/ml a maximal inhibition had been reached.  

      Of note, at all conditions chosen, ES (200 µg/mL) did not affect the antibiotic-induced 

bacterial killing. Using 20 µg of ES/mL yielded identical results (data not shown).      
 

Effect of ES and antibiotics on biofilm-derived bacteria transferred to fresh biofilm medium 

As large numbers of bacteria derived from the biofilms remained viable in the presence of 

antibiotics, we considered the possibility that this resistance was caused by phenotypic 

variation. Therefore, bacteria were transferred from ES-incubated or control-incubated 

biofilms to fresh biofilm medium supplemented with antibiotics.   
 

 
Vancomycin  Daptomycin  Clindamycin 

 
 
 
µg/mL  3 h  24 h  3 h  24 h  3 h  24 h 

    0  0.18 ± 0.02  0.30 ± 0.02 0.21 ± 0.01  0.30 ± 0.02 0.21 ± 0.01 0.29 ± 0.02 

    1  0.19 ± 0.03  0.26 ± 0.04  0.20 ± 0.03 0.27 ± 0.03 0.20 ± 0.03 0.24 ± 0.04 

    5  0.21 ± 0.03   0.29 ± 0.05 0.20 ± 0.03 0.26 ± 0.05 0.17 ± 0.03 0.24 ± 0.04 

  10  0.27 ± 0.04* 0.38 ± 0.06* 0.23 ± 0.04 0.35 ± 0.07 0.17 ± 0.04 0.24 ± 0.04 

  50  0.26 ± 0.04* 0.36 ± 0.05* 0.26 ± 0.04* 0.45 ± 0.10* 0.16 ± 0.01* 0.24 ± 0.01* 

100  0.26 ± 0.04* 0.40 ± 0.03* 0.27 ± 0.01* 0.39 ± 0.03* 0.16 ± 0.01* 0.22 ± 0.01* 

200  0.26 ± 0.04* 0.35 ± 0.02* 0.28 ± 0.02* 0.36 ± 0.03* 0.16 ± 0.01* 0.21 ± 0.02* 

400  0.22 ± 0.01* 0.43 ± 0.03* 0.33 ± 0.02* 0.38 ± 0.04* 0.15 ± 0.01* 0.21 ± 0.02* 
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Figure 1 Effect of antibiotics and/or ES on biofilm-derived Staphylococcus aureus.  
Biofilms were incubated with increasing concentrations of vancomycin (A), daptomycin (B) or 
clindamycin (C) in the absence or presence of 200 µg of ES/mL for 24 h. Results of 4-6 experiments are 
shown with the median (line). The values from the antibiotic samples are significantly different from the 
control wells.     

 

Vancomycin failed to affect the number of viable bacteria at 3 h but reduced the number by 

99% at 24 h. This effect was independent of the chosen dose of antibiotics or the presence  

of ES (Figure 2A). Daptomycin dose-dependently reduced the number of bacteria within 3 h. 

This antimicrobial effect was further enhanced by 200 µg of ES/mL (Figure 2B) but not by 20 
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µg of ES/mL (data not shown). After 24 h, all bacteria were killed by the used concentrations 

of daptomycin independent of the presence of ES (data not shown).  Clindamycin prevented  

outgrowth of the bacteria at 3 h of incubation at all antibiotic concentrations used (data not 

shown) and this effect remained constant during the following 21 h (Figure 2C); ES did not 

affect the activity of clindamycin on the bacteria. 

 
 
Figure 2 Effect of antibiotics on Staphylococcus aureus derived from ES-incubated and control-
incubated biofilms. Results of 6-7 experiments with the median (line) are shown after 24 h incubation for 
vancomycin (A) and clindamycin (C) whereas the effect of daptomycin (B) was obtained after 3 h. 
Values are significantly (*p<0.05 and **p<0.005) different from those for bacteria derived from control-
incubated biofilms supplemented with antibiotics.  
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Effect of ES on the concentration-effect relationship of antibiotics on exponentially growing 

S. aureus  

To investigate the activity of the antibiotics on exponentially growing bacteria, we 

determined the growth curves at various antibiotic concentrations using the Hill equation. 

The results showed a dose-dependent reduction of viable S. aureus through the actions of 

all three antibiotics, although the maximum effect of daptomycin was higher than that of 

clindamycin and vancomycin, which were equally effective against the bacteria (Figure 3 A-

C). The estimated EC50 and ER, max values are given in Table 2. Additionally, we 

determined the effect of ES on these parameters of the antibiotics. The effects of 

vancomycin (Figure 3A) and clindamycin (Figure 3C) on exponential growing S. aureus were 

not significantly affected by ES although the ER,max was enhanced somewhat and the EC50 

decreased (Table 2). The ER,max of daptomycin was enhanced in the presence of both 20 

µg and 200 µg of ES/mL, although this effect did not reach a level of significance except for 

incubation with 100 µg of daptomycin (Figure 3B). Of note, 500 µg of daptomycin/mL was 

sufficient to kill all bacteria within 1 h in 4 out of 5 experiments under all conditions. 

Furthermore, the maximum effect of clindamycin was observed at 1 µg/mL, that of 

vancomycin at approximately 10 µg/mL, whereas of daptomycin 500 µg/mL was required to 

reach a maximal effect.      

 
 
 
Table 2  Pharmacodynamic parameters of the antibiotics and ES 

 

            Clindamycin  Vancomycin  Daptomycin 

ES 
(µg/mL) 

 
ER,max/h 

 
EC50 

(µg/mL) 
 

ER,max/h 
 

EC50 
(µg/mL) 

 
ER,max/h 

 
EC50 

(µg/mL) 

             
0  1.64 0.036  1.65 0.167  5.41 46.24 

20  1.57 0.025  1.77 0.080  7.25 57.99 

200  2.30 0.024  1.98 0.110  5.77 39.30 
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Figure 3 Effect of ES on the concentration-effect relationships of the antibiotics against exponential 
growing Staphylococcus aureus.  
Bacteria were incubated with increasing concentrations of vancomycin (A), daptomycin (B) or 
clindamycin (C) in the presence or absence of ES (20-200 µg/mL). Results of 6-8 experiments are 
shown independently and as a line after processing the data using the Hill equation (x/— = no ES; ◊/— 
—  = 20 µg of ES/mL; □/– – – = 200 µg of ES/mL).  
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Discussion 

 

The main conclusion from the present study is that after maggot excretions/secretions 

breakdown Staphylococcus aureus biofilms, the released bacteria become susceptible again 

to antibiotics that fail to affect the viability of biofilm-associated microorganisms. The 

conclusion is based on the following observations. First, ES broke down established biofilms 

within 3 h and this effect was not negatively or positively affected by the antibiotics. In the 

absence of ES, samples containing vancomycin or daptomycin, antibiotics whose activity 

depends on their action on the bacterial cell-envelop, lacked activity against biofilms; similar 

findings were observed for the betalactam antibiotic flucloxacillin (unpublished 

observations). In contrast, clindamycin and linezolid (unpublished data) decreased the 

amount of biofilm, albeit they were unable to completely eradicate it in the 24 hour 

incubations applied here. Second, biofilm-derived bacteria became susceptible to the action 

of antibiotics after addition of fresh medium, as compared to their overall lack of activity 

against released bacteria kept in the biofilm wells. An explanation for these results is that the 

bacteria derived from biofilms are in a static/dormant state and are therefore not susceptible 

to antibiotics that solely target growing bacteria
9
. In agreement, we found no increase in 

bacterial numbers in the wells in which the biofilm had been exposed to ES, whereas 

increased numbers of S. aureus were observed after transferring the bacteria to fresh 

medium. Daptomycin showed direct activity against biofilm-derived bacteria. Third, ES did 

not alter the activity of the antibiotics against exponential growing and biofilm-derived 

bacteria. An exception was our observation that 200 µg of ES/mL enhanced the antibacterial 

activity of daptomycin against biofilm-derived S. aureus transferred to fresh medium. 

Although we cannot explain these results, it likely depends on the specific 

pharmacodynamic mechanism of this antibiotic.  

      In the interpretation of the current findings, the following points need be considered. 

First, we tested a single strain of the Gram-positive S. aureus. Although the strain is an 

ATCC reference strain, we cannot exclude that our findings are not generalisable to other S. 

aureus strains, and/or other bacterial species. However, in agreement with our result, 

several reports describe that daptomycin is one of the most active antibiotic in the control of 

biofilm-related S. aureus whereas clindamycin and vancomycin are less effective
23,24

. 

Second, the concentrations of antibiotics used in the in vitro biofilm assay are relatively high 

compared to the free, active antibiotic concentrations generally achieved in patients 

(vancomycin 10-40 mg/L, daptomycin 1-15/20 mg/L, clindamycin 1-20 mg/L). Therefore, at 

clinically relevant concentrations, the antibiotics used in this study are not expected to differ 

much in their activity against exponential growing S. aureus. However, much higher 

concentrations of antibiotics can be attained in wounds, through topical application, which 

are similar to those tested here. Third, at MIC values vancomycin or daptomycin did not 

affect the biofilm size, whereas at higher concentrations biofilm formation was enhanced. 
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However, MIC concentrations of antibiotics did not reduce the number of viable biofilm-

derived bacteria whereas the higher, biofilm-enhancing concentrations did. In agreement, 

supra-MIC concentrations of antibiotics are reported to be effective against killing of bacteria 

released from biofilms, whereas sub-MIC and MIC levels were not
25

. Fourth, in contrast to 

the above mentioned reports
23,24

, we did not observe a reduction in biofilm size when using 

low levels of antibiotics. The explanation for this inconsistency could be the method of 

quantification. We used CV staining to quantify the amount of biomass whereas many 

reports describe the use of redox indicators to measure the metabolic activity of the bacteria. 

However, reduced metabolic activity does not exclude similar or even increased biomass. In 

agreement, it is reported that several antibiotics, including vancomycin, reduce the redox 

potential of bacteria without reducing the matrix
26

. This may lead to bacterial re-growth from 

the remaining matrix and may even contribute to the development of resistance against the 

antibiotics. Clearly, more research should be done to investigate the effect of antibiotics on 

bacterial biofilms and the bacteria derived from these structures. 

      What is the clinical relevance of our findings? The failure to affect biofilms and the 

associated bacteria parallels the overall lack of activity of antibiotics against bacterial 

colonization and infection of chronic wounds where biofilm formation may be 

prominent
7,8,10,27

. Therefore, biofilm matrices and the associated bacteria have to be 

targeted simultaneously to eradicate chronic infections. Earlier we found that maggot 

excretions/secretions break down biofilms of Staphylococcus aureus
18

. Here we report that 

the released bacteria become exposed and susceptible to the actions of antibiotics that fail 

to affect biofilm-associated microorganisms. Additionally, these bacteria will be subjected to 

the effector mechanisms of the immune system and ingestion by maggots
28,29

. Thus, 

addition of maggots or maggot ES to antibiotics for the treatment of chronically 

colonized/infected wound surfaces may become a promising approach in inert and 

unresponsive chronic wounds. Of note, antibiotics including vancomycin and clindamycin 

have no detrimental effects on maggot growth and survival
30

. Based on our results and other 

reports
23,24

, daptomycin and ES combined appear particularly promising in the treatment of 

biofilm-related S. aureus wound infections. Daptomycin, in contrast to vancomycin and 

cationic antimicrobial peptides, kills bacteria without inducing bacterial lysis
31-33

. As chronic 

wounds often are marked by a prolonged and dysregulated inflammatory responses
13,34-36

, 

decreased bacterial lysis may reduce excessive pro-inflammatory responses to bacterial 

products by immune cells  thereby contributing to the healing process
32

.  

      In conclusion, maggot therapy and antibiotics could be used together to combat 

chronically colonized inert wounds. This would ensure complete breakdown of the biofilms, 

thereby preventing bacterial re-growth from the remaining matrix, and prompt antibiotic 

action against the bacteria released from the biofilms. In this respect, it should be realized 

that some current treatment modalities, where maggots apparently are used as replacement 

instead of adjunct to antibiotics, often overestimate bacterial killing by ES when applied in 
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therapeutically relevant amounts
18

. The combination of antibiotics and maggots will most 

likely lead to faster healing as maggots, besides affecting biofilm-associated 

microorganisms, affect other processes in wounds as well
19,37,38

. 
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Abstract 

 

Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As 

hemostatic processes play an important role in wound healing, this study focused on the 

effects of maggot secretions on coagulation and fibrinolysis. 

The results showed maggot secretions to enhance the plasminogen activator (tPA and 

uPA)-induced formation of plasmin and subsequent fibrinolysis without affecting coagulation. 

Secretions themselves did not induce plasmin formation. Furthermore, we found secretions 

to interact with plasminogen, but not with plasminogen activators, in a dose- and time-

dependent manner. Using acid-urea gels and selective protease inhibitors we found that a 

serine protease within the secretions was responsible for cleavage of plasminogen, leading 

to a derivative which is activated more easily by plasminogen activators. We conclude that a 

serine protease within maggot secretions enhances plasminogen activator-induced 

fibrinolysis by cleavage of plasminogen.   
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Introduction 

 

Maggots of the green bottle blowfly Lucilia sericata are used for the treatment of many types 

of wounds including venous ulcers
1
, traumatic and post-surgical wounds

2
, osteomyelitis

3
 and 

burns
4
. Although maggots are known primarily for debridement - removal of necrotic tissue 

and fibrin slough - of chronic wounds, they exert many additional effects. Earlier we reported 

maggot excretions/secretions to breakdown bacterial biofilms of Staphylococcus aureus and 

Pseudomonas aeruginosa
5
. Furthermore, maggots ingest and subsequently kill bacteria in 

their digestive tract
6
. In addition to antibacterial effects, we showed secretions to inhibit the 

pro-inflammatory responses of human neutrophils
7
 and monocytes

8
 without affecting the 

antimicrobial activities of these phagocytes. Moreover, maggot secretions skew the 

monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic 

type (submitted for publication). Others reported accelerated fibroblast migration induced by 

maggot excretions/secretions
9,10

. However, there is an overall lack of information on the 

effect of maggots on coagulation and fibrinolysis.  

      Coagulation refers to the formation of insoluble fibrin, which stops hemorrhage and 

provides a provisional matrix essential for cell migration thereby aiding in the repair of 

damaged vessels and tissues
11,12

. In a balanced wound healing process these fibrin clots 

are broken down (during remodelling of the tissue) in the fibrinolytic phase; plasminogen is 

converted by plasminogen activators (uPA or tPA) to plasmin, which subsequently cuts the 

fibrin mesh by proteolytic degradation
12

. In chronic wounds, fibrin clots may be partially 

degraded by proteolytic enzymes derived from immune cells, like neutrophils and 

macrophages. These clots no longer support re-epithelialisation and granulation tissue 

formation and therefore have to be removed
11,13

. However, this cannot be accomplished by 

the wound components itself as, for instance, fibrinolysis may be impaired in chronic wounds 

due to enhanced levels of the fibrinolysis inhibitor PAI. These processes contribute to the 

formation of necrotic tissue and fibrin slough which contain trapped leucocytes and are a rich 

source of nutrients for bacteria. If necrotic tissue and/or fibrin slough are left unattended, it is 

very difficult to keep the wound free of infection, to prevent excessive inflammatory 

responses and to ensure closure of the wound. Therefore, debridement is essential for 

healing of these wounds and, as mentioned above, this can be exerted by maggots. It has 

been reported that after debridement has been accomplished by maggots minor bleeding 

may occur
14

. On the other hand, it has been reported that the excretory substances from the 

larvae have a potent hemostatic effect in haemorrhage
15

. Based upon the above 

considerations and clinical observations, the aim of this study was to investigate the effects 

of maggot secretions on coagulation and fibrinolysis.  
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Materials and methods 

 

Preparation of maggot secretions 

Sterile second- and third-instar larvae of L. sericata were a kind gift from BioMonde GmbH 

(Barsbüttel, Germany). Maggot secretions were collected as described
8
. Prior to use, sterile 

preparations of secretions were pooled and centrifuged at 1,300xg for 5 min at 4°C to 

remove particulate material. Subsequently, the protein concentration of these pools was 

determined using the Pierce BCA Protein Assay kit (Pierce Biotechnology, Rockford, IL, 

USA) according to manufacturer's instructions. In each assay, at least 3 different pools were 

used. 

 

Coagulation assays  

Clot formation was measured after incubating 10 µL of secretions (final concentration 50 

µg/mL) or H2O as a control with 90 µL of citrated plasma for 10 and 30 min at room 

temperature (RT). To initiate the intrinsic pathway of coagulation, 100 µL of APTT reagent 

(Kordia Life Sciences, Leiden, The Netherlands) and 100 µL of 25 mM Ca
2+

 were added 

(APTT-test). The extrinsic pathway was started by adding 200 µL of Thromborel S (Dade 

Behring BV, Leusden, The Netherlands) to the secretions-plasma mixture (PT test) while the 

Thrombin time (TT-test) was measured after adding 25 µL of Thrombin (100 U/mL; Enzyme 

Research Laboratories Inc, South Bend, IN, USA). The time needed for clot formation was 

measured at 37°C.  

 

Clot lysis assay 

Clot lysis was measured by a turbidimetric method using 96-wells microlon plates (Greiner 

Bio-One, Alphen aan de Rijn, The Netherlands). Mixtures of 80 µL were made containing 

75% citrated plasma, 7.5 U/mL of tissue-type plasminogen activator (tPA; kindly provided by 

TNO, Leiden, The Netherlands) and secretions (range 1.25-5 µg) or, as a control, H2O and 

transferred to the wells. Subsequently, 20 µL of a second mixture was added consisting of a 

100 fold dilution of Innovin (Dade Behring) in TEA-buffer (containing 25 mM triethanolamine, 

0.05% Tween and 50 mM NaCl) supplemented with 100 mM CaCl2. Next, the plate was 

shaken for 30 s after which the absorbance (405 nm) was measured 60 times with an 

interval of 10 min at 31°C using a Tecan reader. The time needed to obtain 50% lysis of the 

clot (X50) was calculated. Results, being the average X50 of samples measured in 

duplicate, were normalized by dividing them by the X50 obtained in the absence of 

secretions (Ratio).       

 

Plasminogen activation 

The effect of secretions on the kinetics of fibrinolysis was investigated in a system of purified 

proteins (tPA and plasminogen) using the chromogenic substrate for plasmin S2403. 
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Mixtures were made containing tPA (25-600 U/mL), secretions (0.78-100 µg/mL) or, as a 

control, H2O, Glu-plasminogen (Plg; 0.25-2 U/mL = 0.33-2.68 µM) and 0.375 mM S2403 

(Chromogenix, Milano, Italy) and transferred to 96-wells microlon plates (Greiner Bio-One). 

Next, the plates were shaken for 30 s after which the absorbance (405 nm) was measured 

30 times with an interval of 20 s at 31°C using an ELISA reader. Subsequently, absorbance 

values were corrected for the absorbance in the absence of Plg and tPA  (due to enzymatic 

activity present in secretions
16

) at each time interval. The resulting values were plotted 

against the time square and the slope of this line, which reflects the rate of plasmin 

production, was calculated for each sample. Next, the ∆absorbance/sec
2
 was converted into 

rates of plasmin production (nM/sec) using purified human plasmin as a standard (Enzyme 

Research Laboratories, South Bend, IN, USA). 

 

Acid-urea gel electrophoreses 

Acid-urea gels (AU-page; 10%) were prepared as described
17

. Plg in TEA buffer was 

incubated with tPA and/or secretions for the indicated time intervals at 31°C and mixed with 

sample buffer (9.5 M urea in 5% acetic acid) in a 1:1 ratio. Next, samples were transferred to 

the slots and gels were run in 5% acetic acid for 90-120 min at 150V using reversed polarity. 

Thereafter, gels were stained with Coomassie Blue. 

 

Partial characterization of the active component in secretions  

To obtain information about the nature of the active component(s), secretions were 

incubated with 0.1-1% of SDS, 6 M urea, 50 mM DTT or, as a control, H2O for 1 h at RT 

followed by overnight dialysis using a 12-14 kD tubing membrane (Visking, Medicell 

International Ltd, London, UK) against ultrapure H2O at 4°C. In addition, secretions were 

boiled for 2 min or 2 h. Subsequently, the effects of treated secretions on fibrinolysis were 

tested in the clot lysis assay. Furthermore, secretions were incubated with Serine Protease 

Inhibitor Cocktail Set I (SPIC-1; Calbiochem, EMD Biosciences, Inc, La Jolla, Ca, USA) or 

10 mM of PMSF at various time intervals at 31°C before testing in the AU-page.  

 

Statistical analysis  

Statistical analyses were performed using Graphpad Prism version 4.02. Differences 

between values obtained with samples incubated with secretions and control samples were 

analyzed with a paired t-test. P<0.05 was considered significant.  
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Results 

 

Effect of secretions on coagulation 

To investigate whether maggot secretions interfered with the formation of blood clots, their 

effect on the intrinsic pathway (APTT-test), the extrinsic pathway (PT-test) and fibrin 

formation (TT-test) were assessed. The results showed no effect of secretions (50 µg/mL) 

on coagulation (Table 1).  

 

 
Table 1 Effect of 50 µg of secretions/mL on coagulation 
 

10 min 30 min 
Test 

 

Control  Secretions  Control  Secretions 

APTT  41.0 ± 1.4  44.3 ± 1.8  41.6 ± 2.3   41.3 ± 1.6 

PT  25.3 ± 0.2  22.4 ± 0.3  24.0 ± 0.3   22.2 ± 0.2 

TT  19.8 ± 0.2  20.5 ± 0.6    20.5 ± 0.4   20.2 ± 0.6 

 
The results, expressed in seconds, are means ± SEM of 6 experiments.  
PT, Prothrombin Time; TT, Thrombin Time. 

 

 

Effect of secretions on tPA-induced fibrinolysis 

To investigate whether maggot secretions affect breakdown of plasma clots, a turbidimetric 

method was used. The results showed that secretions dose-dependently decreased the lysis 

time (Table 2; Figure 1). Secretions added to the wells 15 min after the fibrin clot was formed 

also reduced the lysis time -although less efficient- indicating that secretions are effective 

against preformed clots as well (Table 3). Similar results were obtained when using uPA (30 

U/mL) instead of tPA (data not shown). Importantly, the addition of a plasminogen activator 

was essential as secretions themselves did not induce clot lysis. When the experiments 

were repeated with plasma deficient in α2-antiplasmin or TAFI, similar effects were obtained 

as in normal plasma indicating that the accelerating effect of secretions on fibrinolysis was 

not due to inhibition/inactivation of these fibrinolysis inhibitors. Two min of boiling was 

sufficient to abrogate the profibrinolytic effect of secretions, indicating that the active 

component is likely a protein (n = 3). Treatment of secretions with SDS or urea abrogated 

their activity (n = 3) indicating that the tertiary structure of the protein(s) is essential for its 

biological activity. As DTT had no effect on the activity of secretions (n = 3) it seems unlikely 

that the active component contains disulfide bonds.  
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Table 2 Effect of secretions on the lysis time of plasma clots 
 

Secretions 
(µg/mL) 

 X50 
(min) 

 Ratio 

0  207 ± 2  1.00 

12.5  195 ± 5  0.94 ± 0.03 

25  181 ± 3  0.87 ± 0.02** 

50  165 ± 3  0.79 ± 0.02** 

 
Results, expressed as the time needed to obtain 50% lysis of the clot (X50) and as Ratio (X50-
secretions/X50-control), are means ± SEM of 7-8 experiments. **Values are significantly (p<0.005) 
different compared to the control.  
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Figure 1 Representative example of the effect of maggot secretions on the tPA-induced lysis of plasma 
clots. No secretions —; 12.5 µg of secretions/mL — —; 25 µg of secretions/mL – —; 50 µg of 
secretions/mL – – –. 

 
 
Table 3 Effect of secretions on the lysis time of established plasma clots 

 

Secretions 
(µg/mL) 

 Ratio 

0  1.00 

25  0.96 ± 0.04 

50  0.92 ± 0.03* 

100  0.86 ± 0.06* 

200  0.81 ± 0.04* 

250  0.73 ± 0.02* 

 
Results, expressed as Ratio (X50-secretions/X50-control), are means ± SEM of 6-8 experiments. 
*Values are significantly (p<0.05) different compared to the control.  
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Stimulation of tPA-induced plasmin formation by secretions 

As the presence of a plasminogen activator was essential for secretions-stimulated 

fibrinolysis, we further studied the effect of secretions on the tPA-induced plasminogen 

activation. The results showed secretions to enhance the rate of plasmin formation in the 

presence of 0.33 µM of Plg and 50 U/mL of tPA but not in the absence of tPA (Figure 2A). 

Maximum stimulation was observed for 12.5 µg of secretions/mL; this concentration was 

independent of the tPA concentration used (data not shown). In contrast, maximum 

stimulation was obtained at higher secretions concentrations when the Plg concentration 

was increased (Figure 2B). These data indicate that secretions interact with Plg but not with 

tPA.  
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Figure 2 Effect of secretions on the tPA induced conversion of Glu-plasminogen.  
A) The effect of secretions (1.56-100 µg/mL) on plasmin formation from 0.33 µM of Plg and 50 U/mL of 
tPA (diamonds) or no tPA (squares). B) The effect of secretions (1.56-100 µg/mL) on plasmin formation 
from 0.33 µM (diamonds), 0.67 µM (triangles) and 1.34 µM (circles) of Plg/mL in the presence of 50 
U/mL of tPA. The shown results are of representative examples out of 3-6 experiments. 

 
  
 

To investigate this interaction in more detail, secretions and plasminogen (0.33 µM) were 

incubated for various time intervals before addition of tPA (50 U/mL) and the plasmin 

substrate. The results showed that plasmin formation was dependent on the pre-incubation 

time (Figure 3A), indicating that enzymes in the secretions are responsible for the observed 

stimulatory effect. Plg incubated with secretions (12.5-100 µg/mL) for 24 h was no longer 

activated by tPA although lower concentrations of secretions were still able to stimulate Plg 

activation. Incubating tPA with secretions before addition of Plg and the plasmin substrate 

had virtually no effect on plasmin formation (Figure 3B).  
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Figure 3 Effect of pre-incubation of Glu-plasminogen or tPA with secretions on plasmin formation. 0.33 
µM Glu-Plg (A) or 50 U/mL of tPA (B) were pre-incubated with secretions for various time intervals 
before measuring plasmin formation. Pre-incubation time: 0 min = squares; 20 min = diamonds; 40 min 
= triangles; 60 min = circles; 24 h = cross. The results are of representative examples out of 3-6 
experiments.   
 
 
 

Effect of secretions on plasminogen 

As secretions enhance tPA-induced plasmin formation by interacting with Plg, we 

considered the possibility that secretions promote the proteolytic conversion of Plg into (a) 

derivative(s) with a higher affinity for plasminogen activators. The results showed secretions 

to cleave plasminogen in a dose- (Figure 4A) and time-dependent (Figure 4B) manner 

eventually leading to complete fragmentation. Incubating secretions with 10 mM of PMSF or 

SPIC-1 abrogated the observed cleavage of Plg (Figure 4C) indicating that a serine 

protease within secretions was responsible for these effects. However, formation of Lys-

plasminogen, a known derivative of Glu-plasminogen
18

, and/or plasmin was not observed 

when incubating Plg with secretions whereas incubation of Plg with tPA resulted in the 

formation of Lys-plasminogen and/or plasmin (Figure 4D).  
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Figure 4 Effect of secretions (S) on cleavage of Glu-plasminogen visualized with AU-page. Plg was 
incubated with A) various amounts of secretions for 1 h, or B) with 50 µg/mL of secretions for various 
time intervals. C) Plg was incubated for 1 h with a mixture of 50 µg of secretions/mL pre-incubated for 
24 h with the serine protease inhibitors PMSF or SPIC-1. D) The formation of Lys-plg/plasmin by 
secretions or tPA for 3 h and 24 h. Arrow: Glu-plasminogen.  

 

 

Discussion 

                                                                                                                                                                                                                                                                                                                                                                                                                              

The main conclusion from the present study is that a serine protease present in the 

secretions of maggots enhances plasminogen activator-induced fibrinolysis by cleavage of 

plasminogen. This conclusion is based on the following observations. First, the tPA (and 

uPA) induced lysis of fibrin clots was enhanced by secretions when added either before or 

after the formation of clots from plasma; secretions could not induce lysis in the absence of 

these activators. Secretions exerted similar effects on clots formed with TAFI or α2-

antiplasmin deficient plasma indicating that the observed enhanced fibrinolysis was not the 

result of inactivation of these inhibitors. Second, using a system of purified proteins, we 

observed secretions to enhance the tPA-induced plasminogen activation in a dose-

dependent manner. Pre-incubating Plg with secretions further enhanced this process 

whereas pre-incubation of tPA with secretions did not lead to increased plasmin formation. 

Third, secretions were inactive after treatment with SDS and urea as well as after boiling 
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indicating that the active component is a protein with a tertiary structure essential for its 

biological activity. We hypothesized that protease activity in secretions
19

 was responsible for 

cleavage of plasminogen into a derivative that is activated more easily by plasminogen 

activators. Using AU-page we found a serine protease within secretions to cleave Glu-plg in 

a dose- and time-dependent manner, although no formation of the Lys-plg
18

 and/or plasmin 

was observed. Moreover, using the plasmin substrate assay we found secretions to enhance 

the tPA-induced plasmin formation from purified Lys-plg as well (data not shown). Therefore, 

digestion of Plg by secretions probably leads to formation of a small derivative like 

miniplasminogen (kringle 5 attached to the protease part)
20

, which still can be activated to 

plasmin by plasminogen activators. In summary, a serine protease within secretions 

enhances the plasminogen activator-induced fibrinolysis by cleavage of Plg though the 

cleavage site itself is unknown and should be further investigated.  

      The second conclusion from this study is that maggot secretions have no effect on 

coagulation, at concentrations that clearly affect fibrinolysis. Therefore, the observations by 

Weil et al that the excretory substances from the larvae have a potent hemostatic effect in 

haemorrhage
15

 may be due to other, yet unknown, causes. However, no other reports 

mention effects of maggots on haemorrhage as observed by Weil. In contrast, it has been 

reported that bleeding may occur after debridement of wounds by maggots. A possible 

explanation could be that the clot is broken down before the underlying tissue has healed. 

However, in none of the patients treated with the contained form of maggot therapy 

(biobags) has bleeding been observed
21

. It is unclear whether bleeding is the result of 

crawling of maggots
22

 or of the amount of lysing components as it is likely that a large part of 

the maggot products stick to the biobags leading to less active molecules in the wounds.  

      What could be the clinical relevance of our findings? In a balanced wound healing 

process proteases are involved in autolytic/enzymatic degradation of the clot/provisional 

matrix which is essential for remodelling and repair of the tissue
23

. However, proteases, such 

as elastase and matrix metalloproteases (MMPs), in chronic wounds not only partially 

degrade clots and extracellular matrix but, due to excessive proteolytic enzyme production 

by immune cells
11,13,24

, also damage surrounding healthy tissue. The clots no longer support 

re-epithelialisation and granulation tissue formation and therefore have to be removed. 

However, elevated levels of pro-inflammatory mediators, like TNF-α and C5a, in chronic 

wounds may lead to enhanced production of the fibrinolysis inhibitor PAI-1
25,26

 as is reported 

for obese and diabetic patients
27,28

. PAI-1 binds to and inactivates uPA and tPA which 

results in impaired lysis of clots and fibrin cuffs
27,29

. Additionally, enhanced levels of 

methylglyoxal found in diabetic patients result in decreased activation of plasminogen
30

. 

Clearly, failure in the removal of impaired clots may promote formation of ulcers and/or 

(more) necrotic tissue and/or fibrin slough, which facilitates bacterial colonization and 

infection and consequently pro-inflammatory responses. In contrast to many ‘conventional’ 

therapies, maggots actively induce healing of chronic wounds. Maggots not only inhibit the 
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production of pro-inflammatory mediators by leucocytes
7,8

 but also debride the wounds of 

necrotic tissue and fibrin slough. Debridement is often explained to result from enzymatic 

activity of the excretions/secretions of the maggots involving serine proteases, peptidases, 

and lipases
31-33

. However, our results showed that secretions do not degrade plasma clots in 

the absence of plasminogen activators. This is in contrast with the results of Chambers et 

al
16

 who reported that maggot ES induced lysis of a fibrin matrix and various clot/matrix 

components suspended in Tris-HCL (pH 8), such as fibronectin, laminin and acid-solubilized 

collagen types I and III. This discrepancy was not the result of differences in collecting the 

maggot products (data not shown) but likely the result of differences in the composition of 

the clots. Chambers et al formed ‘clots’ containing fibrin only, whereas in our studies clots 

were formed using plasma which contains a large variety of other proteins that can be 

incorporated in the clot. Hence, the composition of the clot may be an important factor for 

the activity of the enzymes within secretions. In agreement, clots/matrices in chronic wounds 

obtain an altered composition and structure compared to those in acute wounds as some of 

their components have been degraded by proteases
13,34,35

. This altered structure/ 

composition may result in direct debridement of wounds by enzymes in secretions due to 

easier accessibility to the different clot/matrix components.  

      It should be noted that the relation between chronic wounds and the levels of tPA, uPA 

and PAI-1 are unclear. Classically, uPA is associated with cell-mediated activation of 

plasminogen in tissue whereas tPA is related to lysis of fibrin clots in the circulation
36

. 

However, both uPA and tPA are present in chronic ulcers. Elevated levels/activity of uPA, 

tPA, and PAI-1 have been reported, as well as no differences in and/or decreased 

activity
24,37,38

. Clearly, the localisation, activity and subsequent role of tPA, uPA and PAI-1 in 

chronic ulcers remains unclear and should be investigated in more detail. However, the 

observation that serine protease inhibitors, like PAI-1, prevent fibroblast migration into fibrin 

clots
39

, as is seen in chronic wounds, suggests the absence of active molecules involved in 

plasmin formation. In agreement, impaired wound healing observed in uPA/tPA double-

deficient and plasminogen-deficient mice results from the diminished ability of wound edge 

cells to migrate through the provisional and/or extracellular matrix
40,41

. 

      In summary, a serine protease within maggot secretions enhances the plasminogen 

activator-induced fibrinolysis by cleavage of plasminogen making suboptimal levels of 

plasminogen activators likely sufficient to obtain lysis of clots as well as fibrin cuffs below the 

wound surface. These effects of secretions may explain their ability to effectively debride 

wounds which may be further enhanced by direct enzymatic activity of the secretions. In 

addition, maggot secretions enhance cAMP levels in leucocytes
7,8

 which leads to reduced 

production of pro-inflammatory cytokines and PAI-1 further enhancing fibrinolysis. Taken 

together, these actions of secretions may prevent ongoing inflammation and tissue 

destruction in chronic wounds and hence contribute to the beneficial effects of maggot 

treatment.  
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Abstract  

 

There is renewed interest in the use of maggots (Lucilia sericata) to aid in healing of chronic 

wounds. In such wounds neutrophils precipitate tissue damage rather than contribute to 

healing. As the molecules responsible for the beneficial actions of maggots are contained in 

their excretions/secretions (ES), we assessed the effects of ES on functional activities of 

human neutrophils.  

ES dose-dependently inhibited elastase release and H2O2 production by fMLP-activated 

neutrophils; maximal inhibition was seen with 5-50 µg of ES/mL. In contrast, ES did not 

affect phagocytosis and intracellular killing of Candida albicans by neutrophils. Furthermore, 

0.5 µg of ES/mL already inhibited neutrophil migration towards fMLP. ES dose-dependently 

reduced the fMLP-stimulated expression of CD11b/CD18 by neutrophils, suggesting that ES 

modulate neutrophil adhesion to endothelial cells. ES did not affect the fMLP-induced rise in 

[Ca
++

]i in neutrophils, indicating that ES act down-stream of phospholipase C-mediated 

activation of protein kinase C. In agreement, ES inhibited PMA-activated neutrophil 

functional activities. ES induced a rise in intracellular cAMP concentration in neutrophils and 

pharmacological activators of cAMP-dependent mechanisms mimicked their inhibitory 

effects on neutrophils.  

The beneficial effects of maggots on chronic wounds may be explained in part by inhibition 

of multiple pro-inflammatory responses of activated neutrophils by ES.  
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 Introduction 

 

For hundreds of years the beneficial effects of maggots on wound healing have been 

documented
1
. The systemic use of maggots in patients started in the late 1920s by William 

Baer, who successfully applied them to patients with osteomyelitis
2
 and rapidly thereafter the 

use of maggots for treating wounds became widespread. However, by the mid-1940s 

maggot therapy was abandoned due to the introduction of antibiotics and improved surgical 

techniques. In the 1980s, maggot therapy made its comeback with the emergence of 

antibiotic-resistant bacteria and nowadays larvae of the green bottle blowfly Lucilia sericata 

are used worldwide for the treatment of many types of wounds, including venous ulcers
3
, 

traumatic and post-surgical wounds
4
, osteomyelitis

5
 and burns

6
. The molecules involved in 

the beneficial effects of maggots are believed to be contained in their excretions/secretions 

(ES). Clinical observations indicate that in addition to removal of necrotic tissue, maggots 

promote wound healing, especially in wounds that show little tendency to heal. Wound 

healing is a complex well-orchestrated repair process that comprises three phases: 

inflammation, proliferation and remodelling. Although maggots are applied during the 

inflammatory phase, there is little information available about the effects of maggots on the 

cells that characterize the wound in this phase.  

      Neutrophils are an essential component of the inflammatory response in wounds. These 

cells are recruited from the circulation to the affected site where they are essential to combat 

infections
7
. Most inflammatory responses resolve after clearance of bacteria from tissues, 

but in chronic wounds there appears to be a continued presence of inflammatory leucocytes, 

most notably neutrophils
8,9

, that may accelerate tissue damage by excess production and 

release of bioactive substances like proteinases and reactive oxygen species. Based on the 

above considerations the aim of this study was to investigate the effects of ES on multiple 

human neutrophil pro-inflammatory activities. 

 

 

Materials and methods 

 

Preparation of maggot excretions/secretions 

Sterile second- and third-instar larvae of L. sericata were a kind gift from BioMonde GmbH 

(Barsbüttel, Germany). Maggot ES were collected after incubating approximately 50 

larvae/tube in 200 µL of Milli-Q ultrapure water for 60 min at ambient temperature in the 

dark. Next, ES was checked for sterility and stored at -20°C. Prior to use, ES preparations 

were pooled in 15 mL tubes (Greiner Bio-One, Alphen aan de Rijn, The Netherlands) and 

centrifuged at 1,300xg for 5 min at 4°C to remove particulate material. ES protein 

concentration was determined using the Pierce BCA Protein Assay kit according to 

manufacturer's instructions. 
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Isolation of human neutrophils 

Neutrophils from healthy donors were isolated from fresh venous blood transferred to 50 mL 

tubes (Greiner Bio-One) by Ficoll Amidotrizoate (ρ = 1.077 g/mL) density centrifugation at 

440xg for 20 min. Erythrocytes were removed from the cell pellets by hypotonic lyses using 

a buffer (pH 7.2) containing 0.1 mM EDTA, 0.18 M NH4Cl and 10 mM KHCO3. The final cell 

suspensions consisted of 97 ± 2% neutrophils and the cell viability amounted to 95%, as 

determined by trypan blue exclusion. 

 

Stimulation of neutrophils 

Neutrophils were stimulated with the indicated concentrations of formyl-Met-Leu-Phe (fMLP; 

Sigma Chemical Co., St. Louis, MO, USA) or 100 ng/mL phorbol-12-myristate-13-acetate 

(PMA; Sigma). To establish the effects of ES, neutrophils were incubated with these stimuli 

together with increasing concentrations of ES (range 0.5-100 µg/mL). Furthermore, ES was 

boiled for 2 h to investigate the heat-stability of the active molecules.  

 

Measurement of elastase release  

Neutrophils were resuspended in 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 0.9 mM 

CaCl2, 0.49 mM MgCl2, 1.5 mM KH2PO4, and 2.5 mg of BSA/mL to a concentration of 5x10
6
 

cells/mL and then incubated with 100 nM fMLP or PMA and ES or no stimulus at 37°C for 30 

min. The reaction was stopped by transferring the cells onto ice. After centrifugation at 

100xg for 5 min, the cell-free supernatants were transferred to equal volumes of a buffer 

containing 70 mM Tris, 700 mM NaCl and 0.2% (wt/v) gelatin and the absorbance was read 

at 405 nm. Subsequently, 1/10 volume of substrate (Pefafluor®ELA-5534; Penthapharm Ltd, 

Basel, Swiss) was added and the absorbance by the reaction product was read every 15 

min up to 60 min. Results are expressed as arbitrary units (a.u.)/2.5x10
5
 cells after 30 min 

incubation. Values were corrected for the enzymatic activity present in ES
10

, which was 

determined in cell-free experiments. To enhance responsiveness to fMLP, the neutrophils 

were preincubated with 10 µM cytochalasin B (Sigma) for 10 min
11

.  

 

Measurement of extracellular hydrogen peroxide  

Extracellular release of hydrogen peroxide was measured as described
12

. Neutrophils 

(1x10
7
 cells/mL) were resuspended in Hank's Buffered Saline Solution (HBSS) and 

preincubated with cytochalasin. Subsequently, 5x10
5
 cells were transferred to tubes 

containing HBSS supplemented with 100 µM homovanillic acid (Fluka, Buchs, Switzerland), 

1 U horse reddish peroxidase (Sigma)/mL and 100 nM fMLP or PMA in combination with ES 

or as a control no stimulus. After 30 min incubation at 37°C in the dark, the reaction was 

stopped by adding 1/8 volume of glycine-NaOH buffer containing 46 mM glycine, 46 mM 

NaCl, 540 mM NaOH and 25mM EDTA. Next, tubes were centrifuged at 1,000xg for 10 min 

and the H2O2 production was determined by measuring the fluorescence of the supernatants 
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on a F4500 fluorescence spectrophotometer (Hitachi Europe GmbH, Germany) using an 

excitation wavelength of 312 nm and an emission-detection wavelength of 420 nm. The 

production of H2O2 by the cells was calculated using a standard curve constructed with 

various concentrations of H2O2. The results are expressed as nmol H2O2/5x10
5
 neutrophils. 

Values were corrected for the amount of H2O2 in cell-free samples.  

 

Chemotaxis assay 

Migration of neutrophils in response to various stimuli was measured using a 48-well 

microchemotaxis chamber (Neuroprobe, Cabin John, MD, USA) as described
13

 with minor 

modifications. fMLP and ES or incubation buffer in a 1:1 ratio with RPMI 1640 

(supplemented with 2 mM glutamax-I/glutamine and penicillin/streptomycin; RPMI-p/s/g) 

were added to the lower compartments. The incubation buffer consisted of 20 mM Hepes 

buffer (pH 7.4) supplemented with 0.5% HSA, 5.5 mM glucose and 1 mM CaCl2. Next, two 

filters presoaked in incubation buffer were placed between the lower and upper 

compartments. The lower filter had a pore size of 0.45 µm (Millipore,
 
Bedford, MA, USA) and 

the upper filter of 8 µm (thickness, 150 µm; Sartorius,
 
Gottingen, Germany). Thereafter, 

neutrophils (25 µL of 2x10
6
 cells/mL) were placed in the upper compartment. After 

incubation for 1.5 h at 37°C, the upper filters were removed,
 
fixed in butanol/ethanol 

(20/80%) for 10 min, and stained
 
with Weigert's solution. Subsequently, the

 
filters were 

dehydrated with ethanol, made transparent with
 

xylene, and fixed upside down onto 

microscope slides. For counting of the number of migrated cells, pictures were made of each 

level within the filters with a CoolSNAP camera (RS Photometrics, Roper Scientific BV, 

Vianen, the Netherlands) connected to an Olympus BX51 microscope (Olympus Nederland 

BV, Zoeterwoude, The Netherlands). The first level in the filter that contained neutrophils 

attracted by 10 nM fMLP was taken as the first level for all samples. Neutrophils were 

counted in 6 subsequent levels within each filter. Results are expressed as the average 

number of cells in a 2 µm
2  

area/high power field. 

 

Measurement of CD11b/CD18 expression  

The effect of ES on the fMLP-induced expression of CD11b and CD18 by neutrophils was 

measured by FACS analysis. Neutrophils (2x10
6
/mL) were suspended in RPMI-p/s/g 

containing 10% heat-inactivated foetal calf serum. Subsequently, 1 mL of this suspension 

was transferred to wells of a Costar 24-well cell culture plate and incubated with or without 

fMLP (1 µM) and ES or no stimulus at 37°C for 1 h. Neutrophils were harvested and washed 

with ice-cold PBS containing 0.2% (wt/v) BSA. Next, cells were labelled for 30 min on ice 

with monoclonal antibodies against CD11b (mIgG1κ; DAKO A/S, Denmark) or CD18 (IB4, 

mIgG2a; American Type Culture Collection, Manassas, VA, USA) in PBS/BSA, washed, and 

then incubated for 30 min with R-phycoerythrin-labelled goat anti-mouse Ig(H+L) (Southern 

Biotechnology Associates, Inc, Birmingham, Al, USA). Thereafter, cells were washed and 
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then analyzed on a FACSCalibur (Becton & Dickinson, La Jolla, Ca, USA). Results are 

median fluorescence intensities (MFI) of ES-incubated, fMLP-activated neutrophils relative 

to the MFI for fMLP-activated cells, as calculated using CellQuest
tm

 Pro 4.0.2 software 

(Becton & Dickinson). 

 

Phagocytosis and killing assay 

Phagocytosis and intracellular killing of Candida albicans Y01-19 (Pfizer, Groton, Conn, 

USA) by neutrophils was measured as described
14

. C. albicans were cultured for 5 days in 

Sabouraud broth at 30°C, then washed with PBS and resuspended in HBSS-0.1% gelatin. 

Equal volumes of this C. albicans suspension (1.1x10
7
/mL) and a neutrophil suspension 

(1.1x10
7
/mL HBSS-0.1% gelatin) were mixed. Subsequently, 85 µL of this mixture were 

transferred to NUNCLON™ Surface plates (Nalge Nunc International, Rochester, NY, USA) 

containing either 15 µL of HBSS-0.1% gelatin or serum derived from AB positive donors in 

combination with ES or no ES. At various intervals after incubation at 37°C under slow 

rotation, the number of non-cell-associated C. albicans was assessed using a Bürker 

hemocytometer. Phagocytosis is expressed as the percentage decrease of non-cell-

associated C. albicans.  

      For assessment of intracellular killing, samples from the mixture were taken at various 

intervals and transferred to Eppendorf tubes containing H2O supplemented with 0.01% (wt/v) 

BSA and 0.01% tween-20. Thereafter, these suspensions were vortexed for 30 s and then 

sonicated for one min. Next, the number of viable C. albicans in these samples was 

determined microbiologically. Killing is expressed as the percentage decrease in the number 

viable C. albicans.  

 

Measurement of the [Ca
++

]i   

For measurement of the [Ca
++

]i , 2x10
7 

neutrophils/mL of Ca
++

-buffer (pH 7.4; 20 mM Hepes 

supplemented with 138 mM NaCl, 6 mM KCl, 1 mM MgSO4, 1.1 mM CaCl2, 1 mM NaH2PO4, 

5.5 mM D-glucose, 0.1 mM EGTA, and 0.1% wt/v BSA) were incubated with 2 µM 

acetoxymethyl ester of FURA-2 (Sigma) for 30 min at 37°C in the dark
15

. Subsequently, cells 

were washed and resuspended in Ca
++

-buffer. Changes in [Ca
++

]i after exposure to ES or 

Ca
++

-buffer and 5 min thereafter fMLP were measured using the F4500 spectrophotometer. 

At the end of each measurement the 340nm/380nm signals were calibrated using 0.2% 

Triton X-100 and 20 mM EGTA to determine the maximum and minimum free Ca
++

 

concentration, respectively. Thereafter, the [Ca
++

]i was calculated using the equation of 

Grynkiewicz
16

.  

 

Measurement of intracellular cAMP concentration 

Neutrophils (2x10
6
/20 µL) in HBSS were incubated with ES or fMLP (100 nM) or no stimulus 

for various intervals up to 2 min. The reaction was stopped by adding 10 volumes of lysis 
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buffer. Next, the cAMP content of these samples was measured using the cAMP Biotrak 

Enzymeimmunoassay System (Amersham Biosciences, Buckinghamshire, UK) according to 

manufacturer's instructions. The intracellular concentrations were calculated from these 

cAMP values and the mean cell volume of human neutrophils
17

.   

 

Cell viability 

To check whether ES affect cell viability, neutrophils were incubated for 1 h and 24 h with 

ES, fMLP or no stimulus and then stained with FITC-labeled Annexin V (2.5 µg/mL, Sigma) 

and propidium iodide (1 µg/mL, Sigma) in 10 mM Hepes (pH 7.4) as described
18

. Thereafter, 

the fluorescence intensities of the cells were analyzed by flow cytometry. 

 

Statistical analysis  

Statistical analyses were performed using SPSS for Windows version 11.0. Differences 

between the values for cells stimulated with fMLP or PMA together with ES and those for 

neutrophils exposed to these stimuli alone were analysed with a one-way ANOVA and a 

Dunnett’s posttest for multiple comparisons. The same approach was taken for analysis of 

the differences between cAMP-values for cells exposed to ES and those for non-exposed 

cells. Student’s t-tests were used for analysis of the differences between values for cells 

exposed to fMLP and PMA together with db-cAMP and those for cells stimulated by fMLP or 

PMA alone. P<0.05 was considered significant.  

 

 

Results 

 

Effect of ES on elastase release and hydrogen peroxide production 

Since tissue damage associated with chronic inflammation involves the action of proteases, 

like elastase, and reactive oxygen intermediates released by activated neutrophils, we first 

investigated the effects of ES on the release of these factors by fMLP- and PMA-activated 

neutrophils. The results revealed that ES dose-dependently inhibited elastase release by 

neutrophils in response to fMLP with maximal inhibition seen with 50 µg of ES/mL (Figure 

1A). Elastase release by neutrophils upon PMA activation was not significantly affected by 

ES (Figure 1B). Control experiments revealed that ES did not trigger the elastase release by 

resting neutrophils; the proteolytic activity of ES amounted to 4x10
-3

 arbitrary units/µg.  

      Already 5 µg of ES/mL blocked the H2O2 production by neutrophils in response to fMLP 

(Figure 2A). ES inhibited the H2O2 production by PMA-activated cells in a dose-dependent 

fashion with maximal inhibition seen with 100 µg of ES (Figure 2B). Control experiments 

revealed that ES neither affected the H2O2 production by resting neutrophils nor interfered 

with the measurement of H2O2 when added to standard curves, indicating that it did not 

quench the fluorescence of homovanillic acid. 
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Interestingly, boiling ES completely abrogated its inhibitory effects on neutrophil 

degranulation and H2O2 production (data not shown), indicating that the active component(s) 

in ES is (are) heat-labile. Moreover, ES did not affect cell viability of neutrophils even at the 

highest dose used, i.e. 100 µg/mL (data not shown). 
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Figure 1 Effect of maggot excretions/secretions on elastase release by neutrophils in response to fMLP 
(A) and PMA (B). Briefly, neutrophils were incubated with fMLP (100 nM) or PMA (100 ng/mL) together 

with ES (range 0.5-100 µg/mL) or no stimulus. After incubation for 30 min at 37°C, the reaction was 
terminated and then the cells were centrifuged. The elastase activity in the medium was assessed using 
the chromogenic substrate Pefafluor®ELA-5543. At various intervals thereafter the amount of reaction 
product in the supernate was quantitated by measuring the absorbance at 405 nm. Results, expressed 

as arbitrary units (a.u.)/2.5x10
5
 cells, are means ± SEM of six experiments. To enhance responsiveness 

towards fMLP, the cells were preincubated with 10 µM cytochalasin B. *Values are significantly (p<0.05) 
different from those for neutrophils stimulated with fMLP or PMA alone. 
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Figure 2 Effect of maggot excretions/secretions on the H2O2 production by neutrophils in response to 
fMLP (A) and PMA (B). The production of H2O2 by neutrophils upon stimulation with fMLP (100 nM) or 
PMA (100 ng/mL) in the presence of ES (range 0.5-100 µg/mL) or no stimulus was determined using 

the fluorescent probe homovanillic acid. After incubation for 30 min at 37°C, the reaction was stopped 
and the cells were centrifuged. Thereafter, the amount of the reaction product in the supernate was 
quantitated by measuring the fluorescence (excitation wavelength of 312 nm and emission of 420 nm). 

Results, expressed as nmol H2O2/5x10
5
 cells, are means ± SEM of four to six experiments. To enhance 

responsiveness towards fMLP, the cells were preincubated with 10 µM cytochalasin B. *Values are 
significantly (p<0.05) different from those for neutrophils stimulated with fMLP or PMA alone. 
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Effect of ES on neutrophil migration towards fMLP 

To investigate whether ES inhibited the neutrophil chemotaxis, we determined the effect of 

ES on the number of neutrophils migrating towards fMLP. The results revealed that ES 

dose-dependently inhibited the fMLP-stimulated neutrophil migration (Figure 3). A significant 

inhibitory effect was already observed with 0.5 µg of ES/mL while 100 µg/mL blocked the 

fMLP-induced neutrophil migration. Control experiments showed that ES was not 

chemotactic for neutrophils. 
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Figure 3 Effect of maggot excretions/secretions on the fMLP-stimulated neutrophil chemotaxis. 
Migration of neutrophils in response to 10 nM fMLP was monitored using a Boyden microchemotaxis 
chamber. In short, fMLP together with ES (range 0.5-100 µg/mL) or as a control with buffer was pipetted 
in the lower compartment and then the cells were applied to the upper compartment. After allowing the 
cells to migrate through the filters between the two compartments towards the lower compartment for 

1.5 h at 37°C, the filters were removed and the number of cells in six subsequent high power fields was 
determined microscopically. Results, expressed as the average number of cells per high power field, 

are means ± SEM of three experiments. Each experiment was performed in quadruplicate. *Values are 
significantly (p<0.05) different from those for neutrophils stimulated with fMLP alone. 

 

 

Effect of ES on the fMLP-induced expression of CD11b and CD18  

Neutrophils must adhere to endothelial cells in order to migrate through the blood vessel 

wall into a wound. In this connection, we determined the effect of ES on the fMLP-stimulated 

expression of CD11b and CD18, molecules involved in the adherence of neutrophils to e.g. 

endothelial cells. The results revealed that ES dose-dependently inhibited the expression of 

CD11b and CD18 on fMLP-activated neutrophils, with 100 µg/mL of ES inhibiting 

respectively 67% and 90% (Figure 4). Furthermore, ES did not affect the expression of 

CD11b and CD18 on resting cells, indicating that ES do not cleave off these molecules of 

the cell surface.  
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Figure 4 Effect of maggot excretions/secretions on fMLP-induced CD11b (A) and CD18 (B) expression 
by neutrophils. In short, neutrophils were incubated with fMLP (1 µM) together with ES (range 0.5-100 

µg/mL) or as a control no ES for 1 hr at 37°C. Thereafter, cells were washed and reincubated for 30 min 
with fluorescently labelled monoclonal antibodies directed against CD11b or CD18, and as control no 
antibody, and finally the fluorescence intensity of the cells was quantitated by flow cytometry. Results, 
expressed as the median fluorescence intensity (MFI) of ES-incubated, fMLP-stimulated neutrophils 

relative to the values of fMLP-stimulated cells, are means ± SEM of four to six experiments. *Values are 
significantly (p<0.05) different from those for neutrophils stimulated with fMLP alone.  

 

Effect of ES on the phagocytosis and killing of C. albicans  

To investigate whether ES decreased the antimicrobial activities of neutrophils we 

determined its effects on phagocytosis and killing of C. albicans by these cells. The results 

showed that ES had no effect on the phagocytosis and killing of C. albicans by neutrophils 

(Table 1). Furthermore, ES did not influence these activities by neutrophils incubated without 

serum (data not shown). In addition, ES had no effect on the viability of C. albicans under 

these conditions.  

 

 
Table 1 Effect of ES on phagocytosis and intracellular killing of Candida albicans by neutrophils. 
 

 

Phagocytosis (%) at 
various intervals (min) 

killing (%) at various intervals 
(min) 

 

ES 
(µg/mL) 

 5  15  30  5  15  30  

  0  20 ± 5 62 ± 7 83 ± 2 31 ± 6 36 ± 8 45 ± 5 

  5  14 ± 6 55 ± 7 80 ± 2 29 ± 6 43 ± 7 44 ± 5 

50  24 ± 9 58 ± 6 83 ± 3 36 ± 5 43 ± 8 48 ± 4 

 
Equal numbers of neutrophils and C. albicans were incubated with 15% (v/v) serum derived from AB 
positive donors in the presence or absence of ES (5 and 50 µg/mL). At various intervals, the number of 
non-cell-associated C. albicans was determined using a Bürker hemocytometer. Phagocytosis is 

expressed as the percentage decrease in the number of non-cell-associated C. albicans and is mean ± 
SEM of four experiments. For assessment of killing, the number of viable C. albicans was measured by 
plating serial dilutions of the suspension. Killing is expressed as the percentage decrease in viable C. 

albicans and is mean ± SEM of four experiments. No significant differences were observed between the 
values for phagocytosis and killing of C. albicans by neutrophils incubated with ES and those for 
neutrophils not exposed to ES.    
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Effect of ES on the fMLP-stimulated rise in the [Ca
++

]i   

Activation of neutrophils by fMLP involves its binding to a G-protein coupled receptor and 

subsequent activation of down-stream pathways
19

. A major pathway involves phospholipase 

C, which acts on phosphoinositol(4,5)biphosphate to produce inositol(1,4,5)trisphosphate, 

an activator of the release of Ca
++

 from specific intracellular stores into the cytosol, and 

diacylglycerol; together these two intracellular messengers activate protein kinase C. As ES 

inhibited fMLP-activated neutrophils we questioned whether ES interfered with the fMLP-

induced rise in [Ca
++

] in neutrophils. Basal [Ca
++

]i in neutrophils amounted to 94 ± 2 nM and 

the peak value seen after stimulation with fMLP to 572 ± 15 nM. ES did not stimulate a rise 

in the [Ca
++

]i nor did it affect the kinetics of the fMLP-induced rise in [Ca
++

]i in neutrophils 

(Figure 5).  
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Figure 5 Effect of maggot excretions/secretions on fMLP-induced increase in the [Ca

++
]i in neutrophils. 

Fura-2-loaded neutrophils were transferred to a quartz cuvette and then placed in a spectrophotometer. 
Thereafter, the samples were excited at 340 nm and 380 nm using an emission wavelength of 500 nm 
and the 340nm/380 nm ratio's were used to calculate the changes in [Ca

++
]i in the cells in response to 

first ES or Ca
++

-buffer as a control and 5 min thereafter to fMLP. Results are of a representative 
experiment out of three experiments. 

 

 

Involvement of cAMP-dependent mechanisms in the inhibitory effects of ES  

To investigate if cAMP-dependent mechanisms are involved in the inhibitory effects of ES on 

neutrophil responses, two sets of experiments were performed. First, we determined 

whether ES stimulate a rise in the intracellular cAMP concentration in neutrophils. The 

results revealed that 50 µg of ES/mL enhanced the intracellular cAMP concentration in 

neutrophils from 0.84 ± 0.10 µM to 1.26 ± 0.15 µM; the peak value after 100 nM fMLP 

amounted to 1.17 ± 0.03 µM (n=3-4). At 15 sec after addition of ES the peak intracellular 

cAMP concentration was reached and thereafter the values returned gradually to basal 

values at 60 sec (results not shown). Based on these data, the 15 sec interval was chosen 

to determine the dose-effect relation for ES. The results revealed that 5 and 50 µg of ES/mL 

both increased the intracellular cAMP concentration 1.5-fold over basal values and the 
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maximum increase (1.7-fold over basal values) was seen with 100 µg of ES/mL (Table 2). 

Secondly, the effect of dibutyryl (db)-cAMP, an activator of cAMP-dependent mechanisms, 

on the elastase release and H2O2 production by activated neutrophils was determined. The 

results revealed that db-cAMP dose-dependently inhibited the fMLP-stimulated elastase 

release by neutrophils with maximal inhibition of approximately 40 ± 8% seen with 3 mM db-

cAMP (n=4). Interestingly, 0.5 mM db-cAMP was sufficient to block the production of H2O2 

by fMLP-activated neutrophils (n=4). Furthermore, db-cAMP inhibited the elastase release 

by PMA-activated cells by 23 ± 4% and the production of H2O2 by these cells completely 

(n=3). All values for db-cAMP incubated, fMLP- or PMA-stimulated neutrophils were 

significantly lower (p<0.05) than the values for cells stimulated with fMLP or PMA.  

 

Table 2 Effect of ES on the intracellular cAMP concentration in neutrophils 

 
 

ES 
(µg/mL) 

 

 
 

cAMP 
(µM) 

          0  0.84 ± 0.10  

          0.5  0.85 ± 0.12 

          5  1.30 ± 0.14* 

        50  1.26 ± 0.15* 

      100  1.44 ± 0.07* 

 
Neutrophils were incubated for 15 sec with ES (range 0.5-100 µg/mL) or no stimulus and then the cAMP 
content of the samples was quantitated using the Biotrak EnzymeImmunoAssay system. The 
intracellular cAMP values were calculated from the cAMP contents and the mean cell volume of 

neutrophils
17

. Results are means ± SEM of four experiments.  *Values are significantly (p<0.05) different 
from those for neutrophils not exposed to ES. 

 

 

Discussion 

 

The main conclusion from the present study is that maggot excretions/secretions inhibit 

multiple neutrophil pro-inflammatory responses without affecting their antimicrobial 

functional activities. This conclusion is based on the following observations. First, ES 

inhibited the release of elastase and production of H2O2 by fMLP- and PMA-activated 

neutrophils in a dose-dependent fashion. These findings with ES are of importance since in 

chronic wounds the healing process may be impaired by the actions of neutrophils and their 

products, e.g. proteolytic enzymes and reactive oxygen intermediates, at the surface of 

wounds
20

. It has been reported that elastase destructs virtually all components of the 

extracellular matrix
21

 and affects epithelial repair mechanisms leading to separation of the 

dermal and epidermal layers
22

. In light of the notion that excess reactive oxygen 
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intermediates are responsible for tissue damage
23

, it is of interest that neutrophils of patients 

with chronic venous insufficiency
24

 and posttraumatic osteomyelitis
25

 are primed to produce 

high amounts of superoxide anion upon exposure to stimuli. Second, ES inhibited neutrophil 

chemotaxis towards fMLP in a dose-dependent fashion. In addition, we found that ES 

reduced the expression of the adhesion molecules CD11b and CD18 on activated 

neutrophils, indicating that it may modulate adhesion of neutrophils to endothelial cells and 

subsequently the transendothelial migration process. However, it should be realized that 

neutrophils also have favorable effects on the wound healing process by their ability to 

phagocytose and intracellularly kill infectious agents at the affected site. In this connection, 

we observed that maggot ES did not affect phagocytosis and killing of Candida albicans by 

neutrophils. Notably, maggots aid in the removal of bacteria from wounds by ingesting 

bacteria together with liquefied necrotic tissue and subsequently killing them in their 

digestive tract
26

. Third, ES did not induce apoptosis or affect viability of neutrophils, 

excluding the possibility that ES affect neutrophil responses simply by a cytotoxic effect on 

the cells.  

      All neutrophil responses were studied by well-established methods and stimuli. The 

observation that the maximal inhibitory effect of ES on degranulation and respiratory burst of 

fMLP-activated neutrophils was greater than on PMA-activated cells may be explained by 

the differences in the potencies of these two stimuli. Of note, the concentrations of ES used 

in the present in vitro studies are well within the therapeutic range, i.e., those reached on the 

surface of maggot-treated wounds
2,4

. For instance, the highest concentration of ES, i.e. 100 

µg/mL, was obtained after incubating 40-50 maggots in distilled water for 1 h at ambient 

temperature, and next collecting the fluids. ES in our studies were obtained from sterile 

maggots under optimal conditions. Unfortunately, the identity of the molecule(s) in ES that is 

(are) responsible for its inhibitory effects on neutrophil functions remains unknown, and is 

subject of current studies. Our data indicate that the molecule(s) is (are) heat-labile.  

      The second conclusion pertains to the mechanisms underlying the inhibitory effects of 

ES on neutrophil pro-inflammatory responses. The observation that ES did not affect the 

fMLP-activated rise in the cytoplasmic free calcium concentration in neutrophils indicates 

that ES act downstream of the diacylglycerol/calcium-mediated activation of protein kinase 

C. In agreement, ES inhibited PMA-activated neutrophil degranulation and respiratory burst. 

The finding that fMLP-activated neutrophils were considerable more susceptible to the 

inhibitory effects of ES than PMA-activated neutrophils indicates that ES may inhibit 

signaling not only downstream of protein kinase C but also pathways unrelated to protein 

kinase C activation. Since cAMP-dependent protein kinases are involved in the inhibitory 

effects of several substances on cells including neutrophils
27,28

 and pharmacological 

activation of this pathway has been reported to inhibit fMLP-activated neutrophil migration, 

degranulation and the respiratory burst
29,30

 we considered the possibility that ES stimulated 

a rise in the intracellular cAMP concentration in neutrophils. Indeed, ES dose-dependently 
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induced a transient rise in the intracellular cAMP concentration in neutrophils. In addition, 

db-cAMP inhibited the fMLP- and PMA-stimulated H2O2 production by neutrophils. However, 

db-cAMP only partly affected the fMLP- and PMA-activated neutrophil degranulation, 

indicating that ES exerts its inhibitory effects on neutrophil degranulation also by cAMP-

independent mechanisms. Although the mechanisms underlying the inhibitory effects of 

maggot ES on neutrophil pro-inflammatory responses are not fully elucidated, activation of 

cAMP-dependent mechanisms may be involved.  

      In summary, the present in vitro study shows that maggot excretions/secretions potently 

inhibit multiple neutrophil pro-inflammatory responses, including chemotaxis, degranulation, 

respiratory burst and integrin expression without affecting the antimicrobial activities of 

neutrophils. These inhibitory actions of ES may provide protection against progression 

towards ongoing inflammation and tissue destruction by neutrophils in chronic wounds.  
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Abstract 

Aims Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. 

As monocytes may contribute to the excessive inflammatory responses in such wounds, this 

study focussed on the effects of maggot secretions on the pro-inflammatory activities of 

these cells.  

Methods Freshly isolated monocytes were incubated with a range of secretions for 1 h and 

then stimulated with LPS (range 0-100 ng/mL) or LTA (range 0-5 µg/mL) for 18 h. The 

expression of cell surface molecules, cytokine and chemokine levels in supernatants, cell 

viability, chemotaxis and phagocytosis and killing of Staphylococcus aureus were measured.    

Results Maggot secretions dose-dependently inhibited the production of the pro-

inflammatory cytokines TNF-α, IL-12p40 and MIF by LPS- and LTA-stimulated monocytes 

while enhancing the production of the anti-inflammatory cytokine IL-10. Expression of cell 

surface receptors involved in pathogen recognition remained unaffected by secretions. In 

addition, maggot secretions altered the chemokine profile of monocytes by down-regulating 

MIP-1β and up-regulating MCP-1 and IL-8. Nevertheless, chemotactic responses of 

monocytes were inhibited by secretions. Furthermore, maggot secretions did not affect 

phagocytosis and intracellular killing of S. aureus by human monocytes. Finally, secretions 

induced a transient rise in the intracellular cyclic AMP concentration in monocytes and Rp-

cAMPS inhibited the effects of secretions.  

Conclusion Maggot secretions inhibit the pro-inflammatory responses of human monocytes 

through a cAMP-dependent mechanism. Regulation of the inflammatory processes by 

maggots contributes to their beneficial effects on chronic wounds. 
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Introduction 

 

Chronic wounds are common in patients with vascular insufficiencies and underlying chronic 

conditions such as diabetes mellitus, as well as patients suffering from acute, extended 

trauma
1
. Of the patients with diabetes, up to 15% of the more than 200 million patients 

worldwide develop a foot ulcer at some stage, leading to over 1 million amputations every 

year
2
. The importance of chronic wounds in the pathway to lower limb amputation is 

paramount as 84% of amputations are preceded by a diabetic foot ulcer
3
. Chronic wounds 

and amputations in persons with diabetes often result in decreased physical, emotional and 

social function of patients, a reduced quality of life and major economic costs for both the 

patients, their families and society
4,5

.  

      Sterile larvae -maggots- of the blowfly Lucilia sericata are used for the treatment of 

different types of wounds including diabetic foot ulcers
6-9

.  The success rate of this therapy is 

around 68% for wounds unresponsive to conventional therapies although some 

characteristics (chronic limb ischaemia, wound depth, and age) may negatively influence the 

outcome
8
. Besides the removal of necrotized tissue and infectious microorganisms, maggots 

potently inhibit the pro-inflammatory responses of human neutrophils without affecting their 

antimicrobial activities
10

. Another prominent type of phagocyte in wounds is the monocyte. In 

response to chemotactic substances these cells migrate from the blood into the infected 

tissue to combat invading micro-organisms. In addition, monocytes regulate the 

inflammatory process by secreting cytokines and growth factors thereby recruiting more 

inflammatory cells and by antigen processing/presentation and lymphocyte activation. 

      In contrast to acute wound healing, chronic wounds are marked by a prolonged and 

dysregulated inflammatory phase. Inflammatory cells like neutrophils, monocytes and 

macrophages are not only present in excess numbers
11-13

, they also have an enhanced 

production and release of pro-inflammatory cytokines, proteases and reactive oxygen 

species leading to growth factor inactivation and tissue destruction
14

. Therefore, inhibition of 

the pro-inflammatory responses of these cells could restrict their deleterious effects and thus 

contribute to healing processes. To obtain more insight in the mechanisms underlying the 

beneficial effects of medicinal maggots, this study focussed on the effects of maggot 

excretions and/or secretions on the pro-inflammatory activities of human monocytes.  

 

 

Material and Methods 

 

Maggots and their excretions/secretions  

Sterile second- and third-instar larvae of L. sericata were a kind gift from BioMonde GmbH 

(Barsbüttel, Germany). Maggot excretions/secretions (ES) were collected as previously 

described
10

. Next, maggots were incubated for 1 h in H2O to remove their excretions, 
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washed and then their secretions (S) were collected as described for ES. In the assays ES 

and S preparations were tested simultaneously, which is indicated as ES/S.  

 

Isolation of human monocytes  

PBMCs from healthy donors were isolated from buffy coats by Ficoll Amidotrizoate (ρ=1.077 

g/mL) density centrifugation at 700xg for 20 min. Cells from the interphase were washed 

three times and monocytes were purified using anti-CD14 coated Microbeads (Miltenyi 

Biotec GmbH, Germany). When testing antimicrobial activities, cells in the interphase were 

used to avoid possible functional impairment of the monocytes by the interaction of CD14 

with anti-CD14 coated microbeads. For the chemotaxis assay lymphocytes were removed 

from the interphase using anti-CD3 microbeads (Miltenyi) to avoid obstruction of the filters 

by large numbers of these cells.  

 

Stimulation of monocytes  

Approximately 1x10
6
 monocytes/mL of RPMI-1640 supplemented with 2 mM glutamax-

I/glutamine, 2 mM penicillin/streptomycin and 10% inactivated foetal calf serum (standard 

medium) were transferred to wells of a 24-wells plate and incubated with ES/S or, as a 

control, H2O for 1 h followed by stimulation with LPS (Sigma Chemical Co., St. Louis, MO, 

USA), LTA (Invivogen, Toulouse, France) or no stimulus. After 18-22 h incubation at 37°C 

and 5% CO2, supernatants were collected and stored at -70°C. 

 

Measurement of cytokine and chemokine levels  

The cytokine and chemokine levels in the supernatants of the cell cultures were assessed 

using BioSource CytoSet™ (Biosource Europe, S.A., Belgium) and Bio-Plex kits (BIO-RAD, 

Hercules, CA, USA).  

 

Chemotaxis  

Migration of monocytes was measured as previously described
10

 with the following 

modifications. The lower compartments contained a mixture of 25% HEPES buffer and 75% 

supernatants from monocyte cultures stimulated as described above. To test direct effects of 

ES/S on monocyte migration, 10 nM fMLP (Sigma) was added as well.  In the upper 

compartment, 50 µL of 2x10
6
 monocytes/mL of RPMI-1640 were placed. Results are 

expressed as the number of cells counted in 2 µm
2 

areas in 11 subsequent levels within 

each filter. 

 

Phagocytosis assay  

Staphylococcus aureus 42D were grown overnight in TSB at 37°C while shaking, then 

washed and resuspended (1x10
7
/mL) in HBSS-0.1% (v/wt) gelatin. Equal volumes of this 

suspension and a freshly isolated or 18h (ES/S)-incubated monocyte suspension (1x10
7
/mL 
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of HBSS-0.1% gelatin) were mixed and 10% AB-serum was added. Subsequently, 100 µL of 

this mixture were transferred to hydron-coated NUNCLON™ Surface plates (Nalge Nunc 

International, Rochester, NY, USA) containing ES/S or H2O. At various intervals after 

incubation at 37°C while shaking, cells and bacteria were harvested in cold HBSS and 

centrifuged at 140xg for 6 min. Next, the number of non-cell-associated bacteria was 

determined microbiologically using serial dilutions which were plated onto agar plates. 

Phagocytosis is expressed as the percentage decrease of non-cell-associated S. aureus.  

 

Intracellular killing assay  

Opsonisation and intracellular killing of S. aureus were done as previously described
15

 using 

hydron-coated NUNCLON™ plates. Disruption of monocytes was performed by harvesting 

these cells in H2O supplemented with 0.01% (v/wt) BSA and then vortexing these 

suspensions for 60 s. Killing is expressed as the percentage decrease in the number of 

viable bacteria determined as described above.  

 

Flow cytometry  

Cells were incubated with FITC- or PE-conjugated monoclonal antibodies directed against 

CD11b, CD14, CD32, CD35, CD54, and CD64 (BD Pharmingen™, BD BioSciences, 

Erembodegem, Belgium), CD16 (EuroBioSciences GmbH, Friesoythe, Germany) and 

CD282 (TLR-2) and CD284 (TLR-4; Hycult Biotechnology, Uden, The Netherlands) in PBS 

containing 0.5% (w/v) BSA for 30 min on ice. Analyses were performed on the FACSCalibur 

(Becton&Dickinson, La Jolla, CA, USA) in combination with CellQuest™ Pro 4.0.2 software.    

 

Cell viability  

Monocytes were stimulated and incubated as described above and then incubated with 

fluorescently-labelled Annexin V (2.5 µg/mL, Sigma) and propidium iodide (1 µg/mL, Sigma) 

in 10 mM HEPES (pH 7.4) as previously described
16

. The mean fluorescence intensities of 

the cells were analyzed by flow cytometry.  

 

Measurement of intracellular cAMP concentration  

Monocytes in RPMI were incubated with a range of ES/S or no stimulus for various intervals 

up to 2 min. The reaction was stopped by adding lysis buffer. Next, the cAMP content of 

these samples was measured using the cAMP Biotrak Enzymeimmunoassay System 

(Amersham Biosciences, Buckinghamshire, UK). The cAMP concentrations were calculated 

from these values and the mean cell volume of human monocytes
17

.  
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Inhibition of cAMP  

Monocytes were pre-incubated with the protein kinase A inhibitor adenosine-3’,5’-cyclic 

monophosphorothioate,triethyl ammonium salt (Rp-cAMPS; 1 mM; BioLog Life Science 

Institute, Bremen, Germany) for 45 min, followed by 1 h incubation with ES/S or H2O and 

then stimulated for 18-22 h with 100 ng of LPS/mL. Thereafter, the cytokine production was 

measured.  

 

Statistical analysis  

Differences between the values for cells incubated with ES/S and those for cells incubated 

with H2O were analysed with a Wilcoxon test using Graphpad Prism version 4.02. 

 

 

Results 

 

Effect of secretions on cytokine and chemokine production by monocytes 

The results revealed that secretions decreased the LPS-induced production of the pro-

inflammatory cytokines TNF-α, IL-12p40 and MIF by monocytes in a dose-dependent 

manner without effecting IL-1β or IL-6 (Table 1). The production of the anti-inflammatory 

cytokine IL-10 was increased by secretions. Furthermore, secretions inhibited the LPS-

induced production of the chemokine MIP-1β by monocytes, increased MCP-1 and IL-8, but 

had no effect on RANTES. Secretions did not affect the base-line levels of IL-1β, IL-6, IL-10, 

IL-12p40, TNF-α, RANTES or MIP-1β (data not shown). In contrast, 70 µg of secretions/mL 

increased the production of MCP-1 by naïve monocytes from 15 (3-53) to 1049 (425-9063) 

pg/mL and that of IL-8  from 578 (136-1436) to 3236 (1879-5934) pg/mL while decreasing 

the production of MIF from 72 (19-318) pg/mL to below the detection limit (10 pg/mL) when 

using 35 or 70 µg of secretions/mL (n = 6-8).  

      To determine whether the effective components are secreted or excreted by maggots, 

we compared the effects of S pools to ES pools from the same maggots on the cytokine and 

chemokine profile of monocytes. The results showed better effects of S than of ES when 

using equal protein concentrations (data not shown). However, the protein concentration 

was 30 ± 2% lower for S than ES pools meaning that we used the products of more maggots 

when testing the secretions. Therefore, we tested the differences in effects when using the 

volume of the S pools necessary for getting for example 35 µg and used the same volume 

for testing the ES pools (which was 50 µg). The results showed equal effects of S and ES 

indicating that the active component is secreted by maggots. Therefore, we combined the 

results for S and ES and refer to it as secretions.  
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Table 1 Effect of maggot secretions on the LPS-induced production of various cytokines and 
chemokines by monocytes. 
 

 
 

 

Control cells 
 

  

Maggot secretions (µg/mL) 
 

 

0.35 
 

3.5 
 

35 
 

70 
  

 
 
 

Median 
(ng/mL) 

 
 
 
 

Range 
(ng/mL) 

 

 

  (%) 

 

 

 (%) 

 

 

 (%) 

 

 

     (%) 

         

IL-1β 0.5  0.2 -1.6    97 ± 4   81 ± 11   80 ± 10   91 ± 16 

IL-6 25  13 - 40    89 ± 7   95 ± 4   92 ± 11 116 ± 15 

IL-8 153  81 - 310  120 ± 7* 121 ± 9* 149 ± 15* 268 ± 63* 

IL-10 0.4  0.05 - 2.1  108 ± 8 142 ± 11** 206 ± 35** 209 ± 35** 

IL-12p40 0.3  0.1 - 5.4    98 ± 6   82 ± 6*   42 ± 7**   39 ± 10** 

TNF-α 11  5 - 25  109 ± 14   84 ± 5*   29 ± 5*   19 ± 4* 

MIF 0.08  0.04 - 0.2    85 ± 21   41 ± 14**   13 ± 5**     5 ± 3** 

MCP-1 37  12 - 68  119 ± 8 134 ± 17 250 ± 33** 367 ± 66** 

MIP-1β 20  1 - 155  107 ± 11 104 ± 20   23 ± 9**   17 ± 7* 

RANTES 0.4  0.2 - 1.5  101 ± 3 109 ± 6 103 ± 10   74 ± 14 

  
The results of the control cells, shown as the median value and the range, are set at 100%. The effect 
of secretions is expressed as a percentage relative to these values. The results are means ± SEM of 6-
10 experiments. Values are significantly (*p<0.05 and **p<0.005) different from those for control 
monocytes stimulated with LPS.    

 

 

Effect of secretions on the sensitivity of monocytes to LPS and LTA 

The results revealed that the production of TNF-α by monocytes was down-regulated 

significantly by 35 µg of secretions/mL for all concentrations of LPS (Figure 1A). The IL-

12p40 production by monocytes was dose-dependently inhibited by secretions (Figure 1B) 

while the production of IL-10 by monocytes was enhanced (Figure 1C). In addition, 

secretions (35 µg/mL) reduced the production of TNF-α (Figure 2A) and IL-12p40 (Figure 

2B) by monocytes in response to LTA dose-dependently, while enhancing IL-10 (Figure 2C).  
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Figure 1 Effect of maggot secretions (35 
µg/mL) on the production of TNF-α (A), IL-
12p40 (B) and IL-10 (C) by monocytes 
challenged with a range of LPS. The results 
are means and SEM of 10-11 experiments. 
Values are significantly (*p<0.05 and **p< 
0.005) different from those for control-
incubated monocytes stimulated with LPS. 

Figure 2 Effect of maggot secretions (35 
µg/mL) on the production of TNF-α (A), IL-
12p40 (B) and IL-10 (C) by monocytes 
challenged with a range of LTA. The results 
are means and SEM of 10 experiments. 
Values are significantly (*p<0.05 and **p< 
0.005) different from those for control-
incubated monocytes stimulated with LTA. 

 

 

Effect of supernatants of secretions-treated monocytes on cell migration 

Since incubation of monocytes with secretions resulted in an altered production of several 

chemokines, we investigated the effect of such monocyte culture supernatants on migration 

of monocytes. The results revealed that the chemotactic activity of monocytes towards 

supernatants of LPS-stimulated monocytes was abrogated when incubated in the presence 

of 35 µg of secretions/mL (Figure 3A). Secretions did not induce migration of naïve 

monocytes. Interestingly, secretions blocked migration of monocytes towards the 

chemotactic factor fMLP (Figure 3B). Furthermore, the chemotactic response of monocytes 
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towards combinations of supernatants and fMLP was decreased in the presence of 

secretions.  

 

 
 
Figure 3 Effect of maggot secretions on the chemotactic activity of monocytes. Migration of monocytes 
in response to chemokines in cell-culture supernatants without (A) or with (B) 10 nM of fMLP was 
monitored using a Boyden microchemotaxis chamber. Results are means and SEM of six experiments. 
Each experiment was performed in quadruplicate. Values are significantly (*p<0.05 and **p<0.005) 
different from those for monocytes stimulated without secretions. 

 

 

Effect of secretions on the phagocytosis and intracellular killing of S. aureus by monocytes 

The results showed secretions (3.5 and 35 µg/mL) not to affect the phagocytosis and 

intracellular killing of S. aureus 42D by monocytes (Table 2).  The antibacterial functions of 

monocytes incubated for 18 h with secretions were identical (data not shown).  

 
 
Table 2 Effect of maggot secretions on the phagocytosis and intracellular killing of Staphylococcus 
aureus by monocytes.  
 

  

Phagocytosis (%) at 
various intervals (min)  

 

Intracellular killing (%) at 
various intervals (min) 

      

 

 
 
Secretions 
(µg/mL) 
 

 
 

   30 
  

   60  
 

    30  
 

   60  

0  12 ± 3 39 ± 4 38 ± 11 61 ± 7 

3.5  21 ± 4 35 ± 4 44 ± 8 55 ± 10 

35  19 ± 2 34 ± 3 38 ± 12 57 ± 10 

 
Results are means ± SEM of 6 experiments. 
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Effect of secretions on cell surface receptors on monocytes 

The results (Table 3) showed secretions (35 µg/mL) not to affect the expression of the 

pathogen-recognition receptors CD282, CD284 and CD14 or the Fcγ receptors CD16, CD32 

and CD64, involved in the phagocytosis of opsonised bacteria, except for a reduction in the 

LPS-induced expression of CD32 (FcRII). Additionally, the expression of CD11b (together 

with CD18 complement receptor 3), involved in adhesion of monocytes to endothelial cells 

and phagocytosis of bacteria, was enhanced by secretions while complement receptor 1 

(CD35) expression was not affected. CD54 expression was enhanced by secretions on 

naïve, but not LPS-stimulated, cells.  

 

 
Table 3 Effect of maggot secretions on the expression of surface molecules on monocytes.  

  
 

                 No stimulus 
 

LPS (100 ng/mL) 
 

      
        0 

      

   35 µg/mL 
       

       0 
        

  35 µg/mL 
 

CD14       27 ± 3       26 ± 3       68 ± 12      60 ± 5 

CD282       34 ± 2       34 ± 2       14 ± 2       13 ± 2 

CD284       32 ± 2       29 ± 2       22 ± 5       18 ± 2 

CD16       15 ± 4       12 ± 2          ND          ND 

CD32       74 ±12       78 ± 18     273 ± 27     214 ± 19* 

CD64       31 ± 14       35 ± 18         8 ± 1         8 ± 1 

CD35       31 ± 4        28 ± 3       29 ± 3       28 ± 3 

CD11b     243 ± 24     399 ± 52**       74 ± 14     122 ± 21** 

CD54     386 ± 35     517 ± 54**    1365 ± 71   1293 ± 60 

 
The results, expressed as the mean fluorescence intensity (MFI), are means ± SEM of 6-10 
experiments. Values are significantly (*p<0.05 and **p<0.005) different from those for control-incubated 
monocytes.  ND: not detectable.  

 

 

Effect of secretions on the viability of monocytes 

The results showed that secretions dose-dependently enhanced the percentage of viable 

monocytes (Table 4). Moreover, the LPS-induced increase in monocyte-survival was further 

enhanced by secretions.  

 



Maggot secretions versus monocytes  

 105 

Table 4 Effect of maggot secretions on the viability of monocytes   
 

     

       LPS  Secretions     Survival 

(100 ng/mL) 
 

(µg/mL) 
 

       (%) 

-  0      52 ± 6 

-  0.35      54 ± 7 

-  3.5      58 ± 5* 

-  35      74 ± 4* 

-  70      80 ± 2* 

+  0 
    

    69 ± 4*  

+  35      80 ± 3* 

 
The results, expressed as the percentage viable cells, are means ± SEM of 6-10 experiments. Values 
are significantly (*p<0.05 and **p<0.005) different from those for control-incubated monocytes. 

 

Effect of secretions on the intracellular cAMP concentration 

Analysis of the results revealed the peak cAMP concentration to be reached 15 s after the 

addition of secretions (35 µg/mL) and to return gradually to basal values at 120 s (data not 

shown). Based on these results, the 15 s interval was chosen to determine the dose-effect 

relation for secretions. The results revealed 3.5 µg of secretions/mL to significantly enhance 

the cAMP concentrations with a maximum increase up to 1.9-fold over basal level after 

exposure to 70 µg of secretions/mL (Table 5). In agreement, Rp-cAMPS (1 mM) significantly 

attenuated the inhibitory effect of secretions (35 µg/mL) on the LPS-stimulated production of 

TNF-α from 71 ± 5% to 41 ± 12% (n = 9; p<0.005) and of IL-12p40 from 71 ± 6% to 32 ± 

14% (p<0.005), whereas it blocked (p<0.05) the increase in IL-10 production by LPS-

stimulated monocytes completely.   
 
 
Table 5 Effect of maggot secretions on the cAMP concentration in monocytes 
 

 

Secretions 
(µg/mL) 

 

 
 

cAMP 
(µM) 

0  0.91 ± 0.07  

0.35  0.97 ± 0.08 

3.5  1.09 ± 0.10* 

35  1.33 ± 0.13* 

70  1.70 ± 0.17* 

 
Results are means ± SEM of 10 experiments. Values are significantly (*p<0.05) different from those for 
control-incubated monocytes. 

 

** 
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Discussion 

 

The main conclusion from the present study is that maggot secretions suppress the pro-

inflammatory responses of monocytes without affecting their antimicrobial activities. This 

conclusion is based on the following observations. First, secretions reduced the production 

of the pro-inflammatory cytokines IL-12p40, TNF-α and MIF by LPS-stimulated monocytes 

whereas the production of anti-inflammatory cytokine IL-10 was enhanced.  Addition of 

secretions to monocytes that had already been exposed to LPS resulted in similar effects on 

the cytokine profile, indicating that secretions can interfere with an ongoing inflammatory 

reaction (data not shown). The anti-inflammatory actions of secretions are not limited to 

modulation of the TLR-4 pathway as secretions exerted similar effects on cells stimulated 

with a TLR-2 ligand. Furthermore, secretions inhibited the LPS-induced production of TNF-α 

and IL-12p40 by cells in whole blood (unpublished observations). However, the production 

of the anti-inflammatory cytokine IL-10 by blood cells was not affected by secretions 

suggesting that the secretions-induced increase in IL-10 production by purified monocytes 

may be counteracted by cellular/molecular components of whole blood. The suggestion  that 

maggots produce IL-10
18

 was withdrawn by the authors (personal communication with dr 

K.Y. Mumcuoglu, Dept of Parasitology, Hebrew University-Hadassah Medical School, 

Jerusalem, Israel). Second, secretions decreased the chemotactic response of monocytes 

towards fMLP as well as to the chemotactic factors in supernatants of (LPS-stimulated) 

monocyte cultures. These results are in agreement with our earlier finding that ES reduced 

the migration of human neutrophils towards fMLP
10

. The secretions induced production of 

chemotactic factor MCP-1 and decreased production of migration inhibitor MIF by 

monocytes did not increase migration indicating that secretions inhibited migration 

independent of the levels of these chemokines; participation of MIP-1β inhibition cannot be 

excluded. The effect of secretions-induced increased levels of IL-8 and CD11b are not 

tested within our experimental set up. The increased expression of CD54 and CD11b on 

naïve monocytes is unlikely to influence chemotaxis as monocytes are triggered when 

migrating into a wound. Third, secretions did not affect the phagocytosis and intracellular 

killing of S. aureus by freshly isolated monocytes and by 18 h cultured monocytes. This is in 

agreement with our earlier findings that ES had no effect on the phagocytosis and 

intracellular killing of Candida albicans by neutrophils
10

. Additionally, maggots aid in the 

removal of bacteria from wounds by ingesting bacteria together with liquefied necrotic tissue 

and subsequently killing them in their digestive tract
19,20

. An important implication of the 

above observations that secretions interfered in a similar fashion with activation of both the 

TLR-2 and TLR-4 pathways is that the reported differences in effects of maggots on survival 

of gram-positive and gram-negative bacteria
21

 are likely the result of antibacterial activity
1
 

and not of differential modulation of immune cell responses.  
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      The second conclusion pertains to the mechanisms by which secretions exert their 

effects on monocytes. Our results showed that the effects of secretions on the 

cytokine/chemokine profiles of LPS- and LTA-stimulated monocytes were not caused by an 

altered sensitivity to these stimuli. In agreement, secretions had no effect on the expression 

of surface molecules involved in the recognition of the bacterial products by (LPS-

stimulated) monocytes, suggesting that secretions exert their effects either downstream of 

these receptors or on other, yet identified (intracellular) binding partners and targets. Based 

on our earlier finding that ES increased the intracellular cAMP levels in neutrophils
10

, we 

presumed a similar mechanism by monocytes and indeed found that the cAMP 

concentrations were enhanced dose- and time-dependently by secretions. Pre-treating 

monocytes with Rp-cAMPS, an inhibitor of cAMP-dependent PKA-activation, attenuated the 

effects of secretions on LPS-stimulated cytokine production indicating that maggots exert 

their effects on monocytes through a cAMP-dependent mechanism. In agreement, others 

reported that activation of cAMP pathways is associated with reduced production of pro-

inflammatory cytokines including TNF-α, IL-12 and MIP-1β, without affecting IL-1β 

production, while enhancing the production of IL-10
22,23

. Furthermore, cAMP-elevation is 

connected to decreased migration
24,25

 whereas phagocytosis by freshly isolated monocytes 

remains unaffected
26

. However, elevation of cAMP is also associated with a moderate 

reduction in phagocytosis by incubated/stimulated monocytes and macrophages
26,27

 which 

seems to be in contrast with our data. This discrepancy can be explained by our observation 

that secretions enhanced the viability of monocytes; although the total phagocytosis of 

bacteria remained the same, the amount of phagocytosis per viable monocyte decreased. 

As secretions did not decrease the expression of FcR, CR1 or CD11b (part of CR3), the 

reduction in phagocytosis per cell may be explained by interference of signalling pathways 

down-stream of receptor activation
27

. Of note, cAMP is known to inhibit apoptosis in several 

cell types
28-30

.  

      What could be the clinical relevance of the present findings? Although pro-inflammatory 

responses are essential for healing of acute wounds, they can be detrimental in chronic 

wounds where inflammation persists. Some histological data exists that parts of chronic 

wounds seem to be stuck in different phases of healing with loss of synchronicity that leads 

to rapid healing
12

. Some part ready for epidermal resurfacing and fibroblast proliferation 

could be damaged by another part that is still in the inflammatory phase
31

. It has been 

reported that chronic leg ulcers are associated with elevated expression of pro-inflammatory 

cytokines, like TNF-α and MIF, compared to acute wounds
32-34

. These cytokines enhance 

the production and release of a large variety of other pro-inflammatory cytokines
35,36

  as well 

as the synthesis of several matrix metalloproteinases and serine proteases
14,36,37

. When 

produced in excess these pro-inflammatory responses may cause deleterious extracellular 

matrix destruction
38-40

, and growth factor and protease inhibitor inactivation
37,41-43

 and are 

responsible for the failure of wound healing. In addition, TNF-α activates phagocytes to 
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produce reactive oxygen intermediates
44,45

 which can be toxic to cells like endothelial cells, 

fibroblasts and leucocytes and may further promote tissue proteolysis by potentiating the 

effects of several proteinases while inactivating proteinase inhibitors
46,47

. Together, pro-

inflammatory responses may be responsible for maintenance of chronic wounds.  

Furthermore, TNF-α is also related to the formation of ulcers by enhancing the production of 

plasminogen activator inhibitor-1
48,49

 which can lead to impaired lysis of pericapillary fibrin 

cuffs
50,51

. Importantly, although the mechanisms underlying the immunomodulatory effects of 

secretions on monocytes are not fully elucidated, the findings from the present in vitro study 

show that maggot secretions potently inhibit the pro-inflammatory activities of monocytes. 

Secretions decrease migration of cells to the wound and reduce the amount of pro-

inflammatory cytokines of the cells located in the wound while their overall antibacterial 

activities are unaltered. Consequently, the release of other pro-inflammatory cytokines, 

reactive oxygen intermediates and proteases will diminish bringing tissue destruction to a 

halt and may result in an environment beneficial for healing.  

      The exiting beneficial effect of maggots in diabetic foot ulcers and other chronic wounds 

found in clinical studies
6-9

 could well be explained by the phenomena described in this study. 

Besides direct antibacterial features of maggots observed in other studies
19,20

, and our 

earlier observations that ES can inhibit the formation of and brake down bacterial biofilms
1
, 

we found that the maggots seem to preserve the important anti-bacterial function of human 

leucocytes while protecting the fragile regenerating woundbed against inflammation and 

tissue destruction by the same inflammatory cells. 
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Abstract 

 

Aims/hypothesis Maggots of the blowfly Lucilia sericata are used for the treatment of chronic 

wounds. Earlier we reported maggot secretions to inhibit pro-inflammatory responses of 

human monocytes. The aim of this study was to investigate the effect of maggot secretions 

on the differentiation of monocytes into pro-inflammatory (MØ-1) and anti-inflammatory/pro-

angiogenic macrophages (MØ-2) as these cells play a central role in wound healing. 

Methods Freshly isolated monocytes were incubated with secretions and GM-CSF or M-

CSF for 6 days and then stimulated with lipopolysaccharides (LPS) or lioteichoic acid (LTA) 

for 18 h. The expression of cell surface molecules and the levels of cytokines, chemokines 

and growth factors in supernatants were measured. 

Results Our results showed secretions to affect monocyte-macrophage differentiation 

leading to MØ-1 with a partial MØ-2-like morphology but lacking CD163, which is 

characteristic for MØ-2. In response to LPS or LTA, secretions-differentiated MØ-1 produced 

less pro-inflammatory cytokines (TNF-α, IL-12p40 and MIF) than control cells. Similar results 

were observed for MØ-2 when stimulated with low concentrations of LPS. Furthermore, 

secretions dose-dependently led to MØ-1 and MØ-2 characterized by an altered chemokine 

production. Secretions led to MØ-2, but not MØ-1, producing enhanced levels of the growth 

factors bFGF and VEGF, as compared to control cells. The expression of cell-surface 

receptors involved in LPS/LTA was enhanced by secretions, that of CD86 and HLA-DR 

down-regulated, while receptors involved in phagocytosis remained largely unaffected. 

Conclusions Maggot secretions skew the differentiation of monocytes into macrophages 

away from a pro-inflammatory to a pro-angiogenic type.  
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Introduction 

 

Foot ulcers of patients with diabetes mellitus are associated with tremendous health care 

related and social costs
1,2

. It has been observed that only two-thirds of foot ulcers will heal
3-

5
. Healing of foot ulcers is essential, since a relatively high proportion will result in 

amputation, leading to further costs and patient suffering
6,7

. Sterile larvae -maggots- of the 

blowfly Lucilia sericata are used for the treatment of different types of wounds including 

diabetic foot ulcers
8-11

. Clinical observations indicate that besides the removal of necrotized 

tissue and infectious microorganisms, maggots actively promote healing of chronic 

wounds
8,12,13

. Earlier we reported that maggot secretions inhibited the pro-inflammatory 

responses of human neutrophils
14

 and monocytes
15

 through elevation of cyclic AMP. In 

response to local factors, monocytes migrate into the inflamed site where they may 

differentiate into macrophages which exhibit either pro-inflammatory or anti-

inflammatory/pro-angiogenic functions. These divergent functions of macrophages are 

dependent mainly on the macrophage subset which is regulated by cytokines and growth 

factors present in the local micro-environment
16

. For example, monocytes incubated in the 

presence of granulocyte macrophage-colony stimulating factor (GM-CSF) develop in pro-

inflammatory macrophages (MØ-1), i.e. fried egg-shaped macrophages displaying high IL-

12 and low IL-10 production in response to lipopolysaccharides (LPS), while monocytes 

incubated with macrophage-colony stimulating factor (M-CSF) differentiate to anti-

inflammatory/pro-angiogenic macrophages (MØ-2), characterized by a stretched, spindle-

like morphology, expression of CD163, and low IL-12 and high IL-10 production in response 

to LPS. Pro-inflammatory macrophages, by secreting cytokines and chemokines, are 

responsible for recruiting and activating immune cells such as neutrophils, monocytes and 

macrophages involved in elimination of infectious agents
17

. In addition, these cytokines lead 

to the expression of co-stimulatory molecules on macrophages essential for T-cell activation. 

When the infection is cleared, the balance shifts form pro-inflammatory macrophages to 

macrophages with anti-inflammatory/pro-angiogenic cytokine and growth factor activities. 

These cells are involved in clearance of apoptotic cells
18,19

, neovascularisation and fibroblast 

and epidermal cell proliferation
20

. Concurrently, these cells play a major role in matrix 

synthesis by secretion of basement membrane components, such as collagen
21,22

.  

      Diabetic foot wounds are marked by a prolonged and dysregulated inflammatory phase. 

The balance between pro-inflammatory and anti-inflammatory macrophages is disturbed
23

 

resulting in an enhanced production and release of pro-inflammatory cytokines, proteases 

and reactive oxygen species which lead to growth factor inactivation and tissue 

destruction
24,25

. Therefore, inhibition of pro-inflammatory responses of these cells may 

restrict their deleterious effects, whereas the induction of anti-inflammatory/pro-angiogenic 

cytokine and growth factor activities may contribute to wound repair. Based on the above 

considerations, the aim of this study was to investigate the effects of maggot secretions on 
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the differentiation of monocytes into pro-inflammatory and anti-inflammatory/pro-angiogenic 

macrophages.                                                                                                                                                                                                                 

 

 

Materials and Methods 

                    

Maggots and maggot secretions  

Sterile second- and third-instar larvae of L. sericata were a kind gift from BioMonde GmbH 

(Barsbüttel, Germany). Maggot secretions were collected as described previously
15

. Prior to 

use, sterile preparations of secretions were pooled in 15 mL tubes (Greiner Bio-One, Alphen 

aan de Rijn, The Netherlands) and centrifuged at 1,300xg for 5 min at 4°C to remove 

particulate material. Subsequently, protein concentrations of the pools were determined 

using the Pierce BCA Protein Assay kit (Pierce Biotechnology, Rockford, IL, USA) according 

to manufacturer's instructions.  

 

Isolation of human monocytes  

Peripheral blood mononuclear cells from healthy donors were isolated from buffy coats by 

Ficoll Amidotrizoate (ρ=1.077 g/mL) density centrifugation at 700xg for 20 min. Cells from 

the interphase were washed three times with PBS (pH 7.4) and monocytes were purified 

using anti-CD14-coated Microbeads (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) 

according to manufacturer’s instructions. Next, cells were centrifuged and resuspended in 

RPMI 1640 supplemented with 2 mmol/L glutamax-I/glutamine, 2 mmol/L penicillin/ 

streptomycin and 10% (vol./vol.) inactivated fetal calf serum (further referred to as standard 

medium).   

 

Macrophages 

MØ-1 and MØ-2 were obtained by culturing 3x10
5
 monocytes/mL of standard medium in 24-

wells plates in the presence of respectively 5 ng of recombinant GM-CSF/mL (Biosource, 

Camarillo, Ca, USA) or 12.5 ng of recombinant M-CSF/mL (R&D Systems Europe Ltd., 

Abingdon, UK). After 6 days, macrophages were stimulated with LPS (0.01-100 ng/mL; 

Sigma Chemical Co., St. Louis, MO, USA), lipoteichoic acid (LTA; 0.01-5 µg/mL; Invivogen, 

Toulouse, France) or no stimulus (further referred to as naïve macrophages). After 18 to 20 

h incubation at 37°C and 5% CO2, supernatants were collected and stored at -70°C. To 

investigate the effect of secretions on the differentiation of monocytes to macrophages, 

secretions (range 0.35 - 70 µg/mL) were added to the wells at the start of the culture and the 

resulting macrophages are further referred to as secretions-differentiated macrophages. 
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Measurement of the levels of cytokines, chemokines and growth factors 

The levels in the supernatants of the cell cultures were assessed using BioSource 

CytoSet™ (Biosource Europe, S.A., Belgium) and Bio-Plex kits (BIO-RAD, Hercules, CA, 

USA) according to manufacturer’s instructions.  

 

Flow cytometry  

To verify the differentiation of monocytes into MØ-1 and MØ-2, macrophages were 

incubated with phycoerythrin-conjugated monoclonal antibodies (mAbs) directed against 

CD163 purchased from BD Pharmingen™ (BD BioSciences, Erembodegem, Belgium). 

Furthermore, cells were incubated with FITC- or phycoerythrin-conjugated mAbs directed 

against CD11b, CD14, CD32, CD35, CD54, CD64, CD86, HLA-DR and CD206 (BD 

Pharmingen™, BD BioSciences, Erembodegem, Belgium), CD16 (EuroBioSciences GmbH, 

Friesoythe, Germany), and CD282 (Toll-like receptor [TLR]-2) and CD284 (TLR-4; Hycult 

Biotechnology, Uden, the Netherlands for both); incubation was in PBS containing 0.5% 

(wt/vol.) BSA for 30 min on ice. Analyses were performed on the FACSCalibur 

(Becton&Dickinson, La Jolla, CA, USA) in combination with CellQuest™ Pro 4.0.2 software. 

Mean fluorescence intensities (MFI) of unstained samples were subtracted from the stained 

samples. MFI’s below 6 are indicated as not detectable (≤ 2 times MFI unstained samples).     

 

Statistical analysis  

Differences between the values for cells incubated in the presence of maggot secretions and 

those for cells incubated with H2O were analysed using a Wilcoxon test using Graphpad 

Prism version 4.02. 

 

 

Results 

 

Effect of maggot secretions on the differentiation of monocytes to macrophages 

Light microscopy revealed macrophages that differentiated under the influence of GM-CSF 

to display a ‘fried egg-like’ morphology (Figure 1A) whereas the addition of secretions (35 

µg/mL) led to MØ-1 (Figure 1B) that partially obtained a phenotype resembling MØ-2, i.e. 

elongated, spindle-like appearance as induced by M-CSF (Figure 1C). Secretions enhanced 

the development of this morphology by M-CSF differentiated macrophages (Figure 1D). 

However, secretions did not induce CD163 expression on GM-CSF-differentiated 

macrophages, which is a characteristic of MØ-2. In addition, secretions did not lead to an 

altered expression of CD163 (mean fluorescence intensity ~20) on MØ-2.  
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Figure 1 Light microscopy analysis of the effect of 35 µg of secretions/mL on the differentiation of 
monocytes to macrophages. In short, monocytes were differentiated to MØ-1 in the presence of GM-
CSF (A) or in the presence of GM-CSF and secretions (B) and their morphology evaluated. Similarly, 
monocytes were differentiated to MØ-2 in the presence of M-CSF (C) and in the presence of M-CSF 
and secretions (D). Results, indicated in days, are from a representative experiment.   

 

 

Further investigations showed secretions to affect macrophage differentiation resulting in 

MØ-1 that in response to various concentrations of LPS produced less IL-12p40 than control 

macrophages (Figure 2A). MØ-2 differentiated in the presence of secretions produced less 

IL-12p40 upon stimulation with 0.01 ng of LPS/mL, whereas 10 and 100 ng/mL led to 

increased IL-12p40 production compared to control MØ-2 (Figure 2B). Remarkably, the 

production of IL-12p40 by MØ-2 was almost 10 times higher in response to 0.01 ng of 

LPS/mL as compared to 100 ng of LPS/mL. The production of IL-10 by both types of 

macrophages differentiated in the presence of secretions did not differ from that by control 

macrophages (Figure 2C and 2D). Taken together, the above results indicate that maggot 

secretions affect the differentiation of monocytes to macrophages, but do not result in the 

differentiation from one type into the other.  

 

 

A 

B 

C 

D 
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Figure 2 The production of IL-12p40 (A,B) and IL-10 (C,D) by control and secretions-differentiated MØ-
1 and MØ-2 in response to a range of LPS. The results, expressed in ng/mL, are means ± SEM of 9-10 
experiments. Open bars: control macrophages; filled bars: secretions-differentiated macrophages. 
Values are significantly (*p<0.05) different from those for control macrophages. 

 

 

Cytokine production by secretions-differentiated macrophages   

 The results showed that maggot secretions dose-dependently gave rise to MØ-1 with a 

decreased production of the pro-inflammatory cytokines IL-12p40, TNF-α, and Macrophage 

Migration Inhibitory Factor (MIF) upon LPS stimulation, as compared to control cells (Table 

1), whereas the level of IL-1β (mean 103 and range 51 - 150 pg/mL) did not differ (data not 

shown). In addition, the LPS-induced production of IL-6 by these cells was dose-

dependently enhanced as was that of the anti-inflammatory cytokine IL-10 when using small 

amounts of secretions. Secretions had no effect on base-line levels of IL-12p40, TNF-α, IL-

10 and IL-1β (data not shown), but 70 µg of secretions/mL led to cells with an increased 

(p<0.005) production of IL-6 from 37 (range: 0 - 125) to 128 (range: 6 - 524) pg/mL  and a 

decreased (p<0.05) production of MIF from 226 (range:81 - 553) to 65 (range: 0 - 99) pg/mL.  

      In agreement with their effects on LPS-stimulated MØ-1, maggot secretions dose-

dependently led to MØ-2 that showed a reduced production of IL-12p40 and TNF-α when 

stimulated with 0.01 ng of LPS/mL, as compared to control cells (Table 1). The levels of 

these cytokines were dose-dependently altered in the presence of secretions when 

stimulated with  100 ng  of  LPS/mL.  Furthermore,  secretions-differentiated MØ-2 showed a  



 

Table 1 LPS-induced cytokine production by secretions differentiated macrophages 
 

 
 

 
Control cells 

 
Macrophages differentiated in the presence of secretions 

(µg/mL) 
 

0.35 3.5 35 70  

Type 
MØ  

LPS 
(ng/mL)  

Median 
(ng/mL)  

Range 
(ng/mL) 

 

(%) 
 

(%) 
 

(%) 
 

(%) 

                

1  100  25  7.6 - 38.2      74 ± 6**      75 ± 5**      68 ± 9*      35 ± 6** 
2  0.01  1  0.2 - 3.7      72 ± 4**      70 ± 6**      33 ± 6**      22 ± 3** 

IL-12p40 

2  100  0.2  0.07 - 0.5      77 ± 4**      71 ± 7**    176 ± 22**    160 ± 28* 
                

1  100  51  25.2 - 131      92 ± 5      85 ± 5*      71 ± 6**      53 ± 9** 
2  0.01  2.8  0.9 - 7.2      90 ± 4*      95 ± 7      58 ± 6**      30 ± 3** 
2  100  3.8  2.6 - 5.8      97 ± 5    100 ± 6      97 ± 8      63 ± 9* 

TNF-α 

               
1  100  0.2  0.07 - 0.4      60 ± 10*      42 ± 7**      19 ± 5**      24 ± 7** 
2  0.01  0.8  0.2 - 1.1      70 ± 13      49 ± 9*      19 ± 3*      15 ± 1* 

MIF 

2  100  0.3  0.08 - 0.7      87 ± 23      35 ± 10**      19 ± 5**        6 ± 3** 
               

1  100  37  3.4 - 60.1    108 ± 8    135 ± 12**    193 ± 42**    226 ± 52* 
2  0.01  1.9  1.5 - 27.4    122 ± 9*    162 ± 14**    239 ± 28**    208 ± 26** 

IL-6 
 

2  100  0.7  0.2 - 1.4    106 ± 8    148 ± 14**    427 ± 62**    690 ± 89** 
                

1  100  0.1  0 - 0.6    132 ± 14*    137 ± 16*      98 ± 16      97 ± 15 
2  0.01  0.04  0.02 - 1.3      93 ± 8    114 ± 13      74 ± 12      83 ± 14 

IL-10 
 

2  100  0.7  0.2 - 1.0    102 ± 5    101 ± 8      87 ± 8      67 ± 9* 
                

 
The results for the control macrophages are expressed as the median value and range, and are set at 100%. The effect of secretions is expressed as a 
percentage relative to the cytokine production by control cells. Results are means ± SEM of at least six experiments. Values are significantly (*p<0.05 and 
**p<0.005) different from those for macrophages stimulated with LPS. 
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reduced MIF production and an increased IL-6 production regardless of the amount of LPS 

used. IL-10 production was not altered by these cells when stimulated with 0.01 ng of 

LPS/mL, whereas 70 µg of secretions/mL led to cells with decreased IL-10 levels when 

stimulated with 100 ng of LPS/mL. IL-1β levels were not detectable in the supernatants of 

MØ-2. Secretions had no effect on base-line levels of TNF-α, IL-12p40 and IL-10 (data not 

shown), but 70 µg of secretions/mL led to MØ-2 displaying increased (p<0.05) production of 

IL-6 from 8 (range: 0 - 42) to 31 (range: 0 - 78) pg/mL and decreased (p<0.005) production 

of MIF from 291 (range: 165 - 567) to 33 (range: 0 - 106) pg/mL.  

 

Chemokine production by secretions-differentiated macrophages 

As influx of inflammatory cells contributes to excessive inflammation in chronic wounds, we 

investigated the chemokine profile of secretions-differentiated and control macrophages. 

The results (Table 2) showed that maggot secretions dose-dependently gave rise to naïve 

and LPS-stimulated MØ-1 and MØ-2 displaying increased production of Monocyte 

Chemotactic Protein-1 (MCP-1) and IL-8, but decreased production of Macrophage 

Inflammatory Protein-1β (MIP-1β). Furthermore, the production of RANTES was reduced by 

these cells when stimulated with LPS. RANTES was not detectable (<10 pg/mL) in the 

supernatants of naïve cells, but 70 µg of secretions/mL led to MØ-1 producing 20 (range: 4.5 

- 661) pg/ml and to MØ-2 producing 13 (range: 3 - 24) pg/mL of this chemokine. 

 

Growth factor production by secretions-differentiated macrophages  

Since tissue synthesis and neovascularisation are essential for wound healing, we 

investigated the production of growth factors by macrophages differentiated in the presence 

of secretions. The results showed similar levels of basic fibroblast growth factor (bFGF) and 

vascular endothelial growth factor (VEGF) in the supernatants of secretions-differentiated 

MØ-1 and control cells; VEGF production by naïve cells was not detectable (Table 3). 

Furthermore, secretions led to MØ-1 showing decreased production of platelet derived 

growth factor (PDGF)-BB upon LPS stimulation, whereas the production of G-CSF (median: 

306 (46-1060) pg/mL) by these cells did not differ (data not shown); PDGF-BB and G-CSF 

were not detectable in supernatants from naïve MØ-1. Remarkably, secretions (70 µg/mL) 

dose-dependently led to naïve MØ-1 displaying (p<0.005) reduced levels of GM-CSF from 

665 (range: 22 - 2505) to 138 (range: 1-1624) pg/mL and when stimulated with LPS from 

556 (range: 62 - 1969) to 110 (range: 0-1216) pg/mL. 

      Contrastingly to MØ-1, secretions dose-dependently gave rise to naïve and LPS-

stimulated MØ-2 with increased production of bFGF and VEGF. Additionally, 100 ng of LPS/ 

mL induced a higher production of VEGF by MØ-2 than 0.01 ng of LPS/mL, while the effect 

of secretions was higher when these cells when stimulated with the latter amount of LPS. 

Furthermore,  secretions  gave  rise  to MØ-2 showing decreased production of PDGF-BB in  



 

Table 2  LPS-induced chemokine production by secretions differentiated macrophages 
 

 
 

 
Control cells 

 
Macrophages differentiated in the presence of secretions 

(µg/mL) 
 

0.35 3.5 35 70  

Type 
MØ  

LPS 
(ng/mL)  

Median 
(ng/mL)  

Range 
(ng/mL) 

 

(%) 
 

(%) 
 

(%) 
 

(%) 

                1  0  1.0  0.4 – 6.6    146 ± 22     467 ± 98*   2761 ± 923*   2906 ± 996* 

1  100  59  21 - 116    118 ± 14     176 ± 28*     343 ± 72*     338 ± 83* 

2  0  1.5  0.4 – 2.2    103 ± 15     142 ± 10*     552 ± 158*     716 ± 129* 

2  0.01  12  6.3 - 24    110 ± 19     149 ± 30*     250 ± 34*     378 ± 66* 

IL-8 

2  100  4.5   3.8 - 7.6    117 ± 10     173 ± 22*     480 ± 67*     703 ± 112* 

                
1  0  0.7  0.2 - 5.8    166 ± 25*     437 ± 160*     990 ± 353*   1127 ± 471* 

1  100  8.7  3.9 - 49    135 ± 22     208 ± 50*     335 ± 256*     368 ± 85* 

2  0  31  5.9 - 40    137 ± 8*     159 ± 12*     318 ± 83*     361 ± 106* 

2  0.01  63  32 - 122    111 ± 9     161 ± 15*     189 ± 17*     175 ± 10* 

MCP-1 

2  100  53  9.0 - 61    134 ± 35     157 ± 23*     272 ± 48**     242 ± 42** 

                
1  0  0.09  0.02 - 0.5      71 ± 5*       42 ± 7**       16 ± 4**       14 ± 4* 

1  100  25  1.2 - 338    118 ± 37       68 ± 15       28 ± 12*         6 ± 2** 

2  0  0.09  0.03 - 1.3      93 ± 4       55 ± 8**       22 ± 6**       17 ± 5** 

2  0.01  48  24 - 84      87 ± 10       51 ± 6**         6 ± 1**         4 ± 1** 

MIP-1β 

2  100  45  25 - 75      92 ± 6       61 ± 4**         9 ± 2**         4 ± 1** 

                
1  0  ND           

1  100  4.6  2.1 - 15    129 ± 30       79 ± 19       28 ± 18**       21 ± 6** 

2  0  ND           

2  0.01  0.5  0.2 - 1.5      48 ± 11**       62 ± 8**       46 ± 8**       50 ± 8* 

RANTES 
 

2  100  2.0  1.2 - 3.4      90 ± 4       78 ± 8*       47 ± 4**       34 ± 4** 

 
The results for control macrophages are expressed as the median value and range, and are set at 100%. The effect of secretions is expressed as a 
percentage relative to the chemokine production by control cells. Results are means ± SEM of at least six experiments. Values are significantly (*p<0.05 
and **p<0.005) different from those for macrophages stimulated with LPS. ND: not detectable.  
 
 

1
2

2
 

C
h

a
p

te
r 7

  



 
 
 
 
 
 
Table 3  LPS-induced growth factor production by secretions differentiated macrophages 
 

 
 

 
Control cells 

 
Macrophages differentiated in the presence of secretions 

(µg/mL) 
 

0.35 3.5 35 70 
  

 
Type 
MØ 

  
 

LPS 
(ng/mL) 

  
 

Median 
(pg/mL) 

  
 
Range 
(pg/mL) 

 

(%) 

 

(%) 

 

(%) 

 

(%) 

                1  0  51  0 - 111      98 ± 6       92 ± 12     116 ± 25     150 ± 36 

1  100  58  22 - 117      97 ± 3       98 ± 4       95 ± 7     114 ± 8 

2  0  34  10 - 108    170 ± 37     199 ± 48*     305 ± 86*     372 ± 114* 

2  0.01  27  14 - 40      74 ± 19     180 ± 28*     234 ± 44*     288 ± 56** 

bFGF 

2  100  56  32 - 107    109 ± 4*     130 ± 13*     180 ± 30*     214 ± 42* 

                
1  0  ND           

1  100  25  0 - 120      87 ± 5       94 ± 8     101 ± 16       95 ± 20 

2  0  99  18 - 195    172 ± 41*     254 ± 45**     545 ± 106**     627 ± 108** 

2  0.01  90  21 - 199    126 ± 35     825 ± 232*   1168 ± 403*   1382 ± 579** 

VEGF 

2  100  342  225 - 540    129 ± 10*     174 ± 18**     415 ± 57**     423 ± 103** 

               
1  0  ND           

1  100  15  8 - 61    105 ± 6       98 ± 9       72 ± 5*       64 ± 9* 

2  0  20  6 - 95    115 ± 13     102 ± 8       62 ± 10*       58 ± 16* 

2  0.01  49  24 - 105      63 ± 11*     117 ± 14       54 ± 7**       40 ± 4** 

PDGF 

2  100  25  13 - 114     123 ± 6     112 ± 7       67 ± 3*       57 ± 5* 

 
The results for control macrophages are expressed as the median value and range, and are set at 100%. The effect of secretions is expressed as a 
percentage relative to the production of growth factors by control cells. Results are means ± SEM of at least six experiments. Values are significantly 
(*p<0.05 and **p<0.005) different from those for macrophages stimulated with LPS. ND: not detectable 
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response to LPS; no PDGF-BB was detected in the supernatants of naïve MØ-2. G-CSF 

and GM-CSF were not detectable in the supernatants of MØ-2 (data not shown).  

 

Expression of cell surface receptors on secretions-differentiated macrophages 

To further investigate the effect of secretions on the differentiation of monocytes into 

macrophages, we measured the expression of cell surface molecules involved in pathogen 

recognition, opsono-phagocytosis, cell adhesion and T-cell activation.  

The results showed that secretions (35 µg/mL) gave rise to naïve and LPS-stimulated MØ-1 

and MØ-2 displaying increased expression of the pathogen-recognition receptors TLR-2 and 

TLR-4, as compared to control cells (Table 4). Interestingly, LPS down-regulated the 

expression of these two receptors on MØ-1 (p<0.005) but up-regulated their expression on 

MØ-2 (p<0.05). Additionally, CD14 was completely down-regulated during the differentiation 

of monocytes to MØ-1 but remained present on these cells when differentiated in the 

presence of secretions. The expression of CD14 on MØ-2 was not affected. The expression 

of the mannose receptor CD206 was increased on secretions differentiated MØ-1, but not 

on MØ-2.  

Furthermore, the expression of Fcγ-receptor III, but not Fcγ-receptor II, was increased on 

naïve and LPS-stimulated MØ-1 and MØ-2 differentiated in the presence of secretions. Fcγ-

receptor II was slightly decreased on naïve MØ-2.  Secretions led to naïve MØ-1 showing 

enhanced expression of complement receptor 1 but no effect was seen on MØ-2 and LPS-

stimulated MØ-1. In addition, the expression of CD11b (complement receptor 3, together 

with CD18) was enhanced by secretions differentiated MØ-1 but not affected on MØ-2. The 

expression of cell adhesion receptor ICAM-1 was not affected by secretions. Finally, 

secretions led to MØ-1 and MØ-2 with reduced expression of the co-stimulatory molecule 

B7.2, and to MØ-2, but not MØ-1, with decreased expression of HLA-DR.  

 

Cytokine production by secretions-differentiated macrophages in response to LTA 

The results showed that secretions gave rise to MØ-1 (Figure 3A) and MØ-2 (Figure 3B) 

displaying reduced levels of IL-12p40, as compared to control cells, from 0.1 ng of LTA/mL. 

Furthermore, secretions differentiated MØ-1 (Figure 3C), but not MØ-2 (Figure 3D), showed 

reduced TNF-α production regardless of the amount of LTA used. In addition, the production 

of IL-6 was enhanced by naïve MØ-1 (Figure 3E) and by MØ-2 for all conditions (Figure 3F) 

when differentiated in the presence of secretions. Secretions had no effect on the production 

of IL-10 by MØ-1 (Figure 3G) but led to MØ-2 showing reduced levels of this cytokine when 

using 1 - 5 ng of LTA/mL (Figure 3H).  

  



 

 
 
 
 
 
Table 4 Expression of surface receptors by secretions-differentiated macrophages 
 

    
 

 
MØ-1 

 
 

 
MØ-2 

 

 
No stimulus 

 

  
  LPS (100 ng/mL) 

  
  No stimulus 

 

  
 LPS (0.01 ng/mL) 

  
     LPS (100 ng/mL) 

           

 

0 35 µg/mL 0 35 µg/mL 
 
 

0 35 µg/mL 0 35 µg/mL 0 35 µg/mL 

             

CD282 TLR-2   77 ± 6  103 ± 12*   40 ± 4   62 ± 7*    54 ± 4   65 ± 6*   65 ± 6   78 ± 8*   72 ± 7   86 ± 7* 

CD284 TLR-4   50 ± 4    68 ± 10*   32 ± 3   45 ± 5*    43 ± 3   51 ± 4*   55 ± 5   66 ± 6**   58 ± 5   68 ± 5** 

CD14 LPS-R      ND      8 ± 2* ND   11 ± 2*    42 ± 4   39 ± 2   41 ± 1   41 ± 3   24 ± 2   30 ± 3 

CD206 MMR   45 ± 6    57 ± 7*   22 ± 2   30 ± 3*  32 ± 4   36 ± 3   27 ± 4   34 ± 5   24 ± 3   27 ± 4 

             

CD64 FCγRI   22 ± 3    23 ± 3   12 ± 2   12 ± 2    10 ± 1   13 ± 2   11 ± 2   13 ± 3   15 ± 3   18 ± 3 

CD32 FCγRII   22 ± 5    19 ± 3   19 ± 2   24 ± 4  184 ± 19 162 ± 21* 206 ± 23 195 ± 26 170 ± 18 181 ± 18 

CD16 FCγRIIIA     9 ± 1    17 ± 4*     6 ± 0.4   12 ± 2*    12 ± 3   25 ± 8*   25 ± 4   37 ± 6*   11 ± 3   23 ± 9* 

             

CD35 CR1   23 ± 3    30 ± 4*     8 ± 1     9 ± 1    15 ± 1   15 ± 1   12 ± 1   13 ± 1     8 ± 1     8 ± 1 

CD11b CR3 113 ± 23  171 ± 40*   80 ± 8 112 ± 19*  231 ± 12 235 ± 16 191 ± 14 207 ± 15 188 ± 17 206 ± 18 

CD54 ICAM-1 156 ± 17  192 ± 27 374 ± 60 355 ± 66  365 ± 27 385 ± 19 920 ± 115 911 ± 134 934 ± 107 885 ± 105 

             

CD86 B7.2   19 ± 3    14 ± 2* 105 ± 15   39 ± 5*    77 ± 7   61 ± 6**   35 ± 2   29 ± 2*   69 ± 6   42 ± 3** 

HLA-DR  212 ± 36  218 ± 34   270 ± 40 249 ± 41  317 ± 42 250 ± 25* 233 ± 32 201 ± 21* 313 ± 43 239 ± 21* 

 
Results, expressed as the mean fluorescence intensity (MFI), are means ± SEM of 6-11 experiments. Values are significantly (*p<0.05 and **p<0.005) 
different from those for control cells.  ND: not detectable 
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Figure 3 The production of IL-12p40 (A,B), TNF-α (C,D), IL-6 (E,F) and IL-10 (G,H)) by control and 
secretions-differentiated MØ-1 and MØ-2 induced by a range of LTA. The results, expressed in ng/mL, 
are means ± SEM of 12 experiments. Open bars: control macrophages; filled bars: secretions-
differentiated macrophages. Values are significantly (*p<0.05) different from those for control 
macrophages.  
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Discussion 

 

The main conclusion from the present study is that maggot secretions skew the monocyte-

macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. This 

conclusion is based on the following observations. First, maggot secretions dose-

dependently led to MØ-1 producing less IL-12p40, TNF-α and MIF upon LPS stimulation as 

compared to control cells. Similar results were obtained for MØ-2 upon stimulation with low 

amounts of LPS. These actions of maggot secretions on the differentiation of macrophages 

are not limited to stimulation via TLR-4 as similar effects were observed when stimulated via 

the TLR-2 pathway. Interestingly, adding secretions (35 µg/mL) to fully differentiated 

macrophages did not lead to a reduced production of IL-12p40 or TNF-α (data not shown), 

indicating that secretions effect the differentiation of the cells. Second, maggot secretions 

led to MØ-1 and MØ-2 with a reduced production of the chemokines MIP-1β, RANTES and 

PDGF-BB and an increased production of MCP-1 and IL-8. Based upon these findings, it is 

not possible to predict the overall effect of maggot secretions on migration of leucocytes into 

the inflamed site. However, earlier we reported that secretions reduce the migration of both 

monocytes
15

 and neutrophils
14

 irrespective of the presence of chemokines. Therefore, 

migration of leucocytes will likely be reduced in the presence of secretions. Third, secretions 

dose-dependently led to MØ-2, but not MØ-1, with enhanced production of bFGF and 

VEGF. These growth factors, together with IL-8, are involved in endothelial cell migration 

and proliferation which is essential for angiogenesis
20,26

. In addition, low amounts of TNF-α, 

as observed after exposure of secretions-differentiated macrophages to LPS, are known to 

induce angiogenesis as well. The exact roles of the elevated IL-6 production by secretions-

differentiated macrophages in inflammation and neovascularisation are unclear as this 

cytokine often exerts its effects by regulating the production of other molecules, such as 

MIP-1
27

, which we did not observe.  

      Other findings pertain to the effect of maggot secretions on monocyte-macrophage 

differentiation with regard to the expression of cell-surface receptors. First, secretions led to 

MØ-1 and MØ-2 with increased expression of TLR2 and TLR4, as compared to control cells. 

Additionally, the expression of the mannose receptor CD206 was increased by secretions-

differentiated MØ-1 while the CD14 expression was still detectable on these cells. These 

results suggest that secretions-differentiated macrophages may become more sensitive to 

pathogen-associated molecular patterns, like LPS and LTA. However, we found no 

enhanced sensitivity of the cells to these stimuli. Consequently, our results may be caused 

by interference of secretions with signal transduction pathways down stream of receptor 

activation such as a transient rise in cAMP
28,29

 and is reported for monocytes
15

 and 

neutrophils
14

 after exposure to secretions. Second, secretions differentiated MØ-1 and MØ-2 

displayed enhanced expression of CD16. Additionally, the expression of CD11b (part of 

CR3), involved in both phagocytosis and adhesion to endothelial cells
30

, was enhanced on 
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secretions differentiated MØ-1. Expression of CD35 (CR1) was enhanced only on naïve 

MØ-1. Together, it will be of interest to investigate whether the increased expression of 

above mentioned receptors mediate phagocytosis of pathogens by macrophages. Third, 

secretions led to MØ-1 with decreased expression of the co-stimulatory molecule B7.2. This 

may indicate a reduction in MØ-1-induced Th1 cell proliferation and function
31,32

. As MØ-2 

do not support Th1 cell activation, the effect of the secretions-induced decreased expression 

of B7.2 and HLA-DR on these cells is not clear. Together, maggot secretions may effect 

macrophage T cell interactions and this will be the subject of further studies.  

      Another remarkable finding of this study pertains to the differential effects of LPS on MØ-

1 and MØ-2. LPS stimulates a pro-inflammatory responses in MØ-1 and subsequently 

down-regulates the expression of TLR2 and TLR4 on these macrophages, which is reported 

earlier as LPS tolerance
33

. These tolerized MØ-1 poorly respond to another challenge with 

LPS, thus reducing the pro-inflammatory response and preventing excessive reactions 

against infection and subsequent detrimental effects on the surrounding tissue. In contrast, 

MØ-2 exert anti-inflammatory and pro-angiogenic activities. However, once the infection is 

cleared these cells may have to initiate a swift response against a starting/recurring 

infection. Therefore, the increased expression of TLRs on these cells may act as a positive 

regulator of inflammation. In agreement, we found that MØ-2 produce relatively high levels 

of pro-inflammatory cytokines upon stimulation with low, physiological amounts of LPS (0.01 

or 0.1 ng of LPS/mL) as compared to high levels of LPS (100 ng/mL). In addition, MØ-2 

produce high levels of chemokines upon LPS stimulation indicating that these cells can 

attract many additional immune cells. Collectively, it would be interesting to further 

investigate the differences between these two subsets of macrophages and their role in 

acute and chronic wounds.  

      What could be the relevance of the present findings? In a normal wound healing 

process, resident cells like macrophages efficiently detect microbial structures and respond 

to this by recruiting neutrophils and monocytes to fight off the invading pathogens. Initially, 

monocytes may differentiate to pro-inflammatory macrophages that regulate the 

inflammatory process. When the infection recedes due to removal of pathogens and cellular 

debris, the composition of the local environment will change facilitating differentiation of 

monocytes to anti-inflammatory/pro-angiogenic macrophages. These cells suppress 

inflammatory responses directly
19,34,35

 and indirectly by inducing regulatory T cells
36

 and 

mediate neovascularisation, cell proliferation
20

 and subsequent matrix synthesis
21,22

 

resulting in repair of the wound. In agreement, we found MØ-1 to produce considerable 

levels of pro-inflammatory cytokines (e.g. TNF-α, IL-12p40, MIF) whereas MØ-2 produced 

high levels of IL-10, bFGF and VEGF. Although pro-inflammatory cytokines are essential for 

acute inflammatory responses, they can be detrimental in chronic wounds were 

inflammation persists. Histological data exists showing that parts of chronic wounds seem to 

be stuck in different phases of healing, with loss of synchronicity, which is essential for a 
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rapid healing
37

. Some parts of the wound that are ready for fibroblast proliferation and 

epidermal resurfacing could be damaged by the inflammatory phase still present in other 

parts of the wound
38

. Chronic leg ulcers are associated with elevated expression of pro-

inflammatory cytokines, like TNF-α and MIF, compared to acute wounds
39-41

. These 

cytokines promote the production of more pro-inflammatory cytokines
42,43

, up-regulate the 

synthesis of matrix metalloproteinases and serine proteases
24,42,44

 and activate the reactive 

oxygen generating system
45,46

. Together, these pro-inflammatory actions result in 

extracellular matrix destruction
47-49

 and inactivation of growth factors and protease 

inhibitors
44,50-52

. Our results showed inhibited production of pro-inflammatory cytokines by 

macrophages differentiated in the presence of secretions. These actions of maggots may 

provide protection against progression towards ongoing inflammation and tissue destruction 

by these cells in chronic wounds and may result in an environment beneficial for healing. 

Simultaneously, the increased pro-angiogenic activity of anti-inflammatory macrophages 

may induce neovascularisation and the concurrent formation of granulation tissue. In 

agreement, others reported that maggots increase the expression of bFGF in ulcer tissue
53

 

and induce the formation of granulation tissue
9,54

. Taken together, the actions of secretions 

described in this study contribute to the exiting beneficial effects of maggots in diabetic foot 

ulcers and other chronic wounds unresponsive to conventional therapies.  
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Non-healing, chronic wounds often result in a reduced quality of life for patients, due to 

decreased physical, emotional and social function and are a major economic cost for both 

the patients, their families and Society as a whole
1
. These wounds are particularly prone to 

occur in patients suffering from acute, extended trauma as well as in patients with vascular 

insufficiencies and underlying chronic conditions such as diabetes mellitus. Although there 

are numerous reasons for the development of a non-healing chronic wound, one of the 

major mechanisms underlying failure of healing is a prolonged and unregulated 

inflammatory response (Chapter 1). Whereas many therapies have been developed to 

address the problematic healing of these wounds, maggot therapy may be the most 

successful one, having a success rate around 7 out of every 10 wounds unresponsive to 

conventional therapies. Some characteristics (e.g. obesity, smoking, diabetes mellitus, 

wound duration and size) were not contra-indicative with respect to eligibility for maggot 

therapy, whereas others (chronic limb ischaemia, wound depth, and age) negatively 

influenced the outcome
2
. Clearly, the modes of action of maggot therapy likely involve 

multiple wound healing processes. The studies reported in this thesis focussed on the 

effects of maggot excretions/secretions on processes related to the inflammatory phase of 

wound healing. The findings are summarised in Figure 1. 
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Figure 1 Effects of maggot secretions on cells, cellular products and processes associated with chronic 
wounds. ROS, reactive oxygen species; TIMPs, tissue inhibitor of metalloproteinases. 
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Maggot excretions/secretions combat bacterial infections 

A major complication of wound healing is the occurrence of bacterial infections
3-5

, especially 

when the bacteria reside in biofilms
6
 which protect them from the actions of cells and 

molecules of the immune system
5,7

 and antibiotics
8,9

. Moreover, we found some antibiotics 

(vancomycin, daptomycin, and flucloxacillin) enhance S. aureus biofilms, whereas other 

antimicrobial drugs (clindamycin and linezolid) were unable to totally eradicate the biofilms 

(Chapter 3). Consequently, bacterial re-growth may arise from the remaining biofilms and 

could be an explanation for the persistence of infections often encountered in chronic 

wounds. One of the beneficial effects of maggot excretions/secretions (ES) is the ability to 

inhibit the formation and breakdown of biofilms of S. aureus (Chapter 2). This biofilm 

breakdown occurred irrespective the presence of antibiotics (Chapter 3). In addition, ES 

broke down biofilms of P. aeruginosa, when using 10-fold higher doses of ES than the 

effective concentrations used against S. aureus biofilms, whereas low concentrations of ES 

enhanced biofilm formation by these pathogens (Chapter 2). Others have shown that, in 

vitro, P. aeruginosa but not S. aureus, impairs maggot survival
10

. Based on these findings 

and as suggested by clinical experience
11

, we conclude that more maggots should be 

applied to make treatment successful for wounds colonized and infected with P. aeruginosa, 

as compared to those by S. aureus. As secretions interfered in a similar fashion with the 

TLR-2 and TLR-4 triggered intracellular pathways of monocytes (Chapter 5) and pro-

inflammatory macrophages (Chapter 6), it is unlikely that a differential modulation of cell 

responses by Gram-positive and Gram-negative bacteria is the cause of the observed 

differences in effects of maggots between patients with wounds infected with S. aureus and 

P. aeruginosa. 

      Interestingly, disruption of bacterial biofilms by ES does not involve the killing of bacteria 

as the micro-organisms released from the biofilm remained viable (Chapter 2). However, 

several reports describe bactericidal properties of ES against planktonic bacteria
12-14

. The 

reason for this apparent discrepancy is that the concentration of ES effective against 

biofilms is considerably lower than those needed to kill the bacteria. Moreover, this level of 

ES is not within the range achieved in wounds during maggot therapy. Therefore, maggots 

cannot be considered as a replacement for antibiotics, but should be used only as a 

supplementary treatment. Of note, it has been reported that antibiotics do not affect the 

viability of maggots
15

. The consequence of biofilm breakdown is that bacteria will become 

subject to the actions of antibiotics and the immune system as well as to ingestion and 

subsequent degradation by maggots
16,17

.  

Unexpectedly, we initially observed that antibiotics were inactive or less effective against the 

bacteria that were released from S. aureus biofilms. We argued that such bacteria are 

initially resistant to antibiotics due to their metabolic state; once the bacteria started to 

multiply, they became more susceptible to antimicrobial action (Chapter 3). In agreement 

with this, daptomycin, which acts on dormant (static) and exponentially growing bacteria, 
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was the most active antibiotic in this respect. Moreover, ES increased the activity of 

daptomycin against bacteria derived from biofilms. Taken together, it can be stated that 

maggot secretions breakdown bacterial biofilms, thereby subjecting the released bacteria to 

the action of antibiotics and the immune system. As a result, the unopposed stimulation of 

the inflammatory response by the bacterial products released from bacteria within biofilms 

may come to a halt. 

 

Maggot secretions regulate inflammatory responses 

Maggot secretions did not affect the ability of neutrophils and monocytes to phagocytose 

and intracellularly kill bacteria (Chapter 5 and 6). The two main mechanisms involved in 

bacterial killing by neutrophils are the production of reactive oxygen species (ROS) and 

degranulation, i.e. the release of enzymes, antimicrobial peptides etc into the 

phagolysosome containing the micro-organisms. H2O2 is the most stable ROS and as 

elastase is a very destructive enzyme
18,19

, we therefore focussed on the effects of maggot 

secretions on the production and release of these molecules by neutrophils. Our results 

show that secretions dose-dependently inhibit these activities in response to the chemotactic 

peptide fMLP and the protein kinase C activator PMA (Chapter 5).  

      Besides clearing infections, monocytes and especially macrophages, play a major role in 

regulating cellular behaviour and other processes in the wounds
20

. We therefore 

investigated the effect of secretions on the production of pro-inflammatory cytokines by 

these cells. Maggot secretions reduced the LPS-induced production of several pro-

inflammatory cytokines by monocytes as well as that by cells in whole blood (Chapter 6). 

Similar findings apply to pro-inflammatory macrophages that differentiated from monocytes 

(i.e. as induced by growth factors) in the presence of the secretions (Chapter 7). Taken 

together, maggot secretions reduce the production and/or release of pro-inflammatory 

mediators by phagocytes, thereby contributing to the inhibition of pro-inflammatory activity in 

chronic wounds. The observed effects of secretions on cell functions are unlikely to be 

based in altered expression profiles as maggot secretions induced different and/or 

contrasting effects on the expression of cell surface receptors on neutrophils (Chapter 5), 

monocytes (Chapter 6) and macrophages (Chapter 7). 

      Pro-inflammatory macrophages are also responsible for the recruitment and activation of 

Th1 lymphocytes, through cytokine production, via expression of co-stimulatory molecules 

and by antigen processing and presentation
21,22

. These T-cells in turn induce activation of 

pro-inflammatory macrophages, thereby enhancing their pro-inflammatory responses. Since 

maggot secretions inhibit the production of pro-inflammatory cytokines and reduce the 

expression of the T-cell co-receptor CD86 on macrophages (Chapter 7), Th1 cell 

proliferation and function may be reduced. Furthermore, preliminary experiments showed 

secretions to decrease the IFN-γ production by T-cells in whole blood stimulated with 

monoclonal antibodies directed against CD3 and CD28 for 24 h (unpublished observations). 
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By contrast, using a different experimental set-up, we observed an increased production of 

IFN-γ when stimulating the cells with mAbs against CD2 and CD28. Clearly, the effects of 

secretions on T-cells should be investigated further as no conclusions can be obtained from 

the present data.  

 

Maggot secretions inhibit migration of phagocytes 

Apart from components and products released by bacteria, chemokines released at the site 

of inflammation can attract large numbers of inflammatory cells
23-25

. Therefore, we 

investigated whether maggot secretions influenced migration and chemokine production by 

phagocytes. The results revealed that secretions altered the production of several 

chemokines by monocytes (Chapter 6). Similar effects were observed using macrophages 

differentiated from monocytes in the presence of secretions (Chapter 7). Using 

supernatants of monocyte-cultures incubated with secretions, we observed reduced 

monocyte chemotaxis, as compared to supernatants of control cultures. However, 

secretions dose-dependently inhibited the migration of both neutrophils (Chapter 5) and 

monocytes (Chapter 6) towards fMLP directly, making the changes in chemokines of an 

overall lesser importance regarding the outcome. Thus, inhibition of leucocyte migration by 

maggot secretions may contribute to reduced pro-inflammatory responses in chronic 

wounds. 

 

Wound matrix and debridement 

Although maggot excretions/secretions breakdown bacterial biofilms and suppress pro-

inflammatory responses of phagocytes, these effects may be insufficient to reverse an 

impaired wound healing. When the wound has been infected for a considerable time, the 

actions of the pathogenic bacteria and/or the immune cells combined likely have led to the 

destruction of the provisional matrix (and also the surrounding healthy tissue), which then no 

longer supports re-epithelialisation and granulation tissue formation (Chapter 1). This 

means that the corrupted tissue has to be removed. This cannot be accomplished by the 

wound components alone as the lysis of fibrin clots (fibrinolysis) may be impaired in chronic 

wounds, due to enhanced levels of the fibrinolysis inhibitor PAI. We found enhanced 

plasminogen activator-induced fibrinolysis by a serine protease present in the secretions of 

maggots (Chapter 4). Consequently, suboptimal levels of plasminogen activators may be 

sufficient for effective fibrinolysis in chronic wounds. Interestingly, secretions were unable to 

dissolve plasma clots. These findings are in contrast to those of another report that 

described the use of a ‘clot’ composed of fibrin only
26

. We therefore concluded that the clot 

composition may be an important factor for the activity of the enzymes within maggot 

secretions. Together, wound debridement by maggots may involve a combined action of 

fibrinolytic activity of the wound components and enzyme activity within the secretions.  
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 Granulation tissue formation 

Clinical observations indicate that maggots induce the formation of granulation tissue
27,28

. 

This could result from debridement in combination with suppression of pro-inflammation and 

clearance of the bacteria. However, we found that maggot secretions enhanced the 

production of the growth factors VEGF and bFGF by monocytes (unpublished observations) 

and pro-angiogenic macrophages (Chapter 7). In agreement with this earlier reports 

observed secretions-induced enhanced levels of bFGF in ulcer tissues
29

. Growth factors, IL-

8 and low levels of TNF-α are involved in endothelial cell migration and proliferation which 

are essential for angiogenesis
30,31

. Moreover, our preliminary data showed elevated IL-8 

levels in fluid samples from wounds treated with maggots for 3 or 4 days, as compared to 

fluids obtained from these wounds just before the start of the therapy (unpublished 

observations). Thus, the increased pro-angiogenic activity may induce neovascularisation 

and the concurrent formation of granulation tissue.   

 

Active components within maggot excretions/secretions 

Maggot excretions/secretions contain a wide variety of components that may induce various 

effects on human cells and the processes involved in wound healing. The results in 

Chapters 4, 6 and 7 were obtained with maggot secretions whereas the less ‘pure’ mixtures 

of excretions/secretions were used in the experiments described in Chapters 2, 3 and 5. 

Additional experiments showed that maggot secretions breakdown biofilms as well 

(unpublished observations). Although we did not test the effect of secretions on neutrophils, 

we assume that the active component is identical to the one responsible for the actions of 

maggot secretions on monocytes and macrophages.  

      During our attempts to isolate and characterise the active components within maggot 

excretions/secretions we gained some knowledge on this topic. First of all, the breakdown of 

S. aureus biofilms was facilitated by heat-sensitive molecules (enzymes) within ES (Chapter 

2). By contrast, heat-resistant molecules affected P. aeruginosa biofilms. Maggots produce a 

wide variety of molecules with antimicrobial activity. Using gel-filtration and RP-HPLC, we 

isolated a small number of peptides/proteins from the haemolymph of maggots that 

potentially exert antimicrobial activity (unpublished observations). These molecules were 

also present in the excretions/secretions of the maggots. Chromatographic techniques and 

mass spectrometry, together with functional assays, revealed that the active component of 

maggot secretions enhancing fibrinolysis was a trypsine-like serine protease. The 

component in the secretions that affects phagocytes remains to be elucidated. As also 

observed for P. aeruginosa biofilms, the active molecule did not bind to a C18-RP-HPLC 

column indicating that it is not a peptide/protein (unpublished observations). By contrast, we 

were able to reveal aspects of the mechanism by which secretions may affect phagocytes. 

Within 15 sec after the addition to the cells, maggot secretions maximally increased the 

intracellular concentration of cAMP both in neutrophils (Chapter 5) and monocytes (Chapter 
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6). The cAMP signalling cascade can lead to a range of immunomodulatory effects on cells 

such as neutrophils, monocytes, macrophages and T lymphocytes
32

. It has been reported 

that activation of cAMP pathways is associated with a reduced production of pro-

inflammatory cytokines while enhancing the production of IL-10 and VEGF
32-34

. Furthermore, 

elsewhere it has been reported that a rise in cAMP is involved in a decreased migration
35,36

, 

degranulation and respiratory burst
37,38

 while inhibiting apoptosis in several cell types
39-41

. 

Overall it can be concluded that the effects of maggot secretions on phagocytes is 

explainable on the basis of elevated intracellular cAMP levels. 

 

Therapeutic considerations 

Maggots are applied to wounds using either a ‘free-range’ or a ‘contained’ (biobag) 

technique. It has been reported that debridement by free-ranging maggots but not maggots 

in biobags, can lead to bleeding of wounds
42

. The most widely accepted explanation is that 

crawling of the maggots can cause bleeding
43

 although there is a lack of scientific evidence 

to support this view. It is also possible that enzyme activity of maggots and enhanced 

fibrinolysis result in breakdown of the provisional matrix before the underlying tissue is 

healed. In this context, it is likely that a large part of the secretions stick to the biobags, 

thereby lowering the level of active molecules in the wounds compared to that obtained with 

free-ranging maggots. In agreement with this, it is reported that free-ranging maggots are 

more successful than maggots in biobags
44

.  

      We found that maggot secretions affect a broad range of processes related to chronic 

wounds. Based on these results, it may be possible to replace maggots by their secretions 

thereby eliminating the so-called ‘yuk-factor’ which plays a negative role in the acceptance 

of maggot therapy.        

 

Summary and Conclusion  

Maggot excretions/secretions breakdown biofilms of both Gram-positive and Gram-negative 

bacteria, exposing them to the immune system, antibiotics, and ingestion and subsequent 

degradation by the maggots. Furthermore, proteases in maggot secretions enhance 

debridement by increasing the fibrinolytic activity of wound components and by degrading 

matrix components directly. Additionally, maggot secretions inhibit the pro-inflammatory 

responses of phagocytes but do not affect their ability to ingest and intracellularly kill micro-

organisms. Finally, secretions induce the production of growth factors essential for 

angiogenesis. Clearly, all these effects may be beneficial for the recovery of chronic 

wounds. The reason why maggots exert these effects may well be a simple matter of 

survival. Similar to other multi-cellular organisms, maggots have evolved ways to deal with 

detrimental bacteria, using antimicrobial molecules and, in case of biofilms, with enzymes 

and other additional mechanisms. Furthermore, maggots obtain their nutrients from dead 

tissue. To digest the tissue remnants they produce numerous enzymes. In addition, common 
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mechanisms for parasitic organisms to successfully invade the host are by inducing 

fibrinolysis and/or suppressing the host immune system, since inflammatory responses of 

the cells from the host may be detrimental to survival of the parasite. Clearly, maggots do 

not harm their human hosts. However, uncontrolled myasis, as observed in some cattle, can 

become lethal and should therefore be avoided.    

      In conclusion, the results described in this thesis provide new insights into the modes of 

action of maggot therapy in chronic wounds. The success of maggot therapy may be 

explained by the broad spectrum of processes that are modulated by maggot secretions.  

These results contribute to further acceptance of this efficient and successful therapy for the 

treatment of chronic wounds.  
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Chronische (niet-helende) wonden zijn wereldwijd een groot maatschappelijk probleem. De 

patiënten kunnen door hun fysieke achteruitgang emotionele problemen krijgen en sociaal 

geïsoleerd raken. Dit leidt tot een verminderde kwaliteit van leven en kan gepaard gaan met 

hoge kosten voor de patiënten, maar ook voor hun families en de samenleving. Chronische 

wonden kunnen worden veroorzaakt door zowel lokale als algemeen lichamelijke factoren. 

Voorbeelden van lokale factoren zijn bacteriële infecties, zuurstofgebrek, verweking van het 

weefsel, eeltvorming en druk (bijvoorbeeld doorligwonden) terwijl algemeen lichamelijke 

factoren te maken hebben met slechte voeding, leeftijd, vaatlijden, immuunsysteemonder-

drukkende medicijnen en onderliggende ziektes. Een voorbeeld van een onderliggende 

ziekte is diabetes mellitus. Van de 200 miljoen diabeten in de wereld krijgt tot wel 15% te 

maken met één of meerdere niet-helende voetzweren, die leiden tot meer dan 1 miljoen 

amputaties per jaar. Chronische wonden komen vaak voor in de onderbenen van mensen 

ouder dan 60. De verwachting is dat het aantal patiënten zal toenemen.  

      Er zijn veel verschillende manieren om chronische wonden te behandelen. Verwijdering 

van beschadigd, geïnfecteerd en/of dood weefsel (debridement) is één van deze 

behandelingsmethoden en kan worden uitgevoerd door maden van de groene vlieg. Het 

gebruik van maden voor de genezing van wonden is waarschijnlijk al eeuwenoud en wordt 

bijvoorbeeld toegeschreven aan de maya’s en de aboriginals. De oudst bekende tekst die 

melding maakt van de positieve effecten van maden in wonden is geschreven door Baron 

D.J. Larrey (1766-1842), inspecteur-generaal in het leger van Napoleon. Verdere bronnen 

komen van chirurgen die de gunstige effecten van maden op wonden beschreven ten tijde 

van de Amerikaanse Burgeroorlog. De grondlegger van de moderne madentherapie is de 

orthopedisch chirurg William Baer (1872-1931). Tijdens de Eerste Wereldoorlog behandelde 

hij soldaten, die van het slagveld waren gehaald, waarvan de wonden vol zaten met maden. 

Toen hij de maden verwijderde bleek dat de wonden heel schoon waren. In 1928 startte 

Baer met de behandeling van wonden met maden en hij ontwikkelde manieren om maden te 

kweken en te steriliseren. In de 30-er jaren werd madentherapie een zeer populaire 

behandelingsmethode, wat af te leiden is aan de vele wetenschappelijke artikelen over dit 

onderwerp. Door de ontwikkeling van verbeterde chirurgische methoden en de ontdekking 

van antibiotica stopte het gebruik van maden en raakte deze therapie vergeten. In de jaren 

90 werd madentherapie echter opnieuw geïntroduceerd als behandeling van chronische 

wonden besmet met antibiotica-resistente bacteriën. Tegenwoordig wordt deze therapie 

over de hele wereld weer gebruikt. In Nederland is madentherapie eens of meerdere keren 

toegepast in 70% van alle ziekenhuizen terwijl 25% zelfs regulier gebruiker is. Er zijn echter 

geen goede richtlijnen voor het gebruik van maden en de gepubliceerde literatuur is vaak 

onsamenhangend en/of onwetenschappelijk. Verder is er zeer weinig bekend over het 

werkingsmechanisme van de therapie. Hierdoor is madentherapie bij veel artsen nog niet 

echt geaccepteerd.  
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Het doel van het beschreven onderzoek in dit proefschrift is de werkingsmechanismen van 

madentherapie te verklaren. Hiertoe bekijken we het effect van madensecreten (speeksel) 

op 1) bacteriën, 2) de vorming en afbraak van bloedstolsels, 3) op de werking van 

verschillende soorten witte bloedcellen (neutrofielen en monocyten) en 4) op de ontwikkeling 

van monocyten tot ontstekingsbevorderende macrofagen en ontstekingsremmende/ 

herstelbevorderende macrofagen.  

 

Hoofdstuk 1 geeft een samenvatting van normale wondgenezingsprocessen. Deze 

processen kunnen worden verdeeld in drie overlappende fasen: ontsteking, weefselvorming, 

en herstructurering van nieuw weefsel. Verder worden de stoornissen in deze fasen 

beschreven die het ontstaan van chronische wonden kunnen verklaren en worden 

verschillende behandelingsmethoden voor deze wonden genoemd. Ten slotte wordt een 

overzicht gegeven van de geschiedenis van madentherapie.  

      Eén van de effecten die wordt toegeschreven aan maden is het doden van bacteriën 

door middel van de productie van antimicrobiële moleculen en enzymen. Om dit te bewijzen 

hebben we de antimicrobiële activiteit van madensecreten met behulp van verschillende 

methoden onderzocht (Hoofdstuk 2). We vonden echter dat de bacteriën niet gevoelig 

waren voor de secreten; slechts bij concentraties die aanzienlijk hoger waren dan in wonden 

verwacht wordt, zagen we een afname van het aantal Staphylococcus aureus, maar niet van 

Pseudomonas aeruginosa (twee veelvoorkomende bacteriën in chronische wonden). 

Bacteriën komen echter niet alleen als vrije cellen voor in chronische wonden, maar ook in 

biofilms. Biofilms zijn een samenleving van bacteriën die vastzitten aan een substraat of aan 

elkaar en zijn omgeven door een zelfgeproduceerde matrix. De bacteriën in deze biofilms 

zijn beschermd tegen zowel antibiotica als de werking van het immuunsysteem. Dit komt 

doordat de bacteriën hun metabolisme verlagen (inactief worden) en door de aanwezigheid 

van de beschermende matrix. We ontdekten dat madensecreten de vorming van S. aureus 

biofilms kunnen voorkomen en dat ze al gevormde biofilms kunnen afbreken (Hoofdstuk 2). 

In tegenstelling tot S. aureus biofilms kan de vorming van P. aeruginosa biofilms niet worden 

voorkomen door secreten. Wel vonden we dat relatief hoge concentraties secreten de 

gevormde biofilms konden afbreken, terwijl lage concentraties leidden tot vergroting van de 

biofilms. Verder is bekend dat S. aureus geen effect heeft op het overleven van de maden, 

terwijl P. aeruginosa maden kan doden. Daarom is onze conclusie dat meer maden nodig 

zijn voor de behandeling van wonden die geïnfecteerd zijn met P. aeruginosa dan met S. 

aureus. De bacteriën uit de biofilms werden echter niet gedood door de madensecreten. 

Daarom onderzochten we het effect van combinaties van antibiotica en secreten op biofilms 

en op de bacteriën die uit de biofilms kwamen (Hoofdstuk 3). We ontdekten dat de afbraak 

van S. aureus biofilms door secreten niet veranderde in de aanwezigheid van antibiotica. De 

bacteriën die uit de biofilm kwamen werden echter niet efficiënt gedood door de antibiotica. 

Dit komt waarschijnlijk doordat de bacteriën niet actief waren; zodra de bacteriën in vers 
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medium werden overgebracht en begonnen te groeien konden ze worden gedood door de 

antibiotica. Wel zagen we een groot verschil in de effectiviteit van de antibiotica. 

Clindamycin en vancomycine, antibiotica die alleen effectief zijn tegen groeiende cellen, 

zorgden voor maximaal 99% afname van het aantal bacteriën, terwijl daptomycine, een 

antibioticum dat zowel tegen groeiende als inactieve cellen werkt, veel sneller werkte en 

uiteindelijk alle bacteriën doodde. Verder ontdekten we dat madensecreten de werking van 

daptomycine tegen bacteriën uit biofilms verhoogde. Samenvattend, madensecreten breken 

biofilms af. De vrijgekomen bacteriën zijn echter niet actief en kunnen daarom alleen 

gedood worden door specifieke typen antibiotica, zoals daptomycine. Omdat secreten de 

bacteriën zelf niet kunnen doden, mogen maden nooit gebruikt worden ter vervanging van 

antibiotica (wat soms wel wordt gedaan). In plaats hiervan zouden maden en antibiotica 

samen moeten worden gebruikt om infecties te bestrijden. Dit is ook belangrijk, omdat we 

ontdekten dat sommige typen antibiotica (vancomycine, daptomycine en flucloxacilline) 

ervoor zorgden dat biofilms van S. aureus juist groter werden, terwijl andere antibiotica 

(clindamycine en linezolid) de biofilms slechts gedeeltelijk afbraken (Hoofdstuk 3). In alle 

gevallen blijven de bacteriën aanwezig en kunnen weer uitgroeien en opnieuw een infectie 

veroorzaken.  

      Naast antibiotica kunnen bacteriën ook gedood worden in het spijsverteringskanaal van 

de maden en door bepaalde typen witte bloedcellen. We ontdekten dat neutrofielen 

(Hoofdstuk 5) en monocyten (Hoofdstuk 6) net zo effectief waren in het opruimen van 

bacteriën in de aanwezigheid van madensecreten als in de afwezigheid.  

      Bacteriën en bacteriële producten leiden tot de migratie en activatie van witte 

bloedcellen. In normale wonden is dit belangrijk om de infectie te bestrijden. In chronische 

wonden kunnen deze ontstekingsreacties echter weefselbeschadiging veroorzaken, mede 

doordat witte bloedcellen de biofilms niet goed kunnen bestrijden en daardoor de 

ontstekingsreactie ontspoord raakt. Daarom hebben we onderzocht wat het effect van 

maden is op deze processen. We ontdekten dat madensecreten de migratie van 

neutrofielen (Hoofdstuk 5) en monocyten (Hoofdstuk 6) remden. Secreten zorgden ook 

voor een verandering in de productie van migratiebevorderende moleculen (chemokines) 

door monocyten (Hoofdstuk 6) en macrofagen (Hoofdstuk 7). Dit veranderde de 

migratieremming echter niet.  

      Witte   bloedcellen   kunnen   bacteriën   doden   met   behulp   van  zuurstofafhankelijke  

en -onafhankelijke mechanismen. Ook al zagen we geen verandering in het aantal en de 

snelheid waarmee bacteriën gedood werden door de cellen, de twee mechanismen werden 

wel onderdrukt door de maden in neutrofielen (Hoofdstuk 5). Monocyten en de daaruit 

voortkomende macrofagen zijn ook belangrijk voor de regulatie van wondprocessen door 

middel van de productie van ontstekingsbevorderende en -remmende moleculen. Omdat in 

chronische wonden de balans tussen deze moleculen is verstoord, hebben we onderzocht 

wat de effecten zijn van madensecreten op de productie van bepaalde ontstekings-
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bevorderende moleculen (cytokines) door de cellen. We ontdekten dat de productie van 

deze cytokines door gezuiverde monocyten, door cellen in volbloed en door 

ontstekingsbevorderende macrofagen werd geremd in de aanwezigheid van secreten 

(Hoofdstuk 6 en 7). Het uiteindelijke resultaat van het onderdrukken van celmigratie en 

ontstekingsreacties in chronische wonden is vermindering van weefselbeschadiging door de 

witte bloedcellen.  

      De aanwezigheid van bacteriën in de wond en de daarmee samenhangende 

ontstekingsreacties leiden tot beschadiging van de aanwezige bloedstolsels en het 

omringende gezonde weefsel. Als gevolg hiervan kunnen er geen nieuwe huid en 

onderliggende weefsels worden gevormd. Daarom moet het aangetaste weefsel worden 

verwijderd. Dit kan echter niet door het lichaam zelf worden gedaan omdat in chronische 

wonden het proces dat verantwoordelijk is voor de verwijdering van bloedstolsels, fibrinolyse 

genaamd, vaak niet goed werkt door de aanwezigheid van een overmaat aan 

fibrinolyseremmers ten opzichte van de activatoren. We ontdekten dat madensecreten een 

specifiek enzym bevatten, een serine protease, die de werkzaamheid van het fibrinolyse 

proces verhoogt (Hoofdstuk 4). De reden hiervoor is dat dit enzym een interactie aangaat 

met plasminogeen (een essentiële fibrinolysecomponent) waardoor de afgenomen 

hoeveelheden van de activatoren alsnog voldoende zouden kunnen zijn om de fibrinolyse te 

activeren. Madensecreten hadden geen effect op de vorming van bloedstolsels en de 

enzymen in madensecreten konden de gevormde bloedstolsels niet afbreken. Het is 

waarschijnlijk wel zo dat de secreten de aangetaste weefsels in chronische wonden kunnen 

afbreken.  

      Het bestrijden van de bacteriën, het remmen van de ontstekingsreactie en het 

verwijderen van aangetast weefsel door maden leiden gezamenlijk tot bevordering van het 

wondherstelproces. We ontdekten echter dat de secreten dit proces ook direct beïnvloeden 

door middel van de verhoging van de productie van groeifactoren door monocyten en 

ontstekingsremmende/herstelbevorderende macrofagen (Hoofdstuk 7). Deze groeifactoren 

zijn belangrijk voor de vorming van nieuwe bloedvaten en weefsels.  

 

De resultaten in dit proefschrift laten zien dat maden verschillende effecten hebben die 

verstoorde processen in chronische wonden kunnen onderbreken en de balansen kunnen 

herstellen. Het is daarom interessant om te onderzoeken welke moleculen in de secreten 

van de maden verantwoordelijk zijn voor deze effecten. Zoals alle dieren produceren maden 

een grote variëteit aan antimicrobiële moleculen. Met behulp van verschillende technieken 

hebben we een aantal peptiden/eiwitten geïsoleerd uit de maden die potentieel 

antimicrobieel zijn. Een deel van deze moleculen, die nog nagemaakt en verder getest 

moeten worden, is ook aanwezig in de secreten. Verder vonden we dat de afbraak van S. 

aureus biofilms werd veroorzaakt door hittegevoelige moleculen, waarschijnlijk enzymen, 

terwijl hitteongevoelige moleculen leidden tot de afbraak van P. aeruginosa biofilms. De 
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actieve moleculen in de secreten die verantwoordelijk zijn voor het ontstekingremmende 

effect op witte bloedcellen zijn tot nu toe onbekend. We weten echter wel hoe de actieve 

componenten deze cellen beïnvloeden, namelijk door verhoging van cyclisch AMP 

(Hoofstuk 5 en 6). Dit ‘boodschappermolecuul’ is verantwoordelijk voor de remming van 

ontstekingsprocessen in de cellen.  

 

Madensecreten breken biofilms af waardoor de bacteriën gevoelig worden voor antibiotica, 

het immuunsysteem en voor digestie door maden zelf. Bovendien produceren de maden 

enzymen die het fibrinolyseproces bevorderden en ervoor zorgen dat dood weefsel wordt 

opgeruimd. Verder onderdrukken maden de ontstekingsreacties van witte bloedcellen 

zonder dat het opruimen van bacteriën door deze cellen wordt verstoord. Ten slotte wordt 

de productie van groeifactoren juist bevorderd door de secreten. Al deze effecten zijn 

positief voor de heling van chronische wonden. De vraag die dan overblijft is waarom maden 

dit doen. Het antwoord op deze vraag is eigenlijk heel simpel…overleven. Zoals voor alle 

organismen geldt, kunnen bacteriën schadelijk of zelfs dodelijk zijn voor maden. Daarom 

hebben maden mechanismen ontwikkeld om de bacteriën te bestrijden. Verder leven maden 

van dood weefsel. Door middel van de productie van veel verschillende enzymen zijn 

maden in staat om dit weefsel te verteren. Verder is het niet ongewoon voor parasieten om 

het immuunsysteem van de gastheer te onderdrukken, aangezien ontstekingsreacties 

schadelijke effecten kunnen hebben. Ook al zijn maden dus eigenlijk parasieten, ze 

beschadigen wonden in de mens niet. Dit heeft te maken met het type maden. Medische 

maden produceren factoren die voornamelijk dood weefsel aantasten (saprofage maden). 

Het is echter wel bekend bij dieren, bijvoorbeeld schapen, dat ongecontroleerde 

aanwezigheid van dit type maden in wonden tot ziekte en uiteindelijk tot de dood kan leiden. 

Daarom moet de therapie altijd worden toegepast door goed opgeleide artsen. Uit onze 

resultaten blijkt dat de secreten van de maden de componenten bevatten die werkzaam zijn 

in de wond. Het is daarom mogelijk dat de maden uiteindelijk kunnen worden vervangen 

door de secreten, of zelfs beter, door actieve moleculen die geïsoleerd zijn uit de secreten. 

Tot slot, er is geen enkele therapie die alle chronische wonden kan genezen; ook maden 

niet. Maden beïnvloeden echter veel verschillende processen in wonden en dit is 

waarschijnlijk de reden van het succes van madentherapie.  
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