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Résumé (version longue)

Tous les anneaux et les algèbres considérés dans ce résumé sont commutatifs
et unitaires. Soit R un anneau. Soit f un polynôme unitaire de degré n
dans R[Z]. Soit A la R-algèbre R[Z]/(f). Pour i = 0, . . . , n, on dé�nit des
anneaux Fi(A) et des polynômes fi dans Fi(A)[Z] par récurrence, de la façon
suivante : soit F0(A) = R, et soit f0 = f . Si on a Fi(A) et fi on dé�nit

Fi+1(A) = Fi(A)[xi+1]/(fi(xi+1)), fi+1(Z) =
fi(Z)

Z − xi+1
∈ Fi+1(A)[Z].

On rémarque que pour i = 0, . . . , n le polynôme fi est encore unitaire.

Si l'anneau R est un corps et si f est séparable et irréductible de groupe
de Galois le groupe symétrique Sn, alors Fn(A) est une clôture galoisienne
de A/R. Donc il est possible de voir la construction de Fn(A) comme une
généralisation de la clôture galoisienne à une classe d'anneaux plus grande
que celle des extensions séparables de corps (au moins pour les extensions
avec groupe de Galois Sn).

Considérons une autre généralisation de la clôture galoisienne. Soit R un
anneau connexe. Soit α : R → K un point géométrique de R �xé. Soit π =
π(R,α) le groupe fondamental étale de R en α. On a une anti-équivalence
de catégories entre la catégorie des R-algèbres �nies étales de rang n et la
catégorie des ensembles �nis avec n éléments, munis d'une action continue
de π. Appelons de tels ensembles π-ensembles (voir dé�nition 1.4.6 et théo-
rème 1.4.9). Soit X un π-ensemble à n elements ; pour i = 0, . . . , n soit
Inj({1, . . . , i}, X) l'ensemble des fonctions injectives de {1, . . . , i} dans X.
Cet ensemble est muni d'une action naturelle de π, qui vient de l'action de
π sur X. De cette façon à une R-algèbre A �nie, étale de rang n, correspon-
dant au π-ensemble X, on associe une R-algèbre �nie, étale Gi(A), de rang
n(n− 1) · · · (n− i+ 1), correspondant au π-ensemble Inj({1, . . . , i}, X).

Si la R-algèbre A est de la forme R[Z]/(f) pour un polynôme unitaire f ,
alors pour tout i = 0, . . . , n on a que Gi(A) est isomorphe à l'anneau Fi(A)
dé�ni ci-dessus. Supposons que R→ A est une extension séparable de corps,
de degré n. Si le groupe de Galois est Sn, alors on a encore que Gn(A) est
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Résumé (version longue)

une clôture galoisienne de A. En général, Gn(A) est un produit de copies de
la clôture galoisienne.

La construction de Gn(A) est plus naturelle que celle de la clôture galoisienne
classique, parce qu'elle commute avec les changements de base. Pour tout
i = 0, . . . , n, la même chose est aussi vraie pour Fi(A) et Gi(A).

Plus géneralement, soit R un anneau et soit A une R-algèbre �nie et locale-
ment libre de rang n. Dans [2], Manjul Bhargava et Matthew Satriano ont
dé�ni une clôture galoisienne de A/R. Donnons-en une dé�nition équivalente.

Dé�nition. Soit A une R-algèbre �nie et localement libre de rang n. Une R-
algèbre A(n) munie pour chaque i = 1, . . . , n d'un morphisme de R-algèbres
αi : A→ A(n) est dit une clôture galoisienne de A si pour tout élément a de
A le polynôme

n∏
i=1

(
Z − αi(a)

)
∈ A(n)[Z]

est égal à l'image du polyôme characteristique Pa(Z) de a dans A(n)[Z] par le
morphisme R[Z]→ A(n)[Z], et si de plus le couple

(
A(n), (αi)i

)
est universel

pour cette propriété.

La construction de A(n) commute avec les changements de base (voir [2,
Theorem 1]). Notons que l'idée pour la dé�nition de A(n) est déjà dans la
thèse de Bhargava. En e�et, dans [1] il utilise une construction similaire pour
la paramétrisation des anneaux de rang 3 et 4.

Dans le chapitre 1 de cette thèse nous costruisons pour tout anneau R et pour
toute R-algèbre A localement libre de rang n, des algèbres A(i) pour chaque
i = 0, . . . , n. Ces algèbres généralisent les algèbres Fi(A) et Gi(A) (voir
dé�nition 1.3.1 et proposition 1.3.7). Comme A(n), ces �clôtures partielles�
commutent avec les changements de base. Notre construction répond à une
question posée dans [2, Question 4]. Nous établissons aussi une rélation entre
notre construction et des constructions dé�nies dans [9] par Daniel Ferrand
(voir proposition 1.5.15).

Une fois la dé�nition des A(i) donnée, nous étudions leurs propriétés. Le pré-
mier résultat fondamental est théorème 1.4.4, qui�lorsque A est un produit
�ni de R-algèbres de rang �ni, fournit une formule pour A(i) en fonction de
plusieurs clôtures partielles des facteurs. Le théorème est une généralisation
du théorème suivant (voir [2]).

Théorème ([2, Theorem 6]). Pour i = 1, . . . ,m soit Ai une R-algèbre loca-
lement libre de rang ni. Soit A le produit des Ai, une R-algèbre localement
libre de rang n =

∑
ni. Alors la clôture galoisienne de A satisfait :

A(n) ∼=

(
m⊗
i=1

A
(ni)
i

) n!
n1! ···nm!

.
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Résumé (version longue)

Notre formule dans théorème 1.4.4 est très utile. Parmi ses applications �-
gurent des resultats nouveaux pour les clôtures partielles aussi bien que pour
la clôture galoisienne A(n). Par exemple nous montrons que A(i) n'est pas
égale à l'anneau nul, en excluant quelques cas triviaux (voir proposition
1.4.17).

Avant de donner l'énoncé de notre résultat suivant, revenons à l'exemple du
début. Soit donc K un corps et soit f un polynôme irréductible et séparable
de degré n dansK[Z]. Soit L le corpsK[Z]/(f). SoitM la clôture galoisienne
de L/K. On suppose que le groupe de Galois de M sur K est le groupe
symétrique Sn. Dans ce cas, pour tout i = 0, . . . , n, l'anneau Fi(L) que nous
avons dé�ni ci-dessus est un corps et la sous-extension K → Fi(L) de M est
isomorphe à MSn−i .

Une conséquence de la propriété universelle de A(n) est que le groupe Sn
agit sur A(n) en permutant les morphismes naturels. Dans le chapitre 3 nous

étudions cette action. En général, il n'est pas vrai que A(i) et (A(n))
Sn−i

sont isomorphes, voir par exemple le cas où R est le corps F2(X2) et A est
l'extension purement inséparable (ou radicielle) F2(X) de R. Alors A(2) est

égale à A, et l'action de S2 est triviale. Donc R → (A(2))
S2 n'est pas un

isomorphisme. Pourtant, parce que l'extension est radicielle, le morphisme
est un homéomorphisme universel. Rappelons qu'un morphisme d'anneaux
R→ A est un homéomorphisme universel, si pour tout R→ R′ le morphisme
SpecA⊗R R′ → SpecR′ est un homéomorphisme (voir section 2.3).

Nous avons montré le résultat suivant.

Théorème (Théorème 3.2.9). Soit A une R-algèbre localement libre de rang
n. Soit i dans {0, . . . , n}. Alors, il existe un morphisme naturel A(i) →(
A(n)

)Sn−i , qui est un homéomorphisme universel.

Pour démontrer ce théorème nous étudions, dans le chapitre 2 les schémas
X → S munis d'une action par un groupe �ni G telle que le quotient X/G
soit universellement isomorphe au schéma de base S. Nous montrons alors
le théorème suivant.

Théorème (Théorème 2.4.15). Soit X → S un schéma. Soit G un groupe
�ni qui agit sur X → S. Alors les propositions suivantes sont équivalentes :

1. Le quotient X/G existe et le morphisme naturel X/G → S est un
homéomorphisme universel.

2. Le morphisme X → S est entier et surjectif, et pour tout corps K
sur S l'action de G sur chaque �bre non-vide de X(K) → S(K) est
transitive.
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Résumé (version longue)

Dans le chapitre 4, nous étudions l'action du groupe alterné An sur A(n).
Considérons à nouveau un exemple de la théorie de Galois. SoitK un corps de
caracteristique di�érente de 2. Soit f un polynôme irréductible et séparable
de degré n dans K[Z]. Soit M une clôture galoisienne de K[Z]/(f). On
suppose que le groupe de Galois de M/K est le groupe symétrique Sn. Les
racines carrées du discriminant ∆f de f sont dans M , et la sous-extension
K → K[

√
∆f ] de M est MAn . Donc, K → K[

√
∆f ] dépend seulement de

l'extension M/K et pas de f .

Soit R une Z[1/2]-algèbre. Soit A une R-algèbre localement libre de rang
n. Le déterminant

∧nA est un R-module localement libre de rang 1. La
forme discriminant

∧nA ⊗
∧nA → R dé�nit une multiplication sur le R-

module R⊕
∧nA. On note la R-algèbre obtenue ainsi par ∆1/2(A/R) et on

l'appelle l'algèbre discriminant de A (voir dé�nition 4.2.3). Si R est un corps
et A = R[Z]/(f) est un extension de R telle que le groupe de Galois d'une
clôture galoisienne de A est Sn, alors ∆1/2(A/R) est isomorphe à R[

√
∆f ].

Nous montrons le théorème suivant.

Théorème (Théorème 4.3.8). Soit R une Z[1/2]-algèbre. Soit A une R-
algèbre localement libre de rang n. Alors, il existe un morphisme naturel de
R-algèbres λ : ∆1/2(A/R) → A(n) tel que l'homomorphisme ∆1/2(A/R) →
(A(n))An induit par λ est un homéomorphisme universel.

Nous ne sommes pas encore en mesure de dire si le morphisme λ est un
isomorphisme en général.

A la �n de notre travail, nous donnons des indications sur un travail en
préparation (en collaboration avec Owen Biesel). Le but de ce travail est de
construire une algèbre discriminant pour les R-algèbres localement libres de
rang n sur un anneau général R.
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Introduction

All rings and algebras considered are commutative and have an identity
element. Let R be a ring. Let f be a monic polynomial of degree n in R[Z].
Let A be the R-algebra R[Z]/(f). De�ne rings Fi(A) and polynomials fi in
Fi(A)[Z] for i = 0, . . . , n recursively in the following way: let F0(A) be R,
and let f0 be f . Given Fi(A) and fi de�ne

Fi+1(A) = Fi(A)[xi+1]/(fi(xi+1)), fi+1(Z) =
fi(Z)

Z − xi+1
∈ Fi+1(A)[Z].

Note that for i = 0, . . . , n we have that fi is monic.

Assume now the ring R above is a �eld and f is separable and irreducible.
Assume moreover that the Galois group of f is the full symmetric group
Sn. Then Fn(A) is a Galois closure of A over R. So we could see the above
construction of Fn(A) as a generalization to a wider class of rings of the
classical Galois closure (for Sn-extensions).

Here is another possible generalization of the Galois closure. Let R be a
connected ring. Fix a geometric point α : R → K of R. Let π = π(R,α) be
the étale fundamental group of R in α. Then there is an anti-equivalence
of categories between �nite étale R-algebras of rank n and π-sets with n
elements (see de�nition 1.4.6 and theorem 1.4.9). Given a π-set X with n
elements, for all i = 0, . . . , n let Inj({1, . . . , i}, X) be the set of injective maps
from {1, . . . , i} to X. The group π acts naturally on this set, via its action on
X. In this way for a �nite étale R-algebra A of rank n, corresponding to a π-
set X, we de�ne a �nite étale R-algebra Gi(A) of rank n(n−1) · · · (n−i+1),
namely the �nite étale R-algebra corresponding to Inj({1, . . . , i}, X).

If the �nite étale R-algebra A is of the form R[Z]/(f) for some monic poly-
nomial f then for i = 0, . . . , n we have that Gi(A) is isomorphic to the Fi(A)
given above. Assume R → A is a �nite separable �eld extension of degree
n. If it is an Sn-extension, then again Gn(A) is a Galois closure of A. In
general Gn(A) is a product of copies of the Galois closure.

The construction of Gn(A) is more natural than the classical Galois closure,
because it commutes with base change. The same is true for Fi(A) and
Gi(A) for i = 0, . . . , n.
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Introduction

More generally, let R be a ring. Let A be a locally free R-algebra of rank n.
A de�nition of Galois closure of A over R has been given by Manjul Bhargava
and Matthew Satriano in [2]. Here is a de�nition that is equivalent to theirs.

De�nition. Let A be a locally free R-algebra of rank n. An R-algebra A(n)

given together with an R-algebra map αi : A → A(n) for every i = 1, . . . , n,
is a Galois closure of A if for all a ∈ A the polynomial

n∏
i=1

(
Z − αi(a)

)
∈ A(n)[Z]

is equal to the image of the characteristic polynomial Pa(Z) of a in A(n)[Z]
under the map R[Z] → A(n)[Z], and if moreover the pair

(
A(n), (αi)i

)
is

universal with this property.

The construction of A(n) commutes with base change (see [2, Theorem 1]).

Bhargava's idea for the de�nition of A(n) came from his thesis: in [1] he uses
a similar construction for the parametrization of rings of rank 3 and 4.

In this thesis we construct for all rings R and locally free R-algebras A of rank
n, algebras A(i) with i = 0, . . . , n, generalizing the Fi(A) and Gi(A) (see def-
inition 1.3.1 and proposition 1.3.7). Also these �intermediate closures� com-
mute with base change. The existence of constructions with these properties
was asked in [2, Question 4]. We also relate these constructions to certain
constructions de�ned in [9] by Daniel Ferrand (see proposition 1.5.15).

We will then study some properties of the A(i). Our �rst main result is
theorem 1.4.4, which expresses A(i), with A a �nite product of locally free
R-algebras of �nite rank, in terms of various intermediate closures of the
factors. It is a generalization of the following theorem from [2].

Theorem ([2, Theorem 6]). For i = 1, . . . ,m let Ai be a locally free R-
algebra of rank ni. Let A be the product of the Ai, a locally free R-algebra of
rank n =

∑
ni. Then the Galois closure of A satis�es

A(n) ∼=

(
m⊗
i=1

A
(ni)
i

) n!
n1! ···nm!

.

Theorem 1.4.4 is a powerful tool. Among its applications we will see new
results both on the intermediate closures and on A(n).

For the statement of the next result we �rst go back to our example. Let K
be a �eld. Let f be a separable irreducible polynomial of degree n in K[Z].
Let L be the �eld K[Z]/(f). LetM be a Galois closure of L over K. Assume
the Galois group of M over K is the full symmetric group Sn. In this case
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Introduction

for all i = 0, . . . , n the ring Fi(L) de�ned above is a �eld. The subextension
K → Fi(L) of M is isomorphic to MSn−i .

From the universal property of A(n) follows that the group Sn acts on A(n)

via R-algebra homomorphisms, by permuting the natural maps. It is not

true that A(i) and (A(n))
Sn−i are isomorphic in general. However, something

closely related is true.

Theorem (Theorem 3.2.9). Let A be a locally free R-algebra of rank n. Let i

be an integer, with 0 ≤ i ≤ n. Then there is a natural map A(i) →
(
A(n)

)Sn−i ,
which is a universal homeomorphism.

A ring homomorphism R→ A is a universal homeomorphism if for all R→
R′ the map SpecA⊗R R′ → SpecR′ is a homeomorphism (see section 2.3).

The following example shows that we cannot get an isomorphism in general.
Let R be the �eld F2(X2) and let A be the degree 2 purely inseparable
extension F2(X) of R. Then A(2) is equal to A and the action of S2 is

trivial. Hence R→ (A(2))
S2 is not an isomorphism. However, since the map

is a purely inseparable �eld extension, it is a universal homeomorphism.

We also study the action of the alternating group An on A(n). Let us �rst
consider a Galois theoretic example. Let K be a �eld of characteristic di�er-
ent from 2. Let f be a separable irreducible polynomial of degree n in K[Z].
Let M be a Galois closure of K[Z]/(f). Suppose the Galois group of M
over K is the full symmetric group Sn. The square roots of the discriminant
∆f of f are in M , and the subextension K → K[

√
∆f ] of M is MAn . In

particular K → K[
√

∆f ] only depends on the extension L/K, and not on
f .

Let R be a Z[1/2]-algebra. Let A be a locally free R-algebra of rank n. The
determinant

∧nA is a locally free R-module of rank 1. The discriminant
form

∧nA⊗
∧nA→ R allows us to de�ne a multiplication on the R-module

R⊕
∧nA. We denote the R-algebra obtained in this way by ∆1/2(A/R) and

call it the discriminant algebra of A (see de�nition 4.2.3). If R is a �eld and A
is an Sn-extension of R of the form R[Z]/(f) then ∆1/2(A/R) is isomorphic
to R[

√
∆f ].

We will prove the following theorem.

Theorem (Theorem 4.3.8). Let R be a Z[1/2]-algebra. Let A be a locally free
R-algebra of rank n. Then there is a natural R-algebra map λ : ∆1/2(A/R)→
A(n) such that ∆1/2(A/R)→ (A(n))An is a universal homeomorphism.

I do not know if λ is an isomorphism in general.

Finally, we will give indications on future work (joint with Owen Biesel),
which constructs a discriminant algebra of locally free R-algebras of rank n
over a general commutative ring R.
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Introduction

An outline of the thesis: in chapter 1 we will introduce the intermediate
closures and prove some of their basic properties, including the product
formula mentioned above. We will also give some examples and explicit
computations. In chapter 2 we will �nd necessary and su�cient conditions
for R→ AG to be a universal homeomorphism given any R-algebra A, with
an action of a �nite group G. This will be used in chapter 3 and chapter 4
to prove the theorems mentioned above.

xiii



Conventions

In this thesis �ring� means �commutative ring with identity element�. If a
non-commutative ring will appear it will be called �non-commutative ring�.
Ring homomorphisms are required to respect the identity. Modules are uni-
tary.

Algebras are rings, so the rules above apply.
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Chapter 1

Galois closure for rings

1.1 Introduction

Let K → L be a �nite separable �eld extension, and let f in K[Z] be such
that L ∼= K[Z]/(f). A Galois closure of L over K is a minimal Galois
extension of K containing L. Equivalently, it is a �eld extension M of K,
containing L, minimal with the property that f splits into linear factors in
M [Z].

Now assume that f has degree n, and the Galois group of f is Sn, the
symmetric group on n letters. In this case we can construct a Galois closure
as follows: let K0 be K, and let f0 be f . Given Ki and fi we de�ne Ki+1 as
Ki[Xi+1]/(fi(Xi+1)). Denote by xi+1 the class of Xi+1 in Ki+1. Let fi+1 be
the quotient of fi by Z − xi+1 in Ki+1[Z]. The assumption that the Galois
group of f is Sn guarantees that for i = 0, . . . , n the ring Ki is a �eld, and
that Kn is the �eld we wanted to construct. In particular x1, . . . , xn are the
roots of f in Kn.

Let R be a ring and let A be a locally free R-algebra of rank n (see def-
inition 1.2.1). Manjul Bhargava and Matthew Satriano in [2] de�ned an
R-algebra G(A/R), which generalizes the Galois closure of an Sn-extension
of K. In [2, Question 4] they asked whether it is possible to construct al-
gebras G(i)(A/R) for i = 1, . . . , n, with G(n)(A/R) = G(A/R), generalizing
the intermediate Ki in the construction above.

In this chapter we construct such algebras, which we call m-closures, for
all 0 ≤ m ≤ n. These form the main object of study of this thesis. It is
more natural and sometimes convenient to use a di�erent description, which
we will call S-closure, with S an arbitrary �nite set. In the case of the
intermediate Ki for �elds, this means that we label the roots using the set
S instead of {1, . . . , i}. This will be made precise in section 1.3.
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1.2 Preliminaries

We will start by recalling some preliminary results on locally free modules
and algebras in section 1.2. In particular, we recall the de�nition of char-
acteristic polynomials of endomorphisms of a �nite locally free module of
constant rank, which is fundamental in the rest of the thesis. In section 1.3
we will give the de�nition, an explicit construction, and prove some basic
properties of the S-closures.

We will then prove the �product formula� (theorem 1.4.4). This formula is a
generalization of theorem 6 in [2], and expresses the S-closure of a product
of R-algebras of �nite rank in terms of T -closures of the factors, for various
subsets T of S. This will be proved in section 1.4. In the same section we
will also prove some consequences of this formula.

In section 1.5, we will relate the S-closures to certain constructions de�ned
in [9] by Daniel Ferrand.

After that, in section 1.6 and section 1.7, we will study special cases, giving
examples and explicit computations.

1.2 Preliminaries

In this section we will give results needed to de�ne S-closures. First some
facts about modules and algebras of rank n. We start with the de�nition.

De�nition 1.2.1. For n ≥ 0, a locally free R-module of rank n is a �nitely
generated R-module M such that for all primes p of R the Rp-module Mp

is free of rank n. For brevity we will say M is an R-module of rank n. A
locally free R-algebra of rank n, or an R-algebra of rank n, is an R-algebra
that is of rank n as an R-module.

Proposition 1.2.2. Let R be a ring and M be an R-module. The following
are equivalent:

1. The module M is of rank n.

2. The module M is �nitely presented and for all maximal ideals m of R
the Rm-module Mm is free of rank n.

3. There exists a �nite set {r1, . . . , rN} ⊆ R such that r1 + · · · + rN = 1
and for all i the Rri-module Mri is free of rank n.

Proof. See [18, Theorem 4.6].

Particularly important will be the de�nition of characteristic polynomials,
which plays a fundamental role in the constructions we will consider. We
�rst de�ne the trace, following the notes on Galois theory for schemes by
Hendrik Lenstra (see [18, Chapter 4]).
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1.2 Preliminaries

Lemma 1.2.3. Let M be a �nitely generated projective R-module and let
M∨ be the R-module HomR(M,R). Then for any R-module N the map

Φ: N ⊗RM∨ → HomR(M,N)

n⊗ f 7→
(
x 7→ f(x)n

)
is an isomorphism.

Proof. Clearly this is true for M = R and so also for M a free module
of �nite rank by taking direct sums. In general given a �nitely generated
projective module M there exists an R-module P such that M ⊕ P ∼= Rn

for some n. Then we know that N ⊗R (M ⊕ P )∨ → HomR(M ⊕ P,N) is an
isomorphism. Moreover, we have

N ⊗R (M ⊕ P )∨ ∼= (N ⊗RM∨)⊕ (N ⊗R P∨), and

HomR(M ⊕ P,N) ∼= HomR(M,N)⊕HomR(P,N),

The map (N ⊗R M∨) ⊕ (N ⊗R P∨) → HomR(M,N) ⊕ HomR(P,N) is the
sum of N ⊗R M∨ → HomR(M,N) and N ⊗R P∨ → HomR(P,N). Since
their sum is an isomorphism both maps are isomorphism. So the proof is
complete.

In particular one can take N = M in lemma 1.2.3 and consider

Φ−1 : End(M)→M ⊗RM∨ (1)

We use this map to de�ne the trace.

De�nition 1.2.4. Let M be a projective �nitely generated R-module. We
de�ne the trace map, denoted s1, to be the composition of Φ−1 with the map
M ⊗RM∨ → R sending m⊗f to f(m). If A is a �nite projective R-algebra,
then we have a map A→ End(A) sending a ∈ A to multiplication by a (here
End(A) denotes the set of R-module endomorphisms of A). Composing this
map with the trace map we get the trace map A → R, which we denote
again by s1.

Note that the exterior power
∧mM of an R-module of rank n is an R-

module of rank
(
n
m

)
. This is because

∧m commutes with base change (see
[5, Chapitre III, �7, n. 5]) and if M is free of rank n then

∧mM has
rank

(
n
m

)
. By taking exterior powers we can de�ne the determinant and the

characteristic polynomial.

De�nition 1.2.5. LetM be an R-module of rank n. For every f ∈ End(M)
de�ne the determinant of f , denoted sn(f) to be the trace of the endomor-
phism induced by f on

∧nM . For A an R-algebra of rank n we de�ne the
norm of a ∈ A, denoted sn(a), as the determinant of multiplication by a.

3



1.2 Preliminaries

Remark 1.2.6. We will also use maps si : End(M)→ R for i ≥ 0. These are
de�ned as the trace of the i-th exterior power of f ∈ End(M). In particular
s1 is the trace as de�ned above and s0 is just the constant map to 1.

De�nition 1.2.7. Let M be an R-module of rank n. For every endomor-
phism f of M de�ne the characteristic polynomial of f , denoted Pf (X), as
the determinant of the endomorphism (Id⊗X − f ⊗ Id) of M ⊗R R[X]. For
A an R-algebra of rank n, the characteristic polynomial of an element a ∈ A,
denoted Pa(X), is the characteristic polynomial of multiplication by a.

Remark 1.2.8. The coe�cients of the characteristic polynomials are the si
de�ned above, up to a sign. Explicitly we can write:

Pf (X) =

n∑
i=0

(−1)isi(f)Xn−i.

See [17, Chapter XIX, Exercise 2].

Remark 1.2.9. Note that Cayley-Hamilton theorem holds, i.e. for all endo-
morphisms f of an R-module M of rank n, we have Pf (f) = 0. In fact, this
holds for free modules (see [17, Chapter XIV, Theorem 3.1]) and if an ele-
ment of End(M) is zero locally at every prime of R then it is zero. Moreover
if A is an R-algebra, then Pa(a) is zero since it is equal to Pa evaluated in
the endomorphism given by multiplication by a, computed in 1.

The following de�nition is standard, but it will be very important in the next
chapters, so we give it here explicitly.

De�nition 1.2.10. An R-algebra A is called integral over R if for all a ∈ A
there exists a monic polynomial P ∈ R[X] such that P (a) = 0.

Remark 1.2.11. An R-algebra A of rank n is �nite and hence also integral.
For every a ∈ A the characteristic polynomial of a is, by remark 1.2.9, an
explicit monic polynomial that has a as a root.

The following construction is only a formal variant of the usual tensor power
of an R-algebra (see also remark 1.2.13). This form will be useful later to
simplify the notation, especially in section 1.4.

De�nition 1.2.12. Let A be an R-algebra. For any �nite set S the tensor
power of A indexed over S is an R-algebra A⊗S given with a map εs : A →
A⊗S for every s ∈ S, such that for any R-algebra B with a map ζs : A→ B
for every s ∈ S we have a unique map ϕ : A⊗S → B making the following
diagram commutative for every s ∈ S:

A
εs //

ζs
��

A⊗S

ϕ
}}zz

zz
zz

zz

B

4



1.2 Preliminaries

Remark 1.2.13. If S = {1, . . . , n} then A⊗S is A⊗n with natural maps given
by

εi : a 7→ 1⊗ · · · ⊗ a⊗ · · · ⊗ 1

(with a in the i-th position), because they have the same universal prop-
erty. In general any bijection S → {1, . . . , n} induces a unique isomorphism
A⊗S → A⊗n compatible with the natural maps.

Finally, we introduce generic elements, which we will use in the construction
of the S-closure. To do that we de�ne the symmetric algebra. A lot of
information on this topic can be found in Bourbaki's algebra, see [5, Chapitre
III, �6]. We will mostly need the following universal property (proposition 2
in Bourbaki).

De�nition 1.2.14. LetM be an R-module. The symmetric algebra ofM is
an R-algebra SymM given with an R-module map ε : M → SymM such that
for all R-algebras A and R-module maps f : M → A there exists a unique
R-algebra map ϕ : SymM → A making the following diagram commutative.

M
ε //

f

��

SymM

ϕ
∃!

{{
A

In other words the map

HomR-alg(SymM,A)→ HomR(M,A)

ϕ 7→ ϕ ◦ ε

is bijective.

Example 1.2.15. For every R-module M the symmetric algebra exists and
can be explicitly constructed. For example if M is a free R-module with
basis e1, . . . , en then the polynomial ring R[e1, . . . , en] with the map sending
each ei to ei has the universal property of SymM .

In general the symmetric algebra of an R-module M is the quotient of the
tensor algebra ⊕n≥0M

⊗n of M (a non-commutative ring) by the two-sided
ideal generated by the commutators. It is a graded algebra, with the degree
0 part isomorphic to R and the degree 1 part isomorphic to M . We will
denote by SymnM the degree n part of SymM .

De�nition 1.2.16. Let M be a �nitely generated projective R-module.
Tensoring the identity of M with the natural map M∨ → Sym(M∨) we get
a morphismM⊗RM∨ →M⊗RSym(M∨). Composing with the isomorphism
Φ−1 de�ned in (1), we get an R-module map

End(M)→M ⊗R Sym(M∨).
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1.2 Preliminaries

We call the generic element of M , denoted γM or simply γ, the image of
IdM via the described map.

Remark 1.2.17. From the de�nition is clear that the generic element is an
element of M ⊗RM∨, so it can be written as

∑
mi ⊗ fi. Recall from 1.2.3

that M ⊗R M∨ → End(M) sends n ⊗ g to the endomorphism x 7→ g(x)n.
The image of γ in End(M) is then x 7→

∑
fi(x)mi. By de�nition of γ this

map must be the identity, so for all x ∈M we have

x =
∑

fi(x)mi.

In particular the mi generate M over R. Moreover, the fi generate M∨ as
an R-module because given f ∈M∨ we have:

f(x) = f
(∑

fi(x)mi

)
=
∑

f(mi)fi(x) =
(∑

f(mi)fi

)
(x)

for all x ∈M .

Example 1.2.18. Let M be a free R-module of rank n. We can then
write the generic element of M explicitly: choose a basis e1, . . . , en of M ,
and let X1, . . . , Xn be the dual basis. Then Sym(M∨) is isomorphic to
R[X1, . . . , Xn] and the generic element of M is

γ =

n∑
i=1

ei ⊗Xi

in M ⊗R Sym(M∨).

Lemma 1.2.19. Let M be a �nitely generated projective R-module. Then
the map

M → (M∨)∨

m 7→ (f 7→ f(m))

is an isomorphism.

Proof. The map is an isomorphism after localization at each prime of R.
Hence it is an isomorphism.

Remark 1.2.20. Note that the map in lemma 1.2.19 is still injective for M
not �nitely generated. In fact, we can reduce to free modules as above, and
if x in a free module M is such that f(x) is zero for all f ∈ M∨ then x is
zero.

The following important property is the main reason why we will use the
generic element.
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1.3 S-closures

Proposition 1.2.21. LetM be a �nitely generated projective R-module. Let
R′ be any R-algebra. Then the map

HomR-Alg(Sym(M∨), R′)→M ′

ϕ 7→ (IdM ⊗ϕ)(γ)

is bijective.

Proof. Recall from lemma 1.2.3 that for all R-modules N we have that N⊗R
M∨ ∼= HomR(M,N). By lemma 1.2.19 we have M ∼= (M∨)∨. So we have

M ′ ∼= HomR(M∨, R′) ∼= HomR-alg(Sym(M∨), R′),

and hence Sym(M∨) represents the functor sending an R-algebra R′ to
the set M ′. Taking R′ = Sym(M∨) we have that ϕγ is the identity in
End (Sym(M∨)), and by Yoneda's lemma we conclude the proof.

Example 1.2.22. Let M be free of rank n. Write γ as
∑

i ei⊗Xi, with the
notation introduced in example 1.2.18. The map ϕx is the unique R-algebra
morphism Sym(M∨) → R′ sending ei to Xi(x) for all i. Hence, if A is a
free R-algebra, the map Id⊗ ϕx is the evaluation map A[X1, . . . , Xn]→ R′

sending a polynomial f to f(s1, . . . , sn), where (s1, . . . , sn) is the element of
R′n representing x in the chosen basis.

Remark 1.2.23. Let A be an R-algebra. Let Pγ be the characteristic poly-
nomial of γ in the Sym(A∨)-algebra A ⊗R Sym(A∨). Then for all R → R′

and for all a ∈ A′ = A⊗R R′ the map A⊗R Sym(A∨)[X] → A′[X] induced
by ϕa sends Pγ to the characteristic polynomial of a. This is true for free
algebras as follows easily from example 1.2.22, so for an algebra of rank n it
is true locally at every prime of R, hence the statement holds for algebras of
rank n.

1.3 S-closures

In this section we are going to de�ne S-closures and prove their existence
giving an explicit construction. We will use characteristic polynomials and
generic elements, de�ned in section 1.2. We start with the de�nition.

De�nition 1.3.1. Let A be an R-algebra of rank n, and let S be a �nite
set. An R-algebra A(S) given together with R-algebra maps αs : A → A(S)

for every s ∈ S, is an S-closure of A if for all R → R′ and all a ∈ A ⊗R R′
the polynomial

∆a(X) =
∏
s∈S

(
X − (αs ⊗ Id)(a)

)
7



1.3 S-closures

divides the characteristic polynomial Pa of a in A(S) ⊗R R′[X], and the pair(
A(S), (αs)s∈S

)
is universal with this property.

Being universal means that for all R-algebras B given with maps βs : A→ B
for s ∈ S, if for all R→ R′ and a ∈ A⊗R R′ the polynomial

∏
s(X − (βs ⊗

Id)(a)) divides the characteristic polynomial of a in B ⊗R R′[X], then there
is a unique morphism ϕ : A(S) → B such that for every s ∈ S the following
diagram commutes:

A
αs //

βs
��

A(S)

ϕ
}}{{

{{
{{

{{

B

Remark 1.3.2. From the universal property it follows (by standard argument)
that if the S-closure of an R-algebra of rank n exists, then it is unique up
to a unique isomorphism. The set I = {αs(a) | a ∈ A, s ∈ S} has the same
universal property as A(S), hence the S-closure is generated by I.

Remark 1.3.3. One can de�ne the S-closure of a scheme X that is �nite
locally free of rank n over a scheme Y (see also the introduction of [2]). We
will limit our study to the a�ne case.

In the rest of the section we give an explicit construction of the S-closure,
showing it exists for any R-algebra of rank n and any �nite set S, and we
prove some easy consequences of the construction. We will need some results
for the construction.

Lemma 1.3.4. Let M be a locally free R-module. Then the map

M →
∏

λ∈M∨
R

m 7→ (λ(m))λ

is injective.

Proof. The map M ∼= (M∨)∨ sending m to λ 7→ λ(m) is injective (see
remark 1.2.20). The module (M∨)∨ can be identi�ed with a submodule
of
∏
λ∈M∨ R via the map sending f ∈ (M∨)∨ to (f(λ))λ. So the proof is

complete.

Recall that given an R-module M we denote by Sym(M) the symmetric
algebra of M (see de�nition 1.2.14). In the following lemma we denote by
HomR(Sym(M∨), R) the set of R-module morphisms from Sym(M∨) to R.

Lemma 1.3.5. Let M be an R-module of rank n, and let C be an R-algebra.
Let t ∈ C ⊗R Sym(M∨). Then the following are equivalent:

8



1.3 S-closures

1. The element t is zero.

2. For all λ in HomR(Sym(M∨), R) we have (IdC ⊗ λ)(t) is zero in C.

3. For all R → R′ and all R-algebra morphisms ϕ : Sym(M∨) → R′ we
have (IdC ⊗ ϕ)(t) is zero in C ⊗R R′.

Proof. If t is zero then both 2 and 3 hold.

Suppose 3 holds. Then we can take R′ = Sym(M∨) and ϕ the identity map,
so t is zero and 1 and 3 are equivalent.

Suppose 2 holds. Since Sym(M∨) is locally free, the natural map

C ⊗R HomR

(
Sym(M∨), R

)
→ HomC

(
C ⊗R Sym(M∨), C

)
is surjective. Let µ be in HomC(C ⊗R Sym(M∨), C) and let ν be in C ⊗R
HomR (Sym(M∨), R), mapping to µ. Write ν as

∑
i ci ⊗ λi. Then we have

µ(t) =
∑
i

ci(IdC ⊗ λi(t))

and this is zero, since for all i we have (IdC ⊗ λi)(t) = 0. Then lemma 1.3.4
with R equal C and M equal C ⊗R Sym(M∨) implies that t is zero. Hence
1 and 2 are equivalent.

We can now prove that the S-closure of a rank n algebra exists. We �rst
introduce the notation we will use in the proof.

Notation 1.3.6. Let A be an R-algebra of rank n. We will write ASym for
A⊗R Sym(A∨). Let S be a �nite set. Note that

A⊗SSym = (A⊗R Sym(A∨))⊗S ∼= A⊗S ⊗R Sym(A∨)

where the �rst tensor power is taken over Sym(A∨) and the last over R. We
will use this canonical isomorphism without spelling it out. For s ∈ S we
denote by the same symbol both the natural map εs : A→ A⊗S and its base
change εs : ASym → A⊗SSym.

Let Pγ(X) ∈ ASym[X] be the characteristic polynomial of the generic ele-
ment. De�ne the polynomial

∆γ =
∏
s∈S

(
X − εs(γ)

)
in A⊗SSym[X]. Note that since ∆γ is monic, division with remainder of Pγ by

∆γ can be done in A⊗SSym[X] and gives a unique quotient and remainder, with
the remainder of degree less than #S. We write

Pγ = ∆γQγ + Tγ

9



1.3 S-closures

and
Tγ =

∑
0≤i<#S

tiX
i

with ti in A
⊗S
Sym.

In A⊗S we de�ne the following ideal:

J (S) =
〈
(IdA⊗S ⊗ λ)(ti) | i ≥ 0, λ ∈ HomR(Sym(A∨), R)

〉
.

We will prove that A⊗S/J (S) is an S-closure for A.

Proposition 1.3.7 (Construction of A(S)). Let A be an R-algebra of rank n
and let S be a �nite set. Let C = A⊗S/J (S), and de�ne a map ζs for every
s ∈ S by composing the natural map A→ A⊗S with the quotient map. Then
(C, ζs) is an S-closure of A.

Proof. We use the notation introduced in 1.3.6. We �rst show that for all
R→ R′ and a ∈ A⊗R R′ the polynomial

∆a =
∏
s∈S

(X − (εs ⊗ IdR′)(a))

divides Pa in C ⊗R R′[X]. Let Ta be the remainder of the division of Pa by
∆a in (A⊗R R′)⊗S [X]. Let ϕa : Sym(A∨) → R′ be the unique map such
that IdA ⊗ ϕa sends γ to a, de�ned in proposition 1.2.21.

Note that IdA⊗S⊗ϕa sends εs(γ) to εs(a) for all s ∈ S. Hence IdA⊗S⊗ϕa(∆γ)
is ∆a, and since also IdA ⊗ ϕa(Pγ) is Pa (see remark 1.2.23), and quotient
and remainder are unique, also IdA⊗S ⊗ ϕa(Tγ) is Ta.

By de�nition of the ideal J (S) for all i ≥ 0 the image of ti in C⊗RSym(A∨) via
the quotient map satis�es condition 2 of lemma 1.3.5. Hence also condition
3 holds, so for all R→ R′ and for all a ∈ A⊗R′ the map IdC ⊗ ϕa sends ti
to zero in C ⊗R R′. So the coe�cients of Ta are zero in C ⊗R R′, and hence
Pa is a multiple of ∆a in C ⊗R R′[X], as we claimed.

We are left to show that C is universal with this property. Let B be an
R-algebra with a map βs : A → B for each s ∈ S, and such that for all
R→ R′ and a ∈ A⊗R R′ we have that Pa is a multiple of

∏
(X − βs(a)) in

B⊗RR′[X]. We need to show there exists a unique map C → B compatible
with the given maps.

By the universal property of A⊗S there is a unique map ϕ : A⊗S → B such
that ϕ ◦ εs = βs for all s ∈ S. Since Pγ is a multiple of

∏
(X − βs(γ)) in

B⊗R Sym(A∨)[X], the images of the ti in B⊗R Sym(A∨) via ϕ⊗ IdSym(A∨)

are zero, so they satisfy condition 1 of lemma 1.3.5, and hence also condition
2. In particular, the map ϕ is zero on the ideal J (S), and hence it factors
through C, giving the required map.

This map is necessarily unique, as C is generated by the images of the ζs.

10



1.3 S-closures

Remark 1.3.8. Let (λi)i∈I be a set of generators for HomR(Sym(A∨), R).
Then the ideal

〈(IdA⊗S ⊗ λi)(tk) | k ≥ 0, i ∈ I〉

in A⊗S is equal to the ideal J (S) de�ned in 1.3.6. Moreover there exists
N ≥ 0 such that all the tk are in Sym≤N (A∨) and the ideal J (S) can be
generated by ranging over a set of generators for HomR(Sym≤N (A∨), R).
This gives a �nite set of generators for J (S).

Example 1.3.9. Let A be free of rank n. Let e1, . . . , en be a basis of A and
let X1, . . . , Xn be the dual basis. Here A⊗S ⊗R Sym(A∨) is isomorphic to
A⊗S [X1, . . . , Xn] (see also example 1.2.15). Then the ti de�ned in 1.3.6 are
polynomials in theXi with coe�cients in A⊗S . For all monomialsXi1

1 · · ·Xin
n

we can de�ne a linear map R[X1, . . . , Xn] → R that is one on Xi1
1 · · ·Xin

n

and zero on all other monomials. The images of ti via these maps are its
coe�cients. The ideal J (S) can then be de�ned by the coe�cients of the ti.
In section 1.7 we will use this set of generators for the ideal J (S) to compute
examples.

We will prove in proposition 1.4.17 that, excluding trivial cases as in number
1 of proposition 1.3.12, the S-closure of an R-algebra is not the zero algebra.

We give a list of consequences of the de�nition and the construction. First
some notation that we will use frequently in the rest of the thesis: if S =
{1, . . . ,m} we will denote A(S) by A(m).

Proposition 1.3.10. Let A be an R-algebra of rank n. Then A(n) is iso-
morphic to the Sn-closure of Bhargava and Satriano.

Proof. The algebra G(A/R) with the natural maps fi : A → G(A/R) for
i = 1, . . . , n, has the following universal property: for every a ∈ A the
elements fi(a) are roots of the characteristic polynomial in G(A/R)[X] and
given an R-algebra B together with maps βi : A → B for i = 1, . . . , n such
that for all a ∈ A we have

Pa(X) =
∏
i

(X − βi(a))

there is a unique map G(A/R) → B compatible with the natural maps.
Since the construction of G(A/R) commutes with base change (theorem 1
in [2]) it also has the universal property of A(n).

Remark 1.3.11. The Galois closure by Bhargava and Satriano is constructed
as the quotient of A⊗n (for A an R-algebra of rank n) by the ideal generated
by the di�erences of the coe�cients of Pa and of

∏
i(X − εi(a)) for all a ∈

A. A similar construction for the m-closure with arbitrary m would be to

11
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take the quotient of A⊗m by the ideal generated by the coe�cients of the
remainder in the division of Pa by

∆a =

m∏
i=1

(X − εi(a))

for all a ∈ A. The fact that G(A/R) commutes with base change is surprising
and nontrivial, since we add in principle more relations if we require that Pa
is a multiple of ∆a for a in any base change of A. We give an example of
this in 1.7.3, where we show that the constructions given here do not always
commute with base change for m < n.

Proposition 1.3.12. Let A be an R-algebra of rank n and let S be a �nite
set. Then:

1. If #S > n then A(S) is zero.

2. If S = ∅ then A(S) is R.

3. If S = {s} then A together with the identity map A→ A is an S-closure
of A.

Proof.

1. Let B be an R-algebra with maps βs : A→ B such that for all R→ R′

and a ∈ A′ the polynomial Pa is a multiple of Da =
∏

(X − βs(a)) in
B′[X]. Since both Pa and ∆a are monic, the algebra B must be {0}
because by assumption the degree of Da is strictly bigger than the
degree of Pa. Then {0} has the universal property for A(S).

2. Since 1 divides every polynomial, the universal property becomes: for
every R-algebra B there exists a unique map A(S) → B. Since A(S) =
R has this property, the proof is complete.

3. By Cayley-Hamilton (see remark 1.2.9) the polynomial (X−a) divides
Pa(X) in A[X] for every R → R′ and any a in A′. The same is true
for any R-algebra B with a map fs : A → B. Since fs = fs ◦ IdA,
we have that (A,αs) has the universal property of A(S). The proof is
complete.

As discussed in section 1.1, given a separable �eld extension L = K[X]/(f)
of degree n we can construct a Galois closure of L/K by adjoining the n roots
of f one by one. By de�nition a Galois closure of L must contain all the roots
of f , but since the sum of the roots is equal to minus the coe�cient of Xn−1

in f , the �eld extension obtained by adding n − 1 roots is already a Galois
closure. The next theorem shows that the same happens for S-closures.

12



1.3 S-closures

Theorem 1.3.13. Let A be an R-algebra of rank n. Then A(n−1) ∼= A(n).

Proof. De�ne a map αn : A → A(n−1) sending a to s1(a) −
∑

i αi(a) for
i = 1, . . . , n − 1. We prove that A(n−1) with maps αi for i = 1, . . . , n has
the universal property for A(n). Clearly αn is linear and for all R-algebras
R′ and a ∈ A′ = A ⊗R R′, the characteristic polynomial of a is equal to∏
i(X − αi(a)). From this it follows that given any R-algebra B with n

maps βi : A → B satisfying the required property, the map ψ : A(n−1) → B
given by the universal property of A(n−1) satis�es βn = ψ ◦ αn.

It remains to show that αn is multiplicative. We will use the following
formula from [6]:

s2(a+ b) = s2(a) + s2(b) + s1(a)s1(b)− s1(ab) (1)

Since Pa is equal to
∏
i(X − αi(a)) we have that

s1(a) =
∑

i αi(a) and s2(a) =
∑

i<j αi(a)αj(a)

Then we can compute

s2(a+ b) =
∑
i<j

αi(a+ b)αj(a+ b) =

=
∑
i<j

αi(a)αj(a) +
∑
i<j

αi(b)αj(b) +
∑
i 6=j

αi(a)αj(b) =

= s2(a) + s2(b) +
∑
i 6=j

αi(a)αj(b)

and comparing with formula (1):∑
i

αi(ab) = s1(ab) = s1(a)s1(b)−
∑
i 6=j

αi(a)αj(b) =
∑
i

αi(a)αi(b).

Since αi is multiplicative for i = 1, . . . , n − 1 follows that also αn is multi-
plicative, as we wanted to show.

Corollary 1.3.14. Let A be an R-algebra of rank 2. Then A with the identity
and the natural involution a 7→ s1(a)− a, is a 2-closure of A.

Proof. Follows from theorem 1.3.13 and from number 3 of proposition 1.3.12.

Remark 1.3.15. For any R-algebra A and any �nite set S, by the universal
property of A(S), there is a natural action of the symmetric group of S on
A(S), exchanging the natural maps. This action will be discussed in detail
in chapter 3.

13



1.4 The product formula

1.4 The product formula

The theorem we are going to prove is a generalization to S-closures of the
product formula that is proved in [2]; it is a formula to compute the S-
closure of a product of algebras in terms of closures of the factors. We state
the theorem here.

Theorem (Theorem 1.4.4). Let m be a positive integer. For i = 1, . . . ,m
let Ai be an R-algebra of rank ni. Let A be A1 × · · · × Am, an R-algebra
of rank n =

∑
ni. Let S be a �nite set and let F be the set of all maps

S → {1, . . . ,m}. Fix F ∈ F and let Si = F−1(i). Write

A(F ) =

m⊗
i=1

A
(Si)
i

and let αs,i for s ∈ Si be the natural map Ai → A
(Si)
i . De�ne an R-algebra

C =
∏
F∈F

A(F )

and maps δs : A→ C for s ∈ S by

(δs(a1, . . . , am))F = 1⊗ · · · ⊗ αs,i(ai)⊗ · · · ⊗ 1, with i = F (s).

Then (C, (δs)s∈S) is the S-closure of A/R.

We will give the proof of the theorem after proving some lemmas.

Lemma 1.4.1. Let R be a ring and let t be a positive integer. Then there
exists polynomials u(X), v(X) ∈ R[X] such that

1 = u(X)Xt + v(X)(X − 1)t.

Proof. Let I be the ideal generated by Xt and (X − 1)t. We show that the
quotient ring S = R[X]/I is trivial, so that 1 ∈ I. The image of X in S is
nilpotent since Xt = 0, so X − 1 is a unit in S. But X − 1 is also nilpotent,
hence S is trivial, as we wanted to show.

Let P and Q be in R[X]. We will write P | Q for �P divides Q�.

Lemma 1.4.2. Let Ai be R-algebras with Ai of rank ni, for i = 1, . . . ,m. Let
S1, . . . , Sm be �nite sets and let B be an R-algebra with maps js,i : Ai → B
for i = 1, . . . ,m and s ∈ Si. Then the following are equivalent:
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1.4 The product formula

1. For all a = (a1, . . . , am) ∈ A we have

m∏
i=1

∏
s∈Si

(X − js,i(ai))

 | Pa(X)

in B[X], where Pa is the characteristic polynomial of a.

2. For all i ∈ {1, . . . ,m} and for all ai ∈ Ai we have∏
s∈Si

(X − js,i(ai)) | Pai(X)

in B[X], where Pai is the characteristic polynomial of ai in Ai.

Proof. Note that Pa is equal to
∏
i Pai(X), so clearly the second condition

implies the �rst. Assume the �rst condition holds and �x i ∈ {1, . . . ,m}.
Setting aj = 0 for j 6= i we have:∏

s∈Si

(X − js,i(ai))XN1 | Pai(X)XN2

with N1 =
∑

i 6=j #Sj and N2 =
∑

i 6=j nj . Setting aj = 1 for j 6= i we have∏
s∈Si

(X − js,i(ai))(X − 1)N1 | Pai(X)(X − 1)N2 .

Put t = N2 −N1, and note that if t < 0 then

Pai(X) = X−t
∏
s∈Si

(X − js,i(ai))

and so the second condition holds. Assume t ≥ 0, there exist f(X) and g(X)
in B′[X] such that:

Pai(X)Xt =
∏
s∈Si

(X − js,i(ai))f(X) (1)

Pai(X)(X − 1)t =
∏
s∈Si

(X − js,i(ai))g(X) (2)

By lemma 1.4.1 there exist u(X) and v(X) in B′[X] such that u(X)Xt +
v(X)(X−1)t = 1. Multiplying (1) by u(X) and (2) by v(X) and adding the
results we get

Pai(X) = (u(X)f(X) + v(X)g(X))
∏
s∈Si

(X − js,i(ai))

so the second condition holds and the proof is complete.
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1.4 The product formula

Lemma 1.4.3. Let A =
∏m
i=1Ai be a �nite product of rings. If B is a

connected ring then given a morphism f : A→ B there exists a unique index
i and a unique morphism g : Ai → B such that f = g ◦πi, where πi : A→ Ai
is the natural projection.

A
f //

πi
��

B

Ai

g

>>

Proof. Since B is connected the only idempotents are 0 and 1. Let 1i be the
element (0, . . . , 1, . . . , 0) of A, where 1 is in the i − th position. Since 1i is
idempotent f(1i) is idempotent in B. If f(1i) = 0 for all i, then f would
send 1 to 0, so there exist at least one i such that f(1i) = 1. For j 6= i, we
have

0 = f(0) = f(1i1j) = f(1i)f(1j) = f(1j)

so 1j is zero if j 6= i and hence i is unique. Then f factors through a unique
Ai, as we wanted to show.

We now prove the product formula.

Theorem 1.4.4. Let m be a positive integer. For i = 1, . . . ,m let Ai be an
R-algebra of rank ni. Let A be A1×· · ·×Am, an R-algebra of rank n =

∑
ni.

Let S be a �nite set and let F be the set of all maps S → {1, . . . ,m}. Fix
F ∈ F and let Si = F−1(i). Write

A(F ) =
m⊗
i=1

A
(Si)
i

and let αs,i for s ∈ Si be the natural map Ai → A
(Si)
i . De�ne an R-algebra

C =
∏
F∈F

A(F )

and maps δs : A→ C for s ∈ S by

(δs(a1, . . . , am))F = 1⊗ · · · ⊗ αs,i(ai)⊗ · · · ⊗ 1, with i = F (s).

Then (C, (δs)s∈S) is the S-closure of A/R.

Proof. We give �rst a summary of the proof: we show that for every R→ R′

and every a ∈ A′ = A⊗RR′ the characteristic polynomial Pa(X) is a multiple
of

∆a(X) =
∏
s∈S

(X − δs(a))

16



1.4 The product formula

in C ⊗R R′[X]; then we show that for every connected R-algebra B given
with a map βs : A→ B for each s ∈ S, such that for every R→ R′ and every
a ∈ A′ the characteristic polynomial Pa(X) is a multiple of

∏
(X −βs(a)) in

B ⊗R R′[X] there is a unique map C → B commuting with all the natural
maps; from this we deduce the theorem for R a �nitely generated Z-algebra;
then we prove the theorem in general.

That Pa is a multiple of ∆a in C ⊗R R′[X] for every R → R′ and for every
a ∈ A′ follows from the easy implication in lemma 1.4.2 and the de�ning
property of A(Si).

Suppose B is a connected R-algebra with maps βs : A → B for s ∈ S and
such that for all R→ R′ and for all a ∈ A′ we have∏

s∈S
(X − βs(a)) | Pa(X)

in B⊗RR′[x]. We show that there exists a unique map ϕ : C → B such that
for all s ∈ S we have βs = ϕ ◦ δs. Since B is connected, by lemma 1.4.3 we
can de�ne a map F : S → {1, . . . ,m} by setting F (s) = i if and only if βs
factors through Ai, i.e. there exists a map βs,i such that βs = βs,i ◦πi, where
πi is the projection A→ Ai. For all a ∈ A′ we have that

∏
s∈S

(X − βs(a)) =
∏

i=1,...,m

 ∏
s∈F−1(i)

(X − βs,i(ai))


holds in B′[x]. By lemma 1.4.2 for all i ∈ {1, . . . ,m} and for all ai ∈ A′i we
have then ∏

s∈F−1(i)

(X − βs,i(ai)) | Pai(X)

so the universal property of A(Si)
i gives a unique map fi : A

(Si)
i → B such

that for all s ∈ Si we have βs,i = fi ◦ αs,i. Tensoring these maps, we
get a unique map f : A(F ) → B such that for all i we have fi = f ◦ εi
where εi is the natural map A(Si)

i → A(F ). Composing with the projection
πF : C → A(F ) we obtain a map ϕ : C → B. The following commutative
diagram summarizes the situation for s ∈ Si �xed.

A
(Si)
i

εi //

fi

""

A(F )

f

��

C
πFoo

ϕ
~~

Ai

αs,i

OO

βs,i // B

We have: πF ◦ δs = εi ◦ αs,i ◦ πi. So for every s ∈ S we have that βs is

βs,i ◦ πi = f ◦ εi ◦ αs,i ◦ πi = f ◦ πF ◦ δs = ϕ ◦ δs
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1.4 The product formula

so ϕ satis�es the required condition. Uniqueness follows because the images
of the δs generate C.

Suppose now R is �nitely generated over Z. From the construction of A(S)

in proposition 1.3.7 we see that A(S) is �nitely generated over R and hence
also over Z, so it is noetherian. Every noetherian ring is a �nite product
of connected rings by [14, Chapter 2, Exercise 2.13 (c)] and [14, Chapter
1, Proposition 1.5]. Write A(S) as

∏
j∈J Rj , with J a �nite set and Rj

connected. By applying the projection map πj : A(S) → Rj we get that∏
s∈S

(X − πj ◦ δs(a)) | Pa(X)

holds in every R′j [X], and since the Rj are connected the previous argument
gives a map ϕj : C → Bj such that for all s ∈ S we have πj ◦ αs = ϕj ◦ δs.
By the universal property of the product we get a map ϕ : C → A(S) such
that for all j ∈ J we have ϕj = πj ◦ ϕ. The following diagram shows the
situation for j and s �xed.

A

αs

��

δs // A(S)

πj

��
C ϕj

//

ϕ
==

Rj

For all s ∈ S and for all j ∈ J we have πj ◦ δs = πj ◦ ϕ ◦ δs, and hence
the universal property of the product gives ϕ ◦ δs = δs. So there exists a
map C → A(S) commuting with the natural maps and this is su�cient to
conclude for R �nitely generated over Z.

Back to the general case: we no longer assume R to be �nitely generated
over Z. The R-algebra A is �nitely presented over R, so there exists a
subring R0 of R, �nitely generated over Z, and a �nite R0-algebra A0 such
that A ∼= R ⊗R0 A0. De�ne the R0-algebra C0 in the obvious way and

note that C ∼= R ⊗R0 C0. We proved A(S)
0 and C0 are isomorphic and the

constructions of A(S) and of C both commute with base change, so A(S) and
C are isomorphic and the proof is complete.

The product formula in [2] is now a corollary of theorem 1.4.4.

Corollary 1.4.5. For i = 1, . . . ,m let Ai be an R-algebra of rank ni. Let A
be the product of the Ai, an R-algebra of rank n =

∑
ni. Then the Galois

closure of A satis�es

A(n) ∼=

(
m⊗
i=1

A
(ni)
i

) n!
n1! ···nm!
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1.4 The product formula

Proof. By theorem 1.4.4 we write A(n) as a product indexed over maps
F : {1, . . . , n} → {1, . . . ,m}. By proposition 1.3.12 a factor is not zero if
and only if for all i we have #F−1(i) = ni, so there are n

n1! ···nm! non-zero

factors and they are all isomorphic to
⊗

iA
(ni)
i . The statement then follows

from proposition 1.3.10.

Using the product formula we can compute the S-closure of an étale R-
algebra, generalizing theorem 4 in [2]. Recall from de�nition 1.2.4 that
s1 : A→ R denotes the trace map.

De�nition 1.4.6. Let R be a ring and let A be an R-algebra of rank n. We
say A is �nite étale over R if the map A→ A∨ given by

a 7→ (b 7→ s1(ab))

is an isomorphism.

Proposition 1.4.7. Let R be a connected ring and let A be an R-algebra.
Then A is �nite étale if and only if there exists a �nite projective R-algebra
R′, with R → R′ injective, such that A ⊗R R′ is isomorphic to (R′)n as an
R-algebra for some n ≥ 0.

Proof. See [18, Theorem 5.10].

De�nition 1.4.8. Given a pro�nite group G the category of �nite G-sets is
the category whose objects are �nite sets equipped with a continuous action
of G, and morphisms are maps compatible with the action.

Theorem 1.4.9. Let R be a connected ring and let K be a separably closed
�eld. Let α : R→ K be a ring homomorphism. Then there exist

1. A pro�nite group π = π(R,α).

2. An equivalence of categories

F : {�nite étale R-algebras}op → {�nite π-sets}.

3. An isomorphism of functors from HomR-Alg(−,K) to the composition
of the forgetful functor {�nite π-sets} → {sets} with F .

Moreover, we have:

a. The group π is uniquely determined up to isomorphism.

b. For all �nite sets T we have F (RT ) = T with trivial action of π.
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1.4 The product formula

c. Given �nite étale R-algebras A and B the tensor product A ⊗R B is
étale and F (A⊗R B) = F (A)× F (B) with the induced action.

Proof. This is a combination of standard results on �nite étale algebras.
Results in [18, Section 5] contain everything that is needed.

De�nition 1.4.10. The group π above is called the étale fundamental group
of R in α.

Proposition 1.4.11. Let R be a connected ring and K a separably closed
�eld. Let α : R → K be a ring homomorphism and let π be the étale fun-
damental group of R in α. Let A be a �nite étale R-algebra corresponding
to a π-set T . Then for any �nite set S the algebra A(S) is �nite étale and
corresponds to the set I of injective maps S → T with the action of π induced
by the one on T .

Proof. First suppose the action of π on T is trivial so that A = RT . In
this case by theorem 1.4.4 the S-closure of A is a product indexed over all
maps F : S → T of the F−1(t)-closure of R, for t in T . If F is not injective
then there exists a t ∈ T such that F−1(t) has at least two elements so
the F−1(t)-closure of R is zero by number 1 of proposition 1.3.12. If F is
injective, then for all t ∈ T the F−1(t)-closure of R is R, by number 3 of
proposition 1.3.12. Hence the S-closure of A is RI .

In general, by proposition 1.4.7 there exists a �nite projective R-algebra
R′ with R → R′ injective such that A ⊗R R′ is isomorphic to (R′)n for
some n ≥ 0. We proved the S-closure of (R′)n is isomorphic to (R′)N

for some N , then by proposition 1.4.7 the S-closure of A is �nite étale.
The π-set corresponding to A(S) is HomR(A(S),K), which is isomorphic to
HomK((A⊗R K)(S),K) as π-sets. We are then reduced to proving that for
A an étale algebra over K, corresponding to a set T , the S-closure of A
corresponds to I. Since in this case A = KT this was proven already.

Remark 1.4.12. Note that proposition 1.4.11 implies that if A is an étale
R-algebra of rank n then A(S) is étale of rank n(n−1) · · · (n−#S+1). This
will be called the expected rank of A(S). For general algebras over �elds it is
possible that the rank of the S-closure is not the expected one. We will give
examples in section 1.7.

An important consequence of the product formula is proposition 1.4.17,
which says that the S-closure is not zero, excluding trivial cases. This was
not previously known for the construction of Bhargava and Satriano. We
need some facts about algebras over �elds, which will be used also later on.

Lemma 1.4.13. Let K be a �eld and let A be a �nite K-algebra. Then
A is isomorphic to a �nite product of K-algebras

∏
iAi with Ai local with

nilpotent maximal ideal.
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1.4 The product formula

Proof. Follows from [8, Corollary 2.15, page 76]. It can also be proved di-
rectly as in [18, Theorem 2.6].

Corollary 1.4.14. Let K be an algebraically closed �eld and let A be a �nite
K-algebra. Then A is local if and only if there exists a unique K-algebra map
A→ K.

Proof. Suppose A is local with maximal ideal m. Since A is �nite over K
the residue �eld is an algebraic extension of K. Since K is algebraically
closed the residue �eld is K. In particular, there exists a K-algebra map
π : A → K. Since A = K ⊕ m, and the kernel of any map A → K is m, all
those maps are equal to π. So if A is local π is the unique map A→ K.

By lemma 1.4.13 any K-algebra A is a �nite product of local algebras Ai.
For each Ai we have a map A→ Ai → K, and di�erent factors give di�erent
maps. So if there is a unique map A→ K there is one factor in the product,
and hence A is local.

Remark 1.4.15. Let K be algebraically closed and let A be a local K-algebra.
Suppose A is integral over K, but not necessarily �nite. Then the proof of
corollary 1.4.14 applies without modi�cations with this assumption. In fact,
also in this case the residue �eld of A is an algebraic extension of K and
then it is K, and the rest follows.

Lemma 1.4.16. Let K be an algebraically closed �eld and let A be a con-
nected K-algebra of rank n. Then for all �nite sets S with 0 ≤ #S ≤ n, the
algebra A(S) is local.

Proof. By lemma 1.4.13 and corollary 1.4.14, we have that A is local with
nilpotent maximal ideal m and residue �eld K. Let f : A → K be the
quotient map. Any element a ∈ A can be written as r + m with m ∈ m
and r ∈ K. With this notation one has f(a) = r and the characteristic
polynomial of a is (X − r)n. Since this is a multiple of (X − f(a))#S , the
universal property of A(S) gives a unique K-algebra map ϕ : A(S) → K such
that for all s ∈ S we have ϕ ◦ δs = f .

Any other K-algebra map A(S) → K must also satisfy the same condition,
and hence coincide with ϕ. So A(S) is local by corollary 1.4.14.

Proposition 1.4.17. Let R be a non-zero ring and A an R-algebra of rank
n > 0. Let S be a set with #S ≤ n. Then A(S) is not zero.

Proof. Suppose �rst that A is connected over an algebraically closed �eld.
By lemma 1.4.16 in this case A(S) is local and hence not zero.

If A is any algebra of rank n over an algebraically closed �eld, then by
lemma 1.4.13, we have that A is a �nite product of connected K-algebras,
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1.5 Polynomial laws

and by the above and the assumption on #S, not all the A(F ) in the formula
in theorem 1.4.4 are zero, so A(S) is not zero.

Given R → K with K an algebraically closed �eld the non-zero algebra
(A⊗RK)(S) is isomorphic to A(S) ⊗RK since the S-closure commutes with
base change. So A(S) is not zero, as we wanted to show.

1.5 Polynomial laws

Given an R-algebra A of rank n and a sequence n1, . . . , nt with
∑

i ni = n,
Daniel Ferrand in [9] constructs an R-algebra P (n1,...,nt)(A), using norms. In
this section we will show that his de�nition is equivalent to the following:
for all R → R′ and all a ∈ A ⊗R R′ the characteristic polynomial of a
splits as a product of t polynomials of degrees n1, . . . , nt in P (n1,...,nt)(A)⊗R
R′[X], and P (n1,...,nt)(A) is universal with this property. We will make this
precise in proposition 1.5.11 and we will show in proposition 1.5.15 that
P (1,...,1,n−m)(A) (with m ones) is isomorphic to the m-closure of A.

The precise formulation of these results uses polynomial laws. This tool was
�rst introduced by Norbert Roby in [24]; Daniel Ferrand in [9] gives a very
clear presentation of the topic, though not as complete as the one by Roby.
In this section we will just give the basic de�nitions and properties we need.

In [9, Lemme 4.1.1] Daniel Ferrand also proves a product formula that gen-
eralizes to P (n1,...,nt)(A) the one we proved in theorem 1.4.4. We will not
give a proof of this formula here.

If A is the algebra R[x]/(f) for some monic polynomial f , a construction
for P (n1,...,nt)(A) is given by Dan Laksov in [16]. It is probably possible to
generalize the construction by Laksov to de�ne P (n1,...,nt)(A) in a way similar
to our de�nition of A(m), but we will not do it here.

De�nition 1.5.1. Let R be a ring and let M be an R-module. We denote
by M the functor R-Alg → Set sending an R-algebra S to the set M ⊗R S
and a morphism f : S → S′ to IdM ⊗ f .

De�nition 1.5.2. Let R be a ring and let M and N be two R-modules. A
polynomial law is a natural transformation f : M → N .

In detail: a polynomial law M → N is given by a (set-theoretical) map
fS : M ⊗R S → N ⊗R S for each R-algebra S such that for all g : S → S′ the
following diagram commutes:

M ⊗R S
fS //

IdM⊗g
��

N ⊗R S

IdN⊗g
��

M ⊗R S′ fS′
// N ⊗R S′
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1.5 Polynomial laws

Remark 1.5.3. Let R be a ring. A polynomial law Rm → Rn is a morphism
AmR → AnR.

De�nition 1.5.4. Let R be a ring and M,N be R-modules. A polynomial
law f : M → N is called homogeneous of degree n if for all R-algebras S, all
elements x ∈M ⊗R S and all elements s ∈ S we have:

fS(sx) = snfS(x).

Example 1.5.5. Any polynomial law homogeneous of degree zero comes
from a constant map M → N . Any polynomial law homogeneous of degree
one comes from a linear map M → N . This is somehow surprising, since no
additivity is required. A proof can be found in [24, Chapitre I, �11].

Remark 1.5.6. In this section a linear map α : M → N will be seen as a
polynomial law M → N homogeneous of degree 1. In particular given an
R-algebra S the notation αS will be used instead of α⊗ IdS .

De�nition 1.5.7. Let R be a ring and let A,B be R-algebras. A polynomial
law f : A → B is called multiplicative if for all R-algebras S and for all
elements x, y ∈ A⊗R S we have:

f(xy) = f(x)f(y) and f(1) = 1

Example 1.5.8. Let M be a �nitely generated projective R-module, then
the i-th exterior power of the trace de�ned in remark 1.2.6 is a homogeneous
polynomial law of degree i, for all i. If A is an R-algebra of rank n, then the
norm map A→ R is moreover multiplicative.

Proposition 1.5.9. Let R be a ring, M a projective �nitely generated R-
module, and N be any R-module. Denote by S the ring Sym(M∨). Then for
every element η in N ⊗R S there exists a unique polynomial law f : M → N
such that fS(γ) = η, with γ ∈M ⊗R S the generic element of M .

Proof. We prove uniqueness �rst. Let f : M → N be a polynomial law. Let
R′ be any R-algebra and let x ∈ M ′ = M ⊗R R′. We show that knowing
fS(γ) we can determine fR′(x). By proposition 1.2.21 there exists a unique
R-algebra map ϕx : : S → R′ such that IdM ⊗ ϕx(γ) = x. By de�nition of
polynomial law the following diagram commutes

M ⊗ S
IdM⊗ϕx //

fS
��

M ′

fR′
��

N ⊗ S
IdN⊗ϕx // N ′

Then we have fR′(x) = (IdM ⊗ ϕx)(fS(γ)). So the claim is proved.
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1.5 Polynomial laws

Now for existence, let η be in N⊗RS. For any R-algebra R′ and any x ∈M ′
we de�ne f(x) = IdN ⊗ ϕx(η). We need to check this is a polynomial law,
i.e. that, given two R-algebras A and B, and a map ψ : A→ B the following
diagram commutes:

M ⊗R A
IdM⊗ψ //

fA
��

M ⊗B
fB
��

N ⊗A
IdN⊗ψ

// N ⊗B

Fix x in M ⊗RA and let y be IdM ⊗ψ(x) in M ⊗RB. The polynomial laws
ψ ◦ ϕx and ϕy both have value y on γ, hence they are equal by the above.
So we can write:

(IdN ⊗ ψ)(fA(x)) = (IdN ⊗ ψ)(IdN ⊗ ϕx(η)) = (IdN ⊗ ϕy)(η) = fB(y)

and since fB(y) = fB(IdM ⊗ ψ(x)), the diagram commutes as we wanted to
show.

Remark 1.5.10. The set P(M,N) of polynomial laws M → N has a nat-
ural structure of graded R-module, the degree n part being homogeneous
polynomial laws of degree n. If M is a projective �nitely generated module,
proposition 1.5.9 gives an isomorphism

P(M,N) ∼= N ⊗R Sym(M∨)

and this clearly respects the natural grading on both sides. Moreover if B is
an R-algebra, then P(M,B) has a structure of graded R-algebra, and it is
isomorphic to B ⊗R Sym(M∨) as a graded R-algebras.

Recall that given R-algebras R → A and R → S, with A �nite locally free,
and an element a in A ⊗R S, we denote by Pa ∈ S[X] the characteristic
polynomial of a. If f is the endomorphism of A⊗RS given by multiplication
by a this is de�ned as the determinant of the endomorphism (Id⊗X−f⊗Id).
Equivalently, we can write it as the image of (X − a) ∈ A ⊗R S[X] via the
polynomial law sn. We can now give the de�nition of A(n1,...,nt).

Proposition 1.5.11. Let A be an R-algebra of rank n. Let C be an R-
algebra and let δi : A → C for i = 1, . . . , t be polynomial laws. Suppose δi
is homogeneous of degree ni and that

∑
ni is n. Then the following are

equivalent:

1. The equality sn =
∏
δi holds (as polynomial laws) and (C, (δi)i) is

universal with this property.

2. For all R→ S and for all a ∈ A⊗R S we have

Pa(X) =
∏
i

δi,S[X](X − a)

24



1.5 Polynomial laws

in C ⊗R S[X] and (C, (δi)i) is universal with this property.

3. Let ηi be the element of C⊗R Sym(A∨) corresponding to δi and let det
be the one corresponding to sn. Then det is equal to the product of the
ηi in C ⊗R Sym(A∨) and (C, (δi)i) is universal with this property.

Proof. The �rst two statements are equivalent because Pa(X) is equal to
sn,S[X](X−a), the constant term of Pa(X) is (−1)nsn,S(a) and the constant
term of the product in 2 is∏

i

(−1)niδi,S(a) = (−1)n
∏

δi,S(a)

The third is equivalent with the �rst by proposition 1.5.9 and remark 1.5.10.

De�nition 1.5.12. Given n1, . . . , nt, with
∑
ni = n, an algebra satisfying

the equivalent conditions in proposition 1.5.11 will be denoted A(n1,...,nt).

To connect the m-closures with the constructions above we will show in
proposition 1.5.15 that the m-closure A(m) of an R-algebra of rank n is
isomorphic to A(1,...,1,n−m) (with m ones). The following two lemmas come
from Ferrand [9] (see Règle 4.2.3).

Lemma 1.5.13. Let A be an R-algebra of rank n and B be any R-algebra.
Let f, g, h : A→ B be polynomial laws. Suppose we have

sn = fg = fh

as polynomial laws. Then g is equal to h.

Proof. Let S be an R-algebra and let x be in A⊗R S. Then we have

sn,S[X](X + x) = fS[X](X + x)gS[X](X + x) = fS[X](X + x)hS[X](X + x)

The left hand side is monic because sn is multiplicative. Hence its factor
fS[X](X+x) is a regular element of B⊗RR′[X] (that is: it is not a right nor a
left zero divisor), so the equality above implies gS[X](X+x) = hS[X](X+x).
Then the specialization X 7→ 0 implies that gS(x) = hS(x). Since x was
arbitrary, the proof is complete.

Lemma 1.5.14. Let A be an R-algebra of rank n and B be any R-algebra.
Let f, g : A→ B be polynomial laws, with f multiplicative. Suppose we have

sn = fg

as polynomial laws. Then g is multiplicative.
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1.5 Polynomial laws

Proof. As in the proof of lemma 1.5.13, for all R → S and x, y in A ⊗R S
we have fS[X](X + x) and fS[X](X + y) are regular and their product is

fS[X](X
2 + (x+ y)X + xy).

So we have

gS[X](X
2 + (x+ y)X + xy) = gS[X](X + x)gS[X](X + y)

because the product of both with fS[X](X
2 + (x + y)X + xy) is equal to

sn,S[X](X
2 + (x+ y)X+xy). With the specialization X 7→ 0 we get g(xy) =

g(x)g(y), as we wanted to show.

We are now ready to compare the algebras A(1,...,1,n−m) and A(m).

Proposition 1.5.15. Let A be an R-algebra of rank n. Then for all m =
1, . . . , n we have A(m) ∼= A(1,...,1,n−m).

Proof. Recall that A(m) is given with R-algebra maps αi : A → A(m) for
i = 1, . . . ,m. We de�ne a polynomial law α : A → A(m), multiplicative and
homogeneous of degree n − m and such that α

∏
i αi is equal to sn. Let

γ ∈ A ⊗ Sym(A∨) be the generic element of A. By the universal property
of A(m) we have that in A(m) ⊗ Sym(A∨)[X] the characteristic polynomial
Pγ(X) is equal to

Qγ(X)
m∏
i=1

(X − αi,Sym(A∨)(γ))

for some polynomial Qγ(X). The constant term of Qγ(X) is an element η of
A(m) ⊗ Sym(A∨), and by proposition 1.5.9 this de�nes a unique polynomial
law α : A → A(m). This is homogeneous of degree n − m because η is
homogeneous of degree n−m since the constant term of Pγ is homogeneous
of degree n and the constant term of

∏
(X − αi,Sym(A∨)(γ)) is homogeneous

of degree m. Moreover α is multiplicative by lemma 1.5.14.

We are left to show that A(m) with the maps αi and the polynomial law
α has the universal property of A(1,...,1,n−m). For every R → S and every
element a ∈ A⊗R S the characteristic polynomial of a splits as

αS[X](X − a)
m∏
i=1

(X − αi,S(a)) = αS[X](X − a)
m∏
i=1

αi,S[X](X − a).

Let B be an R-algebra given with linear maps βi : A→ B and a polynomial
law β : A → B homogeneous of degree n −m. Suppose that for all R → S
and all a ∈ A⊗R A the polynomial Pa(X) splits as

βS[X](X − a)
∏
i

βi,S[X](X − a)
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1.6 Monogenic algebras

in B[X]. Since for all i we have βi,S[X](X − a) = (X − βi,S(a)) by linearity,
the universal property of A(m) gives a unique map ϕ : A(m) → B such that
for all i we have ϕ ◦ αi = βi. Since sn is equal to both (ϕ ◦ α)

∏
i βi and

β
∏
i βi, by lemma 1.5.13 we have ϕ ◦ α = β, so the proof is complete.

We have not shown existence of the algebras A(n1,...,nt). This is done by
Daniel Ferrand in [9, �4.1], and we will not write it here.

1.6 Monogenic algebras

Let R be a ring and let f be a monic polynomial with coe�cients in R. In this
section we will describe explicitly the closures of the R-algebra R[x]/(f) (a
monogenic R-algebra). To do this an important tool is the following lemma.

Recall that for P and Q in R[X] we write P | Q for P divides Q.

Lemma (Lemma 1.6.5). Let R be a ring, and let g be a polynomial with
coe�cients in R. Let M be a free R-module of rank n and α ∈ End(M). Let
ai ∈ R for i = 1, . . .m. Suppose that

m∏
i=1

(X − ai) | Pα(X)

in R[X], then also
m∏
i=1

(X − g(ai)) | Pg(α)(X)

in R[X].

We will need some preliminary results.

De�nition 1.6.1. Let R be a ring. We denote by R[Z]mon
n the set of monic

polynomials of degree n in R[Z].

Theorem 1.6.2. Let g ∈ R[X]. For all n ≥ 0 there exists a unique collec-
tion of maps (ϕn,A)A indexed over all R-algebras A, with ϕn,A : A[Z]mon

n →
A[Z]mon

n , satisfying the following conditions:

1. For all A→ B the diagram

A[Z]mon
n

//

ϕn,A

��

B[Z]mon
n

ϕn,B

��
A[Z]mon

n
// B[Z]mon

n

commutes.
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1.6 Monogenic algebras

2. For all ai ∈ A with i = 1, . . . , n we have

ϕn,A

(
n∏
i=1

(Z − ai)

)
=

n∏
i=1

(Z − g(ai)) .

Moreover, for all n,m ≥ 0, for all R → A, for all f ∈ A[Z]mon
n and for all

g ∈ A[Z]mon
m we have

ϕn(f)ϕm(g) = ϕn+m(fg)

in A[Z]mon
n+m.

Proof. We prove uniqueness �rst. Suppose a map ϕn is given, having the
properties above. Let T be the R-algebra R[X1, . . . , Xn], and let ∆ be the
polynomial

∏
i(Z −Xi) in T [Z]mon

n . By property 2 we have

ϕn,T (∆) =

n∏
i=1

(Z − g(Xi)).

Note that ∆ can be written as

Zn − s1Z
n−1 + s2Z

n−2 + · · ·+ (−1)nsn

where si is the i-th elementary symmetric function in theXi. Since
∏n
i=1(Z−

g(Xi)) is invariant under permutations of the Xi, by the fundamental the-
orem of symmetric functions (see [4, �6, Théorème 1]), there exist qi in
S = R[s1, . . . , sn] for i = 1, . . . , n such that

ϕn,T (∆) = Zn +
n∑
i=1

qiZ
n−i.

Now let A be any R-algebra and let

P = Zn +
n∑
i=1

(−1)iaiZ
n−1

be a polynomial in A[Z]mon
n . Let π be the map S → A sending si to ai. Note

that π(∆) is equal to P , so by property 1 we have that

ϕn,A(P ) = π(ϕn,T (∆))

in A[Z]mon
n . Hence uniqueness follows.

In proving uniqueness we also have constructed a map having properties 1
and 2, so existence is proved.
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We now prove the last part. Let T be R[X1, . . . , Xn, Y1, . . . , Ym], and de�ne

∆X =
n∏
i=1

(Z −Xi), ∆Y =
m∏
i=1

(Z − Yi)

in T [Z]mon
n and T [Z]mon

m respectively. Note that we have

∆X = Zn +
n∑
i=1

(−1)isiZ
n−i, ∆Y = Zm +

m∑
i=1

(−1)itiZ
m−i

where si is the i-th elementary symmetric function in the Xi for i = 1, . . . , n
and ti is the i-th elementary symmetric function in the Yi for i = 1, . . . ,m.
Denote by S the subring R[s1, . . . , sn, t1, . . . , tm] of T . Note that ϕn,T (∆X)
and ϕn,T (∆Y ) also have coe�cients in S. By property 2 we have

ϕT,n+m(∆X∆Y ) = ϕT,n(∆X)ϕT,m(∆Y )

in T [Z]mon
n+m, so the same holds in S[Z]mon

n+m.

For an R-algebra A and polynomials

f = Zn +
n∑
i=1

(−1)iaiZ
n−i, g = Zm +

m∑
i=1

(−1)ibiZ
m−i

in A[Z]mon
n and A[Z]mon

m respectively, let π be the map S → A sending si to
ai for all i = 1 . . . , n and ti to bi for all i = 1, . . . ,m. Clearly π sends ∆X

to f and ∆Y to g. Hence by property 1, we have that ϕA,n(f)ϕA,m(g) =
ϕA,n+m(fg). The proof is complete.

Example 1.6.3. We give an example to illustrate theorem 1.6.2. Let R be
Z and g be X2. For n = 3 consider

(Z − a)(Z − b)(Z − c)

in A[Z]mon
3 for some R-algebra A. The product

(Z − a2)(Z − b2)(Z − c2)

is equal to

Z3 − (a2 + b2 + c2)Z2 + (a2b2 + a2c2 + b2c2)Z − a2b2c2Z3

and for s1, s2, s3 the elementary symmetric functions in a, b, c this is

Z3 − (s2
1 − 2s2)Z2 + (s2

2 − 2s1s3)Z − s2
3Z

3.

So the map ϕ3,A sends a polynomial

Z3 − r1Z
2 + r2Z − r3

in A[Z]mon
3 to

Z3 − (r2
1 − 2r2)Z2 + (r2

2 − 2r1r3)Z − r2
3Z

3.
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Lemma 1.6.4. Let R be a ring and g be a polynomial with coe�cients
in R. Let M be a free R-module of rank n and α ∈ End(M). Then
ϕR,n : R[Z]mon

n → R[Z]mon
n sends Pα(Z) to Pg(α)(Z).

Proof. Suppose �rst that R is an algebraically closed �eld. We can write Pα
as ∏

i=1,...,s

(Z − ai)ei

for some ai ∈ R and ei > 0 and since we can write the matrix representing
α in Jordan normal form we have that Pg(α)(Z) is∏

i=1,...,s

(Z − g(ai))
ei

Then the statement follows from theorem 1.6.2.

Next suppose R is the ring Z[(Xr,s)r,s=1,...,n] and α is the endomorphism
given by the matrix X = (Xr,s)r,s. Consider the embedding i : R→ K, of R
into the algebraic closure of its quotient �eld. Since ϕK,n(i(PX)) is i(Pg(X))
and i is injective. By property 1 in theorem 1.6.2 we have that ϕR,n(PX) is
equal to Pg(X), as we wanted to show.

For a general ring choose a basis of M and write α as a matrix, say α =
(ar,s)r,s=1,...,n. Let π be the map Z[(Xr,s)r,s=1,...,n]→ R sending Xr,s to ar,s.
The map π sends PX to Pα and Pg(X) to Pg(α). By property 1 of ϕR,n in
theorem 1.6.2 we conclude that ϕR(Pα) = Pg(α), as we wanted to show.

Lemma 1.6.5. Let R be a ring, and let g be a polynomial with coe�cients
in R. Let M be a free R-module of rank n and α ∈ End(M). Let ai ∈ R for
i = 1, . . .m. Suppose that

m∏
i=1

(Z − ai) | Pα(Z)

in R[Z], then also
m∏
i=1

(Z − g(ai)) | Pg(α)(Z)

in R[Z].

Proof. By assumption there exists a polynomial Q in R[Z] such that

Pα(Z) = Q(Z)

m∏
i=1

(Z − ai).
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Since both Pα and
∏
i(Z − ai) are monic also Q must be monic. Then by

theorem 1.6.2 we have that

ϕR,n

(
Q(Z)

m∏
i=1

(Z − ai)

)
= ϕR,n−m (Q(Z))ϕR,m

(
m∏
i=1

(Z − ai)

)
.

By lemma 1.6.4 we have

ϕR,n (Pα(Z)) = Pg(α)(Z)

and by property 2 in theorem 1.6.2 we have

ϕR,m

(
m∏
i=1

(Z − ai)

)
=

m∏
i=1

(Z − g(ai)).

So the claim is proved.

We use lemma 1.6.5 to give an equivalent universal property for A(m) when
A is monogenic.

Proposition 1.6.6. Let R be a ring, and let A be R[x]/f(x), with f a monic
polynomial. Let C be an R-algebra and let ζi : A → C for i = 1, . . . ,m be
R-algebra maps. Suppose

∏
i(X − ζi(x)) divides f(X) in C[X], and the pair

(C, (ζi)i=1,...,m) is universal with this property. Then (C, (ζi)i=1,...,m) is an
m-closure of A.

Proof. Note that Px(X) is equal to f(X). The theorem now follows from
lemma 1.6.5, since for every R → R′ and any element a ∈ A ⊗R R′ there
exists a polynomial g(X) in R′[X] such that g(x⊗ 1) is a.

We can now give an explicit form for the m-closure of a monogenic algebra.
The construction is the same we described in section 1.1 for �elds; we recall
it here: let R be a ring and let f be a monic polynomial in R[X]. Put A0 = R
and f0 = f . Given Ai and fi for i ≥ 0, de�ne Ai+1 to be Ai[xi+1]/fi, and
fi+1 as the quotient

fi+1(X) =
fi(X)

(X − xi+1)

in Ai+1[X]. We show that Am is the m-closure of R[x]/f .

Theorem 1.6.7. Let R be a ring, and let f be a monic polynomial in R[X].
Let m be between 0 and n and de�ne maps αi : R[X]/(f) → Am for i =
1, . . . , n sending x to xi. Then Am together with the αi is the m-closure of
R[X]/(f).

31



1.7 Examples and explicit computations

Proof. Note that the αi are well de�ned since for all i we have f(xi) = 0 in
Am. For the same reason

∏
i(X − xi) divides f in Am[X], so we only need

to prove Am is universal with this property.

Let B be an R-algebra given with maps βi : A → B for i = 1, . . . ,m and
such that

∏
i(X − βi(x)) divides f in B[X]. We need to prove there exists a

unique map ϕ : Am → B such that for every i we have βi = ϕ ◦ αi.

We prove existence by induction onm: ifm = 0, then A0 = R and the unique
map R → B is the required one. Suppose we have a map ϕ : Am−1 → B
satisfying βi = ϕ ◦ αi for i = 1, . . . ,m − 1. Consider the induced map
Am−1[X] → B[X] and compose with the map B[X] → B sending X to
βm(x). Since βm(x) is a root of fm−1 in B[X], this map factors through Am,
giving the required map.

Any R-algebra map with this property sends xi to βi(x) and hence coincides
with ϕ because the xi generate Am, so the proof is complete.

Corollary 1.6.8. Let R be a ring and f be a monic polynomial in R[X] of
degree n. Let A be the R-algebra R[X]/(f). Then for all 0 ≤ m ≤ n the
algebra A(m) is free of rank n(n− 1) · · · (n−m+ 1).

Proof. This follows by induction since the description given above tells us
that A(i) is free of rank n− i+ 1 over A(i−1) for all 1 ≤ i ≤ n.

1.7 Examples and explicit computations

In this section we will see some explicit computations of S-closures, together
with some techniques to simplify the computations.

Recall that for A an R-algebra and S any set we denote by A⊗S the tensor
power of A indexed over S, de�ned in de�nition 1.2.12, and for each s ∈ S
we denote by εs the natural map.

Lemma 1.7.1. Let R be a ring and A be an R-algebra of rank n. Let r be
in R and a ∈ A. For any �nite set S de�ne

∆a =
∏
s∈S

(X − εs(a)).

Then ∆a(X) | Pa(X) if and only if ∆a+r(X) | Pa+r(X).

Proof. Note that Pa+r(X) = Pa(X − r) and ∆a+r(X) = ∆a(X − r). The
statement is then clear.
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Remark 1.7.2. Let P (X) be a polynomial with coe�cients in a ring R and
let r1, . . . , rm be in R with m at most equal to the degree of P . De�ne

∆(X) =
m∏
i=1

(X − ri).

We �nd an expression for the remainder of the division of P (X) by ∆(X).
Write

P (X) = Q(X)∆(X) + T (X)

with degree of T (X) smaller thanm. Note that Q(X) and T (X) are uniquely
determined by these properties.

Let Q0(X) be P (X) and for all i ≥ 1 de�ne

Qi(X) =
Qi−1(X)

(X − ri)
.

The remainder in the division of P (X) by (X−r1) is P (r1), so we can write:

P (X) = Q1(X)(X − r1) +Q0(r1)

Dividing Q1(X) by (X − r2) we get:

Q1(X) = Q2(X)(X − r2) +Q1(r2)

so that we have

P (X) = Q2(X)(X − r1)(X − r2) +Q1(r2)(X − r1)

and by uniqueness, the quotient and remainder of the division of P (X) by
(X − r1)(X − r2) are Q2(X) and Q1(r2)(X − r1) respectively.

In the same way we can determine Q(X) and T (X) as follows:

P (X) = Qm(X)∆(X) +
m−1∑
i=0

(
Qi(ri+1)

i∏
k=1

(X − rk)

)
.

This will be used to describe A(S) explicitly.

Explicit generators of J (S)

Let R be a ring and A be an R-algebra of rank n. As we proved in propo-
sition 1.3.7, the S-closure of A is the quotient of A⊗S by an ideal that we
denoted J (S). For convenience we recall the de�nition of J (S) when A is free
of rank n (see 1.3.6 and example 1.3.9). Let e1, . . . , en be a basis of A and let
X1, . . . , Xn be the dual basis. Let γ ∈ A[X1, . . . , Xn] be the generic element
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of A and let Pγ be its characteristic polynomial. Let εs be the natural map
A→ A⊗S and de�ne

∆γ(Z) =
∏
s∈S

(Z − εs ⊗ Id(γ))

in A⊗S [X1, . . . , Xn, Z]. For a multi-index I = (i1, . . . , in) write XI for
Xi1

1 · · ·Xin
n . Let Tγ be the remainder in the division of Pγ by ∆γ in the

ring A⊗S [X1, . . . , Xn, Z]. Write the coe�cient of Zi in Tγ as
∑
aI,iX

I for I
ranging over multi-indices as above. Then J (S) is the ideal of A⊗S generated
by the aI,i.

We compute a set of generators of J (S) in case A is a connected algebra
of rank n over a �eld K. Recall from lemma 1.4.13 that in this case A is
local with nilpotent maximal ideal. For simplicity we will also take S =
{1, . . . ,m}, and suppose m ≤ n.

Choose a basis e1, e2, . . . , en of A such that e1 = 1, and e2, . . . , en are in m,
and let X1, . . . , Xn be the dual basis. The element γ ∈ A[X1, . . . , Xn] can
be written as

∑
eiXi, as we have seen in example 1.2.18 and example 1.2.22.

Denote by γ′ the di�erence γ − e1X1, and de�ne in the obvious way the
polynomials

Pγ′(Z), ∆γ′(Z), Tγ′(Z)

in A[X1, . . . , Xn, Z]. Write
∑
a′I,iX

I for the coe�cient of Zi in Tγ′(Z) and

let J (m)′ be the ideal of A⊗S generated by the a′I,i. By lemma 1.7.1 we
have that ∆γ′ divides Pγ′ if and only if ∆γ divides Pγ so we can repeat the

argument in proposition 1.3.7 with J (m)′ and we get that A⊗m/J (m)′ is the
m-closure of A.

Let γ′i be the image of γ′ via the i-th natural map from A[X1, . . . , Xn] to the
tensor power A⊗m[X1, . . . , Xn]. By remark 1.7.2 we can write

Tγ′(Z) =

m−1∑
i=0

(
Qi(γ

′
i+1)

i∏
k=1

(Z − γ′k)

)
.

and the ideal generated by the coe�cients of Tγ′ is equal to the ideal gener-
ated by the coe�cients of Qi(γ′i+1).

Note that since e2, . . . , en are nilpotent Pγ′(Z) is equal to Zn. For i ≥ 0 and
k = 1, . . . , n de�ne di(γ′1, . . . , γ

′
k) to be the sum of all monomials of degree i

in the variables γ′1, . . . , γ
′
k. Then we have

Qi(γ
′
i+1) = dn−i(γ

′
1, . . . , γ

′
i+1) ∈ A⊗m[X1, . . . , Xn] (1)

for all i = 1, . . . ,m−1. So A(m) is the quotient of A⊗m by the ideal generated
by the coe�cients of these polynomials.
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Example 1.7.3. For an R-algebra A of rank n in remark 1.3.11 we de�ned
G(m)(A/R) to be the quotient of A⊗m by the ideal I generated by the co-
e�cients of the remainder in the division of Pa by

∏m
i=1(X − εi(a)), with a

ranging over A. In remark 1.3.11 we said that this construction, modeled on
the one by Bhargava and Satriano, does not in general commute with base
change for m < n. We are going to give an example here.

Let A be the F2-algebra F2[X1, . . . , X4]/(X1, . . . , X4)2. We show that while
G(3)(A/F2) has dimension 110, the dimension of G(3)(A ⊗F2 F4/F4) is at
most 109, so this construction does not commute with base change.

Let m be the maximal ideal of A. Since any element x in A can be written
as x = r + m, with r ∈ F2 and m in m, by lemma 1.7.1 we can generate
the ideal I with the coe�cients of the remainder in the division of Pa by∏m
i=1(X−εi(a)), with a ranging over m, instead of A. Since the characteristic

polynomial of a ∈ m is X5, the computations we did for Qi(γ′i+1) apply here
as well. Then we have

I =

〈 ∑
i+j=4

ai ⊗ aj ⊗ 1,
∑

i+j+k=3

ai ⊗ aj ⊗ ak | a ∈ m

〉
.

But since multiplication of any two elements in m is zero, most of the terms
in the expressions above are zero and we get

I = 〈a⊗ a⊗ a | a ∈ m〉 .

Moreover for all x = r + m ∈ A⊗3 we have that x(a ⊗ a ⊗ a) is equal to
r(a⊗ a⊗ a) for some r ∈ R, since a multiplied by any element in m is zero,
so the ideal I equals the F2-vector space generated by the a ⊗ a ⊗ a. Then
I is a vector space generated by 15 non-zero vectors. So its dimension is at
most 15, and the dimension of G(3)(A/F2) is at least 125− 15 = 110 (in fact
it is 110).

Now consider the same construction over F4. Here G(3)(A⊗F2F4/F4) is equal
to the quotient of A⊗3 ⊗F2 F4 by the ideal

J = 〈a⊗ a⊗ a | a ∈ m⊗F2 F4〉

but in this case the dimension of J is at least 16. In fact, consider the
projection π from (m ⊗F2 F4)⊗3 to the quotient Sym3(m ⊗F2 F4), which is
isomorphic to (F4[T1, T2, T3, T4])3, the 20-dimensional vector space of homo-
geneous polynomials of degree 3 in 4 variables over F4. The subspace π(W )
is generated by third powers of polynomials of degree 1. Consider(

4∑
i=1

riTi

)3

=

(
4∑
i=1

r2
i T

2
i

)(
4∑
i=1

riTi

)
=
∑
i,j

r2
i rjT

2
i Tj
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with ri in F4. A computation shows that a basis for π(W ) is

{T 3
1 , T

3
2 , T

3
3 , T

3
4 ,

T 2
1 T2, T

2
1 T3, T

2
1 T4, T

2
2 T3, T

2
2 T4, T

2
3 T4,

T1T
2
2 , T1T

2
3 , T1T

2
4 , T2T

2
3 , T2T

2
4 , T3T

2
4 }

so it has dimension 16. Hence there exists a surjective map from W to a
space of dimension 16, and the dimension of W is at least 16. Then the
algebra G(3)(A⊗F2 F4/F4) has dimension at most 125−16 = 109 (in fact the
dimension is 105). So this construction does not commute with base change.

Algorithm for computing S-closures

As we pointed out in example 1.3.9 the construction using the generic element
given in section 1.3 is completely explicit. To illustrate this, we give here
an implementation of the construction using MAGMA [3]. The following
code, has as input a �nite commutative algebra A over a �eld K, given
with generators and relations, and an integer m. As output it returns the
m-closure of A. In the implementation, we use the MAGMA command
Algebra, which computes a basis and the multiplication table of the input
algebra A.

// Function: mClosure. Given an affine algebra A over a field K and an

// integer m returns the m-closure of A.

mClosure := function(A, m)

// Preliminaries

relations := Generators( DivisorIdeal( A ) ); // Relations in A

gen := Rank( A ); // Number of generators in A

K := CoefficientRing( A ); // Base ring of A

// The ring A as a K-vector space (B) and the bijection A -> B

B, f := Algebra( A );

fInv := Inverse( f );

d := Dimension( B ); // The dimension of B over K

// Vector with multiplication matrices for basis elements in B

Mat := [ Matrix( K, d, d, [ ElementToSequence( B.i * B.j ) : i in

[1..d] ] ) : j in [1..d] ];

// Construction of the m-th tensor power of A

// Polynomial ring for defining the tensor power

PolyRing := PolynomialRing( K, m * gen );

// Sequence with variables in PolyRing

x := [ [ PolyRing.(i+m*j-m) : i in [1..m] ] : j in [1..gen] ];

// Relations between elements in x

TensorPowerAlgebra := quo< PolyRing | [ Evaluate( rel, [ x[i][j] :

i in [1..gen] ]) : j in [1..m ], rel in relations ] >;

36



1.7 Examples and explicit computations

// Embeddings of A into the tensor power

alpha := [ hom< A -> TensorPowerAlgebra | [ TensorPowerAlgebra!(x[i][j])

: i in [1..gen] ] > : j in [1..m] ];

// The ring where the coefficients of Delta and the characteristic

// polynomial of the generic element live

GenericRing := PolynomialRing( TensorPowerAlgebra, d );

// The matrix of multiplication by the generic element

MultMat := Matrix( GenericRing, d, d, [ [ &+ [ GenericRing.n *

GenericRing!Mat[n][j][i] : n in [1..d] ] : i in [1..d] ] :

j in [1..d] ] );

// Construction of Delta and characteristic polynomial of gamma

// Polynomial ring with coefficients in GenericRing

Polynom<X> := PolynomialRing( GenericRing );

// a sequence gamma with gamma[i] the i-th embedding of gamma in GenericRing

gamma := [ &+ [ GenericRing!(alpha[i](fInv(Basis(B)[j]))) *

GenericRing.(j) : j in [1..d] ] : i in [1..m] ];

// The polynomial Delta

if m ne 0 then

Delta := &* [ X - gamma[i] : i in [1..m] ];

else Delta := Polynom!1;

end if;

// Characteristic polynomial of the generic element

CharPoly := CharacteristicPolynomial( MultMat );

// Computation of the coefficients of the remainder in the division of

// CharPoly by Delta (the relations to quotient out)

CoeffRemainder := Coefficients(Polynom!CharPoly mod Delta);

ClosureRelations := [];

for i in [1..#CoeffRemainder] do

ClosureRelations := ClosureRelations cat Coefficients(CoeffRemainder[i]);

end for;

// Final computation of A^{(m)}

Am := quo< TensorPowerAlgebra | ClosureRelations >;

return Am;

end function;

Dimensions of A(m) for A of dimension ≤ 6 over an algebraically
closed �eld

We used the code provided above to compute the dimension of m-closures
of all algebras of dimension n ≤ 6 over an algebraically closed �eld K of
characteristic 0. We use the classi�cation in [23], by Bjorn Poonen. Note
that for n ≥ 7 there exist in�nitely many non-isomorphic K-algebras (see
references in [23]).

Note that we can reduce the computation to local algebras, since by lemma
1.4.13 every �nite K-algebra is a product of local ones and by the product
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formula (see theorem 1.4.4) we have:

dim(A1 ×A2)(m) =

m∑
k=0

(
m

k

)
dimA

(k)
1 dimA

(m−k)
2 .

Explanation of the tables 1.7.4. Let A be a local K-algebra with maximal
ideal m. In table 1.1 we consider all algebras with n ≤ 5. We list the
dimension of A, the sequence d = (dim(mi/mi+1))i≥1, the ideal de�ning
A, and the dimension of A(m) for m = 2, . . . , n − 1. We did not write the
dimension of the n-closure and of the 1-closure: by theorem 1.3.13 the (n−1)-
closure is isomorphic to the n-closure, and by number 3 of proposition 1.3.12
the 1-closure is isomorphic to A. The algorithm was run in these cases as
well, and con�rms the results (or rather the results verify the algorithm).
The table for dimension 6 is at the end of the chapter (table 1.2, page 41).

dimA(m)

n d Ideal m = 2 m = 3 m = 4

3 (1, 1) (x3) 6
(2) (x, y)2 6

4 (1, 1, 1) (x4) 12 24
(2, 1) (x3, y2, xy) 13 26

(x2, y2) 13 26
(3) (x, y, z)2 16 32

5 (1, 1, 1, 1) (x5) 20 60 120
(2, 1, 1) (x2, y4, xy) 21 65 130

(x2 + y3, xy) 21 65 130
(2, 2) (x3, y2, x2y) 22 70 140

(x3, y3, xy) 22 70 140
(3, 1) (x2, y2, z2, xy, xz) 24 80 160

(x2, y2, z3, xy, xz, yz) 24 84 170
(x2, y2, xz, yz, xy + z2) 24 80 160

(4) (x, y, z, w)2 25 105 220

Table 1.1: Dimension up to 5, see 1.7.4

Remark 1.7.5. Let A be a K-algebra of dimension n. In remark 1.4.12
we called n(n − 1) · · · (n − m + 1) the expected rank of the m-closure of
A. From the tables it is apparent that it is in fact quite rare that the
rank of the m-closure of a K-algebra A is equal to the expected one: for
the algebras considered here this happens only for the 3-dimensional K-
algebra K[X,Y ]/(X,Y )2, and for the cases already treated in the preceding
sections, like for monogenic algebras (see theorem 1.6.7), and for m = 0, 1 or
m > n (see proposition 1.3.12). It would be interesting to know whether the
dimension of A(m) can be smaller than the expected one, but no examples
were found, nor a proof that this cannot happen. This was asked for the
Galois closure in [2, Question 3].
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Remark 1.7.6. The argument for the proof of Theorem 8 in [2] applies to m-
closures as well. So for all m the dimension of the m-closure of a K-algebra
of dimension n is at most the dimension of the m-closure of the algebra
K[X1, . . . , Xn−1]/(X1, . . . , Xn−1)2.

Remark 1.7.7. Note that table 1.1 and 1.2 are speci�c to characteristic 0. In
characteristic 2 the algebra of dimension 4 de�ned by the ideal (x2, y2) has
2-closure of dimension 16 and 3-closure of dimension 32, and not 13 and 26
as in the table. In particular (see also the discussion after theorem 6 in [2]),
this implies there exist free Z-algebras with a non locally free m-closure.

More computations about dimensions

Them-closure of an algebra can sometimes be equal to the whole A⊗m. Here
is a su�cient condition.

Proposition 1.7.8. Let A be a local algebra over a �eld K, with residue
�eld K. Suppose there exists t ≥ 2 such that for all a in the maximal ideal
of A we have at = 0. Let n be the dimension of A and suppose n− tm ≥ 0.
Then A(m) is A⊗m.

Proof. LetK ′ be anyK-algebra and let a be in the maximal ideal of A⊗KK ′.
Let εi be the natural map A⊗K K ′ → A⊗m⊗K K ′. Since at is zero we have

Xt = (X − εi(a))
t−1∑
k=0

εi(a)kXt−k−1

in A⊗m ⊗K K ′[X] for i = 1, . . . ,m. The characteristic polynomial of a is
Xn, since a is nilpotent. We can write

Xn = Xt · · ·XtXn−tm =
m∏
i=1

(X − εi(a))Xn−tm
m∏
i=1

(
t−1∑
k=0

εi(a)kXt−k−1

)
.

In particular
∏
i(X − εi(a)) divides the characteristic polynomial of a in

A⊗m ⊗K K ′[X]. This proves our claim.

The algebras of dimension n (over a �eld) de�ned in the following proposition
have 2-closure of dimension n2−3, which is bigger than the expected n2−n.

Proposition 1.7.9. Let K be a �eld. For every n ≥ 3 let A be the following
n-dimensional K-algebra:

A = K[x, y]/(x
n
2

+1, y
n
2 , xy), for n even

A = K[x, y]/(x
n+1

2 , y
n+1

2 , xy), for n odd.

Then A(2) has dimension n2 − 3.
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Proof. Let γ ∈ A[Z1, . . . , Zn] be the generic element of A and let γ′ be γ−Z1,
the generic element of the maximal ideal of A. Denote by γ′i for i = 1, 2 the
image of γ′ via the base change of the natural maps εi : A→ A⊗R A. Let I
be the ideal in A ⊗R A such that A ⊗R A/I is A(2). By equation (1), page
34, the ideal I is generated by

γ′1
n−1

+ γ′1
n−2

γ′2 + · · ·+ γ′1γ
′
2
n−2

+ γ′2
n−1

,

and by the relations in A this is equal to

γ′1
n
2 γ′2

n
2
−1

+ γ′1
n
2
−1
γ′2

n
2 , for n even

γ′1
n−1

2 γ′2
n−1

2 , for n odd.

Suppose now n is odd and let t be n−1
2 . Write

γ′ =
t∑
i=1

xiZi +
t∑
i=1

yiZt+i

Then γ′t is xtZt1 + ytZtt , and the ideal I is generated by

xt ⊗ xt, yt ⊗ yt, xt ⊗ yt + yt ⊗ xt.

It is now easy to see that the dimension of I is 3. For n even let t = n
2 and

write

γ′ =

t∑
i=1

xiZi +

t−1∑
i=1

yiZt−1+i.

Computing γ′t1γ
′
2
t−1 + γ′t−1

1 γ′2
t we see that I is generated by

xt ⊗ y + y ⊗ xt, xt ⊗ x+ x⊗ xt

and one computes the dimension of I is again 3.

It would be interesting to know the possible values for the dimensions of
A(m).

40



1.7 Examples and explicit computations

dimA(m)

d Ideal m=2 m=3 m=4 m=5

(1, 1, 1, 1, 1) (x6) 30 120 360 720
(2, 1, 1, 1) (x2, y5, xy) 31 129 393 785

(x2 + y4, xy) 31 129 393 785
(2, 2, 1) (xy, x3, y4) 33 141 436 870

(xy, x3 + y3) 33 138 422 840
(x2, xy2, y4) 33 145 453 905

(x2, y3) 33 142 439 875
(x2 + y3, xy2, y4) 33 144 450 900

(2, 3) (x, y)3 36 165 539 1085
(3, 1, 1) (x2, xy, y2, xz, yz, z4) 34 160 520 1045

(x2, xy, y2 + z3, xz, yz, z4) 34 154 488 975
(x2, xy + z3, y2, xz, yz, z4) 34 154 488 975

(3, 2) (xy, yz, z2, y2 − xz, x3) 36 168 540 1080
(xy, z2, xz − yz, x2 + y2 − xz) 36 168 540 1080

(x2, xy, xz, y2, yz2, z3) 36 176 587 1185
(x2, xy, xz, yz, y3, z3) 36 172 570 1150

(xy, xz, y2, z2, x3) 36 168 538 1075
(xy, xz, yz, x2 + y2 − z2) 36 164 516 1028
(x2, xy, yz, xz + y2 − z2) 36 164 518 1033

(x2, xy, y2, z2) 36 170 546 1090
(4, 1) (x2, y2, z2, xy, xz, xw, yz, yw, zw,w3) 36 195 707 1457

(x2, y2, z2, w2, xy, xz, xw, yz, yw) 36 193 667 1352
(x2, y2 + zw, z2, w2, xy, xz, xw, yz, yw) 36 193 661 1334
(x2, y2, z2, w2, xy − zw, xz, xw, yz, yw) 36 193 661 1334

(5) (x, y, z, w, v)2 36 216 876 1875

Table 1.2: Dimension 6, see 1.7.4
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Chapter 2

Tate G-schemes

2.1 Introduction

Let K → L be a �nite separable �eld extension and let L̃ be a Galois
closure of L over K. Let G be the Galois group of L̃ over K. Then L̃G is
isomorphic to K. Similarly Sn acts on A(n) for A an R-algebra of rank n (see
remark 1.3.15) and if A is �nite étale then (A(n))Sn ∼= R as follows from the
description in proposition 1.4.11 (see also example 3.2.12). However, such an
isomorphism need not exist in general, even if we restrict to the particularly
well-behaved class of monogenic rings.

For example take R = F2 and A = F2[x]/(x2). Then A(2) is isomorphic to A
by corollary 1.3.14, and S2 acts trivially since Aut(A) is trivial. The ring of
invariants is then A, which is not isomorphic to R. Anders Thorup in [29]
discusses this problem, for A monogenic of rank n, �nding necessary and
su�cient conditions for a ∈ A(n) to be invariant under Sn.

However, consider the following situation: let K → L be a normal extension
of �elds and let G be the group of K-automorphisms of L. Then LG/K
is purely inseparable. The most natural generalization to rings of a purely
inseparable �eld extension is a universal homeomorphism (see section 2.3 for
the de�nition). We will show in chapter 3 that the map R → (A(n))Sn is a
universal homeomorphism (see theorem 3.2.9).

In this chapter, with this goal in mind, we will �nd necessary and su�-
cient conditions for R → AG to be a universal homeomorphism given any
R-algebra A, with an action of a �nite group G. The notion of univer-
sal homeomorphism is scheme-theoretical, so we will develop the theory for
schemes, instead of rings.

The analogue of the subring of invariants in the category of schemes is the
categorical quotient that we discuss in section 2.2. The main result of the
chapter is the following theorem.
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Theorem (Theorem 2.4.15). Let X → S be a scheme, with an action of a
�nite group G. Then the following are equivalent:

1. The categorical quotient X/G exists and the natural map X/G→ S is
a universal homeomorphism.

2. The map X → S is integral and surjective, and for all �elds K over S
the action of G on each non-empty �ber of X(K)→ S(K) is transitive.

The main tool needed for the proof of this theorem is a result by Deligne (see
[12, Corollaire IV.18.12.11]), which characterizes universal homeomorphisms
of schemes. We will present here a simpler proof of this result (see theo-
rem 2.3.8), which has been accepted in the Stacks Project (see [28, Lemma
01WM]).

2.2 Quotients of schemes

In this section we will give the de�nition of quotient of a scheme by the
action of a �nite group and discuss its existence and properties. Most of
the content of this chapter can be found in SGA1, see [13, V.1]. This is
just a collection of results needed to follow the rest of the chapter, given for
convenience.

De�nition 2.2.1. Let G be a group. A G-scheme is a scheme X with an
action of G. If X is an S-scheme and G acts by morphisms of S-schemes we
say X is a G-scheme over S.

De�nition 2.2.2. LetX be a G-scheme. A morphism of schemes f : X → Y
is called a categorical quotient of X (or simply a quotient of X) if it is G-
invariant and for all G-invariant g : X → Z there exists a unique map Y → Z
making the following diagram commutative:

X
g

  @
@@

@@
@@

f

��
Y // Z

If a quotient exists then it is unique up to a unique isomorphism.

We will denote the quotient by π : X → X/G and we will call X/G the
quotient scheme.

Remark 2.2.3. LetX be aG-scheme over S. IfX/G exists then it is naturally
an S-scheme.
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For us G will always be a �nite group. Even in this case, the quotient
of a G-scheme X need not exist. The �rst example was given by Serre in
[26, Chapter III, page 51]. Here he points out that the variety described by
Nagata in [22] has an action of Z/2Z, but no quotient scheme exists. Another
example in a more modern language can be found in Geometric Invariant
Theory (see [21, Chapter 4, page 83]), where a construction by Hironaka is
described. The variety described there also has an action of Z/2Z, but no
quotient exists.

The existence of a quotient can be guaranteed with the su�cient condition
described in proposition 2.2.5. We give �rst a de�nition, which is standard,
but fundamental.

De�nition 2.2.4. A morphism of schemes f : X → Y is called integral if it
is a�ne and for all U = SpecR a�ne open in Y with inverse image f−1(U) =
SpecA, the induced ring map R→ A is integral (see de�nition 1.2.10).

Proposition 2.2.5. Let G be a �nite group and let X be a G-scheme. Then
the following are equivalent:

1. There exists a G-invariant a�ne morphism f : X → Y such that the
induced map OY → (f∗OX)G is an isomorphism.

2. There exists a covering of X consisting of G-invariant a�ne open sub-
sets.

3. Each orbit of G is contained in an a�ne open subset of X.

If X satis�es the above conditions then f : X → Y is a quotient of X, the
topology on Y is the quotient topology, the map f is integral and surjective
and its (set-theoretical) �bers are the orbits of G.

Proof. See [13, Proposition V.1.3 and Proposition V.1.8].

De�nition 2.2.6. Let G be a �nite group and let X be a G-scheme. We say
X is admissible if it satis�es the equivalent conditions in proposition 2.2.5.

For X a�ne we have the following.

Proposition 2.2.7. Let G be a �nite group and let let X = SpecA be an
a�ne G-scheme. Then X is admissible and π : X → SpecAG is a quotient.

Proof. Clear from proposition 2.2.5.
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Remark 2.2.8. Note that the requirement of being admissible is quite weak:
for example let G be a �nite group and X be a quasi-projective G-scheme
over a scheme S. Then X is admissible because every �nite set of points in
X lying over the same point of S, is contained in an a�ne open subset of X
(see [25, Proposition B.2]).

Remark 2.2.9. Being admissible is not a necessary condition for having a
quotient: let K be a �eld, and let X be the a�ne line with double origin
over K. Let Z/2Z act on X by exchanging the two origins. Then the obvious
map X → A1

K is a quotient, but X is not admissible. It is, however necessary
if X is separated (see [25, Remark 4.5]).

Proposition 2.2.10. Let G be a �nite group and let X be an admissible
G-scheme. Let U be an open subset of X/G. Then π−1(U) is an admissible
G-scheme and the quotient is the restriction of π to π−1(U)→ U .

Proof. See [13, Corollary V.1.4].

Proposition 2.2.11. Let G be a �nite group and let X be an admissible G-
scheme. Let H be a subgroup of G. Then X is also an admissible H-scheme.
If moreover H is a normal subgroup then X/H is an admissible (G/H)-
scheme and the natural map X/G→ (X/H)/(G/H) is an isomorphism.

Proof. A G-invariant a�ne open subset is also H-invariant so X/H is an
admissible H-scheme. The rest is clear.

Proposition 2.2.12. Let G be a �nite group and let X be a G-scheme.
Suppose there exists an a�ne G-invariant morphism X → Y . Then X is
admissible.

Proof. Since X → Y is a�ne and G-invariant we can cover X with G-
invariant a�ne open subsets, so X is admissible.

Proposition 2.2.13. Let G be a �nite group and let X be an admissible
G-scheme over a scheme S. Then for all schemes T → S the base-change
X ×S T is an admissible G-scheme over T .

Proof. Since X is admissible, there exists a G-invariant a�ne morphism
X → Y for some S-scheme Y by number 1 of proposition 2.2.5. Since the
base change of an a�ne map is a�ne the map X ×S T → Y ×S T is a�ne
and G-invariant. So X ×S T is admissible by proposition 2.2.12.

Remark 2.2.14. Note that proposition 2.2.13 does not imply that the quotient
ofX×ST is (X/G)×ST . This is false even for a�ne schemes. For example let
S be SpecZ, let X be SpecZ[

√
2] and let T be SpecF2. Let G be the group

with two elements and consider the action of G on X given by
√

2 7→ −
√

2.
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Clearly X/G is isomorphic to S, so (X/G) ×S T is isomorphic to T , but
X ×S T is SpecF2[x]/(x2) with the trivial action so that (X ×S T )/G is
SpecF2[x]/(x2), which is not isomorphic to T .

However, by the universal property of the quotient, there exists a natural
map (X ×S T )/G → (X/G) ×S T . A list of conditions under which this
map is an isomorphism is given in Katz's and Mazur's �arithmetic moduli
of elliptic curves� (see [15, Appendix A7]). We will see in proposition 2.4.13
that the natural map is a homeomorphism in general.

Lemma 2.2.15. Let G be a �nite group and let X be an admissible G-
scheme. Let f : X → Y be an integral G-invariant map. Then g : X/G→ Y
is also integral.

Proof. The situation is summarized in the following diagram:

X

π
��

f

!!D
DD

DD
DD

DD

X/G g
// Y

Let U be an a�ne open subset of Y . Since f is integral V = f−1(U) is also
open and a�ne, and since f is G-invariant, we have that V is stable under
G. Surjectivity of π implies that π(V ) is equal to g−1(U). The restriction of
π to V → g−1(U) is a quotient by proposition 2.2.10. By proposition 2.2.7
the quotient of an a�ne scheme is a�ne so g−1(U) is a�ne, and then g is
an a�ne map.

We can then reduce to the case X is SpecB and Y is SpecA and f comes
from a ring map A→ B. Since A→ B is integral every element of B is a root
of a monic polynomial with coe�cients in A, but then also the restriction to
A→ BG is integral, and the proof is complete.

2.3 Universal homeomorphisms

In this section we will discuss some properties of universal homeomorphisms
of schemes. Here is the de�nition.

De�nition 2.3.1. We say a morphism of schemes f : X → Y is a universal
homeomorphism if for all maps Z → Y , the projection fZ : X ×Y Z →
Z is a homeomorphism. Similarly we de�ne universally closed morphisms,
universally injective morphisms and universally surjective morphisms.

The main result of the section is theorem 2.3.8, which we state here.
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2.3 Universal homeomorphisms

Theorem (Theorem 2.3.8). A morphism of schemes f is a universal home-
omorphism if and only if f is integral, surjective and universally injective.

This theorem was �rst proved by Deligne in EGA IV (see [12, Theorem
IV.18.12.11]).

We start with some standard results that we will use in the proof. References
include EGA II (see [11, Section II.6]) and the Stacks Project (see [28, Section
01WG]).

Lemma 2.3.2. Let ϕ : R → A be an integral injective map of rings. Then
Specϕ is surjective.

Proof. Let p ∈ SpecR. We want to �nd a prime q ∈ SpecA such that
q ∩ R = p. This regards only primes containing p, so we can localize at p
and suppose R is a local ring with maximal ideal p.

We have to show there exists a prime of A containing pA; equivalently we
show pA 6= A. Suppose pA = A, then we can write 1 =

∑n
i=1miai for

some mi ∈ p and ai ∈ A. Since A is integral over R the R-algebra B =
R[a1, . . . , an] is �nite. Since 1 =

∑
miai we have pB = B so by Nakayama's

lemma B = 0. This is a contradiction since B contains R. So pA 6= A and
the proof is complete.

Corollary 2.3.3. Let f : X → Y be an integral morphism of schemes. Then
f is closed.

Proof. Since f is a�ne, we may assume f is the morphism SpecA→ SpecR
coming from a ring map ϕ : R → A. Take a closed subscheme SpecA/I of
X and let J = ϕ−1(I). The map R/J → A/I is integral and injective, hence
the induced map on spectra is surjective by lemma 2.3.2. So f is closed.

Lemma 2.3.4. Let f : X → S be an integral morphism of schemes and
T → S be a morphism of schemes. Then X ×S T → T is integral.

Proof. Since f is a�ne we can reduce to proving the base change of an
integral ring map is integral.

Let R→ A be an integral ring map and R→ R′ be any ring map. If a ∈ A
is a root of a monic polynomial P ∈ R[x] then a⊗ 1 is a root of P ⊗ 1R′ , so
a ⊗ 1 is integral over R′. Since sums and products of integral elements are
integral, and for all s ∈ R′ the element 1⊗ s is integral over R′ , this shows
A⊗R R′ is integral over R′.

Lemma 2.3.5. Let f : X → Y be a morphism of schemes. If f is a homeo-
morphism then f is a�ne.
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2.3 Universal homeomorphisms

Proof. See [28, Lemma 04DE].

Lemma 2.3.6. Let f : X → Y be a surjective morphism of schemes. Then
f is universally surjective.

Proof. See [10, Proposition I.3.6.1] or [28, Lemma 01S1].

After these basic results we are now ready to prove the characterization of
universal homeomorphisms. The following proposition is the main ingredi-
ent. The proof given here has been accepted in the Stacks Project (see [28,
Lemma 01WM]).

Proposition 2.3.7. Let f : X → Y be a morphism of schemes. Then f is
integral if and only if f is a�ne and universally closed.

Proof. By de�nition an integral map is a�ne. By lemma 2.3.4 a base change
of f is integral and hence closed by corollary 2.3.3, so f is universally closed.

Suppose f is a�ne and universally closed. We may assume f is the morphism
f : SpecA→ SpecR coming from a ring map R → A. Let a be an element
of A. We have to show that a is integral over R, i.e. that in the kernel I
of the map R[x]→ A sending x to a there is a monic polynomial. Consider
the ring B = A[x]/(ax − 1) and let J be the kernel of the composition of
natural maps R[x] → A[x] → B. If f ∈ J there exists q ∈ A[x] such that
f = q · (ax− 1) in A[x] so if f =

∑
i fix

i with fi ∈ R, and q =
∑

i qix
i, with

qi ∈ A, then we have fi = aqi−1 − qi, for all i ≥ 0. For n ≥ deg q + 1 the
polynomial∑

i≥0

fix
n−i =

∑
i≥0

(aqi−1 − qi)xn−i = (a− x)
∑
i≥0

qix
n−i−1

is clearly in I; if f0 = 1 this polynomial is monic, so we are reduced to
proving that J contains a polynomial with constant term 1. Equivalently,
we can prove that SpecR[x]/(J + (x)) is empty.

Since f is universally closed the base change SpecA[x]→ SpecR[x] is closed,
so the closed subset SpecB of SpecA[x] surjects on SpecR[x]/J .

Consider the following diagram where every square is a pullback:

SpecB
g // // SpecR[x]/J // SpecR[x]

∅

OO

// SpecR[x]/(J + (x))

OO

// SpecR

0

OO

The bottom left corner is empty because it is the spectrum of R ⊗R[x] B
where the map R[x] → B sends x to an invertible element and R[x] → R
sends x to 0. Since g is surjective lemma 2.3.6 implies SpecR[x]/(J + (x))
is empty, as we wanted to show.
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2.3 Universal homeomorphisms

The following is the main result of this section. We recall the statement.

Theorem 2.3.8 (Deligne, Theorem IV.18.12.11 in [12]). A morphism of
schemes f is a universal homeomorphism if and only if f is integral, surjec-
tive and universally injective.

Proof. If f is a universal homeomorphism, then f is surjective, universally
injective and universally closed. Since f is a homeomorphism f is a�ne by
lemma 2.3.5 so f is integral by proposition 2.3.7.

Suppose f is integral, surjective and universally injective. Since f is integral
f is universally closed by proposition 2.3.7. Surjectivity is invariant under
base change by lemma 2.3.6 so f is also universally bijective. Then f is a
universal homeomorphism.

Example 2.3.9. We give some examples and non-examples of universal
homeomorphisms. For a ring map f : R → A we will say that f is a uni-
versal homeomorphism if the induced map SpecA → SpecR is a universal
homeomorphism.

1. By theorem 2.3.8 is easy to see that a purely inseparable �eld extension
K → L is a universal homeomorphism.

2. Again from theorem 2.3.8 follows that for n ≥ 1 the mapR→ R[ε]/(εn)
is a universal homeomorphism for any ring R.

3. Let L be K(α), with K a �eld and α a transcendental element. Then
if we base change to K[X] the closed point (X − α) of SpecK(α)[X]
is mapped to the generic point of A1

K , which is not closed. Hence
SpecL→ SpecK is not universally closed and so it is not a universal
homeomorphism.

4. Let A be a �nite separable algebra of dimension n over a �eld K.
Then SpecA → SpecK is a universal homeomorphism if and only if
n = 1. In fact, clearly this is not the case if n = 0 and if n > 1, then
SpecA×K K̄ is the disjoint union of n copies of Spec K̄, so SpecA→
SpecK is not universally injective.

5. A geometric example: the cusp. LetK be a �eld and letX be the curve
in A2

K de�ned by the equation x2 = y3. The natural map A1
K → X,

coming from the ring map K[x, y]/(x2−y3)→ K[t] sending x to t3 and
y to t2, is a universal homeomorphism. Clearly the map is surjective
and integral. Let K → F be any �eld extension. The F -rational
points of X are all pairs (a, b) in F 2 such that a2 = b3 and the map
A1
K(F )→ X(F ) sends z ∈ F to the pair (z3, z2). This map is injective

for all F because in any �eld if z2
1 = z2

2 and z3
1 = z3

2 then z1 = z2,
so A1

K → X is universally injective (see lemma 2.4.6) and hence a
universal homeomorphism.
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2.4 Tate G-schemes

2.4 Tate G-schemes

We introduce here the notion of Tate G-schemes, and prove some of their
properties. The name comes from theorem 2.4.10, which was attributed to
John Tate by Hendrik Lenstra (oral communication).

De�nition 2.4.1. Let G be a �nite group and let X be a G-scheme over
S. We say X is a Tate G-scheme over S if X → S is a surjective integral
morphism and for all �elds K over S, the action of G on each non-empty
�ber of X(K)→ S(K) is transitive.

In this section we will prove theorem 2.4.15, the main result of the chapter.
As we saw in section 2.1 this theorem is our motivation for introducing Tate
G-schemes. We recall the statement here.

Theorem (Theorem 2.4.15). Let G be a �nite group and X → S be a G-
scheme over S. Then X is a Tate G-scheme over S if and only if X is
admissible and X/G→ S is a universal homeomorphism.

We start the study of Tate G-schemes with some easy remarks. First note
that all Tate G-schemes are admissible.

Proposition 2.4.2. Let G be a �nite group and let X be a Tate G-scheme
over S. Then X is admissible.

Proof. An integral map is a�ne, so this is true by proposition 2.2.12.

Lemma 2.4.3. Let X → S be integral and surjective and let K be an alge-
braically closed �eld. Then the map X(K)→ S(K) is surjective.

Proof. Any s in S(K) factors through a residue �eld κ(ps) of S. Since
X → S is surjective there is a point px ∈ X mapping to ps and since X → S
is integral the extension κ(ps)→ κ(px) is algebraic. Since K is algebraically
closed the �eld extension κ(ps) → K, extends to a map κ(px) → K. Then
px together with this �eld extension gives a K-point of X mapping to s.

We can restrict ourselves to algebraically closed �elds.

Lemma 2.4.4. Let X be a G-scheme over S. If for all algebraically closed
�elds K the action of G on each non-empty �ber of X(K)→ S(K) is tran-
sitive then the same is true for all �elds.

Proof. For all �elds K given with a map SpecK → S we have that X(K) is
a subset of X(K̄) and S(K) is a subset of S(K̄), so the statement holds.
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2.4 Tate G-schemes

Proposition 2.4.5. Let G be a �nite group and let X be a G-scheme over
S. Then X is a Tate G-scheme over S if and only if X → S is surjective
and integral and for all algebraically closed �elds K over S, the action of G
on each �ber of X(K)→ S(K) is transitive.

Proof. Combine lemma 2.4.4 with lemma 2.4.3.

The following characterization of universally injective maps will be useful in
the proof of the main result.

Lemma 2.4.6. Let f : X → Y be a morphism of schemes. Then f is univer-
sally injective if and only if for all �elds K the induced map X(K)→ Y (K)
is injective.

Proof. See [10, Remarque 3.5.11], or [28, Lemma 01S4].

Corollary 2.4.7. Let f : X → Y be a morphism of schemes. Then f is
universally injective if and only if for all algebraically closed �elds K the
induced map X(K)→ Y (K) is injective.

Proof. Follows from lemma 2.4.6 and lemma 2.4.4 with G the trivial group.

Example 2.4.8. Let {1} be the trivial group and let X → S be a morphism
of schemes. Then X is a Tate {1}-scheme over S if and only if X → S
is a universal homeomorphism. In fact, by theorem 2.3.8 the morphism
X → S is a universal homeomorphism if and only if it is integral, surjective
and universally injective, and by de�nition X → S is a Tate {1}-scheme
if and only if it is integral, surjective and for all �elds K the induced map
X(K) → S(K) is injective. By lemma 2.4.6 the last condition holds if and
only if X → S is universally injective, so the claim is proved.

Finally, an observation on Tate G-schemes over algebraically closed �elds.

Lemma 2.4.9. Let X be a G-scheme over S = SpecK, with K an alge-
braically closed �eld. Suppose X → S is integral and surjective. Then X is a
Tate G-scheme over S if and only if the action of G is transitive on X(K).

Proof. First note that the action of G on X(K) is transitive if and only if the
action of G on each �ber of X(K)→ S(K) is transitive. Then the conclusion
follows since for every �eld extension K → L any map SpecL → X factors
through S, since X is integral and K algebraically closed.
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2.4 Tate G-schemes

The following theorem is the main ingredient for the proof of our main result.
It also gives us a non-trivial class of examples: every admissible G-scheme
is a Tate G-scheme over the quotient. The proof we are going to present is
more or less the one in [27, Lemma 15.1].

Theorem 2.4.10 (�Tate's lemma�). Let G be a �nite group and let X be an
admissible G-scheme. Take S = X/G. Then X is a Tate G-scheme over S.

Proof. By proposition 2.2.5 the map π : X → S is surjective and integral.

To check the third condition we can reduce to algebraically closed �elds
by proposition 2.4.5. Fix an algebraically closed �eld K and a K-point s
of S. By lemma 2.4.3 there is at least one point in the �ber of s under
X(K)→ S(K). If there is only one then we have nothing to prove. Let x, y
be in X(K), both mapping to s in S(K). It is su�cient to show there exists
σ ∈ G such that σ ◦ x = y. That the set-theoretic points corresponding
to x and y in X lie in the same orbit is clear. Let U be an a�ne open
neighborhood of s. Since π is a�ne also V = π−1(U) is a�ne and both x
and y factor over V . We are then reduced to the case X = SpecA for a
ring A. It su�ces to show that for all algebraically closed �elds K and maps
f, g : A→ K that coincide on AG there exists σ ∈ G such that f = g ◦ σ.

Let f, g,K be as above and let {a1, . . . , an} be a �nite subset of A. We show
�rst that there exists a σ ∈ G such that f(ai) = g(σai) for all i. Consider the
ring A[X1, . . . , Xn, Z] with the induced action of G. Extend f and g to maps
f, g : A[X1, . . . , Xn, Z] → K[X1, . . . , Xn, Z]. Let Q(X1, . . . , Xn) =

∑
i aiXi.

The polynomial P (Z) de�ned as∏
τ∈G

(Z − τQ) =
∏
τ∈G

(Z −
∑
i

τaiXi)

is in AG[X1, . . . , Xn, Z]. So we have f(P (Z)) = g(P (Z)), and therefore∏
τ∈G

(Z − f(τQ)) =
∏
τ∈G

(Z − g(τQ))

Since K[X1, . . . , Xn, Z] is a unique factorization domain and the factors are
irreducible there is σ ∈ G such that f(Q) = g(σQ) and hence

∑
i f(ai)Xi =∑

i g(σai)Xi. This implies that for every i we have f(ai) = g(σai), as we
claimed.

We can then write A = ∪σ∈GAσ where Aσ = {a ∈ A|f(σa) = g(a)}. We
show there is an Aσ that is equal to A. Suppose this is not the case so for
all σ ∈ G we can take aσ ∈ A \Aσ. The set S = {aσ}σ∈G is �nite hence, as
we showed, there exists τ ∈ G such that for all a ∈ S we have f(a) = g(τa).
In particular f(aτ ) = g(τaτ ) so that aτ ∈ Aτ , a contradiction.

52



2.4 Tate G-schemes

Being a Tate G-scheme is stable under base change.

Proposition 2.4.11. Let G be a �nite group and let X be a Tate G-scheme
over S. Let T be an S-scheme. Then X ×S T with the induced action of G
is a Tate G-scheme over T .

Proof. Surjectivity and integrality are stable under base change by lemma
2.3.6 and lemma 2.3.4 respectively, so X×S T → T is integral and surjective.

For every �eld K the �bers of (X ×S T )(K)→ T (K) are �bers of X(K)→
S(K), so the rest is clear.

Lemma 2.4.12. Let G be a �nite group and let X be a Tate G-scheme over
S. Then X/G→ S is a homeomorphism.

Proof. The map X → S is integral so X/G→ S is integral by lemma 2.2.15,
hence X/G → S is closed by proposition 2.3.7. Surjectivity is clear, so we
are left to show X/G→ S is injective.

Let x, y be in X and suppose they are mapped to the same element s in S.
The residue �elds κ(x) and κ(y) are both extensions of κ(s) so they can be
embedded in a �eld K. This gives us two K-points of X lying above the
same K-point of S. So x and y are conjugate since X is a Tate G-scheme
over S. Then X/G→ S is injective and hence a homeomorphism.

The following proposition is not new, even if the proof we give here probably
is. The result follows from proposition 2.2.7 and a result in Katz's and
Mazur's �arithmetic moduli of elliptic curves� attributed to Ofer Gabber
(see [15, Proposition A7.2.1 and Corollary A7.2.2]). It can also be found in
notes by Qing Liu (see [19]).

Proposition 2.4.13. Let G be a �nite group and let X be an admissible G-
scheme over S. Let T be an S-scheme. Then the natural map (X×ST )/G→
(X/G)×S T is a homeomorphism.

Proof. By theorem 2.4.10 we know that X → X/G is a Tate G-scheme, so
by proposition 2.4.11 and lemma 2.4.12 for all (X/G)-schemes U the map
(X×X/GU)/G→ U is a homeomorphism. Taking U = (X/G)×S T we have

X ×X/G U ∼= (X ×X/G (X/G))×S T ∼= X ×S T

so (X ×S T )/G→ (X/G)×S T is a homeomorphism.

Lemma 2.4.14. Let G be a �nite group and let X be an admissible G-scheme
over S. Suppose X/G→ S is universally injective. Then for all algebraically
closed �elds K the action of G on each non-empty �ber of X(K)→ S(K) is
transitive.
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Proof. Fix an algebraically closed �eld K and an s ∈ S(K). By corol-
lary 2.4.7 there is at most one element in the �ber of s in (X/G)(K). Sup-
pose there is one and denote it by x. By theorem 2.4.10 the action of G on
the �ber of x in X(K) is transitive, and hence also the action of G on the
�ber of s in X(K) is transitive, so the proof is complete.

We are now ready to prove the main theorem. We recall the statement here.

Theorem 2.4.15. Let G be a �nite group and let X → S be a G-scheme
over S. Then X is a Tate G-scheme over S if and only if X is admissible
and X/G→ S is a universal homeomorphism.

Proof. Suppose X → S is Tate. We proved in proposition 2.4.2 that X
is admissible. Fix a scheme T → S. By proposition 2.4.11 the G-scheme
(X ×S T ) → T is Tate and so by lemma 2.4.12 the map (X ×S T )/G → T
is a homeomorphism. Since by proposition 2.4.13 the map (X ×S T )/G →
(X/G)×ST is a homeomorphism also (X/G)×ST → T is a homeomorphism
by composition. So X/G→ S is a universal homeomorphism.

Suppose now X is admissible and X/G→ S is a universal homeomorphism.
By theorem 2.3.8 the map f : X/G → S is surjective, universally injective
and integral. The map X → S is the composition of f and X → X/G. Since
f is integral and surjective and X → X/G is also integral and surjective by
proposition 2.2.5, by compositionX → S is integral and surjective. Since f is
universally injective, by lemma 2.4.14 for all �elds K the action of G on each
non-empty �ber of X(K)→ S(K) is transitive. If K is algebraically closed,
by lemma 2.4.3 all �bers of X(K)→ S(K) are non-empty, so the action of G
is transitive on each �ber of X(K)→ S(K). This is true for all algebraically
closed �elds K, so X is a Tate G-scheme over S by proposition 2.4.5.

Example 2.4.16. Let A be the Z-algebra Z[i]. Let G be the group Z/2Z
acting on A by sending i to −i. It is easy to verify directly that SpecA →
SpecZ is a Tate G-scheme. The quotient is SpecAG so it is in this case
isomorphic to SpecZ. Note that the base change of A to F2 is also Tate
with group Z/2Z by proposition 2.4.11. In fact, the ring of invariants is
F2[ε]/(ε2) which is universally homeomorphic to F2 (but not isomorphic).

2.5 Properties of Tate G-schemes

We now investigate further some properties of Tate G-schemes. Some of the
results we will present are motivated by results in Galois theory for �elds.
We will give examples to illustrate these similarities.
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Example 2.5.1. A �nite Galois extension of �elds K → L with Galois
group G is a Tate G-scheme, since LG ∼= K. Let H be a subgroup of G,
then LH → L is a Galois extension with Galois group H. If moreover H is
normal, then K → LH is also Galois with Galois group G/H.

Something similar happens for Tate G-schemes, as we prove in the following
propositions.

Proposition 2.5.2. Let G be a �nite group and let X be a Tate G-scheme
over S. Let H be a subgroup of G. Then X/H exists and X → X/H is a
Tate H-scheme.

Proof. Recall that X is also an admissible H-scheme by proposition 2.2.11,
so X/H exists. The statement is now �Tate's lemma� (theorem 2.4.10).

Proposition 2.5.3. Let G be a �nite group and let X be a Tate G-scheme
over S. Let H be a normal subgroup of G. Then X/H → S is a Tate
G/H-scheme.

Proof. By theorem 2.4.15 it is su�cient to prove that (X/H)/(G/H) →
S is a universal homeomorphism. Since (X/H)/(G/H) is isomorphic to
X/G by proposition 2.2.11, and X/G is universally homeomorphic to S by
theorem 2.4.15, the proof is complete.

For the next proposition we need the following lemma.

Lemma 2.5.4. Let G be a �nite group and let f : X → Y be a morphism
of G-schemes over a scheme S. Suppose X and Y are admissible and f is a
universal homeomorphism. Then g : X/G→ Y/G is a universal homeomor-
phism.

Proof. The situation is summarized in the following diagram:

X
f //

��

Y

��
X/G g

// Y/G

By theorem 2.3.8 we have to prove g is surjective, integral and universally
injective. Since Y → Y/G and f are surjective also g is surjective. The
map f is a�ne by lemma 2.3.5, and universally closed, so it is integral by
proposition 2.3.7. Also Y → Y/G is integral by proposition 2.2.5, hence also
X → Y/G is integral by composition. Then g is integral by lemma 2.2.15.
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We are left to see that g is universally injective. Let K be an algebraically
closed �eld. We need to prove the map (X/G)(K)→ (Y/G)(K) is injective.

Let x̄, x̄′ be in (X/G)(K) and suppose they are mapped to the same element
ȳ in (Y/G)(K). By lemma 2.4.3 there exist x, x′ in X(K) lying above x̄ and
x̄′ respectively and there exists y ∈ Y (K) lying above ȳ. Moreover x and
x′ both map to y. Since f is a universal homeomorphism x and y are then
equal, and so also x̄ and ȳ are.

Example 2.5.5. Let K be a �eld and let L be a �nite Galois extension
of K with Galois group G. Let M be a purely inseparable extension of L.
Suppose that G acts on M and that L→M is G-equivariant. Then MG is
a purely inseparable extension of K. This motivates proposition 2.5.6.

Proposition 2.5.6. Let G be a �nite group and let X and Y be G-schemes
over S. Suppose that f : X → Y is a G-equivariant universal homeomor-
phism and that Y → S is a Tate G-scheme. Then X → S is a Tate G-
scheme.

Proof. The map X/G→ Y/G is a universal homeomorphism by lemma 2.5.4
and Y/G→ S is a universal homeomorphism because Y → S is Tate. Then
also the composition X/G→ S is a universal homeomorphism, since a com-
position of homeomorphisms is a homeomorphism, and hence X → S is Tate
by theorem 2.4.15.

Example 2.5.7. The following example motivates the next proposition. Let
K be a �eld and let L1 and L2 be Galois extensions of K, considered inside a
�xed algebraic closure of K. Let Gi be the Galois group of Li/K for i = 1, 2.
Suppose L1 ∩ L2 = K. Then the compositum L1L2 is a Galois extension of
K with group the product G1 ×G2 (see [17, Theorem 1.14, Chapter VI]).

Proposition 2.5.8. Let G1 and G2 be �nite groups and let X1 → S and
X2 → S be Tate schemes, with groups G1 and G2 respectively. Then X1 ×S
X2 → S is a Tate G-scheme, with G = G1 ×G2.

Proof. We show that (X1 ×S X2)/G → S is a universal homeomorphism.
We can write this map as the composition

(X1 ×S X2)/G
f→ (X1/G1 ×S X2)/G2

g→ X2/G2
h→ S.

We will prove that each of these maps is a universal homeomorphism. Since
X1 → S is a Tate G1-scheme, by proposition 2.4.11 also X1 ×S X2 →
(X1/G1)×SX2 is a Tate G1-scheme. Then (X1×SX2)/G1 → (X1/G1)×SX2

is a universal homeomorphism by theorem 2.4.15. Since the map is also G2-
equivariant f is a universal homeomorphism by lemma 2.5.4.
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2.6 Tate G-schemes over algebraically closed �elds

Since X1 → S is a Tate G1-scheme X1/G1 → S is a universal homeo-
morphism. Its base change to X2, the map (X1/G1 ×S X2) → X2, is a
G2-equivariant universal homeomorphism so lemma 2.5.4 implies g is a uni-
versal homeomorphism.

Since X2 → S is a Tate G2-scheme also h is a universal homeomorphism, so
the proof is complete.

2.6 Tate G-schemes over algebraically closed �elds

Let G be a �nite group. We characterize Tate G-schemes over an alge-
braically closed �eld K.

Lemma 2.6.1. Let K be an algebraically closed �eld and A be a connected
K-algebra, intgral over K. Then every element of A is either a unit or
nilpotent.

Proof. Let a be in A. The ring K[a] is connected because it is a subring of
the connected ring A, and �nite because a is integral over K. So K[a] is
local with nilpotent maximal ideal by lemma 1.4.13. Then a is either a unit
or nilpotent. This holds for every a ∈ A, so the proof is complete.

Lemma 2.6.2. Let K be an algebraically closed �eld and A be a connected
K-algebra, intgral over K. The following are equivalent.

1. The algebra A is connected.

2. The algebra A is local and the maximal ideal consists of nilpotent ele-
ments.

3. The algebra A is local.

4. The map K → A is a universal homeomorphism.

Proof. By lemma 2.6.1 we have that 1 implies 2.

Clearly 2 implies 3.

Suppose 3 holds. By remark 1.4.15 there exists a unique K-algebra map
A → K, so SpecA has a unique K-point and (SpecA)(K) → (SpecK)(K)
is injective. So K → A is a universal homeomorphism by theorem 2.3.8 and
by corollary 2.4.7. Hence 4 holds.

Since SpecK is connected if SpecA is universally homeomorphic to SpecK
in particular A is connected. So 4 implies 1, and the proof is complete.

57



2.6 Tate G-schemes over algebraically closed �elds

Proposition 2.6.3. Let X be a Tate G-scheme over an algebraically closed
�eld K. Then X is a�ne, and OX(X) is a �nite product A0× · · · ×A0 with
A0 a local integral K-algebra.

Proof. The morphismX → SpecK is integral and hence a�ne. Since SpecK
is a�ne, also X is a�ne (see [11, Chapitre 2, �1, Corollaire 1.3.4]). Let A be
the ring of global sections of X. By theorem 2.4.15 the quotient of SpecA by
the action of G is homeomorphic to the one point space SpecK. So G acts
transitively on SpecA and SpecA is �nite and discrete. Hence A is a �nite
product of local integral K-algebras, and all factors are isomorphic, since G
permutes them transitively.
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Chapter 3

The action of SymS on A(S)

3.1 Introduction

Let K be a �eld. Let K → L be a Galois extension of degree n. Let
G be the Galois group of L over K. Then the natural map K → LG is
an isomorphism. Let R → A be an R-algebra. Let G be a �nite group
acting on A via R-algebra homomorphisms. In chapter 2 we gave necessary
and su�cient criteria for R → AG to be a universal homeomorphism (see
theorem 2.4.15). In this case we say that R → A is Tate with group G.
Being Tate with group G is in this sense a weaker version of being Galois
with group G.

In this chapter we go back to our study of the Galois closure of commutative
algebras, and show that the Galois closure A(n) of an R-algebra A of rank
n, with the natural action of the symmetric group Sn is Tate over R. This
can be seen as a (weak) Galois property of the Galois closure. In fact, we
will prove more.

Let K → L be a separable extension of degree n. Let M be the Galois
closure of L over K. Assume the Galois group ofM over K is the symmetric
group Sn. For 0 ≤ m ≤ n the subgroup Sm of Sn acts on M , and the
corresponding �eld LSm is isomorphic to the intermediate �eldKn−m de�ned
in the introduction to chapter 1. Similarly, we will show that the Galois
closure A(n) of an R-algebra of rank n, is Tate with group Sm over A(m). We
now make this more precise.

Let A be an R-algebra of rank n. Let S be a �nite set. Let T be a subset of S.
Denote by (αs)s∈S the natural maps A → A(S), and by (βt)t∈T the natural
maps A → A(T ). Note that

∏
t∈T (X − αt(a)) divides the characteristic

polynomial of a in A(S)[X] for every a ∈ A (and similarly for an a in a base
change of A). Hence by the universal property of A(T ) we have a unique map
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3.2 Proof of the main theorem

A(T ) → A(S) such that for every t ∈ T the following diagram commutes

A
αt //

βt
��

A(S)

A(T )

<<xxxxxxxx

Recall from remark 1.3.15 that the symmetric group SymS acts on A(S),
permuting the maps αs. Hence also the subgroup G = Sym(S \T ) of SymS
acts on A(S). Clearly G acts by A(T )-algebra homomorphisms, so SpecA(S)

is a G-scheme over SpecA(T ). We will prove the following.

Theorem (Theorem 3.2.9). Let A be an R-algebra of rank n. Let S be a
set with #S = n, and let T ⊆ S. Let G be the group Sym(S \ T ). Then
SpecA(S) with the natural action of G is a Tate G-scheme over SpecA(T ).

By theorem 2.4.15 this is equivalent to saying that the mapA(T ) → (A(S))G is
a universal homeomorphism. In our proof of the above theorem the product
formula for the S-closure (theorem 1.4.4) will be a crucial ingredient.

3.2 Proof of the main theorem

To prove that A(T ) → A(S) is Tate with group G = Sym(S \ T ) it su�ces to
prove that A(S) is integral over A(T ), that the scheme morphism SpecA(S) →
SpecA(T ) is surjective, and that for all algebraically closed �eldsK the action
of G on each �ber of

HomR-Alg

(
A(S),K

)
→ HomR-Alg

(
A(T ),K

)
is transitive. We will �rst prove integrality.

Proposition 3.2.1. Let A be an R-algebra of rank n. Let S be a �nite set.
Then A(S) is integral over R.

Proof. The elements αs(a) for s ∈ S and a ∈ A form a set of R-algebra
generators for A(S) (see remark 1.3.2). Since products and sums of integral
elements are integral, it is su�cient to show αs(a) is integral over R for all
s ∈ S and a ∈ A. By the de�ning property of A(S) these are roots of Pa(X),
which is in R[X] and is monic, so R → A(S) is integral. This concludes the
proof.

Corollary 3.2.2. Let A be an R-algebra of rank n. Let S be a �nite set,
and let T be a subset of S. Then A(S) is integral over A(T ).
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3.2 Proof of the main theorem

Proof. Follows immediately from proposition 3.2.1 since A(T ) → A(S) is an
R-algebra map.

For the rest of the proof we will need to describe the map

HomK-Alg

(
A(S),K

)
→ HomK-Alg

(
A(T ),K

)
when A is a �nite algebra over the algebraically closed �eld K. We do this
in proposition 3.2.4. First we introduce some notation.

De�nition 3.2.3. Let K be an algebraically closed �eld. Let A be a K-
algebra of rank n. Fix a decomposition A = A1×· · ·×Am of A in connected
K-algebras (see lemma 1.4.13). Let S be a �nite set. We de�ne a map

ΦS : HomK-Alg

(
A(S),K

)
→ Maps(S, {1, . . . ,m})

in the following way. Take f ∈ HomK-Alg(A
(S),K). Let s be in S. Consider

f ◦ αs : A → K. This map factors through Ai for some i ∈ {1, . . . ,m} (see
also lemma 1.4.3). Then the image of s via ΦS(f) is i.

Let ni be the rank of Ai. We denote by FS ⊆ Maps(S, {1, . . . ,m}) the set of
maps F : S → {1, . . . ,m} such that for all i = 1, . . . ,m we have that F−1(i)
has at most ni elements.

Proposition 3.2.4. Let K be an algebraically closed �eld. Let S be a �nite
set. We refer to de�nition 3.2.3 for the notation regarding A, and the map
ΦS. Then

ΦS : HomK-Alg

(
A(S),K

)
→ FS

is a bijection.

Moreover: let T ⊆ S and let f : FS → FT be the map sending F to its
restriction to T . Then the following diagram commutes:

HomK-Alg

(
A(S),K

)
��

ΦS // FS

f

��
HomK-Alg

(
A(T ),K

)
ΦT

// FT

Proof. By the product formula for the S-closure (theorem 1.4.4) we can write

A(S) =
∏

F : S→{1,...,m}

A(F )

where the product is indexed over all maps F : S → {1, . . . ,m} and

A(F ) =
m⊗
i=1

A
(F−1(i))
i .
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3.2 Proof of the main theorem

By number 1 of proposition 1.3.12, if F−1(i) has more than ni elements
for some i then A(F−1(i)) is zero, and hence A(F ) is zero. If F−1(i) has at
most ni elements, then by lemma 1.4.16 we have that A(F−1(i)) is local. If
F ∈ FS then this happens for all i = 1, . . . ,m. So A(F ) is a tensor product
of �nite local K-algebras with residue �eld K. Hence when F ∈ FS we have
that A(F ) is local. So by corollary 1.4.14 for all F ∈ FS we have a unique
K-algebra map A(F ) → K. Hence HomK-Alg(A

(F ),K) is empty if F 6∈ FS

and has one element if F ∈ FS . In particular

ΦS : HomK-Alg

(
A(S),K

)
→ FS

is bijective.

By corollary 1.4.14 for each i = 1, . . . ,m there is a unique K-algebra map
Ai → K. Hence HomK-Alg(A,K) is in bijection with {1, . . . ,m}. For all
t ∈ T the map αt induces a map HomK-Alg(A

(S),K) → HomK-Alg(A,K)
by composition. The corresponding map FS → {1, . . . ,m} is the eval-
uation map, sending F to F (t). In the same way for t ∈ T the map
FT → {1, . . . ,m} corresponding to βt is the evaluation in t. The map
FS → FT corresponding to the natural map A(T ) → A(S) is the unique map
such that for all t ∈ T the following diagram commutes:

FS

αt

��

// FT

βtyyssssssssss

{1, . . . ,m}

Since f makes the diagram above commute for all t ∈ T , the second claim
is proved.

Lemma 3.2.5. Let A be an R-algebra of rank n. Let S be a set with #S ≤ n,
and let T be a subset of S. Then the natural map SpecA(S) → SpecA(T ) is
surjective.

Proof. It is su�cient to show that for every algebraically closed �eld K
the map HomR-Alg(A

(S),K) → HomR-Alg(A
(T ),K) is surjective. Since the

constructions involved commute with base change, we can assume that R is
equal to K, and prove that the map

HomK-Alg

(
A(S),K

)
→ HomK-Alg

(
A(T ),K

)
is surjective. By lemma 1.4.13 the K-algebra A can be written as A1 ×
· · · × Am, with Ai local with residue �eld K and �nite rank ni. Take x
in HomK-Alg(A

(T ),K). By proposition 3.2.4 the element x corresponds to
a map F ′ : T → {1, . . . ,m} in FT . We can extend F ′ to a map F : S →
{1, . . . ,m} in FS because

∑
ni is n and #S is at most n. The proof is then

complete.
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3.2 Proof of the main theorem

Remark 3.2.6. Lemma 3.2.5 and corollary 3.2.2 together imply that the ker-
nel of the natural map A(T ) → A(S) consists of nilpotent elements. In all
the examples we have computed the map is in fact injective. It would be
interesting to know whether this is always the case.

Lemma 3.2.7. Let S be a �nite set. Let SymS be the symmetric group on
S. Let n1, . . . , nm be non-negative integers. Then the action of SymS on
the set of maps F : S → {1, . . . ,m} such that for all i = 1, . . . ,m we have
that F−1(i) has ni elements is transitive.

Proof. Clear.

Lemma 3.2.8. Let K be an algebraically closed �eld, and let A be a K-
algebra of rank n. Let S be a set with #S = n. Let T be a subset of S and
let G be the group Sym(S \ T ). Then G acts transitively on each �bers of

ΦS,T : HomK-Alg

(
A(S),K

)
→ HomK-Alg

(
A(T ),K

)
Proof. By lemma 1.4.13 the K-algebra A can be written as A1 × · · · × Am,
with Ai local with residue �eld K and �nite of rank ni. In proposition 3.2.4
we described the set HomK-Alg(A

(S),K) and the map ΦS,T . Since #S = n
we have that HomK-Alg(A

(S),K) is in bijection with the set FS of maps
F : S → {1, . . . ,m} such that for all i = 1, . . . ,m we have that F−1(i) has
ni elements. The group G acts on FS via its natural action on S. Let F ′

be a map T → {1, . . . ,m}, and suppose F ′−1(i) has at most ni elements for
all i. The �ber of ΦS,T on F ′ is the set of maps F : S \ T → {1, . . . ,m} such
that for all i = 1, . . . ,m we have that F−1(i) has ni − #F ′−1(i) elements.
By lemma 3.2.7 we have that G acts transitively on this set. So the proof is
complete.

The main result now follows easily.

Theorem 3.2.9. Let A be an R-algebra of rank n. Let S be a set with
#S = n, and let T be a subset of S. Let G be the group Sym(S \ T ). Then
A(T ) → A(S) with the action of G is Tate.

Proof. We proved that A(T ) → A(S) is integral in corollary 3.2.2. We proved
that SpecA(S) → SpecA(T ) is surjective in lemma 3.2.5. To conclude we
need to show that for all R → K with K an algebraically closed �eld the
action of G on each �ber of

HomR-Alg

(
A(S),K

)
→ HomR-Alg

(
A(T ),K

)
is transitive. This follows from lemma 3.2.8, since the constructions involved
commute with base change.
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3.2 Proof of the main theorem

Corollary 3.2.10. Let A be an R-algebra of rank n. Let S be a set with
#S = n, and let T be a subset of S. Let G be the group Sym(S \ T ). Then
the natural map A(T ) → (A(S))G is a universal homeomorphism.

Proof. Follows immediately from theorem 3.2.9 and theorem 2.4.15.

Corollary 3.2.11. Let A be an R-algebra of rank n. Then R →
(
A(n)

)Sn

is a universal homeomorphism.

Proof. Apply corollary 3.2.10 with S = {1, . . . , n} and T = ∅.

Example 3.2.12 (Étale case). Let R be a connected ring. Let α : R → K
be a geometric point of R. Let π be the étale fundamental group of R in α.
Let A be a �nite étale R-algebra of rank n and let X be the corresponding
π-set (see theorem 1.4.9). Then by proposition 1.4.11 for any �nite set S
with #S = n we have that A(S) corresponds to the set Bij(S,X) of bijections
S → X, with left action of π induced by the one on X. For all subsets T of
S the group G = Sym(S \ T ) acts on the right on this set, and the action
commutes with the action of π. The quotient Y = Bij(S,X)/G is the π-set
of injections from T to X. By proposition 1.4.11 the π-set Y corresponds to
the R-algebra A(T ). So in this case A(T ) → (A(S))G is an isomorphism.

Example 3.2.13 (Local case). Let K be an algebraically closed �eld. Let
A be a local K-algebra of rank n. Let S be a �nite set with #S = n. Let
T be a subset of S. Let G be the group Sym(S \ T ). By lemma 1.4.16
both A(S) and A(T ) are local. Since A(S) is �nite and local, we have that
HomK-Alg(A

(S),K) has one element by corollary 1.4.14.

By lemma 2.4.3 the map (SpecA(S))(K)→ (Spec(A(S))G)(K) is surjective.
Hence also HomK-Alg((A

(S))G,K) has one element. So the map

HomK-Alg

(
(A(S))G,K

)
→ HomK-Alg

(
A(T ),K

)
is bijective, and then Spec(A(S))G → SpecA(T ) is universally bijective by
lemma 2.4.9. Finally, the map A(T ) → (A(S))G is integral, hence it is a
universal homeomorphism by theorem 2.3.8.

64



Chapter 4

Discriminant algebras

4.1 Introduction

Let K be a �eld of characteristic di�erent from 2. Let f be a polynomial of
degree n in K[x], with leading coe�cient equal to 1. Let x1, . . . , xn be the
roots of f in an algebraic closure K̄ of K. Then the discriminant of f is

∆f =
∏
i<j

(xi − xj)2 ∈ K.

Obviously ∆f is zero if and only if f has a double root. Hence ∆f is invertible
if and only if L = K[X]/(f) is �nite étale over K. Assume f is irreducible
and ∆f non zero. In this case let M be the splitting �eld of f (inside K̄).
Suppose the Galois group of M over K is the full symmetric group Sn. The
square roots of ∆f are in M since they are

±
∏
i<j

(xi − xj),

and the xi are elements of M . The subextension K → K[
√

∆f ] of M is
MAn . In particular K → K[

√
∆f ] only depends on the extension L/K,

and not on f .

Let R be a connected ring. Let α : R → K be a geometric point of R. Let
π = π(R,α) be the étale fundamental group of R in α. Let A be a �nite étale
R-algebra of rank n. Using π-sets (see theorem 1.4.9) one can de�ne a �nite
étale R-algebra ∆ét(A/R) of rank 2. In the case of a separable extension of
�elds this generalizes the An-invariants of M . This will be made precise in
de�nition 4.2.12.

Alternatively, one could try to generalize the extension K[
√

∆f ] to more
general rings. Let R be a ring. Let A be an R-algebra of rank n. Let

65



4.1 Introduction

{a1, . . . , an} be a basis of A. It is possible to de�ne an element ∆(a1, . . . , an)
of R, the discriminant of A with respect to the given basis. (Changing the
basis changes the discriminant by the square of a unit in R.) One may then
construct a natural R-algebra ∆1/2(A/R) of rank 2 in which the discriminant
has a square root. This construction will be particularly interesting when 2
is invertible in R. We will make this precise in de�nition 4.2.3.

Let R be a connected ring. Let A be an R-algebra of rank n. We have that
∆ét(A/R) is isomorphic to ∆1/2(A/R) when 2 is invertible in R and A is
�nite étale. We will give a proof of this known fact in proposition 4.2.13.
This is not true if 2 is not invertible in R, see example 4.2.7.

Let R be a Z[1/2]-algebra. Let A be an R-algebra of rank n. In this chapter
we will explicitly construct a natural ring homomorphism λ : ∆1/2(A/R)→
A(n), and prove the following theorem.

Theorem (Theorem 4.3.8). Let R be a Z[1/2]-algebra. Let A be an R-algebra
of rank n. Then λ : ∆1/2(A/R)→ A(n) is Tate with group An.

By theorem 2.4.15 this implies that ∆1/2(A/R) → (A(n))An is a universal
homeomorphism. I do not know if this map is an isomorphism in general.

A natural question is whether it is possible to de�ne for all rings R and
R-algebras A of rank n an R-algebra ∆(A/R) of rank 2, generalizing both
∆ét(A/R) and ∆1/2(A/R). Here is a list of properties that ∆(A/R) should
have:

• The construction of ∆(A/R) is functorial under isomorphisms and
commutes with arbitrary base change.

• If A is �nite étale and R is connected then ∆(A/R) is isomorphic to
∆ét(A/R).

• If 2 is invertible in R then ∆(A/R) is isomorphic to ∆1/2(A/R).

• We have that ∆(A/R) is �nite étale if and only if A is �nite étale.

Constructions satisfying these properties have been given by Pierre Deligne
in [7] and by Ottmar Loos in [20]. In section 4.4 we will give indications
on future work (joint with Owen Biesel), which gives a new and simpler
construction of ∆(A/R). This uses ideas coming from the Galois closure for
rings.

We will start by presenting preliminary results in section 4.2. These include
the de�nitions of ∆ét(A/R) and ∆1/2(A/R), and the proof of some of the
properties described above. We will then de�ne the map λ : ∆1/2(A/R) →
A(n), and prove the above theorem in section 4.3. Finally we will give the
new de�nition of ∆(A/R) in section 4.4.
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4.2 Preliminaries

4.2 Preliminaries

We give �rst the de�nition of discriminant for R-algebras of rank n.

De�nition 4.2.1. Let A be an R-algebra of rank n. Recall from de�ni-
tion 1.2.4 the trace map s1 : A → R. The discriminant form of A is the
bilinear form δA on

∧nA de�ned as follows:

δA(x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn) = det (s1(xiyj))ij

where det(aij)ij denotes the determinant of the matrix with aij in the i-th
row and j-th column.

Remark 4.2.2. Let f be a polynomial in R[x], with leading coe�cient equal to
1. Consider the basis 1, x, . . . , xn−1 of A = R[x]/(f). The discriminant of f ,
de�ned in the introduction, is equal to δA(1∧x∧· · ·∧xn−1, 1∧x∧· · ·∧xn−1).

We can now de�ne the discriminant algebra ∆1/2(A/R) of an R-algebra A
of rank n, when 2 is invertible in R.

De�nition 4.2.3. Let R be a Z[1/2]-algebra. Let A be an R-algebra of
rank n. The discriminant algebra of A is an R-algebra ∆1/2(A/R) de�ned
as follows. As an R-module ∆1/2(A/R) is equal to R ⊕

∧nA. We de�ne
a multiplication using the bilinear form δA: let x = x1 ∧ · · · ∧ xn and y =
y1 ∧ · · · ∧ yn. Then for all r, r′ in R we de�ne

(r + x)(r′ + y) = rr′ + δA(x, y) + ry + r′x

in ∆1/2(A/R).

Remark 4.2.4. De�nition 4.2.3 makes sense over any ring R, but we will show
later that if 2 is not invertible in R this algebra does not have the properties
we want (see example 4.2.7).

Remark 4.2.5. The above de�nes a functor from the category of R-algebras
of rank n (with isomorphisms as morphisms) to R-algebras of rank 2. The
construction of ∆1/2(A/R) commutes with arbitrary base change.

Proposition 4.2.6. Let R be a Z[1/2]-algebra. Then ∆1/2(Rn/R) is iso-
morphic to R2 as an R-algebra.

Proof. Let e1, . . . , en be the standard basis of Rn. Take e = e1 ∧ · · · ∧ en as
a basis of

∧nA. By de�nition of ∆1/2(Rn/R) we have

e2 = δRn(e, e) = det(s1(eiej))ij = det (δij)ij = 1.

Since 2 is invertible in R the elements (1 − e)/2 and (1 + e)/2 are in
∆1/2(Rn/R). These elements form a complete set of orthogonal idempotents
in ∆1/2(Rn/R). Hence ∆1/2(Rn/R) is isomorphic to R2 as an R-algebra, as
we wanted to show.
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Example 4.2.7. Consider the Z-algebra Zn. Then Z ⊕
∧n Zn with multi-

plication given by the discriminant form is isomorphic to Z[x]/(x2−1). This
is not isomorphic to Z2 as a Z-algebra. This shows that proposition 4.2.6
does not hold if 2 is not invertible in R.

Lemma 4.2.8. Let R be a ring. Let n ≥ 0 be an integer and let M and
N be R-modules of rank n. Let f : M → N be an R-module map. Then
f is an isomorphism if and only if the induced map

∧nM →
∧nN is an

isomorphism.

Proof. See [5, Chapitre III, �8, no. 2, Théorème 1] for the free case. The
result follows in general by localizing at primes of R.

Lemma 4.2.9. Let R be a ring. Let M and N be R-modules. Let L be an
R-module of rank 1. Let f : M → N be an R-module map. Then f is an
isomorphism if and only if (f⊗ IdL) : M⊗RL→ N⊗RL is an isomorphism.

Proof. This is clear if L is free. In general it follows by localizing at primes
of R.

Lemma 4.2.10. Let R be a ring. Let M be an R-module of rank n. Then
the map

∧n(M∨)⊗
∧nM → R de�ned by

(f1 ∧ · · · ∧ fn)⊗ (x1 ∧ · · · ∧ xn) 7→ det (fi(xj))ij

is an isomorphism.

Proof. By localizing at primes of R we can reduce to M a free R-module.
Let e1, . . . , en be a basis of M and let X1, . . . , Xn be the dual basis. Since
(X1 ∧ · · · ∧Xn)⊗ (e1 ∧ · · · ∧ en) is sent to 1, the proof is complete.

Lemma 4.2.11. Let A be an R-algebra of rank n. Then A is �nite étale if
and only if the map

∧nA⊗
∧nA→ R induced by the discriminant form δA

is an isomorphism.

Proof. By de�nition 1.4.6 we have that A is �nite étale if and only if the
map f : A→ A∨ given by

a 7→ (b 7→ s1(ab))

is an isomorphism. By lemma 4.2.8 this is an isomorphism if and only if∧n f :
∧nA →

∧n(A∨) is an isomorphism. By lemma 4.2.9 this is an iso-
morphism if and only if

∧nA⊗
∧nA→

∧n(A∨)⊗
∧nA is an isomorphism.

68



4.2 Preliminaries

Composing with the isomorphism in lemma 4.2.10 we have that
∧n f is an

isomorphism if and only if the map∧n
A⊗

∧n
A→ R

x1 ∧ · · · ∧ xn ⊗ y1 ∧ · · · ∧ yn 7→ det (f(xi)(yj))ij

is an isomorphism. This is equal to the map induced by δA, so the proof is
complete.

De�nition 4.2.12. Let R be a connected ring. Let α : R → K be a geo-
metric point of R. Let π = π(R,α) be the étale fundamental group of R
in α. Let A be a �nite étale R-algebra of rank n, corresponding to a π-set
X. Consider the π-set Bij({1, . . . , n}, X) of bijections from {1, . . . , n} to X,
with left action of π induced by the one on X. The symmetric group on n
letters Sn acts on the right on the π-set Bij({1, . . . , n}, X), and so does the
subgroup An of even permutations. We denote by OrX the quotient by the
action of An, and call it the π-set of orientations of X. This is a set with two
elements. We denote by ∆ét(A/R) the corresponding �nite étale R-algebra
of rank 2.

Proposition 4.2.13. Let R be a Z[1/2]-algebra. Let A be an R-algebra of
rank n. Then ∆1/2(A/R) is �nite étale if and only if A is �nite étale.

Suppose moreover that R is connected, and that A is �nite étale. Let α : R→
K be a geometric point of R. Let π = π(R,α) be the étale fundamental
group of R in α. Let X be the π-set corresponding to A. Then ∆1/2(A/R)
corresponds to OrX.

Proof. By lemma 4.2.11 is su�cient to show that δA is an isomorphism if
and only if δ∆1/2(A/R) is an isomorphism. Let M be

∧2(∆1/2(A/R)). The
map

∧nA→M that sends x ∈
∧nA to 1 ∧ x in M is an isomorphism. We

show that the following diagram

∧nA⊗
∧nA

δA //

∼
��

R

·4∼
��

M ⊗M
δ
∆1/2(A/R)

// R

commutes. Let x⊗y be in
∧nA⊗

∧nA. By applying the map corresponding
to δA and then multiplying by 4 we get 4δA(x, y). On the other hand x⊗ y
is sent to (1 ∧ x) ⊗ (1 ∧ y) in M ⊗M , which is sent to the determinant of
the matrix (

s1(1) s1(x)
s1(y) s1(xy)

)
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4.3 Statement and proof of the main theorem

by δ∆1/2(A/R) (here s1 denotes the trace in ∆1/2(A/R)). Since ∆1/2(A/R)
has rank 2, we have that s1(1) is 2. Note that by de�nition of the multi-
plication in ∆1/2(A/R) we have that xy is equal to δA(x, y), which is in R.
So s1(xy) is 2δA(x, y). Moreover s1(x) and s1(y) are zero. So the deter-
minant is 4δA(x, y), and the diagram commutes. Since 2 is invertible in R,
multiplication by 4 is an isomorphism, so δA is an isomorphism if and only
if δ∆1/2(A/R) is an isomorphism. Hence A is étale if and only if ∆1/2(A/R)
is étale.

To conclude the proof it su�ces to show that if A is �nite étale then the π-set
corresponding to ∆1/2(A/R) is OrX. Since the construction of ∆1/2(A/R)
commutes with base change we can base change to K via α. Since A ⊗R
K is isomorphic to KX , the π-set corresponding to ∆1/2(A/R) is equal to
HomK-Alg(∆

1/2(KX/K),K). We de�ne a natural bijection between this set
and OrX.

Let x be in X. Let ex : X → K be the map sending x to 1 and other elements
to 0. Clearly {ex}x∈X is a basis of KX . Let g be a bijection from {1, . . . , n}
to X. The element eg = eg(1) ∧ · · · ∧ eg(n) forms a basis of

∧nKX . Hence,
a K-algebra map ∆1/2(KX/R) → K is completely determined by its value
on eg. This can only be 1 or −1 since the square of eg in ∆1/2(KX/R) is
1, as we proved in proposition 4.2.6. (Note that the characteristic of K is
di�erent from 2, since 1/2 is in R.) We de�ne a map

Φ: Bij({1, . . . , n}, X)→ HomK-Alg(∆
1/2(KX/K),K)

by sending a g ∈ Bij({1, . . . , n}, X) to the map sending eg to 1. For every σ
in the symmetric group Sn we have that eg◦σ is equal to eg if and only if σ
is an even permutation. If not then eg◦σ is equal to −eg. So for σ odd we
have that Φ(eg◦σ) sends eg to −1. In particular Φ is surjective. Moreover Φ
factors through OrX, giving the bijection we were looking for.

Remark 4.2.14. Proposition 4.2.13 shows that if 2 is invertible in R, and R is
connected then the two functors ∆ét(−/R) and ∆1/2(−/R) are isomorphic.

4.3 Statement and proof of the main theorem

Let R be a Z[1/2]-algebra. Let A be an R-algebra of rank n. We �rst de�ne
a map λ : ∆1/2(A/R)→ A(n).

Theorem 4.3.1. Let A be an R-algebra of rank n. Let A(n) be the n-closure
of A and let αi for i = 1, . . . , n be the natural maps. Then the R-module
map λ :

∧nA→ A(n) de�ned by

λ(x1 ∧ · · · ∧ xn) = det(αi(xj))ij

induces an R-algebra homomorphism ∆1/2(A/R)→ A(n).
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4.3 Statement and proof of the main theorem

Proof. Clearly λ is well de�ned. To prove the theorem it is su�cient to show
that for x = x1 ∧ · · · ∧ xn and y = y1 ∧ · · · ∧ yn we have that λ(x)λ(y) is
equal to δA(x, y) in A(n). We have

λ(x)λ(y) = det(αi(xj))ij · det(αi(yj))ij .

Since the determinant of a matrix is equal to the determinant of its transpose
the above can be written as

det(αj(xi))ij · det(αi(yj))ij .

Matrix multiplication gives then

λ(x)λ(y) = det

(
n∑
k=1

αk(xi)αk(yj)

)
ij

,

and since the αk are R-algebra homomorphisms we have

det

(
n∑
k=1

αk(xi)αk(yj)

)
ij

= det

(
n∑
k=1

αk(xiyj)

)
ij

.

Note that for all a ∈ A we have that −s1(a) is the coe�cient of Xn−1 in
Pa(X), and −

∑
k αk(a) is the coe�cient of Xn−1 in

∏
k(X − αk(a)). By

de�nition of A(n) for all a ∈ A the polynomials Pa and
∏
k(X − αk(a)) are

equal in A(n)[X]. So we have:

det

(
n∑
k=1

αk(xiyj)

)
ij

= det(s1(xiyi))ij = δA(x, y).

Hence in A(n) we have
λ(x)λ(y) = δA(x, y),

as we wanted to show.

We now will show that if 2 is invertible in R then λ is Tate with group
An. It su�ces to prove that λ is integral, that the corresponding scheme
map SpecA(n) → Spec ∆1/2(A/R) is surjective and that for all algebraically
closed �elds K the action of An on each �ber of

HomR-Alg

(
A(n),K

)
→ HomR-Alg

(
∆1/2(A/R),K

)
is transitive. We �rst show that λ is integral.

Proposition 4.3.2. Let A be an R-algebra of rank n. Then we have that
λ : ∆1/2(A/R)→ A(n) is integral.
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Proof. By proposition 3.2.1 we have that A(n) is integral over R. Since λ is
an R-algebra map this concludes the proof.

For the rest of the proof we will need to describe the map

HomK-Alg

(
A(n),K

)
→ HomK-Alg

(
∆1/2(A/R),K

)
when A is a �nite étale algebra over the algebraically closed �eld K.

Proposition 4.3.3. Let K be an algebraically closed �eld of characteristic
di�erent from 2. Consider the K-algebra A = KX for a �nite set X of
cardinality n. Then the diagram

Bij({1, . . . , n}, X) //

��

OrX

��

HomK−Alg

(
A(n),K

)
λ
// HomK-Alg

(
∆1/2(A/K),K

)
commutes, where the bottom map is the map induced by λ, and the vertical
ones are the bijections de�ned in proposition 1.4.11 and in proposition 4.2.13.

Proof. We denote by B the set Bij({1, . . . , n}, X). Let x be in X. Let
ex : X → K be the map sending x to 1 and other elements to 0. Clearly
{ex}x∈X is a basis of KX . Fix g in B. Denote by eg the element eg(1)∧ · · · ∧
eg(n) of

∧nA. Let [g] be the image of g in OrX. By proposition 4.2.13 the
map OrX → HomK-Alg(∆

1/2(A/K),K) sends [g] to the unique K-algebra
map ∆1/2(A/K)→ K sending eg to 1.

By proposition 1.4.11 we have that A(n) is isomorphic to KB. The map B →
HomK−Alg(A(n),K) sends g to the projection to the component correspond-
ing to g, which will be denoted πg. Finally, the map HomK−Alg(A(n),K)→
HomK-Alg(∆

1/2(A/K),K) sends πg to the composition πg ◦λ. We prove that
this K-algebra map sends eg to 1.

For i = 1, . . . , n let αi be the natural map A→ A(n). We have

πg

(
λ(eg)

)
= πg

(
det(αi(eg(j)))ij

)
= det

(
πg(αi(eg(j)))

)
ij
.

From the description of αi given in theorem 1.4.4 we have that αi(eg(j)) is

equal to
(
eg(j)(h(i))

)
h∈B

. So we have

det
(
πg(αi(eg(j)))

)
ij

= det
(
eg(j)(g(i))

)
ij

= det(δij)ij

which is 1. So πg ◦ λ sends eg to 1, as we wanted to show.
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Lemma 4.3.4. Let K be an algebraically closed �eld of characteristic dif-
ferent from 2. Let A be an R-algebra of rank n. Suppose that A is not �nite
étale. Then ∆1/2(A/R) is local.

Proof. Up to isomorphism K2 and K[ε]/(ε2) are the only K-algebras of rank
2. By proposition 4.2.13 we have that ∆1/2(A/R) is not �nite étale. Hence
∆1/2(A/R) is isomorphic to K[ε]/(ε2), and so it is local.

Proposition 4.3.5. Let R be a Z[1/2]-algebra. Let A be an R-algebra of
rank n. Then the map SpecA(n) → Spec ∆1/2(A/R) is surjective.

Proof. It is su�cient to show that for every algebraically closed �eld K the
map HomR-Alg(A

(n),K)→ HomR-Alg(∆
1/2(A/R),K) is surjective. Since the

constructions involved commute with base change, we can then assume R is
equal to K, and prove that the map

HomK-Alg

(
A(n),K

)
→ HomK-Alg

(
∆1/2(A/R),K

)
is surjective.

First suppose that A is not �nite étale. Then by lemma 4.3.4 we have that
∆1/2(A/R) is local. Hence HomK-Alg(∆

1/2(A/R),K) has one element by
corollary 1.4.14. The map is then surjective.

If A is �nite étale then A is isomorphic to KX as a K-algebra, with X a
�nite set. By proposition 4.3.3 we have that the map HomK-Alg(A

(n),K)→
HomK-Alg(∆

1/2(A/R),K) corresponds to the quotient map

Bij({1, . . . , n}, X)→ OrX

via the bijections de�ned in proposition 1.4.11 and in proposition 4.2.13. In
particular the map is surjective.

Lemma 4.3.6. Let n1, . . . , nm be non-negative integers. Suppose that there
exists i ∈ {1, . . . ,m} such that ni > 1. Then the action of An on the set

F = {F : {1, . . . , n} → {1, . . . ,m} | for i = 1, . . . ,m : #F−1(i) = ni}

is transitive.

Proof. Clear.

Proposition 4.3.7. Let K be an algebraically closed �eld of characteristic
di�erent from 2. Let A be a K-algebra of rank n. Then the action of An on
each �ber of

f : HomR-Alg(A
(n),K)→ HomR-Alg(∆

1/2(A/R),K)

is transitive.
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Proof. Write A = A1 × · · ·Am with Ai connected of rank ni. Recall from
proposition 3.2.4 that the set HomK-Alg(A

(n),K) is in bijection with the set
F of maps F : {1, . . . , n} → {1, . . . ,m} such that #F−1(i) is equal to ni.
We distinguish two cases.

First suppose that A is not �nite étale. Then by lemma 4.3.4 we have
that ∆1/2(A/R) is local. So HomR-Alg(∆

1/2(A/R),K) has one element by
corollary 1.4.14. The �ber is then equal to HomK-Alg(A

(n),K). Since A
is not �nite étale there exists i ∈ {1, . . . ,m} such that ni > 1. Hence by
lemma 4.3.6 the action of An on the �ber is transitive.

If A is �nite étale then HomK-Alg(A
(n),K)→ HomR-Alg(∆

1/2(A/R),K) cor-
responds to the quotient map Sn → Sn/An, as we proved in proposition 4.3.3.
So the action of An on each �ber is transitive as we wanted to show.

The main theorem now follows easily.

Theorem 4.3.8. Let R be a Z[1/2]-algebra. Let A be an R-algebra of rank
n. Then λ : ∆1/2(A/R)→ A(n) is Tate with group An.

Proof. We proved that ∆1/2(A/R) → A(n) is integral in proposition 4.3.2.
We proved that SpecA(n) → Spec ∆1/2(A/R) is surjective in proposition
4.3.5. To conclude it su�ces to show that for all R → K with K an alge-
braically closed �eld the action of G on each �ber of

HomR-Alg

(
A(n),K

)
→ HomR-Alg

(
∆1/2(A/R),K

)
is transitive. This follows from proposition 4.3.7, since the constructions
involved commute with base change.

Corollary 4.3.9. Let R be a Z[1/2]-algebra. Let A be an R-algebra of rank
n. Then ∆1/2(A/R)→ (A(n))An is a universal homeomorphism.

Proof. Follows immediately from theorem 4.3.8 and theorem 2.4.15.

4.4 More on discriminants

Let R be a ring. Let A be an R-algebra of rank n. We will de�ne an R-
algebra ∆(A/R) of rank 2, and list some of its properties without proof.
This is forthcoming joint work with Owen Biesel. We will use results on
polynomial laws from section 1.5.

De�nition 4.4.1. Let R be a ring. Let A be an R-algebra of rank n. We
denote by SymnA the ring of symmetric tensors (A⊗n)Sn .
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Remark 4.4.2. Let R be a ring. Let A be an R-algebra of rank n. Recall the
de�nition of SymA and SymnA from 1.2.14 and example 1.2.15. We have
that (SymnA)∨ is naturally isomorphic to Symn(A∨).

De�nition 4.4.3. Let R be a ring. Let A be an R-algebra of rank n. By
proposition 1.5.9 the norm sn : A→ R gives a unique element of Symn(A∨).
By remark 4.4.2 this gives an R-linear map ϕ : SymnA→ R.

Proposition 4.4.4. Let R be a ring. Let A be an R-algebra of rank n. Then
the map ϕ : SymnA→ R is a ring homomorphism.

Proof. The proof is in [9, Proposition 2.5.1]. It can also be found in the
thesis of Owen Biesel.

De�nition 4.4.5. Let R be a ring. Let A be an R-algebra of rank n. Let
S be SymnA. The map ϕ makes R into an S-algebra. We de�ne

∆(A/R) = (A⊗n)An ⊗S R.

We give a list of facts about ∆(A/R) without proof. The proof will be
contained in forthcoming work with Owen Biesel.

• The construction of ∆(A/R) is functorial under isomorphisms and
commutes with arbitrary base change.

• If A is étale, then ∆(A/R) is isomorphic to ∆ét(A/R) as an R-algebra.

• If 2 is invertible in R then ∆(A/R) is isomorphic to ∆1/2(A/R) as an
R-algebra.

• We have a short exact sequence of R-modules

0→ R→ ∆(A/R)→
∧n

A→ 0

where the map R→ ∆(A/R) is the natural map. In particular ∆(A/R)
is locally free of rank 2.

• The natural isomorphism
∧nA→

∧n+1(A×R), sending x1∧· · ·∧xn to
1∧x1∧· · ·∧xn, induces a unique isomorphism ∆(A/R)→ ∆(A×R/R)
such that

0 // R // ∆(A/R) //

��

∧nA //

��

0

0 // R // ∆(A×R/R) // ∧n+1(A×R) // 0

commutes.
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The correspondence sending an R-algebra A of rank n to ∆(A/R) gives a
functor from the category of R-algebras of rank n with isomorphisms as mor-
phisms to the category of R-algebras of rank 2 with isomorphisms. It is not
known whether the functor ∆(−/R) is characterized by the above proper-
ties. If not, one could ask whether ∆(−/R) agrees with the construction by
Pierre Deligne in [7], or with the one by Ottmar Loos in [20], or with both.
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Abstract

Let K → L be a separable �eld extension of degree n. Suppose the Galois
group of a Galois closure M of L/K is the full symmetric group on n letters
Sn. We have a tower of extensions K ⊆ L = L1 ⊆ · · · ⊆ Ln = M , where
Lm for m = 0, . . . , n is the �eld of invariants of M under the action of
Sn−m ⊆ Sn.

Let R be a commutative ring with identity. Let A be a commutative R-
algebra, which is �nite and locally free of rank n. Manjul Bhargava and
Matthew Satriano constructed the R-algebra A(n). In the situation above,
we have that L(n) is isomorphic to M . For this reason A(n) is called the
Galois closure of A/R.

In this thesis we de�ne R-algebras A(m), with m = 0, . . . , n. We call A(m)

the m-closure of A. In the situation above, we have that L(m) is isomorphic
to Lm. We also prove several properties of these constructions. Here are
some examples.

Let t ≥ 0 be an integer. Let A1, . . . , At be commutative R-algebras. For
i = 1, . . . , t suppose Ai �nite and locally free of rank ni. Let A be the R-
algebra A1 × · · · × At. Fix k in {0, . . . , rank(A)}. We prove a formula for
A(k) in terms of various m-closures of the Ai.

The algebra A(n) comes with a natural action of Sn. In general A(m) is
not isomorphic to the ring of invariants of A(n) under the action of Sn−m,
as it is true for a separable �eld extension. However, we show that for
m = 0, . . . , n there is a natural map A(m) → (A(n))Sn−m , which is a universal
homeomorphism.

We also study the action of the alternating group An on A(n). For a �eld
extension K → L as before, if the characteristic of K is not 2, then MAn

is K adjoined with a square root of the discriminant. The discriminant
algebra ∆(A/R) of A generalizes MAn . We prove that if 2 is invertible in
R, then there is a natural map ∆(A/R) → (A(n))An , which is a universal
homeomorphism.
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Samenvatting

Zij L/K een separabele lichaamsuitbreiding van graad n. Stel dat de Ga-
loisgroep van een Galoisafsluiting M van L/K de groep Sn is. Er is een
toren van lichaamsuitbreidingen K = L0 ⊆ L = L1 ⊆ · · · ⊆ Ln = M , waar
Lm voor m = 0, . . . , n is de lichaam van invarianten onder de werking van
Sn−m ⊆ Sn.

Zij R een commutatieve ring met 1. Zij A een commutatieve R-algebra, die
eindig en lokaal vrij van rang n is. Manjul Bhargava en Matthew Satriano
hebben de R-algebra A(n) gede�nieerd. In het bovenstaande geval is L(n)

isomorf met M . Dit is de reden dat A(n) de Galoisafsluiting van A/R wordt
genoemd.

Voor m = 0, . . . , n de�niëren we een R-algebra A(m), de m-afsluiting van A.
In de bovenstaande situatie is L(m) isomorf met Lm. We bewijzen verschil-
lende eigenschappen van deze constructies. Hier zijn een aantal voorbeelden.

Zij t ≥ 0 een geheel getal. Zij A1, . . . , At commutatieve R-algebra's. Voor
i = 1, . . . , t neem aan dat Ai eindig is en lokaal vrij van rang ni. Zij A de
R-algebra A1× · · · ×At. Neem k in {0, . . . , rang(A)} vast. We bewijzen een
formule voor A(k) in termen van verschillende m-afsluitingen van de Ai.

De algebra A(n) heeft een natuurlijke werking van Sn. In het algemeen is
A(m) niet isomorf met de ring van invarianten (A(n))Sn−m , wat wel het geval
is voor een separabele lichaamsuitbreiding. Echter, voor m = 0, . . . , n is er
een natuurlijke afbeelding A(m) → (A(n))Sn−m , die een universeel homeo-
mor�sme is.

We bestuderen ook de werking van de alternerende groep An op A(n). Voor
een lichaamsuitbreiding L/K als voorheen, als de karakteristiek van K niet
2 is, is MAn gelijk aan K met een wortel van de discriminant toegevoegd.
De discriminantalgebra ∆(A/R) van A generaliseert MAn . We bewijzen
dat, als 2 inverteerbaar is in R, er een natuurlijke universeel homeomor�sme
∆(A/R)→ (A(n))An is.
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Résumé

Soit K → L une extension de corps séparable de degré n. On suppose que le
groupe de Galois d'une clôture galoisienne M de L/K est le groupe symé-
trique Sn. On a une tour d'extensions K = L0 ⊆ L = L1 ⊆ · · · ⊆ Ln = M ,
où Lm pour m = 0, . . . , n est le corps des invariants de M sous l'action de
Sn−m ⊆ Sn.

Soit R un anneau commutatif unitaire. Soit A une R-algèbre commutative,
qui est �nie et localement libre de rang n. Manjul Bhargava et Matthew
Satriano ont dé�ni une R-algèbre A(n). Dans le cas précedent L(n) est iso-
morphe à M . Pour cette raison, on appelle A(n) la clôture galoisienne de
A/R.

Dans cette thèse on dé�nit des R-algèbres A(m), où m = 0, . . . , n. On appelle
A(m) la m-clôture de A. Dans le cas précedent, le corps L(m) est isomorphe
à Lm. On va démontrer plusieurs proprietés de ces constructions. On donne
quelques exemples.

Soit t ≥ 0 un nombre entier. Soient A1, . . . , At des R-algèbres commutatives.
Soit i ∈ {1, . . . , t}, on suppose que Ai est �nie et localement libre de rang
ni. Soit A la R-algèbre A1 × · · · × At. Soit k ∈ {0, . . . , rang(A)}. On donne
une formule pour A(k) en fonction de plusieurs m-clôtures des Ai.

L'algèbre A(n) est munie d'une action naturelle de Sn. Généralement, A(m)

n'est pas isomorphe à l'anneau des invariants de A(n) sous l'action de Sn−m,
comme est le cas pour une extension de corps séparable. Pourtant, on montre
qu'on a un morphisme naturel A(m) → (A(n))Sn−m , qui est un homéomor-
phisme universel.

On étudie aussi l'action du groupe alterné An sur A(n). Dans le cas d'une
extension de corps K → L comme d'abord, si la caractéristique de K n'est
pas 2, alors MAn est K avec une racine carrée du discriminant. L'algèbre
discriminant ∆(A/R) de A est une généralisation deMAn . On montre que si
2 est inversible dans R, il existe un morphisme naturel ∆(A/R)→ (A(n))An ,
qui est un homéomorphisme universel.
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