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C H A P T E R 2

PHOTON PRODUCTION IN SOFT WALL

MODEL

2.1 Introduction

One of the current challenges in theoretical particle physics is to compute
properties of the strongly coupled QGP(sQGP) discovered at RHIC. AdS/CFT
tools have given us some insight into the strongly coupled thermodynamics of
gauge theories [2, 4, 9, 11]. However, it remains a mystery why these, mostly
N = 4 supersymmetric, YM calculations work well for QCD. Part of the chal-
lenge is to either understand why this is so, or to find AdS duals of theories
resembling QCD closer than N = 4 SYM. In this latter context a phenomeno-
logical AdS dual to Chiral perturbation theory or AdS/QCD constructed by Er-
lich et.al. is perhaps a good candidate [12].

Introducing the IR-cutoff is the essential new ingredient in AdS/QCD com-
pared to AdS/CFT. Here we shall investigate the effects of this cutoff on pho-
ton and dilepton production rates at strongly coupling. Remarkably the N = 4
SYM CFT computation of these production rates suggested they are not af-
fected by a hard IR-cutoff even for temperatures infinitesimally above the cut-
off [5]. Intuitively this seems rather strange. At energies and temperatures
close the QCD scale IR effects should start to affect the production rate. We
shall find that for smoothly IR-cutoff AdS/QCD this is indeed the case. The ro-
bustness of our phenomenological result of how photon production rates are
effected by changing the IR-cutoff is confirmed by a calculation by Mateos and
Patiño [23] of the photon production rate in AdS dual of a N = 2 theory with
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massive flavor. Here the flavor sector acts as the effective IR-cutoff, and we
will be able to show this by relating the mass-parameter to the soft-wall cutoff
scale. Soft-wall AdS/QCD is more crude than massive flavor models, of course,
and this is evident in the lack of spectral peaks that we shall find.

Photon production in a medium such as QGP was discussed in detail both
from strong and weak coupling point view in [5]. We briefly review this in sec-
tion 2.2 and show there how the strong coupling calculation is modified by
considering AdS/QCD instead of pure N = 4 SYM. In section 2.3, we present
our solution and discuss its results in section 2.4 with a comparison to photon
production in AdS duals of N = 2 massive flavor theories.

2.2 Photon and dilepton production

One of the observational phenomena in RHIC is the spontaneous production
of photons from the sQGP of hot charged particles. This direct photon spec-
trum ought to be a good probe of the strongly coupled quark-gluon soup, as
the weakly interacting photons should escape nearly unaffected from the small
finite size collision area [24].

As is described in [5], we can therefore regard the dynamically formed sQGP
to first approximation as a field theory at finite temperature. For a standard
perturbative electromagnetic current coupling eJ EM

µ Aµ, the first order photon
production rate is then given by [5, 25]

dΓγ =
d3k

(2π)32k0
e2nB(k0)ηµν χµν(K)|k0=|~k| . (2.1)

Here K ≡ (k0, ~k) is a momentum 4-vector, nB(k0) = 1/(eβk0 − 1) the Bose-
Einstein distribution function, and the spectral density χµν(K) is proportional
to the imaginary part of the (finite temperature) retarded current-current cor-
relation function

χµν(K) = −2 Im(GR,β
µν (K)),

GR,β
µν (K) =

∫
d4Xe−iK·X〈J EM

µ (0)J EM

ν (X)〉βθ(−x0) . (2.2)

At finite temperature, Lorentz invariance is broken by the heat bath. We can
use the remaining rotational symmetry plus gauge invariance to simplify the
retarded correlator to

GR,β 6=0
µν (K) = PT

µν(K)ΠT (K) + PL
µν(K)ΠL(K), (2.3)

Here the transverse and longitudinal projectors are PT
00(K) = 0, PT

0i(K) = 0,

PT
ij (K) = δij −kikj/|~k|2, and PL

µν(K) = Pµν(K)−PT
µν(K), with i, j = x, y, z. We
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can trivially consider charged lepton production as well by considering non-
lightlike momenta for off-shell photons: The leptons then result from virtual
photon decay. Lepton pair production for each lepton species in the leading
order of the electromagnetic couplings e and el, is given by [5, 25]

dΓll̄ =
d4K

(2π)4
e2e2l

6π|K|5 [−K2−4m2]1/2(−K2+2m2)nb(k
0)χµ

µ(K)θ(k0)θ(−K2−4m2),

(2.4)
with el the electric charge of the lepton, m the lepton mass, θ(x) a unit step
function, and the spectral density χµν(K) is evaluated at the timelike momen-
tum of the emitted particle pair. Note that both ΠT and ΠL contribute to the
dilepton rate, but only ΠT contributes to the photon emission rate, because
the longitudinal part must vanish for lightlike momenta, i.e. the unphysical
longitudinal mode is not a propagating degree of freedom.

Finally, fluctuation-dissipation relates the zero-frequency limit of the spec-
tral density to the electrical conductivity σ:

σ = lim
k0→0

e2

6T
nB(k0)η

µνχµν(k0, ~k = 0), (2.5)

or, if kµ is lightlike

σ = lim
k0→0

e2

4T
nB(k0)η

µν χµν(K)||~k|=k0 . (2.6)

2.2.1 Photon and dilepton rates at strong coupling

The AdS/CFT dictionary gives that the large Nc limit of strongly coupled d =
4 N = 4 SYM theory at finite temperature T has a dual description in terms of
five dimensional AdS-supergravity in the background of a black hole [9]

ds2 =
(πTR)2

u

[
−f(u)dt2 + dx2 + dy2 + dz2

]
+

R2

4u2f(u)
du2. (2.7)

Here f(u) = 1 − u2, with u ∈ [0, 1] a dimensionless radial AdS coordinate re-
lated through u = (πTz)2 to standard AdS coordinates, and R is the curvature
radius of the AdS space.1 The metric (2.7) has a horizon at u = 1 with Hawking
temperature T and a boundary at u = 0.

Qualitatively the same is expected hold for other 4-dim field theories. As
a model for low energy QCD we shall take the AdS dual of chiral pertur-
bation theory. This AdS/QCD consists of the fields Aa

Lµ, A
a
Rµ, dual to the

SU(Nf)L × SU(Nf )R currents and a scalar X dual to the quark condensate in

1 We will keep to Lorentzian signature throughout since we seek information regarding the
response of the thermal ensemble to small perturbations. This requires the use of real-time Green’s
functions [26].
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an AdS background which is cutoff at some finite distance u = u0 [12]. To this
we add an extra U(1) field, Vµ dual to the electromagnetic current J EM

µ . Recall
that u0 corresponds to the introduction of the QCD-scale in the field theory:
it enforces the mass-gap by hand by explicitly cutting-off any dynamics in the
IR. For the reasons we explained in the introduction, here we are going to use
a soft wall cut-off [15, 16]. Formally we can introduce this cut-off by modify-
ing the AdS bulk action to (we give only the term relevant for calculating the
photon production rate)

S ∼
∫
d5x

√
g

(
−1

4
FABF

AB + · · ·
)

⇒ S ∼ −1

4

∫
d5x

√
ge−ΦFABF

AB + · · · .
(2.8)

Here A,B = t, x, y, z, u and the “dilaton” takes the fixed form Φ = cu where

c =
Λ2

IR

(πT )2 , with ΛIR the IR scale below which physics is cut-off. This intro-

duction into the action is formal in the sense that (1) we shall not consider Φ
a dynamical field and (2) we assume that the presence of the cut-off does not
affect the geometric AdS background, see also [16]. We thus still work with the
metric (2.7) for the finite temperature version of AdS/QCD, but with the equa-
tion of motion for the fluctuations derived from action (2.8). We will discuss
the validity of this approach in detail in section 2.4.

For photon production, we need only the U(1) gauge field equation of mo-
tion ∂A

(√
ge−cugABgCDFBD

)
= 0 with FAB = ∂AVB − ∂BVA the Maxwell

field strength. The 4d electric fields are Ei ≡ Fti with i = x, y, z. Note that
we use A as a vector index and VB for the AdS gauge field. To compute the
AdS boundary 2-point correlation function from which to extract the spec-
tral density χµν , we follow [5] and split the equation of motion into parts per-
pendicular (Vx, Vy ≡ V⊥) and parallel (Vz ≡ V‖) to a predefined spatial three-

momentum ~k = (0, 0, k), the Gauss constraint (V0 e.o.m.) and the radial AdS
(Vu) equation of motion. After a Fourier transformation along t, x, y, z, and

defining ω = k0

2πT , q = k
2πT , we find respectively

∂2
uV⊥ +

(
∂uf

f
− c

)
∂uV⊥ +

ω2 − q2f

uf2
V⊥ = 0, (2.9)

q

uf
(qVt + ωV‖) −

(
∂2

uVt + i(2πT )ω∂uVu

)
+ c (∂uVt + i(2πT )ωVu) = 0, (2.10)

ω

uf2
(qVt +ωV‖)+

[
(
∂uf

f
− c)∂uV‖ + ∂2

uV‖

]
−i(2πT )q

[
(
∂uf

f
− c)Vu + ∂uVu

]
= 0.

(2.11)
The equation of motion for Vu,

√
ge−cuguu

(
gtt∂tFtu + g‖‖∂‖F‖u

)
= 0, (2.12)
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can be simplified to

Vu =
i

2πT

(ω∂uVt + qf∂uV‖)

(ω2 − q2f)
. (2.13)

Let us define E⊥ = ωV⊥ and E‖ = qVt + ωV‖. From Eq. (2.9) and combining
eq. (2.11) with eq. (2.10) and eq. (2.13) in the gauge Vu = 0 we obtain the two
decoupled equations

∂2
uE⊥ +

(
∂uf

f
− c

)
∂uE⊥ +

ω2 − q2f

uf2
E⊥ = 0, (2.14)

∂2
uE‖ +

[
ω2∂uf

f(ω2 − q2f)
− c

]
∂uE‖ +

ω2 − q2f

uf2
E‖ = 0. (2.15)

We shall need to solve these two equations to obtain the spectral density χµν .
These differential equations (2.14) and (2.15) have three regular singular points
at u = ±1, 0, and one irregular singular point at ∞.2

Formal solutions for such equations are difficult to construct. Note that
the irregular nature of the point at infinity becomes regular when we remove
the IR-cutoff c. The irregular point, however, is outside the physical region of
interest u ∈ (0, 1) and we can, for instance, solve the equations (2.9) and (2.15)
near the boundary u→ 0 using Frobenius expansion E = uλ

∑∞
n=0 anu

n where
the indicial equation has solutions for λ = 0, 1.

To solve the equations (2.14), (2.15) explicitly shall be the main part of this
note. The solutions to these 5-d AdS equations of motion then give the 4-d
field theory two point correlation as the functional derivative with respect to
the boundary values of the on-shell AdS action

S = − 1

4g2
B

∫
d4xdu

√
ge−cuFABF

AB

∣∣∣∣
on-shell

, (2.16)

with g2
B = 16π2R/N2

c . Considering Vu = 0 gauge, we can write this as

Son-shell = − N2
c

32π2R

∫ ∞

−∞
d4x

(√
ge−cuVµF

uµ
)∣∣∣∣

u=1

u=0

=
N2

c T
2

16

∫ ∞

−∞
d4x e−cu (Vt∂uVt − fVi∂uVi)

∣∣∣∣
u=1

u=0

. (2.17)

Fourier transforming to momentum space and selecting the particular direc-
tion chosen previously, we can rewrite the action using Minkowskian prescrip-
tion formulated by Son and Starinets [26]. Together with the boundary condi-

2Recall that an irregular singular point for a differential equation y′′ + P (x)y′ + Q(x)y = 0 is
a point x0 for which either limx→x0(x − x0)P (x) or limx→x0(x − x0)2Q(x) diverges. The point
at infinity is irregular if limx→∞(2− xP (x)) or limx→∞ x2Q(x) diverges. Using that f = (1− u2)
one clearly sees how the introduction of c introduces a divergence in limu→∞ 2−u(∂u ln f − c) =
limu→∞ 2 + 2u2/(1 − u2) + uc.
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tion that the solution of equations (2.9) and (2.15) must satisfy the incoming-
wave boundary condition at the horizon u = 1, the resulting on-shell action
becomes

Son-shell =
N2

c T
2

16
lim
u→0

∫
dω dq

(2π)2
e−cu

[
f

q2f − ω2
∂uE‖(u,K)E‖(u,−K)− f

ω2
∂uE⊥(u,K)E⊥(u,−K)

]
.

(2.18)

From Eq. (2.18) and the condition described above, we can now compute
the retarded current-current correlation function in term of two independent
scalar functions3

ΠL(K) = −N
2
c T

2

8
lim
u→0

∂uE‖(u,K)

E‖(u,K)
, (2.19)

ΠT (K) = −N
2
c T

2

8
lim
u→0

∂uE⊥(u,K)

E⊥(u,K)
. (2.20)

These functions in turn give us the photon and dilepton production at strong
coupling via eq. (2.3) and eqs. (2.1) and (2.4).

2.3 Solving the system

In this section we will solve the equations (2.14) and (2.15) in order to compute
the two scalar functions (2.19) and (2.20). Furthermore, we will take the imag-
inary part of those scalar functions and obtain the spectral density function
(2.2) for finite temperature system.

The solutions which satisfy the incoming-wave boundary condition can be
written in general as a Frobenius expansion near u→ 1

Ei(u) = (1 − u)−iω/2yi(u), (2.21)

with yi(u) regular at u = 1. We will solve and discuss these equations ex-
tensively for lightlike momenta relevant for photon-production, both semi-
analytically for asymptotically small and large frequency and numerically for
various values of the cut-off c for the full range of momenta. For timelike and
spacelike momenta we only present the numerical solution.

2.3.1 Lightlike momenta

As has been explained in section 2.2 , the longitudinal part of the scalar func-
tions vanishes for lightlike momenta and we just need to compute the trans-
verse part.

3For a more detailed derivation of these functions see [28].
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Analytic solutions for lightlike momenta at low and high frequency

We are mainly interested in the effect of the IR-cut-off on photon production
as compared to the previous AdS photon production calculation for scale-
invariant N = 4 SYM [5]. In the low-frequency limit where its effect should
be largest, we can solve (2.9) perturbatively using ω ≪ 1 as a small parame-
ter. As noted in [5], there is a shortcut to do so. Given the two independent
solutions φ1 ± iφ2 to the differential equation φ′′ + A(x)φ′ + B(x)φ = 0, the
Wronskian times exp(

∫ x
A(x′)) is strictly conserved

∂x

(
e
∫

x A(x′)
[
φ̄∂xφ− φ∂xφ̄

])
= 0 . (2.22)

The transverse scalar can be rewritten as

ΠT (K) = lim
u→0

ΠT (u,K) ,

ΠT (u,K) ≡ −N
2
c T

2

8

[
e−cu(1 − u2)

Ē⊥(u,K)

Ē⊥(0,K)
∂u
E⊥(u,K)

E⊥(0,K)

]
. (2.23)

The imaginary part of the transverse scalar ΠT (u,K) is then propotional to the
conserved Wronskian and therefore independent of the radial coordinate u:

∂uIm[ΠT (u,K)] = 0 . (2.24)

With this fact, we can evaluate the imaginary part of (2.23) at any given value
of u which is convenient to our calculation. Let us choose u = 1. Because the
transverse scalar (2.23) contains an explicit factor of (1 − u), only the pole in
Ē⊥∂uE⊥ will contribute. Recalling that for any finite frequency ω the bound-
ary conditions determine E⊥(u) to be of the form (2.21), we immediately see
that the undetermined regular part y contains no pole by definition. Therefore
without needing to solve the equation motion we see that

ΠT (1,K) =
−N2

c T
2

8

(−iω
2

)[
2e−c

∣∣∣∣
y(1)

y(0)

∣∣∣∣
2
]
. (2.25)

The leading term in the limit ω ≪ 1 is the ω-independent contribution to
|y(1)/y(0)|. The determining equation (2.14) simplifies in that limit to effec-
tively the first order equation (recall that ω = q for lightlike momenta)

∂u∂uE⊥ + (∂u(ln f − cu))∂uE = 0 + O(ω2) . (2.26)

The incoming wave boundary condition demands that the ω = 0 solution be
regular at u = 1. Since f = (1 − u)(1 + u), this solution is the trivial constant
one. Therefore

ΠT (1,K) =
iωN2

c T
2

8
e−c + O(ω2) . (2.27)
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In Appendix 2.A we compute the same answer directly by solving the dif-
ferential equation perturbatively in ω, which shows explicitly that E⊥(u) =
constant + O(ω) is indeed the correct solution to the boundary conditions.

Given Π(1,K), the trace of spectral density function at low-frequency
limit for lightlike momenta in photon production is proportional to its u-
independent imaginary part

χµ
µ(ω = q) = −4 Im(ΠT (ω = q))

=
ωN2

c T
2

2
e−c + O(ω2). (2.28)

For c = 0, we reproduce back the result from [5] at the first order. The van-
ishing of c corresponds to either the limit T → ∞ or to removing the IR scale
ΛIR. We see explicitly our intuition confirmed that the trace of spectral den-
sity at low-frequency depends on the cutoff parameter c, while simultaneously
reproducing the N = 4 result at high T .

At high-frequencies we do not expect the IR-cut-off to have a major effect.
Let us show that to leading order the spectral function is in fact independent
of the value of c as one would expect. In this limit ω ≫ 1, the argument leading
up to eq. (2.25) does not hold4 and one cannot obtain the answer without
solving the equation of motion (2.14). Following [5], we will use the Langer-
Olver method [29] to find the solution. The first step is to redefine

E⊥(u) =
ecu/2

√
−f(u)

y(u) (2.29)

for equation (2.14) and rewrite it as

y′′(x) = [ω2H(x) +G(x)]y(x), (2.30)

where H(x) = x
f(x)2 and G(x) = c2

4 − cx
f(x) − 1

f(x)2 with x = −u ∈ [−1, 0]. For

large ω the first term on the RHS dominates. Since it has a simple zero at x = 0,
we can transform Eq. (2.30) to Airy’s equation plus terms subleading in ω. To
do so, we introduce a new independent variable ζ and change variables to

ζ

(
dζ

dx

)2

= H(x) =
x

(1 − x2)2
. (2.31)

Choosing conditions ζ(0) = 0 and ζ′(0) > 0 determines ζ to be

ζ =

[
3

2

∫ x

0

√
H(t)dt

]2/3

. (2.32)

4Note e.g. that in the singular term (1 − u)−iω/2 the order of limits u → 1 and ω → ∞ do not
commute.
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Rescaling y(x) to

y =

(
dζ

dx

)−1/2

W , (2.33)

eq. (2.30) becomes
d2W

dζ2
= [ω2ζ + ψ(ζ)]W, (2.34)

with

ψ(ζ) =
5

16ζ2
+

[
4H(x)H ′′(x) − 5H ′2(x)

]

16H3(x)
ζ +

ζG(x)

H(x)
(2.35)

For large ω we may ignore ψ(ζ) and the equation reduces to Airy’s equation. To
leading order the solution is thus

W (ζ) = A0Ai(ω2/3ζ) +B0Bi(ω2/3ζ) + . . . , (2.36)

The incoming-wave boundary conditions at the horizon imply that B0 should
vanish. Thus the solution for E⊥(u) in asymptotic expansion for large ω is

E⊥(u) =
A0e

cu/2

√
−f(u)

[ −u
f(u)2ζ(−u)

]−1/4

Ai(ω2/3ζ(−u)) + . . . , (2.37)

and the transverse scalar at high-frequency limit equals

ΠT = −N
2
c T

2

8
lim
u→0

(
c

2
+

1

4
∂u ln

(−ζ(−u)
u

)
+
∂uAi(ω2/3ζ(−u))

Ai(ω2/3ζ(−u))

)
+ . . . . (2.38)

Before we move on, it is helpful to expand ζ(−u) around u = 0

ζ(−u) = −(−1)2/3u− 2

7
(−1)2/3u3 + O(u5) . (2.39)

Therefore the middle term in (2.38),

∂u ln

(−ζ(−u)
u

)
=

1

(−1)2/3 + ..

(
6

7
(−1)2/3u+ . . .

)
, (2.40)

vanishes as u → 0. Knowing the asymptotics of the Airy function the last term
of (2.38) can be written as

lim
u→0

Ai′(ω2/3ζ(−u)))
Ai(ω2/3ζ(−u))) = −(−ω)2/3 Ai′(0)

Ai(0)

= (−ω)2/3 31/3Γ(2/3)

Γ(1/3)
, (2.41)
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and thus we obtain

ΠT = −N
2
c T

2

8

(
c

2
+
e2πi/3ω2/331/3Γ(2/3)

Γ(1/3)

)
. (2.42)

Note that this transverse scalar therefore depends on c. However, only the real
part does. The trace of the spectral density function in high-frequency limit for
lightlike momenta

χµ
µ = −4 Im(ΠT )

∼ N2
c T

2

4

ω2/335/6Γ(2/3)

Γ(1/3)
. (2.43)

does not depend on the cutoff parameter c at least up to first order and yields
the same result as the calculation in N = 4 SYM. The fact that c does appear in
the real part of the transverse scalar indicates that at first subleading order the
spectral density function will likely differ from the N = 4 result. The numerical
results in the next section bear this out.

Numerical solution for lightlike momenta

The analytic asymptotic solutions are a guidance to the full spectral function.
The full solutions of equation (2.9) for non-zero c are very difficult to find, as
we remarked earlier. This is due to the irregular singular point at u = ∞ for
c 6= 0 where analytic solutions are not known. In this subsection we are going
to look for numerical solutions for non-zero c.

We start from the general solution (2.21) which satisfies the incoming wave
boundary condition. To set a parametrization of the initial conditions for the
u = 1 regular function yi(u) = Ei(1 − u)iω/2 of Eq. (2.21), we write the general
solution as a polynomial expansion around u = 1, y(u) =

∑∞
n=0 an(1 − u)n.

Substituting (2.21) into equation (2.14) for lightlike momenta, we obtain the
equation

∞∑

n=0

[
an

(
n− i

ω

2

)2

(1 − u)n−2 + c an

(
n− i

ω

2

)
(1 − u)n−1

−
∞∑

m=0

[
an

2m+1

(
n− i

ω

2
+
ω2(m+ 1)

4

)
(1 − u)n+m−1 − anω

2

2m+2
(1 − u)n+m−2

]]
= 0.

(2.44)

The second sum (overm) arises from expanding 1
1+u =

∑∞
n=0

1
2n+1 (1−u)n and

1
(1+u)2 =

∑∞
n=0

(n+1)
2n+2 (1 − u)n. In order to find the coefficients an, we have to
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solve this equation for each power of (1 − u) and obtain

(1 − u)−2 : a0 (arbitrary),

(1 − u)−1 : a1 =
iω(c− 1/2)

2(1 − iω)
a0,

...

(1 − u)k−2 : ak = fk(ω, c)a0, (2.45)

with fk are functions of ω and c which vanish at ω = 0. This gives us y(u) and
y′(u) at u = 1 in terms of the above coefficients

y(1) = a0,

y′(1) = −a1 = −a0
iω(c− 1/2)

2(1 − iω)
. (2.46)

These will be the two initial conditions for the differential equation for y(u).
The explicit differential equation it must satisfy is

y′′ +

(
iω

1 − u
− 2u

1 − u2
− c

)
y′

+

[
ω2u

(1 − u2)2
+

2iω − ω2

4(1 − u)2
− iω

2(1 − u)

(
2u

1 − u2
+ c

)]
y = 0. (2.47)

Notice that the initial conditions for y(u) still depend on an arbitrary constant
a0. Physical quantities, such as the spectral density function, depend on ra-
tios of y(u) and its derivatives and are independent of this constant. We are
therefore free to set it to any value; we will choose a0 = 1.

Let us express the trace of spectral density function in terms of y(u):

χµ
µ =

N2
c T

2

2

(
ω

2
+ Im

(
y′(0)

y(0)

))
. (2.48)

Alternately we could use the modified Wronskian formulation for ΠT ((K), eq.
(2.23) and evaluate it at u = 1. An equivalent expression for the trace of spectral
density function in this limit becomes

χµ
µ =

ωN2
c T

2

2
e−c |y(1)|2

|y(0)|2 . (2.49)

The spectral density for lightlike momenta

Solving eq. (2.47) numerically with initial conditions (2.46), we find the spec-
tral density function χµ

µ for lightlike momenta for various values of the IR-cut-

off c.5 The results are shown in Fig. 2.1 and we clearly see the dependency

5Numerical solutions were obtained using the NDSolve routine in Mathematica.
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at low frequencies on the IR-cut-off. The behaviour at high-frequency on the
other hand appears less and less sensitive. What is remarkable is the similar-
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Figure 2.1: Trace of the spectral function for lightlike momenta in units of 1

2
N2

c T 2,
plotted as a function of frequency with ω ≡ k0/(2πT ). The solid line (red) shows the

exact result for c = 0 and the dashed lines downward show numerical analysis for c =
0.2, 0.419035, 0.5, 0.6, 1.5, 2, 3.

ity between this soft-wall AdS/QCD result, Fig 2.1, for the trace of the spectral
function for light-like momenta and of Mateos and Patiño for massive flavor
deformations of the AdS dual of N = 2 theories, Fig. 3 in [23]. As we will dis-
cuss in section 2.4, this similarity can be explained by relating the two compu-
tations. Inherently this then partially validates the soft-wall AdS/QCD model.

There is, however, one fundamental difference between the result here and
the massive N = 2 computation. Both models are thermodynamically unsta-
ble for large IR-cut-off, signalling the transition back to the confining regime.
In the N = 2 model this is clearly illustrated by the appearance of thermal res-
onances in the spectral function when formally evaluated beyond the critical
cut-off. Fig1. shows that in AdS/QCD these resonances remain absent beyond
the critical value c > 0.419035 [16]. The absence of thermal resonances was
presaged by Huot et al. [5]. Realizing that their results for photon production
in the AdS dual of pure N = 4 SYM are unaffected by a hard-wall IR-cut-off,
they speculated that this would be generic. It was premised on the fact that in
the hard-wall case, the IR-cut-off is always inside the horizon. Rough dimen-
sional analysis illustrates that the soft-wall case is similar: at the transition the
cut-off scale c−1 ≃ 2.5 is beyond the horizon u = 1. However, a similar argu-
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ment holds for the massive N = 2 AdS dual. As we discuss in section 4, the real
reason for the absence of thermal resonances is probably simply that an blunt
soft- or hard- IR-cut-off is too crude to capture this information.

2.3.2 Timelike and spacelike momenta

For time and space-like momenta, both ΠT and ΠL can contribute to spec-
tral density function χµ

µ(K). Also for these cases, the mode equations (2.9)
and (2.15) cannot be solved analytically for arbitrary frequency(ω) and wave
vector(q), and we determine the spectral function numerically.

Numerical solution for transverse scalar function

Following the same procedure in numerical analysis for lightlike momenta
above, we substitute the general solution (2.21) for transverse direction into
(2.9) and obtain an equation for y(u)

y′′⊥ +

(
iω

1 − u
− 2u

1 − u2
− c

)
y′⊥

+

[
ω2 − q2(1 − u2)

u(1 − u2)2
+

2iω − ω2

4(1 − u)2
− iω

2(1 − u)

(
2u

1 − u2
+ c

)]
y⊥ = 0. (2.50)

As in the lightlike case, to determine the initial conditions we expand y(u) =∑∞
n=0 an(1 − u)n around u = 1, with

a0 (arbitrary), a1 =
ω2 − q2 + iω(1/2− c)

2(iω − 1)
a0 , ak = fk(ω, q, c)a0, (2.51)

where again fk are functions of ω, q and cwhich vanish at ω = q = 0. Using the
modified Wronskian extension the imaginary part of transverse scalar function
is therefore given by

Im(ΠT (K)) = −ωN
2
c T

2

8
e−c |y⊥(1)|2

|y⊥(0)|2 , (2.52)

with y(u) a solution to eq. (2.50) with initial conditions determined from
Eq. (2.51).

Numerical solution for longitudinal scalar function

Substitute (2.21) into the equation of motion for the longitudinal direction
(2.15), we obtain

y′′‖ +

(
iω

1 − u
− 2uω2

(1 − u2)(ω2 − q2(1 − u2))
− c

)
y′‖ +

[
ω2 − q2(1 − u2)

u(1 − u2)2

+
2iω − ω2

4(1 − u)2
− iω

2(1 − u)

(
2uω2

(1 − u2)(ω2 − q2(1 − u2))
+ c

)]
y‖ = 0. (2.53)
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Expanding y‖(u) =
∑∞

n=0 an(1 − u)n around u = 1 gives us

a0 (arbitrary) , a1 =
ω2 − q2 + iω

(
1
2 − c− 2q2

ω2

)

2(iω − 1)
a0 , ak = fk(ω, q, c)a0, (2.54)

where again fk are functions of ω, q and c which vanish at ω = q = 0. The
imaginary part of the longitudinal scalar function is

Im(ΠL(K)) = −ωN
2
c T

2

8

(
1

2
+ Im

(
y′‖(0)

ωy‖(0)

))
, (2.55)

with y‖(u) the solution to (2.53) with initial conditions determined from
Eq. (2.54).

The spectral density for time- and space-like momenta

Following formula (2.3), we can now write the trace of spectral function for
time- and space-like momenta as

χµ
µ(K) =

ωN2
c T

2

2

[
e−c |y⊥(1)|2

|y⊥(0)|2 +
1

4
+

1

2ω
Im

(
y′‖(0)

y‖(0)

)]
. (2.56)

The complete results for χµ
µ are plotted in Fig.2.2 and Fig.2.3 as a function of

frequency for several values of the spatial momentum. As we increase the
value for c, one clearly sees that at low momenta the function decreases com-
pared to c = 0.

2.3.3 Electrical conductivity

With the spectral density in hand, it is now straightforward to compute the
electrical conductivity σ. Here, we will use Eq. (2.6) as we have an analytic
expression of the spectral density for lightlike momenta. Substituting (2.28)
into (2.6) yields

σ = lim
k0→0

e2

4T

χµ
µ(ω = q)

ek0/T − 1

= lim
k0→0

e2

8π

N2
c exp(−c)k0(1 +O(k0))

k0/T (1 +O(k0))

= e2
N2

c T

16π
exp(−c), (2.57)

with e the electric charge. We again note the presence of the scaling factor e−c

which dampens the IR-properties, including charge diffusion, of the system.
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Figure 2.2: Spectral function trace χµ
µ/ω, in units of N2

c T 2/2, plotted as a function of
ω. The solid lines describe c = 0.5 and the dashed lines for c = 0 while different colors

represent q = 0(red), q = 1(green), and q = 1.5(blue).

Note in particular that this IR-suppresion is also present in the charge sus-
ceptibility Ξ = N2

c T
2c/8(ec − 1) and the more “universal” diffusion constant

D ≡ σ/e2Ξ = (1 − e−c)/2πTc (see Appendix 2.B). Physically this makes sense,
as a mass-gap should dampen any hydrodynamic behaviour and the general
AdS/CFT computation for scale-dependent currents

SAdS ∼
∫
d4xdu

√−g 1

g2
eff (u)

FABF
AB , (2.58)

demonstrates this explicitly [30]6

D ∼ 1

g2
eff (u = 1)

∫ 1

0

du g2
eff (u) . . . (2.59)

2.4 Conclusion: Soft wall cut-offs as an IR mass-

gap.

The essential new ingredient in Soft-wall AdS/QCD is the ad-hoc cut-off of
the radial AdS-direction. It is intended to capture the dominant effects of the
scale dependence of QCD [12, 16]. However, its ad-hoc introduction opens
it to criticism; especially when interpreted as a dilaton-profile without taking
into account back-reaction effects or the dilaton equation of motion (see the

6This suggests a trivial violation of the PSS shear-viscosity-bound by IR-suppressing hydrody-
namic behaviour. As the derivation of the viscosity in [30] suggests, however, and the explicit
computation in massive N = 2 models shows [31], this is not case.
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Figure 2.3: Spectral function trace χµ
µ/ω, in units of N2

c T 2/2, plotted as a function of ω
for q = 0 and various values of c = 0(black), c = 0.2(red), c = 0.5(green), c = 0.6(bue),

c = 1.5(yellow), c = 2(magenta), and c = 3(cyan).

footnote in the introduction). On the other hand the succesful results of the
model [15,16], suggest that it does capture the essential IR behaviour correctly.

The result for AdS/QCD photon production supports this further. As pre-
viously emphasized it closely resembles photon production due to quarks for
N = 2 theories with massive flavor in the probe approximation Nf ≪ Nc [23].
These theories descend from brane-constructions in string theory, and there-
fore have no ad hoc component to criticise. Recall that in these theories, the
probe approximation means that one may consider the flavor group as a global
symmetry. The U(1) theory with respect to which photons are defined is a
subgroup of this group and the tunable quark mass — a free parameter in the
brane construction — functions as the scale in these theories. On the other
hand, because the matter and symmetry content is different from QCD, one
could question how relevant massive N = 2 SQCD results are to reality. The
observation we make now is that the resemblence between the trace of the
spectral function χµ

µ in these N = 2 SQCD theories as a function of the quark
massm and the AdS/QCD spectral function as a function of the IR-cut-off c can
be mathematically explained. Both therefore demonstrate again that AdS/CFT
results are remarkable universal and robust across fundamentally different
theories. This is therefore strong support for soft-wall AdS/QCD, despite its
ad-hoc IR-cut-off, as well as massive N = 2 SQCD, despite its unrealistic mat-
ter content, as descriptions of QCD.

To relate the massive N = 2 SQCD result to AdS/QCD, we note that Mateos
and Patiño showed that in N = 2 SQCD the defining equation relevant for the
trace of the spectral function for lightlike momenta can be deduced from an
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action7

S ∼
∫
dudx0dx1

[
−P (u)(∂0V⊥)2 + fP (u)(∂1V⊥)2 +Q(u)(∂uV⊥)2

]
, (2.60)

where

P (u) =
u3
√
g(ψm,0(u), u)

uf
,

Q(u) = f
(1 − ψ2

m,0(u))
3

u3
√
g(ψm,0(u), u)

=
1

u

u3f
√
g(ψm,0(u), u)

uf

u2f2(1 − ψ2
m,0(u))

3

u6g(ψm,0(u), u)
. (2.61)

Here f = f(u) = (1 − u2) is the non-extremality function in the D3-brane
metric (2.7). The function ψm,0(u) is the solution to the embedding equation
of motion for the D7-flavor brane derived from the DBI-action

S ∼
∫
du
√
g(ψm(u), u) =

∫
du

1

u3
(1 − ψ2

m)
√

1 − ψ2 + 4u2fψ′2 , (2.62)

i.e. g(ψ(u), u) is the induced metric on the flavor brane. The u = 0 boundary
behavior of the solution ψm,0 = m√

2
u1/2 + Λu3/2 + . . . is determined by the

masses m and condensate expectation value 〈qq〉 ∼ Λ of the quarks. For the
massless theory ψm=0,0 = 0 and

√
g = u−3. Thus to find the spectral function,

one must first solve the differential equation for ψm(u) with the appropriate
boundary conditions and then solve the differential equation for V⊥ [23]. The
first step correctly incorporates the backreaction of the modified IR-physics as
opposed to the AdS/QCD ad-hoc cut-off.

The massive case ψm,0(u) 6= 0 is therefore a step more involved than the
massless case, unlike AdS/QCD where the scale is a mild modification c 6= 0
of the defining differential equation (2.14). However, searching for a closer
match, one quickly realizes that the massless equation (for lightlike momenta

ω = ~k),

∂2
uV⊥ + ∂u(lnQ)∂uV⊥ + ~k2(1 − f)

P

Q
V⊥ = 0

⇒ ∂2
uV⊥ + ∂u(ln (f))∂uV⊥ + ~k2(1 − f)

(uf)−1

f
V⊥ = 0 , (2.63)

is exactly the AdS/QCD equation (2.14) for c = 0 and we are therefore lead to
consider a change of variables for the massive case that resembles that of the

7We only consider the D3/D7 brane set-up of [23]. The gauge/gravity duality for the D4/D6
brane set-up they also consider is not yet fully understood.
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massless case. Thus we define a new variable ũ such that

du
u3
√
g(ψm,0(u), u))

uf
= dũ

1

ũf̃
(2.64)

with f̃ ≡ f(ũ). By construction the parameter P in the new variable is identical
to the massless case and Q is seen to be a mild modification

P (ũ) =
1

ũf(ũ)
,

Q(ũ) = f(ũ)
ũ(1 − ψ2

m,0)
3

u(ũ)
. (2.65)

Note that the solution to the massive embedding equation of motion,ψm,0 6= 0,
is implicit in the transformation (2.64). In this new variable, however, we see,
that its specific form only mildly modifies the massless differential equation

∂2
ũV⊥ + ∂ũ

[
ln(f̃) + ln((1 − ψ2

m,0)
3 ũ

u(ũ)
)

]
∂ũV⊥ + ~k2(1 − f̃)

(ũf̃)−1

f(1 − ψ2)3
V⊥ = 0 .

(2.66)

and the close relation to AdS/QCD is now apparent. The resemblance of the
spectral functions is especially explained, if we recall that it is primarily deter-
mined by the u = 0 behaviour of the solution (2.20).8 As we know what the
u = 0 behaviour of the solution ψm,0 = m√

2
u1/2 + . . . must be, Eq. (2.64) shows

that asymptotically ũ = u+ m2

4 u
2 + . . . and we can putatively identify the mass

mwith the IR-cut-off c:

− cũ ≃ ln(1 − ψ2
m,0)

3 ũ

u
= ln(1 − m2

2
ũ+ . . .)3 − ln(1 − m2

4
ũ+ . . .)

≃ −5

4
m2ũ+ . . . (2.67)

The map between AdS/QCD and N = 2 SQCD is not exact; clearly we should
not have expected it to be. The latter shows thermal resonances in the spec-
tral function for masses m > 1.3092 which is the value beyond which the AdS
black-hole solution becomes thermodynamically unstable [23]. The AdS/QCD
description is much cruder as is no resonances show up even beyond the un-
stable regime c > 0.419035. These thermal resonances are encoded in the
subtleties of the embedding function ψm,0(u) which carries more information
than just the mass as an IR-cut-off. Precisely, the embedding function deter-
mines whether the flavor D7-brane is in “Minkowski embedding” or “black
hole embedding” corresponding to the low T confining or high T deconfining

8One should be careful in that the change of coordinates (2.64) in principle will also change the
boundary conditions one must impose.
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phase [23]. Clearly, the N = 2 SQCD theory has a more detailed description
at the physics. On the other hand, the results here do show that in the stable
phase the simple AdS/QCD model describes the IR-consequences of a mass-
gap remarkably well and the above derivation explains mathematically why.
This in itself lends support to continue to study AdS/QCD as a good toy model
for real-world physics.

2.A Spectral function low frequency limit for light-

like momenta

Here we find an analytic expression for the low-frequency limit of the trans-
verse scalar and spectral density for lightlike momenta by solving the differ-
ential equation for the E⊥(u) perturbatively, rather than using the Wronskian
shortcut, explained above eq. (2.22).

We first extract the other regular singularity at u = −1, writing

E⊥(u) = (1 − u)−iω/2(1 + u)−ω/2Y (u), (2.68)

with Y (u) regular at u = 1 and substitute this into (2.9). Changing variables to
v = 1/2(1 − u), we obtain the differential equation

v(1 − v)Y ′′ +
[
(1 − iω) − (2 − iω − ω − 2c)v − 2cv2

]
Y ′

−
{

1

2

[
−ω − iω + iω2

]
− c[ωv − iω + iωv]

}
Y = 0. (2.69)

In the absence of the IR-cutoff, c = 0, we recognize a hypergeometric equation
with solution [5]

Y (u) = 2F1

(
1 − 1

2
(1 + i)ω,−1

2
(1 + i)ω; 1 − iω;

1

2
(1 − u)

)
. (2.70)

As we noted earlier, the presence of c changes the nature of the equation and
no formal solution is known. On physical grounds we expect the effects of c to
dominate the low frequency part of the spectral function. Expanding Y (u) as

Y = Y0 + ωY1 + ω2Y2 + ω3Y3 + · · · , (2.71)

we find to first order in ω,

ω0 : v(1 − v)Y ′′
0 + [1 − 2v + 2cv(1 − v)]Y ′

0 = 0, (2.72)

ω1 : v(1 − v)Y ′′
1 + [v − i(1 − v)]Y ′

0 + [1 − 2v + 2cv(1 − v)]Y ′
1

+

{
1

2
(1 + i) + c[v − i(1 − v)]

}
Y0 = 0. (2.73)
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These two equations have solutions

Y0(v) = A+B
[
e−2cEi(2c− 2cv) − Ei(−2cv)

]
, (2.74)

Y1(v) = C +
A

2
[ln(v − 1) + i ln v] +

[
e−2cEi(2c− 2cv) − Ei(−2cv)

] [
D +

B

2
[ln(v − 1) + i ln v]

]
, (2.75)

with A,B,C,D constants of integration and Ei(x) = −
∫∞
−x

e−t

t dt the exponen-
tial integral function. To determine the integration constants, recall that by
construction the solutions must be regular as v → 0 (u → 1). Since the ex-
ponential integral Ei(v) diverges at v = 0, we must set B = 0. To determine
regularity of Y1(v), recall that Ei(x) can be written as

Ei(−x) = γ + lnx+

∞∑

n=1

(−1)nxn

n!n
, for x > 0, (2.76)

with γ the Euler-Mascheroni constant. Since the variable v ∈ [0, 1/2], and c >
0, regularity at v = 0 demands D = iA/2. For convenience, let us also redefine
the constant C = iC̃A/2. Substituting those constants into Y1, we obtain the
solution for E⊥ in the low frequency limit

E⊥(u) =A(1 − u)−iω/2(1 + u)−ω/2
{

1 + i
ω

2

[
C̃ + e−2cEi(c(1 + u)) − Ei(c(u − 1))

−i ln
(
u+ 1

2

)
+ ln

(
1 − u

2

)]
+ O(ω2)

}
. (2.77)

Using the definition of the exponential integral function, we straightforwardly
obtain the leading low-frequency contribution to transverse scalar function

ΠT (ω = q) = − N2
c T

2

8

[
−iω

2
− ω

2
+
iω

2
(ce−2cEi′(c) − cEi′(−c) − i− 1) + O(ω2)

]

=
iωN2

c T
2

16

[
−2i− (e−c + e−c) + O(ω2)

]
. (2.78)

This is the exact answer. The imaginary part computed via the conserved
Wronskian shortcut (2.27) clearly agrees.

2.B The susceptibility and the diffusion constant

We follow the procedure to compute the diffusion constant described in [11].
Using the gauge Vu = 0, we can rewrite equation (2.10) as

V‖ =
uf

qω
V ′′

t − c
uf

qω
V ′

t − q

ω
Vt. (2.79)
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Substituting into equation (2.13) we obtain a second order differential equa-
tion for E = V ′

t

E′′ +

[
(uf)′

uf
− c

]
E′ +

[
ω2 − q2f

uf2
− c

(uf)′

uf

]
E = 0. (2.80)

Imposing the same incoming-wave boundary condition as before and extract-
ing the singularity at the horizon u = 1, we rewrite E = (1 − u)−iω/2y, where y
is a regular function at the horizon. The function y must obey the equation

y′′ +

[
iω

1 − u
+

(uf)′

uf
− c

]
y′+

+

[
iω(iω + 2)

4(1 − u)2
+
iω((uf)′ − cuf)

2uf(1− u)
+
ω2 − q2f

uf2
− c

(uf)′

uf

]
y = 0. (2.81)

For low frequency and momentum, we again solve the equation pertubatively
in ω and q

y(u) = y00 + ωy10 + q2y02 + · · · . (2.82)

Up to first order in ω and q2, we find the system of equations

ω0q0 : y′′00 +

[
(uf)′

uf
− c

]
y′00 − c

(uf)′

uf
y00 = 0,

ω1q0 : y′′10 +
i

1 − u
y′00 +

[
(uf)′

uf
− c

]
y′10 +

[
i

2(1 − u)2
+
i((uf)′ − cuf)

2uf(1 − u)

]
y00

− c
(uf)′

uf
y10 = 0,

ω0q2 : y′′02 +

[
(uf)′

uf
− c

]
y′02 − c

(uf)′

uf
y02 −

f

uf2
y00 = 0. (2.83)

Using the same analysis for the low frequency of spectral function as described
in the previous Appendix, the solutions regular at u = 1 are found to be

y00 =Aecu

y10 =
iA

2
ecu+c [C10 + 2Ei(−cu) − ecEi(−c(1 + u))

−e−c (Ei(c(1 − u)) − ln(u − 1))
]

y02 =
A

2c
ecu+c [C02 − 2Ei(−cu) + ecEi(−c(1 + u))

+e−c
(

Ei(c(1 − u)) + 2 lnu− ln(u2 − 1)
)]
, (2.84)

where A and C10, C02 are constants independent of u. We can determine A in
terms of the boundary values of Vt and V‖ at u→ 0 defined as

lim
u→0

Vt(u) = V 0
t ,

lim
u→0

V‖(u) = V 0
‖ . (2.85)
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Substituting the solution for E = V ′
t into equation (2.79) and taking limit u →

0, the integration constants C10, C02 drop out and we can determine A to be

A =
q2V 0

t + ωqV 0
‖

iωec − ec

c (1 − e−c) q2 +O(ω2, ωq2, q4)
. (2.86)

We recognize the hydrodynamic pole and as explained in [11] we can now
compute the time-time component of the retarded thermal Green’s function
of two currents

Gtt =
N2

c T
2q2e−c

8(iω − (1−e−c)
c q2)

+ · · · , (2.87)

Thus the time-time component of the spectral density function at low fre-
quency and momentum equals

χtt(k
0, ~k) = −2 Im[Gtt] =

N2
c Tk

0|~k|2e−c

8π((k0)2 +D|~k|2)
+ . . . , (2.88)

with D =
(1−e−c)

2πTc the diffusion constant. Comparing the result with the uni-
versal hydrodynamic behaviour

χtt(k
0, ~k) =

2ωD|~k|2
(k0)2 + (D|~k|2)2

Ξ + . . . , (2.89)

the charge susceptibility Ξ is seen to equal Ξ =
N2

c T 2c
8(ec−1) and naturally satisfies

the Einstein relation Ξ = σ/e2D.


