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C H A P T E R 3

HOLOGRAPHIC BROWNIAN MOTION

AND TIME SCALES IN STRONGLY

COUPLED PLASMAS

3.1 Introduction

Brownian motion [6, 32, 33] is a window into the microscopic world of nature.
The random motion exhibited by a small particle suspended on a fluid tells us
that the fluid is not a continuum but is actually made of constituents of finite
size. A mathematical description of Brownian motion is given by the Langevin
equation, which phenomenologically describes the force acting on the Brow-
nian particle as a sum of dissipative and random forces. Both of these forces
originate from the incessant collisions with the fluid constituents and we can
learn about the microscopic interaction between the Brownian particle and
the fluid constituents if we measure these forces very precisely. Brownian mo-
tion is a universal phenomenon in finite temperature systems and any particle
immersed in a fluid at finite temperature undergoes Brownian motion; for ex-
ample, a heavy quark in the quark-gluon plasma also exhibits such motion.

A quark immersed in a quark-gluon plasma exhibits Brownian motion.
Therefore, it is a natural next step to study Brownian motion using the
AdS/CFT correspondence. An external quark immersed in a field theory
plasma corresponds to a bulk fundamental string stretching between the
boundary at infinity and the event horizon of the AdS black hole. In the finite
temperature black hole background, the string undergoes a random motion
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because of the Hawking radiation of the transverse fluctuation modes [64–66].
This is the bulk dual of Brownian motion, as was clarified in [67, 68]. By study-
ing the random motion of the bulk “Brownian string”, Refs. [67, 68] derived
the Langevin equation describing the random motion of the external quark
in the boundary field theory and determined the parameters appearing in the
Langevin equation. Other recent work on Brownian motion in AdS/CFT in-
cludes [69–71].

As mentioned above, by closely examining the random force felt by the
Brownian particle, we can learn about the interaction between the Brownian
particle and plasma constituents. The main purpose of the current chapter is
to use the AdS/CFT dictionary to compute the correlation functions of the ran-
dom force felt by the boundary Brownian particle by studying the bulk Brow-
nian string. From the random force correlators, we can read off time scales
characterizing the interaction between the Brownian particle and plasma con-
stituents, such as the mean-free-path time tmfp. The computation of tmfp has
already been discussed in [67] but there it was partly based on dimensional
analysis and the current chapter attempts to complete the computation.

More specifically, we will compute the 2- and 4-point functions of the ran-
dom force from the bulk and, based on a simple microscopic model, relate
them to the mean-free-path time tmfp. More precisely, the time scale tmfp is
related to the non-Gaussianity of the random force statistics. The computa-
tion of the 4-point function can be done using the usual GKPW rule and holo-
graphic renormalization, see section 1.4.1, with the Lorentzian AdS/CFT pre-
scription of section 1.7.2. In the computation, however, we encounter an IR
divergence. This is because we are expanding the Nambu–Goto action in the
transverse fluctuation around a static configuration and the expansion breaks
down very near the horizon where the local temperature becomes of the string
scale. We regularize this IR divergence by cutting off the geometry near the
horizon at the point where the expansion breaks down. For the case of a neu-
tral plasma, the resulting mean-free-path time is

tmfp ∼ 1

T logλ
, λ ≡ l4

α′2 , (3.1)

where T is the temperature and l is the AdS radius. Because the time elapsed in
a single event of collision is tcoll ∼ 1/T , this implies that the Brownian particle
is undergoing ∼ logλ collisions simultaneously. (So, the term mean-free-path
time is probably a misnomer; it might be more appropriate to call t−1

mfp the col-

lision frequency instead.) We write down a formula for tmfp for more general
cases with background charges. We apply it to the STU black hole which cor-
responds to a plasma that carries three U(1) R-charges. This is more relevant
to the actual quark-gluon plasma produced in RHIC and the LHC.
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3.2 Brownian motion in AdS/CFT

In this section we will briefly review how Brownian motion is realized in the
AdS/CFT setup [67, 68], mostly following [67]. If we put an external quark in a
CFT plasma at finite temperature, the quark undergoes Brownian motion as it
is kicked around by the constituents of the plasma. On the bulk side, this exter-
nal quark corresponds to a fundamental string stretching between the bound-
ary and the horizon. This string exhibits random motion due to Hawking ra-
diation of its transverse modes, which is the dual of the boundary Brownian
motion.

We will explain the central ideas of Brownian motion in AdS/CFT using the
simple case where the background plasma is neutral. In explicit computations,
we consider the AdS3/CFT2 example for which exact results are available. Then
we will move on to discuss more general cases of charged plasmas.

3.2.1 Boundary Brownian motion

Let us begin our discussion of Brownian motion from the boundary side,
where an external quark immersed in the CFT plasma undergoes random
Brownian motion. A general formulation of non-relativistic Brownian motion
is based on the generalized Langevin equation [75,76], which takes the follow-
ing form in one spatial dimension:

ṗ(t) = −
∫ t

−∞
dt′ γ(t− t′) p(t′) +R(t) +K(t), (3.2)

where p = mẋ is the (non-relativistic) momentum of the Brownian particle at
position x, and˙≡ d/dt. The first term on the right hand side of (3.2) represents
(delayed) friction, which depends linearly on the past trajectory of the particle
via the memory kernel γ(t). The second term corresponds to the random force
which we assume to have the following average:

〈R(t)〉 = 0, 〈R(t)R(t′)〉 = κ(t− t′), (3.3)

where κ(t) is some function. The random force is assumed to be Gaussian;
namely, all higher cumulants of R vanish. K(t) is an external force that can be
added to the system. The separation of the force into frictional and random
parts on the right hand side of (3.2) is merely a phenomenological simplifi-
cation; microscopically, the two forces have the same origin (collision with
the fluid constituents). As a result of the two competing forces, the Brown-
ian particle exhibits thermal random motion. The two functions γ(t) and κ(t)
completely characterize the Langevin equation (3.2). Actually, γ(t) and κ(t) are
related to each other by the fluctuation-dissipation theorem [77].
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The time evolution of the displacement squared of a Brownian particle
obeying (3.2) has the following asymptotic behavior [33]:

〈s(t)2〉 ≡ 〈[x(t) − x(0)]2〉 ≈






T

m
t2 (t≪ trelax) : ballistic regime

2Dt (t≫ trelax) : diffusive regime

(3.4)

The crossover time scale trelax between two regimes is given by

trelax =
1

γ0
, γ0 ≡

∫ ∞

0

dt γ(t), (3.5)

while the diffusion constant D is given by

D =
T

γ0m
. (3.6)

In the ballistic regime, t ≪ trelax, the particle moves inertially (s ∼ t) with
the velocity determined by equipartition, |ẋ| ∼

√
T/m, while in the diffusive

regime, t ≫ trelax, the particle undergoes a random walk (s ∼
√
t). This is

because the Brownian particle must be hit by a certain number of fluid parti-
cles to lose the memory of its initial velocity. The time trelax between the two
regimes is called the relaxation time which characterizes the time scale for the
Brownian particle to thermalize.

By Fourier transforming the Langevin equation (3.2), we obtain

p(ω) = µ(ω)[R(ω) +K(ω)], µ(ω) =
1

γ[ω] − iω
. (3.7)

The quantity µ(ω) is called the admittance which describes the response of the
Brownian particle to perturbations. p(ω), R(ω),K(ω) are Fourier transforms,
e.g.,

p(ω) =

∫ ∞

−∞
dt p(t) eiωt, (3.8)

while γ[ω] is the Fourier–Laplace transform:

γ[ω] =

∫ ∞

0

dt γ(t) eiωt. (3.9)

In particular, if there is no external force, K = 0, (3.7) gives

p(ω) = −imωx(ω) = µ(ω)R(ω) (3.10)

and, with the knowledge of µ, we can determine the correlation functions of
the random force R from those of p or those of the position x.

In the above, we discussed the Langevin equation in one spatial dimension,
but generalization to n = d− 2 spatial dimensions is straightforward.1

1We assume that d ≥ 3 and thus n ≥ 1.
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Figure 3.1: The bulk dual of a Brownian particle: a fundamental string attached
to the boundary of the AdS space and dipping into the horizon. Because of the
Hawking radiation of the transverse fluctuation modes on the string, the string
endpoint at infinity moves randomly, corresponding to the Brownian motion
on the boundary.

3.2.2 Bulk Brownian motion

The AdS/CFT correspondence states that string theory in AdSd is dual to a CFT
in (d − 1) dimensions. In particular, the neutral planar AdS-Schwarzschild
black hole with metric

ds2d =
r2

l2
[
−f(r)dt2 + (dXI)2

]
+

l2

r2f(r)
dr2, f(r) = 1 −

(rH
r

)d−1

(3.11)

is dual to a neutral CFT plasma at a temperature equal to the Hawking temper-
ature of the black hole,

T =
1

β
=

(d− 1)rH
4πl2

. (3.12)

In the above, l is the AdS radius, t ∈ R is time, andXI = (X1, . . . , Xd−2) ∈ R
d−2

are the spatial coordinates on the boundary. We will set l = 1 henceforth.
The external quark in CFT corresponds in the bulk to a fundamental string

in the black hole geometry (3.11) which is attached to the boundary at r =
∞ and dips into the black hole horizon at r = rH ; see Figure 3.1. The XI

coordinates of the string at r = ∞ in the bulk define the boundary position of
the external quark. As we discussed above, such an external particle at finite
temperature T undergoes Brownian motion. The bulk dual statement is that
the black hole environment in the bulk excites the modes on the string and,
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as the result, the endpoint of the string at r = ∞ exhibits a Brownian motion
which can be modeled by a Langevin equation.

The string in the bulk does not just describe an external point-like quark in
the CFT with its position given by the position of the string endpoint at r = ∞.
The transverse fluctuation modes of the bulk string correspond on the CFT
side to the degrees of freedom that were induced by the injection of the exter-
nal quark into the plasma. In other words, the quark immersed in the plasma
is dressed with a “cloud” of excitations of the plasma and the transverse fluctu-
ation modes on the bulk string correspond to the excitation of this cloud.2 In
a sense, the quark forms a “bound state” with the background plasma and the
excitation of the transverse fluctuation modes on the bulk string corresponds
to excited bound states.

We study this motion of a string in the probe approximation where we ig-
nore its backreaction on the background geometry. We also assume that there
is no B-field in the background. In the black hole geometry, the transverse
fluctuation modes of the string get excited due to Hawking radiation [64]. If
the string coupling gs is small, we can ignore the interaction between the trans-
verse modes on the string and the thermal gas of closed strings in the bulk of
the AdS space. This is because the magnitude of Hawking radiation (for both
string transverse modes and the bulk closed strings) is controlled by GN ∝ g2

s ,
and the effect of the interaction between the transverse modes on the string
and the bulk modes is further down by g2

s .

Let the string be along the r direction and consider small fluctuations of it
in the transverse directionsXI . The action for the string is simply the Nambu–
Goto action in the absence of a B-field. In the gauge where the world-sheet
coordinates are identified with the spacetime coordinates xµ = t, r, the trans-
verse fluctuations XI become functions of xµ: XI = XI(x). By expanding the
Nambu–Goto action up to quadratic order in XI , we obtain

SNG = − 1

2πα′

∫
d2x
√

− detγµν ≈ 1

4πα′

∫
dt dr

[
(∂tX

I)2

f
− r4f (∂rX

I)2
]
≡ S0,

(3.13)

where γµν is the induced metric. In the second approximate equality we also
dropped the constant term that does not depend on XI . This quadratic ap-
proximation is valid as long as the scalarsXI do not fluctuate too far from their
equilibrium value (taken here to beXI = 0). This corresponds to taking a non-
relativistic limit for the transverse fluctuations. We will be concerned with the
validity of this quadratic approximation later. The equation of motion derived
from (3.13) is

[f−1ω2 + ∂r(r
4f∂r)]X

I = 0, (3.14)

2For a recent discussion on this non-Abelian “dressing”, see [78].
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where we set XI(r, t) ∝ e−iωt. Because XI with different polarizations I are
independent and equivalent, we will consider only one of them, say X1, and
simply call it X henceforth.

The quadratic action (3.13) and the equation of motion (3.14) derived from
it are similar to those for a Klein–Gordon scalar. Therefore, the quantization
of this theory can be done just the same way, by expanding X in a basis of
solutions to (3.14). Because t is an isometry direction of the geometry (3.11),
we can take the frequency ω to label the basis of solutions. So, let {uω(x)},
ω > 0 be a basis of positive-frequency modes. Then we can expand X as

XI(x) =

∫ ∞

0

dω

2π
[aωuω(x) + a†ωuω(x)∗]. (3.15)

If we normalize uω(x) by introducing an appropriate norm (see Appendix 3.A),
the operators a, a† satisfy the canonical commutation relation

[aω, aω′ ] = [a†ω, a
†
ω′ ] = 0, [aω, aω′ ] = 2πδ(ω − ω′). (3.16)

To determine the basis {uω(x)}, we need to impose some boundary con-
dition at r = ∞. The usual boundary condition in Lorentzian AdS/CFT is to
require normalizability of the modes at r = ∞ [48] but, in the present case,
that would correspond to an infinitely long string extending to r = ∞, which
would mean that the mass of the external quark is infinite and there would be
no Brownian motion. So, instead, we introduce a UV cut-off 3 near the bound-
ary to make the mass very large but finite. Specifically, we implement this by
means of a Neumann boundary condition

∂rX = 0 at r = rc ≫ rH , (3.17)

where r = rc is the cut-off surface.4 The relation between this UV cut-off r = rc
and the mass m of the external particle is easily computed from the tension of
the string:

m =
1

2πα′

∫ rc

rH

dr
√
gtt grr =

rc − rH
2πα′ ≈ rc

2πα′ . (3.18)

Before imposing a boundary condition, the wave equation (3.14) in general
has two solutions, which are related to each other by ω ↔ −ω. Denote these
solutions by g±ω(r). They are related by gω(r)∗ = g−ω(r). These solutions are
easy to obtain in the near horizon region r ≈ rH , where the wave equation
reduces to

(ω2 + ∂2
r∗

)Xω ≈ 0. (3.19)

3We use the terms “UV” and “IR” with respect to the boundary energy. In this terminology, in
the bulk, UV means near the boundary and IR means near the horizon.

4In the AdS/QCD context, one can think of the cut-off being determined by the location of the
flavour brane, whose purpose again is to introduce dynamical (finite mass) quarks into the field
theory.
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Here, r∗ is the tortoise coordinate defined by

dr∗ =
dr

r2f(r)
. (3.20)

Near the horizon, we have

r∗ ∼ 1

(d− 1)rH
log

(
r − rH
rH

)
(3.21)

up to an additive numerical constant. Normally this constant is fixed by set-
ting r∗ = 0 at r = ∞, but we will later find that some other choice is more
convenient. From (3.19), we see that, in the near horizon region r = rH , we
have the following outgoing and ingoing solutions:

gω(r) ≈ eiωr∗ : outgoing, g−ω(r) ≈ e−iωr∗ : ingoing. (3.22)

The boundary condition (3.17) dictates that we take the linear combination

fω(r) = gω(r) + eiθωg−ω(r), eiθω = − ∂rgω(rc)

∂rg−ω(rc)
. (3.23)

We can show that θω is real using the fact that g−ω = g∗ω.
The normalized modes uω(t, r) are essentially given by fω(r); namely,

uω(t, r) ∝ e−iωtfω(r). A short analysis of the norm (see Appendix 3.A) shows
that the correctly normalized mode expansion is given by

X(t, r) =

√
2πα′

rH

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
, (3.24)

where fω(r) behaves near the horizon as

fω(r) → eiωr∗ + eiθωe−iωr∗ , r → rH (r∗ → −∞). (3.25)

If we can find such fω(r), then a, a† satisfy the canonically normalized com-
mutation relation (3.16).

We identify the position x(t) of the boundary Brownian particle withX(t, r)
at the cutoff r = rc:

x(t) ≡ X(t, rc) =

√
2πα′

rH

∫ ∞

0

dω

2π

1√
2ω

[fω(rc)e
−iωtaω + fω(rc)

∗eiωta†ω]. (3.26)

The equation (3.26) relates the correlation functions of x(t) to those of a, a†.
Because the quantum field X(t, r) is immersed in a black hole background,
its modes Hawking radiate [64]. This can be seen from the fact that, near the
horizon, the worldsheet action (3.13) is the same as that of a Klein–Gordon
field near a two-dimensional black hole. The standard quantization of fields
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in curved spacetime [79] shows that the field gets excited at the Hawking tem-
perature. At the semiclassical level, the excitation is purely thermal:

〈a†ωaω′〉 =
2πδ(ω − ω′)

eβω − 1
. (3.27)

Using (3.26) and (3.27), one can compute the correlators of x to show that it un-
dergoes Brownian motion [67], having both the ballistic and diffusive regimes.

In the AdS3 (d = 3) case, we can carry out the above procedure very explic-
itly. In this case, the metric (3.11) becomes the nonrotating BTZ black hole:

ds2 = −(r2 − r2H) dt2 +
dr2

r2 − r2H
+ r2 dX2. (3.28)

For the usual BTZ black hole, X is written asX = φ where φ ∼= φ+ 2π, but here
we are taking X ∈ R, corresponding to a “planar” black hole. The Hawking
temperature (3.12) is, in this case,

T ≡ 1

β
=
rH
2π
. (3.29)

In terms of the tortoise coordinate r∗, the metric (3.28) becomes

ds2 = (r2 − r2H)(−dt2 + dr2∗) + r2 dX2, r∗ ≡ 1

2rH
ln

(
r − rH
r + rH

)
. (3.30)

The linearly independent solutions to (3.14) are given by g±ω(r), where

gω(r) =
1

1 + iν

ρ+ iν

ρ

(
ρ− 1

ρ+ 1

)iν/2

=
1

1 + iν

ρ+ iν

ρ
eiωr∗ . (3.31)

Here we introduced

ρ ≡ r

rH
, ν ≡ ω

rH
=
βω

2π
. (3.32)

The linear combination that satisfies the Neumann boundary condition (3.17)
is

fω = gω(ρ) + eiθωg−ω(ρ),

eiθω = − ∂rgω(rc)

∂rg−ω(rc)
=

1 − iν

1 + iν

1 + iρcν

1 − iρcν

(
ρc − 1

ρc + 1

)iν

,
(3.33)

where ρc ≡ rc/rH . This has the correct near-horizon behavior (3.25) too.
By analyzing the correlators of x(t) using the bulk Brownian motion, one

can determine the admittance µ(ω) defined in (3.7) for the dual boundary
Brownian motion [67]. Although the result for general frequency ω is difficult
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to obtain analytically for general dimensions d, its low-frequency behavior is
relatively easy to find; this was done in [67] and the result for AdSd/CFTd−1 is

µ(ω) =
(d− 1)2α′β2m

8π
+ O(ω). (3.34)

This agrees with the results obtained by drag force computations [35,38,39,41].
For later use, let us also record the low-frequency behavior of the random force
correlator obtained in [67]:

G(R)(t1, t2) ≡ 〈T [R(t1)R(t2)]〉, (3.35)

G(R)(ω1, ω2) = 2πδ(ω1 + ω2)

[
16π

(d− 1)2α′β3
+ O(ω)

]
, (3.36)

where T is the time ordering operator.

3.2.3 Generalizations

In the above, we considered the simple case of neutral black holes, corre-
sponding to neutral plasmas in field theory. More generally, however, we can
consider situations where the field theory plasmas carry nonvanishing con-
served charges. For example, the quark-gluon plasma experimentally pro-
duced by heavy ion collision has net baryon number. Field theory plasmas
charged under such global U(1) symmetries correspond on the AdS side to
black holes charged under U(1) gauge fields.

On the gravity side of the correspondence, we do not just have AdSd space
but also some internal manifold on which higher-dimensional string/M the-
ory has been compactified. U(1) gauge fields in the AdSd space can be com-
ing from (i) form fields in higher dimensions upon compactification on the
internal manifold, or (ii) the off-diagonal components of the higher dimen-
sional metric with one index along the internal manifold. In the former case
(i), a charged CFT plasma corresponds to a charged black hole, i.e. a Reissner–
Nordström black hole (or a generalization thereof to form fields) in the full
spacetime. In this case, the analysis in the previous subsections applies al-
most unmodified, because a fundamental string is not charged under such
form fields (except for the B-field which is assumed to vanish in the present
chapter) and its motion is not affected by the existence of those form fields.
Namely, the same configuration of a string—stretching straight between the
AdS boundary and the horizon and trivial in the internal directions—is a so-
lution of the Nambu–Goto action. Therefore, as far as the fluctuation in the
AdSd directions is concerned, we can forget about the internal directions and
the analysis in the previous subsections goes through unaltered, except that
the metric (3.11) must be replaced by an appropriate AdS black hole metric
deformed by the existence of charges.
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The latter case (ii), on the other hand, corresponds to having a rotating
black hole (Kerr black hole) in the full spacetime. A notable example is the
STU black hole which is a non-rotating black hole solution of five-dimensional
AdS supergravity charged under three different U(1) gauge fields [80]. From
the point of view of 10-dimensional Type IIB string theory in AdS5 × S5, this
black hole is a Kerr black hole with three angular momenta in the S5 direc-
tions [81]. This solution can also be obtained by taking the decoupling limit of
the spinning D3-brane metric [81–83]. Analyzing the motion of a fundamental
string in such a background spacetime in general requires a 10-dimensional
treatment, because the string gets affected by the angular momentum of the
black hole in the internal directions [40,84,85]. So, to study the bulk Brownian
motion in such situations, we have to find a background solution in the full 10-
dimensional spacetime and consider fluctuation around that 10-dimensional
configuration. The background solution is straight in the AdS part as before
but can be nontrivial in the internal directions due to the drag by the geome-
try.

In either case, to study the transverse fluctuation of the string around a
background configuration, we do not need the full 10- or 11-dimensional met-
ric. For simplicity, let us focus on the transverse fluctuation in one of the AdSd

directions. Then we only need the three-dimensional line element along the
directions of the background string configuration and the direction of the fluc-
tuation. Let us write the three-dimensional line element in general as

ds2 = −ht(r)f(r)dt2 +
hr(r)

f(r)
dr2 +G(r)dX2. (3.37)

X is one of the spatial directions in AdSd, parallel to the boundary. It is as-
sumed that X(t, r) = 0 is a solution to the Nambu–Goto action in the full
(10- or 11-dimensional) spacetime, and we are interested in the fluctuations
around it.5 The nontrivial effects in the internal directions have been incor-
porated in this metric (3.37). We will see how such a line element arises in the
explicit example of the STU black hole in section 3.6. In this subsection, we will
briefly discuss the random motion of a string in general backgrounds using the
metric (3.37).

In the metric (3.37), the horizon is at r = rH where rH is the largest positive
solution to f(r) = 0. The functions ht(r) and hr(r) are assumed to be regular
and positive in the range rH ≤ r < ∞. Near the horizon r ≈ rH , expand f(r)
as

f(r) ≈ 2kH(r − rH), kH ≡ 1

2
f ′(rH). (3.38)

5Note that, under this assumption in a static spacetime, the three-dimensional line element
can be always written in the form of (3.37). The (t, r) and (t, X) components should vanish by
the assumption that X(t, r) = 0 is a solution, and the (t, r) component can be eliminated by a
coordinate transformation.
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The Hawking temperature of the black hole, TH , is given by

TH =
1

β
=
kH

2π

√
ht(rH)

hr(rH)
. (3.39)

For the metric to asymptote to AdS near the boundary, we have

htf ∼ r2

l2
,

hr

f
∼ l2

r2
as r → ∞, (3.40)

where we reinstated the AdS radius l. Also, because the X direction (3.37) is
assumed to be one of the spatial directions of the AdSd directions parallel to
the boundary, G(r) must go as

G ∼ r2

l2
as r → ∞. (3.41)

We demand that G(r) be regular and positive in the region rH ≤ r < ∞. Note
that the parametrization of the two metric components gtt, grr using three
functions ht, hr, f is redundant and thus has some arbitrariness.

Consider fluctuation around the background configuration X(t, r) = 0 in
the static gauge where t, r are the worldsheet coordinates. Just as in (3.13), the
quadratic action obtained by expanding the Nambu–Goto action in X is

S0 = − 1

4πα′

∫
dσ2√−g Ggµν∂µX∂νX, (3.42)

where gµν is the t, r part of the metric (3.37) (i.e., the induced worldsheet met-
ric for the background configuration X(t, r) = 0), and g = det gµν . The equa-
tion of motion derived from the quadratic action (3.42) is

− Ẍ +

√
ht

hr

f

G
∂r

(√
ht

hr
fGX ′

)
= 0, (3.43)

where ˙= ∂t, ′ = ∂r. In terms of the tortoise coordinate r∗ defined by

dr∗ =
1

f

√
hr

ht
dr, (3.44)

(3.43) becomes a Schrodinger-like wave equation [86]:

[
d2

dr2∗
+ ω2 − V (r)

]
Xω(r) = 0, (3.45)

where we set X(t, r) = e−iωtη(r)Xω(r) and the “potential” V (r) is given by

V (r) = −η dr
dr∗

d

dr

[
1

η2

dr

dr∗

dη

dr

]
, η = G−1/2. (3.46)
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The potential V (r) vanishes at the horizon and will become more and more
important as we move towards the boundary r → ∞ where V (r) ∼ 2r2/l4.

Just as in the previous subsection, let the two solutions to the wave equa-
tion (3.45) be gω(r) and g−ω(r) = gω(r)∗. Near the horizon where V (r) = 0, the
wave equation (3.45) takes the same form as (3.19) and therefore g±ω(r) can be
taken to have the following behavior near the horizon

g±ω(r) → e±iωr∗ as r → rH . (3.47)

If we introduce a UV cutoff at r = rc as before, the solution fω(r) satisfying the
Neumann boundary condition (3.17) at r = rc is a linear combination of g±ω(r)
and can be written as (3.23). Using this fω(r), we can expand the fluctuation
fieldX(t, r) as

X(t, r) =

√
2πα′

G(rH)

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
, (3.48)

where aω, a
†
ω are canonically normalized to satisfy (3.16). As before, the value of

X(t, r) at the UV cutoff r = rc is interpreted as the position x(t) of the bound-
ary Brownian motion: X(t, rc) ≡ x(t). By assuming that the modes Hawking
radiate thermally as in (3.27), we can determine the parameters of the bound-
ary Brownian motion such as the admittance µ(ω).

In general, solving the wave equation (3.45) and obtaining explicit analytic
expressions for g±ω, fω is difficult. However, in the low frequency limit ω → 0,
it is possible to determine their explicit forms as explained in [67] or in Ap-
pendix 3.B and, based on that, one can compute the low frequency limit of
µ(ω) following the procedure explained in [67]. The result is

µ(ω) =
2mπα′

G(rH)
+ O(ω). (3.49)

From this, we can derive the low frequency limit of the random force correlator
as follows:

G(R)(ω1, ω2) = 2πδ(ω1 + ω2)

[
G(rH)

πα′β
+ O(ω)

]
. (3.50)

3.3 Time scales

3.3.1 Physics of time scales

In Eq. (3.5), we introduced the relaxation time trelax which characterizes the
thermalization time of the Brownian particle. From Brownian motion, we can
read off other physical time scales characterizing the interaction between the
Brownian particle and plasma.
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One such time scale, the microscopic (or collision duration) time tcoll, is de-
fined to be the width of the random force correlator function κ(t). Specifically,
let us define

tcoll =

∫ ∞

0

dt
κ(t)

κ(0)
. (3.51)

If κ(t) = κ(0)e−t/tcoll , the right hand side of this precisely gives tcoll. This tcoll

characterizes the time scale over which the random force is correlated, and
thus can be interpreted as the time elapsed in a single process of scattering. In
usual situations,

trelax ≫ tcoll. (3.52)

Another natural time scale is the mean-free-path time tmfp given by the typ-
ical time elapsed between two collisions. In the usual kinetic theory, this mean
free path time is typically tcoll ≪ tmfp ≪ trelax; however in the case of present
interest, this separation no longer holds, as we will see. For a schematic expla-
nation of the timescales tcoll and tmfp, see Figure 3.2.

Figure 3.2: A sample of the stochastic variable R(t), which consists of many
pulses randomly distributed.

3.3.2 A simple model

The collision duration time tcoll can be read off from the random force 2-point
function κ(t) = 〈R(t)R(0)〉. To determine the mean-free-path time tmfp, we
need higher point functions and some microscopic model which relates those
higher point functions with tmfp. Here we propose a simple model 6 which re-
lates tmfp with certain 4-point functions of the random force R.

For simplicity, we first consider the case with one spatial dimension. Con-
sider a stochastic quantityR(t) whose functional form consists of many pulses

6This is a generalization of the discussion given in Appendix D.1 of [67]. For somewhat similar
models (binary collision models), see [87] and references therein.
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randomly distributed. R(t) is assumed to be a classical quantity (c-number).
Let the form of a single pulse be P (t). Furthermore, assume that the pulses
come with random signs. If we have k pulses at t = ti (i = 1, 2, . . . , k), thenR(t)
is given by

R(t) =

k∑

i=1

ǫiP (t− ti), (3.53)

where ǫi = ±1 are random signs.
Let the distribution of pulses obey the Poisson distribution, which is a

physically reasonable assumption if R is caused by random collisions. This
means that the probability that there are k pulses in an interval of length τ , say
[0, τ ], is given by

Pk(τ) = e−µτ (µτ)k

k!
. (3.54)

Here, µ is the number of pulses per unit time. In other words, 1/µ is the aver-
age distance between two pulses. We do not assume that the pulses are well
separated; namely, we do not assume ∆ ≪ 1/µ. If we identify R(t) with the
random force in the Langevin equation, tmfp = 1/µ.

The 2-point function for R can be written as

〈R(t)R(t′)〉 =

∞∑

k=1

e−µτ (µτ)k

k!

k∑

i,j=1

〈ǫiǫjP (t− ti)P (t′ − tj)〉k, (3.55)

where we assumed t, t′ ∈ [0, τ ] and 〈 〉k is the statistical average when there
are k pulses in the interval [0, τ ]. Because k pulses are randomly and indepen-
dently distributed in the interval [0, τ ] by assumption, this expectation value is
computed as

k∑

i,j=1

〈ǫiǫjP (t− ti)P (t′ − tj)〉k

=
1

τk

∫ τ

0

dt1 · · ·dtk




k∑

i=1

P (t− ti)P (t′ − ti) +

k∑

i6=j

〈ǫiǫj〉kP (t− ti)P (t′ − tj)



 .

(3.56)

Here, the second term vanishes because 〈ǫiǫj〉k = 0 for i 6= j. Therefore, one
readily computes

∑

i,j=1

〈ǫiǫjP (t− ti)P (t′ − tj)〉k =
k

τ

∫ τ

0

dt1P (t− t1)P (t′ − t1)

≈ k

τ

∫ ∞

−∞
dt1 P (t− t1)P (t′ − t1). (3.57)
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Here, in going to the second line, we took τ to be much larger than the support
of P (t), which is always possible because τ is arbitrary. Substituting this back
into (3.55), we find

〈R(t)R(t′)〉 = µ

∫ ∞

−∞
dt1 P (t− t1)P (t′ − t1). (3.58)

In a similar way, one can compute the following 4-point function:

〈R(t)R(t′)R(t′′)R(t′′′)〉

=

∞∑

k=1

e−µτ (µτ)k

k!

k∑

i,j,m,n=1

〈ǫiǫjǫmǫnP (t− ti)P (t′ − tj)P (t′′ − tm)P (t′′′ − tn)〉k.

(3.59)

Again, the expectation value 〈ǫiǫjǫmǫn〉k vanishes unless some of i, j,m, n are
equal. The possibilities are i = j 6= m = n, i = m 6= j = n, i = n 6= j = m, and
i = j = m = n. Taking into account all these possibilities, in the end we have

〈R(t)R(t′)R(t′′)R(t′′′)〉 = 〈R(t)R(t′)R(t′′)R(t′′′)〉disc + 〈R(t)R(t′)R(t′′)R(t′′′)〉conn,
(3.60)

where

〈R(t)R(t′)R(t′′)R(t′′′)〉disc = 〈R(t)R(t′)〉〈R(t′′)R(t′′′)〉 + 〈R(t)R(t′′)〉〈R(t′)R(t′′′)〉
+ 〈R(t)R(t′′′)〉〈R(t′)R(t′′)〉, (3.61)

〈R(t)R(t′)R(t′′)R(t′′′)〉conn = µ

∫ ∞

−∞
duP (t− u)P (t′ − u)P (t′′ − u)P (t′′′ − u).

(3.62)

We can think of (3.61) as the “disconnected part” and (3.62) as the “connected
part”, or non-Gaussianity of the random force statistics.

In the Fourier space, the expressions for these correlation functions sim-
plify:

〈R(ω1)R(ω2)〉 = 2πµδ(ω1 + ω2)P (ω1)P (ω2), (3.63)

〈R(ω1) · · ·R(ω4)〉disc = (2πµ)2[δ(ω1 + ω2)δ(ω3 + ω4) + δ(ω1 + ω3)δ(ω2 + ω4)

+ δ(ω1 + ω4)δ(ω2 + ω3)]P (ω1) · · ·P (ω4), (3.64)

〈R(ω1) · · ·R(ω4)〉conn = 2πµδ(ω1 + · · · + ω4)P (ω1) · · ·P (ω4). (3.65)

In particular, for small ωi,

〈R(ω1)R(ω2)〉 ≈ 2πµδ(ω1 + ω2)P (ω = 0)2 (3.66)

〈R(ω1)R(ω2)R(ω3)R(ω4)〉conn ≈ 2πµδ(ω1 + ω2 + ω3 + ω4)P (ω = 0)4. (3.67)
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Therefore, from the small frequency behavior of 2-point function and con-
nected 4-point function, we can separately read off the mean-free-path time
tmfp ∼ 1/µ and P (ω = 0), the impact per collision.

The discussion thus far has been focused on the case with one spatial di-
mension, but generalization to n = d − 2 spatial dimensions is straightfor-
ward. In this case, the random force becomes an n-dimensional vector RI(t),
I = 1, 2, . . . , n. Generalizing (3.53), let us model the random force to be given
by a sum of pulses:

RI(t) =

k∑

i=1

ǫIiP (t− ti). (3.68)

Here, for each value of i, ǫIi is a stochastic variable taking random values in the
(n − 1)-dimensional sphere Sn−1. We also assume that ǫIi for different values
of i are independent of each other. Then we can readily compute the following
statistical average:

〈ǫIi ǫJi 〉 =
δIJ

n
, 〈ǫIi ǫJi ǫKi ǫLi 〉 =

δIJδKL + δIKδJL + δILδJK

n(n+ 2)
. (3.69)

From this, we can derive the following R-correlators:

〈RI(ω1)R
J(ω2)〉 =

2πµ

n
δIJδ(ω1 + ω2)P (ω1)P (ω2), (3.70)

〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉 = 〈RI(ω1)R

J(ω2)R
K(ω3)R

L(ω4)〉conn

+ 〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉disc,

(3.71)

where

〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉disc = 〈RI(ω1)R

J(ω2)〉〈RK(ω3)R
L(ω4)〉

+ 〈RI(ω1)R
K(ω3)〉〈RJ (ω2)R

L(ω4)〉
+ 〈RI(ω1)R

L(ω4)〉〈RJ(ω2)R
K(ω3)〉,

(3.72)

〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉conn =

2πµ

n(n+ 2)
(δIJδKL + δIKδJL + δILδJK)

× δ(ω1 + · · · + ω4)P (ω1) · · ·P (ω4).
(3.73)

These are essentially the same as the n = 1 results (3.63), (3.65) and we can
compute the mean-free-path time tmfp ∼ 1/µ from the small ω behavior of 2-
and 4-point functions.

We will use these relations to read off tmfp for the Brownian particle in CFT
plasma using the bulk Brownian motion.
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3.3.3 Non-Gaussian random force and Langevin equation

In the above, we argued that the time scale tmfp that characterizes the statistical
properties of the random force R is related to the nontrivial part (connected
part) of the 4-point function of R. Namely, it is related to the non-Gaussianity
of the random force. Here, let us briefly discuss the relation between non-
Gaussianity and the non-linear Langevin equation.

In subsection 3.2.1, we discussed the linear Langevin equation (3.2) for
which the friction is proportional to the momentum p. In other words, the
friction coefficient γ(t) did not contain p. Furthermore, the random force R
was assumed to be Gaussian. In many real systems, Gaussian statistics for the
random force gives a good approximation, and the linear Langevin equation
provides a useful approach to study the systems. However, this idealized phys-
ical situation does not describe nature in general. For example, even the sim-
plest case of a Brownian particle interacting with the molecules of a solvent
is rather thought to obey a Poissonian than a Gaussian statistics (just like the
simple model discussed in subsection 3.3.2). It is only in the weak collision
limit where energy transfer is relatively small compared to the energy of the
system that the central limit theorem says that the statistics can be approxi-
mated as Gaussian [88, 89]. Furthermore, due to the non-linear fluctuation-
dissipation relations [90], the non-Gaussianity of random force and the non-
linearity of friction are closely related. An extension of the phenomenological
Langevin equation that incorporates such non-linear and non-Gaussian situ-
ations is an issue that has not yet been completely settled (for a recent discus-
sion, see [89]).

However, the relation between time scales tcoll, tmfp and R correlators de-
rived in subsection 3.3.2 does not depend on the existence of such an exten-
sion of the Langevin equation. Below, we will compute R correlators using
the AdS/CFT correspondence and derive expressions for the time scale tmfp,
but that derivation will not depend on the existence of an extended Langevin
equation either.7 It would be interesting to use the concrete AdS/CFT setup for
Brownian motion to investigate the above issue of a non-linear non-Gaussian
Langevin equation. We leave it for future research.

3.4 Holographic computation of the R-correlator

In the last section, we saw that tmfp can be read off if we know the low-
frequency limit of the 2- and 4-point functions of the random force. For

7More precisely, the computation in subsection 3.4.2 is independent of the existence of any
Langevin equation, because we directly compute the R correlators using the fact that the total
force F equals R in the m → ∞ limit. On the other hand, in subsection 3.4.1, we compute the R
correlators directly, but use the relation (3.77) derived from the linear Langevin equation. So, the
latter computation is assuming that a Langevin equation exists at least to the linear order.
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the connected 4-point function to be nonvanishing, we need more than the
quadratic term S0 in (3.13) or (3.42). Such terms will arise if we keep higher
order terms in the expansion of the Nambu–Goto action. This amounts to tak-
ing into account the relativistic correction to the motion of the “cloud” around
the quark mentioned in subsection 3.2.2. In the case of the neutral black holes
discussed in subsection 3.2.2, if we keep up to quartic terms (and drop a con-
stant), the action becomes

S = S0 + Sint, (3.74)

Sint =
1

16πα′

∫
dt dr

(
Ẋ2

f
− r4fX ′2

)2

, (3.75)

where the quadratic (free) part S0 is as given before in (3.13).

There are two ways to compute correlation functions in the presence of the
quartic term (3.75). The first one, which is perhaps more intuitive, is to regard
the theory with the action S0 +Sint as a field theory of the worldsheet fieldX at
temperature T and compute theX correlators using the standard technique of
thermal field theory as in section 1.6. The second one, which is perhaps more
rigorous but technically more involved, is to use the GKPW prescription and
holographic renormalization, see section 1.4.1, to compute the correlator for
the force acting on the boundary Brownian particle.

The two approaches give essentially the same result in the end, as they
should. In the following, we will first describe the first approach and then
briefly discuss the the second approach, relegating the technical details to Ap-
pendix 3.D. In this section and the next, for the simplicity of presentation, we
will focus on the neutral black holes of subsection 3.2.2.

3.4.1 Thermal field theory on the worldsheet

The Brownian string we are considering is immersed in a black hole back-
ground which has temperature T given by (3.12). Therefore, we can think of
the string described by the action (3.74) just as a field theory of X(t, r) at tem-
perature T , for which the standard thermal perturbation theory (see section
1.6) is applicable.

For the thermal field theory described by (3.74), let us compute the real-
time connected 4-point function

G
(x)
conn(t1, t2, t3, t4) = 〈T [x(t1)x(t2)x(t3)x(t4)]〉conn

= 〈T [X(t1, rc)X(t2, rc)X(t3, rc)X(t4, rc)]〉conn, (3.76)

where T is the time ordering operator and x(t) = X(t, rc) is the position of the
boundary Brownian particle. In the absence of external force, K(ω) = 0, (3.7)
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relates x and random force R by

R(ω) = − imωx(ω)

µ(ω)
. (3.77)

Therefore, using the low-frequency expression for µ(ω) given in (3.34), we can
compute the 4-point function of R from the one for x in (3.76).

t - -
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t

−L L Re tC1 ◦
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C3

−L−iβ

Figure 3.3: The contour for computing real-time correlators at finite tempera-
ture.

As is standard, we can compute such real-time correlators at finite tem-
perature T by analytically continuing the time t to a complex time z and
performing path integration on the complex z plane along the contour C =
C1 + C2 + C3, where Ci are oriented intervals

C1 = [−L,L], C2 = [L,−L], C3 = [−L,−L− iβ] (3.78)

as shown in Figure 3.3. L is a large positive number which is sent to infinity at
the end of computation. We can parametrize the contourC by a real parameter
λ which increases along C as

C1 : z = λ− L (0 ≤ λ ≤ 2L)
C2 : z = 3L− λ (2L ≤ λ ≤ 4L)
C3 : z = −L+ i(4L− λ) (4L ≤ λ ≤ 4L+ β)

(3.79)

The field X is defined for all values of λ. Another convenient parametrization
of C is

C1 : z = t, (−L ≤ t ≤ L),
C2 : z = t, (−L ≤ t ≤ L),
C3 : z = −L− iτ, (0 ≤ τ ≤ β).

(3.80)

We will denote by X[i] (i = 1, 2, 3) the field X on the segment Ci parametrized
by t and τ in (3.80). Henceforth, we will use the subscript [i] for a quantity
associated withCi.
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The path integral is now performed over X[1](t), X[2](t), and X[3](τ), but in
the L→ ∞ limit the path integral overX[3] factorizes and can be dropped [25].
Therefore, with the parametrization (3.80), the path integral becomes

∫
DX eiS →

∫
DX[1] DX[2] e

i(S[1]−S[2]), (3.81)

where S[i], i = 1, 2 are obtained by replacing X withX[i] in (3.74). The negative
sign in front of S[2] in (3.81) is because the direction of the parameter twe took
in (3.80) is opposite to that of C2.

The correlator (3.76) can be written as

G
(x)
conn(t1, t2, t3, t4) = 〈TC [X[1](t1, rc)X[1](t2, rc)X[1](t3, rc)X[1](t4, rc)]〉conn

,

(3.82)

where TC is ordering along C (in other words, with respect to the parameter
λ), and can be computed in perturbation theory by treating S0 as the free part
and Sint as an interaction. In doing that, we have to take into account both
the type-1 fields X[1] and the type-2 fields X[2]. Namely, we have to introduce
propagators not just for X[1] but also betweenX[1] and X[2] as follows

D[11](t− t′, r, r′) = 〈TC [X[1](t, r)X[1](t
′, r′)]〉

0
= DF (t− t′, r, r′),

D[21](t− t′, r, r′) = 〈TC [X[2](t, r)X[1](t
′, r′)]〉

0
= DW (t− t′, r, r′).

(3.83)

Here, 〈 〉0 is the expectation value for the free theory with action S0 at temper-
ature T . We see that the propagators D[11] and D[21] are equal, respectively, to
the usual time-ordered (Feynman) propagator DF and the Wightman propa-
gator DW of the field X(t, r). We must also remember that we have not only
interaction vertices that come from S int

[1] and involve X[1], but also ones that

come from S int
[2] and involve X[2]. The second type of vertices come with an

extra minus sign.
Using the propagators (3.83), the connected 4-point function is evaluated,

at leading order in perturbation theory, to be

G
(x)
conn(ω1, ω2, ω3, ω4) =

i

16πα′ 2πδ(ω1 + · · · + ω4)

∫ rc

rH

dr

×
{
∑

perm
(ijkl)

[
ωiωj

f
D[11](ωi)D[11](ωj) + r4f∂rD[11](ωi)∂rD[11](ωj)

]

×
[
ωkωl

f
D[11](ωk)D[11](ωl) + r4f∂rD[11](ωk)∂rD[11](ωl)

]

− (D[11] → D[21])

}
. (3.84)
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Here, we wrote down the result in the Fourier space and used a shorthand no-
tation D[11](ωi) ≡ D[11](ωi, r, rc). The summation is over permutations (ijkl)
of (1234).

We are interested in the low frequency limit of this correlator. In that limit,
the propagators simplify and can be explicitly written down. In Appendix 3.C,
we study the low-frequency propagators, and the resulting expressions are

D[11](ω, r, rc) = DF (ω, r, rc) =
2πα′

r2H

[
eiωr∗ + e−iωr∗

ω(1 − e−βω)
− eiωr∗

ω

]
,

D[21](ω, r, rc) = DW (ω, r, rc) =
2πα′

r2H

eiωr∗ + e−iωr∗

ω(1 − e−βω)
,

(3.85)

where r∗ is the tortoise coordinate introduced in (3.20). As explained in (3.179),
the precise low frequency limit we are taking is

ωi → 0, β, ωir∗ : fixed. (3.86)

The reason why we have to keep ωir∗ fixed is that, no matter how small ωi

is, we can consider a region very close to the horizon (r∗ = −∞) such that
ωir∗ = O(1). If we insert the expressions (3.85) into (3.84) and keep the leading
term in the small ωi expansion in the sense of (3.86), we obtain

G
(x)
conn(ω1, ω2, ω3, ω4) ∼

iα′3β5

ω1ω2ω3ω4
δ(ω1 + · · · + ω4)

×
∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ + O(ω−2),

(3.87)

where we ignored numerical factors. Using (3.77) and (3.34), we can finally
derive the expression for the R correlator:

G
(R)
conn(ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)

×
∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ + O(ω2).

(3.88)

Let us look at the IR part of (3.87), namely the contribution from the near-
horizon region (large negative r∗). Because f ∼ (d− 1)e(d−1)rHr∗ near the hori-
zon, the r∗ integral in (3.87) is

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ ∼ r2H

d− 1

∫

−∞
dr∗ e

−(d−1)rHr∗e−2i(ωi+ωj)r∗ (3.89)

which diverges because of the contribution from the near horizon region, r∗ →
−∞. We will discuss the nature of this IR divergence later.
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3.4.2 Holographic approach

Next, let us discuss another way to compute the correlators of the boundary
Brownian motion, following the standard GKPW procedure as in section 1.4.1.
For this approach, we send the UV cutoff rc → ∞ and let the string extend
all the way to the AdS boundary r = ∞. The boundary value of X(t, r) is the
position of the boundary Brownian particle: x(t) = X(t, r → ∞). The bound-
ary operator dual to the bulk field X(t, r) is F (t), the total force (friction plus
random force) acting on the boundary Brownian particle. The AdS/CFT dic-
tionary

〈
ei
∫

dt F (t)x(t)
〉

CFT
= eiSbulk[x(t)] (3.90)

says that, to compute boundary correlators for F , we should consider bulk
configurations for which X(t, r) asymptotes to a given function x(t) at r = ∞,
evaluate the bulk action, and functionally differentiate the result with respect
to x(t). Note that, in the limit rc → ∞ or m → ∞ that we take, friction is
ignorable as compared to random force R, and F correlators are the same as
R correlators [41]. Roughly speaking, because the Brownian particle does not
move in the m→ ∞ limit, there will be no friction and thus R = F .

In the end, the resulting 4-point function 〈FFFF 〉 is essentially given by
the interaction term in the action, with the X fields replaced by the boundary-
bulk propagators. Namely,

〈T [F (t1)F (t2)F (t3)F (t4)]〉 ∼
1

16πα′

∫
dt dr

∑

perm
(ijkl)

[
−∂tK(ti) ∂tK(tj)

f
+ r4f ∂rK(ti) ∂rK(tj)

]

×
[
−∂tK(tk) ∂tK(tl)

f
+ r4f ∂rK(tk) ∂rK(tl)

]
,

(3.91)

where K(ti) ≡ K(t, r|ti) is the boundary-bulk propagator from the boundary
point ti to the bulk point (t, r). This is the Witten diagram rule that we naively
expect. However, because the worldvolume theory of a string is different from,
e.g. a Klein–Gordon scalar, a careful consideration of holographic renormal-
ization is necessary. Indeed, the naive expression is (3.91) is UV divergent and
needs regularization. Furthermore, our black hole spacetime is a Lorentzian
geometry and we should apply the rules of Lorentzian AdS/CFT of section
1.7.2. As is explained in Appendix 3.D, after all the dust has been settled, the
F correlator gives exactly the same IR divergence as the naive computation of
the R correlator, (3.88). This implies that this IR divergence we are finding is
not an artifact but a real thing to be interpreted physically.8

8Although the IR parts are the same, the result obtained in the previous subsection 3.4.1 using
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It is worth pointing out that the result (3.91) has a similar structure to the
one we saw in the toy model (3.62), with the propagator K(t) roughly corre-
sponding to P (t). It would be interesting to find an improved toy model which
precisely reproduces the structure (3.91).

In Appendix 3.D.5, we also computed the retarded 4-point function of ran-
dom force. The expression is free from both IR and UV divergences and the fi-
nal result is finite. However, because we do not know how to relate the retarded
4-point function and tmfp, this cannot be used to compute tmfp. It would be in-
teresting to find a microscopic model that directly relates retarded correlators
and tmfp.

3.4.3 General polarizations

The argument so far has been as if there were only one field X and the associ-
ated random force R. However, in the general d > 3 case we have n = d− 2 > 1
fields XI , I = 1, 2, . . . , n. Considering all XI , the bulk action (3.75) actually
becomes

Sint =
1

16πα′

∫
dt dr

[
(ẊI)2

f
− r4f (XI ′)2

]2
. (3.92)

The associated random force RI has n components too.

The computation of 4-point functions in this multi-component case can be
done completely in parallel with the one-component case. Let us define

G
(x)IJKL
conn (t1, t2, t3, t4) ≡ 〈T [XI(t1, rc)X

J(t2, rc)X
K(t3, rc)X

L(t4, rc)]〉. (3.93)

This is nonvanishing only if some indices are identical. More precisely, the
only nonvanishing cases are (i) all indices are identical, I = J = K = L, or (ii)
indices are pairwise identical, I = J 6= K = L, I = K 6= J = L, or I = L 6= J =
K.

In case (i), the resulting 4-point function is exactly the same as the one-
component case (3.84). Consequently, the IR form of the random force corre-

lator G
(R)IIII
conn is the same as the one-component case (3.88).

the worldsheet thermal field theory is not quite the same as the one obtained in this subsection
3.4.2 using holographic renormalization, due to the counter terms added to the latter at the UV
cutoff r = rc.
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In case (ii), on the other hand, the 4-point function becomes

G
(x)IIJJ
conn (ω1, ω2, ω3, ω4) =

i

16πα′ 2πδ(ω1 + · · · + ω4)

∫ rc

rH

dr

×
{

8

[
ω1ω2

f
D[11](ω1)D[11](ω2) + r4f∂rD[11](ω1)∂rD[11](ω2)

]

×
[
ω3ω4

f
D[11](ω3)D[11](ω4) + r4f∂rD[11](ω3)∂rD[11](ω4)

]

− (D[11] → D[21])

}
. (3.94)

The IR form of the random force correlator is

G
(R)IIJJ
conn (ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)

∫ 0

−∞
dr∗

r2

f

×
∑

1≤i≤2, 3≤j≤4

(ωi + ωj)e
−2i(ωi+ωj)r∗ + O(ω2).

(3.95)

Comparing this with the expectation from the field theory side, (3.73) we ob-
serve the same structure. Namely, the connected 4-point functions are non-
vanishing only when the polarization indices are all or pairwise identical.
The precise relative values of the nonvanishing 4-point functions are model-
dependent and not important; in the simple model of subsection 3.3.2, it de-
pends on our choice of the expectation values (3.69).

3.5 The IR divergence

In the last section, we computed the connected 4-point function for the ran-
dom force R and found that the low-frequency expression,

G
(R)
conn(ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)

×
∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ , (3.96)

has an IR divergence coming from the integral in the near horizon region.
What is the physical reason for this divergence? Very near the horizon, the
expansion of the Nambu–Goto action in the transverse fluctuation X breaks
down because the proper temperature becomes higher and higher as one ap-
proaches the horizon and, as a result, the string fluctuation gets wilder and
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wilder. The correct thing to do in principle is to consider the full non-linear
Nambu–Goto action, but this is technically very difficult. Instead, a physically
reasonable estimate of the result is the following. Let us introduce an IR cutoff
near the horizon at

rs = rH + ǫ, (3.97)

where ǫ ≪ rH . We take this cutoff rs to be the radius where the expansion of
the Nambu–Goto action becomes bad. Then, in IR-divergent expressions such
as (3.88), we simply throw away the contribution from the region r < r < rs by
taking the integral to be only over r > rs. Of course, to obtain a more precise
result, we should include the contribution from the region rH < r < rs with
the higher order terms in the expansion of the Nambu–Goto action taken into
account. However, we expect that the contribution from this region rH < r <
rs will be of the same order as the contribution from the region r > rs and,
therefore, we can estimate the full result by just keeping the latter contribution.

With this physical expectation in mind, let us evaluate the mean-free-path
time tmfp by introducing the IR cutoff (3.97). The parameter ǫ appearing in
(3.97) can be related to the proper distance from the horizon, s, as follows:

s =

∫ rH+ǫ

rH

dr

r
√
f
∼
∫ rH+ǫ

rH

dr√
(d− 1)rH(r − rH)

=

√
2ǫ

(d− 1)rH
. (3.98)

Therefore

ǫ ∼ s2rH , (3.99)

where we dropped numerical factors. In the tortoise coordinate r∗, the cutoff
is at

rs
∗ ∼ − 1

(d− 1)rH
log s2, (3.100)

where we used (3.21).

The introduction of an IR cutoff of the geometry near the horizon also
means that the resulting expressions such as (3.96), with the IR cutoff imposed,
is valid only for frequencies larger than a certain cutoff frequency ωs. We can
relate ωs with the geometric cutoff rs

∗ as follows. If we cut off the geometry at
r∗ = rs

∗, we have to impose some boundary condition there (just as for the
brick wall model). For example, let us impose a Neumann boundary condi-
tion. As was shown in (3.177), for very low frequencies, the solutions to the
wave equation behave as

fω(r) ∼ eiωr∗ + e−iωr∗ . (3.101)
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For this to satisfy Neumann boundary condition ∂r∗
fω(r)|r∗=rs

∗
= 0, we need

ω = nπ/rs
∗ where n ∈ Z. Namely, the frequency has been discretized in units of

π/|rs
∗|. Therefore, the smallest possible frequency is

ωs ∼
1

|rs
∗|

∼ 1

β log(1/s)
. (3.102)

If we use (3.100) and (3.102), the correlator (3.96) becomes

G
(R)
conn(ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)ωsr

2
H

∫

rs
∗

dr∗e
−(d−1)rHr∗

∼ i

α′β3
δ(ω1 + · · · + ω4)ωsr

2
H

e−(d−1)rHrs
∗

rH

∼ is2ωs

α′β4
δ(ω1 + · · · + ω4) ∼

is2

α′β5 log(1/s)
δ(ω1 + · · · + ω4).

(3.103)

On the other hand, from (3.36), the 2-point function is

G(R)(ω1, ω2) ∼
1

α′β3
δ(ω1 + ω2) (3.104)

Comparing above results and the toy model results (3.66), (3.67), we obtain

tmfp ∼ 1

µ
∼ α′β

s2 log(1/s)
, P (ω = 0) ∼ 1

βs
√

log(1/s)
. (3.105)

Now the question is how to determine the length s. This must be the place
where the expansion (3.74) of the Nambu–Goto action becomes bad. One can
show that this occurs a proper length ∼

√
α′ away from the horizon due to

thermal fluctuation (Hawking radiation) in the black hole background (for an
argument in more general setups see subsection 3.6.1). This leads us to set

s ∼
√
α′. (3.106)

At this point, the local proper temperature becomes of the order of the Hage-
dorn temperature, ∼ 1/

√
α′. The above condition must be the same as the con-

dition that the loop correction of the worldsheet theory to the 4-point function
〈F 4〉 becomes of the same order as the tree level contribution.

If we substitute (3.106) into (3.105), we obtain

tmfp ∼ 1

T logλ
, P (ω = 0) ∼ Tλ1/4

√
logλ

(3.107)

where, following the convention of the d = 5 (AdS5) case, we defined the “’t
Hooft coupling” by

λ ≡ l4

α′2 , (3.108)
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where we restored the AdS radius l which we have been setting to one.

The result (3.107) is quite interesting. In [67], the collision duration time
tcoll was determined to be

tcoll ∼
1

T
. (3.109)

Therefore, tmfp given in (3.107) implies that a plasma particle can be thought
of as in interaction with roughly logλ other particles simultaneously.

Even if we take into account the fact that XI has in general more than one
component (I = 1, 2, . . . , n = d − 2) and use the results such as (3.73), (3.95),
we end up the same estimate for tmfp as far as its order is concerned.

3.6 Generalizations

In the previous section, we derived using AdS/CFT the expression for the
mean-free-path time tmfp for the simple case of neutral plasma. In this section,
we sketch how this generalizes to the more general metric (3.37) and present
the expression for the mean-free-path time for more general systems such as
charged plasmas. As an example, we will apply the result to the STU black hole.

3.6.1 Mean-free-path time for the general case

We are interested in computing the mean-free-path time in field theory by an-
alyzing the motion of a Brownian string in the metric (3.37). For that, as has
been explained in section 3.3 for the neutral case, we need to compute the 4-
point function of the random force in addition to the 2-point function.

Expanding the Nambu–Goto action in the background metric (3.37) up to
quartic order, the action for the string in the tortoise coordinate defined in
(3.44) is given as follows:

S = S0 + Sint, (3.110)

S0 =
1

4πα′

∫
dt dr∗G (Ẋ2 −X ′2), (3.111)

Sint =
1

16πα′

∫
dt dr∗

G2

htf
(Ẋ2 −X ′2)2, (3.112)

where we dropped a constant independent of the field X , and ˙ = ∂t, ′ = ∂r∗
.

As we discussed in subsection 3.4.2 for the simple neutral case, we can use
Sint as the interaction term and apply the usual GKPW rule to compute corre-
lators for the random force 9 F dual to the bulk field X . As before, the naive

9Recall that in this setup the force F is equal to the random force R.
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result from the GKPW prescription includes both UV and IR divergences. Us-
ing holographic renormalization, which is discussed in Appendix 3.D for the
neutral case, we can remove the UV divergence by adding counter terms to
the action. The IR divergence, on the other hand, signals the breakdown of
the quartic approximation (3.110). We regulate this divergence by introduc-
ing an IR cutoff at r∗ = rs

∗ near to the horizon, whose physical motivation was
explained in section 3.5.

Following the same analysis as in section 3.5 now with the interaction term
(3.112), we obtain an expression similar to (3.88) for the connected random
force 4-point function. The dominant contribution comes from the near-
horizon region and is given in frequency space by

〈T [F 4]〉conn ∼ i

α′β3
δ(ω1 + · · · + ω4)

∫

rs
∗

dr∗
G2

fht

∑

1≤i<j≤4

(ωi + ωj)e
−2i(ωi+ωj)r∗ ,

(3.113)

where rs
∗ is the aforementioned IR cutoff (in the tortoise coordinate). Let the

IR cutoff in the r coordinate be at r = rH + ǫ ≡ rs. The parameter ǫ is related
to the proper distance s from the horizon as

s =

∫ rH+ǫ

rH

√
hr

f
dr ≈

√
2ǫ hr(rH)

kH
, ǫ ≈ s2kH

2hr(rH)
. (3.114)

Using the relation (3.44) between rs and rs
∗, we can estimate the cut-off integral

(3.113) as

〈T [F 4]〉 ∼ G2(rH)ωs

α′s2
δ(ω1 + · · · + ω4), (3.115)

where ωs is the smallest frequency for which the expansion (3.110) is valid.
Combining this with the result (3.50) for the 2-point function, the mean-free-
path time is estimated as

tmfp ∼ α′β2ωs

s2
. (3.116)

Now, let us determine the IR cutoff parameters s (or equivalently ǫ) and ωs

appearing in (3.116). As before, we take the IR cutoff to be the location where
S0 and Sint become of the same order. As is clear from (3.111), (3.112), the
expansion of the Nambu–Goto action becomes bad at the location where

G

htf
Ẋ2,

G

htf
X ′2 ∼ 1. (3.117)

So, we would like to estimate Ẋ,X ′. Near the horizon, r ≈ rH , we can write the
action (3.111) as

S0 ∼ 1

2

∫
dt dr∗(

˙̃
X

2

− X̃ ′2), X̃ ≡
√
G(rH)

2πα′ X. (3.118)
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There being no dimensional quantity in the problem other than the tempera-

ture T , we must have
˙̃
X, X̃ ′ ∼ T , namely |Ẋ|, |X ′| ∼

√
2πα′/G(rH) T . So, the

condition (3.117) determines the IR cutoff to be at

r − rH = ǫ ∼ α′T 2

kHht(rH)
. (3.119)

In term of s, the IR cutoff is at the string length:

s ∼
√
α′. (3.120)

It is more subtle to determine the parameter ωs. In Appendix 3.B (around
Eq. (3.174)), the following was shown. Let us we choose the tortoise coordinate
r∗ to be related to r near the horizon as

r∗ ≈ 1

4πT
log

(
r − rH
LH

)
, (3.121)

where LH is defined through the following integral

∫ r

∞

dr

fG

√
hr

ht
=

1

4πGHT
log

(
r − rH
LH

)
+ O(r − rH) (3.122)

for r ≈ rH . Then the solution fω(r) to the wave equation (3.43), satisfying a
normalizable boundary condition at infinity, will have the form

fω(r) ∼ eiωr∗ − e−iωr∗ (3.123)

for small ω. More precisely, we have

fω(r) ∼ eiωr∗ − eiαωe−iωr∗ , αω = O(ω2). (3.124)

Now, let us we impose some boundary condition at rs
∗, such as a Neumann

boundary condition ∂r∗
fω = 0, then the frequency ω gets discretized in units

of ∆ω = π/|rs
∗|. Note that, if αω = O(ω) as ω → 0, then the coefficient of the

O(ω) term will affect the value of ∆ω; this is why (3.124) was important. This
motivates the following choice for the minimum frequency:

ωs ∼ ∆ω ∼ 1

|rs
∗|

∼ 1

β log
(

LH

ǫ

) ∼ 1

β log
(

βLH

s2

√
ht(rH)hr(rH)

) . (3.125)

Substituting in the above expressions for s, ωs, the mean-free-path time
(3.116) is

tmfp ∼ 1

T log
(
η
√
λ
) , η ≡ LH

T

√
ht(rH)hr(rH) , (3.126)

where λ is the “’t Hooft coupling” defined in (3.108). Note that the nontrivial
effect of charge only enters through the logarithm and hence the dependence
of tmfp on it is very mild in the strongly coupled case λ≫ 1.
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3.6.2 Application: STU black hole

The AdS/CFT correspondence has been successfully used to extract the prop-
erties of field theory plasmas. A particularly interesting case is a 4-dimensional
charged plasma, because it is relevant for the experimentally generated quark-
gluon plasma with net baryon charge. One notable situation to realize 4-
dimensional charged plasmas in the AdS/CFT setup is the spinning D3-brane,
which in the decoupling limit gives d = 4, N = 4 SYM with nonvanishing R-
charges. We can have three different R-charges corresponding three Cartan
generators of the SU(4) ∼= SO(6) R-symmetry group. As already mentioned
in subsection 3.2.3, on the gravity side this corresponds to a Kerr black hole
in AdS5 × S5 with three angular momenta in the S5 directions [82, 83]. Upon
compactifying on S5, this reduces to the so-called STU black hole of the five-
dimensional supergravity [80,81]. From this five-dimensional perspective, the
STU black hole is a non-rotating black hole with three U(1) charges. There has
been much study [40, 84, 85, 91–94] on the properties of the R-charged field
theory plasma using the STU black hole. Here, we would like to apply the ma-
chineries we have developed in the previous sections to the computation of
the mean-free-path time for the Brownian particle in R-charged plasma dual
to the STU black hole.

The STU black hole

The 10-dimensional metric of the STU black hole is given by [80]:10

ds210 =
√

∆ ds25 +
l2√
∆

3∑

i=1

X−1
i

[
dµ2

i + µ2
i

(
dψi +

Ai

l

)2
]
, (3.127)

ds25 = − f

H2/3
dt2 + H1/3

(
dr2

f
+ r2(dXI)2

)
,

f(r) =
r2

l2
H− m

r2
, H = H1H2H3, Hi = 1 +

qi
r2
,

Xi = H−1
i H1/3, Ai =

√
m

qi
(1 −H−1

i )dt, ∆ =
3∑

i=1

Xiµ
2
i ,

µ1 = sin θ1, µ2 = cos θ1 sin θ2, µ3 = cos θ1 cos θ2

with i = 1, 2, 3. Here, XI , I = 1, 2, 3 are spatial directions along the boundary
and l is the AdS radius. The four parameters m, qi are related to the mass and
three electric charges of the STU black hole. It is convenient to introduce the

10The horizon of the STU black hole can be either S3, R
3, or H3, but we are focusing on the

planar R
3 case, corresponding to a charged plasma in flat R

3.
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dimensionless quantities

κi =
qi
r2H

, i = 1, 2, 3. (3.128)

The horizon is at r = rH where rH is the largest solution to f(r) = 0. The latter
equation relates m to rH and κi as

m =
r4H
l2

H(rH) =
r4H
l2

(1 + κ1)(1 + κ2)(1 + κ3). (3.129)

The Hawking temperature is given by

T =
rH
2π

2 + κ1 + κ2 + κ3 − κ1κ2κ3√
(1 + κ1)(1 + κ2)(1 + κ3)

. (3.130)

From the five-dimensional point of view, the STU black hole is electrically
charged under the gauge fieldsAi and the associated chemical potentials are

Φi =
1

κ2
5

[
Ai

t(r = ∞) −Ai
t(r = rH)

]
= − r2H

κ2
5l

√
κi

∏3
j=1(1 + κj)

1 + κi
. (3.131)

Here κ2
5 = 8πG5 is the five-dimensional Newton constant and

G5 =
G10

VS5

=
8π6g2

sα
′4

π3l5
=

πl3

2N2
, (3.132)

where N is the rank of the boundary gauge theory. For expressions for other
physical quantities, such as energy density, entropy density, and charge den-
sity, see e.g. [95]. From thermodynamical stability, the parameters κi are re-
stricted to the range [96]

2 − κ1 − κ2 − κ3 + κ1κ2κ3 > 0. (3.133)

We can shift the gauge potential Ai so that its value on the horizon is zero:

Ai(r) ≡ Ai(r) −Ai(rH). (3.134)

If we accordingly shift the angular variable by

ψ̃i ≡ ψi +Ai
t(rH) (3.135)

then the metric (3.127) becomes

ds210 =
√

∆ ds25 +
R2

√
∆

3∑

i=1

X−1
i [dµ2

i + µ2
i (dψ̃i + Ai/R)2]. (3.136)
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Background configuration

We first want to find a background configuration of a string in the 10 dimen-
sional geometry (3.127) or (3.136), so that we can start expanding the Nambu–
Goto action around it. If we restrict ourselves to configurations with trivial θa

dependence, the relevant line element can be written as

ds2 = −αdt2 + β dr2 + γ(dXI)2 +

3∑

i=1

ǫi(dψ̃i + φidt)
2. (3.137)

Here α, β, γ, ǫi, φi are functions of r and θa which can be read off from (3.136).
For example, α = ∆1/2fH−2/3. Parametrize the worldsheet by t, r and take the
following ansatz:

XI(t, r) = 0, ψ̃i(t, r) = ω̃it+ ϕi(r). (3.138)

The string is straight in the AdS5 part of the spacetime. On the other hand,
the angular momenta in the S5 directions are expected to drag the string
in these directions and ω̃i, ϕi correspond to nontrivial drifting/trailing of the
string [40, 84, 85]. The Euler–Lagrange equation for ϕ(r) states that πr

ϕi
≡

∂LNG/∂(∂rψ̃i) = ∂LNG/∂ϕi is constant along the string. The quantity πr
ϕi

corre-
sponds to the inflow of angular momenta (or, from the five-dimensional point
of view, electric charges) from the “flavor D-brane” at the UV cutoff r = rc,
and how to choose them depends on the physical situation one would like to
consider [85]. Here, let us focus on the case where the string endpoint on the
“flavor D-brane” is free and there is no inflow, i.e., πr

ϕi
= 0. This corresponds

to a boundary Brownian particle neutral under the R-symmetry. This is phys-
ically appropriate because we want to compute the random force correlators
unbiased by the effects of the charge of the probe itself. It is not difficult to see
that setting πr

ϕi
= 0 leads to ϕi = 0 by examining the Euler–Lagrange equa-

tions.
Let us next turn to the angular velocity ω̃i. Givenϕi = 0, the induced metric

on the worldsheet is

ds2ind = −αdt2 + βdr2 +

3∑

i=1

ǫi(ω̃i + φi)
2dt2. (3.139)

The determinant of this induced metric is

det g ∝ −α+

3∑

i=1

ǫi(ω̃i + φi)
2. (3.140)

This must be always non-positive for the configuration to physically make
sense. This condition is most stringent at the horizon r = rH where α ∝ f = 0,
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φi = Ai
t(rH)/l = 0. So, we need

∑

i

ǫiω̃
2
i ≤ 0. (3.141)

Since ǫi ≥ 0, this means that

ω̃i = 0. (3.142)

Namely, the background configuration is simply

XI(t, r) = ψ̃i(t, r) = 0. (3.143)

Note that the angular motion is trivial only in the ψ̃i coordinates and in the
original ψi coordinates there is non-vanishing angular drift.

So far we have been treating θa as constant. However, this is not correct and
an arbitrary choice of θa will not satisfy the full equations of motion. Below, we
will consider the following three cases:

(i) 1-charge case: κ1 = κ 6= 0, κ2 = κ3 = 0; θ1 = π/2,

(ii) 2-charge case: κ1 = 0, κ2 = κ3 = κ 6= 0; θ1 = 0,

(iii) 3-charge case: κ1 = κ2 = κ3 = κ 6= 0; θ1, θ2: arbitrary.

It can be shown [85] that the above values of θa are necessary for all the equa-
tions of motion to be satisfied. These values make sense physically since, if the
angular momentum around an axis is nonvanishing, the string wants to orbit
along the circle of the largest possible radius around that axis. This is achieved
by the above choices of θa.

Friction coefficient

Before proceeding to the computation of the mean-free-path time, let us check
that the low-frequency friction coefficient for the STU black hole that we can
compute using the formula (3.49) is consistent with the result found in the
literature [85]. In the present case of the metric (3.137), the formula (3.49) gives

µ(ω) =
2mπα′

γ(rH)
+ O(ω). (3.144)

On the other hand, the drag force computed in [85] is 11

F = −γ(rws)

2πα′ v, (3.145)

11This is the drag force for the “non-torque string” of [85] which corresponds to no inflow of at
the flavor D-brane; see the discussion below (3.138). See Refs. [40, 84, 85] for the relation between
the strings with and without inflow.
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where v is the velocity of the quark and rws is the solution toα(rws)−v2γ(rws) =
0. In the non-relativistic limit, v → 0, the admittance read off from (3.145)
should become the same as the low-frequency result (3.144). Using the fact
that rws → rH and p = mv in the v → 0 limit, it is easy to see that (3.145)
indeed reproduces the admittance (3.144).

Mean-free-path time

For the three cases (i)–(iii) described above, let us use the formula (3.126) and
compute tmfp. Consider the n-charge case (n = 1, 2, 3). For the background
configuration (3.143), the 10-dimensional metric of the STU black hole (3.136)
induces the following metric:

ds2 = −fH−n+1
2 (1 − f−1H2A2

t )dt
2 +H

n−1
2

(
dr2

f
+ r2(dXI)2

)
, (3.146)

At =
√
mq

(
1

r2 + q
− 1

r2H + q

)
, H = 1 +

q

r2
, (3.147)

where q = κr2H . Here, in addition to the t, r part, we kept the XI part of the
metric (3.143) also, because we would like to consider the transverse fluctua-
tions along XI directions. Comparing this metric with the general expression
(3.37), we find

ht = H−n+1
2 (1 − f−1H2A2

t ), hr = H
n−1

2 , G = r2H
n−1

2 . (3.148)

Therefore, from (3.126),

tmfp ∼ 1

T log
(
η
√
λ
) , η =

LH

T
√
H(rH)

=
LH

T
√

1 + κ
. (3.149)

The computation of η, particularly LH in it, is slightly complicated. So, we
delegate the details of the calculation to Appendix 3.E and simply present the
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Figure 3.4: B ehavior of η versus κ, for 1-charge (solid red), 2-charge (dashed
green), and 3-charge (dotted blue) cases. The range of κ is determined by the
thermodynamical stability (3.133) to be κ < 2 for the 1- and 3-charge cases
while κ < 1 for 2-charge case.

results. For 1-, 2-, and 3-charge cases, η is given respectively by

η =
4π

2 + κ
exp

{
−2(2 + κ)

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ2 + 1 + κ)((1 + κ)ρ2 + 1)
− 1

2 + κ

]}

(3.150)

η =
2π√
1 + κ

exp

{
−4

√
1 + κ

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ2 + 1)(ρ2 + 1 + 2κ)
− 1

2
√

1 + κ

]}

(3.151)

η =
4π

(1 + κ)(2 − κ)
exp

{
−2(1 + κ)3/2(2 − κ)

∫ 1

∞

dρ

ρ2 − 1

×
[

ρ√
(ρ2 + 1 + κ− κ2)(ρ4 + (1 + 3κ)ρ2 − κ3)

− 1

(1 + κ)3/2(2 − κ)

]}

(3.152)

The small κ expansion of η is presented in (3.263)–(3.265).
In Figure 3.4, we have plotted the behavior of η as we change κ. Because η

appears in the denominator of the expression for tmfp, we observe the follow-
ing: for the 1- and 2-charge cases, tmfp gets longer as we increase the chemical
potential keeping T fixed, while for the 3-charge case, tmfp gets shorter as we
increase the chemical potential keeping T fixed.
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One may find it counter-intuitive that tmfp increases as we increase chem-
ical potential with T fixed in the 1- and 2-charge cases, based on the intuition
that a larger chemical chemical potential means higher charge density and
thus more constituents to obstruct the motion of the Brownian particle. How-
ever, such intuition is not correct. What we know instead is that, if we increase
the charge with the mass fixed, then the entropy decreases, as one can see from
the entropy formula for charged black holes. So, if we interpret entropy as the
number of “active” degrees of freedom which can obstruct the motion of the
Brownian particle, then this suggests that tmfp should increase as we increase
the charge with the mass fixed. We did numerically check that this is indeed
true for all the 1-, 2- and 3-charge cases.

3.7 Discussion

We studied Brownian motion in the AdS/CFT setup and computed the time
scales characterizing the interaction between the Brownian particle and the
CFT plasma, such as the mean-free-path time tmfp, by relating them to the 2-
and 4-point functions of random force. We found that there is an IR divergence
in the computation of tmfp which we regularized by introducing an IR cutoff
near the horizon. Here let us discuss the issues involved in the procedure and
the implication of the result.

The first question that arises is: tmfp is the mean-free-path time for what
particle? First of all, one can wonder whether this is really a mean-free-path
time in the first place, because the nontrivial 4-point function was obtained
by expanding the Nambu–Goto action to the next leading order, which is a
relativistic correction to the motion of the bulk string. So, isn’t this a relativistic
correction to the kinetic term in the Langevin equation, not to the random
force? However, recall the “cloud” picture of the Brownian particle mentioned
before; the very massive quark we inserted is dressed with a cloud of polarized
plasma constituents. The position of the quark corresponds to the boundary
endpoint of the bulk string, while the cloud degrees of freedom correspond to
the fluctuation modes of the bulk string. So, we are incorporating relativistic
corrections to these cloud degrees freedom (fluctuations) but not to the quark
which gets very heavy in the large m limit and thus remains non-relativistic.

So, what is happening is the following. First, the constituents of the
background plasma kick the cloud degrees of freedom randomly and, conse-
quently, those cloud degrees of freedom undergo random motion, to which we
have incorporated relativistic corrections. Then these cloud degrees of free-
dom, in turn, kick the quark, which is recorded as the random force F felt by
the quark. F is non-Gaussian, or has a nontrivial 4-point function, because
the cloud that is interacting with the quark is relativistic. The quark’s motion,
which is what is observed in experiments, is certainly governed by the non-
Gaussian random F and the frequency of collision events is given by 1/tmfp.
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However, it is worth emphasizing that this tmfp is not a mean-free-path time
for the plasma constituents themselves.12

We focused on the fluctuations in the noncompact AdS directions. How-
ever, for example, in the case of STU black holes, the full spacetime is AdS5×S5

and the string can fluctuate in the internal S5 directions as well. Let us denote
the fluctuations of the string in the internal directions by Y , while the fluctu-
ations in the AdS directions continue to be denoted by X . One may wonder if
the computations of the random force correlators such as 〈OXOXOXOX〉 are
affected by the Y fields. Here, we denoted the force by OX to remind ourselves
that the force is an operator conjugate to the bulk fieldX . The Y fields do con-
tribute to such quantities, because the Nambu–Goto action expanded up to
quartic order involves terms of the form X2Y 2. However, as long as we are in-
terested in quantities with all external lines beingOX , such as 〈OXOXOXOX〉,
they only make loop contributions, which are down by factors of α′. Therefore,
our leading order results do not change.

In the present chapter, we focused on the case where the plasma has no net
momentum. More generally, one can consider the case where the plasma car-
ries net amount of momentum and insert a quark in it. The Brownian motion
in such situations were studied in [69, 71] (see also [70]) in AdS/CFT setups.
It is interesting to generalize our computation of ttmp to such cases. Note the
following, however: in general, in the presence of a net background momen-
tum, the string will “trail back” because it is pushed by the flow. Unless one
applies an external force, the string will start to move and ultimately attain the
same velocity as the background plasma. This final state is simply a boost of
the static situation studied in the present chapter. So, the result of the current
chapter applies to this last situation too (after rescaling due to Lorentz con-
traction).

The resulting expression for the mean-free-path time, e.g. (3.107), is quite
interesting because of the logarithm. As mentioned around (3.109), this means
that the Brownian particle is experiencing ∼ logλ collision events at the same
time. Because λ ∝ N , this is reminiscent of the fast scrambler proposal [98,
99] which claims that, in theories that have gravity dual, ∼ logN degrees of
freedom are in interaction with each other simultaneously.

In our previous paper [67], we claimed that tmfp ∼ 1/T based on dimen-
sional analysis, but (3.107) says that there is an extra factor which cannot be
deduced on dimensional grounds. Of course, we have to note the fact that tmfp

we computed in the present chapter is not the time scale of the constituents
but of the Brownian particle (see also footnote 12). In our previous paper [67],
we had told

relax ∼ m/(T 2
√
λ), told

mfp ∼ 1/(T
√
λ) instead, which were nice because

if we set m → T in told
relax we get told

mfp. In the (3.107), this is no longer the case,
but now the relation between trelax and tmfp is not so simple as we can see

12Ref. [97] estimates the mean-free-path of the plasma constituents to be lmfp ∼ 1/T from the
parameters of the hydrodynamics that one can read off from the bulk gravity.
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from the fact that there is a nontrivial λdependence in the impact per collision,
P (ω = 0) (Eq. (3.107)). It would be interesting to find an improved microscopic
toy model which can relate trelax and tmfp.

Probably the most controversial issue in our computations is the IR cutoff.
When regulating integrals such as (3.96), we cut off the geometry at a proper
distance s ∼ ls away from the horizon, assuming that the contribution from
the rest of the integral is of the same order. This seems physically reasonable,
but we do not have a proof. One could also have tried to put a cutoff at the
point where the backreaction of the fundamental string on the black hole ge-
ometry becomes important. Since the interaction of the string with the back-
ground is suppressed by additional powers of the string coupling constant,
the resulting cutoff is presumably closer to the Planck length than the string
length.

Related to the above statement, it is interesting to note that the mean-free-
path at weak coupling [100]

λmfp,weak ∼ 1

g4
YMT ln(1/g2

YM )
(3.153)

has a form tantalizingly similar to (3.105). In particular, the log in (3.153) is
coming from an IR divergence cut off by non-perturbative magnetic effects
[100], while the log in (3.105) was also coming from an IR divergence that
we regularized by introducing an IR cutoff. It would be interesting to study
whether there is a relation between the weakly and strongly coupled descrip-
tions of the IR divergences and the physical interpretation of the IR cutoffs.

3.A Normalizing solutions to the wave equation

As explained in subsection 3.2.2 or more generally in subsection 3.2.3, the
normalized modes {uω} are proportional to fω of the form (3.23); namely,
uω(t, r) ∝ e−iωtfω(r). Here, we fix the normalization and derive the expansion
(3.24) or more generally (3.48).

The analogue of the Klein–Gordon inner product for functions f(t, r), g(t, r)
satisfying the equation of motion (3.43) is [67]

(f, g)Σ = − i

2πα′

∫

Σ

√
g̃ nµG (f∂µg

∗ − ∂µf g
∗), (3.154)

where Σ is a Cauchy surface in the t, r part of the metric (3.37). g̃ is the induced
metric on Σ and nµ is the future-pointing unit normal to Σ.

We want to normalize fω using this norm (3.154). In the present case, there
is the following simplification to this procedure. Near the horizon r ∼ rH , the
action (3.42) reduces to

S0 ≈ G(rH)

4πα′

∫
dt dr∗

[
(∂tX)2 − (∂r∗

X)2
]
. (3.155)
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Therefore, in this region and in the tortoise coordinate system, X is just like a
massless Klein–Gordon scalar in flat space. Correspondingly, the contribution
to the norm (3.154) from the near horizon region is

− iG(rH)

2πα′

∫

r∗∼−∞
dr∗(f ∂tg

∗ − ∂tf g
∗), (3.156)

where as Σ we took the constant t surface. This is the usual Klein–Gordon
inner product for the theory (3.155), up to overall normalization. Of course,
there is a contribution to the inner product from regions away from the hori-
zon. However, because the near-horizon region is semi-infinite in the tortoise
coordinate r∗ (recall that r = rH corresponds to r∗ = −∞), the normalization
of solutions is completely determined by this region where the inner product
is simply (3.156). This means that the canonically normalized mode expansion
is given by

X(t, r) =

√
2πα′

G(rH)

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
. (3.157)

where fω(r) behaves near the horizon as

fω(r) → eiωr∗ + eiθωe−iωr∗ , r → rH (r∗ → −∞) (3.158)

with some θω ∈ R. If we can find such fω(r), then a, a† satisfy the canonically
normalized commutation relation (3.16).

3.B Low energy solutions to the wave equation

Here, we study the solution to the wave equation (3.14), or more generally
(3.43), satisfying an appropriate boundary condition (the Neumann bound-
ary condition (3.17) or normalizable boundary condition at infinity), for very
small frequencies ω. We see that the solutions become trivial plane waves in
the limit.

The general wave equation (3.43) can be written in the frequency space as
[
ω2 +

√
ht

hr

f

G
∂r

(√
ht

hr
fG∂r

)]
Xω(r) = 0. (3.159)

Very close to the horizon, this becomes
[
ω2 + 16π2T 2(r − rH)∂r

(
(r − rH)∂r

)]
Xω(r) = 0. (3.160)

This means that the linearly independent solutions are

g±ω = exp

[
±i ω

4πT
log

(
r − rH
L1

)]
(3.161)
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where L1 is a length scale which is arbitrary at this point. The ± signs here cor-
respond to outgoing and ingoing waves. We are considering the small ω limit
but, no matter how small ω is, we can always consider a region very close to the
horizon so that ω

4πT log( r−rH

L1
) = O(1), namely r−rH

L1
. e−4πT/ω. In such a re-

gion, we cannot expand the exponential and should keep the full exponential
expression (3.161). In other words, the precise limit we are taking is

ω → 0,
ω

T
log
(r − rH

L1

)
: fixed. (3.162)

Now, consider the region not so close to the horizon. For small ω, we can
ignore the ω2 term in (3.159), obtaining

Xω = B1 +B2

∫ r

∞

dr′

f(r′)G(r′)

√
hr(r′)

ht(r′)
+ O(ω2), (3.163)

where B1, B2 are constant. For r ≈ rH , this gives

Xω = B1 +
B2

4πTG(rH)
log

(
r − rH
LH

)
+ O(r − rH) (r ∼ rH). (3.164)

Here, we defined the constant LH by

∫ r

∞

dr

fG

√
hr

ht
=

1

4πTG(rH)
log

(
r − rH
LH

)
+ O(r − rH). (3.165)

Because it will turn out to be convenient to choose LH = L1, we will set LH =
L1 henceforth. On the other hand, for large r, (3.163) gives (assuming the large
r behavior (3.40), (3.41) of functions ht, hr, G),

Xω = B1 −
B2

3r3
+ O(ω2). (3.166)

We can determine B1, B2 by comparing these small-frequency solutions
between the very-near-horizon region and the not-so-near-horizon region.
For small frequencies ω, (3.161) becomes

Xω ≈ 1 ± i
ω

4πT
log

(
r − rH
LH

)
+ O(ω2). (3.167)

Comparing this with (3.164), we determine

B1 = 1 + O(ω2), B2 = ±iωG(rH) + O(ω2). (3.168)

Therefore, the linearly independent (outgoing/ingoing) solutions are

g±ω(r) =





exp

[
±i ω

4πT
log

(
r − rH
LH

)]
r ∼ rH

1 ± iωG(rH)

3r3
r ≫ rH

(3.169)
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The general solution Xω is given by the linear combination of the outgoing
and ingoing solutions g±ω. If we want to construct a normalizable solution
that vanishes as r → ∞ then, from the r ≫ rH behavior of (3.169), the linear
combination to take is

X (norm)
ω = gω − g−ω. (3.170)

If we did not take L1 = LH , the two terms would be multiplied by
exp[∓i ω

4πT log(LH

L1
)] respectively. Note that our expressions are correct up to

O(ω2) terms. The near-horizon behavior of this is

X (norm)
ω ≈ exp

[
i
ω

4πT
log

(
r − rH
LH

)]
− exp

[
−i ω

4πT
log

(
r − rH
LH

)]
. (3.171)

Therefore, if define the tortoise coordinate r∗ to have the following behavior
the horizon:

r∗ ≈ 1

4πT
log

(
r − rH
LH

)
(3.172)

then the near-horizon behavior (3.171) simply becomes

X (norm)
ω ≈ eiωr∗ − e−iωr∗ (r ≈ rH). (3.173)

Let us elaborate on this point slightly more. In the near horizon region, in
general we can have

X (norm)
ω ≈ eiωr∗ − eiαωe−iωr∗ . (3.174)

where αω is some phase. The fact that (3.173) is correct up to O(ω) means
is that, if we take r∗ to be given by (3.172), then αω = O(ω2) as ω → 0. In
particular, unless we choose LH to be the one given by (3.165), the ω → 0
behavior of αω will contain an O(ω) term.

Next, let us consider imposing a Neumann boundary condition ∂rX = 0 at
r = rc ≫ rH instead. Set the general solution to be

Xω = gω + Cg−ω. (3.175)

then the Neumann boundary condition X ′
ω(rc) = 0 gives

C = − g′ω(rc)

g′−ω(rc)
= −

− iωG(rH)
r4

c
+ O(ω2)

iωG(rH)
r4

c
+ O(ω2)

= 1 + O(ω), (3.176)

where we used the second equation in (3.169). Comparing this result with
(3.22) and (3.25), we find that the modes fω satisfying the Neumann bound-
ary condition are given by, at low frequencies,

gω(r) = eiωr∗ , θω = 0, fω(r) = eiωr∗ + e−iωr∗ . (3.177)
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This is consistent with the explicit result for AdS3 in (3.31), (3.33). So, for very
small ω, the solution fω(r) is a simple sum of outgoing and ingoing waves,
which are just plane waves.13 Because g±(r) → 1 as r → ∞, we have

fω(r = rc) ≈ 2. (3.178)

Because of the O(ω) ambiguity in (3.176), θω = O(ω) as ω → 0 (cf. comments
below (3.174)).

In the tortoise coordinate, the limit (3.162) we are taking can be written as

ω → 0, β, ωr∗ : fixed. (3.179)

3.C Various propagators and their low frequency

limit

The quadratic action for a string embedded in the AdSd black hole spacetime

ds2 = −ht(r)f(r)dt2 +
hr(r)

f(r)
dr2 +G(r)dX2, (3.180)

(Eq. (3.37)) is given by

S0 =
1

4πα′

∫
dt dr

[√
hr

ht

G

f
(∂tX)2 −

√
ht

hr
Gf (∂rX)2

]
. (3.181)

We would like to regard this system as a thermal field theory at temperature T ,
and derive the relation among various propagators (Green functions) and the
solutions to the wave equation. We present the result for the general metric
(3.37), but if one wants the results for the simpler neutral case (3.11), set f =
r2h, ht = hr = 1,G = r2.

Let us define Wightman, Feynman, retarded, and advanced propagators as

DW (t− t′, r, r′) = 〈X(t, r)X(t′, r′)〉,
DF (t− t′, r, r′) = 〈T [X(t, r)X(t′, r′)]〉,
DRet(t− t′, r, r′) = θ(t− t′)〈[X(t, r), X(t′, r′)]〉,
DAdv(t− t′, r, r′) = −θ(t′ − t)〈[X(t, r), X(t′, r′)]〉.

(3.182)

We impose a Neumann boundary condition for X(r, t) at r = rc, so the prop-
agators satisfy the same Neumann boundary condition. Using the wave equa-
tion

[
− G

htf
∂2

t +
1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
X = 0 (3.183)

13For related observations on the triviality of the solution in the low frequency limit, see [101].
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and the canonical commutation relation

[X(t, r), ∂tX(t, r′)] = 2πiα′
√
ht

hr

f

G
δ(r − r′), (3.184)

we can show that these propagators satisfy
[
− G

htf
∂2

t +
1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DW (t− t′, r, r′) = 0, (3.185)

[
− G

htf
∂2

t +
1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DI(t− t′, r, r′) =

2πiα′
√−g δ(t− t′)δ(r − r′),

(3.186)

with I = F,Ret,Adv and
√−g =

√
hthr.

As in (3.157), the field X can be expanded as

X(t, r) =

√
2πα′

G(rH)

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
, (3.187)

where

fω(r) = gω(r) + eiθωg−ω(r) (3.188)

and gω(r) behaves near the horizon as

gω(r) ≈ eiωr∗ (r ∼ rH). (3.189)

The phase θω is determined by the Neumann boundary condition at r = rc
that fω satisfies. Since the system is at temperature T , the expectation value of
a, a† is given by (3.26). It is then easy to show that the Wightman propagator
can be written as

DW (ω, r, r′) =
2πα′

G(rH)

fω(r)f−ω(r′)

2ω(1 − e−βω)
, (3.190)

where f−ω = f∗
ω.

We would like to express other propagatorsDAdv,Ret,F in terms of fω, gω. Note
that

DF (ω, r, r′) = DW (ω, r, r′) +DAdv(ω, r, r
′) = DW (−ω, r′, r) +DRet(ω, r, r

′).
(3.191)

Because we have already obtained DW in (3.190), if we know one of DF , DRet,
andDAdv, we can obtain all other propagators. Here, let us considerDAdv. From
(3.186),DAdv(ω, r, r

′) should satisfy
[
G

htf
ω2 +

1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DAdv(ω, r, r

′) =
2πiα′
√−g δ(r − r′). (3.192)
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If r 6= r′, this is the same as the wave equation that fω, gω satisfy. Therefore,
take the ansatz

DAdv(ω, r, r
′) = A[θ(r − r′)gω(r′)fω(r) + θ(r′ − r)gω(r)fω(r′)]. (3.193)

This satisfies the correct boundary condition (Neumann) at r, r′ = rc and
furthermore satisfies the purely outgoing boundary condition at the horizon,
which is appropriate for an advanced correlator. Using the fact that both f, g
satisfy the wave equation, we find

[
G

htf
ω2 +

1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DAdv =

Aδ(r − r′)

hr
Gf (gω∂rfω − ∂rgω fω).

(3.194)

Therefore,

A = 2πiα′
√
hr

ht

1

Gf

1

gω∂rfω − ∂rgω fω
=

2πiα′

G(rH) (gω∂r∗
fω − ∂r∗

gω fω)
. (3.195)

Using the wave equation for fω, gω, it is easy to show that this expression does
not depend on r. By taking r → rH and using (3.188), (3.189),

A = −πα
′e−iθω

G(rH)ω
. (3.196)

So, the advanced propagator is given by

DAdv(ω, r, r
′) = −πα

′e−iθω

G(rH)ω

[
θ(r − r′)gω(r′)fω(r) + θ(r′ − r)gω(r)fω(r′)

]
.

(3.197)

In the low frequency limit, the expressions for the propagators simplify, as
we saw in Appendix 3.B. The precise limit we are considering is (3.179). First,
the Wightman propagator (3.190) becomes, because of (3.177),

DW (ω, r, r′) =
πα′

G(rH)

(eiωr∗ + e−iωr∗)(eiωr′

∗ + e−iωr′

∗)

ω(1 − e−βω)
(small ω). (3.198)

Similarly, the advanced propagator (3.197) becomes

DAdv(ω, r, r
′) = − πα′

G(rH)ω

[
θ(r∗ − r′∗)e

iωr′

∗(eiωr∗ + e−iωr∗)

+θ(r′∗ − r∗)e
iωr∗(eiωr′

∗ + e−iωr′

∗)
]

= − πα′

G(rH)

eiω(r∗+r′

∗
) + e−iω|r∗−r′

∗
|

ω
(small ω). (3.199)
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Using the relation (3.191), the Feynman propagator is

DF (ω, r, r′) =
πα′

G(rH)

[
(eiωr∗ + e−iωr∗)(eiωr′

∗ + e−iωr′

∗)

ω(1 − e−βω)

−e
iω(r∗+r′

∗
) + e−iω|r∗−r′

∗
|

ω

]
(small ω). (3.200)

In particular, consider the case where one of the points is at the UV cutoff,
r′ = rc. From (3.178), we have

DF (ω, r, rc) =
2πα′

G(rH)

[
eiωr∗ + e−iωr∗

ω(1 − e−βω)
− eiωr∗

ω

]
,

DW (ω, r, rc) =
2πα′

G(rH)

eiωr∗ + e−iωr∗

ω(1 − e−βω)
.

(3.201)

3.D Holographic renormalization and Lorentzian

AdS/CFT

In this Appendix, we discuss how to compute correlation function using the
AdS/CFT dictionary for the total force F which is dual to the worldsheet field
X . As we explained in subsection 3.4.2, this involves holographic renormaliza-
tion of the worldsheet action. Furthermore, if we want to compute real time
correlation functions in a black hole (finite temperature) geometry, we should
apply the rules of Lorentzian AdS/CFT [73, 74], see section 1.7.2.

3.D.1 Holographic renormalization

First, let us consider the holographic renormalization of the worldsheet action.
For this, only the asymptotic behavior of the action near the boundary is rel-
evant. Therefore, as the background geometry, we can consider the Poincaré
AdS geometry obtained by setting T = 0 (3.11):

ds2 = −rdt2 +
dr2

r2
+ r2(dXI)2. (3.202)

for which the worldsheet action becomes

Sbare = S0 + Sint, (3.203)

S0 =
1

4πα′

∫

Σ

dt dr(Ẋ2 − r4X ′2), Sint =
1

16πα′

∫

Σ

dt dr(Ẋ2 − r4X ′2)2.

(3.204)
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Here, we considered only one of the polarizations, say X1, and denoted it by
X . Σ is the worldsheet,

Σ = {(t, r) | t ∈ R, 0 ≤ r ≤ rc}, (3.205)

and ˙ = ∂t, ′ = ∂r. rc is a UV cutoff. For computational convenience, let us we
rescale X →

√
2πα′X and set κ = πα′, so that

S0 =
1

2

∫

Σ

dt dr(Ẋ2 − r4X ′2), Sint =
κ

4

∫

Σ

dt dr(Ẋ2 − r4X ′2)2. (3.206)

The equation of motion is

−∂2
tX + ∂r(r

4∂rX) = κ[−∂t(H∂tX) + ∂r(Hr
4∂rX)], H ≡ −Ẋ2 + r4X ′2.

(3.207)

Let us solve the equation of motion (3.207) by expandingX(t, r) in the cou-
pling κ as

X(t, r) = Y (t, r) + κZ(t, r) + O(κ2) (3.208)

and furthermore expanding Y, Z around r = ∞ as

Y (t, r) = y(0)(t) +
y(1)(t)

r
+
y(2)(t)

r2
+
y(3)(t)

r3
+ · · · ,

Z(t, r) = z(0)(t) +
z(1)(t)

r
+
z(2)(t)

r2
+
z(3)(t)

r3
+ · · · .

(3.209)

Henceforth, we will ignore quantities of O(κ2). The expansion for X itself is

X(t, r) = x(0)(t) +
x(1)(t)

r
+
x(2)(t)

r2
+
x(3)(t)

r3
+ · · · , x(i) = y(i) + κz(i).

(3.210)

By substituting this expansion into (3.207) and comparing coefficients, one
readily finds that the following is a solution:

y(0) = any ≡ J, y(1) = 0, y(2) = −1

2
J̈ , y(3) = any, (3.211a)

z(0) = 0, z(1) = 0, z(2) = −J̇2J̈ , z(3) = any. (3.211b)

The expression for X is

x(0) = J, x(1) = 0, x(2) = −1

2
J̈ − κJ̇2J̈ , x(3) = any. (3.212)

Note that X(r, t) → J(t) as r → ∞; namely, J is the non-normalizable mode
which can be thought of as a source for the dual operator OX = F on the
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boundary. On the other hand, x(3) is the normalizable mode which roughly
corresponds to the expectation value of the operatorF . We will make this latter
statement more precise below.

If we plug the solution (3.212) into the action (3.206), we obtain the follow-
ing on-shell action:

Sbare,on-shell =
κ

2

∫

Σ

d2xJJ̇2J̈ +

∫

∂Σ

dt

[(
−1

2
rJJ̈ − κrJJ̇2J̈

)
− κ

4
rJJ̇2J̈

]

∼
∫

∂Σ

dt

[
−1

2
rJJ̈ − 3κ

4
rJJ̇2J̈

]
+ (finite)

∼
∫

∂Σ

dt

[
1

2
rJ̇2 +

κ

4
J̇4

]
+ (finite). (3.213)

In going to the second line we performed the r integration, and in going to the
last line we integrated by parts. This is divergent, but the divergence can be
canceled by introducing the following counter terms:

Sct =

∫

∂Σ

dt
√−γ

[
1

2
r2(∇γX)2 − κ

4

(
r2(∇γX)2

)2
]
, (3.214)

where �γ = − 1
r2 ∂

2
t is the Laplacian for the metric γ induced on the boundary

r = rc. Likewise, (∇γX)2 = − 1
r2 (∂tX)2. If we define the metric γ′ induced on

the boundary of the worldsheet at r, then γ′tt = −r2(1 − Ẋ2) and
∫
dt
√
−γ′tt

reproduces (3.214) (also recall that we have rescaled X →
√

2πα′X).
To remove the divergence from the “bare” action (3.206), we take Sren =

Sbare + Sct as our total action. The on-shell variation of this total action evalu-
ates to

δSren,on-shell =

∫

∂Σ

dt
√−γ

(
κr4

[
(∇X)2∂nX + 3(∇γX)2�γX

]

− r2(∂nX + �γX)

)
δX, (3.215)

where ∂n is the normal derivative with respect to the worldsheet boundary ∂Σ.
Therefore,

δSren,on-shell

δJ
=

√−γ
(
−G(∂nX + �γX) + κG2

[
(∇X)2∂nX + 3(∇γX)2�γX

])

= 3x(3)(1 + κJ̇2) + O(1/r). (3.216)

In the second equality, we plugged in the explicit expansion (3.212). There-
fore, by the GKPW rule as in section 1.4.1, the expectation value of the operator
OX = F dual to X in the presence of source x(0) ≡ J is given by, up to O(κ2)
terms,

〈F 〉J = 3x(3)(1 + κJ̇2) = 3y(3) + 3κ
(
z(3) + y(3)J̇

2
)
. (3.217)
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The J̇2 term may appear strange, but we will see that this term gets canceled
in the final expression for the 4-point function. Actually, there is a further con-
tribution to (3.217), but we will discuss it later (see below (3.241)).

Although our discussion above was based on the pure AdS space (3.202)
for the simplicity of the argument, the final expression (3.217) is valid for gen-
eral asymptotically AdS space, including the AdS black hole (3.11). Below, we
will use (3.217) to compute correlation functions for the AdS black hole back-
ground (3.11).

3.D.2 Propagators and correlators

To compute the expectation value 〈F 〉J using the formula (3.217), we need to
know x(3) = y(3) + κz(3) +O(κ2). This can be determined if we know the prop-
agators that satisfy appropriate boundary conditions in the inside of the AdS
space as we discuss below.

If we substitute the expansion (3.208) into the wave equation (3.14) and
compare the coefficients, we obtain

[−h−1∂2
t + ∂r(r

4h∂r)]Y = 0, (3.218a)

[−h−1∂2
t + ∂r(r

4h∂r)]Z = ρ, (3.218b)

where we are now considering the AdS black hole spacetime (3.11) and the
“source” ρ is defined by

ρ ≡ −∂t(H0h
−1∂tY ) + ∂r(H0r

4h∂rY ), H0 ≡ −h−1(∂tY )2 + r4h(∂rY )2.
(3.219)

We solve (3.218a) under the asymptotic condition Y (r, t) → J(t) as r → ∞ and
(3.218b) under the condition Z(r, t) → 0 as r → ∞. Let us solve these using
propagators. First, let K(r, t|t′) be the boundary-bulk propagator, namely the
solution to the zeroth-order wave equation (3.218a) satisfying the boundary
condition

K(r, t|t′) → δ(t− t′) as r → ∞. (3.220)

Then the solution to (3.218a) is

Y (t, r) =

∫
dt′K(r, t|t′)J(t′). (3.221)

From this, we can read off y(3) as

y(3)(t) =

∫
dt′[K(r, t|t′)]|r−3 J(t′). (3.222)

where [ ]r−3 means to take the coefficient of the r−3 term in the 1/r expansion.
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Let us move on to the next order equation (3.218b) to determine z(3). Let
D(r, t|r′, t′) be the bulk propagator, namely the solution to

[−h−1∂2
t + ∂r(r

4h∂r)]D(t, r|t′, r′) = δ(t− t′)δ(r − r′) (3.223)

that vanishes as r, r′ → ∞. Then the solution to the next order equation
(3.218b) can be written as

Z(t, r) =

∫
dt′ dr′D(t, r|t′, r′)ρ(t′, r′). (3.224)

It is easy to see that the Z given by (3.224) has the expected behavior
(3.211b). To see it, let us explicitly construct the bulk propagator satisfying
(3.223), or in the frequency space,

[h−1ω2 + ∂r(r
4h∂r)]D(ω, r, r′) = δ(r − r′). (3.225)

The solution to this can be constructed14 from the solution to (3.218a), which
can be written in the frequency space as

[h−1ω2 + ∂r(r
4h∂r)]Yω = 0. (3.226)

As discussed above the equation (3.19), this wave equation (3.226) has two so-
lutions; let us denote them by φ±ω(r).15 These are related to each other by
φω(r)∗ = φ−ω(r). As one can see from (3.211a), we can take them to have the
following large r expansion:

φ±ω(r) = 1 +
ω2

r2
+
c±ω

r3
+ · · · , (3.227)

where c±ω are some constants (c∗ω = c−ω). For example, in the AdS3 case (d =
3),

φ±ω(r) =

(
1 ± iω

r

)(
r − rH
r + rH

)iω/2rH

= 1 +
ω2

2r2
∓ iω(r2H + ω2)

3r3
+ · · · . (3.228)

For r 6= r′, the equation (3.225) is the same as (3.226) and therefore D(ω, r, r′)
is given by a linear combination of φω(r) and φ−ω(r). Taking into account the
r ↔ r′ symmetry, the bulk propagator D can be written as

D(ω, r, r′) = A
[
φ>

ω (r)φ<
ω (r′)θ(r − r′) + φ>

ω (r′)φ<
ω (r)θ(r′ − r)

]
. (3.229)

14The following argument is analogous to the one given around (3.192).
15φ±ω(r) are different from g±ω(r) defined around (3.19) only by normalization; φ±ω(r) → 1

as r → ∞, while g±ω(r) → e±iωr∗ as r → rc (r∗ → −∞). These agree in the small ω limit.
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Here A is constant and we defined

φ>
ω (r) ≡ φω(r) − φ−ω(r) =

cω − c−ω

r3
+ O(r−4),

φ<
ω (r) ≡ αφω(r) + (1 − α)φ−ω(r) = 1 +

ω2

2r2
+
αcω + (1 − α)c−ω

r3
+ O(r−4).

(3.230)

The fact that φ>
ω (r) → 0 as r → 0 correctly gives the asymptotic condition for

D, namely D → 0 as r, r′ → ∞. On the other hand, we do not specify the
boundary condition of D as r, r′ → rH . The unknown number α parametrizes
possible boundary conditions which is to be determined by some physical re-
quirement. But we leave α arbitrary and therefore (3.229) is valid regardless of
the boundary condition. Because φ<

ω (r) → 1 as r → ∞, it is actually equal to
the bulk-boundary propagator in the frequency space;

φ<
ω (r) = K(ω, r). (3.231)

By substituting (3.229) into the equation (3.225), we obtain

A =
1

r4h[φ>
ω (∂rφ<

ω ) − (∂rφ>
ω )φ<

ω ]
(3.232)

(this is the same as (3.195)). Since this does not depend on r (see below
(3.195)), by taking r → ∞ and using the asymptotic behavior (3.230), we find
A = (cω − c−ω)−1. Therefore, the bulk propagator is found to be

D(ω, r, r′) = (cω − c−ω)−1
[
φ>

ω (r)φ<
ω (r′)θ(r − r′) + φ>

ω (r′)φ<
ω (r)θ(r′ − r)

]
,

(3.233)

where we used (3.231). The r → ∞ behavior of this is, using the asymptotic
behavior (3.230),

D(ω, r, r′) = − 1

3r3
K(ω, r′)θ(r − r′) − 1

3r′3
θ(r′ − r) + O(r−4) (r → ∞).

(3.234)

Using (3.211a), we can show that the source ρ (defined in Eq. (3.219)) goes as
ρ = 2J̇2J̈ + O(r−2). Then, from (3.224) and (3.234) we can read off z(3) as
follows:

z(3)(t) = lim
r→∞

[
−1

3

∫ r

rH

dt′dr′K(t′, r′|t)ρ(t′, r′) +
2

3
rJ̇(t)2J̈(t)

]
. (3.235)

The second term cancels the divergent contribution corresponding to z(2) in
(3.211b).

So, we succeeded in expressing y(3), z(3) appearing in the formula (3.217)
using propagators; the resulting expressions are (3.222) and (3.235). Using
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these, we can compute the boundary correlators for F . First, at the first or-
der in κ that we are working in, the 2-point function gets contribution only
from y(3) in (3.222) and

〈T [F (t1)F (t2)]〉 =
δ

δJ(t2)
〈F (t1)〉

∣∣∣∣
J=0

= 3
δ

δJ(t2)
y(3)(t1) = 3[K(t1, r|t2)]|r−3 .

(3.236)

In the frequency space,

〈F (ω1)F (ω2)〉 = 2πδ(ω1 + ω2) 3K(ω2, r)|r−3 . (3.237)

To obtain 4-point functions, we take functional derivatives of (3.217) three
times. Therefore, only the second term 3κ(z(3) + y(3)J̇

2) in (3.217) is relevant
for the computation. Let us write the source ρ appearing in (3.235) as

ρ = ∂tρ
t + ∂rρ

r, ρt ≡ −H0h
−1∂tY, ρr ≡ H0r

4h∂rY. (3.238)

Then, by partial integration, (3.235) becomes

z(3)(t) = lim
r→∞

{
1

3

∫ r

rH

dt′dr′
[
ρt(t′, r′)∂t′K(t′, r′|t) + ρr(t′, r′)∂r′K(t′, r′|t)

]

− 1

3

∫
dt′
[
K(t′, r|t)ρr(t′, r) −K(t′, rH |t)ρr(t′, rH)

]

+
2

3
rJ̇(t)2J̈(t)

}
. (3.239)

We dropped the boundary terms at t = ±∞. The first term in the second line
can be evaluated using the expansion

K(t′, r|t) = δ(t− t′) + O(r−2), ρr(t, r) = rJ̇2J̈ + 3y(3)J̇
2 + O(r−1).

(3.240)

As a result, in the combination appearing in (3.217), the term involving y(3)J̇
2

cancels out:

3κ
[
z(3)(t) + y(3)(t)J̇(t)2

]
= κ lim

r→∞

{∫ r

rH

dt′dr′
[
ρt(t′, r′)∂t′K(t′, r′|t)

+ ρr(t′, r′)∂r′K(t′, r′|t)
]

+

∫
dt′K(t′, rH |t)ρr(t′, rH) + r∂t[J̇(t)3]

}
.

(3.241)

The second last term in (3.241) gets canceled by the extra contribution alluded
to below (3.217). Let us now discuss what this extra contribution is. The on-
shell variation of the action, which we used to compute the expectation value
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〈F 〉J , is given by (3.215). Because we are regarding the region rH ≤ r ≤ rc
as our spacetime, there actually is contribution from the “boundary” r = rH
to this expression. In the AdS black hole spacetime, this extra contribution to
δSren,on-shell becomes

δSren,on-shell ⊃ −
∫

r=rH

dt r4h(∂rY + κH0∂rY )δY, (3.242)

where we dropped O(κ2) terms and “⊃” means that the left hand side includes
the expression on the right hand side. Note that, because the counter term Sct

(3.214) was added only for the boundary at infinity, the second and the fourth
terms in (3.215) did not contribute to this expression. Since h → 0 as r → rH ,
this becomes

δSren,on-shell ⊃ −κ
∫

r=rH

dt r4hH0∂rY δY (3.243)

(note that H0 involves h−1). Therefore, by taking functional derivative, we find
that there is the following extra contribution to 〈F 〉J :

〈F (t)〉J =
δSren,on-shell

δJ(t)
⊃ −κ

∫

r′=rH

dt′ r′4hH0∂rY K(t′, r′|t). (3.244)

This precisely cancels the second last term in (3.241). Therefore, the terms
relevant for computing 4-point functions is

〈F (t)〉J ⊃ κ lim
r→∞

{∫ r

rH

dt′dr′
[
jt(t

′, r′)∂t′K(t′, r′|t) + jr(t
′, r′)∂r′K(t′, r′|t)

]

+ r∂t[J̇(t)3]

}
. (3.245)

By taking functional derivatives of (3.245), we find that

GF (t1, t2, t3, t4) = 〈T [F (t1)F (t2)F (t3)F (t4)]〉 =
δ3

δJ(t2)δJ(t3)δJ(t4)
〈F (t1)〉J

∣∣∣∣
J=0

= κ

{
1

4

∑∫ r

rH

dt dr

(
− 1

h
K̇iK̇j + r4hK ′

iK
′
j

)

×
(
− 1

h
K̇kK̇l + r4hK ′

kK
′
l

)

+ 6r ∂t1

[
δ̇(t1 − t2)δ̇(t1 − t3)δ̇(t1 − t4)

]}
, (3.246)

where the r → ∞ limit is understood. Also,Ki ≡ K(t, r|ti) and the summation
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is over permutations (ijkl) of (1234). The expression in the Fourier space is

GF (ω1, ω2, ω3, ω4) = 2πκδ(ω1 + ω2 + ω3 + ω4)

×
{

1

4

∑

perm
(ijkl)

∫ r

rH

dr
(
ωiωjKiKj + r4hK ′

iK
′
j

) (
ωkωlKkKl + r4hK ′

kK
′
l

)

− 6rω1ω2ω3ω4

}
, (3.247)

where now Ki ≡ K(ωi, r). Note that the first term in (3.247) is the expression
for the 4-point function we would obtain from the naive GKPW rule. The last
term is there to cancel the UV divergence coming from the first term due to the
fact that Ki = 1 + O(r−2).

3.D.3 Lorentzian AdS/CFT

So far we have not fully taken into account the fact that our spacetime is a
Lorentzian spacetime, for which we have to use the Lorentzian AdS/CFT pre-
scription [73, 74] as in section 1.7.2.

On the boundary side, to compute real time correlators, we have to take the
time to run along the contour on the complex place, as we discussed in subsec-
tion 3.4.1; see Figure 3.3 on page 64. The Lorentzian AdS/CFT prescription is
simply to consider a bulk spacetime which “fills in” this contour. Then the bulk
spacetime will have no boundary and there is no ambiguity in boundary con-
ditions (although we have to impose certain gluing condition for fields across
different patches). Following [74], we take the bulk spacetime to be the union
of three patches Mi with i = 1, 2, 3, each of which fills in the corresponding
contour Ci in (3.78). First, we take M1 to be the −L ≤ t ≤ L, rH ≤ r < ∞
part of the Lorentzian AdS black hole (3.11). M2 is taken to be the same as
M1 metric-wise, but the orientation is taken to be opposite toM1, correspond-
ing to the fact that C1 and C2 has opposite orientations. M3 is taken to be the
Euclidean version of the black hole (3.11),

ds2E =
r2

l2
[
h(r)dτ2 + (dXI)2

]
+

l2

r2h(r)
dr2. (3.248)

The Euclidean time τ is taken to be 0 ≤ τ ≤ β where β is the inverse Hawking
temperature in (3.12). For a schematic explanation of the patches M1,2,3, see
Figure 3.5. The way that three patches M1,2,3 are glued together is simply the
bulk extension of the way that the contoursC1,2,3 are glued together; see Figure
3.6.

Because now our spacetime is not justM1 butM = M1+M2+M3, the action
have contributions from all of M1,2,3, just as the boundary (3.81). Therefore,
the bulk integration appearing e.g. in (3.247) should be now over all Mi, with
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Figure 3.5: The bulk geometry M = M1 + M2 + M3 that “fills in” the bound-
ary contour C = C1 + C2 + C3. For d > 3, the Penrose diagrams for the
Lorentzian patches drawn above are not accurate because the zigzag singu-
larity lines must actually be not horizontal but bent inwards [102].

the signs correctly taken into account:

GF (ω1, ω2, ω3, ω4) = 2πκδ(ω1 + ω2 + ω3 + ω4)

×
{

1

4

∑

perm
(ijkl)

∫ r

rH

dr

[(
ωiωjK[11]iK[11]j

h
+ r4hK ′

[11]iK
′
[11]j

)

×
(
ωkωlK[11]kK[11]l

h
+ r4hK ′

[11]kK
′
[11]l

)

−
(
ωiωjK[21]iK[21]j

h
+ r4hK ′

[21]iK
′
[21]j

)

×
(
ωkωlK[21]kK[21]l

h
+ r4hK ′

[21]kK
′
[21]l

)]

− 6rω1ω2ω3ω4

}
. (3.249)

Here,K[ab]i = K[ab](ωi, r) andK[ab](ω, r) is the boundary-bulk propagator from
the boundary ∂Mb to the bulkMa. The second line corresponds to the integra-
tion overM1 and the third line to the integration overM2. Because we are tak-
ing theL→ ∞ limit, the contribution fromM3 has been dropped. The counter



100
Holographic Brownian Motion and Time Scales in Strongly Coupled

Plasmas

Figure 3.6: How to patch together the bulk patches M1,M2,M3.

term−6rω1ω2ω3ω4 is added only forM1, because the source is inserted only on
∂M1 (K[21](ω, r) vanishes as r → ∞).

Because the spacetime M = M1 + M2 + M3 has no boundary inside, the
boundary-bulk propagator can be determined without having to worry about
boundary conditions. Carefully matching the values across different patches
following [73, 74], we find the boundary-bulk propagators as follows:

K[11](ω, r) =
1

eβω − 1
[−φω(r) + eβωφ−ω(r)],

K[21](ω, r) =
eβω

eβω − 1
[−φω(r) + φ−ω(r)],

K[31](ω, r) =
e(iL+β)ω

eβω − 1
[−φω(r) + φ−ω(r)],

(3.250)

where φ±ω(r) is the solution to the wave equation (3.226) satisfying the bound-
ary condition (3.227). By substituting these propagators into (3.249), we can
finally obtain the 4-point function for F .

3.D.4 Low frequency correlators

We are interested in the low frequency behavior of the correlation functions.
As we discussed in Appendix 3.B, the solution φ±ω(r) simplifies in the low fre-
quency limit as16

φ±ω(r) ∼ e±iωr∗ . (3.251)

If we apply this to (3.249) and (3.250), we obtain the following low frequency
behavior:

GF (ω1, · · · , ω4) ∼
κ

β3
δ(ω1 + · · · + ω4)

∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

h
e−2i(ωi+ωj)r∗

+ (higher powers in ω), (3.252)

16Note that the precise limit we are taking is (3.179).
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where we dropped numerical factors. Because we have rescaled X in (3.206),
to obtain the correlator for F = OX dual to the original X before rescaling, we
have to rescale F → F√

2πα′
. Therefore, in the end, the 4-point function for F is

GF (ω1, · · · , ω4) ∼
1

α′β3
δ(ω1 + · · · + ω4)

∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

h
e−2i(ωi+ωj)r∗ .

(3.253)

This is exactly the same as the result (3.88) that we obtained by a more naive
method. Namely, this has exactly the same IR divergence as (3.88) that we
studied in section 3.5.

3.D.5 Retarded 4-point function

In the above, we computed the time-ordered 4-point function for the force F
which turned out to be IR divergence. We can also compute the retarded 4-
point function using the above formalism. As was shown in [74], for comput-
ing retarded correlators, one uses purely ingoing boundary condition for the
boundary-bulk propagator:

KRet(ω, r) = φ−ω(r). (3.254)

If we define

GF
Ret

(t1, t2, t3, t4) =
∑

perm
(ijkl)

θ(ti > tj > tk > tl)〈[[[F (ti), F (tj)], F (tk)], F (tl)]〉

(3.255)

then the prescription of [74] gives

GF
Ret

(ω1, ω2, ω3, ω4) = 2πκδ(ω1 + ω2 + ω3 + ω4)

×
{

1

4

∑

perm
(ijkl)

∫ r

rH

dr
(
ωiωjKRet,iKRet,j + r4hK ′

Ret,i
K ′

Ret,j

)

×
(
ωkωlKRet,kKRet,l + r4hK ′

Ret,k
K ′

Ret,l

)

− 6rω1ω2ω3ω4

}
, (3.256)

where KRet,i = KRet(ωi, r). The integration effectively becomes only overM1.
For definiteness, consider the AdS3 case where the retarded correlator is

KRet(ω, r) =

(
1 − iω

r

)(
r − rH
r + rH

)−iω/2rH

. (3.257)
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For this case, Eq. (3.256) gives

GF
Ret

(ω1, · · · , ω4) = κ2πδ(ω1 + · · · + ω4)ω1ω2ω3ω4

(
2rH −

16
∑

i<j ωiωj

rH

)
.

(3.258)

Note that this is exact; we have not done low frequency approximation. This is
both IR and UV finite.

3.E Computation of η for the STU black hole

In this Appendix, we will compute the mean-free-path time for the STU black
hole studied in 3.6.2. The final results have been presented in (3.149) and
(3.150)–(3.152).

We will discuss the 1-charge case (κ1 = κ, κ2 = κ3 = 0) only, because the 2-
and 3-charge cases are similar. First, the relations (3.129), (3.130), and (3.131)
read, in this case,

m =
r4H
l2

(1 + κ), T =
rH
2π

2 + κ√
1 + κ

, Φ = − r2H
κ2

5l

√
κ. (3.259)

LH in (3.149) can be computed as follows. From the definition (3.122) and
(3.148) for n = 1, we obtain

∫ r

∞
dr
H1/2

r2f

1√
1 − f−1H2A2

t

=

∫ r

∞

dr

r2 − r2H

√
r2H + ℓ2

(r2 + r2H + ℓ2)((r2H + ℓ2)r2 + r4H)
.

=
1

2r3H

√
1 + κ

(2 + κ)
log

r − rH
LH

+ O(r − rH) (3.260)

The integral in the first line diverges as r → rH . We can separate this divergent
piece by subtracting and adding the term obtained by setting r to rH in the
square root. Further setting ρ = r/rH and κ = ℓ2/rH , we have

log
r − rH
r + rH

+ 2(2 + κ)

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ+ 1 + κ)((1 + κ)ρ2 + 1)
− 1

(2 + κ)

]

≡ log
r − rH
LH

+ O(r − rH). (3.261)

In the second term in the first line, we have set the upper limit of the integral to
ρ → 1 (which is equivalent to r → rH ) because the integral is now convergent.
By comparing both sides, we obtain

LH = 2rH exp

{
−2(2 + κ)

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ2 + 1 + κ)((1 + κ)ρ2 + 1)
− 1

2 + κ

]}
.

(3.262)
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By using (3.259), we obtain the final expression (3.150). For small κ, it is easy
to expand the integrand in (3.150) in κ, and each integral converges. This leads
to the following expansion of η in κ:

η = e−π/2

[
2π − πκ+

(12 − π)π

16
κ2

]
+ O

(
κ3
)

(3.263)

This shows that, as κ increases with fixed T , the mean-free-path time tmfp in-
creases.

The 2- and 3-charge cases are similar and we obtain (3.151) and (3.152).
The small κ expansion of η is

η = e−π/2

[
2π − 1

2
(4 − π)πκ+

1

16
π
(
52 − 19π + π2

)
κ2 +O

(
κ3
)]

(3.264)

η = e−π/2

[
2π + (π − 3)πκ+

1

16
π
(
140 − 57π + 4π2

)
κ2 +O

(
κ3
)]

(3.265)

for the 2- and 3-charge cases, respectively.
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