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1. Introduction 

Atherothrombosis is the actual cause of death of atherosclerotic disease in 
the W estern world. Occlusion of an artery by a thrombus formed after rupture 
of an atherosclerotic lesion may lead to the clinical manifestations such as 
myocardial infarction (acute coronary events) or stroke

1-3
.  The risk of plaque 

rupture and subsequent thrombus formation largely depends on the 
morphology and composition of the plaque

4
. In particular, the balance 

between fibrous cap thickness and lipid core size is regarded essential for 
the stability of the plaque. A disturbed balance will render the plaque more 
liable to rupture but will also promote, through the highly thrombogenic 
content of the plaque core, activation of the coagulation cascade and 
thrombus formation. Conceivably, modulation of the thrombogenicity of the 
plaque lipid core, the strength of the fibrous cap or the extracellular matrix 
content can provide a new therapeutic entry to plaque stabilization and the 
prevention of acute cardiovascular disease.    
A major problem in atherothrombosis research is the apparent resistance of 
plaques of atherosclerosis-prone mice to plaque rupture and subsequent 
thrombus formation

5,6
. As described in the general introduction, p53

upregulation in pre-existing carotid artery plaques by means of adenoviral 
transfer was found to increase the risk of plaque rupture

7
. Furthermore, in 

the brachiocephalic artery of ApoE
-/-

 mice plaque rupture has been detected 
after only 8-9 weeks of a high fat and high cholesterol diet

8
. However, in this 

model no actual thrombosis is observed. In practice, these models for plaque 
rupture suffer various pitfalls. The brachiocephalic artery is not easily 
accessible for local therapeutic interventions. The p53 induced model is very 
laborious and plaque rupture is based on apoptosis of smooth muscle cells. 
Plaque rupture in the brachiocephalic artery is the consequence of plaque 
expansion. W hen the therapeutic intervention targets a different mechanism 
of plaque destabilization or atherothrombosis, one might question the validity 
of both models. In atherosclerosis-prone mice however, intraplaque 
hemorrhages are more often observed than actual plaque ruptures. Both in 
advanced carotid artery collar or ligation models and in the brachiocephalic 
artery, evidence of intraplaque hemorrhages is frequently shown

9-11
. Also in 

human atherosclerotic lesions, intraplaque hemorrhage is increasingly 
recognized as an important factor in plaque stability

12,13
. Erythrocyte 

accumulation in the plaque leads to enhanced intra- and extracellular 
deposition of erythrocyte derived cholesterol, which will enlarge the necrotic 
core and increase the risk of plaque rupture

14
.

Nonetheless, on basis of several morphological parameters including 
macrophage content, fibrous cap thickness and necrotic core size, one can 
have a good estimate of the stability of plaques generated in atherosclerosis-
prone mice. This makes the mouse model very usefull for plaque stability 
research. Throughout this thesis, we have made use of the carotid artery 
collar model in hypercholesterolemic ApoE

-/-
or LDLr

-/-
 mice

15
, at which 

plaques are easily accessible for modulation and the initial atherogenic 
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stimulus, i.e. shear stress and hypercholesterolemia, are essentially similar 
to the human situation.     
In this thesis, we have studied factors, which can shift the atherosclerotic 
plaque morphology either to a more stable phenotype, such as the protease 
inhibitors Serp-1 and Serp-2, and the immunosuppressant FK506, or to a 
more unstable one (e.g. adventitial mast cell activation). Hence, we have 
divided this thesis in two parts, the first part describing effects of modifiers of 
extracellular matrix content and cellular homeostasis on plaque stability and 
thrombogenicity. In the second part, the focus is more on the role of 
inflammation at different stages of atherosclerotic lesion development. It 
should however be realized that the extracellular matrix, cellular homeostasis 
and inflammation are highly interrelated and cannot be judged apart from 
one another.  

2. Matrix and Cell Homeostasis 

Protease Inhibitors 

In atherosclerotic plaque development, proteases cover a wide variety of 
functions, which all may to some extent influence plaque morphology

16
.

Several protease families can be discriminated, e.g. metalloproteinases
17,18

,
serine proteases

19,20
 and cysteine proteases

21,22
. Metalloproteinases, and 

especially the collagenases and the gelatinases, have been associated with 
plaque destabilization, as these MMPs are capable of extracellular matrix 
degradation

23
. They have therefore been extensively studied

24,25
 and various 

MMPs were shown to be highly active in advanced and ruptured 
atherosclerotic plaques. Various cysteine proteases, and in particular 
cathepsins

21
, are key proteins in atherosclerotic lesion development. For 

instance, cathepsins S and K, both potent elastolytic enzymes, have been 
thoroughly investigated with respect to matrix and elastin degrading 
capacity

26
.

Serine proteases play, amongst others, an important role in coagulation. 
Serine proteases have been implicated in atherosclerotic plaque 
development, e.g. via tissue factor, which activates the serine proteases of 
the coagulation system

19,20
. Serine proteases can also activate the 

inflammatory response and tissue repair. Protein fragments produced after 
cleavage by serine proteases have also been associated with increased 
cytokine responses, extracellular matrix remodelling and activation of 
macrophages

27-30
. Inhibition of serine proteases could thus act beneficial on 

atherosclerotic lesion progression and form an attractive strategy for plaque 
stabilization. 
A particular class of inhibitors, the so-called serpins, are irreversible ‘suicide’ 
protease inhibitors and very interesting in this regard

31
. The exact role of 

individual serine protease inhibitors in atherogenesis has not been 
elucidated yet and findings thus far have not always been convincing. As 
also described in Chapter 2, Plasminogen Activator Inhibitor-1 (PAI-1) has 



Chapter 8

148

been extensively studied
32

 and PAI-1 deficiency was demonstrated to leave 
atherogenesis in both LDLr

-/-
 and ApoE

-/-
 mice unaffected

33
. In other studies, 

PAI-1 was found to accelerate atherosclerosis or restenosis
34,35

, illustrating 
that the overall effect of these pleiotropic proteins depends on disease stage 
and model used. In Chapter 2, we have described the effect of infusion with 
the myxoma virus derived serine protease inhibitor Serp-1 for 4 weeks on de

novo atherogenesis and on advanced atherosclerosis. Serp-1 treatment was 
demonstrated to reduce plaque size by three-fold, when applied during 
plaque development. This reduction in plaque size was accompanied by an 
increase in collagen content and a striking reduction in macrophage content 
of the plaque. Likewise, treatment of advanced lesions with Serp-1 resulted 
in an inhibition of plaque progression and an increased collagen and vSMC 
content. In both studies, plaque cellularity was increased at the expense of 
necrotic core size

36
. Although the exact mode of action is still unclear, it may 

involve the uPA/uPAR dyad as Serp-1 was shown to interact with this 
system

37
.  Additionally, Serp-1 mediates cytokine signaling during myxoma 

virus infection, which may partly explain the reduced macrophage content of 
the early lesions after Serp-1 treatment

38
. However, we did not observe a 

difference in white blood cell content between the control and Serp-1 treated 
mice. In conclusion, Serp-1 treatment inhibits both early lesion development 
and plaque progression in carotid arteries of ApoE

-/-
 mice and results in a 

more stable plaque phenotype. To appreciate its therapeutic potential, it is 
necessary that side effects on thrombosis and homeostasis are mapped. 
Relevant in this regard is that while Serp-1 is known to interfere with the 
plasminogen activator system, we did not observe any effect of Serp-1 on 
the fibrin content of advanced plaques.  
In Chapter 3, we have investigated the capacity of two cross-class protease 
inhibitors, which inhibit both serine and cysteine proteases, to attenuate 
plaque development. The proteins in question, CrmA and Serp-2, have been 
shown to inhibit Interleukin-1  Converting Enzyme (ICE) in vitro, CrmA being 
more potent than Serp-2

39
. ICE catalyzes the conversion of both pro-IL-1

and pro-IL-18 into active IL-1  and IL-18, which are both pro-inflammatory 
cytokines. In addition, ICE is also known as caspase 1, an activator of the 
caspase signaling pathway and thus of apoptosis. CrmA and Serp-2 can 
inhibit Granzyme B activity

40
, implying that these protease inhibitors can 

inhibit both the intrinsic and the extrinsic apoptosis pathway. These two 
protease inhibitors were evaluated in various models of vasculopathy, 
notably neointima formation after iliofemoral artery angioplasty and aortic 
transplant (both in rats) and of atherosclerosis in ApoE

-/-
mice (i.e. collar-

induced carotid artery atherosclerosis and during spontaneous lesion 
development in the aortic root). In these studies we show effective inhibition 
of plaque formation in all models by Serp-2 and strikingly, not by CrmA. Also, 
reactive center loop (RCL) mutants of Serp-2 were ineffective, indicating that 
the inhibition of lesion formation involves an interaction of the RCL to its 
target. The underlying mechanism was further delineated by in vitro studies 
in endothelial cell, monocyte and T-lymphocyte cell lines, which revealed that 
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Serp-2 is able to inhibit T-cell apoptosis and to a lesser extent macrophage 
apoptosis. This anti-apoptotic activity of Serp-2 was mainly mediated via 
inhibition of the Granzyme B/perforin pathway. In fact, Granzyme B and 
perforin are key executioners of the granule exocytosis pathway, which is the 
primary mechanism through which the immune system targets and kills 
cells

41,42
. Cytotoxic T-cells release both Granzyme B and perforin, after 

which Granzyme B will enter the target cells via mannose-6-phosphate 
receptor mediated endocytosis. Granzyme B will be released from the 
endocytic vesicles and induce target cell apoptosis.  
This study suggests that cytotoxic T-cell mediated induction of apoptosis 
probably is a critical step in the development of neointimal or atherosclerotic 
lesions, although involvement of Granzyme B and perforin still has to be 
established in vivo. In previous studies, it has already been shown that 
Granzyme B and perforin were involved in endothelial cell and vascular 
smooth muscle cell apoptosis during transplant vasculopathy and in arterial 
allograft rejection and that in Granzyme B deficient mice luminal narrowing 
after transplantation was significantly reduced

43,44
. Furthermore a human 

serpin, i.e. protease inhibitor 9 (PI-9, the human orthologue of SPI-6 in mice) 
was found to inhibit Granzyme B activity

45
 and to regulate the susceptibility 

to lymphocyte cytotoxicity in vivo and in vitro
46.

 PI-9 and CrmA both were 
reported to inhibit CTL-mediated apoptosis, but only when both Granzyme B 
and perforin are present

47
. We have demonstrated here that Serp-2 

mediated inhibition of CTL-induced Granzyme B activity is ablated after 
blocking of perforin.  
Although our studies clearly demonstrate that Serp-2 could act anti-
atherogenic, it cannot be excluded that part of its effect is mediated by 
interference with ICE activity. We do observe less mononuclear cell invasion 
in the rat model of angioplasty upon treatment with Serp-2, which may point 
to an anti-inflammatory pathway involving ICE. However, the question 
remains why CrmA does not exert any anti-atherogenic effects.  

Lysophosphatidic Acid in Atherosclerosis  

Lysophosphatidic acid (LPA) is one of the most thrombogenic lipids present 
in the lipid core of atherosclerotic lesions

48,49
. During lesion initiation, LPA 

mainly accumulates in the vascular wall by extravasation of LPA enriched 
modified LDL

50
 and subsequent uptake by subendothelial macrophages. 

During lesion progression, LPA may still be delivered through LDL, however 
the intraplaque formation of LPA from its precursors will become increasingly 
important.  
In Chapter 4 we have investigated LPA accumulation and the regulation and 
expression of genes involved in LPA metabolism in the vascular wall, during 
diet induced lesion formation in LDLr

-/-
 mice. First, we describe that in LDLr

-/-

mice LPA accumulates in the intima during lesion progression to a similar 
extent as in advanced human lesions

49
. Accumulation of LPA and other 

lipids in the plaque may lead to cell death due to necrosis as shown for lipid-
laden macrophages (foam cells). It is plausible that progressive build-up of 
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LPA will enhance the thrombogenicity of the plaque and may help to prime 
platelets toward coagulation upon rupture of the plaque

51
. This could 

increase the risk of thrombotic complications following plaque rupture. To 
determine whether or not the metabolism of LPA in the cellular content of the 
plaque is disturbed during atherosclerotic lesion progression, we analyzed 
mRNA expression levels of enzymes involved in LPA conversion. 
It is shown that during atherosclerotic lesion development the expression 
pattern of intracellular enzymes in LPA homeostasis shifted to favor LPA 
synthesis, as enzymes involved in synthesis were upregulated (PLD3,
cPLA2IVA), whereas a key enzyme involved in degradation (LPAAT ) was 
downregulated. LPAAT  is the most uniformly expressed LPAAT of the two 
major isoforms present in mammalian tissue

52
. Interestingly, inhibition of 

LPAAT  induced cytotoxicity in various tumor cell types, while in most non-
tumor cells it affected growth arrest and quiescence

53
. In analogy, 

downregulation of LPAAT  as seen in lesion tissue may therefore result in 
cytotoxic effects in dedifferentiated or dysregulated cells of the plaque. 
Further study is awaited to adress this hypothesis. 
Fatty acid binding proteins (FABP), which can bind intracellular LPA, have 
been shown to play a role in atherosclerosis

54,55
. For instance, absence of 

FABP4 in macrophages attenuated atherogenesis in hypercholesterolemic 
mice

56,57
. Downregulation of FABP3 during atherogenesis in mice is 

consistent with previous reports, showing a reduction of FABP3 activity in 
atherosclerotic rabbit aortas on cholesterol diet, while an age-dependent 
increase was observed in the normal chow-fed rabbits

58
. The net result of 

FABP3 downregulation for LPA reactivity and its consequence for plaque 
size and composition still has to be evaluated.  
These data demonstrate that LPA indeed accumulates during atherosclerotic 
lesion progression. However, the relative contribution of intraplaque LPA 
synthesis versus LDL mediated delivery still remains to be determined. 
Apparently, a significant amount of LPA has accumulated in the plaque in 
the first two weeks after collar placement. At this time point, only fatty streaks 
have developed and we believe that at this stage the delivery via modified 
LDL is contributing most to the LPA pool. When the lesion further 
progresses, local synthesis of LPA may become more important. It should, 
however, be taken into account that we have only determined mRNA 
expression levels of enzymes involved in LPA metabolism, which may not 
necessarily be reflective of protein expression. Additional research will be 
required to determine also expression of these enzymes at a protein level. In 
conclusion, LPA accumulates in the plaque, already at the initial stage of 
atherosclerotic lesion development. The disturbed expression of key 
enzymes in LPA metabolism favors accumulation during plaque progression. 
By correction of the expression of one of the key enzymes in LPA 
metabolism, the LPA content in the plaque might be reduced resulting in a 
concomitant reduction in plaque thrombogenicity. 
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3. Inflammation and Plaque Stabilization 

Immunosuppression 

Several studies have provided evidence for the impact of 
immunosuppressive drugs on atherosclerotic plaque development

59-61
.

Recently, it was demonstrated that the NFAT signaling pathways regulate 
the expression of various pro-inflammatory Th1-cytokines, such as IL-2, IL-6 
and IFN

62
. Thrombin, VEGF and PDGF are all capable of inducing a pro-

inflammatory response by activation of NFAT
63,64

. Inhibition of this pro-
inflammatory response by the immunosuppressive drugs CsA, FK506 or 
sirolimus (rapamycin) could reduce atherogenesis, which could be, among 
others, ascribed to a downregulation of CD40 ligand, Fas ligand and TF 
expression

65-67
. In addition, CsA and FK506 are able to upregulate TGF ,

which stimulates vSMC proliferation and ECM synthesis, and fibrogenic 
factors such as collagen and fibronectin

68,69
. The activity profile of the 

immunosuppressive drugs suggests that they could potentially stabilize 
advanced atherosclerotic plaques. Previous studies on CsA, sirolimus, 
FK506 and atherosclerosis have been rather contradictory in that both 
inhibition and stimulation of atherosclerosis has been reported

61,70-73
.

However, different experimental setups with respect to disease models and
FK506 dose use could account for the non-consistent outcomes of these 
efficacy studies.     
In Chapter 5, we describe the evaluation of the therapeutic potential of a low 
dose FK506 immunosuppression on collar-induced atherosclerosis and on 
spontaneous plaque development in the aortic arch of ApoE

-/-
 mice. Collar-

induced plaque development was significantly reduced in mice receiving 
FK506 and intriguingly, plaque progression was almost completely blocked 
after treatment with a low dose of FK506 (0.05 mg/kg/day). The FK506 blood
concentration of approximately 0.2 ng/mL was sufficient to inhibit NFAT 
mediated transcription in vSMCs and macrophages, but had no effect the 
transcription factor NF B. Interestingly, analysis of the plaque morphology 
revealed an increased plaque stability as judged from the necrotic core size, 
collagen content and increased cellularity. In both studies, the ASMA 
positive vascular smooth muscle cell content tended to be increased, which 
could partly be responsible for the observed increase in collagen, although it 
cannot be excluded that FK506 may also directly promote collagen 
production. Furthermore, macrophages, which are the major producers of 
collagen degrading enzymes such as MMP9, were slightly diminished in the 
FK506 treated versus control mice, which also favours a net accumulation of 
collagen and a reduced necrotic core formation in the plaque. In vitro studies 
revealed that FK506 is able to inhibit vSMC apoptosis, hereby explaining the 
increased vSMC content of the plaque. 
Thus, stabilization of the atherosclerotic plaque after treatment with FK506 
may reduce the risk of atherothrombosis. Compared to CsA, FK506 
displayed an antithrombotic activity after cardiac transplantation, which is an 
important step in the development of cardiac allograft vasculopathy

74
. On the 
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other hand, FK506 treatment of transplantation rejection was in some studies 
reported to increase the risk of thrombotic microangiopathy, a prothrombotic 
state due to endothelial damage by the immunosuppressive drugs

75,76
.

Nonetheless, in these patients the FK506 serum concentration was 
approximately 100-fold higher than in our animal studies. The “sub-
therapeutic” dose that we have used did not lead to nephrotoxicity, another 
reported side effect of immunosuppressive drugs

77
, although more long-term 

toxicity studies will be needed to establish the absence of side effects of low 
dose FK506 treatment. 
In conclusion, in Chapter 5 we have shown that FK506 treatment reduces 
atherosclerotic plaque development and inhibits plaque progression, while 
improving plaque stability by increasing collagen content and reducing 
necrotic core formation. These findings led us to conclude that low dose 
FK506 treatment could serve as a valuable anti-atherosclerotic therapy. 

Adventitial Inflammation 
Inflammation of the adventitia, the perivascular tissue, is recognized to 
become increasingly important in atherosclerosis research. Recently, the 
extent of adventitial inflammation was found to correlate with the severity of 
atherosclerotic plaque progression

78
. Moreover, during atherosclerotic 

plaque development, microvessels will sprout from the adventitial vasa 
vasorum and penetrate the plaque not only to supply oxygen and nutrients, 
but also allow the recruitment of inflammatory cells to the core region

79
. In 

Chapter 6, we have investigated the role of a specific inflammatory cell type, 
the mast cell, in the adventitia of advanced atherosclerotic plaques on lesion 
progression. Mast cells are present in human atherosclerotic plaques, 
especially in the shoulder regions of ruptured lesions

80
. Also, mast cells 

reside in the adventitia of atherosclerotic arteries and their number was 
found to correlate with the progression state of the plaques

81
. It is unclear 

whether the mast cell is a causal factor in plaque rupture, or that they are 
recruited to the plaque secondary to rupture. In this study, we attracted and 
activated mast cells in the adventitia of advanced collar-induced 
atherosclerotic plaques in ApoE deficient mice via a DNP 
sensitization/challenge protocol. Strikingly, in DNP challenged mice with 
activated adventitial mast cells, intraplaque hemorrhage was a frequent 
event. Although intraplaque hemorrhage is clinically not as relevant as 
plaque rupture, lesions with intraplaque hemorrhage will be classified as 
Type VI lesions, and thus unstable, according to the AHA classification 
system

82
. Intraplaque hemorrhage will lead to erythrocyte derived cholesterol 

deposition and increased necrotic core formation. The increase in incidence 
of hemorrhages was accompanied by an increased apoptosis of plaque 
macrophages, which will also increase the necrotic core size. Also, apoptotic 
macrophage residues (apoptotic bodies) are rich in activated TF, rendering 
the necrotic core highly thrombogenic

83
. The mast cell constituents 

histamine, chymase and tryptase appeared to be responsible for the induced 
macrophage apoptosis. Moreover, proteases released from the mast cells 
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after degranulation, including chymase, tryptase and several cathepsins, are 
able to degrade extracellular matrix, thereby further destabilizing the plaque.  

Activated Mast Cell

Intraplaque
Macrophage Apoptosis

Chymase
Tryptase
Histamine (H1 - R)

Enhanced
 Neo-Vessel Permeability

Leukocyte/Erythrocyte Influx

Histamine (H1-R)
Plaque Destabilization

Figure 1. Proposed mechanism of activated mast cell in the adventitia of atherosclerotic lesions. 

In addition, we showed that microvessels, present in the intima, media and 
adventitia of the plaques, may become leaky in response to the local high 
levels of mast cell derived histamine. It is plausible that the increased 
leakiness contributed to the high incidence of hemorrhage in the plaque. In
vitro and in vivo studies revealed that the histamine H1-receptor is an 
important factor in mast cell induced plaque destabilization. The H1-receptor 
antagonist triprolidine was not only able to inhibit the mast cell induced 
macrophage apoptosis, but also to prevent increased vascular leakage, 
while H2- and H3- receptor antagonists had no effect. The histamine H1-
receptor has frequently been implicated in diseases such as asthma

84
.

Interestingly, the H1-receptor has been reported to play a significant role in 
intimal thickening

85
. Recently, the histamine H4-receptor has been 

discovered
86

 and may have an activity profile similar to the H1-receptor. 
Specific antagonists are currently being developed and they will allow us to 
investigate the role of H4-receptors in mast cell induced plaque 
destabilization in more detail.  
Importantly, simultaneous administration of a mast cell stabilizer cromolyn 
not only prevented the adventitial mast cell activation in vivo, but also the 
associated increase in macrophage apoptosis, vascular leakage and 
intraplaque hemorrhage. Research on mast cell stabilizers and 
atherosclerosis has not been substantial, however tranilast, a rather 
unspecific mast cell stabilizer with anti-inflammatory activity, was shown to 
inhibit transplant atherosclerosis in two studies

87,88
.

The question remains what the actual endogenous trigger is for mast cell 
activation and degranulation. Oxidized LDL, which could enter the adventitia 
via the vasa vasorum or be produced locally by adventitial macrophages, 
has been demonstrated to induce mast cell degranulation

89
. Also, mast cells 

often colocalize with sensory neurons in the adventitia
90,91

, especially in 
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advanced atherosclerotic plaques. These neurons stained positive for the 
neuropeptides Substance P and calcitonin gene-related peptide, both 
capable of mast cell activation

91
. Preliminary data from our lab suggest that 

indeed adventitial activation of mast cells by locally administered Substance 
P promoted the incidence of intraplaque hemorrhage in advanced 
atherosclerotic lesions in ApoE

-/-
 mice, albeit to a lesser extent that after local 

challenge with DNP. Mast cells are also known to express LPA receptors 
and recently, Gabba et al. described that LPA, via LPA receptors, can 
accelerate mast cell proliferation and differentiation

92
. In addition, 

phospholipases D, which convert PC into the LPA precursor PA, are known 
to induce mast cell degranulation

93
. These data may point to a role for LPA, 

which accumulates in plaques during lesion progression, in mast cell 
activation.  
To conclude, we show in Chapter 6 that activated adventitial mast cell are 
instrumental in plaque destabilization and that they increase, by promoting 
macrophage apoptosis, the thrombogenic activity of the plaque. Therefore, 
we postulate that mast cell stabilization provides a new therapeutic entry in 
the prevention of plaque destabilization. 

4. Research models 

Animal models are widely used in all areas of biomedical research and the 
generation of the hyperlipidemic mouse strains such as the ApoE

-/-
 and the 

LDLr
-/-

 mice was a major breakthrough in atherosclerosis research
94,95

.
However, to address the role of genes in atherosclerosis, the creation of 
knockout mice and subsequent back-crossing to a hyperlipidemic 
background will be equally necessary. This generally is very time-consuming 
and even impossible when the deletion of the particular gene leads to 
embryonic lethality. Research with transgenes can also be difficult when cell 
specific gene expression is required. This may be obviated in part by bone
marrow transplantations, but even this approach requires the generation of 
knockouts or transgenes.  
To speed up the experimental progress, we explored the potential of 
transplantation of lentivirally transduced bone marrow. Downregulation of 
genes by means of siRNA or shRNA has proven its usefulness in the last 
few years in vitro as well as in vivo

96,97
and several research groups have 

demonstrated that shRNA constructs can be efficiently delivered to different 
cell types by lentiviruses

98,99
. In Chapter 7, we have elaborated this strategy 

further and transduced bone marrow cells with shRNA lentivirus and the 
subsequently transplantated them to lethally irradiated recipient mice. We 
used CC-Chemokine Receptor 2 as model gene to establish the “proof of 
principle”, since the key role of CCR2 in leukocyte migration has already 
been extensively described

100
. At 7 weeks after transplantation of the 

recipient mice with bone marrow transduced with either H1.Empty control 
virus or H1.shCRR2 lentivirus, we indeed observed a 70%  downregulation of 
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CCR2 expression by macrophages isolated from the peritoneal cavity. This 
downregulation in CCR2 mRNA levels resulted in a complete loss of CCR2 
function as judged from the sharply reduced number of isolated 
macrophages, which was identical to that isolated from mice transplanted 
with CCR2

-/-
mice.  Thus despite the CCR2

+/+
 genotype, mice that had been 

transplanted with H1.shCCR2 lentivirus transduced bone marrow, displayed 
a CCR2

-/-
 phenotype. PCR analysis on the Y-chromosomal SRY gene in the 

recipient bone marrow revealed that the transduced male donor bone 
marrow was not outcompeted by residual female recipient bone marrow after 
irradiation for at least 7 weeks after transplantation. Further long-term follow-
up of these studies will be necessary to determine the persistence of CCR2 
silencing after lentivirally transduced bone marrow transplantation. Moreover, 
studies are currently underway to validate this approach in disease models 
of atherosclerosis rather than leukocyte migration per se. It is expected that 
CCR2 knockdown will lead to a reduced atherosclerotic plaque development, 
as has been demonstrated by Guo et al.

101
 for mice deficient in macrophage 

CCR2. Nevertheless, in this study we are the first to show effective delivery 
of lentiviral shRNA to bone marrow cells and subsequent transplantation into 
irradiated recipient mice as a strategy to generate hematopoietic 
knockdowns with silenced CCR2 expression. The speed and efficiency 
renders this strategy very helpful for addressing the role of other leukocyte 
genes in inflammatory disorders. 
One of the possible target genes is considered to be Stromal cell Derived 
Factor-1  (SDF-1 ), which has been shown to be highly expressed in 
atherosclerotic plaques and to play a crucial role in neointima formation after 
wire-injury

102,103
. Lentiviral transduction of a carotid artery of ApoE

-/-
 mice 

after wire injury of a known functional SDF-1  antagonist, the P2G mutant, 
led to an over 50% decrease in neointimal area

104
. Another elegant tool in 

this regard is the so-called SDF-1 -degrakine, which specifically and stably 
inactivates the corresponding chemokine receptor CXCR4 by redirecting the 
receptor via a HIV-1 protein, a Vpu-tagged SDF-1  fusion protein, to the host 
proteasome machinery. This results in a complete loss of CXCR4 protein 
expression on the cell surface

105
. Transduction of bone marrow with either 

SDF-1  antagonist lentivirus or lentivirus containing the CXCR4 degrakine 
construct and subsequent transplantation into lethally irradiated recipient 
mice could allow us to elucidate the role of CXCR4/SDF-1  dyad in 
atherosclerotic lesion development.  

5. Perspectives 

This thesis presents an overview of various plaque stabilizing strategies. It 
was divided into two parts, the first focussing on matrix and cell homeostasis, 
while the second focussed mainly on inflammation. We have demonstrated 
that viral protease inhibitors Serp-1 and Serp-2 offer the potential of 
stabilizing atherosclerotic lesions in different disease and animal models. 
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Also, we have firmly established that the immunosuppressive drug FK506
displays a marked plaque stabilizing capacity. These studies may have 
therapeutic implications, although of course the extrapolation from mice to 
the human situation is difficult and side effects of both strategies still need to 
be mapped.  
In addition, we describe in Chapters 4 and 6 plaque components that 
contribute to plaque instability and plaque thrombogenicity. The 
atherosclerotic plaque was found to contain an increasing amount of the 
highly thrombogenic lipid LPA during lesion progression, which can at least 
in part be accounted for by increased intraplaque production of LPA. We 
have identified new protein targets for correction of the LPA homeostasis 
that could lead to novel strategies for intervention in atherothrombosis. 
Moreover, the role of activated adventitial mast cells was delineated, 
revealing that mast cell activation indeed promotes plaque destabilization by 
increasing macrophage apoptosis, vascular leakage and intraplaque 
hemorrhage. This study also underlined the relevance of the adventitia for 
lesion development and CVD. Further study of adventitial inflammation and 
the cellular composition of the adventitia will give more insight into the role of 
the adventitia in atherosclerotic plaque development. Also, the identification 
of the potential trigger of mast cell activation in the adventitia can lead to 
plaque stabilization. In this thesis, mast cell stabilization already leads to 
reduced plaque instability, which could be an effective new therapeutic entry 
in the prevention of acute coronary syndromes or its sequelae.  
Finally, a new research model is described, which allows faster and more 
efficient research with respect to leukocyte genes in atherosclerotic plaque 
development. Using this new technique, more potential candidates for future 
therapeutic interventions with respect to plaque stabilization and reduction of 
plaque thrombogenicity can be discovered.  
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