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C H A P T E R 1

INTRODUCTION

For many years, people have attempted to develop an ultimate theory that
would explain the fundamental structure of matter and the very basic mech-
anisms of nature. One promising candidate is string theory. Born in the
late 1960s as a theory that was expected to describe the strong interaction
in hadrons, string theory had to accept the fact that another theory, known
as QCD (Quantum Chromodynamics), correctly describes the strong nuclear
force and the properties of hadrons. A new face of string theory arose in 1974
when John Schwarz and Joel Scherk proposed an interpretation of the spin-
two massless particle in the spectrum of string theory to describe the quantum
of gravity, namely graviton. Ever since string theory has received great atten-
tion of many scientists, not only from high-energy physicists, but also from
various other fields of study and so a journey to the ultimate theory has taken
a new direction.

String theory today is a forefront in the world of scientific research. It does
not only requires knowledge of other fields and sophisticated tools in mathe-
matics but at some level it also tries to solve some puzzles in physics by pro-
viding a new approach to the problems. Nevertheless, string theory still lacks
of experimental evidences. The natural length scale of the theory is thought
to be at the order of Plank scale ∼ 1019 GeV , out of reach of any current or fu-
ture machines built for experiment. The energy scale at which string theoretic
effects become relevant is very large compared to the energy scale of well es-
tablished theory of particle physics namely the Standard Model (electroweak
scale ∼ 246GeV and QCD scale ∼ 300MeV ).

In string theory the fundamental objects are one-dimensional objects
called strings instead of points-like as in the usual quantum field theory.
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String theory is characterized by one parameter α′, the string tension, which
is also related to the length of strings ls =

√
α′. These strings have to be

embedded into 26-dimensional space-time (without supersymmetry) or 10-
dimensional space-time(with supersymmetry) in order to be consistent. The
26-dimensional strings is called bosonic string theory and 10-dimensional
strings is called superstring theory [1].

There are two types of strings one can consider. First is closed strings where
the two ends of the string meet and form a loop. The second is open strings
where the end points of string are confined to subsurfaces in space time (hy-
persurfaces) called branes. The spectrum of those type of strings are quite dif-
ferent, for example the open string has a massless spin-one gauge field while
the closed string has a massless spin-two graviton.

One of the most important developments in string theory is the AdS/CFT
correspondence. It is based on holographic principal which states that the de-
scription of a volume of space can be thought of as encoded on a boundary of
that region. This correspondence encodes a way of using string theory to per-
form non-perturbative calculation in gauge theory which is still a complicated
problem.

The best known example of the correspondence is between weakly coupled
gravity theory with AdS (Anti de Sitter) as space-time background and strongly
coupled gauge theory with conformal symmetry in one lower dimension. Sub-
sequently people have tried to extend this correspondence to non-conformal
gauge theory since the Standard Model itself is not a conformal theory. This
extension affects the space-time background where the gravity theory lives in.
With this attempt now the correspondence is widely known as gauge/gravity
correspondence1. Unfortunately there is still no version of the correspondence
which realizes Standard Model or even pure QCD.

Nevertheless, the last several years we have seen a considerable success in
the application of the AdS/CFT correspondence [2–4] to the study of real world
strongly coupled systems, in particular the QGP(Quark Gluon Plasma). The
(succesful) application hinges on the belief that the QGP of QCD is thought
to be qualitatively very similar to the plasma of N = 4 super Yang–Mills the-
ory at finite temperature, which is dual to string theory in an AdS black hole
spacetime. The analysis of scattering amplitudes in the AdS black hole back-
ground led to the universal viscosity bound [34], which played an important
role in understanding the physics of the elliptic flow observed at RHIC. On the
other hand, the study of the physics of trailing strings in the AdS spacetime
explained the dissipative and diffusive physics of a quark moving through a
field theory plasma, such as the diffusion coefficient and transverse momen-
tum broadening [35, 38–41, 53–55]. The relation between the hydrodynamics
of the field theory plasma and the bulk black hole dynamics was first revealed

1It is from the massless spectrum of open and closed strings that AdS/CFT correspondence gets
another name gauge/gravity correspondence.
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in [56, 97] (see also [63]).
This thesis is based on works in [19,20] and ongoing work in [21]. The works

describe some applications of AdS/CFT correspondence in QGP. In the follow-
ing sections we give a brief introduction to string theory; an inside view of
QGP; the basic and technical tools of AdS/CFT correspondence; and the out-
line of this thesis.

1.1 Quark Gluon Plasma

The low-energy properties of the strong interactions are governed by a chiral
symmetry. The QCD Lagrangian possesses an SU(3)L × SU(3)R ×U(1)V sym-
metry in chiral limit (mu,md,ms → 0). At the current status, we do not know
how to solve QCD in low-energy as the standard perturbation theory can not
be applied for energy below QCD scale ∼ 300 MeV . Below this scale quarks
are in a confined phase and bound to form what is called hadron. In this state
quarks can not be separated from each others since the QCD coupling con-
stants are large. Therefore perturbation theory can not be used and we need
to work with non-perturbative calculation. As we increase the energy above
QCD scale, the QCD coupling constants decrease and the quarks are slowly
separated from the hadron. At some point there will be a phase transition to a
deconfined phase where the quarks are deconfined from the hadron form and
can be identified individually. In this phase the perturbation theory works very
well especially at infinite energy where quarks do not interact with each others
and it is known as asymptotically freedom.

Perturbative aspects of QCD have been tested to a few percents. In contrast,
non-perturbative aspects of QCD have barely been tested. Recent develop-
ment in gravity/gauge correspondence has revived the hope that the strongly
coupled regime of QCD can be reformulated as a solvable string theory.

QGP is a phase of QCD which exists at extremely high temperature and/or
density. The QGP contains quarks and gluons, just as normal matter(hadron)
does. Unlike hadrons where quarks are confined, in the QGP these mesons
and baryons lose their identities and dissolve into a fluid of quarks and gluons.
Quarks in QGP are deconfined and make a much larger total mass compared
to the corresponding hadron mass. The QGP is believed to have existed during
the first 20 or 30 microseconds after the universe came into existence in the
Big Bang.

A plasma is matter in which electric charges are screened due to the pres-
ence of other mobile charges. Likewise, the colour charge of the quarks and
gluons in QGP are screened. There are also dissimilarities due to the fact
that the colour charge is non-abelian, whereas the electric charge in a normal
plasma is abelian.

The QGP can be created by heating high density matter up to a tempera-
ture of 190MeV per particle. To produce such high energy, two heavy particles
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Figure 1.1: QCD phase diagram [17].

are accelerated to ultrarelativistic speeds and slammed into each other. They
largely pass through each other, but a significant fraction collides, melts, and
“explodes” into a hot fireball. Once created, this fireball expands under its own
pressure, and cool while expanding. By carefully studying this flow, experi-
mentalists hope to test the theory.

Figure 1.2: Creation process of QGP [18].

As conventional thermodynamic characteristics, the resulting QGP is
largely controlled by the equation of state relating theP (pressure) and T (tem-
perature). The equation of state is an important input for the flow equations.
The mean free path of quarks and gluons can be computed using perturbation
theory as well as string theory. There are indications that the mean free time of
quarks and gluons in the QGP may be comparable to the average interparticle
spacing: hence the QGP is a liquid as far as its flow properties go. It has been
found recently that some mesons built from heavy quarks (such as the charm
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quark) do not dissolve until the temperature reaches about 350 MeV . This
has led to speculation that many other kinds of bound states may exist in the
plasma. Some static properties of the plasma (similar to the Debye screening
length) constrain the excitation spectrum.

Unfortunately, the aspects or properties of QGP which are easiest to com-
pute are not always the ones which are the easiest to probe in experiments.
Hence, it is still a difficult task to declare the existence of QGP in the experi-
ments such as in RHIC or LHC. The important classes of experimental obser-
vations are:

- Single particle spectra

- Strangeness production

- Photon and muon rates

- Elliptic flow

- Jet quenching

- Fluctuations

- Hanbury-Brown and Twiss effect

- Bose-Einstein correlations.

In general QGP can be weakly or strongly coupled. However, there are a
couple of indications that strongly coupled QGP has been created in heavy ion
collision experiments at RHIC(and expected stronger signals from the ongoing
LHC) with the energy around 200GeV per nucleon [103]. So far the main theo-
retical tools to explore the theory of the QGP is lattice gauge theory. One of the
properties of QGP computed by lattice gauge theory is the transition tempera-
ture in which the latest simulation yields approximately 190MeV [8]. Surpris-
ingly, with a few steps and an input from the lightest ρ-meson, an AdS/CFT
computation shows that the transition temperature is around [16] 191 MeV
which is close to the lattice result. In this thesis, we will use AdS/CFT corre-
spondence to work on photon production [19], fluctuation [20], and elliptic
flow [21] of the corresponding strongly coupled QGP.

1.2 D-branes

In addition to strings, string theory contains soliton-like “membranes” of vari-
ous internal dimension called Dirichlet branes(D-branes) which are defined in
a very simple way in string perturbation theory [43]. In ten dimensional string
theory, aDp-brane is a p+1 dimensional hyperplane living in 9+1 dimensional



6 Introduction

space-time to which the ends of open strings are confined. It is charged under
a p+1-form gauge potential which is part of the massless closed string modes.

The world-volume action of Dp-brane is the so-called DBI (Dirac-Born-
Infeld) action. In a flat background it consists of a gauge field Aα and 9 − p
scalars Φi and some fermionic fields, with α = 0, · · · , p and i = p+ 1, · · · , 9. In
static gauge the bosonic part of DBI action is given by

SDBI = −TDp

∫
dp+1σ

√
− det (ηαβ + 4π2α′2∂αΦi∂βΦi + 2πα′Fαβ), (1.1)

where we have rewritten the coordinates that are orthogonal to Dp-brane as
scalar fields Φi and with ηαβ is the flat metric in Dp-brane world-volume and

TDp =
1

gs(2π)p(α′)(p+1)/2
(1.2)

is the tension of Dp-brane. Including background fields(graviton gµν , dilaton
φ, and the two-form fieldBµν) takes the following form2

SDBI = −TDp

∫
dp+1σ e−φ

√
− det (gαβ +Bαβ + 4π2α′2∂αΦi∂βΦi + 2πα′Fαβ),

(1.3)

where gαβ and Bαβ are the pullbacks of gµν and Bµν , with µ, ν = 0, . . . , 9. E.g.

gαβ = gµν
∂Xµ

∂σα

∂Xν

∂σβ
. (1.4)

1.2.1 Non-abelian gauge theory on D3-branes

The previous DBI action has an abelianU(1) gauge symmetry. For non-abelian
case, the symmetry is enhanced non-abelian gauge symmetry for example
with U(N) gauge group by considering N parallel Dp-branes sitting at one
point. The fields content are now represented by hermitian N ×N matrices

Aα =
∑

n

An
αTn, Φi =

∑

n

Φi,nTn, (1.5)

with n = 1, . . . , N2 and Tn are hermitianN×N matrices satisfying Tr (TnTm) =
Nδmn. We also define

Fαβ = ∂αAβ − ∂βAα + i [Aα, Aβ ] , DαΦi = ∂αΦi + i
[
Aα,Φ

i
]
. (1.6)

2The presence of Φi terms must be read carefully since it overlaps with the transverse compo-
nents of gαβ . We add this terms just to show the explicit dependent of scalar fields Φi.
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The generalization of DBI action with U(N) gauge symmetry is rather compli-
cated but the leading order action of the non-abelian DBI action reduces to
Yang-Mills theory

S = −TDp(2πα
′)2

4

∫
dp1σe−φTr

[
FαβF

αβ + 2DαΦiDαΦi + [Φi,Φj ]2
]
. (1.7)

The analysis of loop diagrams in the Yang-Mills theory shows that perturbative
calculation is valid when

g2
Y MN ∼ gsN ≪ 1. (1.8)

In the case of N parallel D3-branes, the low energy effective action at leading
order is N = 4 U(N) supersymmetric Yang-Mills theory.

1.3 p-Branes

The p-branes are defined to be classical solutions to supergravity field equa-
tions. They also carry a charge under an antisymmetric tensor field Aµ1···µp+1

since the low energy effective action of type IIA/B superstring theory is su-
pergravity action. The p-brane solutions are also solutions of the full closed
string theory. In string theory p-brane corresponds to Dp-brane and they are
believed to be two different descriptions of the same object, and we shall from
here on call them by the same name.

One of the example of p-branes is the D3-branes solution in type IIB su-
pergravity with the following action [44]:

S =
1

(2π)7l8s

∫
d10x

√−g
(
e−2φ

(
R+ 4(∇φ)2

)
− 2

5!
F 2

(5)

)
, (1.9)

where F(5) is a self-dual five-form field strength. Here we set the other super-
gravity fields to zero. The D3-branes solution is given by

ds2 =
1√
H

(−dt2 + dx2
1 + dx2

2 + dx2
3) +

√
H(dr2 + r2dΩ5),

F(5) = (1 + ∗)dtdx1dx2dx3dH
−1, e−2φ = g−2

s ,

H = 1 +
L4

r4
, L4 ≡ 4πgsα

′2N, (1.10)

with ∗ is the Hodge dual operator and parameter N is the flux of five-form
Ramond-Ramond field strength on S5,

N =

∫

S5

∗F(5). (1.11)
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This solution corresponds to N parallel D3-branes at the center r = 0. This
solution is called extremal solution which saturates the BPS bound (inequality
between the mass M and the charge Q of the black hole). One can also check
that this solution has zero Hawking temperature.

This supergravity approximation is valid if the curvature of the geometry is
small compared to the string scale, L≫ ls. In order to suppress the string loop
corrections, the effective string coupling eφ needs to be small and in the case
of D3-branes the string coupling is constant with gs < 1. So, the D3-branes
solution is valid when 1 ≪ gsN < N .

1.4 AdS/CFT correspondence

A long time ago ’t Hooft proposed a generalization of the SU(3) gauge group
of QCD to SU(N) and computed the Feynman graph [7]. In the limit where
N is large while keeping g2

Y MN fixed, each graph is weighted by a topological
factor Nλ where λ is the Euler characteristic of the graph. These factors also
appear in calculation of closed string partition function, if we identify 1/N as
the string coupling constant, with N2 for spheres (tree level diagrams), N0 for
tori (one-loop diagrams), etc. Another interesting point is that since the closed
string coupling constant is of order N−1, in the large N limit, the string theory
is weakly coupled.

From the viewpoint of string theory in the background of N parallel D3-
branes sitting together, the relevant parts of low energy effective action are the
brane action and the bulk action. The low energy effective action of the brane
action is just the pure four-dimensional N = 4 U(N) gauge theory and it is
known to be conformal field theory while the bulk action is described by su-
pergravity action moves freely at long distance.

On the other hand the low energy limit of the background solution (1.10)
has two kinds of low energy excitations. The first excitations are massless par-
ticles propagating in the bulk region and the other is any kind of excitations
that close to r = 0. These two types of excitations decouple from each other
because of the present of large gravitational potential. Therefore, there are two
low energy theories that live in different region, one is a free bulk supergravity
and the other one is living near horizon of the geometry which is AdS5 × S5,

ds2 =
r2

L2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
L2

r2
dr2 + L2dΩ2

5. (1.12)

This metric can be obtained physically by taking low energy limit α′ → 0 but
at the same time we keep the energies to be fixed in string units. It then re-
quires that r/α′ is fixed or another way is taking r → 0 besides the supergravity
approximation limit that we had before, gsN ≫ 1.

These two different observations of strings under D3-branes background
lead Maldacena to conjecture that N = 4 U(N) supersymmetric-Yang-Mills
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theory in four-dimensional space-time is dual to type IIB superstring theory
on AdS5 × S5 [2].

The solution (1.10) is not the only solution of the type IIB supergravity
action (1.9). There is natural generalization to a non-extremal called Black 3-
branes solution with non-zero Hawking temperature. This solution is non-
extremal because it does not saturate the BPS bound. Taking the same decou-
pling limit as we did for the extremal D3-brane solution, the near-extremal of
Black 3-branes solution is given by

ds2 = L4

[
u2
(
−hdt2 + dx2

1 + dx2
2 + dx2

3

)
+

1

hu2
du2 + dΩ2

5

]

h = 1 − (πTH)4

u4
, u2 =

r2

L4
, (1.13)

with TH is the Hawking temperature. The dual gauge theory interpretation of
this solution is a field theory at finite temperature. The Hawking temperature
is interpreted as temperature on the gauge theory side.

1.4.1 GKPW procedure and holographic renormalization

Having correspondence between two different theories, we still need to know
how they are connected precisely. Gubser, Klebanov, Polyakov, and Witten pro-
posed that the string partition function is equal to generating function of cor-
relation functions in the field theory [3, 4]3,

〈
e
∫

d4x φ0(~x)O(~x)
〉

CFT
= Zstring [φ(~x, z = 0) = φ0(~x)] , (1.14)

where φ(~x, z) is any fields of string theory with boundary condition at the
boundary of AdS, z = 0, is φ(~x, z = 0) = φ0(~x) interpreted as the source for
operator O(~x) in conformal field theory. The correlators in gauge theory can
be computed by taking derivatives of (1.14) with respect to the source φ0(~x)
where each derivative will bring down an operator O(~x) in the conformal field
theory.

The correspondence in (1.14) is strictly speaking only valid for massless
scalar field φ. For massive case, there is relation between the mass m of the
field φ and the scaling dimension ∆ of the operator O. In AdSd+1, the Klein-
Gordon equation for a massive field φ in Euclidean signature has two indepen-
dent solutions that behave as zd−∆ and z∆ near the boundary z = 0, with

∆ =
d

2
+

√
d2

4
+ L4m2 (1.15)

3Here we use coordinate z ∝ 1

u
.
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which is the largest root of ∆(∆ − d) = L4m2. In that case, the boundary con-
dition should be changed to φ(~x, ǫ) = ǫd−∆φ0(~x) with ǫ → 0. A detailed study
reveals that one has to regulate the theory by introducing an IR cutoff.

Generically correlators in quantum field theory can contain divergences.
Therefore, we need to renormalize the theory in order to have meaningful ob-
servables. These divergences must also appear in string theory as the feature
of gauge/gravity correspondence. Indeed, there is a relation of divergences
between two side of these theories called as UV/IR connection [10]. It con-
nects the ultraviolet effects or UV-divergences in quantum field theory with
the infrared effects or IR-divergences in string theory. Eliminating the IR-
divergences in string theory should effect on removing the UV-divergences in
quantum field theory. The procedure to remove this IR-divergences in string
theory is known as holographic renormalization [22, 72].

The background metrics considered in gauge/gravity correspondence are
mostly asymptotically AdS. The on-shell action of a bulk field on these metrics
near the boundary contains terms that are divergent depending on the scale
dimension of the dual operator. In order to remove these divergent terms, we
first regulate the on-shell action by cutting the space near the boundary at a
point that is very close to the boundary at z = ǫ where ǫ is a small positive
number. The regulated action contain two terms which are divergent and con-
vergent as we take a limit ǫ→ 0,

Sreg[ǫ] = Sdiv
reg[ǫ] + Scon

reg [ǫ]. (1.16)

The divergent part of the regulated action can be removed by a counterterm
action4

Sct[φ; ǫ] = −Sdiv
reg[φ0; ǫ]. (1.17)

Now we obtain a renormalized on-shell action without IR-divergencies which
is given by

Son−shell
ren [φ] = lim

ǫ→0
(Sreg[φ; ǫ] + Sct[φ; ǫ]) . (1.18)

A detail application of this holographic renormalization will be discussed in
section 3.D.1.

1.4.2 Top-down approach

AdS/CFT gives a tool to study the strongly coupled regime of quantum field
theories. In the original proposal of AdS/CFT by Maldacena [2], the N =
4 U(N) supersymmetric Yang-Mills is clearly far from the expected theory

4There is a subtlety in writing the counterterm action. The counterterm action must be covari-
ant and be written in terms of the bulk field φ instead of the boundary source φ0. The details of
how to write the covariant counter term action can be found in [22, 72].
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namely QCD. Beside the finite large gauge symmetry group, it has maximum
supersymmetry and does not have flavor symmetry. One proposal to break
supersymmetry is to consider D4-brane system and to compactify one of
the spatial direction in D4-branes with anti-periodic boundary conditions on
fermions breaking the supersymmetry [9]. The flavor symmetry can also be
added to the system within the frame work of probe D-branes [36].

One can consider various D-branes configurations and try to get as close
as possible to the more realistic models. All these setups have a clear gravity
picture where one can write down the low energy effective action on the gravity
side. TheseD-branes constructions are known as “top-down” apporach. Many
examples of the “top-down“ approach can be found in [37] and the references
therein.

1.4.3 Bottom-up approach

In ”top-down“ approach most of the theories which can be solved using
AdS/CFT techniques differ substantially from QCD in particular regarding the
lack of asymptotically freedom and the strong coupling in the UV regime. In-
spired by holography and using the tools that were reviewed in section 1.4.1,
another approach is to start from the known phenomenological models in
gauge theory and try to construct the background metric and field content of
the gravity side. In this approach, we don’t have a complete picture of the grav-
ity theory but nevertheless we can loosely apply the correspondence between
some of the fields in gravity theory, with a background metric and usually non-
interacting action, and operators in gauge theory. This type of construction is
called ”bottom-up“ approach. Examples of this ”bottom-up“ approach will be
discussed in the next section.

1.5 Holographic models of Hadrons

1.5.1 Hard-wall model

A theory has been built starting from QCD and constructing its 5-dimensional
holographic dual which differs from other theories, by means of ”top-down“
approach, which are basically trying to deform supersymmetric Yang-Mills
theory in order to obtain QCD. This theory from its approach is in the class
of Holographic model of Hadrons and in particular known as AdS/QCD
model [12, 15].

This model has 4 free parameters which can be fixed by the number of
colors Nc, ρ meson mass, π mass, and pion decay constant Fπ. Fixing these
parameters, the model can predict other low energy hadronics observables
within 10% − 15% accuracy [12]. Furthermore, the properties such as vector
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meson dominance and QCD sum rules show up naturally in this AdS/QCD
model.

The field content of 5D-theory consists of one scalar and two gauge fields. It
was engineered to reproduce holographically the dynamics of chiral symme-
try breaking in QCD. On the 4D-theory, the relevant operators are one quark
condensate operator and two current operators which are the left- and right-
handed currents corresponding to the SU(Nf)L × SU(Nf )R chiral flavor sym-
metry. The global chiral flavor symmetry will correspond to gauge symmetry
in the 5D-theory. These operators are important in the chiral dynamics and
the relation of their parameters with 5-dimensional fields are described in ta-
ble 1.1

4D:O(x) 5D:φ(x, z) p ∆ (m5)
2

q̄Lγ
µtaqL Aa

Lµ 1 3 0

q̄Rγ
µtaqR Aa

Rµ 1 3 0

q̄α
Rq

β
L

2
zX

αβ 0 3 -3

Table 1.1: 4D-Operators/5D-fields of the holographic model

The 5D masses m5 are determined via the relation [4]

(m5)
2 = (∆ − p)(∆ + p− 4), (1.19)

where ∆ is the dimension of the corresponding p-form operator. The factor
1/z in table 1.1 is to give the correct dimension to the operator q̄q with z corre-
sponds to the energy scale of QCD.

The simplest possible metric for this AdS/QCD model is a slice of the AdS
metric

ds2 =
1

z2
(−dz2 + dxµdxµ), 0 < z ≤ zm. (1.20)

As we mentioned before, the fifth coordinate z corresponds to the energy
scale [13] with momentum transfer Q ∼ 1/z. With this metric, we neglect the
running of the QCD gauge coupling in a window of scales until an IR(infrared)
scaleQm ∼ 1/zm where the 4-dimensional theory is confining and at this scale
the AdS space is cut-off by introducing an IR cutoff or ”infrared brane“(IR-
brane) in the metric at z = zm and imposing certain boundary conditions on
the fields at z = zm. Therefore this model is called hard-wall model. In addi-
tion, an UV cutoff can be provided to z = ǫ with ǫ≪ 1.

5D action

The action of the 5D-theory is given by [12]

S =

∫
d5x

√
g T r

{
|DX |2 + 3|X |2 − 1

4g2
5

(F 2
L + F 2

R)

}
, (1.21)
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where

DµX = ∂µX − iALµX + iXARµ, X = X0 e
2iπata

(1.22)

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], AL,R = Aa
L,Rt

a, (1.23)

where X0 is the background field and πa are the N2
f − 1 pion fields.

At the IR-brane, we must impose some gauge invariant boundary condi-
tions and the simplest choice is (FL)zµ = (FR)zµ = 0. We also fix the gauge
Az = 0 in which the boundary conditions now become Neumann. The classi-
cal solution to X is determined in such it satisfies the UV boundary condition
(2/ǫ)X(ǫ) = M and the IR boundary condition where the quarks condensate:

X0(z) =
1

2
Mz +

1

2
Σz3, (1.24)

where matrix M and Σ are the quark mass and the quark condensate respec-
tively act as input parameters. Assume the mass and quark condensate matrixs
to be the following; M = m. I and Σ = σ. I, withm and σ are constants.

As we can see this hard-wall model has four free parameters: m,σ, zm,
and g5. The gauge coupling g5 can be fixed by comparing the holographic
computation with the QCD OPE(Operator Product Expansion) [14] for the
product of two currents, where the current corresponds to vector defined as
V = (AL +AR)/2, which gives us

g2
5 =

12π2

Nc
, (1.25)

withNc is the number of gauge fields.

1.5.2 Soft-wall model

The hard-wall model successfully describes the spectrum of the lowest en-
ergy hadrons, however it is unable to explain the linear spectrum of excited
hadrons, m2

n ∼ n. Instead, it shows that the masses of excited hadron grow as
mn ∼ n2. An improvement was made to the hard-wall model by considering
a smooth rather than a hard cutoff in the 5D-theory of AdS/QCD model. This
model is called soft-wall model specifically the IR-brane is now replaced by a
smooth dilaton profile up to z = +∞.

5D action

The 5D-action, is that of the hard-wall model plus a non-dynamical dilaton,
with U(1) gauge symmetry is [15]

S =

∫
d5xe−Φ√g

{
−|DX |2 + 3|X |2 − 1

4g2
5

(F 2
L + F 2

R)

}
, (1.26)
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where g2
5 is given by (1.25) and the background fields for metric and dilaton are

ds2 = e2A(z)
(
dz2 + dxµdxµ

)
, (1.27)

Φ = Φ(z). (1.28)

Solutions to these background fields are obtained by considering the spectrum
of radial ρ excitations in such a way Φ(z) − A(z) ∼ z2 for large z. Another
consideration should be taken into account is the conformal symmetry in the
UV near the boundary which is Φ(z) − A(z) ∼ ln z for small z. The simplest
example solution for the background fields (1.27) and (1.28) is Φ(z) − A(z) =
z2 + ln z. Indeed this solution gives a nice formula for the mass spectrum of ρ
mesons in the units of the lowest ρ spectrum [15]:

m2
n = 4(n+ 1). (1.29)

1.6 Thermal field theory

QGP is considered as a finite temperature system. Therefore we need AdS/CFT
correspondence in which the gravity theory possesses the characteristic fea-
tures of finite temperature system of the corresponding gauge theory. First,
let’s briefly review the characteristic features of a finite temperature system
from field theory perspective.

In finite temperature system of field theory, time is a complex variable with
imaginary part is periodic. The period of the imaginary part is β = 1/T which
is the inverse of temperature. Physics can be studied using imaginary or real
time-formalisms. In this thesis we will only discuss the real-time formalism
which is more interesting in particular if we want to study the system that
slightly deviates from the equilibrium.

In real-time formalism, time t is allowed to be a complex variable with
aforementioned periodicity in its imaginary part. The path C in complex t-
plane is taken such that the imaginary part of t is decreasing, as we increase the
parameter of the path ϑ, in order to have a well defined propagator. The time-
ordering TC is generalized to the complex t-plane along this path C, t = t(ϑ)
(with large value of ϑ is later than small value of ϑ). We also generalize δ- and
θ-functions in terms of the path C.

Thermal Green’s functions Gβ(x1, · · · , xn) of an operator O are defined
by [25]

Gβ(x1, · · · , xn) =
1

Tr e−βH
Tr
[
e−βHTC (O(x1) · · ·O(xn))

]
, (1.30)

where H is the Hamiltonian operator. In terms of the generating functional
Z[j], the thermal Green’s function can be written as

Gβ(x1, · · · , xn) =
1

inZC [β, j]

δnZC[β, j]

δj(x1) · · · δj(xn)

∣∣∣∣
j=0

, (1.31)
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with

ZC [β, j] = Tr

[
e−βHTC exp

(
i

∫

C
d4x j(x)O(x)

)]
. (1.32)

In the form of a path integral, the generating functional is given by

ZC[β, j] =

∫
DO exp

(
i

∫

C
d4x (L(x) + j(x)O(x))

)
, (1.33)

where L(x) is the Lagrangian density and j(x) is the source for fieldO(x). Note
that we have a boundary condition5 O(t, ~x) = O(t − iβ, ~x).

t - -

6

?
�

?

t

ti tf Re tC1 ◦

Im t

C2

C3

tf − iσ
C4

ti−iβ

Figure 1.3: The modified Schwinger-Keldysh time contour

The path C can be taken in various ways. One common version is drawn in
Figure 1.3 where the path C(also the fields and operators) is divided into four
segments C1, C2, C3, and C4. The first path C1 starts from ti and ends at tf . This
is where the physical fieldO1 that we observe lives. It is continued by C3 which
makes a vertical turn from tf to tf − iσ, with σ is arbitrary between 0 to β. The
next path is C2 which is parallel to path C1 but takes the opposite direction from
tf − iσ to ti − iσ. The fieldO2 lives in C2 acts as a “ghost” field which contribute
only to the internal line of the thermal Green’s function. Lastly, the path C4

takes another vertical turn starts from ti − iσ and ends at ti − iβ. With this
division of the path C, the generating functional consists of four Lagrangian
densities correspond to different segments.

In general, parameter σ can be chosen arbitrarily. One of the example is σ =
β/2 which was studied in [45]. If (ti = −tf ) → +∞, the generating functional
can be factorized in to two parts

ZC = ZC12ZC34 , (1.34)

5Here we assume field O(x) to be bosonic. For fermionic case, the boundary condition is anti-
periodic in the direction of imaginary component of t.
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where Cij = Ci ∪ Cj . Therefore, we can effectively work with just generating
functional ZC12 . The action for ZC12 is the sum of contributions from the two
parts of the path,

S =

tf∫

ti

dt L(t) −
tf∫

ti

dt L

(
t− i

β

2

)
, (1.35)

where

L(t) =

∫
d~xL[O(t, ~x)]. (1.36)

So, the generating functional ZC12 is

ZC12 [j1, j2] =

∫
Dφ exp


iS + i

tf∫

ti

dt

∫
d~x j1(x)O1(x) − i

tf∫

ti

dt

∫
d~x j2(x)O2(x)


 ,

(1.37)
where j1(j2) is the physical(“ghost”) source living in C1(C2) and for the fields
living in path C2 the time is understood to be t ≡ t − iβ/2. From now on the
parameter β will be implicit.

Now we can take second variations of ZC12 with respect to the source j1 or
j2 and obtain the Schwinger-Keldysh propagators from the free action,

iDab(x− y) =
1

i2
δ2 lnZC12 [j1, j2]

δja(x) δjb(y)

∣∣∣∣
ja=jb=0

= i

(
D11 −D12

−D21 D22

)
, (1.38)

with a, b = 1, 2 and

iD11(t, ~x) = 〈T O1(t, ~x)O1(0)〉, iD12(t, ~x) = 〈O2(0)O1(t, ~x)〉,
iD21(t, ~x) = 〈O2(t, ~x)O1(0)〉, iD22(t, ~x) =

〈
T O2(t, ~x)O2(0)

〉
. (1.39)

where T denotes reversed time ordering in path C2, and

O1(t, ~x) = eiHt−i~P ·~xO(0)e−iHt+i~P ·~x , (1.40a)

O2(t, ~x) = eiH(t−iβ/2)−i~P ·~xO(0)e−iH(t−iβ/2)+i~P ·~x . (1.40b)

These Schwinger-Keldysh propagators are related to the retarded and ad-
vanced Green’s functions, which are defined as

iGRet(x − y) = θ(x0 − y0)〈[O(x), O(y)]〉 , (1.41a)

iGAdv(x − y) = θ(y0 − x0)〈[O(y), O(x)]〉 . (1.41b)

In momentum space, defined by

G(k) =

∫
dx e−ik·xG(x) , (1.42)
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we can show that
GAdv(k) = GRet∗(k). (1.43)

Furthermore, we can rewrite the Schwinger-Keldysh propagators in terms of
retarded Green’s function as below (for bosons):

D11(k) = Re GRet(k) + i coth
ω

2T
Im GRet(k),

D22(k) = −Re GRet(k) + i coth
ω

2T
Im GRet(k),

D12(k) = D21(k) =
2ie−

β
2 ω

1 − e−βω
Im GRet(k). (1.44)

with ω ≡ k0.

1.7 Holographic real-time propagator

The gauge/gravity correspondence was originally formulated with Euclidean
signature. For some cases, we need to perform computation of Green’s func-
tions of gauge theory with Lorentzian signature. While there are subtleties
working with Lorentzian signature AdS/CFT correspondence [46–48], one
could try to avoid Minkowski formulation of AdS/CFT by working with the
Euclidean version. The resulting correlators can be analytically continued
to Minkowski space using Wick rotation. Unfortunately this does not always
work, in particular for finite temperature gauge theory. Analytic continuation
to Minkowski space is possible only when we know the Euclidean correlators
for all Matsubara frequencies which are beyond reach.

To see how the problem arises, consider as an example a scalar field φ in
the AdS5 black hole background with metric

ds2 =
L2

z2

(
−h(z)dt2 + dxidxi +

1

h(z)
dz2

)
= gµνdx

µdxν + gzzdz
2,

h(z) = 1 − z4

z4
H

, (1.45)

where i = 1, 2, 3 and z in the range zB ≤ z ≤ zH , with the following action

S =

∫
d4x

∫ zH

zB

√−g
(
gzz(∂zφ)2 + gµν∂µφ∂νφ+m2φ2

)
. (1.46)

The integration is taken between the boundary zB and the horizon zH .
The equation of motion for φ is given by

1√−g∂z

(√
−zgzz∂zφ

)
+ gµν∂µ∂νφ−m2φ = 0. (1.47)
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The equation has to be solved with a fixed value at zB for the solution of the
form

φ(z, x) =

∫
d4k

(2π)4
eikµxµ

fk(z)φ0(k), (1.48)

with fk(zB) = 1 and φ0(k) is identified as the Fourier transform of a source
field in the gauge theory. The effective equation of motion for the radial profile
f(z) is

1√−g ∂z

(√
−zgzz∂zfk

)
− (gµνkµkν +m2)fk = 0. (1.49)

In order to have a unique solution for fk(z), we need to impose a condi-
tion at the horizon zH . In the Euclidean signature, this can be done by im-
posing a regularity condition at the horizon zH . But this is not the case for
Lorentzian signature since near the horizon fk(z) oscillates wildly and has two
modes(incoming and outgoing modes). Physical reasoning implies that the in-
coming modes correspond to the retarded Green’s function while the outgoing
modes correspond to the advanced Green’s function.

Knowing the choices for boundary condition at the horizon does not im-
mediately solve the problem. Suppose we want to compute the retarded
Green’s function by taking the incoming-wave boundary condition. The on-
shell action of (1.46) reduces to

S =

∫
d4k

(2π)4
φ0(−k)F(z, k)φ0(k)

∣∣∣∣
zH

zB

,

F(z, k) =
√−ggzzf−k(z)∂zfk(z). (1.50)

The retarded Green’s function is computed by taking two functional derivatives
over φ0 of the on-shell action which give us

GRet(k) = −F(z, k) −F(z,−k)|zH

zB
. (1.51)

Using f∗
k (z) = f−k(z), which is also a solution, we can show that the imagi-

nary part of F is proportional to a conserved flux and such it is independent
of z. This means that the retarded Green’s function GRet(k) is a real function
which is not a satisfying result since the retarded Green’s function in general is
a complex function.

1.7.1 Minkowski prescription I

Son and Starinet gave an ad hoc resolution to this problem of how to compute
the Green’s function in Minkowski AdS/CFT correspondence consistently [26].
They provided a prescription and various checks on the validity of the formula.
The prescription goes as follows:



1.7 Holographic real-time propagator 19

1. Solve the mode equation (1.48) with two boundary conditions at the
boundary zB and the horizon zH . First, at the boundary z = zB ,
fk(zB) = 1. Second, the asymptotic solution is incoming(outgoing) wave
at the horizon for retarded(advanced) Green’s function. If we have space-
like momenta then the second boundary condition is similar to the Eu-
clidean version which is regular at the horizon.

2. Evaluating at the boundary z = zB , the retarded(advanced) Green’s func-
tion is given by

G(k) = −2F(zB, k), (1.52)

where F is computed from the surface terms of the on-shell action as
shown in (1.50).

Despite the success of the prescription, it can only be applied to two point-
functions. Extension of the prescription to more than two-point functions was
not known. Besides, the lack on the details of how the prescription works left
some questions to be answered.

The real-time formulation in finite temperature field theory involves dou-
bling the degree of freedom. At the same time, the full Penrose diagram of
asymptotically AdS metric containing a black hole has two boundaries and it
was conjectured that there are doubler fields living on the second boundary of
the AdS dual. These features were indeed realized by Herzog and Son’s formu-
lation of a more rigorous way to compute the Green’s function in Minkowski
AdS/CFT [42]. Their results originate in studies on black holes thermal radia-
tion by Hawking and Hartle [49], Unruh [50], and Israel [51].

The upshot of their observation is that the gravity action must be modified
by adding contribution from region L, where the doubler fields live, as shown
in Figure 1.4; time in the region L reverses its direction. The bulk fields in both
regions R and L are written in terms of physical and “ghost” sources of the fi-
nite temperature field theory, as defined previously, with boundary conditions
that at the boundary of R the bulk fields in R becomes the physical sources
and at the boundary of L the bulk fields in L becomes the “ghost” sources. At
the horizon, the natural boundary conditions are defined so that positive fre-
quency modes are incoming and negative frequency modes are outgoing in re-
gion R of the Penrose diagram. With the definition of retarded and advanced
Green’s functions in [26], as given in (1.52), second functional derivatives of
the boundary action on gravity side over the sources yields Schwinger-Keldysh
propagators (1.44).

There are a few interesting points in Herzog and Son’s formula. It looks
natural from gravity side to take the path C for complex time plane as shown in
Figure 1.3 with σ = β/2. Since the Green’s functions are obtained by functional
derivatives on the gravity action, in principal we can extend the formula to
more than two-point functions. A detailed discussion on thermal three-point
functions from Minkowski AdS/CFT using this formula can be found in [52].
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U=0

V=0

R

P

L

F

Figure 1.4: The full Penrose diagram for asymptotically AdS metric with a black
hole solution. U and V are the Kruskal coordinates.

1.7.2 Minkowski prescription II

Although Herzog and Son’s formula gives the correct Schwinger-Keldysh prop-
agators of the finite temperature system, there are still some unsatisfactory
issues in the procedure. The computation they did in [42] did not include the
boundary contribution from timelike infinity to the on-shell action which is
non vanishing in general. Furthermore, it depends entirely on the retarded and
advanced Green’s function that are still conjectured in Minkowski AdS/CFT.

Figure 1.5: Holographic path. The bold lines with arrow are the segments of
complex time path of the field theory at the boundary.

Skenderis and van Rees subsequently showed how to overcome these is-
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sues and developed a fully holographic prescription [73, 74]. The idea is try to
construct a bulk manifold MC from a given complex time path C in finite tem-
perature field theory at the boundary. It involves gluing different manifolds
for each segments of the path C. The paths that live in the real part of time
correspond to Lorentzian solutions and ones live in the imaginary part of time
correspond to Euclidean solutions.

When two segments of the complex time path C intersect at a point, the
point is extended to a hypersurface S in the bulk. The time signature of the
metric changes at this hypersurface corresponds to this intersection point. In
this hypersurface S, we need to impose two matching conditions:

1. Continuity of the field φ across S:

φ−(S) = φ+(S). (1.53)

2. If the two bulk manifolds M− and M+ (correspond to two segments of
the path) intersect at a boundary S (corresponds to the intersection point
between two segments of the path) then we also impose continuity of the
momentum conjugate πφ across S:

πφ
−(S) = η πφ

+(S), (1.54)

where πφ
± is the conjugate momentum in M±. We set η = −i if M−

is Euclidean and M+ is Lorenzian; and η = 1 if both M− and M+ are
Lorentzian (this is the case with σ = 0 in Figure 1.3).

A more detailed application of Skenderis and Van Rees’s holographic prescrip-
tion can be found in section 3.D.3.

1.8 Outline

In chapter 2, we will apply gauge/gravity correspondence on photon and
dilepton production in QGP. We start with definition of spectral density func-
tion in momentum space χ(K) which is proportional to the photon and dilep-
ton production rates. Having determined the observables in gauge theory or
QGP, We write down the relevant 5D-action in gravity theory with AdS black
hole background metric. In particular we consider the AdS/QCD soft-wall
model, as discussed in 1.5.2, with non-trivial dilaton background. Using holo-
graphic real-time prescription 1.7.1, we compute the spectral density function
by means of solving the equations of motion of the dual fields numerically and
also analytically for low- and high-frequency.

Using a semiclassical approach to gauge/gravity duality, we describe in
chapter 3 Brownian motion of a quark in strongly coupled plasma, for exam-
ple QGP, from string theory perspective. We first define properties of Brown-
ian motion given by a generalized Langevin equation. In this case, the random
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force R is assumed to be Gaussian and the Langevin equation is linear in mo-
mentum. The gravity description is given by the motion of a string under some
black hole background metric where the ends of the string are stretching from
boundary to horizon. The end of the string at the boundary is interpreted as an
external quark behaves as Brownian particle moving in a heat bath, which are
represented by the black hole background metric. Explicitly, we consider the
background metrics which are non-rotating BTZ black hole for neutral plasma
and STU black holes for charged plasma.

The two- and four-point functions of the random force R can be computed
by taking derivatives of the dual coordinate in the expansion of the Nambu-
Goto action. In computing the correlation functions, we use the holographic
real-time prescription 1.7.2 together with holographic renormalization 1.4.1
to removed the UV divergences while the IR divergences are removed by in-
troducing a cutoff near the horizon. Most of the calculations are done in low
frequency limit, ω → 0. This way we can find the impedance µ(ω) from the
two-point functions which eventually gives us the friction coefficient in non-
relativistic limit. With a simple model of random force profile, a time scale
can be extracted from the two- and four-point functions which is defined as
mean-free path time tmfp.

The last chapter 4 is an attempt to study anisotropic effects in QGP from
semiclassical string point of view as we already used in chapter 3. Here, we
argue that the anisotropic in QGP can be encoded in rotating black hole so-
lutions. This chapter mainly discusses about how to compute the drag force
with a given background metric. We first consider a 4D AdS-Schwarzschild
black hole and compute the drag force of the great circle solution at the equa-
torial plane with linear ansatz and then generalize the drag force computation
for non-equatorial case.

As one example of rotating black hole solutions, we look at 4D Kerr-AdS
black hole in Boyer-Lindquist coordinates. A simple drag force computa-
tion will be the equatorial great circle solution with linear ansatz. The non-
equatorial solutions in general are very difficult. For a simple case, we consider
drag forces at the leading order for small angular momentum a and velocity ω
of the Kerr-AdS black hole. We use a map of coordinates transformation from
Kerr-AdS coordinates to Boyer-Lindquist coordinates to derive an ansatz for
“static” string solution in Boyer-Lindquist coordinates. The solution is written
in terms of the static thermal rest mass quark mrest and the temperature of
plasma T . We also plot the drag forces for different values of angular momen-
tum a and parameter MT .


