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C H A P T E R 1

INTRODUCTION

For many years, people have attempted to develop an ultimate theory that
would explain the fundamental structure of matter and the very basic mech-
anisms of nature. One promising candidate is string theory. Born in the
late 1960s as a theory that was expected to describe the strong interaction
in hadrons, string theory had to accept the fact that another theory, known
as QCD (Quantum Chromodynamics), correctly describes the strong nuclear
force and the properties of hadrons. A new face of string theory arose in 1974
when John Schwarz and Joel Scherk proposed an interpretation of the spin-
two massless particle in the spectrum of string theory to describe the quantum
of gravity, namely graviton. Ever since string theory has received great atten-
tion of many scientists, not only from high-energy physicists, but also from
various other fields of study and so a journey to the ultimate theory has taken
a new direction.

String theory today is a forefront in the world of scientific research. It does
not only requires knowledge of other fields and sophisticated tools in mathe-
matics but at some level it also tries to solve some puzzles in physics by pro-
viding a new approach to the problems. Nevertheless, string theory still lacks
of experimental evidences. The natural length scale of the theory is thought
to be at the order of Plank scale ∼ 1019 GeV , out of reach of any current or fu-
ture machines built for experiment. The energy scale at which string theoretic
effects become relevant is very large compared to the energy scale of well es-
tablished theory of particle physics namely the Standard Model (electroweak
scale ∼ 246GeV and QCD scale ∼ 300MeV ).

In string theory the fundamental objects are one-dimensional objects
called strings instead of points-like as in the usual quantum field theory.
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String theory is characterized by one parameter α′, the string tension, which
is also related to the length of strings ls =

√
α′. These strings have to be

embedded into 26-dimensional space-time (without supersymmetry) or 10-
dimensional space-time(with supersymmetry) in order to be consistent. The
26-dimensional strings is called bosonic string theory and 10-dimensional
strings is called superstring theory [1].

There are two types of strings one can consider. First is closed strings where
the two ends of the string meet and form a loop. The second is open strings
where the end points of string are confined to subsurfaces in space time (hy-
persurfaces) called branes. The spectrum of those type of strings are quite dif-
ferent, for example the open string has a massless spin-one gauge field while
the closed string has a massless spin-two graviton.

One of the most important developments in string theory is the AdS/CFT
correspondence. It is based on holographic principal which states that the de-
scription of a volume of space can be thought of as encoded on a boundary of
that region. This correspondence encodes a way of using string theory to per-
form non-perturbative calculation in gauge theory which is still a complicated
problem.

The best known example of the correspondence is between weakly coupled
gravity theory with AdS (Anti de Sitter) as space-time background and strongly
coupled gauge theory with conformal symmetry in one lower dimension. Sub-
sequently people have tried to extend this correspondence to non-conformal
gauge theory since the Standard Model itself is not a conformal theory. This
extension affects the space-time background where the gravity theory lives in.
With this attempt now the correspondence is widely known as gauge/gravity
correspondence1. Unfortunately there is still no version of the correspondence
which realizes Standard Model or even pure QCD.

Nevertheless, the last several years we have seen a considerable success in
the application of the AdS/CFT correspondence [2–4] to the study of real world
strongly coupled systems, in particular the QGP(Quark Gluon Plasma). The
(succesful) application hinges on the belief that the QGP of QCD is thought
to be qualitatively very similar to the plasma of N = 4 super Yang–Mills the-
ory at finite temperature, which is dual to string theory in an AdS black hole
spacetime. The analysis of scattering amplitudes in the AdS black hole back-
ground led to the universal viscosity bound [34], which played an important
role in understanding the physics of the elliptic flow observed at RHIC. On the
other hand, the study of the physics of trailing strings in the AdS spacetime
explained the dissipative and diffusive physics of a quark moving through a
field theory plasma, such as the diffusion coefficient and transverse momen-
tum broadening [35, 38–41, 53–55]. The relation between the hydrodynamics
of the field theory plasma and the bulk black hole dynamics was first revealed

1It is from the massless spectrum of open and closed strings that AdS/CFT correspondence gets
another name gauge/gravity correspondence.
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in [56, 97] (see also [63]).
This thesis is based on works in [19,20] and ongoing work in [21]. The works

describe some applications of AdS/CFT correspondence in QGP. In the follow-
ing sections we give a brief introduction to string theory; an inside view of
QGP; the basic and technical tools of AdS/CFT correspondence; and the out-
line of this thesis.

1.1 Quark Gluon Plasma

The low-energy properties of the strong interactions are governed by a chiral
symmetry. The QCD Lagrangian possesses an SU(3)L × SU(3)R ×U(1)V sym-
metry in chiral limit (mu,md,ms → 0). At the current status, we do not know
how to solve QCD in low-energy as the standard perturbation theory can not
be applied for energy below QCD scale ∼ 300 MeV . Below this scale quarks
are in a confined phase and bound to form what is called hadron. In this state
quarks can not be separated from each others since the QCD coupling con-
stants are large. Therefore perturbation theory can not be used and we need
to work with non-perturbative calculation. As we increase the energy above
QCD scale, the QCD coupling constants decrease and the quarks are slowly
separated from the hadron. At some point there will be a phase transition to a
deconfined phase where the quarks are deconfined from the hadron form and
can be identified individually. In this phase the perturbation theory works very
well especially at infinite energy where quarks do not interact with each others
and it is known as asymptotically freedom.

Perturbative aspects of QCD have been tested to a few percents. In contrast,
non-perturbative aspects of QCD have barely been tested. Recent develop-
ment in gravity/gauge correspondence has revived the hope that the strongly
coupled regime of QCD can be reformulated as a solvable string theory.

QGP is a phase of QCD which exists at extremely high temperature and/or
density. The QGP contains quarks and gluons, just as normal matter(hadron)
does. Unlike hadrons where quarks are confined, in the QGP these mesons
and baryons lose their identities and dissolve into a fluid of quarks and gluons.
Quarks in QGP are deconfined and make a much larger total mass compared
to the corresponding hadron mass. The QGP is believed to have existed during
the first 20 or 30 microseconds after the universe came into existence in the
Big Bang.

A plasma is matter in which electric charges are screened due to the pres-
ence of other mobile charges. Likewise, the colour charge of the quarks and
gluons in QGP are screened. There are also dissimilarities due to the fact
that the colour charge is non-abelian, whereas the electric charge in a normal
plasma is abelian.

The QGP can be created by heating high density matter up to a tempera-
ture of 190MeV per particle. To produce such high energy, two heavy particles
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Figure 1.1: QCD phase diagram [17].

are accelerated to ultrarelativistic speeds and slammed into each other. They
largely pass through each other, but a significant fraction collides, melts, and
“explodes” into a hot fireball. Once created, this fireball expands under its own
pressure, and cool while expanding. By carefully studying this flow, experi-
mentalists hope to test the theory.

Figure 1.2: Creation process of QGP [18].

As conventional thermodynamic characteristics, the resulting QGP is
largely controlled by the equation of state relating theP (pressure) and T (tem-
perature). The equation of state is an important input for the flow equations.
The mean free path of quarks and gluons can be computed using perturbation
theory as well as string theory. There are indications that the mean free time of
quarks and gluons in the QGP may be comparable to the average interparticle
spacing: hence the QGP is a liquid as far as its flow properties go. It has been
found recently that some mesons built from heavy quarks (such as the charm
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quark) do not dissolve until the temperature reaches about 350 MeV . This
has led to speculation that many other kinds of bound states may exist in the
plasma. Some static properties of the plasma (similar to the Debye screening
length) constrain the excitation spectrum.

Unfortunately, the aspects or properties of QGP which are easiest to com-
pute are not always the ones which are the easiest to probe in experiments.
Hence, it is still a difficult task to declare the existence of QGP in the experi-
ments such as in RHIC or LHC. The important classes of experimental obser-
vations are:

- Single particle spectra

- Strangeness production

- Photon and muon rates

- Elliptic flow

- Jet quenching

- Fluctuations

- Hanbury-Brown and Twiss effect

- Bose-Einstein correlations.

In general QGP can be weakly or strongly coupled. However, there are a
couple of indications that strongly coupled QGP has been created in heavy ion
collision experiments at RHIC(and expected stronger signals from the ongoing
LHC) with the energy around 200GeV per nucleon [103]. So far the main theo-
retical tools to explore the theory of the QGP is lattice gauge theory. One of the
properties of QGP computed by lattice gauge theory is the transition tempera-
ture in which the latest simulation yields approximately 190MeV [8]. Surpris-
ingly, with a few steps and an input from the lightest ρ-meson, an AdS/CFT
computation shows that the transition temperature is around [16] 191 MeV
which is close to the lattice result. In this thesis, we will use AdS/CFT corre-
spondence to work on photon production [19], fluctuation [20], and elliptic
flow [21] of the corresponding strongly coupled QGP.

1.2 D-branes

In addition to strings, string theory contains soliton-like “membranes” of vari-
ous internal dimension called Dirichlet branes(D-branes) which are defined in
a very simple way in string perturbation theory [43]. In ten dimensional string
theory, aDp-brane is a p+1 dimensional hyperplane living in 9+1 dimensional
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space-time to which the ends of open strings are confined. It is charged under
a p+1-form gauge potential which is part of the massless closed string modes.

The world-volume action of Dp-brane is the so-called DBI (Dirac-Born-
Infeld) action. In a flat background it consists of a gauge field Aα and 9 − p
scalars Φi and some fermionic fields, with α = 0, · · · , p and i = p+ 1, · · · , 9. In
static gauge the bosonic part of DBI action is given by

SDBI = −TDp

∫
dp+1σ

√
− det (ηαβ + 4π2α′2∂αΦi∂βΦi + 2πα′Fαβ), (1.1)

where we have rewritten the coordinates that are orthogonal to Dp-brane as
scalar fields Φi and with ηαβ is the flat metric in Dp-brane world-volume and

TDp =
1

gs(2π)p(α′)(p+1)/2
(1.2)

is the tension of Dp-brane. Including background fields(graviton gµν , dilaton
φ, and the two-form fieldBµν) takes the following form2

SDBI = −TDp

∫
dp+1σ e−φ

√
− det (gαβ +Bαβ + 4π2α′2∂αΦi∂βΦi + 2πα′Fαβ),

(1.3)

where gαβ and Bαβ are the pullbacks of gµν and Bµν , with µ, ν = 0, . . . , 9. E.g.

gαβ = gµν
∂Xµ

∂σα

∂Xν

∂σβ
. (1.4)

1.2.1 Non-abelian gauge theory on D3-branes

The previous DBI action has an abelianU(1) gauge symmetry. For non-abelian
case, the symmetry is enhanced non-abelian gauge symmetry for example
with U(N) gauge group by considering N parallel Dp-branes sitting at one
point. The fields content are now represented by hermitian N ×N matrices

Aα =
∑

n

An
αTn, Φi =

∑

n

Φi,nTn, (1.5)

with n = 1, . . . , N2 and Tn are hermitianN×N matrices satisfying Tr (TnTm) =
Nδmn. We also define

Fαβ = ∂αAβ − ∂βAα + i [Aα, Aβ ] , DαΦi = ∂αΦi + i
[
Aα,Φ

i
]
. (1.6)

2The presence of Φi terms must be read carefully since it overlaps with the transverse compo-
nents of gαβ . We add this terms just to show the explicit dependent of scalar fields Φi.
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The generalization of DBI action with U(N) gauge symmetry is rather compli-
cated but the leading order action of the non-abelian DBI action reduces to
Yang-Mills theory

S = −TDp(2πα
′)2

4

∫
dp1σe−φTr

[
FαβF

αβ + 2DαΦiDαΦi + [Φi,Φj ]2
]
. (1.7)

The analysis of loop diagrams in the Yang-Mills theory shows that perturbative
calculation is valid when

g2
Y MN ∼ gsN ≪ 1. (1.8)

In the case of N parallel D3-branes, the low energy effective action at leading
order is N = 4 U(N) supersymmetric Yang-Mills theory.

1.3 p-Branes

The p-branes are defined to be classical solutions to supergravity field equa-
tions. They also carry a charge under an antisymmetric tensor field Aµ1···µp+1

since the low energy effective action of type IIA/B superstring theory is su-
pergravity action. The p-brane solutions are also solutions of the full closed
string theory. In string theory p-brane corresponds to Dp-brane and they are
believed to be two different descriptions of the same object, and we shall from
here on call them by the same name.

One of the example of p-branes is the D3-branes solution in type IIB su-
pergravity with the following action [44]:

S =
1

(2π)7l8s

∫
d10x

√−g
(
e−2φ

(
R+ 4(∇φ)2

)
− 2

5!
F 2

(5)

)
, (1.9)

where F(5) is a self-dual five-form field strength. Here we set the other super-
gravity fields to zero. The D3-branes solution is given by

ds2 =
1√
H

(−dt2 + dx2
1 + dx2

2 + dx2
3) +

√
H(dr2 + r2dΩ5),

F(5) = (1 + ∗)dtdx1dx2dx3dH
−1, e−2φ = g−2

s ,

H = 1 +
L4

r4
, L4 ≡ 4πgsα

′2N, (1.10)

with ∗ is the Hodge dual operator and parameter N is the flux of five-form
Ramond-Ramond field strength on S5,

N =

∫

S5

∗F(5). (1.11)
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This solution corresponds to N parallel D3-branes at the center r = 0. This
solution is called extremal solution which saturates the BPS bound (inequality
between the mass M and the charge Q of the black hole). One can also check
that this solution has zero Hawking temperature.

This supergravity approximation is valid if the curvature of the geometry is
small compared to the string scale, L≫ ls. In order to suppress the string loop
corrections, the effective string coupling eφ needs to be small and in the case
of D3-branes the string coupling is constant with gs < 1. So, the D3-branes
solution is valid when 1 ≪ gsN < N .

1.4 AdS/CFT correspondence

A long time ago ’t Hooft proposed a generalization of the SU(3) gauge group
of QCD to SU(N) and computed the Feynman graph [7]. In the limit where
N is large while keeping g2

Y MN fixed, each graph is weighted by a topological
factor Nλ where λ is the Euler characteristic of the graph. These factors also
appear in calculation of closed string partition function, if we identify 1/N as
the string coupling constant, with N2 for spheres (tree level diagrams), N0 for
tori (one-loop diagrams), etc. Another interesting point is that since the closed
string coupling constant is of order N−1, in the large N limit, the string theory
is weakly coupled.

From the viewpoint of string theory in the background of N parallel D3-
branes sitting together, the relevant parts of low energy effective action are the
brane action and the bulk action. The low energy effective action of the brane
action is just the pure four-dimensional N = 4 U(N) gauge theory and it is
known to be conformal field theory while the bulk action is described by su-
pergravity action moves freely at long distance.

On the other hand the low energy limit of the background solution (1.10)
has two kinds of low energy excitations. The first excitations are massless par-
ticles propagating in the bulk region and the other is any kind of excitations
that close to r = 0. These two types of excitations decouple from each other
because of the present of large gravitational potential. Therefore, there are two
low energy theories that live in different region, one is a free bulk supergravity
and the other one is living near horizon of the geometry which is AdS5 × S5,

ds2 =
r2

L2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
L2

r2
dr2 + L2dΩ2

5. (1.12)

This metric can be obtained physically by taking low energy limit α′ → 0 but
at the same time we keep the energies to be fixed in string units. It then re-
quires that r/α′ is fixed or another way is taking r → 0 besides the supergravity
approximation limit that we had before, gsN ≫ 1.

These two different observations of strings under D3-branes background
lead Maldacena to conjecture that N = 4 U(N) supersymmetric-Yang-Mills
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theory in four-dimensional space-time is dual to type IIB superstring theory
on AdS5 × S5 [2].

The solution (1.10) is not the only solution of the type IIB supergravity
action (1.9). There is natural generalization to a non-extremal called Black 3-
branes solution with non-zero Hawking temperature. This solution is non-
extremal because it does not saturate the BPS bound. Taking the same decou-
pling limit as we did for the extremal D3-brane solution, the near-extremal of
Black 3-branes solution is given by

ds2 = L4

[
u2
(
−hdt2 + dx2

1 + dx2
2 + dx2

3

)
+

1

hu2
du2 + dΩ2

5

]

h = 1 − (πTH)4

u4
, u2 =

r2

L4
, (1.13)

with TH is the Hawking temperature. The dual gauge theory interpretation of
this solution is a field theory at finite temperature. The Hawking temperature
is interpreted as temperature on the gauge theory side.

1.4.1 GKPW procedure and holographic renormalization

Having correspondence between two different theories, we still need to know
how they are connected precisely. Gubser, Klebanov, Polyakov, and Witten pro-
posed that the string partition function is equal to generating function of cor-
relation functions in the field theory [3, 4]3,

〈
e
∫

d4x φ0(~x)O(~x)
〉

CFT
= Zstring [φ(~x, z = 0) = φ0(~x)] , (1.14)

where φ(~x, z) is any fields of string theory with boundary condition at the
boundary of AdS, z = 0, is φ(~x, z = 0) = φ0(~x) interpreted as the source for
operator O(~x) in conformal field theory. The correlators in gauge theory can
be computed by taking derivatives of (1.14) with respect to the source φ0(~x)
where each derivative will bring down an operator O(~x) in the conformal field
theory.

The correspondence in (1.14) is strictly speaking only valid for massless
scalar field φ. For massive case, there is relation between the mass m of the
field φ and the scaling dimension ∆ of the operator O. In AdSd+1, the Klein-
Gordon equation for a massive field φ in Euclidean signature has two indepen-
dent solutions that behave as zd−∆ and z∆ near the boundary z = 0, with

∆ =
d

2
+

√
d2

4
+ L4m2 (1.15)

3Here we use coordinate z ∝ 1

u
.
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which is the largest root of ∆(∆ − d) = L4m2. In that case, the boundary con-
dition should be changed to φ(~x, ǫ) = ǫd−∆φ0(~x) with ǫ → 0. A detailed study
reveals that one has to regulate the theory by introducing an IR cutoff.

Generically correlators in quantum field theory can contain divergences.
Therefore, we need to renormalize the theory in order to have meaningful ob-
servables. These divergences must also appear in string theory as the feature
of gauge/gravity correspondence. Indeed, there is a relation of divergences
between two side of these theories called as UV/IR connection [10]. It con-
nects the ultraviolet effects or UV-divergences in quantum field theory with
the infrared effects or IR-divergences in string theory. Eliminating the IR-
divergences in string theory should effect on removing the UV-divergences in
quantum field theory. The procedure to remove this IR-divergences in string
theory is known as holographic renormalization [22, 72].

The background metrics considered in gauge/gravity correspondence are
mostly asymptotically AdS. The on-shell action of a bulk field on these metrics
near the boundary contains terms that are divergent depending on the scale
dimension of the dual operator. In order to remove these divergent terms, we
first regulate the on-shell action by cutting the space near the boundary at a
point that is very close to the boundary at z = ǫ where ǫ is a small positive
number. The regulated action contain two terms which are divergent and con-
vergent as we take a limit ǫ→ 0,

Sreg[ǫ] = Sdiv
reg[ǫ] + Scon

reg [ǫ]. (1.16)

The divergent part of the regulated action can be removed by a counterterm
action4

Sct[φ; ǫ] = −Sdiv
reg[φ0; ǫ]. (1.17)

Now we obtain a renormalized on-shell action without IR-divergencies which
is given by

Son−shell
ren [φ] = lim

ǫ→0
(Sreg[φ; ǫ] + Sct[φ; ǫ]) . (1.18)

A detail application of this holographic renormalization will be discussed in
section 3.D.1.

1.4.2 Top-down approach

AdS/CFT gives a tool to study the strongly coupled regime of quantum field
theories. In the original proposal of AdS/CFT by Maldacena [2], the N =
4 U(N) supersymmetric Yang-Mills is clearly far from the expected theory

4There is a subtlety in writing the counterterm action. The counterterm action must be covari-
ant and be written in terms of the bulk field φ instead of the boundary source φ0. The details of
how to write the covariant counter term action can be found in [22, 72].
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namely QCD. Beside the finite large gauge symmetry group, it has maximum
supersymmetry and does not have flavor symmetry. One proposal to break
supersymmetry is to consider D4-brane system and to compactify one of
the spatial direction in D4-branes with anti-periodic boundary conditions on
fermions breaking the supersymmetry [9]. The flavor symmetry can also be
added to the system within the frame work of probe D-branes [36].

One can consider various D-branes configurations and try to get as close
as possible to the more realistic models. All these setups have a clear gravity
picture where one can write down the low energy effective action on the gravity
side. TheseD-branes constructions are known as “top-down” apporach. Many
examples of the “top-down“ approach can be found in [37] and the references
therein.

1.4.3 Bottom-up approach

In ”top-down“ approach most of the theories which can be solved using
AdS/CFT techniques differ substantially from QCD in particular regarding the
lack of asymptotically freedom and the strong coupling in the UV regime. In-
spired by holography and using the tools that were reviewed in section 1.4.1,
another approach is to start from the known phenomenological models in
gauge theory and try to construct the background metric and field content of
the gravity side. In this approach, we don’t have a complete picture of the grav-
ity theory but nevertheless we can loosely apply the correspondence between
some of the fields in gravity theory, with a background metric and usually non-
interacting action, and operators in gauge theory. This type of construction is
called ”bottom-up“ approach. Examples of this ”bottom-up“ approach will be
discussed in the next section.

1.5 Holographic models of Hadrons

1.5.1 Hard-wall model

A theory has been built starting from QCD and constructing its 5-dimensional
holographic dual which differs from other theories, by means of ”top-down“
approach, which are basically trying to deform supersymmetric Yang-Mills
theory in order to obtain QCD. This theory from its approach is in the class
of Holographic model of Hadrons and in particular known as AdS/QCD
model [12, 15].

This model has 4 free parameters which can be fixed by the number of
colors Nc, ρ meson mass, π mass, and pion decay constant Fπ. Fixing these
parameters, the model can predict other low energy hadronics observables
within 10% − 15% accuracy [12]. Furthermore, the properties such as vector
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meson dominance and QCD sum rules show up naturally in this AdS/QCD
model.

The field content of 5D-theory consists of one scalar and two gauge fields. It
was engineered to reproduce holographically the dynamics of chiral symme-
try breaking in QCD. On the 4D-theory, the relevant operators are one quark
condensate operator and two current operators which are the left- and right-
handed currents corresponding to the SU(Nf)L × SU(Nf )R chiral flavor sym-
metry. The global chiral flavor symmetry will correspond to gauge symmetry
in the 5D-theory. These operators are important in the chiral dynamics and
the relation of their parameters with 5-dimensional fields are described in ta-
ble 1.1

4D:O(x) 5D:φ(x, z) p ∆ (m5)
2

q̄Lγ
µtaqL Aa

Lµ 1 3 0

q̄Rγ
µtaqR Aa

Rµ 1 3 0

q̄α
Rq

β
L

2
zX

αβ 0 3 -3

Table 1.1: 4D-Operators/5D-fields of the holographic model

The 5D masses m5 are determined via the relation [4]

(m5)
2 = (∆ − p)(∆ + p− 4), (1.19)

where ∆ is the dimension of the corresponding p-form operator. The factor
1/z in table 1.1 is to give the correct dimension to the operator q̄q with z corre-
sponds to the energy scale of QCD.

The simplest possible metric for this AdS/QCD model is a slice of the AdS
metric

ds2 =
1

z2
(−dz2 + dxµdxµ), 0 < z ≤ zm. (1.20)

As we mentioned before, the fifth coordinate z corresponds to the energy
scale [13] with momentum transfer Q ∼ 1/z. With this metric, we neglect the
running of the QCD gauge coupling in a window of scales until an IR(infrared)
scaleQm ∼ 1/zm where the 4-dimensional theory is confining and at this scale
the AdS space is cut-off by introducing an IR cutoff or ”infrared brane“(IR-
brane) in the metric at z = zm and imposing certain boundary conditions on
the fields at z = zm. Therefore this model is called hard-wall model. In addi-
tion, an UV cutoff can be provided to z = ǫ with ǫ≪ 1.

5D action

The action of the 5D-theory is given by [12]

S =

∫
d5x

√
g T r

{
|DX |2 + 3|X |2 − 1

4g2
5

(F 2
L + F 2

R)

}
, (1.21)
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where

DµX = ∂µX − iALµX + iXARµ, X = X0 e
2iπata

(1.22)

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], AL,R = Aa
L,Rt

a, (1.23)

where X0 is the background field and πa are the N2
f − 1 pion fields.

At the IR-brane, we must impose some gauge invariant boundary condi-
tions and the simplest choice is (FL)zµ = (FR)zµ = 0. We also fix the gauge
Az = 0 in which the boundary conditions now become Neumann. The classi-
cal solution to X is determined in such it satisfies the UV boundary condition
(2/ǫ)X(ǫ) = M and the IR boundary condition where the quarks condensate:

X0(z) =
1

2
Mz +

1

2
Σz3, (1.24)

where matrix M and Σ are the quark mass and the quark condensate respec-
tively act as input parameters. Assume the mass and quark condensate matrixs
to be the following; M = m. I and Σ = σ. I, withm and σ are constants.

As we can see this hard-wall model has four free parameters: m,σ, zm,
and g5. The gauge coupling g5 can be fixed by comparing the holographic
computation with the QCD OPE(Operator Product Expansion) [14] for the
product of two currents, where the current corresponds to vector defined as
V = (AL +AR)/2, which gives us

g2
5 =

12π2

Nc
, (1.25)

withNc is the number of gauge fields.

1.5.2 Soft-wall model

The hard-wall model successfully describes the spectrum of the lowest en-
ergy hadrons, however it is unable to explain the linear spectrum of excited
hadrons, m2

n ∼ n. Instead, it shows that the masses of excited hadron grow as
mn ∼ n2. An improvement was made to the hard-wall model by considering
a smooth rather than a hard cutoff in the 5D-theory of AdS/QCD model. This
model is called soft-wall model specifically the IR-brane is now replaced by a
smooth dilaton profile up to z = +∞.

5D action

The 5D-action, is that of the hard-wall model plus a non-dynamical dilaton,
with U(1) gauge symmetry is [15]

S =

∫
d5xe−Φ√g

{
−|DX |2 + 3|X |2 − 1

4g2
5

(F 2
L + F 2

R)

}
, (1.26)
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where g2
5 is given by (1.25) and the background fields for metric and dilaton are

ds2 = e2A(z)
(
dz2 + dxµdxµ

)
, (1.27)

Φ = Φ(z). (1.28)

Solutions to these background fields are obtained by considering the spectrum
of radial ρ excitations in such a way Φ(z) − A(z) ∼ z2 for large z. Another
consideration should be taken into account is the conformal symmetry in the
UV near the boundary which is Φ(z) − A(z) ∼ ln z for small z. The simplest
example solution for the background fields (1.27) and (1.28) is Φ(z) − A(z) =
z2 + ln z. Indeed this solution gives a nice formula for the mass spectrum of ρ
mesons in the units of the lowest ρ spectrum [15]:

m2
n = 4(n+ 1). (1.29)

1.6 Thermal field theory

QGP is considered as a finite temperature system. Therefore we need AdS/CFT
correspondence in which the gravity theory possesses the characteristic fea-
tures of finite temperature system of the corresponding gauge theory. First,
let’s briefly review the characteristic features of a finite temperature system
from field theory perspective.

In finite temperature system of field theory, time is a complex variable with
imaginary part is periodic. The period of the imaginary part is β = 1/T which
is the inverse of temperature. Physics can be studied using imaginary or real
time-formalisms. In this thesis we will only discuss the real-time formalism
which is more interesting in particular if we want to study the system that
slightly deviates from the equilibrium.

In real-time formalism, time t is allowed to be a complex variable with
aforementioned periodicity in its imaginary part. The path C in complex t-
plane is taken such that the imaginary part of t is decreasing, as we increase the
parameter of the path ϑ, in order to have a well defined propagator. The time-
ordering TC is generalized to the complex t-plane along this path C, t = t(ϑ)
(with large value of ϑ is later than small value of ϑ). We also generalize δ- and
θ-functions in terms of the path C.

Thermal Green’s functions Gβ(x1, · · · , xn) of an operator O are defined
by [25]

Gβ(x1, · · · , xn) =
1

Tr e−βH
Tr
[
e−βHTC (O(x1) · · ·O(xn))

]
, (1.30)

where H is the Hamiltonian operator. In terms of the generating functional
Z[j], the thermal Green’s function can be written as

Gβ(x1, · · · , xn) =
1

inZC [β, j]

δnZC[β, j]

δj(x1) · · · δj(xn)

∣∣∣∣
j=0

, (1.31)
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with

ZC [β, j] = Tr

[
e−βHTC exp

(
i

∫

C
d4x j(x)O(x)

)]
. (1.32)

In the form of a path integral, the generating functional is given by

ZC[β, j] =

∫
DO exp

(
i

∫

C
d4x (L(x) + j(x)O(x))

)
, (1.33)

where L(x) is the Lagrangian density and j(x) is the source for fieldO(x). Note
that we have a boundary condition5 O(t, ~x) = O(t − iβ, ~x).

t - -

6

?
�

?

t

ti tf Re tC1 ◦

Im t

C2

C3

tf − iσ
C4

ti−iβ

Figure 1.3: The modified Schwinger-Keldysh time contour

The path C can be taken in various ways. One common version is drawn in
Figure 1.3 where the path C(also the fields and operators) is divided into four
segments C1, C2, C3, and C4. The first path C1 starts from ti and ends at tf . This
is where the physical fieldO1 that we observe lives. It is continued by C3 which
makes a vertical turn from tf to tf − iσ, with σ is arbitrary between 0 to β. The
next path is C2 which is parallel to path C1 but takes the opposite direction from
tf − iσ to ti − iσ. The fieldO2 lives in C2 acts as a “ghost” field which contribute
only to the internal line of the thermal Green’s function. Lastly, the path C4

takes another vertical turn starts from ti − iσ and ends at ti − iβ. With this
division of the path C, the generating functional consists of four Lagrangian
densities correspond to different segments.

In general, parameter σ can be chosen arbitrarily. One of the example is σ =
β/2 which was studied in [45]. If (ti = −tf ) → +∞, the generating functional
can be factorized in to two parts

ZC = ZC12ZC34 , (1.34)

5Here we assume field O(x) to be bosonic. For fermionic case, the boundary condition is anti-
periodic in the direction of imaginary component of t.
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where Cij = Ci ∪ Cj . Therefore, we can effectively work with just generating
functional ZC12 . The action for ZC12 is the sum of contributions from the two
parts of the path,

S =

tf∫

ti

dt L(t) −
tf∫

ti

dt L

(
t− i

β

2

)
, (1.35)

where

L(t) =

∫
d~xL[O(t, ~x)]. (1.36)

So, the generating functional ZC12 is

ZC12 [j1, j2] =

∫
Dφ exp


iS + i

tf∫

ti

dt

∫
d~x j1(x)O1(x) − i

tf∫

ti

dt

∫
d~x j2(x)O2(x)


 ,

(1.37)
where j1(j2) is the physical(“ghost”) source living in C1(C2) and for the fields
living in path C2 the time is understood to be t ≡ t − iβ/2. From now on the
parameter β will be implicit.

Now we can take second variations of ZC12 with respect to the source j1 or
j2 and obtain the Schwinger-Keldysh propagators from the free action,

iDab(x− y) =
1

i2
δ2 lnZC12 [j1, j2]

δja(x) δjb(y)

∣∣∣∣
ja=jb=0

= i

(
D11 −D12

−D21 D22

)
, (1.38)

with a, b = 1, 2 and

iD11(t, ~x) = 〈T O1(t, ~x)O1(0)〉, iD12(t, ~x) = 〈O2(0)O1(t, ~x)〉,
iD21(t, ~x) = 〈O2(t, ~x)O1(0)〉, iD22(t, ~x) =

〈
T O2(t, ~x)O2(0)

〉
. (1.39)

where T denotes reversed time ordering in path C2, and

O1(t, ~x) = eiHt−i~P ·~xO(0)e−iHt+i~P ·~x , (1.40a)

O2(t, ~x) = eiH(t−iβ/2)−i~P ·~xO(0)e−iH(t−iβ/2)+i~P ·~x . (1.40b)

These Schwinger-Keldysh propagators are related to the retarded and ad-
vanced Green’s functions, which are defined as

iGRet(x − y) = θ(x0 − y0)〈[O(x), O(y)]〉 , (1.41a)

iGAdv(x − y) = θ(y0 − x0)〈[O(y), O(x)]〉 . (1.41b)

In momentum space, defined by

G(k) =

∫
dx e−ik·xG(x) , (1.42)
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we can show that
GAdv(k) = GRet∗(k). (1.43)

Furthermore, we can rewrite the Schwinger-Keldysh propagators in terms of
retarded Green’s function as below (for bosons):

D11(k) = Re GRet(k) + i coth
ω

2T
Im GRet(k),

D22(k) = −Re GRet(k) + i coth
ω

2T
Im GRet(k),

D12(k) = D21(k) =
2ie−

β
2 ω

1 − e−βω
Im GRet(k). (1.44)

with ω ≡ k0.

1.7 Holographic real-time propagator

The gauge/gravity correspondence was originally formulated with Euclidean
signature. For some cases, we need to perform computation of Green’s func-
tions of gauge theory with Lorentzian signature. While there are subtleties
working with Lorentzian signature AdS/CFT correspondence [46–48], one
could try to avoid Minkowski formulation of AdS/CFT by working with the
Euclidean version. The resulting correlators can be analytically continued
to Minkowski space using Wick rotation. Unfortunately this does not always
work, in particular for finite temperature gauge theory. Analytic continuation
to Minkowski space is possible only when we know the Euclidean correlators
for all Matsubara frequencies which are beyond reach.

To see how the problem arises, consider as an example a scalar field φ in
the AdS5 black hole background with metric

ds2 =
L2

z2

(
−h(z)dt2 + dxidxi +

1

h(z)
dz2

)
= gµνdx

µdxν + gzzdz
2,

h(z) = 1 − z4

z4
H

, (1.45)

where i = 1, 2, 3 and z in the range zB ≤ z ≤ zH , with the following action

S =

∫
d4x

∫ zH

zB

√−g
(
gzz(∂zφ)2 + gµν∂µφ∂νφ+m2φ2

)
. (1.46)

The integration is taken between the boundary zB and the horizon zH .
The equation of motion for φ is given by

1√−g∂z

(√
−zgzz∂zφ

)
+ gµν∂µ∂νφ−m2φ = 0. (1.47)
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The equation has to be solved with a fixed value at zB for the solution of the
form

φ(z, x) =

∫
d4k

(2π)4
eikµxµ

fk(z)φ0(k), (1.48)

with fk(zB) = 1 and φ0(k) is identified as the Fourier transform of a source
field in the gauge theory. The effective equation of motion for the radial profile
f(z) is

1√−g ∂z

(√
−zgzz∂zfk

)
− (gµνkµkν +m2)fk = 0. (1.49)

In order to have a unique solution for fk(z), we need to impose a condi-
tion at the horizon zH . In the Euclidean signature, this can be done by im-
posing a regularity condition at the horizon zH . But this is not the case for
Lorentzian signature since near the horizon fk(z) oscillates wildly and has two
modes(incoming and outgoing modes). Physical reasoning implies that the in-
coming modes correspond to the retarded Green’s function while the outgoing
modes correspond to the advanced Green’s function.

Knowing the choices for boundary condition at the horizon does not im-
mediately solve the problem. Suppose we want to compute the retarded
Green’s function by taking the incoming-wave boundary condition. The on-
shell action of (1.46) reduces to

S =

∫
d4k

(2π)4
φ0(−k)F(z, k)φ0(k)

∣∣∣∣
zH

zB

,

F(z, k) =
√−ggzzf−k(z)∂zfk(z). (1.50)

The retarded Green’s function is computed by taking two functional derivatives
over φ0 of the on-shell action which give us

GRet(k) = −F(z, k) −F(z,−k)|zH

zB
. (1.51)

Using f∗
k (z) = f−k(z), which is also a solution, we can show that the imagi-

nary part of F is proportional to a conserved flux and such it is independent
of z. This means that the retarded Green’s function GRet(k) is a real function
which is not a satisfying result since the retarded Green’s function in general is
a complex function.

1.7.1 Minkowski prescription I

Son and Starinet gave an ad hoc resolution to this problem of how to compute
the Green’s function in Minkowski AdS/CFT correspondence consistently [26].
They provided a prescription and various checks on the validity of the formula.
The prescription goes as follows:
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1. Solve the mode equation (1.48) with two boundary conditions at the
boundary zB and the horizon zH . First, at the boundary z = zB ,
fk(zB) = 1. Second, the asymptotic solution is incoming(outgoing) wave
at the horizon for retarded(advanced) Green’s function. If we have space-
like momenta then the second boundary condition is similar to the Eu-
clidean version which is regular at the horizon.

2. Evaluating at the boundary z = zB , the retarded(advanced) Green’s func-
tion is given by

G(k) = −2F(zB, k), (1.52)

where F is computed from the surface terms of the on-shell action as
shown in (1.50).

Despite the success of the prescription, it can only be applied to two point-
functions. Extension of the prescription to more than two-point functions was
not known. Besides, the lack on the details of how the prescription works left
some questions to be answered.

The real-time formulation in finite temperature field theory involves dou-
bling the degree of freedom. At the same time, the full Penrose diagram of
asymptotically AdS metric containing a black hole has two boundaries and it
was conjectured that there are doubler fields living on the second boundary of
the AdS dual. These features were indeed realized by Herzog and Son’s formu-
lation of a more rigorous way to compute the Green’s function in Minkowski
AdS/CFT [42]. Their results originate in studies on black holes thermal radia-
tion by Hawking and Hartle [49], Unruh [50], and Israel [51].

The upshot of their observation is that the gravity action must be modified
by adding contribution from region L, where the doubler fields live, as shown
in Figure 1.4; time in the region L reverses its direction. The bulk fields in both
regions R and L are written in terms of physical and “ghost” sources of the fi-
nite temperature field theory, as defined previously, with boundary conditions
that at the boundary of R the bulk fields in R becomes the physical sources
and at the boundary of L the bulk fields in L becomes the “ghost” sources. At
the horizon, the natural boundary conditions are defined so that positive fre-
quency modes are incoming and negative frequency modes are outgoing in re-
gion R of the Penrose diagram. With the definition of retarded and advanced
Green’s functions in [26], as given in (1.52), second functional derivatives of
the boundary action on gravity side over the sources yields Schwinger-Keldysh
propagators (1.44).

There are a few interesting points in Herzog and Son’s formula. It looks
natural from gravity side to take the path C for complex time plane as shown in
Figure 1.3 with σ = β/2. Since the Green’s functions are obtained by functional
derivatives on the gravity action, in principal we can extend the formula to
more than two-point functions. A detailed discussion on thermal three-point
functions from Minkowski AdS/CFT using this formula can be found in [52].
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U=0

V=0

R

P

L

F

Figure 1.4: The full Penrose diagram for asymptotically AdS metric with a black
hole solution. U and V are the Kruskal coordinates.

1.7.2 Minkowski prescription II

Although Herzog and Son’s formula gives the correct Schwinger-Keldysh prop-
agators of the finite temperature system, there are still some unsatisfactory
issues in the procedure. The computation they did in [42] did not include the
boundary contribution from timelike infinity to the on-shell action which is
non vanishing in general. Furthermore, it depends entirely on the retarded and
advanced Green’s function that are still conjectured in Minkowski AdS/CFT.

Figure 1.5: Holographic path. The bold lines with arrow are the segments of
complex time path of the field theory at the boundary.

Skenderis and van Rees subsequently showed how to overcome these is-
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sues and developed a fully holographic prescription [73, 74]. The idea is try to
construct a bulk manifold MC from a given complex time path C in finite tem-
perature field theory at the boundary. It involves gluing different manifolds
for each segments of the path C. The paths that live in the real part of time
correspond to Lorentzian solutions and ones live in the imaginary part of time
correspond to Euclidean solutions.

When two segments of the complex time path C intersect at a point, the
point is extended to a hypersurface S in the bulk. The time signature of the
metric changes at this hypersurface corresponds to this intersection point. In
this hypersurface S, we need to impose two matching conditions:

1. Continuity of the field φ across S:

φ−(S) = φ+(S). (1.53)

2. If the two bulk manifolds M− and M+ (correspond to two segments of
the path) intersect at a boundary S (corresponds to the intersection point
between two segments of the path) then we also impose continuity of the
momentum conjugate πφ across S:

πφ
−(S) = η πφ

+(S), (1.54)

where πφ
± is the conjugate momentum in M±. We set η = −i if M−

is Euclidean and M+ is Lorenzian; and η = 1 if both M− and M+ are
Lorentzian (this is the case with σ = 0 in Figure 1.3).

A more detailed application of Skenderis and Van Rees’s holographic prescrip-
tion can be found in section 3.D.3.

1.8 Outline

In chapter 2, we will apply gauge/gravity correspondence on photon and
dilepton production in QGP. We start with definition of spectral density func-
tion in momentum space χ(K) which is proportional to the photon and dilep-
ton production rates. Having determined the observables in gauge theory or
QGP, We write down the relevant 5D-action in gravity theory with AdS black
hole background metric. In particular we consider the AdS/QCD soft-wall
model, as discussed in 1.5.2, with non-trivial dilaton background. Using holo-
graphic real-time prescription 1.7.1, we compute the spectral density function
by means of solving the equations of motion of the dual fields numerically and
also analytically for low- and high-frequency.

Using a semiclassical approach to gauge/gravity duality, we describe in
chapter 3 Brownian motion of a quark in strongly coupled plasma, for exam-
ple QGP, from string theory perspective. We first define properties of Brown-
ian motion given by a generalized Langevin equation. In this case, the random
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force R is assumed to be Gaussian and the Langevin equation is linear in mo-
mentum. The gravity description is given by the motion of a string under some
black hole background metric where the ends of the string are stretching from
boundary to horizon. The end of the string at the boundary is interpreted as an
external quark behaves as Brownian particle moving in a heat bath, which are
represented by the black hole background metric. Explicitly, we consider the
background metrics which are non-rotating BTZ black hole for neutral plasma
and STU black holes for charged plasma.

The two- and four-point functions of the random force R can be computed
by taking derivatives of the dual coordinate in the expansion of the Nambu-
Goto action. In computing the correlation functions, we use the holographic
real-time prescription 1.7.2 together with holographic renormalization 1.4.1
to removed the UV divergences while the IR divergences are removed by in-
troducing a cutoff near the horizon. Most of the calculations are done in low
frequency limit, ω → 0. This way we can find the impedance µ(ω) from the
two-point functions which eventually gives us the friction coefficient in non-
relativistic limit. With a simple model of random force profile, a time scale
can be extracted from the two- and four-point functions which is defined as
mean-free path time tmfp.

The last chapter 4 is an attempt to study anisotropic effects in QGP from
semiclassical string point of view as we already used in chapter 3. Here, we
argue that the anisotropic in QGP can be encoded in rotating black hole so-
lutions. This chapter mainly discusses about how to compute the drag force
with a given background metric. We first consider a 4D AdS-Schwarzschild
black hole and compute the drag force of the great circle solution at the equa-
torial plane with linear ansatz and then generalize the drag force computation
for non-equatorial case.

As one example of rotating black hole solutions, we look at 4D Kerr-AdS
black hole in Boyer-Lindquist coordinates. A simple drag force computa-
tion will be the equatorial great circle solution with linear ansatz. The non-
equatorial solutions in general are very difficult. For a simple case, we consider
drag forces at the leading order for small angular momentum a and velocity ω
of the Kerr-AdS black hole. We use a map of coordinates transformation from
Kerr-AdS coordinates to Boyer-Lindquist coordinates to derive an ansatz for
“static” string solution in Boyer-Lindquist coordinates. The solution is written
in terms of the static thermal rest mass quark mrest and the temperature of
plasma T . We also plot the drag forces for different values of angular momen-
tum a and parameter MT .



C H A P T E R 2

PHOTON PRODUCTION IN SOFT WALL

MODEL

2.1 Introduction

One of the current challenges in theoretical particle physics is to compute
properties of the strongly coupled QGP(sQGP) discovered at RHIC. AdS/CFT
tools have given us some insight into the strongly coupled thermodynamics of
gauge theories [2, 4, 9, 11]. However, it remains a mystery why these, mostly
N = 4 supersymmetric, YM calculations work well for QCD. Part of the chal-
lenge is to either understand why this is so, or to find AdS duals of theories
resembling QCD closer than N = 4 SYM. In this latter context a phenomeno-
logical AdS dual to Chiral perturbation theory or AdS/QCD constructed by Er-
lich et.al. is perhaps a good candidate [12].

Introducing the IR-cutoff is the essential new ingredient in AdS/QCD com-
pared to AdS/CFT. Here we shall investigate the effects of this cutoff on pho-
ton and dilepton production rates at strongly coupling. Remarkably the N = 4
SYM CFT computation of these production rates suggested they are not af-
fected by a hard IR-cutoff even for temperatures infinitesimally above the cut-
off [5]. Intuitively this seems rather strange. At energies and temperatures
close the QCD scale IR effects should start to affect the production rate. We
shall find that for smoothly IR-cutoff AdS/QCD this is indeed the case. The ro-
bustness of our phenomenological result of how photon production rates are
effected by changing the IR-cutoff is confirmed by a calculation by Mateos and
Patiño [23] of the photon production rate in AdS dual of a N = 2 theory with
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massive flavor. Here the flavor sector acts as the effective IR-cutoff, and we
will be able to show this by relating the mass-parameter to the soft-wall cutoff
scale. Soft-wall AdS/QCD is more crude than massive flavor models, of course,
and this is evident in the lack of spectral peaks that we shall find.

Photon production in a medium such as QGP was discussed in detail both
from strong and weak coupling point view in [5]. We briefly review this in sec-
tion 2.2 and show there how the strong coupling calculation is modified by
considering AdS/QCD instead of pure N = 4 SYM. In section 2.3, we present
our solution and discuss its results in section 2.4 with a comparison to photon
production in AdS duals of N = 2 massive flavor theories.

2.2 Photon and dilepton production

One of the observational phenomena in RHIC is the spontaneous production
of photons from the sQGP of hot charged particles. This direct photon spec-
trum ought to be a good probe of the strongly coupled quark-gluon soup, as
the weakly interacting photons should escape nearly unaffected from the small
finite size collision area [24].

As is described in [5], we can therefore regard the dynamically formed sQGP
to first approximation as a field theory at finite temperature. For a standard
perturbative electromagnetic current coupling eJ EM

µ Aµ, the first order photon
production rate is then given by [5, 25]

dΓγ =
d3k

(2π)32k0
e2nB(k0)ηµν χµν(K)|k0=|~k| . (2.1)

Here K ≡ (k0, ~k) is a momentum 4-vector, nB(k0) = 1/(eβk0 − 1) the Bose-
Einstein distribution function, and the spectral density χµν(K) is proportional
to the imaginary part of the (finite temperature) retarded current-current cor-
relation function

χµν(K) = −2 Im(GR,β
µν (K)),

GR,β
µν (K) =

∫
d4Xe−iK·X〈J EM

µ (0)J EM

ν (X)〉βθ(−x0) . (2.2)

At finite temperature, Lorentz invariance is broken by the heat bath. We can
use the remaining rotational symmetry plus gauge invariance to simplify the
retarded correlator to

GR,β 6=0
µν (K) = PT

µν(K)ΠT (K) + PL
µν(K)ΠL(K), (2.3)

Here the transverse and longitudinal projectors are PT
00(K) = 0, PT

0i(K) = 0,

PT
ij (K) = δij −kikj/|~k|2, and PL

µν(K) = Pµν(K)−PT
µν(K), with i, j = x, y, z. We
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can trivially consider charged lepton production as well by considering non-
lightlike momenta for off-shell photons: The leptons then result from virtual
photon decay. Lepton pair production for each lepton species in the leading
order of the electromagnetic couplings e and el, is given by [5, 25]

dΓll̄ =
d4K

(2π)4
e2e2l

6π|K|5 [−K2−4m2]1/2(−K2+2m2)nb(k
0)χµ

µ(K)θ(k0)θ(−K2−4m2),

(2.4)
with el the electric charge of the lepton, m the lepton mass, θ(x) a unit step
function, and the spectral density χµν(K) is evaluated at the timelike momen-
tum of the emitted particle pair. Note that both ΠT and ΠL contribute to the
dilepton rate, but only ΠT contributes to the photon emission rate, because
the longitudinal part must vanish for lightlike momenta, i.e. the unphysical
longitudinal mode is not a propagating degree of freedom.

Finally, fluctuation-dissipation relates the zero-frequency limit of the spec-
tral density to the electrical conductivity σ:

σ = lim
k0→0

e2

6T
nB(k0)η

µνχµν(k0, ~k = 0), (2.5)

or, if kµ is lightlike

σ = lim
k0→0

e2

4T
nB(k0)η

µν χµν(K)||~k|=k0 . (2.6)

2.2.1 Photon and dilepton rates at strong coupling

The AdS/CFT dictionary gives that the large Nc limit of strongly coupled d =
4 N = 4 SYM theory at finite temperature T has a dual description in terms of
five dimensional AdS-supergravity in the background of a black hole [9]

ds2 =
(πTR)2

u

[
−f(u)dt2 + dx2 + dy2 + dz2

]
+

R2

4u2f(u)
du2. (2.7)

Here f(u) = 1 − u2, with u ∈ [0, 1] a dimensionless radial AdS coordinate re-
lated through u = (πTz)2 to standard AdS coordinates, and R is the curvature
radius of the AdS space.1 The metric (2.7) has a horizon at u = 1 with Hawking
temperature T and a boundary at u = 0.

Qualitatively the same is expected hold for other 4-dim field theories. As
a model for low energy QCD we shall take the AdS dual of chiral pertur-
bation theory. This AdS/QCD consists of the fields Aa

Lµ, A
a
Rµ, dual to the

SU(Nf)L × SU(Nf )R currents and a scalar X dual to the quark condensate in

1 We will keep to Lorentzian signature throughout since we seek information regarding the
response of the thermal ensemble to small perturbations. This requires the use of real-time Green’s
functions [26].
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an AdS background which is cutoff at some finite distance u = u0 [12]. To this
we add an extra U(1) field, Vµ dual to the electromagnetic current J EM

µ . Recall
that u0 corresponds to the introduction of the QCD-scale in the field theory:
it enforces the mass-gap by hand by explicitly cutting-off any dynamics in the
IR. For the reasons we explained in the introduction, here we are going to use
a soft wall cut-off [15, 16]. Formally we can introduce this cut-off by modify-
ing the AdS bulk action to (we give only the term relevant for calculating the
photon production rate)

S ∼
∫
d5x

√
g

(
−1

4
FABF

AB + · · ·
)

⇒ S ∼ −1

4

∫
d5x

√
ge−ΦFABF

AB + · · · .
(2.8)

Here A,B = t, x, y, z, u and the “dilaton” takes the fixed form Φ = cu where

c =
Λ2

IR

(πT )2 , with ΛIR the IR scale below which physics is cut-off. This intro-

duction into the action is formal in the sense that (1) we shall not consider Φ
a dynamical field and (2) we assume that the presence of the cut-off does not
affect the geometric AdS background, see also [16]. We thus still work with the
metric (2.7) for the finite temperature version of AdS/QCD, but with the equa-
tion of motion for the fluctuations derived from action (2.8). We will discuss
the validity of this approach in detail in section 2.4.

For photon production, we need only the U(1) gauge field equation of mo-
tion ∂A

(√
ge−cugABgCDFBD

)
= 0 with FAB = ∂AVB − ∂BVA the Maxwell

field strength. The 4d electric fields are Ei ≡ Fti with i = x, y, z. Note that
we use A as a vector index and VB for the AdS gauge field. To compute the
AdS boundary 2-point correlation function from which to extract the spec-
tral density χµν , we follow [5] and split the equation of motion into parts per-
pendicular (Vx, Vy ≡ V⊥) and parallel (Vz ≡ V‖) to a predefined spatial three-

momentum ~k = (0, 0, k), the Gauss constraint (V0 e.o.m.) and the radial AdS
(Vu) equation of motion. After a Fourier transformation along t, x, y, z, and

defining ω = k0

2πT , q = k
2πT , we find respectively

∂2
uV⊥ +

(
∂uf

f
− c

)
∂uV⊥ +

ω2 − q2f

uf2
V⊥ = 0, (2.9)

q

uf
(qVt + ωV‖) −

(
∂2

uVt + i(2πT )ω∂uVu

)
+ c (∂uVt + i(2πT )ωVu) = 0, (2.10)

ω

uf2
(qVt +ωV‖)+

[
(
∂uf

f
− c)∂uV‖ + ∂2

uV‖

]
−i(2πT )q

[
(
∂uf

f
− c)Vu + ∂uVu

]
= 0.

(2.11)
The equation of motion for Vu,

√
ge−cuguu

(
gtt∂tFtu + g‖‖∂‖F‖u

)
= 0, (2.12)
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can be simplified to

Vu =
i

2πT

(ω∂uVt + qf∂uV‖)

(ω2 − q2f)
. (2.13)

Let us define E⊥ = ωV⊥ and E‖ = qVt + ωV‖. From Eq. (2.9) and combining
eq. (2.11) with eq. (2.10) and eq. (2.13) in the gauge Vu = 0 we obtain the two
decoupled equations

∂2
uE⊥ +

(
∂uf

f
− c

)
∂uE⊥ +

ω2 − q2f

uf2
E⊥ = 0, (2.14)

∂2
uE‖ +

[
ω2∂uf

f(ω2 − q2f)
− c

]
∂uE‖ +

ω2 − q2f

uf2
E‖ = 0. (2.15)

We shall need to solve these two equations to obtain the spectral density χµν .
These differential equations (2.14) and (2.15) have three regular singular points
at u = ±1, 0, and one irregular singular point at ∞.2

Formal solutions for such equations are difficult to construct. Note that
the irregular nature of the point at infinity becomes regular when we remove
the IR-cutoff c. The irregular point, however, is outside the physical region of
interest u ∈ (0, 1) and we can, for instance, solve the equations (2.9) and (2.15)
near the boundary u→ 0 using Frobenius expansion E = uλ

∑∞
n=0 anu

n where
the indicial equation has solutions for λ = 0, 1.

To solve the equations (2.14), (2.15) explicitly shall be the main part of this
note. The solutions to these 5-d AdS equations of motion then give the 4-d
field theory two point correlation as the functional derivative with respect to
the boundary values of the on-shell AdS action

S = − 1

4g2
B

∫
d4xdu

√
ge−cuFABF

AB

∣∣∣∣
on-shell

, (2.16)

with g2
B = 16π2R/N2

c . Considering Vu = 0 gauge, we can write this as

Son-shell = − N2
c

32π2R

∫ ∞

−∞
d4x

(√
ge−cuVµF

uµ
)∣∣∣∣

u=1

u=0

=
N2

c T
2

16

∫ ∞

−∞
d4x e−cu (Vt∂uVt − fVi∂uVi)

∣∣∣∣
u=1

u=0

. (2.17)

Fourier transforming to momentum space and selecting the particular direc-
tion chosen previously, we can rewrite the action using Minkowskian prescrip-
tion formulated by Son and Starinets [26]. Together with the boundary condi-

2Recall that an irregular singular point for a differential equation y′′ + P (x)y′ + Q(x)y = 0 is
a point x0 for which either limx→x0(x − x0)P (x) or limx→x0(x − x0)2Q(x) diverges. The point
at infinity is irregular if limx→∞(2− xP (x)) or limx→∞ x2Q(x) diverges. Using that f = (1− u2)
one clearly sees how the introduction of c introduces a divergence in limu→∞ 2−u(∂u ln f − c) =
limu→∞ 2 + 2u2/(1 − u2) + uc.
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tion that the solution of equations (2.9) and (2.15) must satisfy the incoming-
wave boundary condition at the horizon u = 1, the resulting on-shell action
becomes

Son-shell =
N2

c T
2

16
lim
u→0

∫
dω dq

(2π)2
e−cu

[
f

q2f − ω2
∂uE‖(u,K)E‖(u,−K)− f

ω2
∂uE⊥(u,K)E⊥(u,−K)

]
.

(2.18)

From Eq. (2.18) and the condition described above, we can now compute
the retarded current-current correlation function in term of two independent
scalar functions3

ΠL(K) = −N
2
c T

2

8
lim
u→0

∂uE‖(u,K)

E‖(u,K)
, (2.19)

ΠT (K) = −N
2
c T

2

8
lim
u→0

∂uE⊥(u,K)

E⊥(u,K)
. (2.20)

These functions in turn give us the photon and dilepton production at strong
coupling via eq. (2.3) and eqs. (2.1) and (2.4).

2.3 Solving the system

In this section we will solve the equations (2.14) and (2.15) in order to compute
the two scalar functions (2.19) and (2.20). Furthermore, we will take the imag-
inary part of those scalar functions and obtain the spectral density function
(2.2) for finite temperature system.

The solutions which satisfy the incoming-wave boundary condition can be
written in general as a Frobenius expansion near u→ 1

Ei(u) = (1 − u)−iω/2yi(u), (2.21)

with yi(u) regular at u = 1. We will solve and discuss these equations ex-
tensively for lightlike momenta relevant for photon-production, both semi-
analytically for asymptotically small and large frequency and numerically for
various values of the cut-off c for the full range of momenta. For timelike and
spacelike momenta we only present the numerical solution.

2.3.1 Lightlike momenta

As has been explained in section 2.2 , the longitudinal part of the scalar func-
tions vanishes for lightlike momenta and we just need to compute the trans-
verse part.

3For a more detailed derivation of these functions see [28].
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Analytic solutions for lightlike momenta at low and high frequency

We are mainly interested in the effect of the IR-cut-off on photon production
as compared to the previous AdS photon production calculation for scale-
invariant N = 4 SYM [5]. In the low-frequency limit where its effect should
be largest, we can solve (2.9) perturbatively using ω ≪ 1 as a small parame-
ter. As noted in [5], there is a shortcut to do so. Given the two independent
solutions φ1 ± iφ2 to the differential equation φ′′ + A(x)φ′ + B(x)φ = 0, the
Wronskian times exp(

∫ x
A(x′)) is strictly conserved

∂x

(
e
∫

x A(x′)
[
φ̄∂xφ− φ∂xφ̄

])
= 0 . (2.22)

The transverse scalar can be rewritten as

ΠT (K) = lim
u→0

ΠT (u,K) ,

ΠT (u,K) ≡ −N
2
c T

2

8

[
e−cu(1 − u2)

Ē⊥(u,K)

Ē⊥(0,K)
∂u
E⊥(u,K)

E⊥(0,K)

]
. (2.23)

The imaginary part of the transverse scalar ΠT (u,K) is then propotional to the
conserved Wronskian and therefore independent of the radial coordinate u:

∂uIm[ΠT (u,K)] = 0 . (2.24)

With this fact, we can evaluate the imaginary part of (2.23) at any given value
of u which is convenient to our calculation. Let us choose u = 1. Because the
transverse scalar (2.23) contains an explicit factor of (1 − u), only the pole in
Ē⊥∂uE⊥ will contribute. Recalling that for any finite frequency ω the bound-
ary conditions determine E⊥(u) to be of the form (2.21), we immediately see
that the undetermined regular part y contains no pole by definition. Therefore
without needing to solve the equation motion we see that

ΠT (1,K) =
−N2

c T
2

8

(−iω
2

)[
2e−c

∣∣∣∣
y(1)

y(0)

∣∣∣∣
2
]
. (2.25)

The leading term in the limit ω ≪ 1 is the ω-independent contribution to
|y(1)/y(0)|. The determining equation (2.14) simplifies in that limit to effec-
tively the first order equation (recall that ω = q for lightlike momenta)

∂u∂uE⊥ + (∂u(ln f − cu))∂uE = 0 + O(ω2) . (2.26)

The incoming wave boundary condition demands that the ω = 0 solution be
regular at u = 1. Since f = (1 − u)(1 + u), this solution is the trivial constant
one. Therefore

ΠT (1,K) =
iωN2

c T
2

8
e−c + O(ω2) . (2.27)
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In Appendix 2.A we compute the same answer directly by solving the dif-
ferential equation perturbatively in ω, which shows explicitly that E⊥(u) =
constant + O(ω) is indeed the correct solution to the boundary conditions.

Given Π(1,K), the trace of spectral density function at low-frequency
limit for lightlike momenta in photon production is proportional to its u-
independent imaginary part

χµ
µ(ω = q) = −4 Im(ΠT (ω = q))

=
ωN2

c T
2

2
e−c + O(ω2). (2.28)

For c = 0, we reproduce back the result from [5] at the first order. The van-
ishing of c corresponds to either the limit T → ∞ or to removing the IR scale
ΛIR. We see explicitly our intuition confirmed that the trace of spectral den-
sity at low-frequency depends on the cutoff parameter c, while simultaneously
reproducing the N = 4 result at high T .

At high-frequencies we do not expect the IR-cut-off to have a major effect.
Let us show that to leading order the spectral function is in fact independent
of the value of c as one would expect. In this limit ω ≫ 1, the argument leading
up to eq. (2.25) does not hold4 and one cannot obtain the answer without
solving the equation of motion (2.14). Following [5], we will use the Langer-
Olver method [29] to find the solution. The first step is to redefine

E⊥(u) =
ecu/2

√
−f(u)

y(u) (2.29)

for equation (2.14) and rewrite it as

y′′(x) = [ω2H(x) +G(x)]y(x), (2.30)

where H(x) = x
f(x)2 and G(x) = c2

4 − cx
f(x) − 1

f(x)2 with x = −u ∈ [−1, 0]. For

large ω the first term on the RHS dominates. Since it has a simple zero at x = 0,
we can transform Eq. (2.30) to Airy’s equation plus terms subleading in ω. To
do so, we introduce a new independent variable ζ and change variables to

ζ

(
dζ

dx

)2

= H(x) =
x

(1 − x2)2
. (2.31)

Choosing conditions ζ(0) = 0 and ζ′(0) > 0 determines ζ to be

ζ =

[
3

2

∫ x

0

√
H(t)dt

]2/3

. (2.32)

4Note e.g. that in the singular term (1 − u)−iω/2 the order of limits u → 1 and ω → ∞ do not
commute.
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Rescaling y(x) to

y =

(
dζ

dx

)−1/2

W , (2.33)

eq. (2.30) becomes
d2W

dζ2
= [ω2ζ + ψ(ζ)]W, (2.34)

with

ψ(ζ) =
5

16ζ2
+

[
4H(x)H ′′(x) − 5H ′2(x)

]

16H3(x)
ζ +

ζG(x)

H(x)
(2.35)

For large ω we may ignore ψ(ζ) and the equation reduces to Airy’s equation. To
leading order the solution is thus

W (ζ) = A0Ai(ω2/3ζ) +B0Bi(ω2/3ζ) + . . . , (2.36)

The incoming-wave boundary conditions at the horizon imply that B0 should
vanish. Thus the solution for E⊥(u) in asymptotic expansion for large ω is

E⊥(u) =
A0e

cu/2

√
−f(u)

[ −u
f(u)2ζ(−u)

]−1/4

Ai(ω2/3ζ(−u)) + . . . , (2.37)

and the transverse scalar at high-frequency limit equals

ΠT = −N
2
c T

2

8
lim
u→0

(
c

2
+

1

4
∂u ln

(−ζ(−u)
u

)
+
∂uAi(ω2/3ζ(−u))

Ai(ω2/3ζ(−u))

)
+ . . . . (2.38)

Before we move on, it is helpful to expand ζ(−u) around u = 0

ζ(−u) = −(−1)2/3u− 2

7
(−1)2/3u3 + O(u5) . (2.39)

Therefore the middle term in (2.38),

∂u ln

(−ζ(−u)
u

)
=

1

(−1)2/3 + ..

(
6

7
(−1)2/3u+ . . .

)
, (2.40)

vanishes as u → 0. Knowing the asymptotics of the Airy function the last term
of (2.38) can be written as

lim
u→0

Ai′(ω2/3ζ(−u)))
Ai(ω2/3ζ(−u))) = −(−ω)2/3 Ai′(0)

Ai(0)

= (−ω)2/3 31/3Γ(2/3)

Γ(1/3)
, (2.41)
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and thus we obtain

ΠT = −N
2
c T

2

8

(
c

2
+
e2πi/3ω2/331/3Γ(2/3)

Γ(1/3)

)
. (2.42)

Note that this transverse scalar therefore depends on c. However, only the real
part does. The trace of the spectral density function in high-frequency limit for
lightlike momenta

χµ
µ = −4 Im(ΠT )

∼ N2
c T

2

4

ω2/335/6Γ(2/3)

Γ(1/3)
. (2.43)

does not depend on the cutoff parameter c at least up to first order and yields
the same result as the calculation in N = 4 SYM. The fact that c does appear in
the real part of the transverse scalar indicates that at first subleading order the
spectral density function will likely differ from the N = 4 result. The numerical
results in the next section bear this out.

Numerical solution for lightlike momenta

The analytic asymptotic solutions are a guidance to the full spectral function.
The full solutions of equation (2.9) for non-zero c are very difficult to find, as
we remarked earlier. This is due to the irregular singular point at u = ∞ for
c 6= 0 where analytic solutions are not known. In this subsection we are going
to look for numerical solutions for non-zero c.

We start from the general solution (2.21) which satisfies the incoming wave
boundary condition. To set a parametrization of the initial conditions for the
u = 1 regular function yi(u) = Ei(1 − u)iω/2 of Eq. (2.21), we write the general
solution as a polynomial expansion around u = 1, y(u) =

∑∞
n=0 an(1 − u)n.

Substituting (2.21) into equation (2.14) for lightlike momenta, we obtain the
equation

∞∑

n=0

[
an

(
n− i

ω

2

)2

(1 − u)n−2 + c an

(
n− i

ω

2

)
(1 − u)n−1

−
∞∑

m=0

[
an

2m+1

(
n− i

ω

2
+
ω2(m+ 1)

4

)
(1 − u)n+m−1 − anω

2

2m+2
(1 − u)n+m−2

]]
= 0.

(2.44)

The second sum (overm) arises from expanding 1
1+u =

∑∞
n=0

1
2n+1 (1−u)n and

1
(1+u)2 =

∑∞
n=0

(n+1)
2n+2 (1 − u)n. In order to find the coefficients an, we have to
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solve this equation for each power of (1 − u) and obtain

(1 − u)−2 : a0 (arbitrary),

(1 − u)−1 : a1 =
iω(c− 1/2)

2(1 − iω)
a0,

...

(1 − u)k−2 : ak = fk(ω, c)a0, (2.45)

with fk are functions of ω and c which vanish at ω = 0. This gives us y(u) and
y′(u) at u = 1 in terms of the above coefficients

y(1) = a0,

y′(1) = −a1 = −a0
iω(c− 1/2)

2(1 − iω)
. (2.46)

These will be the two initial conditions for the differential equation for y(u).
The explicit differential equation it must satisfy is

y′′ +

(
iω

1 − u
− 2u

1 − u2
− c

)
y′

+

[
ω2u

(1 − u2)2
+

2iω − ω2

4(1 − u)2
− iω

2(1 − u)

(
2u

1 − u2
+ c

)]
y = 0. (2.47)

Notice that the initial conditions for y(u) still depend on an arbitrary constant
a0. Physical quantities, such as the spectral density function, depend on ra-
tios of y(u) and its derivatives and are independent of this constant. We are
therefore free to set it to any value; we will choose a0 = 1.

Let us express the trace of spectral density function in terms of y(u):

χµ
µ =

N2
c T

2

2

(
ω

2
+ Im

(
y′(0)

y(0)

))
. (2.48)

Alternately we could use the modified Wronskian formulation for ΠT ((K), eq.
(2.23) and evaluate it at u = 1. An equivalent expression for the trace of spectral
density function in this limit becomes

χµ
µ =

ωN2
c T

2

2
e−c |y(1)|2

|y(0)|2 . (2.49)

The spectral density for lightlike momenta

Solving eq. (2.47) numerically with initial conditions (2.46), we find the spec-
tral density function χµ

µ for lightlike momenta for various values of the IR-cut-

off c.5 The results are shown in Fig. 2.1 and we clearly see the dependency

5Numerical solutions were obtained using the NDSolve routine in Mathematica.
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at low frequencies on the IR-cut-off. The behaviour at high-frequency on the
other hand appears less and less sensitive. What is remarkable is the similar-
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Figure 2.1: Trace of the spectral function for lightlike momenta in units of 1

2
N2

c T 2,
plotted as a function of frequency with ω ≡ k0/(2πT ). The solid line (red) shows the

exact result for c = 0 and the dashed lines downward show numerical analysis for c =
0.2, 0.419035, 0.5, 0.6, 1.5, 2, 3.

ity between this soft-wall AdS/QCD result, Fig 2.1, for the trace of the spectral
function for light-like momenta and of Mateos and Patiño for massive flavor
deformations of the AdS dual of N = 2 theories, Fig. 3 in [23]. As we will dis-
cuss in section 2.4, this similarity can be explained by relating the two compu-
tations. Inherently this then partially validates the soft-wall AdS/QCD model.

There is, however, one fundamental difference between the result here and
the massive N = 2 computation. Both models are thermodynamically unsta-
ble for large IR-cut-off, signalling the transition back to the confining regime.
In the N = 2 model this is clearly illustrated by the appearance of thermal res-
onances in the spectral function when formally evaluated beyond the critical
cut-off. Fig1. shows that in AdS/QCD these resonances remain absent beyond
the critical value c > 0.419035 [16]. The absence of thermal resonances was
presaged by Huot et al. [5]. Realizing that their results for photon production
in the AdS dual of pure N = 4 SYM are unaffected by a hard-wall IR-cut-off,
they speculated that this would be generic. It was premised on the fact that in
the hard-wall case, the IR-cut-off is always inside the horizon. Rough dimen-
sional analysis illustrates that the soft-wall case is similar: at the transition the
cut-off scale c−1 ≃ 2.5 is beyond the horizon u = 1. However, a similar argu-
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ment holds for the massive N = 2 AdS dual. As we discuss in section 4, the real
reason for the absence of thermal resonances is probably simply that an blunt
soft- or hard- IR-cut-off is too crude to capture this information.

2.3.2 Timelike and spacelike momenta

For time and space-like momenta, both ΠT and ΠL can contribute to spec-
tral density function χµ

µ(K). Also for these cases, the mode equations (2.9)
and (2.15) cannot be solved analytically for arbitrary frequency(ω) and wave
vector(q), and we determine the spectral function numerically.

Numerical solution for transverse scalar function

Following the same procedure in numerical analysis for lightlike momenta
above, we substitute the general solution (2.21) for transverse direction into
(2.9) and obtain an equation for y(u)

y′′⊥ +

(
iω

1 − u
− 2u

1 − u2
− c

)
y′⊥

+

[
ω2 − q2(1 − u2)

u(1 − u2)2
+

2iω − ω2

4(1 − u)2
− iω

2(1 − u)

(
2u

1 − u2
+ c

)]
y⊥ = 0. (2.50)

As in the lightlike case, to determine the initial conditions we expand y(u) =∑∞
n=0 an(1 − u)n around u = 1, with

a0 (arbitrary), a1 =
ω2 − q2 + iω(1/2− c)

2(iω − 1)
a0 , ak = fk(ω, q, c)a0, (2.51)

where again fk are functions of ω, q and cwhich vanish at ω = q = 0. Using the
modified Wronskian extension the imaginary part of transverse scalar function
is therefore given by

Im(ΠT (K)) = −ωN
2
c T

2

8
e−c |y⊥(1)|2

|y⊥(0)|2 , (2.52)

with y(u) a solution to eq. (2.50) with initial conditions determined from
Eq. (2.51).

Numerical solution for longitudinal scalar function

Substitute (2.21) into the equation of motion for the longitudinal direction
(2.15), we obtain

y′′‖ +

(
iω

1 − u
− 2uω2

(1 − u2)(ω2 − q2(1 − u2))
− c

)
y′‖ +

[
ω2 − q2(1 − u2)

u(1 − u2)2

+
2iω − ω2

4(1 − u)2
− iω

2(1 − u)

(
2uω2

(1 − u2)(ω2 − q2(1 − u2))
+ c

)]
y‖ = 0. (2.53)
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Expanding y‖(u) =
∑∞

n=0 an(1 − u)n around u = 1 gives us

a0 (arbitrary) , a1 =
ω2 − q2 + iω

(
1
2 − c− 2q2

ω2

)

2(iω − 1)
a0 , ak = fk(ω, q, c)a0, (2.54)

where again fk are functions of ω, q and c which vanish at ω = q = 0. The
imaginary part of the longitudinal scalar function is

Im(ΠL(K)) = −ωN
2
c T

2

8

(
1

2
+ Im

(
y′‖(0)

ωy‖(0)

))
, (2.55)

with y‖(u) the solution to (2.53) with initial conditions determined from
Eq. (2.54).

The spectral density for time- and space-like momenta

Following formula (2.3), we can now write the trace of spectral function for
time- and space-like momenta as

χµ
µ(K) =

ωN2
c T

2

2

[
e−c |y⊥(1)|2

|y⊥(0)|2 +
1

4
+

1

2ω
Im

(
y′‖(0)

y‖(0)

)]
. (2.56)

The complete results for χµ
µ are plotted in Fig.2.2 and Fig.2.3 as a function of

frequency for several values of the spatial momentum. As we increase the
value for c, one clearly sees that at low momenta the function decreases com-
pared to c = 0.

2.3.3 Electrical conductivity

With the spectral density in hand, it is now straightforward to compute the
electrical conductivity σ. Here, we will use Eq. (2.6) as we have an analytic
expression of the spectral density for lightlike momenta. Substituting (2.28)
into (2.6) yields

σ = lim
k0→0

e2

4T

χµ
µ(ω = q)

ek0/T − 1

= lim
k0→0

e2

8π

N2
c exp(−c)k0(1 +O(k0))

k0/T (1 +O(k0))

= e2
N2

c T

16π
exp(−c), (2.57)

with e the electric charge. We again note the presence of the scaling factor e−c

which dampens the IR-properties, including charge diffusion, of the system.
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Figure 2.2: Spectral function trace χµ
µ/ω, in units of N2

c T 2/2, plotted as a function of
ω. The solid lines describe c = 0.5 and the dashed lines for c = 0 while different colors

represent q = 0(red), q = 1(green), and q = 1.5(blue).

Note in particular that this IR-suppresion is also present in the charge sus-
ceptibility Ξ = N2

c T
2c/8(ec − 1) and the more “universal” diffusion constant

D ≡ σ/e2Ξ = (1 − e−c)/2πTc (see Appendix 2.B). Physically this makes sense,
as a mass-gap should dampen any hydrodynamic behaviour and the general
AdS/CFT computation for scale-dependent currents

SAdS ∼
∫
d4xdu

√−g 1

g2
eff (u)

FABF
AB , (2.58)

demonstrates this explicitly [30]6

D ∼ 1

g2
eff (u = 1)

∫ 1

0

du g2
eff (u) . . . (2.59)

2.4 Conclusion: Soft wall cut-offs as an IR mass-

gap.

The essential new ingredient in Soft-wall AdS/QCD is the ad-hoc cut-off of
the radial AdS-direction. It is intended to capture the dominant effects of the
scale dependence of QCD [12, 16]. However, its ad-hoc introduction opens
it to criticism; especially when interpreted as a dilaton-profile without taking
into account back-reaction effects or the dilaton equation of motion (see the

6This suggests a trivial violation of the PSS shear-viscosity-bound by IR-suppressing hydrody-
namic behaviour. As the derivation of the viscosity in [30] suggests, however, and the explicit
computation in massive N = 2 models shows [31], this is not case.
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Figure 2.3: Spectral function trace χµ
µ/ω, in units of N2

c T 2/2, plotted as a function of ω
for q = 0 and various values of c = 0(black), c = 0.2(red), c = 0.5(green), c = 0.6(bue),

c = 1.5(yellow), c = 2(magenta), and c = 3(cyan).

footnote in the introduction). On the other hand the succesful results of the
model [15,16], suggest that it does capture the essential IR behaviour correctly.

The result for AdS/QCD photon production supports this further. As pre-
viously emphasized it closely resembles photon production due to quarks for
N = 2 theories with massive flavor in the probe approximation Nf ≪ Nc [23].
These theories descend from brane-constructions in string theory, and there-
fore have no ad hoc component to criticise. Recall that in these theories, the
probe approximation means that one may consider the flavor group as a global
symmetry. The U(1) theory with respect to which photons are defined is a
subgroup of this group and the tunable quark mass — a free parameter in the
brane construction — functions as the scale in these theories. On the other
hand, because the matter and symmetry content is different from QCD, one
could question how relevant massive N = 2 SQCD results are to reality. The
observation we make now is that the resemblence between the trace of the
spectral function χµ

µ in these N = 2 SQCD theories as a function of the quark
massm and the AdS/QCD spectral function as a function of the IR-cut-off c can
be mathematically explained. Both therefore demonstrate again that AdS/CFT
results are remarkable universal and robust across fundamentally different
theories. This is therefore strong support for soft-wall AdS/QCD, despite its
ad-hoc IR-cut-off, as well as massive N = 2 SQCD, despite its unrealistic mat-
ter content, as descriptions of QCD.

To relate the massive N = 2 SQCD result to AdS/QCD, we note that Mateos
and Patiño showed that in N = 2 SQCD the defining equation relevant for the
trace of the spectral function for lightlike momenta can be deduced from an
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action7

S ∼
∫
dudx0dx1

[
−P (u)(∂0V⊥)2 + fP (u)(∂1V⊥)2 +Q(u)(∂uV⊥)2

]
, (2.60)

where

P (u) =
u3
√
g(ψm,0(u), u)

uf
,

Q(u) = f
(1 − ψ2

m,0(u))
3

u3
√
g(ψm,0(u), u)

=
1

u

u3f
√
g(ψm,0(u), u)

uf

u2f2(1 − ψ2
m,0(u))

3

u6g(ψm,0(u), u)
. (2.61)

Here f = f(u) = (1 − u2) is the non-extremality function in the D3-brane
metric (2.7). The function ψm,0(u) is the solution to the embedding equation
of motion for the D7-flavor brane derived from the DBI-action

S ∼
∫
du
√
g(ψm(u), u) =

∫
du

1

u3
(1 − ψ2

m)
√

1 − ψ2 + 4u2fψ′2 , (2.62)

i.e. g(ψ(u), u) is the induced metric on the flavor brane. The u = 0 boundary
behavior of the solution ψm,0 = m√

2
u1/2 + Λu3/2 + . . . is determined by the

masses m and condensate expectation value 〈qq〉 ∼ Λ of the quarks. For the
massless theory ψm=0,0 = 0 and

√
g = u−3. Thus to find the spectral function,

one must first solve the differential equation for ψm(u) with the appropriate
boundary conditions and then solve the differential equation for V⊥ [23]. The
first step correctly incorporates the backreaction of the modified IR-physics as
opposed to the AdS/QCD ad-hoc cut-off.

The massive case ψm,0(u) 6= 0 is therefore a step more involved than the
massless case, unlike AdS/QCD where the scale is a mild modification c 6= 0
of the defining differential equation (2.14). However, searching for a closer
match, one quickly realizes that the massless equation (for lightlike momenta

ω = ~k),

∂2
uV⊥ + ∂u(lnQ)∂uV⊥ + ~k2(1 − f)

P

Q
V⊥ = 0

⇒ ∂2
uV⊥ + ∂u(ln (f))∂uV⊥ + ~k2(1 − f)

(uf)−1

f
V⊥ = 0 , (2.63)

is exactly the AdS/QCD equation (2.14) for c = 0 and we are therefore lead to
consider a change of variables for the massive case that resembles that of the

7We only consider the D3/D7 brane set-up of [23]. The gauge/gravity duality for the D4/D6
brane set-up they also consider is not yet fully understood.
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massless case. Thus we define a new variable ũ such that

du
u3
√
g(ψm,0(u), u))

uf
= dũ

1

ũf̃
(2.64)

with f̃ ≡ f(ũ). By construction the parameter P in the new variable is identical
to the massless case and Q is seen to be a mild modification

P (ũ) =
1

ũf(ũ)
,

Q(ũ) = f(ũ)
ũ(1 − ψ2

m,0)
3

u(ũ)
. (2.65)

Note that the solution to the massive embedding equation of motion,ψm,0 6= 0,
is implicit in the transformation (2.64). In this new variable, however, we see,
that its specific form only mildly modifies the massless differential equation

∂2
ũV⊥ + ∂ũ

[
ln(f̃) + ln((1 − ψ2

m,0)
3 ũ

u(ũ)
)

]
∂ũV⊥ + ~k2(1 − f̃)

(ũf̃)−1

f(1 − ψ2)3
V⊥ = 0 .

(2.66)

and the close relation to AdS/QCD is now apparent. The resemblance of the
spectral functions is especially explained, if we recall that it is primarily deter-
mined by the u = 0 behaviour of the solution (2.20).8 As we know what the
u = 0 behaviour of the solution ψm,0 = m√

2
u1/2 + . . . must be, Eq. (2.64) shows

that asymptotically ũ = u+ m2

4 u
2 + . . . and we can putatively identify the mass

mwith the IR-cut-off c:

− cũ ≃ ln(1 − ψ2
m,0)

3 ũ

u
= ln(1 − m2

2
ũ+ . . .)3 − ln(1 − m2

4
ũ+ . . .)

≃ −5

4
m2ũ+ . . . (2.67)

The map between AdS/QCD and N = 2 SQCD is not exact; clearly we should
not have expected it to be. The latter shows thermal resonances in the spec-
tral function for masses m > 1.3092 which is the value beyond which the AdS
black-hole solution becomes thermodynamically unstable [23]. The AdS/QCD
description is much cruder as is no resonances show up even beyond the un-
stable regime c > 0.419035. These thermal resonances are encoded in the
subtleties of the embedding function ψm,0(u) which carries more information
than just the mass as an IR-cut-off. Precisely, the embedding function deter-
mines whether the flavor D7-brane is in “Minkowski embedding” or “black
hole embedding” corresponding to the low T confining or high T deconfining

8One should be careful in that the change of coordinates (2.64) in principle will also change the
boundary conditions one must impose.
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phase [23]. Clearly, the N = 2 SQCD theory has a more detailed description
at the physics. On the other hand, the results here do show that in the stable
phase the simple AdS/QCD model describes the IR-consequences of a mass-
gap remarkably well and the above derivation explains mathematically why.
This in itself lends support to continue to study AdS/QCD as a good toy model
for real-world physics.

2.A Spectral function low frequency limit for light-

like momenta

Here we find an analytic expression for the low-frequency limit of the trans-
verse scalar and spectral density for lightlike momenta by solving the differ-
ential equation for the E⊥(u) perturbatively, rather than using the Wronskian
shortcut, explained above eq. (2.22).

We first extract the other regular singularity at u = −1, writing

E⊥(u) = (1 − u)−iω/2(1 + u)−ω/2Y (u), (2.68)

with Y (u) regular at u = 1 and substitute this into (2.9). Changing variables to
v = 1/2(1 − u), we obtain the differential equation

v(1 − v)Y ′′ +
[
(1 − iω) − (2 − iω − ω − 2c)v − 2cv2

]
Y ′

−
{

1

2

[
−ω − iω + iω2

]
− c[ωv − iω + iωv]

}
Y = 0. (2.69)

In the absence of the IR-cutoff, c = 0, we recognize a hypergeometric equation
with solution [5]

Y (u) = 2F1

(
1 − 1

2
(1 + i)ω,−1

2
(1 + i)ω; 1 − iω;

1

2
(1 − u)

)
. (2.70)

As we noted earlier, the presence of c changes the nature of the equation and
no formal solution is known. On physical grounds we expect the effects of c to
dominate the low frequency part of the spectral function. Expanding Y (u) as

Y = Y0 + ωY1 + ω2Y2 + ω3Y3 + · · · , (2.71)

we find to first order in ω,

ω0 : v(1 − v)Y ′′
0 + [1 − 2v + 2cv(1 − v)]Y ′

0 = 0, (2.72)

ω1 : v(1 − v)Y ′′
1 + [v − i(1 − v)]Y ′

0 + [1 − 2v + 2cv(1 − v)]Y ′
1

+

{
1

2
(1 + i) + c[v − i(1 − v)]

}
Y0 = 0. (2.73)
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These two equations have solutions

Y0(v) = A+B
[
e−2cEi(2c− 2cv) − Ei(−2cv)

]
, (2.74)

Y1(v) = C +
A

2
[ln(v − 1) + i ln v] +

[
e−2cEi(2c− 2cv) − Ei(−2cv)

] [
D +

B

2
[ln(v − 1) + i ln v]

]
, (2.75)

with A,B,C,D constants of integration and Ei(x) = −
∫∞
−x

e−t

t dt the exponen-
tial integral function. To determine the integration constants, recall that by
construction the solutions must be regular as v → 0 (u → 1). Since the ex-
ponential integral Ei(v) diverges at v = 0, we must set B = 0. To determine
regularity of Y1(v), recall that Ei(x) can be written as

Ei(−x) = γ + lnx+

∞∑

n=1

(−1)nxn

n!n
, for x > 0, (2.76)

with γ the Euler-Mascheroni constant. Since the variable v ∈ [0, 1/2], and c >
0, regularity at v = 0 demands D = iA/2. For convenience, let us also redefine
the constant C = iC̃A/2. Substituting those constants into Y1, we obtain the
solution for E⊥ in the low frequency limit

E⊥(u) =A(1 − u)−iω/2(1 + u)−ω/2
{

1 + i
ω

2

[
C̃ + e−2cEi(c(1 + u)) − Ei(c(u − 1))

−i ln
(
u+ 1

2

)
+ ln

(
1 − u

2

)]
+ O(ω2)

}
. (2.77)

Using the definition of the exponential integral function, we straightforwardly
obtain the leading low-frequency contribution to transverse scalar function

ΠT (ω = q) = − N2
c T

2

8

[
−iω

2
− ω

2
+
iω

2
(ce−2cEi′(c) − cEi′(−c) − i− 1) + O(ω2)

]

=
iωN2

c T
2

16

[
−2i− (e−c + e−c) + O(ω2)

]
. (2.78)

This is the exact answer. The imaginary part computed via the conserved
Wronskian shortcut (2.27) clearly agrees.

2.B The susceptibility and the diffusion constant

We follow the procedure to compute the diffusion constant described in [11].
Using the gauge Vu = 0, we can rewrite equation (2.10) as

V‖ =
uf

qω
V ′′

t − c
uf

qω
V ′

t − q

ω
Vt. (2.79)
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Substituting into equation (2.13) we obtain a second order differential equa-
tion for E = V ′

t

E′′ +

[
(uf)′

uf
− c

]
E′ +

[
ω2 − q2f

uf2
− c

(uf)′

uf

]
E = 0. (2.80)

Imposing the same incoming-wave boundary condition as before and extract-
ing the singularity at the horizon u = 1, we rewrite E = (1 − u)−iω/2y, where y
is a regular function at the horizon. The function y must obey the equation

y′′ +

[
iω

1 − u
+

(uf)′

uf
− c

]
y′+

+

[
iω(iω + 2)

4(1 − u)2
+
iω((uf)′ − cuf)

2uf(1− u)
+
ω2 − q2f

uf2
− c

(uf)′

uf

]
y = 0. (2.81)

For low frequency and momentum, we again solve the equation pertubatively
in ω and q

y(u) = y00 + ωy10 + q2y02 + · · · . (2.82)

Up to first order in ω and q2, we find the system of equations

ω0q0 : y′′00 +

[
(uf)′

uf
− c

]
y′00 − c

(uf)′

uf
y00 = 0,

ω1q0 : y′′10 +
i

1 − u
y′00 +

[
(uf)′

uf
− c

]
y′10 +

[
i

2(1 − u)2
+
i((uf)′ − cuf)

2uf(1 − u)

]
y00

− c
(uf)′

uf
y10 = 0,

ω0q2 : y′′02 +

[
(uf)′

uf
− c

]
y′02 − c

(uf)′

uf
y02 −

f

uf2
y00 = 0. (2.83)

Using the same analysis for the low frequency of spectral function as described
in the previous Appendix, the solutions regular at u = 1 are found to be

y00 =Aecu

y10 =
iA

2
ecu+c [C10 + 2Ei(−cu) − ecEi(−c(1 + u))

−e−c (Ei(c(1 − u)) − ln(u − 1))
]

y02 =
A

2c
ecu+c [C02 − 2Ei(−cu) + ecEi(−c(1 + u))

+e−c
(

Ei(c(1 − u)) + 2 lnu− ln(u2 − 1)
)]
, (2.84)

where A and C10, C02 are constants independent of u. We can determine A in
terms of the boundary values of Vt and V‖ at u→ 0 defined as

lim
u→0

Vt(u) = V 0
t ,

lim
u→0

V‖(u) = V 0
‖ . (2.85)
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Substituting the solution for E = V ′
t into equation (2.79) and taking limit u →

0, the integration constants C10, C02 drop out and we can determine A to be

A =
q2V 0

t + ωqV 0
‖

iωec − ec

c (1 − e−c) q2 +O(ω2, ωq2, q4)
. (2.86)

We recognize the hydrodynamic pole and as explained in [11] we can now
compute the time-time component of the retarded thermal Green’s function
of two currents

Gtt =
N2

c T
2q2e−c

8(iω − (1−e−c)
c q2)

+ · · · , (2.87)

Thus the time-time component of the spectral density function at low fre-
quency and momentum equals

χtt(k
0, ~k) = −2 Im[Gtt] =

N2
c Tk

0|~k|2e−c

8π((k0)2 +D|~k|2)
+ . . . , (2.88)

with D =
(1−e−c)

2πTc the diffusion constant. Comparing the result with the uni-
versal hydrodynamic behaviour

χtt(k
0, ~k) =

2ωD|~k|2
(k0)2 + (D|~k|2)2

Ξ + . . . , (2.89)

the charge susceptibility Ξ is seen to equal Ξ =
N2

c T 2c
8(ec−1) and naturally satisfies

the Einstein relation Ξ = σ/e2D.



C H A P T E R 3

HOLOGRAPHIC BROWNIAN MOTION

AND TIME SCALES IN STRONGLY

COUPLED PLASMAS

3.1 Introduction

Brownian motion [6, 32, 33] is a window into the microscopic world of nature.
The random motion exhibited by a small particle suspended on a fluid tells us
that the fluid is not a continuum but is actually made of constituents of finite
size. A mathematical description of Brownian motion is given by the Langevin
equation, which phenomenologically describes the force acting on the Brow-
nian particle as a sum of dissipative and random forces. Both of these forces
originate from the incessant collisions with the fluid constituents and we can
learn about the microscopic interaction between the Brownian particle and
the fluid constituents if we measure these forces very precisely. Brownian mo-
tion is a universal phenomenon in finite temperature systems and any particle
immersed in a fluid at finite temperature undergoes Brownian motion; for ex-
ample, a heavy quark in the quark-gluon plasma also exhibits such motion.

A quark immersed in a quark-gluon plasma exhibits Brownian motion.
Therefore, it is a natural next step to study Brownian motion using the
AdS/CFT correspondence. An external quark immersed in a field theory
plasma corresponds to a bulk fundamental string stretching between the
boundary at infinity and the event horizon of the AdS black hole. In the finite
temperature black hole background, the string undergoes a random motion
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because of the Hawking radiation of the transverse fluctuation modes [64–66].
This is the bulk dual of Brownian motion, as was clarified in [67, 68]. By study-
ing the random motion of the bulk “Brownian string”, Refs. [67, 68] derived
the Langevin equation describing the random motion of the external quark
in the boundary field theory and determined the parameters appearing in the
Langevin equation. Other recent work on Brownian motion in AdS/CFT in-
cludes [69–71].

As mentioned above, by closely examining the random force felt by the
Brownian particle, we can learn about the interaction between the Brownian
particle and plasma constituents. The main purpose of the current chapter is
to use the AdS/CFT dictionary to compute the correlation functions of the ran-
dom force felt by the boundary Brownian particle by studying the bulk Brow-
nian string. From the random force correlators, we can read off time scales
characterizing the interaction between the Brownian particle and plasma con-
stituents, such as the mean-free-path time tmfp. The computation of tmfp has
already been discussed in [67] but there it was partly based on dimensional
analysis and the current chapter attempts to complete the computation.

More specifically, we will compute the 2- and 4-point functions of the ran-
dom force from the bulk and, based on a simple microscopic model, relate
them to the mean-free-path time tmfp. More precisely, the time scale tmfp is
related to the non-Gaussianity of the random force statistics. The computa-
tion of the 4-point function can be done using the usual GKPW rule and holo-
graphic renormalization, see section 1.4.1, with the Lorentzian AdS/CFT pre-
scription of section 1.7.2. In the computation, however, we encounter an IR
divergence. This is because we are expanding the Nambu–Goto action in the
transverse fluctuation around a static configuration and the expansion breaks
down very near the horizon where the local temperature becomes of the string
scale. We regularize this IR divergence by cutting off the geometry near the
horizon at the point where the expansion breaks down. For the case of a neu-
tral plasma, the resulting mean-free-path time is

tmfp ∼ 1

T logλ
, λ ≡ l4

α′2 , (3.1)

where T is the temperature and l is the AdS radius. Because the time elapsed in
a single event of collision is tcoll ∼ 1/T , this implies that the Brownian particle
is undergoing ∼ logλ collisions simultaneously. (So, the term mean-free-path
time is probably a misnomer; it might be more appropriate to call t−1

mfp the col-

lision frequency instead.) We write down a formula for tmfp for more general
cases with background charges. We apply it to the STU black hole which cor-
responds to a plasma that carries three U(1) R-charges. This is more relevant
to the actual quark-gluon plasma produced in RHIC and the LHC.
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3.2 Brownian motion in AdS/CFT

In this section we will briefly review how Brownian motion is realized in the
AdS/CFT setup [67, 68], mostly following [67]. If we put an external quark in a
CFT plasma at finite temperature, the quark undergoes Brownian motion as it
is kicked around by the constituents of the plasma. On the bulk side, this exter-
nal quark corresponds to a fundamental string stretching between the bound-
ary and the horizon. This string exhibits random motion due to Hawking ra-
diation of its transverse modes, which is the dual of the boundary Brownian
motion.

We will explain the central ideas of Brownian motion in AdS/CFT using the
simple case where the background plasma is neutral. In explicit computations,
we consider the AdS3/CFT2 example for which exact results are available. Then
we will move on to discuss more general cases of charged plasmas.

3.2.1 Boundary Brownian motion

Let us begin our discussion of Brownian motion from the boundary side,
where an external quark immersed in the CFT plasma undergoes random
Brownian motion. A general formulation of non-relativistic Brownian motion
is based on the generalized Langevin equation [75,76], which takes the follow-
ing form in one spatial dimension:

ṗ(t) = −
∫ t

−∞
dt′ γ(t− t′) p(t′) +R(t) +K(t), (3.2)

where p = mẋ is the (non-relativistic) momentum of the Brownian particle at
position x, and˙≡ d/dt. The first term on the right hand side of (3.2) represents
(delayed) friction, which depends linearly on the past trajectory of the particle
via the memory kernel γ(t). The second term corresponds to the random force
which we assume to have the following average:

〈R(t)〉 = 0, 〈R(t)R(t′)〉 = κ(t− t′), (3.3)

where κ(t) is some function. The random force is assumed to be Gaussian;
namely, all higher cumulants of R vanish. K(t) is an external force that can be
added to the system. The separation of the force into frictional and random
parts on the right hand side of (3.2) is merely a phenomenological simplifi-
cation; microscopically, the two forces have the same origin (collision with
the fluid constituents). As a result of the two competing forces, the Brown-
ian particle exhibits thermal random motion. The two functions γ(t) and κ(t)
completely characterize the Langevin equation (3.2). Actually, γ(t) and κ(t) are
related to each other by the fluctuation-dissipation theorem [77].
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The time evolution of the displacement squared of a Brownian particle
obeying (3.2) has the following asymptotic behavior [33]:

〈s(t)2〉 ≡ 〈[x(t) − x(0)]2〉 ≈






T

m
t2 (t≪ trelax) : ballistic regime

2Dt (t≫ trelax) : diffusive regime

(3.4)

The crossover time scale trelax between two regimes is given by

trelax =
1

γ0
, γ0 ≡

∫ ∞

0

dt γ(t), (3.5)

while the diffusion constant D is given by

D =
T

γ0m
. (3.6)

In the ballistic regime, t ≪ trelax, the particle moves inertially (s ∼ t) with
the velocity determined by equipartition, |ẋ| ∼

√
T/m, while in the diffusive

regime, t ≫ trelax, the particle undergoes a random walk (s ∼
√
t). This is

because the Brownian particle must be hit by a certain number of fluid parti-
cles to lose the memory of its initial velocity. The time trelax between the two
regimes is called the relaxation time which characterizes the time scale for the
Brownian particle to thermalize.

By Fourier transforming the Langevin equation (3.2), we obtain

p(ω) = µ(ω)[R(ω) +K(ω)], µ(ω) =
1

γ[ω] − iω
. (3.7)

The quantity µ(ω) is called the admittance which describes the response of the
Brownian particle to perturbations. p(ω), R(ω),K(ω) are Fourier transforms,
e.g.,

p(ω) =

∫ ∞

−∞
dt p(t) eiωt, (3.8)

while γ[ω] is the Fourier–Laplace transform:

γ[ω] =

∫ ∞

0

dt γ(t) eiωt. (3.9)

In particular, if there is no external force, K = 0, (3.7) gives

p(ω) = −imωx(ω) = µ(ω)R(ω) (3.10)

and, with the knowledge of µ, we can determine the correlation functions of
the random force R from those of p or those of the position x.

In the above, we discussed the Langevin equation in one spatial dimension,
but generalization to n = d− 2 spatial dimensions is straightforward.1

1We assume that d ≥ 3 and thus n ≥ 1.
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Figure 3.1: The bulk dual of a Brownian particle: a fundamental string attached
to the boundary of the AdS space and dipping into the horizon. Because of the
Hawking radiation of the transverse fluctuation modes on the string, the string
endpoint at infinity moves randomly, corresponding to the Brownian motion
on the boundary.

3.2.2 Bulk Brownian motion

The AdS/CFT correspondence states that string theory in AdSd is dual to a CFT
in (d − 1) dimensions. In particular, the neutral planar AdS-Schwarzschild
black hole with metric

ds2d =
r2

l2
[
−f(r)dt2 + (dXI)2

]
+

l2

r2f(r)
dr2, f(r) = 1 −

(rH
r

)d−1

(3.11)

is dual to a neutral CFT plasma at a temperature equal to the Hawking temper-
ature of the black hole,

T =
1

β
=

(d− 1)rH
4πl2

. (3.12)

In the above, l is the AdS radius, t ∈ R is time, andXI = (X1, . . . , Xd−2) ∈ R
d−2

are the spatial coordinates on the boundary. We will set l = 1 henceforth.
The external quark in CFT corresponds in the bulk to a fundamental string

in the black hole geometry (3.11) which is attached to the boundary at r =
∞ and dips into the black hole horizon at r = rH ; see Figure 3.1. The XI

coordinates of the string at r = ∞ in the bulk define the boundary position of
the external quark. As we discussed above, such an external particle at finite
temperature T undergoes Brownian motion. The bulk dual statement is that
the black hole environment in the bulk excites the modes on the string and,
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as the result, the endpoint of the string at r = ∞ exhibits a Brownian motion
which can be modeled by a Langevin equation.

The string in the bulk does not just describe an external point-like quark in
the CFT with its position given by the position of the string endpoint at r = ∞.
The transverse fluctuation modes of the bulk string correspond on the CFT
side to the degrees of freedom that were induced by the injection of the exter-
nal quark into the plasma. In other words, the quark immersed in the plasma
is dressed with a “cloud” of excitations of the plasma and the transverse fluctu-
ation modes on the bulk string correspond to the excitation of this cloud.2 In
a sense, the quark forms a “bound state” with the background plasma and the
excitation of the transverse fluctuation modes on the bulk string corresponds
to excited bound states.

We study this motion of a string in the probe approximation where we ig-
nore its backreaction on the background geometry. We also assume that there
is no B-field in the background. In the black hole geometry, the transverse
fluctuation modes of the string get excited due to Hawking radiation [64]. If
the string coupling gs is small, we can ignore the interaction between the trans-
verse modes on the string and the thermal gas of closed strings in the bulk of
the AdS space. This is because the magnitude of Hawking radiation (for both
string transverse modes and the bulk closed strings) is controlled by GN ∝ g2

s ,
and the effect of the interaction between the transverse modes on the string
and the bulk modes is further down by g2

s .

Let the string be along the r direction and consider small fluctuations of it
in the transverse directionsXI . The action for the string is simply the Nambu–
Goto action in the absence of a B-field. In the gauge where the world-sheet
coordinates are identified with the spacetime coordinates xµ = t, r, the trans-
verse fluctuations XI become functions of xµ: XI = XI(x). By expanding the
Nambu–Goto action up to quadratic order in XI , we obtain

SNG = − 1

2πα′

∫
d2x
√

− detγµν ≈ 1

4πα′

∫
dt dr

[
(∂tX

I)2

f
− r4f (∂rX

I)2
]
≡ S0,

(3.13)

where γµν is the induced metric. In the second approximate equality we also
dropped the constant term that does not depend on XI . This quadratic ap-
proximation is valid as long as the scalarsXI do not fluctuate too far from their
equilibrium value (taken here to beXI = 0). This corresponds to taking a non-
relativistic limit for the transverse fluctuations. We will be concerned with the
validity of this quadratic approximation later. The equation of motion derived
from (3.13) is

[f−1ω2 + ∂r(r
4f∂r)]X

I = 0, (3.14)

2For a recent discussion on this non-Abelian “dressing”, see [78].
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where we set XI(r, t) ∝ e−iωt. Because XI with different polarizations I are
independent and equivalent, we will consider only one of them, say X1, and
simply call it X henceforth.

The quadratic action (3.13) and the equation of motion (3.14) derived from
it are similar to those for a Klein–Gordon scalar. Therefore, the quantization
of this theory can be done just the same way, by expanding X in a basis of
solutions to (3.14). Because t is an isometry direction of the geometry (3.11),
we can take the frequency ω to label the basis of solutions. So, let {uω(x)},
ω > 0 be a basis of positive-frequency modes. Then we can expand X as

XI(x) =

∫ ∞

0

dω

2π
[aωuω(x) + a†ωuω(x)∗]. (3.15)

If we normalize uω(x) by introducing an appropriate norm (see Appendix 3.A),
the operators a, a† satisfy the canonical commutation relation

[aω, aω′ ] = [a†ω, a
†
ω′ ] = 0, [aω, aω′ ] = 2πδ(ω − ω′). (3.16)

To determine the basis {uω(x)}, we need to impose some boundary con-
dition at r = ∞. The usual boundary condition in Lorentzian AdS/CFT is to
require normalizability of the modes at r = ∞ [48] but, in the present case,
that would correspond to an infinitely long string extending to r = ∞, which
would mean that the mass of the external quark is infinite and there would be
no Brownian motion. So, instead, we introduce a UV cut-off 3 near the bound-
ary to make the mass very large but finite. Specifically, we implement this by
means of a Neumann boundary condition

∂rX = 0 at r = rc ≫ rH , (3.17)

where r = rc is the cut-off surface.4 The relation between this UV cut-off r = rc
and the mass m of the external particle is easily computed from the tension of
the string:

m =
1

2πα′

∫ rc

rH

dr
√
gtt grr =

rc − rH
2πα′ ≈ rc

2πα′ . (3.18)

Before imposing a boundary condition, the wave equation (3.14) in general
has two solutions, which are related to each other by ω ↔ −ω. Denote these
solutions by g±ω(r). They are related by gω(r)∗ = g−ω(r). These solutions are
easy to obtain in the near horizon region r ≈ rH , where the wave equation
reduces to

(ω2 + ∂2
r∗

)Xω ≈ 0. (3.19)

3We use the terms “UV” and “IR” with respect to the boundary energy. In this terminology, in
the bulk, UV means near the boundary and IR means near the horizon.

4In the AdS/QCD context, one can think of the cut-off being determined by the location of the
flavour brane, whose purpose again is to introduce dynamical (finite mass) quarks into the field
theory.
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Here, r∗ is the tortoise coordinate defined by

dr∗ =
dr

r2f(r)
. (3.20)

Near the horizon, we have

r∗ ∼ 1

(d− 1)rH
log

(
r − rH
rH

)
(3.21)

up to an additive numerical constant. Normally this constant is fixed by set-
ting r∗ = 0 at r = ∞, but we will later find that some other choice is more
convenient. From (3.19), we see that, in the near horizon region r = rH , we
have the following outgoing and ingoing solutions:

gω(r) ≈ eiωr∗ : outgoing, g−ω(r) ≈ e−iωr∗ : ingoing. (3.22)

The boundary condition (3.17) dictates that we take the linear combination

fω(r) = gω(r) + eiθωg−ω(r), eiθω = − ∂rgω(rc)

∂rg−ω(rc)
. (3.23)

We can show that θω is real using the fact that g−ω = g∗ω.
The normalized modes uω(t, r) are essentially given by fω(r); namely,

uω(t, r) ∝ e−iωtfω(r). A short analysis of the norm (see Appendix 3.A) shows
that the correctly normalized mode expansion is given by

X(t, r) =

√
2πα′

rH

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
, (3.24)

where fω(r) behaves near the horizon as

fω(r) → eiωr∗ + eiθωe−iωr∗ , r → rH (r∗ → −∞). (3.25)

If we can find such fω(r), then a, a† satisfy the canonically normalized com-
mutation relation (3.16).

We identify the position x(t) of the boundary Brownian particle withX(t, r)
at the cutoff r = rc:

x(t) ≡ X(t, rc) =

√
2πα′

rH

∫ ∞

0

dω

2π

1√
2ω

[fω(rc)e
−iωtaω + fω(rc)

∗eiωta†ω]. (3.26)

The equation (3.26) relates the correlation functions of x(t) to those of a, a†.
Because the quantum field X(t, r) is immersed in a black hole background,
its modes Hawking radiate [64]. This can be seen from the fact that, near the
horizon, the worldsheet action (3.13) is the same as that of a Klein–Gordon
field near a two-dimensional black hole. The standard quantization of fields
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in curved spacetime [79] shows that the field gets excited at the Hawking tem-
perature. At the semiclassical level, the excitation is purely thermal:

〈a†ωaω′〉 =
2πδ(ω − ω′)

eβω − 1
. (3.27)

Using (3.26) and (3.27), one can compute the correlators of x to show that it un-
dergoes Brownian motion [67], having both the ballistic and diffusive regimes.

In the AdS3 (d = 3) case, we can carry out the above procedure very explic-
itly. In this case, the metric (3.11) becomes the nonrotating BTZ black hole:

ds2 = −(r2 − r2H) dt2 +
dr2

r2 − r2H
+ r2 dX2. (3.28)

For the usual BTZ black hole, X is written asX = φ where φ ∼= φ+ 2π, but here
we are taking X ∈ R, corresponding to a “planar” black hole. The Hawking
temperature (3.12) is, in this case,

T ≡ 1

β
=
rH
2π
. (3.29)

In terms of the tortoise coordinate r∗, the metric (3.28) becomes

ds2 = (r2 − r2H)(−dt2 + dr2∗) + r2 dX2, r∗ ≡ 1

2rH
ln

(
r − rH
r + rH

)
. (3.30)

The linearly independent solutions to (3.14) are given by g±ω(r), where

gω(r) =
1

1 + iν

ρ+ iν

ρ

(
ρ− 1

ρ+ 1

)iν/2

=
1

1 + iν

ρ+ iν

ρ
eiωr∗ . (3.31)

Here we introduced

ρ ≡ r

rH
, ν ≡ ω

rH
=
βω

2π
. (3.32)

The linear combination that satisfies the Neumann boundary condition (3.17)
is

fω = gω(ρ) + eiθωg−ω(ρ),

eiθω = − ∂rgω(rc)

∂rg−ω(rc)
=

1 − iν

1 + iν

1 + iρcν

1 − iρcν

(
ρc − 1

ρc + 1

)iν

,
(3.33)

where ρc ≡ rc/rH . This has the correct near-horizon behavior (3.25) too.
By analyzing the correlators of x(t) using the bulk Brownian motion, one

can determine the admittance µ(ω) defined in (3.7) for the dual boundary
Brownian motion [67]. Although the result for general frequency ω is difficult
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to obtain analytically for general dimensions d, its low-frequency behavior is
relatively easy to find; this was done in [67] and the result for AdSd/CFTd−1 is

µ(ω) =
(d− 1)2α′β2m

8π
+ O(ω). (3.34)

This agrees with the results obtained by drag force computations [35,38,39,41].
For later use, let us also record the low-frequency behavior of the random force
correlator obtained in [67]:

G(R)(t1, t2) ≡ 〈T [R(t1)R(t2)]〉, (3.35)

G(R)(ω1, ω2) = 2πδ(ω1 + ω2)

[
16π

(d− 1)2α′β3
+ O(ω)

]
, (3.36)

where T is the time ordering operator.

3.2.3 Generalizations

In the above, we considered the simple case of neutral black holes, corre-
sponding to neutral plasmas in field theory. More generally, however, we can
consider situations where the field theory plasmas carry nonvanishing con-
served charges. For example, the quark-gluon plasma experimentally pro-
duced by heavy ion collision has net baryon number. Field theory plasmas
charged under such global U(1) symmetries correspond on the AdS side to
black holes charged under U(1) gauge fields.

On the gravity side of the correspondence, we do not just have AdSd space
but also some internal manifold on which higher-dimensional string/M the-
ory has been compactified. U(1) gauge fields in the AdSd space can be com-
ing from (i) form fields in higher dimensions upon compactification on the
internal manifold, or (ii) the off-diagonal components of the higher dimen-
sional metric with one index along the internal manifold. In the former case
(i), a charged CFT plasma corresponds to a charged black hole, i.e. a Reissner–
Nordström black hole (or a generalization thereof to form fields) in the full
spacetime. In this case, the analysis in the previous subsections applies al-
most unmodified, because a fundamental string is not charged under such
form fields (except for the B-field which is assumed to vanish in the present
chapter) and its motion is not affected by the existence of those form fields.
Namely, the same configuration of a string—stretching straight between the
AdS boundary and the horizon and trivial in the internal directions—is a so-
lution of the Nambu–Goto action. Therefore, as far as the fluctuation in the
AdSd directions is concerned, we can forget about the internal directions and
the analysis in the previous subsections goes through unaltered, except that
the metric (3.11) must be replaced by an appropriate AdS black hole metric
deformed by the existence of charges.
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The latter case (ii), on the other hand, corresponds to having a rotating
black hole (Kerr black hole) in the full spacetime. A notable example is the
STU black hole which is a non-rotating black hole solution of five-dimensional
AdS supergravity charged under three different U(1) gauge fields [80]. From
the point of view of 10-dimensional Type IIB string theory in AdS5 × S5, this
black hole is a Kerr black hole with three angular momenta in the S5 direc-
tions [81]. This solution can also be obtained by taking the decoupling limit of
the spinning D3-brane metric [81–83]. Analyzing the motion of a fundamental
string in such a background spacetime in general requires a 10-dimensional
treatment, because the string gets affected by the angular momentum of the
black hole in the internal directions [40,84,85]. So, to study the bulk Brownian
motion in such situations, we have to find a background solution in the full 10-
dimensional spacetime and consider fluctuation around that 10-dimensional
configuration. The background solution is straight in the AdS part as before
but can be nontrivial in the internal directions due to the drag by the geome-
try.

In either case, to study the transverse fluctuation of the string around a
background configuration, we do not need the full 10- or 11-dimensional met-
ric. For simplicity, let us focus on the transverse fluctuation in one of the AdSd

directions. Then we only need the three-dimensional line element along the
directions of the background string configuration and the direction of the fluc-
tuation. Let us write the three-dimensional line element in general as

ds2 = −ht(r)f(r)dt2 +
hr(r)

f(r)
dr2 +G(r)dX2. (3.37)

X is one of the spatial directions in AdSd, parallel to the boundary. It is as-
sumed that X(t, r) = 0 is a solution to the Nambu–Goto action in the full
(10- or 11-dimensional) spacetime, and we are interested in the fluctuations
around it.5 The nontrivial effects in the internal directions have been incor-
porated in this metric (3.37). We will see how such a line element arises in the
explicit example of the STU black hole in section 3.6. In this subsection, we will
briefly discuss the random motion of a string in general backgrounds using the
metric (3.37).

In the metric (3.37), the horizon is at r = rH where rH is the largest positive
solution to f(r) = 0. The functions ht(r) and hr(r) are assumed to be regular
and positive in the range rH ≤ r < ∞. Near the horizon r ≈ rH , expand f(r)
as

f(r) ≈ 2kH(r − rH), kH ≡ 1

2
f ′(rH). (3.38)

5Note that, under this assumption in a static spacetime, the three-dimensional line element
can be always written in the form of (3.37). The (t, r) and (t, X) components should vanish by
the assumption that X(t, r) = 0 is a solution, and the (t, r) component can be eliminated by a
coordinate transformation.
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The Hawking temperature of the black hole, TH , is given by

TH =
1

β
=
kH

2π

√
ht(rH)

hr(rH)
. (3.39)

For the metric to asymptote to AdS near the boundary, we have

htf ∼ r2

l2
,

hr

f
∼ l2

r2
as r → ∞, (3.40)

where we reinstated the AdS radius l. Also, because the X direction (3.37) is
assumed to be one of the spatial directions of the AdSd directions parallel to
the boundary, G(r) must go as

G ∼ r2

l2
as r → ∞. (3.41)

We demand that G(r) be regular and positive in the region rH ≤ r < ∞. Note
that the parametrization of the two metric components gtt, grr using three
functions ht, hr, f is redundant and thus has some arbitrariness.

Consider fluctuation around the background configuration X(t, r) = 0 in
the static gauge where t, r are the worldsheet coordinates. Just as in (3.13), the
quadratic action obtained by expanding the Nambu–Goto action in X is

S0 = − 1

4πα′

∫
dσ2√−g Ggµν∂µX∂νX, (3.42)

where gµν is the t, r part of the metric (3.37) (i.e., the induced worldsheet met-
ric for the background configuration X(t, r) = 0), and g = det gµν . The equa-
tion of motion derived from the quadratic action (3.42) is

− Ẍ +

√
ht

hr

f

G
∂r

(√
ht

hr
fGX ′

)
= 0, (3.43)

where ˙= ∂t, ′ = ∂r. In terms of the tortoise coordinate r∗ defined by

dr∗ =
1

f

√
hr

ht
dr, (3.44)

(3.43) becomes a Schrodinger-like wave equation [86]:

[
d2

dr2∗
+ ω2 − V (r)

]
Xω(r) = 0, (3.45)

where we set X(t, r) = e−iωtη(r)Xω(r) and the “potential” V (r) is given by

V (r) = −η dr
dr∗

d

dr

[
1

η2

dr

dr∗

dη

dr

]
, η = G−1/2. (3.46)
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The potential V (r) vanishes at the horizon and will become more and more
important as we move towards the boundary r → ∞ where V (r) ∼ 2r2/l4.

Just as in the previous subsection, let the two solutions to the wave equa-
tion (3.45) be gω(r) and g−ω(r) = gω(r)∗. Near the horizon where V (r) = 0, the
wave equation (3.45) takes the same form as (3.19) and therefore g±ω(r) can be
taken to have the following behavior near the horizon

g±ω(r) → e±iωr∗ as r → rH . (3.47)

If we introduce a UV cutoff at r = rc as before, the solution fω(r) satisfying the
Neumann boundary condition (3.17) at r = rc is a linear combination of g±ω(r)
and can be written as (3.23). Using this fω(r), we can expand the fluctuation
fieldX(t, r) as

X(t, r) =

√
2πα′

G(rH)

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
, (3.48)

where aω, a
†
ω are canonically normalized to satisfy (3.16). As before, the value of

X(t, r) at the UV cutoff r = rc is interpreted as the position x(t) of the bound-
ary Brownian motion: X(t, rc) ≡ x(t). By assuming that the modes Hawking
radiate thermally as in (3.27), we can determine the parameters of the bound-
ary Brownian motion such as the admittance µ(ω).

In general, solving the wave equation (3.45) and obtaining explicit analytic
expressions for g±ω, fω is difficult. However, in the low frequency limit ω → 0,
it is possible to determine their explicit forms as explained in [67] or in Ap-
pendix 3.B and, based on that, one can compute the low frequency limit of
µ(ω) following the procedure explained in [67]. The result is

µ(ω) =
2mπα′

G(rH)
+ O(ω). (3.49)

From this, we can derive the low frequency limit of the random force correlator
as follows:

G(R)(ω1, ω2) = 2πδ(ω1 + ω2)

[
G(rH)

πα′β
+ O(ω)

]
. (3.50)

3.3 Time scales

3.3.1 Physics of time scales

In Eq. (3.5), we introduced the relaxation time trelax which characterizes the
thermalization time of the Brownian particle. From Brownian motion, we can
read off other physical time scales characterizing the interaction between the
Brownian particle and plasma.
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One such time scale, the microscopic (or collision duration) time tcoll, is de-
fined to be the width of the random force correlator function κ(t). Specifically,
let us define

tcoll =

∫ ∞

0

dt
κ(t)

κ(0)
. (3.51)

If κ(t) = κ(0)e−t/tcoll , the right hand side of this precisely gives tcoll. This tcoll

characterizes the time scale over which the random force is correlated, and
thus can be interpreted as the time elapsed in a single process of scattering. In
usual situations,

trelax ≫ tcoll. (3.52)

Another natural time scale is the mean-free-path time tmfp given by the typ-
ical time elapsed between two collisions. In the usual kinetic theory, this mean
free path time is typically tcoll ≪ tmfp ≪ trelax; however in the case of present
interest, this separation no longer holds, as we will see. For a schematic expla-
nation of the timescales tcoll and tmfp, see Figure 3.2.

Figure 3.2: A sample of the stochastic variable R(t), which consists of many
pulses randomly distributed.

3.3.2 A simple model

The collision duration time tcoll can be read off from the random force 2-point
function κ(t) = 〈R(t)R(0)〉. To determine the mean-free-path time tmfp, we
need higher point functions and some microscopic model which relates those
higher point functions with tmfp. Here we propose a simple model 6 which re-
lates tmfp with certain 4-point functions of the random force R.

For simplicity, we first consider the case with one spatial dimension. Con-
sider a stochastic quantityR(t) whose functional form consists of many pulses

6This is a generalization of the discussion given in Appendix D.1 of [67]. For somewhat similar
models (binary collision models), see [87] and references therein.
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randomly distributed. R(t) is assumed to be a classical quantity (c-number).
Let the form of a single pulse be P (t). Furthermore, assume that the pulses
come with random signs. If we have k pulses at t = ti (i = 1, 2, . . . , k), thenR(t)
is given by

R(t) =

k∑

i=1

ǫiP (t− ti), (3.53)

where ǫi = ±1 are random signs.
Let the distribution of pulses obey the Poisson distribution, which is a

physically reasonable assumption if R is caused by random collisions. This
means that the probability that there are k pulses in an interval of length τ , say
[0, τ ], is given by

Pk(τ) = e−µτ (µτ)k

k!
. (3.54)

Here, µ is the number of pulses per unit time. In other words, 1/µ is the aver-
age distance between two pulses. We do not assume that the pulses are well
separated; namely, we do not assume ∆ ≪ 1/µ. If we identify R(t) with the
random force in the Langevin equation, tmfp = 1/µ.

The 2-point function for R can be written as

〈R(t)R(t′)〉 =

∞∑

k=1

e−µτ (µτ)k

k!

k∑

i,j=1

〈ǫiǫjP (t− ti)P (t′ − tj)〉k, (3.55)

where we assumed t, t′ ∈ [0, τ ] and 〈 〉k is the statistical average when there
are k pulses in the interval [0, τ ]. Because k pulses are randomly and indepen-
dently distributed in the interval [0, τ ] by assumption, this expectation value is
computed as

k∑

i,j=1

〈ǫiǫjP (t− ti)P (t′ − tj)〉k

=
1

τk

∫ τ

0

dt1 · · ·dtk




k∑

i=1

P (t− ti)P (t′ − ti) +

k∑

i6=j

〈ǫiǫj〉kP (t− ti)P (t′ − tj)



 .

(3.56)

Here, the second term vanishes because 〈ǫiǫj〉k = 0 for i 6= j. Therefore, one
readily computes

∑

i,j=1

〈ǫiǫjP (t− ti)P (t′ − tj)〉k =
k

τ

∫ τ

0

dt1P (t− t1)P (t′ − t1)

≈ k

τ

∫ ∞

−∞
dt1 P (t− t1)P (t′ − t1). (3.57)
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Here, in going to the second line, we took τ to be much larger than the support
of P (t), which is always possible because τ is arbitrary. Substituting this back
into (3.55), we find

〈R(t)R(t′)〉 = µ

∫ ∞

−∞
dt1 P (t− t1)P (t′ − t1). (3.58)

In a similar way, one can compute the following 4-point function:

〈R(t)R(t′)R(t′′)R(t′′′)〉

=

∞∑

k=1

e−µτ (µτ)k

k!

k∑

i,j,m,n=1

〈ǫiǫjǫmǫnP (t− ti)P (t′ − tj)P (t′′ − tm)P (t′′′ − tn)〉k.

(3.59)

Again, the expectation value 〈ǫiǫjǫmǫn〉k vanishes unless some of i, j,m, n are
equal. The possibilities are i = j 6= m = n, i = m 6= j = n, i = n 6= j = m, and
i = j = m = n. Taking into account all these possibilities, in the end we have

〈R(t)R(t′)R(t′′)R(t′′′)〉 = 〈R(t)R(t′)R(t′′)R(t′′′)〉disc + 〈R(t)R(t′)R(t′′)R(t′′′)〉conn,
(3.60)

where

〈R(t)R(t′)R(t′′)R(t′′′)〉disc = 〈R(t)R(t′)〉〈R(t′′)R(t′′′)〉 + 〈R(t)R(t′′)〉〈R(t′)R(t′′′)〉
+ 〈R(t)R(t′′′)〉〈R(t′)R(t′′)〉, (3.61)

〈R(t)R(t′)R(t′′)R(t′′′)〉conn = µ

∫ ∞

−∞
duP (t− u)P (t′ − u)P (t′′ − u)P (t′′′ − u).

(3.62)

We can think of (3.61) as the “disconnected part” and (3.62) as the “connected
part”, or non-Gaussianity of the random force statistics.

In the Fourier space, the expressions for these correlation functions sim-
plify:

〈R(ω1)R(ω2)〉 = 2πµδ(ω1 + ω2)P (ω1)P (ω2), (3.63)

〈R(ω1) · · ·R(ω4)〉disc = (2πµ)2[δ(ω1 + ω2)δ(ω3 + ω4) + δ(ω1 + ω3)δ(ω2 + ω4)

+ δ(ω1 + ω4)δ(ω2 + ω3)]P (ω1) · · ·P (ω4), (3.64)

〈R(ω1) · · ·R(ω4)〉conn = 2πµδ(ω1 + · · · + ω4)P (ω1) · · ·P (ω4). (3.65)

In particular, for small ωi,

〈R(ω1)R(ω2)〉 ≈ 2πµδ(ω1 + ω2)P (ω = 0)2 (3.66)

〈R(ω1)R(ω2)R(ω3)R(ω4)〉conn ≈ 2πµδ(ω1 + ω2 + ω3 + ω4)P (ω = 0)4. (3.67)
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Therefore, from the small frequency behavior of 2-point function and con-
nected 4-point function, we can separately read off the mean-free-path time
tmfp ∼ 1/µ and P (ω = 0), the impact per collision.

The discussion thus far has been focused on the case with one spatial di-
mension, but generalization to n = d − 2 spatial dimensions is straightfor-
ward. In this case, the random force becomes an n-dimensional vector RI(t),
I = 1, 2, . . . , n. Generalizing (3.53), let us model the random force to be given
by a sum of pulses:

RI(t) =

k∑

i=1

ǫIiP (t− ti). (3.68)

Here, for each value of i, ǫIi is a stochastic variable taking random values in the
(n − 1)-dimensional sphere Sn−1. We also assume that ǫIi for different values
of i are independent of each other. Then we can readily compute the following
statistical average:

〈ǫIi ǫJi 〉 =
δIJ

n
, 〈ǫIi ǫJi ǫKi ǫLi 〉 =

δIJδKL + δIKδJL + δILδJK

n(n+ 2)
. (3.69)

From this, we can derive the following R-correlators:

〈RI(ω1)R
J(ω2)〉 =

2πµ

n
δIJδ(ω1 + ω2)P (ω1)P (ω2), (3.70)

〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉 = 〈RI(ω1)R

J(ω2)R
K(ω3)R

L(ω4)〉conn

+ 〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉disc,

(3.71)

where

〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉disc = 〈RI(ω1)R

J(ω2)〉〈RK(ω3)R
L(ω4)〉

+ 〈RI(ω1)R
K(ω3)〉〈RJ (ω2)R

L(ω4)〉
+ 〈RI(ω1)R

L(ω4)〉〈RJ(ω2)R
K(ω3)〉,

(3.72)

〈RI(ω1)R
J(ω2)R

K(ω3)R
L(ω4)〉conn =

2πµ

n(n+ 2)
(δIJδKL + δIKδJL + δILδJK)

× δ(ω1 + · · · + ω4)P (ω1) · · ·P (ω4).
(3.73)

These are essentially the same as the n = 1 results (3.63), (3.65) and we can
compute the mean-free-path time tmfp ∼ 1/µ from the small ω behavior of 2-
and 4-point functions.

We will use these relations to read off tmfp for the Brownian particle in CFT
plasma using the bulk Brownian motion.
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3.3.3 Non-Gaussian random force and Langevin equation

In the above, we argued that the time scale tmfp that characterizes the statistical
properties of the random force R is related to the nontrivial part (connected
part) of the 4-point function of R. Namely, it is related to the non-Gaussianity
of the random force. Here, let us briefly discuss the relation between non-
Gaussianity and the non-linear Langevin equation.

In subsection 3.2.1, we discussed the linear Langevin equation (3.2) for
which the friction is proportional to the momentum p. In other words, the
friction coefficient γ(t) did not contain p. Furthermore, the random force R
was assumed to be Gaussian. In many real systems, Gaussian statistics for the
random force gives a good approximation, and the linear Langevin equation
provides a useful approach to study the systems. However, this idealized phys-
ical situation does not describe nature in general. For example, even the sim-
plest case of a Brownian particle interacting with the molecules of a solvent
is rather thought to obey a Poissonian than a Gaussian statistics (just like the
simple model discussed in subsection 3.3.2). It is only in the weak collision
limit where energy transfer is relatively small compared to the energy of the
system that the central limit theorem says that the statistics can be approxi-
mated as Gaussian [88, 89]. Furthermore, due to the non-linear fluctuation-
dissipation relations [90], the non-Gaussianity of random force and the non-
linearity of friction are closely related. An extension of the phenomenological
Langevin equation that incorporates such non-linear and non-Gaussian situ-
ations is an issue that has not yet been completely settled (for a recent discus-
sion, see [89]).

However, the relation between time scales tcoll, tmfp and R correlators de-
rived in subsection 3.3.2 does not depend on the existence of such an exten-
sion of the Langevin equation. Below, we will compute R correlators using
the AdS/CFT correspondence and derive expressions for the time scale tmfp,
but that derivation will not depend on the existence of an extended Langevin
equation either.7 It would be interesting to use the concrete AdS/CFT setup for
Brownian motion to investigate the above issue of a non-linear non-Gaussian
Langevin equation. We leave it for future research.

3.4 Holographic computation of the R-correlator

In the last section, we saw that tmfp can be read off if we know the low-
frequency limit of the 2- and 4-point functions of the random force. For

7More precisely, the computation in subsection 3.4.2 is independent of the existence of any
Langevin equation, because we directly compute the R correlators using the fact that the total
force F equals R in the m → ∞ limit. On the other hand, in subsection 3.4.1, we compute the R
correlators directly, but use the relation (3.77) derived from the linear Langevin equation. So, the
latter computation is assuming that a Langevin equation exists at least to the linear order.
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the connected 4-point function to be nonvanishing, we need more than the
quadratic term S0 in (3.13) or (3.42). Such terms will arise if we keep higher
order terms in the expansion of the Nambu–Goto action. This amounts to tak-
ing into account the relativistic correction to the motion of the “cloud” around
the quark mentioned in subsection 3.2.2. In the case of the neutral black holes
discussed in subsection 3.2.2, if we keep up to quartic terms (and drop a con-
stant), the action becomes

S = S0 + Sint, (3.74)

Sint =
1

16πα′

∫
dt dr

(
Ẋ2

f
− r4fX ′2

)2

, (3.75)

where the quadratic (free) part S0 is as given before in (3.13).

There are two ways to compute correlation functions in the presence of the
quartic term (3.75). The first one, which is perhaps more intuitive, is to regard
the theory with the action S0 +Sint as a field theory of the worldsheet fieldX at
temperature T and compute theX correlators using the standard technique of
thermal field theory as in section 1.6. The second one, which is perhaps more
rigorous but technically more involved, is to use the GKPW prescription and
holographic renormalization, see section 1.4.1, to compute the correlator for
the force acting on the boundary Brownian particle.

The two approaches give essentially the same result in the end, as they
should. In the following, we will first describe the first approach and then
briefly discuss the the second approach, relegating the technical details to Ap-
pendix 3.D. In this section and the next, for the simplicity of presentation, we
will focus on the neutral black holes of subsection 3.2.2.

3.4.1 Thermal field theory on the worldsheet

The Brownian string we are considering is immersed in a black hole back-
ground which has temperature T given by (3.12). Therefore, we can think of
the string described by the action (3.74) just as a field theory of X(t, r) at tem-
perature T , for which the standard thermal perturbation theory (see section
1.6) is applicable.

For the thermal field theory described by (3.74), let us compute the real-
time connected 4-point function

G
(x)
conn(t1, t2, t3, t4) = 〈T [x(t1)x(t2)x(t3)x(t4)]〉conn

= 〈T [X(t1, rc)X(t2, rc)X(t3, rc)X(t4, rc)]〉conn, (3.76)

where T is the time ordering operator and x(t) = X(t, rc) is the position of the
boundary Brownian particle. In the absence of external force, K(ω) = 0, (3.7)
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relates x and random force R by

R(ω) = − imωx(ω)

µ(ω)
. (3.77)

Therefore, using the low-frequency expression for µ(ω) given in (3.34), we can
compute the 4-point function of R from the one for x in (3.76).

t - -
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−L−iβ

Figure 3.3: The contour for computing real-time correlators at finite tempera-
ture.

As is standard, we can compute such real-time correlators at finite tem-
perature T by analytically continuing the time t to a complex time z and
performing path integration on the complex z plane along the contour C =
C1 + C2 + C3, where Ci are oriented intervals

C1 = [−L,L], C2 = [L,−L], C3 = [−L,−L− iβ] (3.78)

as shown in Figure 3.3. L is a large positive number which is sent to infinity at
the end of computation. We can parametrize the contourC by a real parameter
λ which increases along C as

C1 : z = λ− L (0 ≤ λ ≤ 2L)
C2 : z = 3L− λ (2L ≤ λ ≤ 4L)
C3 : z = −L+ i(4L− λ) (4L ≤ λ ≤ 4L+ β)

(3.79)

The field X is defined for all values of λ. Another convenient parametrization
of C is

C1 : z = t, (−L ≤ t ≤ L),
C2 : z = t, (−L ≤ t ≤ L),
C3 : z = −L− iτ, (0 ≤ τ ≤ β).

(3.80)

We will denote by X[i] (i = 1, 2, 3) the field X on the segment Ci parametrized
by t and τ in (3.80). Henceforth, we will use the subscript [i] for a quantity
associated withCi.
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The path integral is now performed over X[1](t), X[2](t), and X[3](τ), but in
the L→ ∞ limit the path integral overX[3] factorizes and can be dropped [25].
Therefore, with the parametrization (3.80), the path integral becomes

∫
DX eiS →

∫
DX[1] DX[2] e

i(S[1]−S[2]), (3.81)

where S[i], i = 1, 2 are obtained by replacing X withX[i] in (3.74). The negative
sign in front of S[2] in (3.81) is because the direction of the parameter twe took
in (3.80) is opposite to that of C2.

The correlator (3.76) can be written as

G
(x)
conn(t1, t2, t3, t4) = 〈TC [X[1](t1, rc)X[1](t2, rc)X[1](t3, rc)X[1](t4, rc)]〉conn

,

(3.82)

where TC is ordering along C (in other words, with respect to the parameter
λ), and can be computed in perturbation theory by treating S0 as the free part
and Sint as an interaction. In doing that, we have to take into account both
the type-1 fields X[1] and the type-2 fields X[2]. Namely, we have to introduce
propagators not just for X[1] but also betweenX[1] and X[2] as follows

D[11](t− t′, r, r′) = 〈TC [X[1](t, r)X[1](t
′, r′)]〉

0
= DF (t− t′, r, r′),

D[21](t− t′, r, r′) = 〈TC [X[2](t, r)X[1](t
′, r′)]〉

0
= DW (t− t′, r, r′).

(3.83)

Here, 〈 〉0 is the expectation value for the free theory with action S0 at temper-
ature T . We see that the propagators D[11] and D[21] are equal, respectively, to
the usual time-ordered (Feynman) propagator DF and the Wightman propa-
gator DW of the field X(t, r). We must also remember that we have not only
interaction vertices that come from S int

[1] and involve X[1], but also ones that

come from S int
[2] and involve X[2]. The second type of vertices come with an

extra minus sign.
Using the propagators (3.83), the connected 4-point function is evaluated,

at leading order in perturbation theory, to be

G
(x)
conn(ω1, ω2, ω3, ω4) =

i

16πα′ 2πδ(ω1 + · · · + ω4)

∫ rc

rH

dr

×
{
∑

perm
(ijkl)

[
ωiωj

f
D[11](ωi)D[11](ωj) + r4f∂rD[11](ωi)∂rD[11](ωj)

]

×
[
ωkωl

f
D[11](ωk)D[11](ωl) + r4f∂rD[11](ωk)∂rD[11](ωl)

]

− (D[11] → D[21])

}
. (3.84)
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Here, we wrote down the result in the Fourier space and used a shorthand no-
tation D[11](ωi) ≡ D[11](ωi, r, rc). The summation is over permutations (ijkl)
of (1234).

We are interested in the low frequency limit of this correlator. In that limit,
the propagators simplify and can be explicitly written down. In Appendix 3.C,
we study the low-frequency propagators, and the resulting expressions are

D[11](ω, r, rc) = DF (ω, r, rc) =
2πα′

r2H

[
eiωr∗ + e−iωr∗

ω(1 − e−βω)
− eiωr∗

ω

]
,

D[21](ω, r, rc) = DW (ω, r, rc) =
2πα′

r2H

eiωr∗ + e−iωr∗

ω(1 − e−βω)
,

(3.85)

where r∗ is the tortoise coordinate introduced in (3.20). As explained in (3.179),
the precise low frequency limit we are taking is

ωi → 0, β, ωir∗ : fixed. (3.86)

The reason why we have to keep ωir∗ fixed is that, no matter how small ωi

is, we can consider a region very close to the horizon (r∗ = −∞) such that
ωir∗ = O(1). If we insert the expressions (3.85) into (3.84) and keep the leading
term in the small ωi expansion in the sense of (3.86), we obtain

G
(x)
conn(ω1, ω2, ω3, ω4) ∼

iα′3β5

ω1ω2ω3ω4
δ(ω1 + · · · + ω4)

×
∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ + O(ω−2),

(3.87)

where we ignored numerical factors. Using (3.77) and (3.34), we can finally
derive the expression for the R correlator:

G
(R)
conn(ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)

×
∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ + O(ω2).

(3.88)

Let us look at the IR part of (3.87), namely the contribution from the near-
horizon region (large negative r∗). Because f ∼ (d− 1)e(d−1)rHr∗ near the hori-
zon, the r∗ integral in (3.87) is

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ ∼ r2H

d− 1

∫

−∞
dr∗ e

−(d−1)rHr∗e−2i(ωi+ωj)r∗ (3.89)

which diverges because of the contribution from the near horizon region, r∗ →
−∞. We will discuss the nature of this IR divergence later.
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3.4.2 Holographic approach

Next, let us discuss another way to compute the correlators of the boundary
Brownian motion, following the standard GKPW procedure as in section 1.4.1.
For this approach, we send the UV cutoff rc → ∞ and let the string extend
all the way to the AdS boundary r = ∞. The boundary value of X(t, r) is the
position of the boundary Brownian particle: x(t) = X(t, r → ∞). The bound-
ary operator dual to the bulk field X(t, r) is F (t), the total force (friction plus
random force) acting on the boundary Brownian particle. The AdS/CFT dic-
tionary

〈
ei
∫

dt F (t)x(t)
〉

CFT
= eiSbulk[x(t)] (3.90)

says that, to compute boundary correlators for F , we should consider bulk
configurations for which X(t, r) asymptotes to a given function x(t) at r = ∞,
evaluate the bulk action, and functionally differentiate the result with respect
to x(t). Note that, in the limit rc → ∞ or m → ∞ that we take, friction is
ignorable as compared to random force R, and F correlators are the same as
R correlators [41]. Roughly speaking, because the Brownian particle does not
move in the m→ ∞ limit, there will be no friction and thus R = F .

In the end, the resulting 4-point function 〈FFFF 〉 is essentially given by
the interaction term in the action, with the X fields replaced by the boundary-
bulk propagators. Namely,

〈T [F (t1)F (t2)F (t3)F (t4)]〉 ∼
1

16πα′

∫
dt dr

∑

perm
(ijkl)

[
−∂tK(ti) ∂tK(tj)

f
+ r4f ∂rK(ti) ∂rK(tj)

]

×
[
−∂tK(tk) ∂tK(tl)

f
+ r4f ∂rK(tk) ∂rK(tl)

]
,

(3.91)

where K(ti) ≡ K(t, r|ti) is the boundary-bulk propagator from the boundary
point ti to the bulk point (t, r). This is the Witten diagram rule that we naively
expect. However, because the worldvolume theory of a string is different from,
e.g. a Klein–Gordon scalar, a careful consideration of holographic renormal-
ization is necessary. Indeed, the naive expression is (3.91) is UV divergent and
needs regularization. Furthermore, our black hole spacetime is a Lorentzian
geometry and we should apply the rules of Lorentzian AdS/CFT of section
1.7.2. As is explained in Appendix 3.D, after all the dust has been settled, the
F correlator gives exactly the same IR divergence as the naive computation of
the R correlator, (3.88). This implies that this IR divergence we are finding is
not an artifact but a real thing to be interpreted physically.8

8Although the IR parts are the same, the result obtained in the previous subsection 3.4.1 using
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It is worth pointing out that the result (3.91) has a similar structure to the
one we saw in the toy model (3.62), with the propagator K(t) roughly corre-
sponding to P (t). It would be interesting to find an improved toy model which
precisely reproduces the structure (3.91).

In Appendix 3.D.5, we also computed the retarded 4-point function of ran-
dom force. The expression is free from both IR and UV divergences and the fi-
nal result is finite. However, because we do not know how to relate the retarded
4-point function and tmfp, this cannot be used to compute tmfp. It would be in-
teresting to find a microscopic model that directly relates retarded correlators
and tmfp.

3.4.3 General polarizations

The argument so far has been as if there were only one field X and the associ-
ated random force R. However, in the general d > 3 case we have n = d− 2 > 1
fields XI , I = 1, 2, . . . , n. Considering all XI , the bulk action (3.75) actually
becomes

Sint =
1

16πα′

∫
dt dr

[
(ẊI)2

f
− r4f (XI ′)2

]2
. (3.92)

The associated random force RI has n components too.

The computation of 4-point functions in this multi-component case can be
done completely in parallel with the one-component case. Let us define

G
(x)IJKL
conn (t1, t2, t3, t4) ≡ 〈T [XI(t1, rc)X

J(t2, rc)X
K(t3, rc)X

L(t4, rc)]〉. (3.93)

This is nonvanishing only if some indices are identical. More precisely, the
only nonvanishing cases are (i) all indices are identical, I = J = K = L, or (ii)
indices are pairwise identical, I = J 6= K = L, I = K 6= J = L, or I = L 6= J =
K.

In case (i), the resulting 4-point function is exactly the same as the one-
component case (3.84). Consequently, the IR form of the random force corre-

lator G
(R)IIII
conn is the same as the one-component case (3.88).

the worldsheet thermal field theory is not quite the same as the one obtained in this subsection
3.4.2 using holographic renormalization, due to the counter terms added to the latter at the UV
cutoff r = rc.
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In case (ii), on the other hand, the 4-point function becomes

G
(x)IIJJ
conn (ω1, ω2, ω3, ω4) =

i

16πα′ 2πδ(ω1 + · · · + ω4)

∫ rc

rH

dr

×
{

8

[
ω1ω2

f
D[11](ω1)D[11](ω2) + r4f∂rD[11](ω1)∂rD[11](ω2)

]

×
[
ω3ω4

f
D[11](ω3)D[11](ω4) + r4f∂rD[11](ω3)∂rD[11](ω4)

]

− (D[11] → D[21])

}
. (3.94)

The IR form of the random force correlator is

G
(R)IIJJ
conn (ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)

∫ 0

−∞
dr∗

r2

f

×
∑

1≤i≤2, 3≤j≤4

(ωi + ωj)e
−2i(ωi+ωj)r∗ + O(ω2).

(3.95)

Comparing this with the expectation from the field theory side, (3.73) we ob-
serve the same structure. Namely, the connected 4-point functions are non-
vanishing only when the polarization indices are all or pairwise identical.
The precise relative values of the nonvanishing 4-point functions are model-
dependent and not important; in the simple model of subsection 3.3.2, it de-
pends on our choice of the expectation values (3.69).

3.5 The IR divergence

In the last section, we computed the connected 4-point function for the ran-
dom force R and found that the low-frequency expression,

G
(R)
conn(ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)

×
∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

f
e−2i(ωi+ωj)r∗ , (3.96)

has an IR divergence coming from the integral in the near horizon region.
What is the physical reason for this divergence? Very near the horizon, the
expansion of the Nambu–Goto action in the transverse fluctuation X breaks
down because the proper temperature becomes higher and higher as one ap-
proaches the horizon and, as a result, the string fluctuation gets wilder and
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wilder. The correct thing to do in principle is to consider the full non-linear
Nambu–Goto action, but this is technically very difficult. Instead, a physically
reasonable estimate of the result is the following. Let us introduce an IR cutoff
near the horizon at

rs = rH + ǫ, (3.97)

where ǫ ≪ rH . We take this cutoff rs to be the radius where the expansion of
the Nambu–Goto action becomes bad. Then, in IR-divergent expressions such
as (3.88), we simply throw away the contribution from the region r < r < rs by
taking the integral to be only over r > rs. Of course, to obtain a more precise
result, we should include the contribution from the region rH < r < rs with
the higher order terms in the expansion of the Nambu–Goto action taken into
account. However, we expect that the contribution from this region rH < r <
rs will be of the same order as the contribution from the region r > rs and,
therefore, we can estimate the full result by just keeping the latter contribution.

With this physical expectation in mind, let us evaluate the mean-free-path
time tmfp by introducing the IR cutoff (3.97). The parameter ǫ appearing in
(3.97) can be related to the proper distance from the horizon, s, as follows:

s =

∫ rH+ǫ

rH

dr

r
√
f
∼
∫ rH+ǫ

rH

dr√
(d− 1)rH(r − rH)

=

√
2ǫ

(d− 1)rH
. (3.98)

Therefore

ǫ ∼ s2rH , (3.99)

where we dropped numerical factors. In the tortoise coordinate r∗, the cutoff
is at

rs
∗ ∼ − 1

(d− 1)rH
log s2, (3.100)

where we used (3.21).

The introduction of an IR cutoff of the geometry near the horizon also
means that the resulting expressions such as (3.96), with the IR cutoff imposed,
is valid only for frequencies larger than a certain cutoff frequency ωs. We can
relate ωs with the geometric cutoff rs

∗ as follows. If we cut off the geometry at
r∗ = rs

∗, we have to impose some boundary condition there (just as for the
brick wall model). For example, let us impose a Neumann boundary condi-
tion. As was shown in (3.177), for very low frequencies, the solutions to the
wave equation behave as

fω(r) ∼ eiωr∗ + e−iωr∗ . (3.101)
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For this to satisfy Neumann boundary condition ∂r∗
fω(r)|r∗=rs

∗
= 0, we need

ω = nπ/rs
∗ where n ∈ Z. Namely, the frequency has been discretized in units of

π/|rs
∗|. Therefore, the smallest possible frequency is

ωs ∼
1

|rs
∗|

∼ 1

β log(1/s)
. (3.102)

If we use (3.100) and (3.102), the correlator (3.96) becomes

G
(R)
conn(ω1, ω2, ω3, ω4) ∼

i

α′β3
δ(ω1 + · · · + ω4)ωsr

2
H

∫

rs
∗

dr∗e
−(d−1)rHr∗

∼ i

α′β3
δ(ω1 + · · · + ω4)ωsr

2
H

e−(d−1)rHrs
∗

rH

∼ is2ωs

α′β4
δ(ω1 + · · · + ω4) ∼

is2

α′β5 log(1/s)
δ(ω1 + · · · + ω4).

(3.103)

On the other hand, from (3.36), the 2-point function is

G(R)(ω1, ω2) ∼
1

α′β3
δ(ω1 + ω2) (3.104)

Comparing above results and the toy model results (3.66), (3.67), we obtain

tmfp ∼ 1

µ
∼ α′β

s2 log(1/s)
, P (ω = 0) ∼ 1

βs
√

log(1/s)
. (3.105)

Now the question is how to determine the length s. This must be the place
where the expansion (3.74) of the Nambu–Goto action becomes bad. One can
show that this occurs a proper length ∼

√
α′ away from the horizon due to

thermal fluctuation (Hawking radiation) in the black hole background (for an
argument in more general setups see subsection 3.6.1). This leads us to set

s ∼
√
α′. (3.106)

At this point, the local proper temperature becomes of the order of the Hage-
dorn temperature, ∼ 1/

√
α′. The above condition must be the same as the con-

dition that the loop correction of the worldsheet theory to the 4-point function
〈F 4〉 becomes of the same order as the tree level contribution.

If we substitute (3.106) into (3.105), we obtain

tmfp ∼ 1

T logλ
, P (ω = 0) ∼ Tλ1/4

√
logλ

(3.107)

where, following the convention of the d = 5 (AdS5) case, we defined the “’t
Hooft coupling” by

λ ≡ l4

α′2 , (3.108)
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where we restored the AdS radius l which we have been setting to one.

The result (3.107) is quite interesting. In [67], the collision duration time
tcoll was determined to be

tcoll ∼
1

T
. (3.109)

Therefore, tmfp given in (3.107) implies that a plasma particle can be thought
of as in interaction with roughly logλ other particles simultaneously.

Even if we take into account the fact that XI has in general more than one
component (I = 1, 2, . . . , n = d − 2) and use the results such as (3.73), (3.95),
we end up the same estimate for tmfp as far as its order is concerned.

3.6 Generalizations

In the previous section, we derived using AdS/CFT the expression for the
mean-free-path time tmfp for the simple case of neutral plasma. In this section,
we sketch how this generalizes to the more general metric (3.37) and present
the expression for the mean-free-path time for more general systems such as
charged plasmas. As an example, we will apply the result to the STU black hole.

3.6.1 Mean-free-path time for the general case

We are interested in computing the mean-free-path time in field theory by an-
alyzing the motion of a Brownian string in the metric (3.37). For that, as has
been explained in section 3.3 for the neutral case, we need to compute the 4-
point function of the random force in addition to the 2-point function.

Expanding the Nambu–Goto action in the background metric (3.37) up to
quartic order, the action for the string in the tortoise coordinate defined in
(3.44) is given as follows:

S = S0 + Sint, (3.110)

S0 =
1

4πα′

∫
dt dr∗G (Ẋ2 −X ′2), (3.111)

Sint =
1

16πα′

∫
dt dr∗

G2

htf
(Ẋ2 −X ′2)2, (3.112)

where we dropped a constant independent of the field X , and ˙ = ∂t, ′ = ∂r∗
.

As we discussed in subsection 3.4.2 for the simple neutral case, we can use
Sint as the interaction term and apply the usual GKPW rule to compute corre-
lators for the random force 9 F dual to the bulk field X . As before, the naive

9Recall that in this setup the force F is equal to the random force R.
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result from the GKPW prescription includes both UV and IR divergences. Us-
ing holographic renormalization, which is discussed in Appendix 3.D for the
neutral case, we can remove the UV divergence by adding counter terms to
the action. The IR divergence, on the other hand, signals the breakdown of
the quartic approximation (3.110). We regulate this divergence by introduc-
ing an IR cutoff at r∗ = rs

∗ near to the horizon, whose physical motivation was
explained in section 3.5.

Following the same analysis as in section 3.5 now with the interaction term
(3.112), we obtain an expression similar to (3.88) for the connected random
force 4-point function. The dominant contribution comes from the near-
horizon region and is given in frequency space by

〈T [F 4]〉conn ∼ i

α′β3
δ(ω1 + · · · + ω4)

∫

rs
∗

dr∗
G2

fht

∑

1≤i<j≤4

(ωi + ωj)e
−2i(ωi+ωj)r∗ ,

(3.113)

where rs
∗ is the aforementioned IR cutoff (in the tortoise coordinate). Let the

IR cutoff in the r coordinate be at r = rH + ǫ ≡ rs. The parameter ǫ is related
to the proper distance s from the horizon as

s =

∫ rH+ǫ

rH

√
hr

f
dr ≈

√
2ǫ hr(rH)

kH
, ǫ ≈ s2kH

2hr(rH)
. (3.114)

Using the relation (3.44) between rs and rs
∗, we can estimate the cut-off integral

(3.113) as

〈T [F 4]〉 ∼ G2(rH)ωs

α′s2
δ(ω1 + · · · + ω4), (3.115)

where ωs is the smallest frequency for which the expansion (3.110) is valid.
Combining this with the result (3.50) for the 2-point function, the mean-free-
path time is estimated as

tmfp ∼ α′β2ωs

s2
. (3.116)

Now, let us determine the IR cutoff parameters s (or equivalently ǫ) and ωs

appearing in (3.116). As before, we take the IR cutoff to be the location where
S0 and Sint become of the same order. As is clear from (3.111), (3.112), the
expansion of the Nambu–Goto action becomes bad at the location where

G

htf
Ẋ2,

G

htf
X ′2 ∼ 1. (3.117)

So, we would like to estimate Ẋ,X ′. Near the horizon, r ≈ rH , we can write the
action (3.111) as

S0 ∼ 1

2

∫
dt dr∗(

˙̃
X

2

− X̃ ′2), X̃ ≡
√
G(rH)

2πα′ X. (3.118)
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There being no dimensional quantity in the problem other than the tempera-

ture T , we must have
˙̃
X, X̃ ′ ∼ T , namely |Ẋ|, |X ′| ∼

√
2πα′/G(rH) T . So, the

condition (3.117) determines the IR cutoff to be at

r − rH = ǫ ∼ α′T 2

kHht(rH)
. (3.119)

In term of s, the IR cutoff is at the string length:

s ∼
√
α′. (3.120)

It is more subtle to determine the parameter ωs. In Appendix 3.B (around
Eq. (3.174)), the following was shown. Let us we choose the tortoise coordinate
r∗ to be related to r near the horizon as

r∗ ≈ 1

4πT
log

(
r − rH
LH

)
, (3.121)

where LH is defined through the following integral

∫ r

∞

dr

fG

√
hr

ht
=

1

4πGHT
log

(
r − rH
LH

)
+ O(r − rH) (3.122)

for r ≈ rH . Then the solution fω(r) to the wave equation (3.43), satisfying a
normalizable boundary condition at infinity, will have the form

fω(r) ∼ eiωr∗ − e−iωr∗ (3.123)

for small ω. More precisely, we have

fω(r) ∼ eiωr∗ − eiαωe−iωr∗ , αω = O(ω2). (3.124)

Now, let us we impose some boundary condition at rs
∗, such as a Neumann

boundary condition ∂r∗
fω = 0, then the frequency ω gets discretized in units

of ∆ω = π/|rs
∗|. Note that, if αω = O(ω) as ω → 0, then the coefficient of the

O(ω) term will affect the value of ∆ω; this is why (3.124) was important. This
motivates the following choice for the minimum frequency:

ωs ∼ ∆ω ∼ 1

|rs
∗|

∼ 1

β log
(

LH

ǫ

) ∼ 1

β log
(

βLH

s2

√
ht(rH)hr(rH)

) . (3.125)

Substituting in the above expressions for s, ωs, the mean-free-path time
(3.116) is

tmfp ∼ 1

T log
(
η
√
λ
) , η ≡ LH

T

√
ht(rH)hr(rH) , (3.126)

where λ is the “’t Hooft coupling” defined in (3.108). Note that the nontrivial
effect of charge only enters through the logarithm and hence the dependence
of tmfp on it is very mild in the strongly coupled case λ≫ 1.
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3.6.2 Application: STU black hole

The AdS/CFT correspondence has been successfully used to extract the prop-
erties of field theory plasmas. A particularly interesting case is a 4-dimensional
charged plasma, because it is relevant for the experimentally generated quark-
gluon plasma with net baryon charge. One notable situation to realize 4-
dimensional charged plasmas in the AdS/CFT setup is the spinning D3-brane,
which in the decoupling limit gives d = 4, N = 4 SYM with nonvanishing R-
charges. We can have three different R-charges corresponding three Cartan
generators of the SU(4) ∼= SO(6) R-symmetry group. As already mentioned
in subsection 3.2.3, on the gravity side this corresponds to a Kerr black hole
in AdS5 × S5 with three angular momenta in the S5 directions [82, 83]. Upon
compactifying on S5, this reduces to the so-called STU black hole of the five-
dimensional supergravity [80,81]. From this five-dimensional perspective, the
STU black hole is a non-rotating black hole with three U(1) charges. There has
been much study [40, 84, 85, 91–94] on the properties of the R-charged field
theory plasma using the STU black hole. Here, we would like to apply the ma-
chineries we have developed in the previous sections to the computation of
the mean-free-path time for the Brownian particle in R-charged plasma dual
to the STU black hole.

The STU black hole

The 10-dimensional metric of the STU black hole is given by [80]:10

ds210 =
√

∆ ds25 +
l2√
∆

3∑

i=1

X−1
i

[
dµ2

i + µ2
i

(
dψi +

Ai

l

)2
]
, (3.127)

ds25 = − f

H2/3
dt2 + H1/3

(
dr2

f
+ r2(dXI)2

)
,

f(r) =
r2

l2
H− m

r2
, H = H1H2H3, Hi = 1 +

qi
r2
,

Xi = H−1
i H1/3, Ai =

√
m

qi
(1 −H−1

i )dt, ∆ =
3∑

i=1

Xiµ
2
i ,

µ1 = sin θ1, µ2 = cos θ1 sin θ2, µ3 = cos θ1 cos θ2

with i = 1, 2, 3. Here, XI , I = 1, 2, 3 are spatial directions along the boundary
and l is the AdS radius. The four parameters m, qi are related to the mass and
three electric charges of the STU black hole. It is convenient to introduce the

10The horizon of the STU black hole can be either S3, R
3, or H3, but we are focusing on the

planar R
3 case, corresponding to a charged plasma in flat R

3.
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dimensionless quantities

κi =
qi
r2H

, i = 1, 2, 3. (3.128)

The horizon is at r = rH where rH is the largest solution to f(r) = 0. The latter
equation relates m to rH and κi as

m =
r4H
l2

H(rH) =
r4H
l2

(1 + κ1)(1 + κ2)(1 + κ3). (3.129)

The Hawking temperature is given by

T =
rH
2π

2 + κ1 + κ2 + κ3 − κ1κ2κ3√
(1 + κ1)(1 + κ2)(1 + κ3)

. (3.130)

From the five-dimensional point of view, the STU black hole is electrically
charged under the gauge fieldsAi and the associated chemical potentials are

Φi =
1

κ2
5

[
Ai

t(r = ∞) −Ai
t(r = rH)

]
= − r2H

κ2
5l

√
κi

∏3
j=1(1 + κj)

1 + κi
. (3.131)

Here κ2
5 = 8πG5 is the five-dimensional Newton constant and

G5 =
G10

VS5

=
8π6g2

sα
′4

π3l5
=

πl3

2N2
, (3.132)

where N is the rank of the boundary gauge theory. For expressions for other
physical quantities, such as energy density, entropy density, and charge den-
sity, see e.g. [95]. From thermodynamical stability, the parameters κi are re-
stricted to the range [96]

2 − κ1 − κ2 − κ3 + κ1κ2κ3 > 0. (3.133)

We can shift the gauge potential Ai so that its value on the horizon is zero:

Ai(r) ≡ Ai(r) −Ai(rH). (3.134)

If we accordingly shift the angular variable by

ψ̃i ≡ ψi +Ai
t(rH) (3.135)

then the metric (3.127) becomes

ds210 =
√

∆ ds25 +
R2

√
∆

3∑

i=1

X−1
i [dµ2

i + µ2
i (dψ̃i + Ai/R)2]. (3.136)
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Background configuration

We first want to find a background configuration of a string in the 10 dimen-
sional geometry (3.127) or (3.136), so that we can start expanding the Nambu–
Goto action around it. If we restrict ourselves to configurations with trivial θa

dependence, the relevant line element can be written as

ds2 = −αdt2 + β dr2 + γ(dXI)2 +

3∑

i=1

ǫi(dψ̃i + φidt)
2. (3.137)

Here α, β, γ, ǫi, φi are functions of r and θa which can be read off from (3.136).
For example, α = ∆1/2fH−2/3. Parametrize the worldsheet by t, r and take the
following ansatz:

XI(t, r) = 0, ψ̃i(t, r) = ω̃it+ ϕi(r). (3.138)

The string is straight in the AdS5 part of the spacetime. On the other hand,
the angular momenta in the S5 directions are expected to drag the string
in these directions and ω̃i, ϕi correspond to nontrivial drifting/trailing of the
string [40, 84, 85]. The Euler–Lagrange equation for ϕ(r) states that πr

ϕi
≡

∂LNG/∂(∂rψ̃i) = ∂LNG/∂ϕi is constant along the string. The quantity πr
ϕi

corre-
sponds to the inflow of angular momenta (or, from the five-dimensional point
of view, electric charges) from the “flavor D-brane” at the UV cutoff r = rc,
and how to choose them depends on the physical situation one would like to
consider [85]. Here, let us focus on the case where the string endpoint on the
“flavor D-brane” is free and there is no inflow, i.e., πr

ϕi
= 0. This corresponds

to a boundary Brownian particle neutral under the R-symmetry. This is phys-
ically appropriate because we want to compute the random force correlators
unbiased by the effects of the charge of the probe itself. It is not difficult to see
that setting πr

ϕi
= 0 leads to ϕi = 0 by examining the Euler–Lagrange equa-

tions.
Let us next turn to the angular velocity ω̃i. Givenϕi = 0, the induced metric

on the worldsheet is

ds2ind = −αdt2 + βdr2 +

3∑

i=1

ǫi(ω̃i + φi)
2dt2. (3.139)

The determinant of this induced metric is

det g ∝ −α+

3∑

i=1

ǫi(ω̃i + φi)
2. (3.140)

This must be always non-positive for the configuration to physically make
sense. This condition is most stringent at the horizon r = rH where α ∝ f = 0,
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φi = Ai
t(rH)/l = 0. So, we need

∑

i

ǫiω̃
2
i ≤ 0. (3.141)

Since ǫi ≥ 0, this means that

ω̃i = 0. (3.142)

Namely, the background configuration is simply

XI(t, r) = ψ̃i(t, r) = 0. (3.143)

Note that the angular motion is trivial only in the ψ̃i coordinates and in the
original ψi coordinates there is non-vanishing angular drift.

So far we have been treating θa as constant. However, this is not correct and
an arbitrary choice of θa will not satisfy the full equations of motion. Below, we
will consider the following three cases:

(i) 1-charge case: κ1 = κ 6= 0, κ2 = κ3 = 0; θ1 = π/2,

(ii) 2-charge case: κ1 = 0, κ2 = κ3 = κ 6= 0; θ1 = 0,

(iii) 3-charge case: κ1 = κ2 = κ3 = κ 6= 0; θ1, θ2: arbitrary.

It can be shown [85] that the above values of θa are necessary for all the equa-
tions of motion to be satisfied. These values make sense physically since, if the
angular momentum around an axis is nonvanishing, the string wants to orbit
along the circle of the largest possible radius around that axis. This is achieved
by the above choices of θa.

Friction coefficient

Before proceeding to the computation of the mean-free-path time, let us check
that the low-frequency friction coefficient for the STU black hole that we can
compute using the formula (3.49) is consistent with the result found in the
literature [85]. In the present case of the metric (3.137), the formula (3.49) gives

µ(ω) =
2mπα′

γ(rH)
+ O(ω). (3.144)

On the other hand, the drag force computed in [85] is 11

F = −γ(rws)

2πα′ v, (3.145)

11This is the drag force for the “non-torque string” of [85] which corresponds to no inflow of at
the flavor D-brane; see the discussion below (3.138). See Refs. [40, 84, 85] for the relation between
the strings with and without inflow.
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where v is the velocity of the quark and rws is the solution toα(rws)−v2γ(rws) =
0. In the non-relativistic limit, v → 0, the admittance read off from (3.145)
should become the same as the low-frequency result (3.144). Using the fact
that rws → rH and p = mv in the v → 0 limit, it is easy to see that (3.145)
indeed reproduces the admittance (3.144).

Mean-free-path time

For the three cases (i)–(iii) described above, let us use the formula (3.126) and
compute tmfp. Consider the n-charge case (n = 1, 2, 3). For the background
configuration (3.143), the 10-dimensional metric of the STU black hole (3.136)
induces the following metric:

ds2 = −fH−n+1
2 (1 − f−1H2A2

t )dt
2 +H

n−1
2

(
dr2

f
+ r2(dXI)2

)
, (3.146)

At =
√
mq

(
1

r2 + q
− 1

r2H + q

)
, H = 1 +

q

r2
, (3.147)

where q = κr2H . Here, in addition to the t, r part, we kept the XI part of the
metric (3.143) also, because we would like to consider the transverse fluctua-
tions along XI directions. Comparing this metric with the general expression
(3.37), we find

ht = H−n+1
2 (1 − f−1H2A2

t ), hr = H
n−1

2 , G = r2H
n−1

2 . (3.148)

Therefore, from (3.126),

tmfp ∼ 1

T log
(
η
√
λ
) , η =

LH

T
√
H(rH)

=
LH

T
√

1 + κ
. (3.149)

The computation of η, particularly LH in it, is slightly complicated. So, we
delegate the details of the calculation to Appendix 3.E and simply present the
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Figure 3.4: B ehavior of η versus κ, for 1-charge (solid red), 2-charge (dashed
green), and 3-charge (dotted blue) cases. The range of κ is determined by the
thermodynamical stability (3.133) to be κ < 2 for the 1- and 3-charge cases
while κ < 1 for 2-charge case.

results. For 1-, 2-, and 3-charge cases, η is given respectively by

η =
4π

2 + κ
exp

{
−2(2 + κ)

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ2 + 1 + κ)((1 + κ)ρ2 + 1)
− 1

2 + κ

]}

(3.150)

η =
2π√
1 + κ

exp

{
−4

√
1 + κ

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ2 + 1)(ρ2 + 1 + 2κ)
− 1

2
√

1 + κ

]}

(3.151)

η =
4π

(1 + κ)(2 − κ)
exp

{
−2(1 + κ)3/2(2 − κ)

∫ 1

∞

dρ

ρ2 − 1

×
[

ρ√
(ρ2 + 1 + κ− κ2)(ρ4 + (1 + 3κ)ρ2 − κ3)

− 1

(1 + κ)3/2(2 − κ)

]}

(3.152)

The small κ expansion of η is presented in (3.263)–(3.265).
In Figure 3.4, we have plotted the behavior of η as we change κ. Because η

appears in the denominator of the expression for tmfp, we observe the follow-
ing: for the 1- and 2-charge cases, tmfp gets longer as we increase the chemical
potential keeping T fixed, while for the 3-charge case, tmfp gets shorter as we
increase the chemical potential keeping T fixed.
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One may find it counter-intuitive that tmfp increases as we increase chem-
ical potential with T fixed in the 1- and 2-charge cases, based on the intuition
that a larger chemical chemical potential means higher charge density and
thus more constituents to obstruct the motion of the Brownian particle. How-
ever, such intuition is not correct. What we know instead is that, if we increase
the charge with the mass fixed, then the entropy decreases, as one can see from
the entropy formula for charged black holes. So, if we interpret entropy as the
number of “active” degrees of freedom which can obstruct the motion of the
Brownian particle, then this suggests that tmfp should increase as we increase
the charge with the mass fixed. We did numerically check that this is indeed
true for all the 1-, 2- and 3-charge cases.

3.7 Discussion

We studied Brownian motion in the AdS/CFT setup and computed the time
scales characterizing the interaction between the Brownian particle and the
CFT plasma, such as the mean-free-path time tmfp, by relating them to the 2-
and 4-point functions of random force. We found that there is an IR divergence
in the computation of tmfp which we regularized by introducing an IR cutoff
near the horizon. Here let us discuss the issues involved in the procedure and
the implication of the result.

The first question that arises is: tmfp is the mean-free-path time for what
particle? First of all, one can wonder whether this is really a mean-free-path
time in the first place, because the nontrivial 4-point function was obtained
by expanding the Nambu–Goto action to the next leading order, which is a
relativistic correction to the motion of the bulk string. So, isn’t this a relativistic
correction to the kinetic term in the Langevin equation, not to the random
force? However, recall the “cloud” picture of the Brownian particle mentioned
before; the very massive quark we inserted is dressed with a cloud of polarized
plasma constituents. The position of the quark corresponds to the boundary
endpoint of the bulk string, while the cloud degrees of freedom correspond to
the fluctuation modes of the bulk string. So, we are incorporating relativistic
corrections to these cloud degrees freedom (fluctuations) but not to the quark
which gets very heavy in the large m limit and thus remains non-relativistic.

So, what is happening is the following. First, the constituents of the
background plasma kick the cloud degrees of freedom randomly and, conse-
quently, those cloud degrees of freedom undergo random motion, to which we
have incorporated relativistic corrections. Then these cloud degrees of free-
dom, in turn, kick the quark, which is recorded as the random force F felt by
the quark. F is non-Gaussian, or has a nontrivial 4-point function, because
the cloud that is interacting with the quark is relativistic. The quark’s motion,
which is what is observed in experiments, is certainly governed by the non-
Gaussian random F and the frequency of collision events is given by 1/tmfp.
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However, it is worth emphasizing that this tmfp is not a mean-free-path time
for the plasma constituents themselves.12

We focused on the fluctuations in the noncompact AdS directions. How-
ever, for example, in the case of STU black holes, the full spacetime is AdS5×S5

and the string can fluctuate in the internal S5 directions as well. Let us denote
the fluctuations of the string in the internal directions by Y , while the fluctu-
ations in the AdS directions continue to be denoted by X . One may wonder if
the computations of the random force correlators such as 〈OXOXOXOX〉 are
affected by the Y fields. Here, we denoted the force by OX to remind ourselves
that the force is an operator conjugate to the bulk fieldX . The Y fields do con-
tribute to such quantities, because the Nambu–Goto action expanded up to
quartic order involves terms of the form X2Y 2. However, as long as we are in-
terested in quantities with all external lines beingOX , such as 〈OXOXOXOX〉,
they only make loop contributions, which are down by factors of α′. Therefore,
our leading order results do not change.

In the present chapter, we focused on the case where the plasma has no net
momentum. More generally, one can consider the case where the plasma car-
ries net amount of momentum and insert a quark in it. The Brownian motion
in such situations were studied in [69, 71] (see also [70]) in AdS/CFT setups.
It is interesting to generalize our computation of ttmp to such cases. Note the
following, however: in general, in the presence of a net background momen-
tum, the string will “trail back” because it is pushed by the flow. Unless one
applies an external force, the string will start to move and ultimately attain the
same velocity as the background plasma. This final state is simply a boost of
the static situation studied in the present chapter. So, the result of the current
chapter applies to this last situation too (after rescaling due to Lorentz con-
traction).

The resulting expression for the mean-free-path time, e.g. (3.107), is quite
interesting because of the logarithm. As mentioned around (3.109), this means
that the Brownian particle is experiencing ∼ logλ collision events at the same
time. Because λ ∝ N , this is reminiscent of the fast scrambler proposal [98,
99] which claims that, in theories that have gravity dual, ∼ logN degrees of
freedom are in interaction with each other simultaneously.

In our previous paper [67], we claimed that tmfp ∼ 1/T based on dimen-
sional analysis, but (3.107) says that there is an extra factor which cannot be
deduced on dimensional grounds. Of course, we have to note the fact that tmfp

we computed in the present chapter is not the time scale of the constituents
but of the Brownian particle (see also footnote 12). In our previous paper [67],
we had told

relax ∼ m/(T 2
√
λ), told

mfp ∼ 1/(T
√
λ) instead, which were nice because

if we set m → T in told
relax we get told

mfp. In the (3.107), this is no longer the case,
but now the relation between trelax and tmfp is not so simple as we can see

12Ref. [97] estimates the mean-free-path of the plasma constituents to be lmfp ∼ 1/T from the
parameters of the hydrodynamics that one can read off from the bulk gravity.
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from the fact that there is a nontrivial λdependence in the impact per collision,
P (ω = 0) (Eq. (3.107)). It would be interesting to find an improved microscopic
toy model which can relate trelax and tmfp.

Probably the most controversial issue in our computations is the IR cutoff.
When regulating integrals such as (3.96), we cut off the geometry at a proper
distance s ∼ ls away from the horizon, assuming that the contribution from
the rest of the integral is of the same order. This seems physically reasonable,
but we do not have a proof. One could also have tried to put a cutoff at the
point where the backreaction of the fundamental string on the black hole ge-
ometry becomes important. Since the interaction of the string with the back-
ground is suppressed by additional powers of the string coupling constant,
the resulting cutoff is presumably closer to the Planck length than the string
length.

Related to the above statement, it is interesting to note that the mean-free-
path at weak coupling [100]

λmfp,weak ∼ 1

g4
YMT ln(1/g2

YM )
(3.153)

has a form tantalizingly similar to (3.105). In particular, the log in (3.153) is
coming from an IR divergence cut off by non-perturbative magnetic effects
[100], while the log in (3.105) was also coming from an IR divergence that
we regularized by introducing an IR cutoff. It would be interesting to study
whether there is a relation between the weakly and strongly coupled descrip-
tions of the IR divergences and the physical interpretation of the IR cutoffs.

3.A Normalizing solutions to the wave equation

As explained in subsection 3.2.2 or more generally in subsection 3.2.3, the
normalized modes {uω} are proportional to fω of the form (3.23); namely,
uω(t, r) ∝ e−iωtfω(r). Here, we fix the normalization and derive the expansion
(3.24) or more generally (3.48).

The analogue of the Klein–Gordon inner product for functions f(t, r), g(t, r)
satisfying the equation of motion (3.43) is [67]

(f, g)Σ = − i

2πα′

∫

Σ

√
g̃ nµG (f∂µg

∗ − ∂µf g
∗), (3.154)

where Σ is a Cauchy surface in the t, r part of the metric (3.37). g̃ is the induced
metric on Σ and nµ is the future-pointing unit normal to Σ.

We want to normalize fω using this norm (3.154). In the present case, there
is the following simplification to this procedure. Near the horizon r ∼ rH , the
action (3.42) reduces to

S0 ≈ G(rH)

4πα′

∫
dt dr∗

[
(∂tX)2 − (∂r∗

X)2
]
. (3.155)
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Therefore, in this region and in the tortoise coordinate system, X is just like a
massless Klein–Gordon scalar in flat space. Correspondingly, the contribution
to the norm (3.154) from the near horizon region is

− iG(rH)

2πα′

∫

r∗∼−∞
dr∗(f ∂tg

∗ − ∂tf g
∗), (3.156)

where as Σ we took the constant t surface. This is the usual Klein–Gordon
inner product for the theory (3.155), up to overall normalization. Of course,
there is a contribution to the inner product from regions away from the hori-
zon. However, because the near-horizon region is semi-infinite in the tortoise
coordinate r∗ (recall that r = rH corresponds to r∗ = −∞), the normalization
of solutions is completely determined by this region where the inner product
is simply (3.156). This means that the canonically normalized mode expansion
is given by

X(t, r) =

√
2πα′

G(rH)

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
. (3.157)

where fω(r) behaves near the horizon as

fω(r) → eiωr∗ + eiθωe−iωr∗ , r → rH (r∗ → −∞) (3.158)

with some θω ∈ R. If we can find such fω(r), then a, a† satisfy the canonically
normalized commutation relation (3.16).

3.B Low energy solutions to the wave equation

Here, we study the solution to the wave equation (3.14), or more generally
(3.43), satisfying an appropriate boundary condition (the Neumann bound-
ary condition (3.17) or normalizable boundary condition at infinity), for very
small frequencies ω. We see that the solutions become trivial plane waves in
the limit.

The general wave equation (3.43) can be written in the frequency space as
[
ω2 +

√
ht

hr

f

G
∂r

(√
ht

hr
fG∂r

)]
Xω(r) = 0. (3.159)

Very close to the horizon, this becomes
[
ω2 + 16π2T 2(r − rH)∂r

(
(r − rH)∂r

)]
Xω(r) = 0. (3.160)

This means that the linearly independent solutions are

g±ω = exp

[
±i ω

4πT
log

(
r − rH
L1

)]
(3.161)
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where L1 is a length scale which is arbitrary at this point. The ± signs here cor-
respond to outgoing and ingoing waves. We are considering the small ω limit
but, no matter how small ω is, we can always consider a region very close to the
horizon so that ω

4πT log( r−rH

L1
) = O(1), namely r−rH

L1
. e−4πT/ω. In such a re-

gion, we cannot expand the exponential and should keep the full exponential
expression (3.161). In other words, the precise limit we are taking is

ω → 0,
ω

T
log
(r − rH

L1

)
: fixed. (3.162)

Now, consider the region not so close to the horizon. For small ω, we can
ignore the ω2 term in (3.159), obtaining

Xω = B1 +B2

∫ r

∞

dr′

f(r′)G(r′)

√
hr(r′)

ht(r′)
+ O(ω2), (3.163)

where B1, B2 are constant. For r ≈ rH , this gives

Xω = B1 +
B2

4πTG(rH)
log

(
r − rH
LH

)
+ O(r − rH) (r ∼ rH). (3.164)

Here, we defined the constant LH by

∫ r

∞

dr

fG

√
hr

ht
=

1

4πTG(rH)
log

(
r − rH
LH

)
+ O(r − rH). (3.165)

Because it will turn out to be convenient to choose LH = L1, we will set LH =
L1 henceforth. On the other hand, for large r, (3.163) gives (assuming the large
r behavior (3.40), (3.41) of functions ht, hr, G),

Xω = B1 −
B2

3r3
+ O(ω2). (3.166)

We can determine B1, B2 by comparing these small-frequency solutions
between the very-near-horizon region and the not-so-near-horizon region.
For small frequencies ω, (3.161) becomes

Xω ≈ 1 ± i
ω

4πT
log

(
r − rH
LH

)
+ O(ω2). (3.167)

Comparing this with (3.164), we determine

B1 = 1 + O(ω2), B2 = ±iωG(rH) + O(ω2). (3.168)

Therefore, the linearly independent (outgoing/ingoing) solutions are

g±ω(r) =





exp

[
±i ω

4πT
log

(
r − rH
LH

)]
r ∼ rH

1 ± iωG(rH)

3r3
r ≫ rH

(3.169)
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The general solution Xω is given by the linear combination of the outgoing
and ingoing solutions g±ω. If we want to construct a normalizable solution
that vanishes as r → ∞ then, from the r ≫ rH behavior of (3.169), the linear
combination to take is

X (norm)
ω = gω − g−ω. (3.170)

If we did not take L1 = LH , the two terms would be multiplied by
exp[∓i ω

4πT log(LH

L1
)] respectively. Note that our expressions are correct up to

O(ω2) terms. The near-horizon behavior of this is

X (norm)
ω ≈ exp

[
i
ω

4πT
log

(
r − rH
LH

)]
− exp

[
−i ω

4πT
log

(
r − rH
LH

)]
. (3.171)

Therefore, if define the tortoise coordinate r∗ to have the following behavior
the horizon:

r∗ ≈ 1

4πT
log

(
r − rH
LH

)
(3.172)

then the near-horizon behavior (3.171) simply becomes

X (norm)
ω ≈ eiωr∗ − e−iωr∗ (r ≈ rH). (3.173)

Let us elaborate on this point slightly more. In the near horizon region, in
general we can have

X (norm)
ω ≈ eiωr∗ − eiαωe−iωr∗ . (3.174)

where αω is some phase. The fact that (3.173) is correct up to O(ω) means
is that, if we take r∗ to be given by (3.172), then αω = O(ω2) as ω → 0. In
particular, unless we choose LH to be the one given by (3.165), the ω → 0
behavior of αω will contain an O(ω) term.

Next, let us consider imposing a Neumann boundary condition ∂rX = 0 at
r = rc ≫ rH instead. Set the general solution to be

Xω = gω + Cg−ω. (3.175)

then the Neumann boundary condition X ′
ω(rc) = 0 gives

C = − g′ω(rc)

g′−ω(rc)
= −

− iωG(rH)
r4

c
+ O(ω2)

iωG(rH)
r4

c
+ O(ω2)

= 1 + O(ω), (3.176)

where we used the second equation in (3.169). Comparing this result with
(3.22) and (3.25), we find that the modes fω satisfying the Neumann bound-
ary condition are given by, at low frequencies,

gω(r) = eiωr∗ , θω = 0, fω(r) = eiωr∗ + e−iωr∗ . (3.177)
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This is consistent with the explicit result for AdS3 in (3.31), (3.33). So, for very
small ω, the solution fω(r) is a simple sum of outgoing and ingoing waves,
which are just plane waves.13 Because g±(r) → 1 as r → ∞, we have

fω(r = rc) ≈ 2. (3.178)

Because of the O(ω) ambiguity in (3.176), θω = O(ω) as ω → 0 (cf. comments
below (3.174)).

In the tortoise coordinate, the limit (3.162) we are taking can be written as

ω → 0, β, ωr∗ : fixed. (3.179)

3.C Various propagators and their low frequency

limit

The quadratic action for a string embedded in the AdSd black hole spacetime

ds2 = −ht(r)f(r)dt2 +
hr(r)

f(r)
dr2 +G(r)dX2, (3.180)

(Eq. (3.37)) is given by

S0 =
1

4πα′

∫
dt dr

[√
hr

ht

G

f
(∂tX)2 −

√
ht

hr
Gf (∂rX)2

]
. (3.181)

We would like to regard this system as a thermal field theory at temperature T ,
and derive the relation among various propagators (Green functions) and the
solutions to the wave equation. We present the result for the general metric
(3.37), but if one wants the results for the simpler neutral case (3.11), set f =
r2h, ht = hr = 1,G = r2.

Let us define Wightman, Feynman, retarded, and advanced propagators as

DW (t− t′, r, r′) = 〈X(t, r)X(t′, r′)〉,
DF (t− t′, r, r′) = 〈T [X(t, r)X(t′, r′)]〉,
DRet(t− t′, r, r′) = θ(t− t′)〈[X(t, r), X(t′, r′)]〉,
DAdv(t− t′, r, r′) = −θ(t′ − t)〈[X(t, r), X(t′, r′)]〉.

(3.182)

We impose a Neumann boundary condition for X(r, t) at r = rc, so the prop-
agators satisfy the same Neumann boundary condition. Using the wave equa-
tion

[
− G

htf
∂2

t +
1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
X = 0 (3.183)

13For related observations on the triviality of the solution in the low frequency limit, see [101].
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and the canonical commutation relation

[X(t, r), ∂tX(t, r′)] = 2πiα′
√
ht

hr

f

G
δ(r − r′), (3.184)

we can show that these propagators satisfy
[
− G

htf
∂2

t +
1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DW (t− t′, r, r′) = 0, (3.185)

[
− G

htf
∂2

t +
1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DI(t− t′, r, r′) =

2πiα′
√−g δ(t− t′)δ(r − r′),

(3.186)

with I = F,Ret,Adv and
√−g =

√
hthr.

As in (3.157), the field X can be expanded as

X(t, r) =

√
2πα′

G(rH)

∫ ∞

0

dω

2π

1√
2ω

[
fω(r)e−iωtaω + fω(r)∗eiωta†ω

]
, (3.187)

where

fω(r) = gω(r) + eiθωg−ω(r) (3.188)

and gω(r) behaves near the horizon as

gω(r) ≈ eiωr∗ (r ∼ rH). (3.189)

The phase θω is determined by the Neumann boundary condition at r = rc
that fω satisfies. Since the system is at temperature T , the expectation value of
a, a† is given by (3.26). It is then easy to show that the Wightman propagator
can be written as

DW (ω, r, r′) =
2πα′

G(rH)

fω(r)f−ω(r′)

2ω(1 − e−βω)
, (3.190)

where f−ω = f∗
ω.

We would like to express other propagatorsDAdv,Ret,F in terms of fω, gω. Note
that

DF (ω, r, r′) = DW (ω, r, r′) +DAdv(ω, r, r
′) = DW (−ω, r′, r) +DRet(ω, r, r

′).
(3.191)

Because we have already obtained DW in (3.190), if we know one of DF , DRet,
andDAdv, we can obtain all other propagators. Here, let us considerDAdv. From
(3.186),DAdv(ω, r, r

′) should satisfy
[
G

htf
ω2 +

1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DAdv(ω, r, r

′) =
2πiα′
√−g δ(r − r′). (3.192)
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If r 6= r′, this is the same as the wave equation that fω, gω satisfy. Therefore,
take the ansatz

DAdv(ω, r, r
′) = A[θ(r − r′)gω(r′)fω(r) + θ(r′ − r)gω(r)fω(r′)]. (3.193)

This satisfies the correct boundary condition (Neumann) at r, r′ = rc and
furthermore satisfies the purely outgoing boundary condition at the horizon,
which is appropriate for an advanced correlator. Using the fact that both f, g
satisfy the wave equation, we find

[
G

htf
ω2 +

1√
hthr

∂r

(√
ht

hr
Gf ∂r

)]
DAdv =

Aδ(r − r′)

hr
Gf (gω∂rfω − ∂rgω fω).

(3.194)

Therefore,

A = 2πiα′
√
hr

ht

1

Gf

1

gω∂rfω − ∂rgω fω
=

2πiα′

G(rH) (gω∂r∗
fω − ∂r∗

gω fω)
. (3.195)

Using the wave equation for fω, gω, it is easy to show that this expression does
not depend on r. By taking r → rH and using (3.188), (3.189),

A = −πα
′e−iθω

G(rH)ω
. (3.196)

So, the advanced propagator is given by

DAdv(ω, r, r
′) = −πα

′e−iθω

G(rH)ω

[
θ(r − r′)gω(r′)fω(r) + θ(r′ − r)gω(r)fω(r′)

]
.

(3.197)

In the low frequency limit, the expressions for the propagators simplify, as
we saw in Appendix 3.B. The precise limit we are considering is (3.179). First,
the Wightman propagator (3.190) becomes, because of (3.177),

DW (ω, r, r′) =
πα′

G(rH)

(eiωr∗ + e−iωr∗)(eiωr′

∗ + e−iωr′

∗)

ω(1 − e−βω)
(small ω). (3.198)

Similarly, the advanced propagator (3.197) becomes

DAdv(ω, r, r
′) = − πα′

G(rH)ω

[
θ(r∗ − r′∗)e

iωr′

∗(eiωr∗ + e−iωr∗)

+θ(r′∗ − r∗)e
iωr∗(eiωr′

∗ + e−iωr′

∗)
]

= − πα′

G(rH)

eiω(r∗+r′

∗
) + e−iω|r∗−r′

∗
|

ω
(small ω). (3.199)
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Using the relation (3.191), the Feynman propagator is

DF (ω, r, r′) =
πα′

G(rH)

[
(eiωr∗ + e−iωr∗)(eiωr′

∗ + e−iωr′

∗)

ω(1 − e−βω)

−e
iω(r∗+r′

∗
) + e−iω|r∗−r′

∗
|

ω

]
(small ω). (3.200)

In particular, consider the case where one of the points is at the UV cutoff,
r′ = rc. From (3.178), we have

DF (ω, r, rc) =
2πα′

G(rH)

[
eiωr∗ + e−iωr∗

ω(1 − e−βω)
− eiωr∗

ω

]
,

DW (ω, r, rc) =
2πα′

G(rH)

eiωr∗ + e−iωr∗

ω(1 − e−βω)
.

(3.201)

3.D Holographic renormalization and Lorentzian

AdS/CFT

In this Appendix, we discuss how to compute correlation function using the
AdS/CFT dictionary for the total force F which is dual to the worldsheet field
X . As we explained in subsection 3.4.2, this involves holographic renormaliza-
tion of the worldsheet action. Furthermore, if we want to compute real time
correlation functions in a black hole (finite temperature) geometry, we should
apply the rules of Lorentzian AdS/CFT [73, 74], see section 1.7.2.

3.D.1 Holographic renormalization

First, let us consider the holographic renormalization of the worldsheet action.
For this, only the asymptotic behavior of the action near the boundary is rel-
evant. Therefore, as the background geometry, we can consider the Poincaré
AdS geometry obtained by setting T = 0 (3.11):

ds2 = −rdt2 +
dr2

r2
+ r2(dXI)2. (3.202)

for which the worldsheet action becomes

Sbare = S0 + Sint, (3.203)

S0 =
1

4πα′

∫

Σ

dt dr(Ẋ2 − r4X ′2), Sint =
1

16πα′

∫

Σ

dt dr(Ẋ2 − r4X ′2)2.

(3.204)
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Here, we considered only one of the polarizations, say X1, and denoted it by
X . Σ is the worldsheet,

Σ = {(t, r) | t ∈ R, 0 ≤ r ≤ rc}, (3.205)

and ˙ = ∂t, ′ = ∂r. rc is a UV cutoff. For computational convenience, let us we
rescale X →

√
2πα′X and set κ = πα′, so that

S0 =
1

2

∫

Σ

dt dr(Ẋ2 − r4X ′2), Sint =
κ

4

∫

Σ

dt dr(Ẋ2 − r4X ′2)2. (3.206)

The equation of motion is

−∂2
tX + ∂r(r

4∂rX) = κ[−∂t(H∂tX) + ∂r(Hr
4∂rX)], H ≡ −Ẋ2 + r4X ′2.

(3.207)

Let us solve the equation of motion (3.207) by expandingX(t, r) in the cou-
pling κ as

X(t, r) = Y (t, r) + κZ(t, r) + O(κ2) (3.208)

and furthermore expanding Y, Z around r = ∞ as

Y (t, r) = y(0)(t) +
y(1)(t)

r
+
y(2)(t)

r2
+
y(3)(t)

r3
+ · · · ,

Z(t, r) = z(0)(t) +
z(1)(t)

r
+
z(2)(t)

r2
+
z(3)(t)

r3
+ · · · .

(3.209)

Henceforth, we will ignore quantities of O(κ2). The expansion for X itself is

X(t, r) = x(0)(t) +
x(1)(t)

r
+
x(2)(t)

r2
+
x(3)(t)

r3
+ · · · , x(i) = y(i) + κz(i).

(3.210)

By substituting this expansion into (3.207) and comparing coefficients, one
readily finds that the following is a solution:

y(0) = any ≡ J, y(1) = 0, y(2) = −1

2
J̈ , y(3) = any, (3.211a)

z(0) = 0, z(1) = 0, z(2) = −J̇2J̈ , z(3) = any. (3.211b)

The expression for X is

x(0) = J, x(1) = 0, x(2) = −1

2
J̈ − κJ̇2J̈ , x(3) = any. (3.212)

Note that X(r, t) → J(t) as r → ∞; namely, J is the non-normalizable mode
which can be thought of as a source for the dual operator OX = F on the
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boundary. On the other hand, x(3) is the normalizable mode which roughly
corresponds to the expectation value of the operatorF . We will make this latter
statement more precise below.

If we plug the solution (3.212) into the action (3.206), we obtain the follow-
ing on-shell action:

Sbare,on-shell =
κ

2

∫

Σ

d2xJJ̇2J̈ +

∫

∂Σ

dt

[(
−1

2
rJJ̈ − κrJJ̇2J̈

)
− κ

4
rJJ̇2J̈

]

∼
∫

∂Σ

dt

[
−1

2
rJJ̈ − 3κ

4
rJJ̇2J̈

]
+ (finite)

∼
∫

∂Σ

dt

[
1

2
rJ̇2 +

κ

4
J̇4

]
+ (finite). (3.213)

In going to the second line we performed the r integration, and in going to the
last line we integrated by parts. This is divergent, but the divergence can be
canceled by introducing the following counter terms:

Sct =

∫

∂Σ

dt
√−γ

[
1

2
r2(∇γX)2 − κ

4

(
r2(∇γX)2

)2
]
, (3.214)

where �γ = − 1
r2 ∂

2
t is the Laplacian for the metric γ induced on the boundary

r = rc. Likewise, (∇γX)2 = − 1
r2 (∂tX)2. If we define the metric γ′ induced on

the boundary of the worldsheet at r, then γ′tt = −r2(1 − Ẋ2) and
∫
dt
√
−γ′tt

reproduces (3.214) (also recall that we have rescaled X →
√

2πα′X).
To remove the divergence from the “bare” action (3.206), we take Sren =

Sbare + Sct as our total action. The on-shell variation of this total action evalu-
ates to

δSren,on-shell =

∫

∂Σ

dt
√−γ

(
κr4

[
(∇X)2∂nX + 3(∇γX)2�γX

]

− r2(∂nX + �γX)

)
δX, (3.215)

where ∂n is the normal derivative with respect to the worldsheet boundary ∂Σ.
Therefore,

δSren,on-shell

δJ
=

√−γ
(
−G(∂nX + �γX) + κG2

[
(∇X)2∂nX + 3(∇γX)2�γX

])

= 3x(3)(1 + κJ̇2) + O(1/r). (3.216)

In the second equality, we plugged in the explicit expansion (3.212). There-
fore, by the GKPW rule as in section 1.4.1, the expectation value of the operator
OX = F dual to X in the presence of source x(0) ≡ J is given by, up to O(κ2)
terms,

〈F 〉J = 3x(3)(1 + κJ̇2) = 3y(3) + 3κ
(
z(3) + y(3)J̇

2
)
. (3.217)
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The J̇2 term may appear strange, but we will see that this term gets canceled
in the final expression for the 4-point function. Actually, there is a further con-
tribution to (3.217), but we will discuss it later (see below (3.241)).

Although our discussion above was based on the pure AdS space (3.202)
for the simplicity of the argument, the final expression (3.217) is valid for gen-
eral asymptotically AdS space, including the AdS black hole (3.11). Below, we
will use (3.217) to compute correlation functions for the AdS black hole back-
ground (3.11).

3.D.2 Propagators and correlators

To compute the expectation value 〈F 〉J using the formula (3.217), we need to
know x(3) = y(3) + κz(3) +O(κ2). This can be determined if we know the prop-
agators that satisfy appropriate boundary conditions in the inside of the AdS
space as we discuss below.

If we substitute the expansion (3.208) into the wave equation (3.14) and
compare the coefficients, we obtain

[−h−1∂2
t + ∂r(r

4h∂r)]Y = 0, (3.218a)

[−h−1∂2
t + ∂r(r

4h∂r)]Z = ρ, (3.218b)

where we are now considering the AdS black hole spacetime (3.11) and the
“source” ρ is defined by

ρ ≡ −∂t(H0h
−1∂tY ) + ∂r(H0r

4h∂rY ), H0 ≡ −h−1(∂tY )2 + r4h(∂rY )2.
(3.219)

We solve (3.218a) under the asymptotic condition Y (r, t) → J(t) as r → ∞ and
(3.218b) under the condition Z(r, t) → 0 as r → ∞. Let us solve these using
propagators. First, let K(r, t|t′) be the boundary-bulk propagator, namely the
solution to the zeroth-order wave equation (3.218a) satisfying the boundary
condition

K(r, t|t′) → δ(t− t′) as r → ∞. (3.220)

Then the solution to (3.218a) is

Y (t, r) =

∫
dt′K(r, t|t′)J(t′). (3.221)

From this, we can read off y(3) as

y(3)(t) =

∫
dt′[K(r, t|t′)]|r−3 J(t′). (3.222)

where [ ]r−3 means to take the coefficient of the r−3 term in the 1/r expansion.
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Let us move on to the next order equation (3.218b) to determine z(3). Let
D(r, t|r′, t′) be the bulk propagator, namely the solution to

[−h−1∂2
t + ∂r(r

4h∂r)]D(t, r|t′, r′) = δ(t− t′)δ(r − r′) (3.223)

that vanishes as r, r′ → ∞. Then the solution to the next order equation
(3.218b) can be written as

Z(t, r) =

∫
dt′ dr′D(t, r|t′, r′)ρ(t′, r′). (3.224)

It is easy to see that the Z given by (3.224) has the expected behavior
(3.211b). To see it, let us explicitly construct the bulk propagator satisfying
(3.223), or in the frequency space,

[h−1ω2 + ∂r(r
4h∂r)]D(ω, r, r′) = δ(r − r′). (3.225)

The solution to this can be constructed14 from the solution to (3.218a), which
can be written in the frequency space as

[h−1ω2 + ∂r(r
4h∂r)]Yω = 0. (3.226)

As discussed above the equation (3.19), this wave equation (3.226) has two so-
lutions; let us denote them by φ±ω(r).15 These are related to each other by
φω(r)∗ = φ−ω(r). As one can see from (3.211a), we can take them to have the
following large r expansion:

φ±ω(r) = 1 +
ω2

r2
+
c±ω

r3
+ · · · , (3.227)

where c±ω are some constants (c∗ω = c−ω). For example, in the AdS3 case (d =
3),

φ±ω(r) =

(
1 ± iω

r

)(
r − rH
r + rH

)iω/2rH

= 1 +
ω2

2r2
∓ iω(r2H + ω2)

3r3
+ · · · . (3.228)

For r 6= r′, the equation (3.225) is the same as (3.226) and therefore D(ω, r, r′)
is given by a linear combination of φω(r) and φ−ω(r). Taking into account the
r ↔ r′ symmetry, the bulk propagator D can be written as

D(ω, r, r′) = A
[
φ>

ω (r)φ<
ω (r′)θ(r − r′) + φ>

ω (r′)φ<
ω (r)θ(r′ − r)

]
. (3.229)

14The following argument is analogous to the one given around (3.192).
15φ±ω(r) are different from g±ω(r) defined around (3.19) only by normalization; φ±ω(r) → 1

as r → ∞, while g±ω(r) → e±iωr∗ as r → rc (r∗ → −∞). These agree in the small ω limit.
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Here A is constant and we defined

φ>
ω (r) ≡ φω(r) − φ−ω(r) =

cω − c−ω

r3
+ O(r−4),

φ<
ω (r) ≡ αφω(r) + (1 − α)φ−ω(r) = 1 +

ω2

2r2
+
αcω + (1 − α)c−ω

r3
+ O(r−4).

(3.230)

The fact that φ>
ω (r) → 0 as r → 0 correctly gives the asymptotic condition for

D, namely D → 0 as r, r′ → ∞. On the other hand, we do not specify the
boundary condition of D as r, r′ → rH . The unknown number α parametrizes
possible boundary conditions which is to be determined by some physical re-
quirement. But we leave α arbitrary and therefore (3.229) is valid regardless of
the boundary condition. Because φ<

ω (r) → 1 as r → ∞, it is actually equal to
the bulk-boundary propagator in the frequency space;

φ<
ω (r) = K(ω, r). (3.231)

By substituting (3.229) into the equation (3.225), we obtain

A =
1

r4h[φ>
ω (∂rφ<

ω ) − (∂rφ>
ω )φ<

ω ]
(3.232)

(this is the same as (3.195)). Since this does not depend on r (see below
(3.195)), by taking r → ∞ and using the asymptotic behavior (3.230), we find
A = (cω − c−ω)−1. Therefore, the bulk propagator is found to be

D(ω, r, r′) = (cω − c−ω)−1
[
φ>

ω (r)φ<
ω (r′)θ(r − r′) + φ>

ω (r′)φ<
ω (r)θ(r′ − r)

]
,

(3.233)

where we used (3.231). The r → ∞ behavior of this is, using the asymptotic
behavior (3.230),

D(ω, r, r′) = − 1

3r3
K(ω, r′)θ(r − r′) − 1

3r′3
θ(r′ − r) + O(r−4) (r → ∞).

(3.234)

Using (3.211a), we can show that the source ρ (defined in Eq. (3.219)) goes as
ρ = 2J̇2J̈ + O(r−2). Then, from (3.224) and (3.234) we can read off z(3) as
follows:

z(3)(t) = lim
r→∞

[
−1

3

∫ r

rH

dt′dr′K(t′, r′|t)ρ(t′, r′) +
2

3
rJ̇(t)2J̈(t)

]
. (3.235)

The second term cancels the divergent contribution corresponding to z(2) in
(3.211b).

So, we succeeded in expressing y(3), z(3) appearing in the formula (3.217)
using propagators; the resulting expressions are (3.222) and (3.235). Using
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these, we can compute the boundary correlators for F . First, at the first or-
der in κ that we are working in, the 2-point function gets contribution only
from y(3) in (3.222) and

〈T [F (t1)F (t2)]〉 =
δ

δJ(t2)
〈F (t1)〉

∣∣∣∣
J=0

= 3
δ

δJ(t2)
y(3)(t1) = 3[K(t1, r|t2)]|r−3 .

(3.236)

In the frequency space,

〈F (ω1)F (ω2)〉 = 2πδ(ω1 + ω2) 3K(ω2, r)|r−3 . (3.237)

To obtain 4-point functions, we take functional derivatives of (3.217) three
times. Therefore, only the second term 3κ(z(3) + y(3)J̇

2) in (3.217) is relevant
for the computation. Let us write the source ρ appearing in (3.235) as

ρ = ∂tρ
t + ∂rρ

r, ρt ≡ −H0h
−1∂tY, ρr ≡ H0r

4h∂rY. (3.238)

Then, by partial integration, (3.235) becomes

z(3)(t) = lim
r→∞

{
1

3

∫ r

rH

dt′dr′
[
ρt(t′, r′)∂t′K(t′, r′|t) + ρr(t′, r′)∂r′K(t′, r′|t)

]

− 1

3

∫
dt′
[
K(t′, r|t)ρr(t′, r) −K(t′, rH |t)ρr(t′, rH)

]

+
2

3
rJ̇(t)2J̈(t)

}
. (3.239)

We dropped the boundary terms at t = ±∞. The first term in the second line
can be evaluated using the expansion

K(t′, r|t) = δ(t− t′) + O(r−2), ρr(t, r) = rJ̇2J̈ + 3y(3)J̇
2 + O(r−1).

(3.240)

As a result, in the combination appearing in (3.217), the term involving y(3)J̇
2

cancels out:

3κ
[
z(3)(t) + y(3)(t)J̇(t)2

]
= κ lim

r→∞

{∫ r

rH

dt′dr′
[
ρt(t′, r′)∂t′K(t′, r′|t)

+ ρr(t′, r′)∂r′K(t′, r′|t)
]

+

∫
dt′K(t′, rH |t)ρr(t′, rH) + r∂t[J̇(t)3]

}
.

(3.241)

The second last term in (3.241) gets canceled by the extra contribution alluded
to below (3.217). Let us now discuss what this extra contribution is. The on-
shell variation of the action, which we used to compute the expectation value
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〈F 〉J , is given by (3.215). Because we are regarding the region rH ≤ r ≤ rc
as our spacetime, there actually is contribution from the “boundary” r = rH
to this expression. In the AdS black hole spacetime, this extra contribution to
δSren,on-shell becomes

δSren,on-shell ⊃ −
∫

r=rH

dt r4h(∂rY + κH0∂rY )δY, (3.242)

where we dropped O(κ2) terms and “⊃” means that the left hand side includes
the expression on the right hand side. Note that, because the counter term Sct

(3.214) was added only for the boundary at infinity, the second and the fourth
terms in (3.215) did not contribute to this expression. Since h → 0 as r → rH ,
this becomes

δSren,on-shell ⊃ −κ
∫

r=rH

dt r4hH0∂rY δY (3.243)

(note that H0 involves h−1). Therefore, by taking functional derivative, we find
that there is the following extra contribution to 〈F 〉J :

〈F (t)〉J =
δSren,on-shell

δJ(t)
⊃ −κ

∫

r′=rH

dt′ r′4hH0∂rY K(t′, r′|t). (3.244)

This precisely cancels the second last term in (3.241). Therefore, the terms
relevant for computing 4-point functions is

〈F (t)〉J ⊃ κ lim
r→∞

{∫ r

rH

dt′dr′
[
jt(t

′, r′)∂t′K(t′, r′|t) + jr(t
′, r′)∂r′K(t′, r′|t)

]

+ r∂t[J̇(t)3]

}
. (3.245)

By taking functional derivatives of (3.245), we find that

GF (t1, t2, t3, t4) = 〈T [F (t1)F (t2)F (t3)F (t4)]〉 =
δ3

δJ(t2)δJ(t3)δJ(t4)
〈F (t1)〉J

∣∣∣∣
J=0

= κ

{
1

4

∑∫ r

rH

dt dr

(
− 1

h
K̇iK̇j + r4hK ′

iK
′
j

)

×
(
− 1

h
K̇kK̇l + r4hK ′

kK
′
l

)

+ 6r ∂t1

[
δ̇(t1 − t2)δ̇(t1 − t3)δ̇(t1 − t4)

]}
, (3.246)

where the r → ∞ limit is understood. Also,Ki ≡ K(t, r|ti) and the summation
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is over permutations (ijkl) of (1234). The expression in the Fourier space is

GF (ω1, ω2, ω3, ω4) = 2πκδ(ω1 + ω2 + ω3 + ω4)

×
{

1

4

∑

perm
(ijkl)

∫ r

rH

dr
(
ωiωjKiKj + r4hK ′

iK
′
j

) (
ωkωlKkKl + r4hK ′

kK
′
l

)

− 6rω1ω2ω3ω4

}
, (3.247)

where now Ki ≡ K(ωi, r). Note that the first term in (3.247) is the expression
for the 4-point function we would obtain from the naive GKPW rule. The last
term is there to cancel the UV divergence coming from the first term due to the
fact that Ki = 1 + O(r−2).

3.D.3 Lorentzian AdS/CFT

So far we have not fully taken into account the fact that our spacetime is a
Lorentzian spacetime, for which we have to use the Lorentzian AdS/CFT pre-
scription [73, 74] as in section 1.7.2.

On the boundary side, to compute real time correlators, we have to take the
time to run along the contour on the complex place, as we discussed in subsec-
tion 3.4.1; see Figure 3.3 on page 64. The Lorentzian AdS/CFT prescription is
simply to consider a bulk spacetime which “fills in” this contour. Then the bulk
spacetime will have no boundary and there is no ambiguity in boundary con-
ditions (although we have to impose certain gluing condition for fields across
different patches). Following [74], we take the bulk spacetime to be the union
of three patches Mi with i = 1, 2, 3, each of which fills in the corresponding
contour Ci in (3.78). First, we take M1 to be the −L ≤ t ≤ L, rH ≤ r < ∞
part of the Lorentzian AdS black hole (3.11). M2 is taken to be the same as
M1 metric-wise, but the orientation is taken to be opposite toM1, correspond-
ing to the fact that C1 and C2 has opposite orientations. M3 is taken to be the
Euclidean version of the black hole (3.11),

ds2E =
r2

l2
[
h(r)dτ2 + (dXI)2

]
+

l2

r2h(r)
dr2. (3.248)

The Euclidean time τ is taken to be 0 ≤ τ ≤ β where β is the inverse Hawking
temperature in (3.12). For a schematic explanation of the patches M1,2,3, see
Figure 3.5. The way that three patches M1,2,3 are glued together is simply the
bulk extension of the way that the contoursC1,2,3 are glued together; see Figure
3.6.

Because now our spacetime is not justM1 butM = M1+M2+M3, the action
have contributions from all of M1,2,3, just as the boundary (3.81). Therefore,
the bulk integration appearing e.g. in (3.247) should be now over all Mi, with
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Figure 3.5: The bulk geometry M = M1 + M2 + M3 that “fills in” the bound-
ary contour C = C1 + C2 + C3. For d > 3, the Penrose diagrams for the
Lorentzian patches drawn above are not accurate because the zigzag singu-
larity lines must actually be not horizontal but bent inwards [102].

the signs correctly taken into account:

GF (ω1, ω2, ω3, ω4) = 2πκδ(ω1 + ω2 + ω3 + ω4)

×
{

1

4

∑

perm
(ijkl)

∫ r

rH

dr

[(
ωiωjK[11]iK[11]j

h
+ r4hK ′

[11]iK
′
[11]j

)

×
(
ωkωlK[11]kK[11]l

h
+ r4hK ′

[11]kK
′
[11]l

)

−
(
ωiωjK[21]iK[21]j

h
+ r4hK ′

[21]iK
′
[21]j

)

×
(
ωkωlK[21]kK[21]l

h
+ r4hK ′

[21]kK
′
[21]l

)]

− 6rω1ω2ω3ω4

}
. (3.249)

Here,K[ab]i = K[ab](ωi, r) andK[ab](ω, r) is the boundary-bulk propagator from
the boundary ∂Mb to the bulkMa. The second line corresponds to the integra-
tion overM1 and the third line to the integration overM2. Because we are tak-
ing theL→ ∞ limit, the contribution fromM3 has been dropped. The counter
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Figure 3.6: How to patch together the bulk patches M1,M2,M3.

term−6rω1ω2ω3ω4 is added only forM1, because the source is inserted only on
∂M1 (K[21](ω, r) vanishes as r → ∞).

Because the spacetime M = M1 + M2 + M3 has no boundary inside, the
boundary-bulk propagator can be determined without having to worry about
boundary conditions. Carefully matching the values across different patches
following [73, 74], we find the boundary-bulk propagators as follows:

K[11](ω, r) =
1

eβω − 1
[−φω(r) + eβωφ−ω(r)],

K[21](ω, r) =
eβω

eβω − 1
[−φω(r) + φ−ω(r)],

K[31](ω, r) =
e(iL+β)ω

eβω − 1
[−φω(r) + φ−ω(r)],

(3.250)

where φ±ω(r) is the solution to the wave equation (3.226) satisfying the bound-
ary condition (3.227). By substituting these propagators into (3.249), we can
finally obtain the 4-point function for F .

3.D.4 Low frequency correlators

We are interested in the low frequency behavior of the correlation functions.
As we discussed in Appendix 3.B, the solution φ±ω(r) simplifies in the low fre-
quency limit as16

φ±ω(r) ∼ e±iωr∗ . (3.251)

If we apply this to (3.249) and (3.250), we obtain the following low frequency
behavior:

GF (ω1, · · · , ω4) ∼
κ

β3
δ(ω1 + · · · + ω4)

∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

h
e−2i(ωi+ωj)r∗

+ (higher powers in ω), (3.252)

16Note that the precise limit we are taking is (3.179).
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where we dropped numerical factors. Because we have rescaled X in (3.206),
to obtain the correlator for F = OX dual to the original X before rescaling, we
have to rescale F → F√

2πα′
. Therefore, in the end, the 4-point function for F is

GF (ω1, · · · , ω4) ∼
1

α′β3
δ(ω1 + · · · + ω4)

∑

1≤i<j≤4

(ωi + ωj)

∫ 0

−∞
dr∗

r2

h
e−2i(ωi+ωj)r∗ .

(3.253)

This is exactly the same as the result (3.88) that we obtained by a more naive
method. Namely, this has exactly the same IR divergence as (3.88) that we
studied in section 3.5.

3.D.5 Retarded 4-point function

In the above, we computed the time-ordered 4-point function for the force F
which turned out to be IR divergence. We can also compute the retarded 4-
point function using the above formalism. As was shown in [74], for comput-
ing retarded correlators, one uses purely ingoing boundary condition for the
boundary-bulk propagator:

KRet(ω, r) = φ−ω(r). (3.254)

If we define

GF
Ret

(t1, t2, t3, t4) =
∑

perm
(ijkl)

θ(ti > tj > tk > tl)〈[[[F (ti), F (tj)], F (tk)], F (tl)]〉

(3.255)

then the prescription of [74] gives

GF
Ret

(ω1, ω2, ω3, ω4) = 2πκδ(ω1 + ω2 + ω3 + ω4)

×
{

1

4

∑

perm
(ijkl)

∫ r

rH

dr
(
ωiωjKRet,iKRet,j + r4hK ′

Ret,i
K ′

Ret,j

)

×
(
ωkωlKRet,kKRet,l + r4hK ′

Ret,k
K ′

Ret,l

)

− 6rω1ω2ω3ω4

}
, (3.256)

where KRet,i = KRet(ωi, r). The integration effectively becomes only overM1.
For definiteness, consider the AdS3 case where the retarded correlator is

KRet(ω, r) =

(
1 − iω

r

)(
r − rH
r + rH

)−iω/2rH

. (3.257)
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For this case, Eq. (3.256) gives

GF
Ret

(ω1, · · · , ω4) = κ2πδ(ω1 + · · · + ω4)ω1ω2ω3ω4

(
2rH −

16
∑

i<j ωiωj

rH

)
.

(3.258)

Note that this is exact; we have not done low frequency approximation. This is
both IR and UV finite.

3.E Computation of η for the STU black hole

In this Appendix, we will compute the mean-free-path time for the STU black
hole studied in 3.6.2. The final results have been presented in (3.149) and
(3.150)–(3.152).

We will discuss the 1-charge case (κ1 = κ, κ2 = κ3 = 0) only, because the 2-
and 3-charge cases are similar. First, the relations (3.129), (3.130), and (3.131)
read, in this case,

m =
r4H
l2

(1 + κ), T =
rH
2π

2 + κ√
1 + κ

, Φ = − r2H
κ2

5l

√
κ. (3.259)

LH in (3.149) can be computed as follows. From the definition (3.122) and
(3.148) for n = 1, we obtain

∫ r

∞
dr
H1/2

r2f

1√
1 − f−1H2A2

t

=

∫ r

∞

dr

r2 − r2H

√
r2H + ℓ2

(r2 + r2H + ℓ2)((r2H + ℓ2)r2 + r4H)
.

=
1

2r3H

√
1 + κ

(2 + κ)
log

r − rH
LH

+ O(r − rH) (3.260)

The integral in the first line diverges as r → rH . We can separate this divergent
piece by subtracting and adding the term obtained by setting r to rH in the
square root. Further setting ρ = r/rH and κ = ℓ2/rH , we have

log
r − rH
r + rH

+ 2(2 + κ)

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ+ 1 + κ)((1 + κ)ρ2 + 1)
− 1

(2 + κ)

]

≡ log
r − rH
LH

+ O(r − rH). (3.261)

In the second term in the first line, we have set the upper limit of the integral to
ρ → 1 (which is equivalent to r → rH ) because the integral is now convergent.
By comparing both sides, we obtain

LH = 2rH exp

{
−2(2 + κ)

∫ 1

∞

dρ

ρ2 − 1

[
1√

(ρ2 + 1 + κ)((1 + κ)ρ2 + 1)
− 1

2 + κ

]}
.

(3.262)
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By using (3.259), we obtain the final expression (3.150). For small κ, it is easy
to expand the integrand in (3.150) in κ, and each integral converges. This leads
to the following expansion of η in κ:

η = e−π/2

[
2π − πκ+

(12 − π)π

16
κ2

]
+ O

(
κ3
)

(3.263)

This shows that, as κ increases with fixed T , the mean-free-path time tmfp in-
creases.

The 2- and 3-charge cases are similar and we obtain (3.151) and (3.152).
The small κ expansion of η is

η = e−π/2

[
2π − 1

2
(4 − π)πκ+

1

16
π
(
52 − 19π + π2

)
κ2 +O

(
κ3
)]

(3.264)

η = e−π/2

[
2π + (π − 3)πκ+

1

16
π
(
140 − 57π + 4π2

)
κ2 +O

(
κ3
)]

(3.265)

for the 2- and 3-charge cases, respectively.
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C H A P T E R 4

DRAG FORCE IN 4D KERR-ADS BLACK

HOLE

4.1 Introduction

An important feature of RHIC is the spatial anisotropy of the data correlated
with non-zero impact parameter of the colliding ions. The spatial anisotropy
translates into a non-zero component of the second Fourier harmonic of the
particle distribution in the plane transverse to the collision.1 This coefficient
is known as elliptic flow and has been calculated using hydrodynamic evolu-
tion of the sQGP in a stunning agreement with data [104, 105]2. Up to now
most AdS computations of sQGP have ignored spatial anisotropy: the black
hole background is always the standard static isotropic AdS black hole. There
is good reason to do so. Transport coefficients such as the viscosity are defined
with respect to the isotropic perfect fluid and for other quantities the exper-
imental indication that the system thermalizes rapidly to an almost perfect,
i.e. isotropic, fluid means that anisotropy corrections are small. The excep-
tions are “local temperature/pressure” approximations as in Bhattacharyya et
al [57] and Chesler et al [58]. Yet for a number of them, e.g. photon production
or jet-quenching, it is the anisotropic component that is experimentally the
most accessible.

1The first Fourier component vanishes by symmetry.
2A more detailed discussion on this phenomena and others can be found in [106] and refer-

ences therein.
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In this chapter we make a first step towards the study anisotropic effects
on jet-quenching from the string theory point of view. Jet-quenching is a char-
acteristic feature of the sQGP phase in RHIC. It signals the strong energy loss
of a highly massive quark moving in hot charged plasma. In the frame work
of AdS/CFT, a quark is represented by a string suspended from the boundary
of asymptotically AdS space into the interior [65, 107, 108]. This set-up was
proposed in the context of N = 4 supersymmetric Yang-Mills theory at finite
temperature [35,39] and has been explored in detail in [59,60] with a beautiful
extension to trailing wake of the heavy quark in the sQGP dual to the back-
reaction of string on the black-hole geometry. The way we shall introduce
anisotropy in the system is to consider non-zero angular momentum. The
advantage is that the dual description of this system is straightforward: one
considers rotating black holes. The drawback is that the anisotropy primarily
responsible for elliptic flow is due to the asymmetric almond-shape overlap
of the two non-central colliding nuclei rather than angular momentum. As all
non-central collisions the total system carries a significant amount of angular
momentum, but most of that is carried away by spectator-nuclei not involved
in the formation of the sQGP. At RHIC the angular momentum fraction of the
total elliptic flow is thought to be less than 10%, although it is expected to in-
crease to 30% at LHC [61,62] and the references therein. Clearly experimentally
more relevant would be a AdS/CFT study of elliptic flow due to non-rotational
anisotropy. The problem is that the gravity set-up in this case is unclear. Non-
rotational anisotropy dissipates fast as the system equilibrates and isotropizes,
and this points to a time-dependent gravity dual, see e.g. Chesler presentation
in Amsterdam String Theory Workshop 2010.3 For that reason we start here
with studying anisotropic jet-quenching in a rotating plasma.

4.2 Drag force on a string in a global 4D AdS black

hole

In global coordinates, the metric of four dimensional AdS-Schwarzschild is
given by

ds2 = −r2h(r)dt2 +
1

r2h(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (4.1)

h(r) = l2 +
1

r2
− 2M

r3
,

where M is proportional to the mass of the black hole and l is the radius of
curvature. The Hawking temperature of four dimensional AdS-Schwarzschild
can be obtained in a simple way by demanding the periodicity of Euclidean

3Alternatively one could consider 4+1 dimensional hairy black holes to break the anisotropy;
we thank H. Ooguri for pointing this out.
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time to avoid a conical singularity at r = rH . This gives TH = 1
4π

(
1

rH
+ 3rH l

2
)

,

where rH is the radius of horizon defined as the zero locus h(rH) = 0 [109] and
can be written explicitly in terms of parameters l and M :

rH(l,M) =

(
9Ml4 +

√
3l6 + 81M2l8

)1/3

32/3l2
− 1

31/3
(
9Ml4 +

√
3l6 + 81M2l8

)1/3
.

(4.2)

A string in this background can be described by the following Nambu-Goto
action:

S = − 1

2πα′

∫
dσ2
√
−detgαβ =

∫
dσ2L,

gαβ ≡Gµν∂αX
µ∂βX

ν, (4.3)

with σα are coordinates of string worldsheet, Xµ = Xµ(σ) are the embedding
of string worldsheet in spacetime, and Gµν is the spacetime metric (4.1). The
equation of motions derived from (4.3) are,

∇αP
α
µ = 0, Pα

µ ≡ − 1

2πα′Gµν∂
αXν = − 1

2πα′π
α
µ (4.4)

with Pα
µ is the worldsheet current of spacetime momentum carried by the

string, proportional to the canonical worldsheet momentum

πα
µ = − (2πα′)√−g

δS

δ∂αXµ
, (4.5)

with g = detgαβ. The total momentum charge in the direction µ carried by the
string equals

pµ =

∫
dΣα

√−gPα
µ , (4.6)

where Σα is a cross-sectional surface (a line) on the string worldsheet. The
proper-force on the string then equals

∂pµ

∂σ0
=

√−gP σ1

µ (4.7)

which in turn is equal to the canonical worldsheet-momentum

∂pµ

∂σ0
= − 1

2πα′π
σ1

µ (4.8)

If the configuration is constant in time, the proper force
∂pµ

∂σ0 does not depend
on the location σ1 along the worldsheet, thanks to the equation of motion.

∂

∂σ1

∂pµ

∂σ0
=

∂

∂σ1

√−gP σ1

µ = − ∂

∂σ0

√−gP σ0

µ
static
= 0 (4.9)
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Using the physical gauge, σα = (t, r), we can write the action (4.3) as follows

S = − 1

2πα′

∫
dσ2√−g,

−g = 1 + r4h(r)
(
θ′2 + φ′2 sin2 θ

)
− 1

h(r)

(
θ̇2 + φ̇2 sin2 θ

)
− r4 sin2 θ

(
θ̇φ′ − θ′φ̇

)2

,

(4.10)

with˙≡ d
dt and ′ ≡ d

dr . The equations of motion are:

∂

∂t

(
r4√−g sin2 θ

(
θ̇φ′ − θ′φ̇

)
θ′ − sin2 θ

h(r)
√−g φ̇

)

+
∂

∂r

(
r4h(r) sin2 θ√−g φ′ − r4√−g sin2 θ

(
θ̇φ′ − θ′φ̇

)
θ̇

)
= 0,

(4.11)

and

1√−g

(
r4h(r)φ′2 − 1

h(r)
φ̇2 − r4

(
θ̇φ′ − θ′φ̇

)2
)

sin θ cos θ

+
∂

∂t

(
r4 sin2 θ√−g

(
θ̇φ′ − θ′φ̇

)
φ′ +

1

h(r)
√−g θ̇

)

− ∂

∂r

(
r4 sin2 θ√−g

(
θ̇φ′ − θ′φ̇

)
φ̇+

r4h(r)√−g θ
′
)

= 0.

(4.12)

4.2.1 Great circle at θ = π/2

It easy to see that the metric (4.1) has SO(3) symmetry. Specially the boundary
is the S2, and the free motion of a quark on this sphere is a great circle. The mo-
tion of string giving arise to a great circle trajectory should therefore reduce to
the geodesic equations on the boundary. The simplest solution of the great cir-
cles is when we consider the motions in the equatorial coordinates φ = φ(t, r)
only, while the other angular coordinate we set θ = π/2. We take an ansatz for
φ(t, r) as below4

φ(t, r) = ωt+ η(r), (4.13)

where ω is a non-zero constant. Substituting the ansatz (4.13) into the action
(4.3), we obtain equation of motion for η(r) which is given by a constant of its

4With this ansatz, the dynamical field is effectively given by field η(r).
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momentum conjugate since the Lagrangian is only a functional of η′(r)

πr
φ = −2πα′ ∂L

∂η′(r)
=

r4h(r)η′(r)√
1 + r4h(r)η′(r)2 − ω2

h(r)

,

η′(r) =
πr

φ

r4h(r)

√√√√ h(r) − ω2

h(r) − (πr
φ
)2

r4

, (4.14)

thus we find πr
φ is a constant, by solving the equation of motion, proportional

to the momentum conjugate in radial direction. We have chosen positive sign
to describe a string that trails out from boundary down to the horizon. In or-
der to make sense of the solution, we have to require that (4.14) must be real
everywhere. This requirement gives us a condition

h(r) − ω2

h(r)r4 − (πr
φ)2

≥ 0 (4.15)

At the boundary r → ∞, the requirement tells us that there is a bound on the
velocity of the particle that l2 ≥ ω2. Because (4.14) ought to be real everywhere
for rH ≤ r <∞, the only possible choice we can take is for the constant (πr

φ)2 =

ω2r4Sch, with rSch = rH(
√
l2 − ω2,M) defined to be the point where h(rSch) =

ω2. Then the numerator and denominator in (4.15) change their sign at the
same point at r = rSch.

The exact solution for equation (4.14) is quite difficult to find but to com-
pute the drag force it is enough just to use the equation (4.14). To compute the
flow of momentum dpφ down the string, we use

∆Pφ =

∫
dΣαP

α
φ . (4.16)

In this static configuration all momentum flow is radial. Thus the total mo-
mentum reduces to

∆Pφ =

∫

I
dt
√−gP r

φ =
dpφ

dt
∆t, (4.17)

with I is some time interval of length ∆t. Thus the drag force in φ direction is
given by

dpφ

dt
=

√−gP r
φ = −

πr
φ

2πα′ , (4.18)

where the negative value implies that it is the drag force. Explicitly πr
φ = ωr2Sch,

with ω ≥ 0.
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4.2.2 General solution of the great circle

In general, great circles are not only the motion in θ = π/2 plane. The great
circle can be in an arbitrary plane. We can describe this as follows using coor-
dinates transformation:

x = sin θ cosφ, y = sin θ sinφ, z = cos θ. (4.19)

We consider a constrained Nambu-Goto action5

ScNG = − 1

2πα′

∫
dσ2√−g

[
1 +

λ2

2
(xixi − 1)

]
,

−g = r4
(

(ẋix′i)2 − (ẋiẋi − h(r))

(
x′ix′i +

1

r4h(r)

))
, (4.20)

where xi ≡ (x, y, z) and λ is a Lagrange multiplier. The equations of motion for
this action are given by a constraint equation xixi = 1 and

λ2xi√−g − ∂

∂t



x′i r
4ẋjx′j√−g − ẋi

(
r4x′jx′j + 1

h(r)

)

√−g





− ∂

∂r

(
ẋi r

4ẋjx′j√−g − x′i
r4(ẋj ẋj − h(r))√−g

)
= 0.

(4.21)

Notice that if we substitute the constraint equation back to the action (4.20)
then we get back the action (4.3).

radial independent ansatz

A simple solution can be described by radial r independent ansatz, xi = xi(t),
where the equations of motion become

λ2xi√−g +
∂

∂t

(
ẋi

h(r)
√−g

)
= 0, (4.22)

with −g = 1
h (h − ẋiẋi). Multiplying with xi and using constraint xiẋi = 0, we

obtain

ẋiẋi =
λ2h(r)

1 + λ2
. (4.23)

5Recall that in order to make a world sheet volume invariant under world sheet general coordi-
nate transformation, we have to multiply with

√−g. A repeated index denotes Einstein summa-
tion index.
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Assume λ is constant, the equations of motion are now simplified to

ẍi = −λ
2h(r)

1 + λ2
xi. (4.24)

The general solution is given by

x(t)i = ai sin

(
λ

√
h(r)

1 + λ2
t

)
+ bi cos

(
λ

√
h(r)

1 + λ2
t

)
, (4.25)

where ai and bi are constants. The constraint requires that these constants
obey

aiai = bibi = 1, aibi = 0. (4.26)

These solutions are the general great circle solutions in the plane spanned by

~a and~b. However, these solutions have an angular velocity which depends on
r and therefore they are not consistent with the ansatz.

There is another solution which is similar to (4.25) where angular velocity v
is a constant but λ = λ(r) depends on radial coordinate,

x(t)i = ai sin (vt) + bi cos (vt) . (4.27)

From equation (4.23), we find that

λ(r)2 =
v2

h(r) − v2
. (4.28)

Unfortunately for this solution −g is not positive definite. This is similar to the
non-global case discussed in Herzog et al [35] and we will take as our starting
point.

curved equatorial ansatz

Motivated by equatorial solution (4.13) and general great circle solutions (4.27)
previously, we take the ansatz depends on time and radial coordinate as fol-
lows:

x(t, r)i = ai sin(vt+ c(r)) + bi cos(vt+ c(r)), (4.29)

with v is a constant and c(r) is a function will be determined later. Using the
constraint equation, as we did in radial independent ansatz, the equations of
motion now become

√−g ∂
∂r

(
r4h xi

√−g

)
=

(
λ2

1 + λ2
− v2

h

)
xi,

(4.30)
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where −g = 1
1+λ2 and we have λ = λ(r). The −g can also be written, by substi-

tuting the ansatz to (4.30), as

−g = 1 + r4h(r) c′(r)2 − v2

h(r)
. (4.31)

Comparing this with the equatorial solution we can identify c(r) = η(r) and
v = ω. One can check, using these two expressions of −g, that at equatorial we
get back the equatorial solution (4.13). Now, the equations of motion reduce
to

∂

∂r

(
r4h c′(r)√−g

)
= 0 (4.32)

which is the same equation for η(r) as in the equatorial case. Furthermore one
can also find the expression for λ which is given by

λ(r)2 =
v2

r4
r4 − r4Sch

h(r) − v2
, (4.33)

where rSch is defined as h(rSch) = v2. This guarantees that λ(r) is a positive
definite function.

Adding the constraint into the original Nambu-Goto action, we have man-
ifest rotation symmetry SO(3) in x, y, z coordinates. In this case the drag force
is related to angular momentum currents in r direction or torques of the world
sheet

J i
r =

dLi

dt
= − r4

2πα′√−g
(
ẋjx′jεimnx

mẋn − (ẋj ẋj − h(r))εimnx
mx′n

)
, (4.34)

where εimn is a totally antisymmetric tensor, with ε123 = 1. The angular mo-
mentum currents or torques, after substituting the ansatz and the constraint,
are

J i
r =

dLi

dt
= −r

4h(r)

2πα′
εijkx

jx′k√−g = −r
4h(r)c′(r)

2πα′√−g εijkb
jak = −r

4h(r)c′(r)

2πα′√−g n
i

(4.35)
where ni ≡ (nx, ny, nz) is the normal vector of great circle with the norm unity.
The equations of motion imply that these angular momentum currents of
torques are constants. The norm of total angular momentum current or total

torque equals to the norm of drag force (4.18), J2
r ≡ J i

rJ
i
r = dLi

dt
dLi

dt =
(

dpφ

dt

)2

.

This shows that the total drag force is the same as before.
The drag force of string moving in the background of a four dimensions

AdS-Schwarzschild is thus a constant related to momentum of a particle rep-
resented by the end of a string at the boundary. We can derive the full motion
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of the particle, e.g. the friction as it moves in the plasma with a constant angu-
lar velocity ω, with the boundary metric

ds2B = −dt2 +
1

l2
(
dθ2 + sin2 θdφ2

)
. (4.36)

To illustrate the relativistic angular velocity of this particle at the boundary

is uµ = γ (1, 0, ω),in terms of coordinates (t, θ, φ), with γ =
(
1 − ω2/l2

)−1/2

and θ = π/2. Taking non-relativistic limit, ω ≪ l, we obtain Pµ ≡
m(1, 0, ω)

(
1 + 1

2
ω2

l2 + · · ·
)

with m is the mass of particle. In this limit, the drag

force becomes

dpφ

dt
= − 1

2πα′
pφ

m
r2H +O(ω) (4.37)

and thus the friction coefficient is

µφ =
r2H

2mπα′ +O(ω). (4.38)

Recall that rH = rSch(ω = 0).

4.3 Anisotropic drag on a string in 4D Kerr-AdS

black hole

As has been explained before in the introduction, we are looking for a back-
ground metric as a solution to Einstein equation with negative cosmological
constant that naturally has anisotropy at the boundary. One such solution is
Kerr-AdS black holes. We shall use Kerr-AdS in Boyer-Lindquist coordinates
which has less mixing terms than the other coordinates representation and it
manifestly reduces to the non-rotating solution of previous section when the
rotation parameter a vanishes. A disadvantage is that this coordinates rep-
resentation does not have manifest SO(3) symmetry at the boundary r → ∞
even though it is restored there, as can be seen by a transformations to another
coordinates. The metric of four dimensions Kerr-AdS black hole in Boyer-
Lindquist coordinates is explicitly written as [110]

ds2 = − ∆r

ρ2

(
dt− a

Ξ
sin2 θdφ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+
∆θ sin2 θ

ρ2

(
adt− r2 + a2

Ξ
dφ

)2

, (4.39)
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where

ρ2 = r2 + a2 cos2 θ

∆r = (r2 + a2)(1 + l2r2) − 2Mr

∆θ = 1 − l2a2 cos2 θ

Ξ = 1 − l2a2, (4.40)

with a is the rotation parameter constrained to 1 > a2l2 in order to have a
finite positive value of the horizon area. The event horizon or outer horizon is
located at r = rKH which is the largest root of ∆r. The Hawking temperature
is given by

TH = rKH
3l2r2KH + 1 + a2l2 − a2/rKH

4π(r2KH + a2)
. (4.41)

The Nambu-Goto action for the metric above is

SNG = − 1

2πα′

∫
dσ2√−g,

−g =

((
a∆r − a(r2 + a2)∆θ

) sin2 θ

Ξρ2
φ′ +

ρ2

∆θ
θ̇θ′

+
(
∆θ(r

2 + a2)2 − a2∆r sin2 θ
) sin2 θ

Ξ2ρ2
φ̇φ′
)2

−
(
ρ2

∆r
+
ρ2

∆θ
θ′2 +

(
∆θ(r

2 + a2)2 − a2∆r sin2 θ
) sin2 θ

Ξ2ρ2
φ′2
)
×

×
((
a2∆θ sin2 θ − ∆r

) 1

ρ2
+
(
a∆r − a(r2 + a2)∆θ

) 2 sin2 θ

Ξρ2
φ̇

(
∆θ(r

2 + a2)2 − a2∆r sin2 θ
) sin2 θ

Ξ2ρ2
φ̇2 +

ρ2

∆θ
θ̇2
)
. (4.42)

Let us consider the equatorial solution for θ = π/2 and take the ansatz
(4.13) such that the equation of motion now becomes

η′(r) =
πr

φ(1 − a2l2)

∆r

√
(1 − a2l2 − aω)2∆r − f(r)

∆r − (1 − a2l2)2(πr
φ)2

,

f(r) = (a− a3l2 − a2ω − ωr2)2, (4.43)

requiring real solution everywhere demands

(1 − a2l2)2(1 − a2l2 − aω)2π2
φ − f(r)

(1 − a2l2 − aω)2∆r − f(r)
≤ 1. (4.44)
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Again, lets first look at r → ∞, then we obtain6

l2 ≥ ω2

(1 − a2l2 − aω)2
. (4.45)

Limiting the calculation for real positive r, in order to satisfy the inequality
(4.44) we need to know the profile of both numerator and denominator on the
left hand side of the inequality (4.44) at least in the region rKH ≤ r < ∞.
Unfortunately this is not an easy task unlike in the case of AdS-Schwarzschild.
Here we assume that for some values of parameter l, ω,M, and a the numerator
and denominator behave like in the case of AdS-Schwarzschild where at some
radius r = rK , which is the largest positive root of (1−a2l2−aω)2∆r −f(r), the
numerator and denominator change their sign as we move from the boundary
at r → ∞ down to the horizon r = rKH with

(πr
φ)2 =

(a− a3l2 − a2ω − r2Kω)2

(1 − a2l2)2(1 − a2l2 − aω)2
. (4.46)

Then we can compute the drag force as follows

dpφ

dt
= −

√
f(rK)

2πα′(1 − a2l2 − aω)(1 − a2l2)
.

= −
πr

φ

2πα′ . (4.47)

The drag force actually can be easily computed using the fact that the equation
of motion for φ is the conservation current in radial r direction, i.e. ∂rJ

r
φ = 0.

This is true since we are considering the dynamical field in φ to depend on
the radial direction r. So, the conserved current in radial direction r for φ is
actually the conjugate momentum of φ in radial direction r such that Jr

φ = ∂L
∂φ′

which is just the constant πr
φ. What we have to do then is to determine the

values of πr
φ that give physical solution.

The exact expression for rK , as solution to f(rK) = (1− a2l2 − aω)2∆r(rK),
in this case is very long and complicated. In the small limit a≪ 1, we can write
rK = r0 + a r1 +O(a2), with r0 = rSch and

r1 =
ωl2r40 − 2ωMr0

2(l2 − ω2)r30 + r0 −M
. (4.48)

Then we can write πr
φ as expansion of a up to first order as follows

πr
φ ≈ ωr20 − (1 − ωr0 (ωr0 + 2r1)) a+O(a2). (4.49)

6This condition is related to light and time-like region of the spacetime at the boundary where

the light-like is given by ω2

l2
= (1 − a2l2 − aw)2.
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Thus the drag force can be written as

dpφ

dt
= − 1

2πα′
[
ωr20 − (1 − ωr0 (ωr0 + 2r1)) a+O(a2)

]
. (4.50)

The fist term is the drag force of the 4D non-rotating black hole (4.18) and the
second term can be considered as correction in the present of small angular
momentum a. Explicitly for small a, the drag force is written as

dpφ

dt
= − 1

2πα′
[
π0

φ − a+ C π0
φa+O(a2)

]
,

C = ω

[
2(2l2 − ω2)r30 + r0 − 5M

2(l2 − ω2)r30 + r0 −M

]
, (4.51)

with π0
φ is the drag force of non-rotating AdS-Schwarzschild black hole. The

first linear term in a is simply due to a change of frame, but the term with co-
efficientC exhibits a nonlinear-enhancement of the drag force in the presence
of angular momentum.

4.3.1 Static solution

Generalization of the arbitrary great circle solutions (4.29) to Kerr-AdS black
holes is very difficult because of the complexity of the equations of motion.
However, we can still solve these equations for a particular solution where we
consider the string to be static. We will define shortly what we mean by static.
This kind of solution can already capture the drag force effect of a rotating
plasma. In the equatorial plane, the effect should be the same as consider-
ing a moving string in a non-rotating black hole by switching observers. For
motion that is not equatorial, we will find a new force due to the anisotropy
breaking by the angular momentum. We expect it to be centripetal force-like
and drive the motion back to equatorial orbits. Specifically this means that
this force will not depend on the direction of the angular momentum, but only
on its magnitude. To lowest order in a therefore, this contribution goes as a2.
Here we will compute this lowest order consequence of anisotropy by expand-
ing and solving the static equations of motion to order a2. This will establish
the lowest order contribution of anisotropic effects to the drag force. In the ro-
tating black hole case, the static solution is not the time-independent solution
with θ = θ(r) and φ = φ(r).

There is a subtle aspect of the Kerr-AdS metric in Boyer-Lindquist coordi-
nates. It is actually not manifest asymptotically AdS metric at the boundary.
We need to do the following coordinate transformation to obtain this.

T = t, Φ = φ− al2t,

y cosΘ = r cos θ, y2 =
1

Ξ

(
r2∆θ + a2 sin2 θ

)
. (4.52)
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The full expression for the Kerr-AdS metric in coordinates T, y,Θ,Φ is very
complicated. For M = 0, however it is the regular AdS metric

ds2 = −(1 + l2y2)dT 2 +
1

1 + l2y2
dy2 + y2

(
dΘ2 + sin2 ΘdΦ2

)
. (4.53)

In this metric the static straight string, with Θ = CΘ and Φ = CΦ constants,
is a solution of the equation of motion. This then corresponds to a “time-
dependent” solution in Boyer-Lindquist coordinates

φ = CΦ + al2t, (4.54)

θ = arccos
(y
r

cosCΘ

)
, (4.55)

with

y2 =
r2(r2 + a2)

(1 − a2l2 sin2 CΘ)r2 + a2 cos2 CΘ

. (4.56)

That is nevertheless describing a static string. For finite M , we expect these
constants to be function of r in Boyer-Lindquist coordinates. Thus the “static”
ansatz as an expansion in small a is taken to be

θ(r) = θ0(r) + a2θ1(r) +O(a4), (4.57)

φ(t, r) = φ0(r) + al2t φt(r) + aφ1(r) +O(a2). (4.58)

Let’s consider φ0(r) = P0, θ0(r) = Θ0, and φt(r) = Pt constants. From
the mapping of coordinates above, immediately Pt can be set to 1. Solving the
equations of motion order by order in power of a, we obtain

φ1(r) = −
∫
dr

P1

r4h(r)
, (4.59)

with P1 a constant. The solution for θ1 is quite complicated, but for our pur-
pose we will just need the near boundary solution which can be computed
using Mathematica. Substituting the solutions, we find that the world sheet
conjugate momenta in radial direction as an expansion of small a near the
boundary are given by

πr
θ ≈

(
−3l2r +

2T2

sin(2Θ0)
+ (1 − P 2

1 )
log(r)

M
− 3

r
+ · · ·

)
a2

2
sin(2Θ0) +O(a4),

(4.60)

πr
φ ≈ P1 sin(Θ0)

2a+O(a2), (4.61)

with T2 a constant. P1 can be fixed by comparing the result at Pt = 0 with
the equatorial solution (4.49) at zero angular velocity which gives us P1 = −1.
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Interestingly, this also fixes T2 = 0. The conjugate momentum πr
θ has a singu-

larity at r → ∞ which goes linearly in r. This singularity at r → ∞ corresponds
to infinite mass of the quark [35]. In order to have a more realistic picture, we
consider a finite large mass of quark by introducing a cut-off in the geometry
near the boundary at r = rc which in the bulk can be interpreted as the lo-
cation of a probe D-brane where the string can end. Following [35], the static
thermal rest mass of quark can be computed at leading order in a by setting
Pt = 0,

mrest =
1

2πα′

(
rc −

1

3l2

(
2πT +

√
4π2T 2 − 3l2

))
, (4.62)

with T is the temperature of plasma written as (4.41). Then by evaluating con-
jugate momenta above at r = rc we obtain the leading contribution of the
conjugate momenta

πr
θ ≈ −

(
6πα′l2mrest + 2πT +

√
4π2T 2 − 3l2

) a2

2
sin(2Θ0), (4.63)

πr
φ ≈ − sin(Θ0)

2a, (4.64)

4.3.2 Drag force

Having the solution in the a expansion, now we are ready to compute the drag
forces to leading order in double expansions of small a and ω:

dpθ

dt
≈ πr

θ(a 6= 0 ≪ 1, ω = 0)r→∞ + πr
θ(a = 0, ω 6= 0 ≪ 1)r→∞, (4.65)

dpφ

dt
≈ πr

φ(a 6= 0 ≪ 1, ω = 0)r→∞ + πr
φ(a = 0, ω 6= 0 ≪ 1)r→∞. (4.66)

The (a = 0, ω = 0) term is just a constant which can be set to zero. We have
included in this expression the lowest order (a = 0, ω 6= 0) solution, which is
valid as long as both a and ω are small. The leading contribution to πr

θ(a = 0)
and πr

θ(a = 0) is simply πr
θ(a = 0) ≈ ωθ and πr

φ(a = 0) ≈ ωφ, with ωθ and ωφ are
small. So, we obtain the leading contribution to the drag forces

dpθ

dt
≈
(

3l2mrest +
1

2πα′

(
2πT +

√
4π2T 2 − 3l2

)) a2

2
sin(2Θ0) −

ωθ

2πα′ , (4.67)

dpφ

dt
≈ − 1

2πα′
(
ωφ − sin(Θ0)

2a
)
. (4.68)

Here we can see that at the poles, defined at Θ0 = 0 and Θ0 = π, there is no
additional drag forces to the static quark, with ωθ = ωφ = 0. These are unstable
points for a generic value of Θ0 that the drag force in θ direction tends to drag
the static quark to the equator, Θ0 = π/2. The general situation at instanta-
neous time is illustrated in figures 4.1, 4.2, 4.3, and 4.4. The figures describe
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motion of quarks at different positions on the boundary with an uniform ve-
locity (blue arrow), in Cartesian coordinates, or with

ωθ =
1

10
(cosφ− sinφ),

ωφ = − 1

10θ
(cosφ+ sinφ), (4.69)

in Polar coordinates, being seen from the north pole of S2 projected into a
plane. The circle, with bold line, denotes the equator of S2. The circular brown
arrow is the direction of angular momentum of the black hole. The red arrows
show direction of the drag force effect of the plasma with its length propor-
tional to the strength how much the drag force needed to drive the quarks
to the equatorial. We have drawn the figures for different values of a and
MT = (3l2mrest + 2πT +

√
4π2T 2 − 3l2)/2, with 1/α′ = 2π.
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Figure 4.1: a = 0.1, MT = 10
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Figure 4.2: a = 0.1, MT = 30
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Figure 4.3: a = 0.1, MT = 20
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Figure 4.4: a = 0.118, MT = 20

4.4 Discussion and conclusion

In a non-rotating 4D global AdS-Schwarzschild black hole, the moving curved
string solution (4.13), or in general (4.29), corresponds to a heavy quark mov-
ing in relativistic plasma living on a sphere S2. The motion of this quark follows
the geodesic of S2 namely a great circle. A novel physical consistency condi-
tion of this solution is that the string velocity ω must be smaller than curvature
radius of the black hole l. In this setting, we obtained the drag force as a func-
tion of the velocity ω times the square of critical radius rSch defined by the
largest positive root of h(r) = ω2. In the non-relativistic limit, ω → 0, this fric-
tion coefficient is simply the square of horizon rH as in the flat case [35, 39].
Unlike the flat case, the friction coefficient has non-linear dependence on
the temperature. Furthermore, the temperature of plasma in this background
is bounded from below limited by the Hawking-Page transition to Euclidean
AdS [9].

Our main result is to take a first step towards the study of anisotropic effects
on drag force. For this, we considered the background metric of the rotating
4D Kerr-AdS black hole. For equatorial motion, the drag force is simplfy solved
in the same way as the non-rotating case. The velocity ω is now bounded non-
trivially by the angular momentum a and curvature radius l (4.45). Also unlike
the previous non-rotating case, at zero velocity, ω = 0, the drag force does
not vanish but is proportional to the angular momentum of the black hole a .
This can be understood at the boundary as the drag force effect of dropping a
static quark into a rotating plasma where the rotating plasma forces the quark
to move accordingly with the plasma. In order to get a vanishing drag force,
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the quark must move at a critical velocity

ωC = a

(
1 − a2l2

a2 + r2KH

)
. (4.70)

The drag force changes its direction when the quark’s velocity crosses this crit-
ical velocity.

The generalization to arbitrary great circle motion is rather difficult. Taking
a “static” solution in Boyer-Lindquist coordinates, corresponding to a static
quark in a rotating plasma, we were able to compute the leading contribution
to the drag force. Based on parity this drag force in the θ-direction should be
an even function of the angular momentum a whereas the drag force in the
φ-direction to linear order in a should be a generalization of the equatorial
motion. As illustrated in figures 4.1 to 4.4, we conclude that the resulting drag
force in a rotating strongly coupled plasma tends to drive the quark back to the
equatorial plane and the amount of force is proportional to the static thermal
rest mass of the quark mrest and temperature of the plasma T in an analytic
expression (4.67).
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SUMMARY

QGP is one of the phases in QCD where quarks are deconfined and form a
fluid with gluons. It could exist in an environment with strong or weak cou-
pling. However, there are many indications that the QGPs created at RHIC
are strongly coupled. Hence, we need a tool that goes beyond perturbation
theory. AdS/CFT(or in general gauge/gravity) correspondence is one of the
tools which we discussed briefly in chapter 1. In this thesis, we used AdS/CFT
correspondence to compute some of observables of QGP such as photon and
dilepton production rates, mean-free path time of the plasma constituents,
and anisotropic drag force effect to the elliptic flow.

There is still no a complete description of gauge/gravity correspondence
where the dual theory is QCD. Nevertheless, there are models constructed
to mimic some of phenomenological properties of QCD such as linear con-
finement, lowest mesons spectrum, and etc. One of these models is soft-
wall AdS/QCD which is an interesting model particularly because the critical
temperature is found to be relatively close to the current lattice computation.
This model has non-trivial dilaton background in addition to the gravity back-
ground. We used this model to compute photon and dilepton production rates
in chapter 2.

The observable that we computed in photon and dilepton production rates
is the spectral density function χ(K) given as the imaginary part of the re-
tarded electromagnetic current-current correlation function. For this purpose,
we only considered the quadratic terms of the U(1) gauge field in softwall
AdS/QCD action. Using Minkowski prescription by Son and Starinet, we com-
puted the results analytically at low and high frequency and then confirmed
them with numerical result.

At low frequency, the result depended on the IR-cutoff parameter c, with
c ≥ 0. Unfortunately, for some higher values of c we found no peaks in the
spectrum which meant no signal of confinement. This may due to the fact that
softwall AdS/QCD does not take into account the backreaction from dilaton
field to the geometry. Softwall AdS/QCD is some how much cruder description
of QCD in the unstable regime c > 0.419035. We showed this by comparing
with the computation from N = 2 SQCD theory, where the peaks appear in the
spectrum. Although softwall AdS/QCD does not capture the confinement in
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the unstable regime, it still describes the IR-consequences of a mass gap from
the confinement phase remarkably well in the stable regime 0 ≤ c ≤ 0.419035.
We also computed the electrical conductivity σ and found that the IR-cutoff
parameter c gives a damping effect.

The mean-free path time of the plasma can be computed by studying the
Brownian motion of an external quark in the plasma. The Brownian motion
is described by the generalized Langevin equation which basically consists of
two terms: friction and random force terms. We showed in chapter 3 that for a
simple model, the mean-free path time can be extracted from two- and four-
point functions of random force R at low frequency limit ω → 0.

In the bulk, this Brownian motion is represented by the motion of a fun-
damental string X at the boundary where the action is given by Nambu-Goto
action under some black hole backgrounds. We computed the two- and four-
point functions using holographic prescription to the small fluctuation around
static strings configuration. Holographically, the boundary value of the string
x = X(r → ∞) couples to the total force F on an external quark. In the large
mass limit, m → ∞, the total force is equal to random force. We also used
Minskowski prescription by Skenderis and van Rees to compute the real-time
propagators and holographic renormalization to remove the UV divergence
that appear at the boundary. However, there was also an IR divergence near
the horizon. We argued that this IR divergence can be removed by introducing
an IR cut-off to the geometry.

An explicit computation of the mean-free path time was done for the case
of non-rotating BTZ black hole, which corresponds to a neutral plasma. We
generalized the computation for various black hole backgrounds and obtained
a general formula of the mean-free path time. This generalized formula was
used to compute the mean-free path time of STU black holes, which corre-
sponds to charged plasma. The results showed that the mean-free path time
is proportional to the inverse of log η, with η is a function of Hawking temper-
ature TH and charge κ. When κ increases, the plot 3.4 showed that η decreases
for 1- and 2-charge cases and increases for 3-charge case. These results are
in accordance with our intuition as for the black holes with a fixed mass the
mean free path-time increases when κ increases in all of the charge cases. We
also computed friction coefficient of STU black holes and found that the re-
sult at low frequency limit, ω → 0, is similar to the drag force computation at
non-relativistic limit.

The non-central collisions at the RHIC experiments show an anisotropic
particle distribution of QGP. The signal of this anisotropic distribution can be
seen in some of observables e.g. jet-quenching or drag force. In gauge/gravity
correspondence’s language, the anisotropic distribution can be related to the
anisotropic of black hole backgrounds. One way to realize this is by consider-
ing the rotating black holes. This is the main focus of chapter 4.

At first, we considered the non-rotating 4D AdS-Schwarzschild black hole.
The drag force in gravity side is interpreted as a world sheet conjugate momen-
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tum in radial direction of the Nambu-Goto action evaluated at the boundary.
With a linear ansatz, we obtained that the total drag force of arbitrary great
circle is proportional to the angular velocity of the string ω and the square of
critical radius rSch, which is similar to the flat case [35, 39]. Unfortunately, we
found that the friction coefficient is not a linear function of the plasma tem-
perature T .

We then continued the study of the drag force to the 4D Kerr-AdS black
hole. A simple computation was done for equatorial case. Unlike the case of
4D Ads-Schwarzschild black hole, the drag force does not vanish if we take the
angular velocity of the string to be zero, ω = 0, but instead it is proportional
to the angular momentum of the black hole a. For more general case, we con-
sidered a particular “static” solution in Boyer-Lindquist coordinates. This so-
lution contributes to the leading order of drag forces at small angular momen-
tum a with vanishing velocities ω = 0. We plotted the drag forces for different
values of angular momentum a and parameter MT . We found that the drag
force in θ-direction tends to drive the quark back to the equatorial plane and
the amount of force is proportional to the static thermal rest mass of the quark
mrest and temperature of the plasma T .
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SAMENVATTING

Quark-gluonplama (QGP) is een van de fasen van quantumchromodynamica
(QCD), de theorie die de sterke kracht beschrijft. In deze fase zijn quarks niet
gebonden in mesonen en hadronen (confined) maar vormen daarentegen een
vloeistof met gluonen (deconfined). Deze fase kan bestaan in een omgev-
ing met zowel sterke als zwakke effectieve koppelingsconstante. In de QGPs
gemaakt bij botsingen in de RHIC-versneller zijn er sterke aanwijzingen dat
deze QGPs gekenmerkt worden door een sterke effectieve koppelingscontante.
Daarom hebben we een methode nodig die verder gaat dan storingsreken-
ing. Anti-de Sitter/conforme veldentheorie-dualiteit (AdS/CFT-dualiteit of, in
het algemeen, ijk/zwaartekrachtsdualiteit) is een van deze methoden. Deze
methode is kort beschreven in hoofdstuk 1. In dit proefschift hebben we de
AdS/CFT-dualiteit gebruikt om sommige observabelen van een QGP te bereke-
nen. Voorbeelden van deze observabelen zijn de productiefrequenties van fo-
tonen en dileptonen, de gemiddelde tijd tussen botsingen van de elementen
van het plasma en anisotrope weerstand als gevolg van een elliptische stro-
ming.

Er is nog steeds geen complete beschrijving van de ijk/zwaartekrachts du-
aliteit waarbij de duale theorie QCD is. Desondanks zijn er modellen die
fenomenen van QCD zoals lineaire opsluiting en lichtste mesonenspectra na-
bootsen. Een van deze modellen is de zachte muur-AdS/QCD, wat een in-
teressant model is omdat de kritische temperatuur relatief dicht bij de kri-
tische temperatuur van roosterberekeningen ligt. Dit model heeft, naast
de zwaartekracht-achtergrond, een niet-triviale dilaton-achtergrond. In 2
hebben we dit model gebruikt om productiefrequenties van fotonen en dilep-
tonen te berekenen.

De observabele voor de productiefrequenties van fotonen en dilepto-
nen die we berekend hebben is de spectrale dichtheidsfunctie χ(K), het
imaginaire gedeelte van de geretardeerde elektromagnetische stroom-stroom-
correlatiefunctie. Voor dit doel hebben we alleen de kwadratische termen van
het U(1) ijkveld in de zachte muur AdS/QCD beschouwd. Met behulp van de
Minkowski-methode van Son en Starinet hebben we de analytische resultaten
voor lage en hoge frequentie berekend en vergeleken met numerieke resul-
taten.
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Bij lage frequentie bleek het resultaat af te hangen van de IR-cutoff pa-
rameter c, met c ≥ 0. Helaas vonden we voor sommige hogere waarden
van c geen pieken in het spectrum wat betekent dat er geen confinement op-
treedt. Dit kan komen doordat de zachte muur-AdS/QCD de terugkoppeling
van het dilatonveld op de geometrie niet meeneemt. Zachte muur-AdS/QCD
is een onnauwkeurige beschrijving van QCD in het onstabiele domein c >
0.419035. We hebben dit laten zien door zachte muur-AdS/QCD te vergelijken
met berekeningen van de N = 2 SQCD-theorie, waar pieken in het spectrum
optreden. Hoewel zachte muur-AdS/QCD geen confinement in het onstabiele
regime heeft beschrijft het de IR-gevolgen van een massasplitsing van de con-
fined fase opvallend goed in het stabiele domein 0 ≤ c ≤ 0.419035. We hebben
ook de elektrische geleiding σ berekend en vonden dat de IR-cutoff parameter
c een dempend effect heeft.

De gemiddelde tijd tussen botsingen van het plasma kan berekend wor-
den door het bestuderen van Brownse beweging van een extern quark in het
plasma. De Brownse beweging wordt beschreven door de veralgemeniseerde
Langevinvergelijking, welke bestaat uit twee termen: frictietemen en termen
die een kracht ten gevolge van willekeurige botsingen beschrijven. We hebben
in 3 laten zien dat voor een eenvoudig model de gemiddelde tijd tussen botsin-
gen berekend kan worden met behulp van de twee- en vierpuntsfuncties van
de kracht ten gevolge van willekeurige botsingen R in de lage frequentielimiet
ω → 0.

In de bulk wordt deze Brownse beweging gerepresenteerd door de beweg-
ing van een fundamentele snaar X aan de rand, waarbij de actie gegeven
is door de Nambu-Gotoactie in een zwart gat-achtergrond. Gebruik mak-
end van de holografische beschrijving van een kleine fluctuatie rond statis-
che snaarconfiguraties hebben we de twee- en vierpuntsfuncties berekend.
Vanuit holografisch perspectief koppelt een fundamentele snaar aan de rand
x = X(r → ∞) aan de totale kracht F op een externe quark. In de hoge
massalimiet m → ∞ is de totale kracht gelijk aan de kracht ten gevolge van
willekeurige botsingen. We hebben ook de Minkowskibeschrijving van Sk-
enderis en van Rees gebruikt om de reele tijdpropagatoren en de holografische
renormalisatie van de UV-divergentie die aan de rand optreedt te berekenen.
Er trad echter ook een IR divergentie op nabij de horizon. We hebben beargu-
menteerd dat deze divergentie verwijderd kan worden door een IR cutoff in de
geometrie te implementeren.

We hebben een expliciete berekening van de gemiddelde tijd tussen botsin-
gen gedaan voor het geval van een niet roterend BTZ zwart gat, wat correspon-
deert met een neutraal plasma. We hebben deze berekening veralgemeniseerd
naar verscheidene zwart gat-achtergronden en hebben een algemene formule
van de gemiddelde tijd tussen botsingen verkregen. Vervolgens hebben we
deze algemene formule gebruikt om de gemiddelde tijd tussen botsingen van
STU zwarte gaten, overeenkomend met een geladen plasma, te berekenen.
De resultaten tonen dat de gemiddelde tijd tussen botsingen proportioneel is
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met de inverse van log η, met η een functie van de Hawkingtemperatuur TH

en lading κ. Wanneer κ toeneemt blijkt uit de grafiek 3.4 dat η afneemt voor
de één- en tweeladinggevallen en toeneemt voor het drieladinggeval. Deze
resultaten zijn in overeenstemming met onze intuı̈tie dat voor een zwart gat
met een vaste massa de gemiddelde tijd tussen botsingen toeneemt wanneer
κ toeneemt in alle gevallen met lading. We hebben eveneens de weerstand-
scoëfficient van een STU zwart gat berekend en gevonden dat het resultaat in
de lage frequentielimiet, ω → 0, vergelijkbaar is met de weerstandsberekening
in de niet-relativistische limiet.

De niet-centrale botsingen bij de RHIC experimenten tonen een anisotrope
deeltjesverdeling van het QGP. Het signaal van deze anisotrope verdeling is
terug te vinden in sommige observabelen, zoals jet-quenching en wrijving. In
de taal van ijk/zwaartekrachtsdualiteit is de anisotrope verdeling gerelateerd
aan het anisotrope gedeelte van een zwart gatachtergrond. Een manier om dit
te realiseren is door een roterend zwart gat te beschouwen. Dit is de kern van
4.

Om te beginnen hebben we een vierdimensionaal AdS-Schwarzschild
zwart gat beschouwd. De weerstand aan de zwaartekrachtskant van de du-
aliteit wordt geı̈nterpreteerd als een kanonische impuls van het wereldopper-
vlak in de radiële richting van de Nambu-Gotoactie geëvalueerd aan de rand.
Met een lineare benadering hebben we gevonden dat de wrijving van een
quark bewegend langs een willekeurig grote cirkel proportioneel is met de
hoeksnelheid van een snaar ω en het kwadraat van de kritieke straal rSch. Dit
is vergelijkbaar met het vlakke geval [35, 39]. Helaas hebben we ook gevonden
dat de frictiecoefficient geen lineare functie is van de temperatuur T .

Vervolgens hebben we weerstand veroorzaakt door een vierdimensionaal
Kerr-zwart gat bestudeerd. We hebben een simpele berekening gedaan voor
het equatoriale geval. De wrijving niet verdwijnt, in tegenstelling tot bij het
vierdimensionale AdS-Schwarzschild zwarte gat, wanneer we de hoeksnelheid
van de snaar nul nemen, ω = 0, maar is proportioneel met het impulsmoment
van het zwarte gat a. Voor een meer algemeen geval hebben we een speci-
aal “statisch” geval in Boyer-Lindquistcoördinaten beschouwd. Deze oploss-
ing draagt bij aan de leidende om van de weerstand bij kleine impulsmo-
menten a en verwaarloosbare snelheden ω = 0. We hebben de weerstand
voor verschillende waarden van het impulsmoment a en de parameter MT

weergegeven. Hiermee hebben we gevonden dat de weerstand in de θ-richting
een quark dichter bij het equatoriale vlak wil brengen. Dit gebeurd met een
kracht die proportioneel is met de massa van de quark en de temperatuur van
het plasma.
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