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Introduction

The theory of complex multiplication makes it possible to construct
certain class fields and abelian varieties. The main theme of this thesis
is making these constructions explicit for the case where the abelian
varieties have dimension 2.

Elliptic curves over finite fields

One-dimensional abelian varieties are known as elliptic curves, which in
most cases can be represented as a curve in the (x, y)-plane given by

y2 = x3 + ax+ b (0.1)

for some choice of parameters a, b in a field k. Elliptic curves come
with a natural (abelian) group law, which can be described completely
geometrically.

In the representation (0.1), the unit element of the group is an extra
point O at infinity, and three points P,Q,R satisfy P + Q + R = O in
the group if and only if they are collinear. For k = R, this looks as
follows.

P

Q

R

P + Q

The group law can be given by algebraic equations, and we can define
elliptic curves over any field k. If k has characteristic different from 2
and 3, which we assume from now on for simplicity, then this is done by
taking a and b in k. If we do this for a finite field k, then the group E(k)
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of points defined over k is finite. Indeed, the number of elements #E(k)
of E(k) can be computed simply by testing for every x-coordinate in k
whether x3 + ax+ b is a square in k.

If the order q = #k of k gets large, then this method of point
counting takes too much time. However, there are faster methods based
on the properties of the Frobenius endomorphism F : (x, y) 7→ (xq, yq)
of E. The points in E(k) are exactly those points over an algebraic
closure of k that are left invariant by F . In particular, they are the
points in the kernel of the endomorphism (F − id), where subtraction
takes place in the ring of endomorphisms End(E) of E. It is known that
F is (as an element of the endomorphism ring) a root of a quadratic
Weil polynomial

f = X2 − tX + q ∈ Z[X], (0.2)

and that we have

#E(k) = deg(F − id) = f(1) = q + 1− t.

The trace of Frobenius t is bounded in size by |t| ≤ 2
√
q, and indicates to

which extent #E(k) differs from the number q+1 of points on a straight
line. Schoof realized in 1985 that the reductions (t mod l) at small
primes l can be computed by looking at the action of F on the l-torsion
points of E, and that this allows one to compute the number t, and
therefore #E(k), efficiently. This yields a polynomial time algorithm
that, for large q, is much faster than the exponential time method of
direct point counting.

Cryptography

Suppose one has a finite group G in which the group operation can be
efficiently implemented, but the discrete logarithm problem is thought
to be hard. This means that given x, y ∈ G, finding an integer m
such that y = xm holds is hard. Then the Diffie-Hellman key exchange
protocol from 1976 allows one to agree upon a cryptographic key in such
a way that eavesdroppers, who intercept the entire communication, are
believed to be unable to derive the key from it. The original example
of such a group G is the unit group G = k∗ for a prime finite field k =
Fp. Index calculus methods like the number field sieve provide a sub-
exponential method for solving the discrete logarithm problem in k∗.
To protect the protocol against this algorithm until the year 2030, it is
generally recommended to use primes p of over 3000 bits.

As for G = k∗, the group order of G = E(k) for an elliptic curve
E is of size approximately #k = q. However, it seems that the dis-
crete logarithm problem for the group E(k) is harder, as 35 years of
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research has not led to a sub-exponential method for it. For this rea-
son, the recommended key sizes for achieving the same level of security
with elliptic curve cryptography are much smaller: q is recommended to
have 256 bits. This difference of a factor 12 in key length is important
in practical situations such as on ‘RFID tags’ with limited computing
power. The optimal elliptic curves for cryptography are the ones of
prime group order, and we will now describe how they can be obtained.

The CM method

One can construct elliptic curves of prime order over a finite field k
by ‘random curves and point counting’, that is, by taking random a’s
and b’s in k and computing #E(k) using Schoof’s algorithm until one
encounters an elliptic curve of prime order.

An alternative method is the CM method, which starts with a Weil
polynomial f (as in equation (0.2)) with f(1) a large prime, and com-
putes an elliptic curve corresponding to that. Let π be a root of f
and let O be the maximal order in the field Q(π). One constructs, e.g.
from the torus C/O using analytic means, a complex elliptic curve E
with complex multiplication (CM) by O, i.e., endomorphism ring iso-
morphic to O. This curve E can be defined over a number field, and its
reduction modulo a prime over p has π (up to units) as its Frobenius
endomorphism.

Actually, instead of the curve E itself, one needs only its j-invariant
j(E), since that completely describes the isomorphism class of E over C.
The fact that E can be defined over a number field is reflected by the fact
that j(E) is an algebraic number. In fact, it is an algebraic integer, and
the CM method computes its minimal polynomial HO ∈ Z[X], called
the Hilbert class polynomial of O. The reduction of j(E) is obtained
by computing a root of (HO mod p), and finding the appropriate curve
with that j-invariant is easy.

Both methods have various advantages and disadvantages. The bit
size of the Hilbert class polynomial HO grows about linearly with the
discriminant of O, so the CM method is restricted to number fields Q(π)
of small discriminant. In other words, it is restricted to p and t such
that p2−4t is a square times a small integer. The CM method therefore
provides partial control over p, t, and #E(k), and the interplay between
these numbers. This could be compared to random curves and point
counting, where one has full control over p, but hardly any control over t.

From a cryptographic perspective, an advantage of the CM method
and the control it provides is the possibility to construct curves for
pairing based cryptography, which is impossible with random curves.
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Some cryptographers are a bit hesitant towards curves with too much
structure and prefer random curves over the small-discriminant curves
produced by the CM method, while others think that special curves
might actually be safer than random ones.

Curves of genus two

Most two-dimensional abelian varieties are Jacobians of curves of genus
two. In characteristic different from 2, curves of genus two are of the
form

y2 = f(x)

for a polynomial f of degree 5 or 6. This can be compared to equation
(0.1) for elliptic curves, where f is a cubic polynomial. Over the field
R of real numbers, this looks for example as follows:

For a curve C of genus 2, the set of pairs of points (up to a certain
equivalence) has a natural group structure. Three pairs of points add
up to the unit element if they lie on the graph of a cubic polynomial.
These (classes of) pairs of points form an algebraic surface, an abelian
surface known as the Jacobian of C.

At the moment, the 2-dimensional analogue of Schoof’s method,
although still polynomial-time, is only just becoming able to construct
cryptographic abelian surfaces by ‘random curves and point counting’.
Analogues of the CM method are much more successful, and various CM
constructions for genus 2 have been given during the last two decades.
The imaginary quadratic field Q(π) needs to be replaced by a CM-field
of degree 4, and the j-invariant needs to be replaced by a triple of Igusa
invariants.

The polynomials that one gets instead of Hilbert class polynomials
are known as Igusa class polynomials. Methods for computing these
polynomials were given by Spallek and others, but no bounds on the
running time were given. Various complications arise from the facts
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that these polynomials are rational, rather than integral, and that the
moduli space of genus-2 curves is three-dimensional rather than one-
dimensional. We study and improve the algorithms in Chapters II
and III, and derive the first bound on their running time.

In Chapters IV and V, we describe how to use CM constructions
to construct specific kinds of genus-2 curves with Jacobians suitable for
cryptography.

Class fields

Apart from the relatively recent cryptographic applications of CM con-
structions, the theory of complex multiplication is a beautiful part of
pure mathematics that connects number theory, algebra, and geometry.

The Kronecker-Weber theorem from the second half of the 19th cen-
tury states that every finite abelian extension L of Q, i.e., every Galois
extension L/Q with finite abelian Galois group, is contained in Q(ζn)
for some n, where ζn is a primitive n-th root of unity. In other words,
every abelian extension L/Q is a subfield of a field M generated by
torsion elements ζn = exp(2πi/n) of the group C∗.

The problem of finding similar constructions when Q is replaced by
other base fields K is known as Kronecker’s Jugendtraum and is number
12 of Hilbert’s famous list of 23 problems from the year 1900.

Kronecker found that the j-invariants of elliptic curves with CM by
orders in an imaginary quadratic field K together with the roots of unity
generate almost all abelian extensions of K (indeed, they generate an ex-
tension over which the maximal abelian extension has exponent 2). This
was later generalized to the theory of complex multiplication of elliptic
curves, which gives a complete solution to Kronecker’s Jugendtraum for
K imaginary quadratic. The main theorem of complex multiplication
states that for any elliptic curve E with CM by K, every finite abelian
extension L/K is a subfield of a field M generated by j(E) and the
coordinates of torsion points of E.

The theory of complex multiplication of abelian varieties was de-
veloped by Shimura and Taniyama in the 1950’s and describes abelian
extensions of CM-fields K. The CM-fields of degree 2 are exactly the
imaginary quadratic fields, and this case is the classical case, describing
all abelian extensions of imaginary quadratic fields.

For CM-fields K of degree > 2, the theory of complex multiplication
by itself does not produce all abelian extensions of K. It does describe
which fields are obtained in terms of class field theory, and Shimura
showed in the 1960’s how to obtain all abelian extensions of any CM-
field K by using a combination of complex multiplication and the class
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fields of the maximal totally real subfield of K. For most CM-fields
of degree 4, Shimura’s construction requires the use of 4-dimensional
abelian varieties. We show in Chapter I that it is possible to construct
class fields of quartic CM-fields using, besides the class fields of the real
quadratic subfield, CM theory only for abelian varieties of dimension at
most 2.

Overview

Chapter I is mainly an introduction to the theory of complex multipli-
cation. We define notions that occur in every chapter of this thesis, and
we state the ‘main theorem’ of the theory of complex multiplication.
We also show that a general result of Shimura [76] can be improved for
the case of CM-fields of degree 4.

Chapter II needs only theory from Sections 1–6 of Chapter I and does
not require familiarity with class field theory, which Sections I.9 and I.10
do.

We define class polynomials for primitive quartic CM-fields and give
an algorithm for computing them. The algorithm is based on an algo-
rithm of Spallek [79] and van Wamelen [88]. We make the algorithm
more explicit, and derive the first bounds on the absolute values of the
coefficients of the polynomials. Together with recent bounds on the de-
nominators of these coefficients, this provides us with the first running
time bound and proof of correctness of an algorithm that computes these
polynomials. In fact, no bounds on the height of these polynomials were
known yet, so that we also get the first bound on their height.

Chapter III shows that there exist better objects than Igusa class
polynomials, both from a theoretical perspective and in view of appli-
cations. This chapter studies and computes the irreducible components
of the modular variety of abelian surfaces with CM by a given primitive
quartic CM-field. We show how to adapt the algorithms of Chapter II
to compute these irreducible components. We do not do that in Chap-
ter II to avoid making that chapter too heavy, and because Igusa class
polynomials are the objects used in existing literature. We also give
computational examples in this chapter. Chapter III uses results from
both Chapters I and II.

Chapters IV and V, which were written to be read independently of
each other and of the other chapters, construct certain ‘Weil numbers’
inside CM-fields. These Weil numbers correspond to abelian varieties,
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which in the dimension-2 case can be constructed using the class poly-
nomials of Chapter II. The Weil numbers in Chapters IV and V have
properties that are number theoretic in nature and are motivated by
cryptography, since the abelian varieties that they correspond to have
a subgroup of ‘cryptographic’ size and hence can be used for crypto-
graphic purposes.

Chapter IV is joint work with David Freeman and Peter Stevenhagen
and appeared as Abelian varieties with prescribed embedding degree [26].
The abelian varieties in it have a prescribed small ‘embedding degree’
with respect to a subgroup of large prescribed order. For small dimen-
sion, say at most 3, they can be used for ‘pairing based cryptography’.

Chapter V is joint work with Laura Hitt O’Connor, Gary McGuire,
and Michael Naehrig and appeared as A CM construction for curves of
genus 2 with p-rank 1 [43]. This chapter is about Jacobians of curves of
genus 2. The p-rank of the abelian surfaces in this chapter, an invariant
that is 0 or 2 for all previous cryptographic constructions, is 1.

Appendices 1–3 give extra background for Chapter II.
Appendix 1 obtains integrality results for Fourier expansions of Igusa

invariants directly from formulas in Section II.7.
Appendix 2 gives an alternative to an algorithm in Section II.3 and

gives a generalization of much-cited formulas of Spallek [79].
Appendix 3 studies experimentally how fast Igusa class polynomi-

als grow with the discriminant of the CM-field. We also see that our
choice of Igusa invariants is better in practice than the invariants used
in existing literature.





ChapterI
Complex multiplication

Abstract. In this chapter, we give an introduction to
the theory of complex multiplication. We define notions like
CM-fields, CM-types, and the reflex type that occur in every
chapter of this thesis, and we state the ‘main theorem’ of
complex multiplication. We show in Theorem 10.3 that a
general result of Shimura [76] can be improved for the case
of CM-fields of degree 4

1 Kronecker’s Jugendtraum

The following classical result describes all finite abelian extensions of Q
via Galois theory.

Theorem 1.1 (Kronecker-Weber Theorem). Let K/Q be a finite abeli-
an Galois extension. Then there is a positive integer n such that we
have an embedding

K → Q(ζn) = Q(t : t ∈ Gm(Q)[n]) = Q(exp( 2πi
n )).

The Galois group of Q(ζn)/Q is (Z/nZ)∗, where (k mod n) maps ζn
to ζkn.

Kronecker’s Jugendtraum (a.k.a. Hilbert’s twelfth problem) is to find
an analogue of this result when Q is replaced by an arbitrary number
field F .
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Class field theory implicitly describes all finite abelian extensions
of F and their Galois groups in terms of certain groups of equivalence
classes of ideals. These groups are called class groups, and to each class
group of F , there corresponds an abelian extension of F , which we call
the class field corresponding to the group. The Galois group of an
abelian extension of F is isomorphic to the corresponding class group
via the Artin map.

All class fields can be constructed from their class groups using Kum-
mer theory. Suppose we want to construct the finite abelian extension
M of F corresponding to a class group G. If e is the exponent of G,
then by Kummer theory, we find that M is a subfield of F (ζe)(

e
√
S) for

some finite set S ⊂ F (ζe). As the Artin map tells us much about the
decomposition of primes in M/F , this allows us to find M . For details,
see Cohen and Stevenhagen [18].

The approach of finding the abelian extensions of F via Kummer
theory is arguably not in the spirit of Kronecker’s Jugendtraum, since
it is not of the form of a single function that parametrizes generators
of the abelian extensions of F , like the analytic map z 7→ exp(2πiz) for
F = Q.

If F is imaginary quadratic, then the theory of complex multiplica-
tion of elliptic curves does provide a complete solution to Kronecker’s
Jugendtraum in terms of the j-invariant and the coordinates of tor-
sion points. These torsion points can be parametrized by a normalized
version of the Weierstrass ℘-function, or ‘better’ modular functions as
in [18]. This approach does not suffer from the need for extra roots of
unity ζe, as Kummer theory does.

With the theory of complex multiplication of abelian varieties, Shi-
mura and Taniyama [78] generalized the full answer for imaginary qua-
dratic fields to a partial answer for CM-fields.

For a CM-field F , we obtain many abelian extensions of F by replac-
ing Gm above by an abelian variety that has complex multiplication by
the reflex field K of F . Which abelian extensions are obtained is ex-
pressed in terms of the reflex type. We will first define these notions.

2 CM-fields

Definition 2.1. A CM-field is a totally imaginary quadratic extension
K of a totally real number field K0.

By ‘totally imaginary’ we mean that K has no embeddings into R.
In other words, a CM-field is a field K = K0(

√
r) for some totally real

number field K0 and some totally negative element r ∈ K0. CM-fields
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clearly have even degree, and the CM-fields of degree 2 are exactly the
imaginary quadratic number fields.

The following result gives some classical properties of CM-fields.

Lemma 2.2. Let K be a number field. The following are equivalent.

(1) The field K is totally real or a CM-field.

(2) There exists an automorphism · : x 7→ x of K such that for every
embedding σ : K → C, the automorphism · is the restriction of
complex conjugation on C to K via σ, i.e., we have · ◦ σ = σ ◦ ·.

Moreover, the following holds:

(a) any composite of finitely many CM-fields and totally real fields
containing at least one CM-field is a CM-field,

(b) the normal closure of a CM-field is a CM-field,

(c) if φ is an embedding of CM-fields K1 → K2, then we have · ◦ φ =
φ ◦ · with · as in (2),

(d) any subfield of a CM-field is totally real or a CM-field.

Following part (c) of the lemma, we denote · ◦ φ by φ.

Proof. If K is totally real, then (1) and (2) are both trivially true.
Otherwise, the equivalence of (1) and (2) follows by taking K0 to be the
fixed field of ·. Using (2), we also find (c) since the composite of φ with
an embedding K2 → C is an embedding K1 → C. For details, see [52,
§I.2], [78, Lemma 3 in §8.1], or [64, Prop. 1.4].

The existence and uniqueness of the complex conjugation morphism
· of (2) easily shows that a composite of fields satisfying (2) also satis-
fies (2). In particular, such a composite is a CM-field if one of the fields
is a CM-field.

Part (b) follows from (a) as the normal closure is the composite of
the conjugates. See also [64, Prop. 1.5].

For part (d), let K be a subfield of L, where L satisfies (2) for some
automorphism ·. By (b), we can assume without loss of generality that
L is normal over Q, so let H = Gal(L/K) ⊂ Gal(L/Q). By (c), we
have · ◦H = H ◦ ·, so · restricts to an automorphism of K. Since every
embedding K → C extends to an embedding L → C, we find that ·
satisfies (2) also on K.

Example 2.3. The cyclotomic field Q(ζn) satisfies (2) for ζn = ζ−1
n . It

is a CM-field of degree ϕ(n) for n > 2 and equals Q for n ∈ {1, 2}. Its
totally real subfield is the fixed field Q(ζn+ζ−1

n ) of complex conjugation.
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3 CM-types

Let K be a CM-field of degree 2g and L′/Q a field that contains a
subfield isomorphic to a normal closure of K.

Definition 3.1. A CM-type of K with values in L′ is a subset Φ ⊂
Hom(K,L′) consisting of exactly one element from each of the g complex
conjugate pairs of embeddings φ, φ : K → L′.

There are 2g CM-types of K with values in L′. If K is imaginary
quadratic, then a CM-type of K with values in L′ is the same as an
embedding of K into L′.

Let K2/K1 be an extension of CM-fields and assume L′ contains a
subfield isomorphic to a normal closure of K2. Then every CM-type of
K1 has a natural extension to a CM-type of K2 as follows.

Definition 3.2. Let K1,K2, L
′ be as above, and let Φ be a CM-type

of K1 with values in L′. The CM-type of K2 induced by Φ is

ΦK2 = {φ ∈ Hom(K1, L
′) : φ|K1 ∈ Φ}.

We say that a CM-type is primitive if it is not induced from a CM-type
of a strict CM-subfield.

Example 3.3. The cyclic CM-field K = Q(ζ7) of degree 6 has subfields
K0 = Q(ζ7 + ζ−1

7 ), K1 = Q(
√
−7), and Q. We see that K has 23 =

8 CM-types of which 2 are induced from K1, hence 6 CM-types are
primitive.

We call two CM-types Φ1,Φ2 of K equivalent if there is an automor-
phism σ of K such that Φ2 = Φ1σ holds.

Lemma 3.4 (Example 8.4(2) of [78]). Let K be a quartic CM-field
with the four distinct embeddings φ1, φ2, φ1, φ2 into a field L′, and let
Φ = {φ1, φ2}, Φ′ = {φ1, φ2}. Exactly one of the following holds.

1. The field K is normal over Q and its Galois group is isomorphic
to C2 × C2. Each CM-type is non-primitive, and there are two
equivalence classes of CM-types {Φ,Φ} and {Φ′,Φ′}, where each
class is induced from a different imaginary quadratic subfield of K.

2. The field K is cyclic Galois, and all four CM-types are equivalent
and primitive.

3. The field K is non-Galois, its normal closure has Galois group D4,
each CM-type is primitive, and the equivalence classes of CM-types
are {Φ,Φ} and {Φ′,Φ′}.
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In cases 2 and 3, the field K does not contain an imaginary quadratic
subfield.

Proof. Let L be the normal closure of K and Gal(L/Q) its Galois group.
Then Gal(L/Q) is a group of permutations of V = {φ1, φ2, φ1, φ2} that
commute with the complex conjugation permutation. If we identify V
with the vertices of a square in the plane, where the complex conjugate
elements of V are opposite corners, then Gal(L/Q) is a subgroup of
the symmetry group D4 of the square. The three conjugacy classes of
subgroups that act transitively on the vertices are listed in the lemma.
For each, the subfields and the equivalence classes of CM-types are
straightforward to compute.

In particular, for a quartic CM-field, either all or none of the CM-
types are primitive and we call the field primitive or non-primitive ac-
cordingly. A quartic CM-field is primitive if and only if it does not
contain an imaginary quadratic subfield.

The following result shows that every CM-type is induced from a
unique CM-subfield.

Lemma 3.5. Let K be a CM-field and Φ a CM-type of K with values
in L′. There is a unique subfield K1 ⊂ K and a unique CM-type Φ1 of
K1 with values in L′ such that Φ1 is primitive and Φ is induced from Φ1.

If L is the normal closure of K, then we have

Gal(L/K1) = {σ ∈ Gal(L/Q) | ΦLσ = ΦL}. (3.6)

Proof. This is [64, Prop. 1.9] or, alternatively, [52, Lem. 2.2].

4 Complex multiplication

We now recall the basic theory of abelian varieties with complex multi-
plication. For details, we refer to [78, 52, 64].

An abelian variety over a field k is a complete irreducible group
variety over k. It is known that abelian varieties are smooth, projective,
and commutative.

A morphism of abelian varieties is a morphism of varieties that re-
spects the group structure, and we will denote the ring of endomor-
phisms of an abelian variety A by End(A). An isogeny is a surjective
homomorphism between two abelian varieties of the same dimension.
We say that A and B are isogenous and write A ∼ B if there exists an
isogeny from A to B. This defines an equivalence relation, and we call
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a non-zero abelian variety A simple if it is not isogenous to a product
of lower-dimensional abelian varieties.

We say that an abelian variety A of dimension g has complex multi-
plication (CM) by a number field M if M has degree 2g and there is an
embedding ι : M → End(A) ⊗Q. We say that A has CM by an order
O ⊂M if the same holds with ι−1(End(A)) = O.

The tangent space T0A of A at the unit point 0 of A is a vector space
over k of dimension g. Differentiation defines a ring homomorphism
D : End(A)→ Endk(T0A).

Now let K be a CM-field of degree 2g and A an abelian variety with
CM by K via the embedding ι : K → End(A) ⊗Q. Suppose the base
field k has characteristic 0. Then the composite map

ρ = D ◦ ι : K → EndkT0A

is a g-dimensional k-linear representation of the ring K.

Lemma 4.1. Let the notation be as above, and assume that the base
field k has characteristic 0. There exists a unique CM-type Φ of K with
values in the algebraic closure k of k such that the representation ρ is
equivalent over k to the direct sum representation ⊕φ∈Φφ.

Proof. See [78, §5.2], [52, Thm. 1.3.4], or [64, 3.11].

The CM-type Φ is uniquely determined by (A, ι) and we call it the
CM-type of (A, ι). Furthermore, we say that (A, ι) and A are of type Φ.
Note that if σ is an automorphism of K and (A, ι) is of type Φ, then
(A, ι ◦ σ) is of type Φ ◦ σ. In particular, the variety A is both of type Φ
and of type Φ ◦ σ.

Given any element τ ∈ Gal(k/Q), we define

τι : K → End(τA)⊗Q

x 7→ τ(ι(x)).

We write τ(A, ι) = (τA, τι).

Lemma 4.2. With τ as above, if (A, ι) has type Φ, then τ(A, ι) has
type τΦ.

Proof. Follows directly from the definition. See also the proof of Propo-
sition 31 in §8.5 of [78].

The reflex field Kr ⊂ k of (K,Φ) is the fixed field of the group

G = {τ ∈ Gal(k/Q) : τΦ = Φ}.
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We find that for any CM-type (K,Φ), the group G = Gal(k/Kr) acts
on the set of abelian varieties of type Φ. The main theorem of complex
multiplication, which we will state later, describes this action.

In what follows, we will actually work with polarized abelian vari-
eties, which are abelian varieties together with some extra data called
a polarization. We give the definition of a polarization for a complex
abelian variety in Section 5.1. We will not need the general definition
of a polarization in this thesis, but see [62, §13] for details.

5 Complex abelian varieties

5.1 Complex tori and polarizations

If A is a g-dimensional abelian variety over the field C of complex num-
bers, then it is known that there exists a natural complex analytic group
homomorphism from the tangent space V = T0A to A. Its kernel Λ is
a lattice of rank 2g. This shows that every complex abelian variety is
complex analytically a complex torus, i.e., a complex vector space mod-
ulo a lattice of full rank. A polarization of A induces an anti-symmetric
R-bilinear form

E : V × V → R

such that we have E(Λ,Λ) ⊂ Z and such that (u, v) 7→ E(iu, v) is
symmetric and positive definite. By a polarization on a complex torus,
we will mean such a form.

A complex torus V/Λ is (complex analytically isomorphic to) an
abelian variety if and only if it admits a polarization (see [4]).

The derivative of any morphism f : A → B of abelian varieties is
a morphism of complex tori, i.e., a C-linear map of the complex vector
spaces that restricts to a map of the lattices. Conversely, any morphism
of tori T0A/ΛA → T0B/ΛB induces a morphism of abelian varieties. In
particular, the category of abelian varieties over C is equivalent to the
category of complex tori that admit a polarization.

The degree of a polarization is the determinant detM of a matrix
M that expresses E in terms of a basis of Λ. We call a polarization
principal if its degree is 1, and a (principally) polarized abelian variety
is a pair consisting of an abelian variety together with a (principal)
polarization.

An isomorphism f : (Cg/Λ, E)→ (Cg/Λ′, E′) of (principally) polar-
ized abelian varieties is a C-linear isomorphism f : Cg → Cg such that
f(Λ) = Λ′ and f∗E′ = E hold, where f∗E′ is defined by f∗E′(u, v) =
E(f(u), f(v)) for all u, v ∈ Cg.
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5.2 Ideals and polarizations

Let K be any CM-field of degree 2g and let Φ = {φ1, . . . , φg} be a
CM-type of K with values in C. By abuse of notation, we interpret Φ
as a map Φ : K → Cg by setting Φ(α) = (φ1(α), . . . , φg(α)) ∈ Cg for
α ∈ K.

Let DK/Q be the different of K. Let a be a fractional OK-ideal, and
suppose that there exists a generator ξ ∈ K of the fractional OK-ideal
(aaDK/Q)−1 such that φ(ξ) lies on the positive imaginary axis for every
φ ∈ Φ. Then the map E = EΦ,ξ : Φ(K)× Φ(K)→ Q given by

E(Φ(α),Φ(β)) = TrK/Q(ξαβ) for α, β ∈ K (5.1)

is integer valued on Φ(a) × Φ(a), and can be extended uniquely R-
linearly to an R-bilinear form E = EΦ,ξ : Cg ×Cg → R.

Theorem 5.2. Suppose Φ is a CM-type of a CM-field K of degree 2g.
Then the following holds.

1. For any triple (Φ, a, ξ) as above, the pair (Cg/Φ(a), E) defines a
principally polarized abelian variety A(Φ, a, ξ) with CM by OK of
type Φ.

2. Every principally polarized abelian variety over C with CM by OK
of type Φ is isomorphic to A(Φ, a, ξ) for some triple (Φ, a, ξ) as in
part 1.

3. The abelian variety A(Φ, a, ξ) is simple if and only if Φ is primi-
tive. If this is the case, then the embedding ι : K → End(A)⊗Q
is an isomorphism.

4. For every pair of triples (Φ, a, ξ) and (Φ, a′, ξ′) as above with the
same type Φ, the principally polarized abelian varieties A(Φ, a, ξ)
and A(Φ, a′, ξ′) are isomorphic if there exists γ ∈ K∗ such that

(a) a′ = γa and

(b) ξ′ = (γγ)−1ξ.

If Φ is primitive, then the converse holds.

Proof. This result can be derived from Shimura-Taniyama [78], and first
appeared in a form similar to the above in Spallek [79, Sätze 3.13, 3.14,
3.19] We quickly give a proof. See van Wamelen [88, Thms. 1, 3, 5] for
details.

A straightforward calculation shows that E is anti-symmetric and
that (u, v) 7→ E(iu, v) is symmetric and positive definite (see [78, Thm. 4
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in §6.2]). The fact that E : Φ(a) × Φ(a) → Q takes values in Z and
has determinant 1 follows from the fact that ξaa = D−1

K/Q is the dual of
OK for the trace form K ×K → Z given by (x, y) 7→ TrK/Q(xy). This
proves part 1.

Now let (A, ι) have type Φ. By definition of the type of (A, ι) we
can choose a basis of T0A such that ι(α) is given by the diagonal matrix
with diagonal Φ(α). Take any element x ∈ Λ and scale the basis of T0A
such that we have x = (1, . . . , 1). As Λ is an OK-module via Φ, we find
that Λ⊗Q is a vector space over K via Φ. The dimension of this vector
space is (2g)/(2g) = 1, so Φ−1(Λ) ⊂ K is a fractional OK-ideal, which
we denote by a.

For the details of why a polarization of (A, ι) takes the form of (5.1),
see [78, Thm. 4 in §6.2]. The identity ξaa = D−1

K/Q follows from the fact
that E maps Φ(a)× Φ(a) to Z with determinant 1. This proves part 2

The fact that an abelian variety of type Φ is simple if and only if
Φ is primitive is [52, Thm. 1.3.5]. It then follows from [52, Thm. 1.3.3]
that ι is bijective.

Theorem 5 of [88] gives the condition for when abelian varieties are
isomorphic.

We call two triples (Φ, a, ξ) with the same type Φ equivalent if they
satisfy the conditions 4a and 4b of Theorem 5.2.

Let K be any CM-field with maximal totally real subfield K0. Let
h (resp. h0) be the class number of K (resp. K0) and let h1 = h/h0.

Proposition 5.3. The number of pairs (Φ, A), where Φ is a CM-type
and A is an isomorphism class of abelian varieties over C with CM by
OK of type Φ, is

h1 ·#O∗K0
/NK/K0(O∗K).

Proof. Let I be the group of invertible OK-ideals and S the set of pairs
(a, ξ) with a ∈ I and ξ ∈ K∗ such that ξ2 is totally negative and ξOK =
(aaDK/Q)−1. The group K∗ acts on S via x(a, ξ) = (xa, x−1x−1ξ) for
x ∈ K∗. By Theorem 5.2, the set that we need to count is in bijection
with the set K∗\S of orbits.

We claim first that S is non-empty. Proof of the claim: Let z ∈
K∗ be such that z2 is a totally negative element of K0. The norm
map NK/K0 : Cl(K) → Cl(K0) is surjective by [91, Thm. 10.1] and
the fact that the infinite primes ramify in K/K0. As DK/Q and xOK
are invariant under complex conjugation, surjectivity of N implies that
there exist an element y ∈ K∗0 and a fractional OK-ideal a0 such that
ya0a0 = z−1D−1

K/Q holds, so (a0, yz) is an element of S.
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Let S′ be the group of pairs (b, u), consisting of a fractional OK-
ideal b and a totally positive generator u ∈ K∗0 of bb. The group K∗

acts on S′ via x(b, u) = (xb, xxu) for x ∈ K∗, and we denote the group
of orbits by C = K∗\S′. The map C → K∗\S : (b, u) 7→ (ba0, u

−1yz)
is a bijection and the sequence

0 −→ O∗K0
/NK/K0(O∗K) −→

u 7→(OK ,u)
C −→

(b,u)7→b
Cl(K)−→

N
Cl(K0) −→ 0

is exact, so K∗\S has the correct order.

The following two lemmas show what happens with distinct CM-
types and thus answers a question of van Wamelen [88].

Lemma 5.4. For any triple (Φ, a, ξ) as above and σ ∈ Aut(K), we have

A(Φ, a, ξ) ∼= A(Φ ◦ σ, σ−1(a), σ−1(ξ)).

Proof. We find twice the same complex torus Cg/Φ(a). The first has
polarization

E : (Φ(α),Φ(β)) 7→ TrK/Q(ξαβ) (5.5)

for α, β ∈ a while the polarization of the second maps (Φ(α),Φ(β)) to
TrK/Q(σ−1(ξαβ)), which equals the right hand side of (5.5).

Lemma 5.6. Suppose A and B are abelian varieties over C with CM by
K of types Φ and Φ′. If Φ′ is primitive and Φ and Φ′ are not equivalent,
then A and B are not isogenous. In particular, they are not isomorphic.

Proof. Suppose f : A → B are isogenous. The isogeny induces an
isomorphism ϕ : End(A)⊗Q→ End(B)⊗Q given by g 7→ fgf−1. Let
ιA : K → End(A) ⊗Q and ιB : K → End(B) ⊗Q be the embeddings
of types Φ and Φ′. Let σ = ι−1

B ϕιA (where ιB is an isomorphism by
Theorem 5.2.3 because Φ′ is primitive). Then (A, ιA) and (B, ιB ◦ σ)
have types Φ and Φ′σ. As f induces an isomorphism of the tangent
spaces, we also see that these types are equal, so Φ and Φ′ are equivalent.

Definition 5.7. We call two triples (Φ, a, ξ) and (Φ′, a′, ξ′) equivalent
if there is an automorphism σ ∈ Aut(K) such that Φ ◦ σ = Φ′ holds
and (Φ, σ(a′), σ(ξ′)) is equivalent to (Φ, a, ξ) as in our definition above
Lemma 5.4.

If Φ is primitive, then it follows from Theorem 5.2.4 and Lemmas
5.4 and 5.6 that A(Φ, a, ξ) and A(Φ′, a′, ξ′) are isomorphic if and only
if (Φ, a, ξ) and (Φ′, a′, ξ′) are equivalent.
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5.3 Another representation of the ideals

Let K be any CM-field of degree 2g and assume g ≤ 2, or, more gen-
erally, that the different DK0/Q is principal and generated by δ ∈ K0.
For g = 1 we take δ = 1, and for g = 2 we take δ =

√
∆0.

We will now show that we can take the triple (Φ, a, ξ) to be of a
special form. This special form is important to us in Section II.6, where
we use it to give bounds on the absolute values of matrices occurring in
our algorithm.

Theorem 5.8. Let K be a CM-field and K0 its maximal real subfield
and suppose that DK0/Q is principal and generated by δ.

For every triple (Φ, a, ξ) as in Section 5.2, there exists an element
z ∈ K such that (up to equivalence of the triple (Φ, a, ξ)) we have a =
zOK0 +OK0 ⊂ K, ξ = (z−z)−1δ−1, and Φ = {φ : K → C | Imφξ > 0}.

Proof. As a is a projective module of rank 2 over the Dedekind domain
OK0 , we can write it as a = zc+yOK0 for someOK0 -ideal c and z, y ∈ K.
By part 4 of Theorem 5.2, we can replace a by y−1a and ξ by yyξ, hence
we can assume without loss of generality that we have y = 1.

Recall that we have an alternating Z-bilinear form E : a × a → Z,
given by (u, v) 7→ TrK/Q(ξuv). This form is trivial on zc × zc and
OK0×OK0 , and is alternating, hence is completely defined by its action
on zc×OK0 . Let T : K0×K0 → Q be the Q-linear trace form (a, b) 7→
TrK0/Q(ab), so we have E(za, b) = T (ξ(z−z)a, b) for all a ∈ c, b ∈ OK0 .
Note that here ξ(z − z) is an element of K0.

The fact that E is principal (i.e., has determinant 1) implies that
ξ(z−z)c is the dual ofOK0 with respect to the form T , which is D−1

K0/Q
=

δ−1OK0 by [66, §III.2]. It follows that c is principal, so without loss of
generality we have c = OK0 and hence ξ = (z − z)−1δ−1.

The following result gives the converse of Theorem 5.8. In fact,
it gives a slightly more general representation that will be useful in
Section II.6.

Theorem 5.9. Let K, K0, and δ be as mentioned at the beginning of
Section 5.3.

Suppose z ∈ K is such that a = zb + b−1 is an OK-submodule of K.
Let ξ = (z − z)−1δ−1 and Φ = {φ : K → C : Imφξ > 0}. Then (Φ, a, ξ)
is a triple as in Section 5.2.

Proof. The dual of b for the trace form (as defined in the proof of
Theorem 5.8) is δ−1b−1. The result now follows by retracing the steps
in the proof of Theorem 5.8.
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We call two pairs (z, b) equivalent if they give rise to equivalent
triples (Φ, a, ξ).

Remark 5.10. The element z ∈ K can be interpreted as a point

−(sign(φiδ)φiz)
g
i=1

in the Hilbert upper half space Hg, which is the g-fold cartesian product
of the upper half plane H = {z ∈ C | Im z > 0}.

The group SL2(OK0) acts on Hg by acting on the i-th coordinate zi
of z ∈ Hg as (

a b
c d

)
zi =

φi(a)zi + φi(b)
φi(c)zi + φi(d)

.

The Hilbert moduli space SL2(OK0)\Hg parametrizes the set of isomor-
phism classes of principally polarized abelian varieties with real multi-
plication by OK0 , of which principally polarized abelian varieties with
complex multiplication by OK are special cases.

6 Jacobians of curves

An important example of a principally polarized abelian variety is the
Jacobian of a curve. By curve, we will always mean a smooth projective
geometrically irreducible algebraic curve over a field. The Jacobian of
a curve C over a field k is an abelian variety J(C) such that we have
J(C)(l) = Pic0(Cl) for every field extension l/k with C(l) 6= ∅. For the
exact definition or more details, see [63]. The dimension of J(C) equals
the genus g of C.

If we fix a divisor E of degree g on C, then by the Riemann-Roch
theorem, every degree-0 divisor on C is equivalent to D − E for an
effective divisor D of C of degree g, i.e., for a sum D of g points. This
gives a cover of J(C) by the g-fold symmetric product of C, and shows
that we can view J(C) as a set of equivalence classes of g-tuples of
points.

The Jacobian comes with a natural principal polarization. For de-
tails, see [63]. We say that a curve C has complex multiplication if J(C)
does.

Now suppose C is defined over k = C. We give the definition of the
Jacobian as in [4]. Let H0(ωC) be the complex vector space of holomor-
phic 1-forms on C and denote its dual by H0(ωC)∗. The homology group
H1(C,Z) is a free abelian group of rank 2g, and we get a canonical injec-
tion H1(C,Z)→ H0(ωC)∗, given by γ 7→ (ω 7→

∫
γ
ω), where the integral

is taken over any representative cycle of the class γ ∈ H1(C,Z). The
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image of H1(C,Z) in H0(ωC)∗ is a lattice of rank 2g in a g-dimensional
complex vector space, and the quotient J(C) = H0(ωC)∗/H1(C,Z),
which is a complex torus, is the Jacobian of C.

Example 6.1 (Example 15.4(2) of [78]). Let l be an odd prime number
and consider the field K = Q(ζ) for a primitive l-th root of unity ζ.
Then K is a CM-field of degree l − 1 and we let g = (l − 1)/2. Let C
be the smooth projective curve of genus g over C with an affine model

y2 = xl + 1.

There is an isomorphism ι : OK = Z[ζ] → End(J(C)), where ι(ζ) is
induced by

((x, y) 7→ (ζx, y)) ∈ Aut(C).

The space of holomorphic differentials H0(ωC) of C is a vector space
over C with basis xky−1dx for k = 0, . . . , g − 1 (see e.g. [41, Ex-
ample A.6.2.1]). Note that the morphism ι(ζ) acts on this basis as
ι(ζ)xky−1dx = ζk+1xky−1dx, i.e., as the diagonal matrix M with en-
tries in Φ(ζ) for the CM-type Φ = {ζ 7→ ζl : l = 1, . . . , g}. This basis
has a dual basis of H0(ωC)∗ and ζ also acts as M on this dual basis.
We find that (J(C), ι) is of type Φ.

The Jacobian J(C) comes with a natural principal polarization. If
we denote by · the intersection pairing on H1(C,Z) extended R-linearly
to H0(ωC)∗, then E : (u, v) 7→ −u · v defines this principal polarization
on J(C).

We have now associated to every complex curve a principally polar-
ized abelian variety. Next, we recall that this in fact gives a bijection
between the set of curves of genus 2 up to isomorphism and a certain
set of principally polarized abelian surfaces up to isomorphism.

Theorem 6.2 (Torelli). Two algebraic curves over C are isomorphic
if and only if their Jacobians are isomorphic (as polarized abelian vari-
eties).

Proof. This is Theorem 11.1.7 of [4].

The product of two polarized abelian varieties (T1, E1) and (T2, E2)
has a natural polarization (v, w) 7→ E1(v1, w1) + E2(v2, w2) called the
product polarization.

Theorem 6.3 (Weil). Any principally polarized abelian surface over C
is either a product of elliptic curves with the product polarization or the
Jacobian of a smooth projective curve of genus 2.

Proof. This is Satz 2 of [94]. Alternatively, see Corollary 11.8.2 of [4],
or see Remark II.7.12 below.
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7 The reflex of a CM-type

Let K be a CM-field and let Φ be a CM-type of K with values in L′.
Let L ⊃ K be the normal closure of K. Then by making L′ smaller, we
can assume L′ ∼= L.

The reflex (Kr,Φr) of (K,Φ) is defined as follows. Let ΦL be the
CM-type of L with values in L′ induced by Φ. Note that ΦL is a set of
isomorphisms L→ L′, so we can take its set Φ−1

L of inverses, which is a
set of isomorphisms L′ → L.

It follows easily from Lemma 2.2(c) that Φ−1
L is a CM-type of L′

with values in L (see also [64, Example 1.28] or [52, Thm. I.5.1(ii)]).
By Lemma 3.5, there is a unique primitive pair (Kr,Φr) that induces
(L′,Φ−1

L ). We show in Lemma 7.3 that this definition of Kr is equivalent
to the one given in Section 4.

Definition 7.1. The pair (Kr,Φr) is called the reflex of (K,Φ), the
field Kr is called the reflex field of (K,Φ), and the CM-type Φr is called
the reflex type of (K,Φ).

Lemma 7.2. The CM-type Φr is a primitive CM-type of Kr. If we
denote the reflex of (Kr,Φr) by (Krr,Φrr), then Krr is a subfield of K
and Φ is induced by Φrr. If Φ is primitive, then we have Krr = K and
Φrr = Φ.

Proof. Primitivity and the facts that Krr ⊂ K holds and Φrr induces Φ
follow directly from our definition. If Φ is primitive, then this implies
Krr = K and hence Φrr = Φ. See also [78, paragraph above Prop. 29 in
§8.3] or [52, Thm. 5.2].

The following result shows that the definition of the reflex field in
the current section coincides with the one given in Section 4.

Lemma 7.3. The reflex field Kr satisfies

Gal(L′/Kr) = {σ ∈ Gal(L′/Q) | σΦ = Φ}.

Proof. This is exactly what follows from equation (3.6) and the defini-
tion of Kr. See also [64, Example 1.28].

Example 7.4 (Example 8.4(1) of [78]). If a CM-field K is abelian over
Q and Φ is a primitive CM-type, then Kr is isomorphic to K. Indeed,
if we choose an isomorphism L→ L′, then commutativity of the Galois
group implies that the groups of Lemmas 3.5 and 7.3 coincide.
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Example 7.5 (Example 8.4(2)(C) of [78]). Let K be a non-Galois quar-
tic CM-field. By Lemma 3.4, the normal closure L of K has Galois group
D4 = 〈r, s〉 with r4 = s2 = (rs)2 = e. The complex conjugation auto-
morphism · equals r2 in this notation. Without loss of generality, we
have that s is the generator of Gal(L/K).

For simplicity, we consider CM-types with values in L. In other
words, we identify L′ with L via an isomorphism. The CM-types up to
equivalence are Φ = {id, r|K} and Φ′ = {id, r3

|K} (see Lemma 3.4).
The CM-type induced by Φ on L is Φ〈s〉 = {e, r, s, rs}, which has

inverse {e, r3, s, rs} = {e, r3}〈rs〉. In particular, the reflex field Kr

of Φ is the fixed field of 〈rs〉, which is a quartic CM-field that is not
isomorphic to K. The reflex type of Φ is the CM-type {id, r3

|Kr} of Kr.
Similarly, the reflex field of Φ′ is the fixed field of 〈r3s〉, which is

conjugate, but not equal, to Kr.

Lemma 7.6. The reflex field Kr is generated over Q by the elements
of L′ of the form

∑
φ∈Φ φ(x) for x ∈ K.

Proof. This is [78, Prop. 28 in §8.3].

Example 7.7. Let K be a non-Galois quartic CM-field, and write

K = Q(α) with α =
√
−a+ b

√
d.

Let Φ be a CM-type of K with values in a field L′, and let α1, α2 ∈ L′
be the images of α under the embeddings of Φ. We have

α1 =
√
−a+ b

√
d and α2 =

√
−a− b

√
d

for some choice of the square roots.
By Lemma 7.6, we have β1 = α1 + α2 ∈ Kr, where

β2
1 = α2

1 + α2
2 + 2α1α2 = −2a+ 2w (7.8)

for some square root w ∈ L′ of a2 − b2d.
We claim that β1 =

√
−2a+ 2w generates Kr over Q. Indeed, the

field Q(β1) contains w = α1α2, which is not rational because K is
not normal over Q, and which is real because α1 and α2 are purely
imaginary. We also find β2

1 < 0 for every embedding into R by equation
(7.8), which shows that Q(β1) is a quartic CM-field. As β1 is contained
in Kr, which is quartic by Example 7.5, this proves the claim.

Note that the element w = α1α2 ∈ L′, and hence the quartic field
Kr = Q(β1) ⊂ L′, are uniquely determined by Φ.
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The reflex field of Φ′ is then the conjugate Q(β2) of Kr with β2 =√
−2a− 2w.

The reflex type Φr of Φ consists of the two embeddings Kr → L
given by β1 7→ α ± α′ ∈ L′, where α′ ∈ L \K is a conjugate of α (see
Example 7.5).

8 The type norm

Definition 8.1. Let Φ be a CM-type of K with values in L′. The type
norm of Φ is the map

NΦ : K → Kr ⊂ L′

x 7→
∏
φ∈Φ

φ(x).

The image of the type norm lies in Kr by Lemma 7.3.

Example 8.2. The element w ∈ Kr of Example 7.7 is the type norm
NΦ(α) of the element α ∈ K of that example.

The type norm is multiplicative and hence restricts to a homomor-
phism of unit groups K∗ → Kr∗.

For any number field M , let IM denote the group of non-zero frac-
tional ideals of OM and let ClM = K∗\IM be the class group.

Lemma 8.3. The type norm induces homomorphisms

NΦ : IK → IKr

a 7→ a′ where a′OL′ =
∏
φ∈Φ

φ(a)OL′ , and

NΦ : ClK → ClKr .

Proof. On the groups of ideals IK , this is [52, Remark on page 63]. See
also [78, Prop. 29 in §8.3]. As elements of K∗ are mapped to Kr∗, we
find the map on class groups.

It is easy to see that we have

NΦ(x)NΦ(x) = NK/Q(x) for all x ∈ K∗, and

NΦ(a)NΦ(a) = NK/Q(a) for all a ∈ IK ,

where NK/Q is the norm, taking positive values in Q∗ and · is com-
plex conjugation on Kr (which doesn’t depend on a choice of complex
embedding since Kr is a CM-field).
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For quartic CM-fields, the type norm of the type norm will be a
useful tool.

Lemma 8.4. Let a be an ideal in a primitive quartic CM-field K and
Φ a CM-type. Then we have

NΦrNΦ(a) = NK/Q(a)
a

a
.

Proof. By choosing an isomorphism L → L′, we have without loss of
generality Φ = {id, r|K} with r ∈ Gal(L/Q) of order 4. If K is non-
Galois, then this is Example 7.5, otherwise it is analogous.

We then have Φr = {id, r3
|Kr}, hence

NΦrNΦ(a)OL = (a)2(ra)(r3a)OL.

As {id, r|K , r2
|K , r

3
|K} is the set of all embeddings K → L and we have

a = r2a, the result follows.

9 The main theorem of
complex multplication

The main theorem of complex multiplication shows how to obtain cer-
tain class fields from abelian varieties with complex multiplication. We
will now describe which fields they are.

Given a CM-field F with primitive CM-type Ψ, let (K,Φ) be the
reflex. Given any ideal b ⊂ OK , let bZ = b ∩ Z and let IF (b) be the
group of invertible fractional ideals of F that are coprime to b. Let

HF,Ψ(b) =

a ∈ IF (b) :

∃µ ∈ K∗ such that
NΨ(a) = µOK ,
µµ = NF/Q(a),
µ ≡ 1 (mod∗b)


⊃ PF (b) = {xOF : x ∈ F ∗, x ≡ 1 (mod∗b)},

where the inclusion ‘⊃’ follows by taking µ = NΨ(x). Then the class
field CMF,Ψ(b) corresponding to the ideal group

IF (b)/HF,Ψ(b)

can be obtained using complex multiplication. For the case b = 1, we
omit (b) from the notation.

Here are the details of how to obtain this field. Embed F into C
and let A be a polarized abelian variety over C with CM by OK via ι
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of type Φ. Let t ∈ A(k) be a point with annihilator b. (Such a point
exists by [78, Prop. 21 in §7.5].)

To the pair (A, t), one can assign a point j = j(A, t) in a an algebraic
moduli space. This point is defined over Q ⊂ C and can be expressed
explicitly in terms of theta functions, which are modular forms for a
Siegel modular group. We do this explicitly for the case b = 1 in the
next two chapters. See especially Section II.7 and Theorem III.5.2.

Theorem 9.1. With the notation above, we have

CMF,Ψ(b) = F (j(A, t)) ⊂ k.

The action of the Galois group IF (b)/HF,Ψ(b) is as follows. Let
(Φ, a, ξ) be a triple as in Section 5.2, and write t = Φ(x) with x ∈ K/a.
Use the notation j(Φ, a, ξ, x) = j((A(Φ, a, ξ),Φ(x))). Then for any [c] ∈
IF (b)/HF,Ψ(b) with c−1 ⊂ OF , we have

[c]j(Φ, a, ξ, x) = j
(
Φ, NΨ(c)−1a, NF/Q(c)ξ, (x mod NΨ(c)−1a)

)
.

Proof. If Ψ is a primitive CM-type of F , then this result is Main Theo-
rems 1 and 2 in Sections 15.3 and 16.3 of Shimura and Taniyama [78].
The Galois action is given in the proof of those results. See also [52,
Thm. 3.6.1] or [64, Thm. 9.17].

We can also look at the action of complex conjugation. Then the
result (for b = 1) is the following.

Lemma 9.2 ([52, Prop. 3.5.5]). We have A(Φ, a, ξ) ∼= A(Φ, a, ξ).

Corollary 9.3. Suppose F (and hence K) is a primitive quartic CM-
field. If A/C is a principally polarized abelian surface with CM by
OK of type Φ, then every Gal(CMF,Ψ/F0)-conjugate of j(A) is also a
Gal(CMF,Ψ/F )-conjugate.

Moreover, the field F0(j(A)) does not contain F .

Proof. Write A as A(Φ, a, ξ) with a−1 ⊂ OK and take c = NΦ(a).
Theorem 9.1 states

[c]j(Φ, a, ξ) = j(Φ, NΨ(c)−1a, NK/Q(c)ξ),

which by Lemma 8.4 is

j(Φ, NK/Q(a)−1a, NK/Q(a)−2ξ) = j(Φ, a, ξ).

By Lemma 9.2, this is exactly the complex conjugate of j(A), so complex
conjugation acts on j(A) as [c] ∈ Gal(CMF,Ψ/F ).
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Note that the set {id, ·} is a complete set of representatives for the
quotient group Gal(CMF,Ψ/F0)/Gal(CMF,Ψ/F ).

The length of the Gal(CMF,Ψ/F0)-orbit of j(A) is the degree of
F0(j(A))/F0, and the same holds with F0 everywhere replaced by F .
We find degF0(j(A))/F0 = degF (j(A))/F = 1

2 degF (j(A))/F0, hence
F (j(A)) is not equal to F0(j(A)), which proves that F0(J(A)) does not
contain F .

10 The class fields of quartic CM-fields

Next, let us see which class fields we can obtain using complex multi-
plication. Suppose first that F is imaginary quadratic. Then Ψ is an
isomorphism F → K and Φ is its inverse, so we identify F and K via
these maps. We find that in that case

HF,Ψ(b) = PF (b) := {xOF : x ∈ F ∗, x ≡ 1 (mod∗b)}

holds, so CMF,Ψ(b) is the ray class field of F = K of modulus b. In par-
ticular, every finite abelian extension of F is a subfield of some HF,Ψ(b),
so CM theory can construct all such fields.

If F is a CM-field of degree > 2, then CM theory by itself is insuf-
ficient for constructing all class fields. However, Shimura [76] describes
how to obtain all abelian extensions of F using a combination of

(1) CM theory,

(2) the ray class fields of the maximal totally real subfield F0 ⊂ F ,
and

(3) quadratic Kummer extensions of the fields that one obtains with
(1) and (2).

Remark 10.1. For imaginary quadratic F , we have F0 = Q, and the
class fields of Q are contained in the cyclotomic fields by the Kronecker-
Weber Theorem 1.1. These cyclotomic fields can be obtained from the
torsion points via the Weil pairing, which explains why we do not need
to separately consider the class fields of F0 for imaginary quadratic
fields F .

Theorem 10.2 (Theorem 1 of Shimura [76]). Let F be a CM-field, Ψ
a CM-type of F , and ψ ∈ Ψ an element such that the reflex field of
(F,Ψ) is contained in ψ(F ). Let Ψ′ be obtained from Ψ by replacing ψ
by its complex conjugate ψ. Let b be a positive integer and HF (b) (resp.
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HF0(b)) be the ray class field of modulus b of F (resp. F0). Then the
abelian extension

HF (b) ⊃ HF0(b) · CMF,Ψ(b) · CMF,Ψ′(b)

has exponent 1 or 2.

Note that Kummer extensions of exponent 2 can be constructed with-
out adjoining additional roots of unity. So far so good. However, The-
orem 10.2 doesn’t apply to non-Galois quartic CM-fields, because they
have a reflex field that is quartic and not isomorphic to F .

Shimura then fixes this by applying Theorem 10.2 to a CM-type
Ψ′ of an extension E of F instead of to F itself (see [76, Prop. 8 and
Thm. 4]). In the quartic case, the field E is the normal closure of F
and Ψ′ is primitive, hence the reflex field of Ψ′ is isomorphic to L,
which has degree 8. This implies that Shimura’s construction for non-
Galois quartic CM-fields requires simple abelian varieties of dimension 4
instead of only abelian surfaces!

We can however replace Theorem 10.2 by the following simpler result
that does apply to all primitive quartic CM-fields.

Theorem 10.3. Let F be a primitive quartic CM-field and Ψ a primi-
tive CM-type of F . Let b be a positive integer and HF (b) (resp. HF0(b))
be the ray class field of modulus b of F (resp. F0). Then the abelian
extension

HF (b) ⊃ HF0(b) · CMF,Ψ(b)

has exponent 1 or 2.

Proof. First recall that the composite HF0(b) · F is the class field of F
corresponding to IF (b)/H0(b), where

H0(b) = {a ∈ IF (b) : aa = vOF , v ∈ F ∗0 , v ≡ 1 (mod∗b)}.

As HF (b) has Galois group IF (b)/PF (b), it has exponent 1 or 2 over the
class field corresponding to the group IF (b)/B with

B = {a ∈ IF (b) : a2 ∈ PF (b)}.

Therefore, it suffices to prove H0(b) ∩HF,Ψ(b) ⊂ B.
Let a ∈ H0(b) ∩HF,Ψ(b) be any element. Let v and µ be as in the

definitions of H0(b) and HF,Ψ(b). Then we have by Lemma 8.4,

a2 = NΨrNΨ(a)
aa

NF/Q(a)

= NΨr(µ)
v

NF0/Q(v)
OF .
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As the generators µ and v are 1 (mod∗b), so is the generator of a2 that
we have just given.

Example 10.4. The non-Galois quartic CM-field

F = Q(
√
−27 + 4

√
13)

has class number 7 and a real quadratic subfield F0 = Q(
√

13) of class
number 1. We conclude from Theorem 10.3 that CMF,Ψ equals the
Hilbert class field of F , because 7 is odd and we have HF0 = F0 ⊂ F .
We will compute a defining polynomial of CMF,Ψ in Example III.3.2.

A non-primitive quartic CM-field F has two imaginary quadratic
subfields F1 and F2 by Lemma 3.4. The ray class fields of these fields
can be obtained by complex multiplication of elliptic curves. The ray
class fields of F itself can be obtained from the ray class fields of F0,
F1, and F2 using the following general result.

Theorem 10.5. Let F/N be a Galois extension of number fields with
Galois group V4, and let F0, F1, F2 be the intermediate fields. Let b be
a positive integer and let HF (b) (resp. HFj (b)) be the ray class field of
modulus b of F (resp. Fj). Then the abelian extension

HF (b) ⊃ HF0(b) ·HF1(b) ·HF2(b)

has exponent 1 or 2.

Proof. As in the proof of Theorem 10.3, it suffices to show that the
intersection of the three groups

Hi(b) = {a ∈ IF (b) : a(ai(a)) = vOF , v ∈ F ∗i , v ≡ 1 (mod∗b)}

is contained in the group

B = {a ∈ IF (b) : a2 ∈ PF (b)}.

Let a be any element of this intersection, and take vi as in the
definition of Hi(b). Let ai ∈ Gal(F/Fi) be a generator, so we have
viOF = a(aia) and Gal(F/N) = {id, a0, a1, a2} ∼= C2 × C2. We get

a2 = v1v2a1(v0)−1OF ,

and v1v2a1(v0)−1 ≡ 1 (mod∗b).





ChapterII
Computing Igusa class polynomials

Abstract. We give an algorithm that computes the genus-
two class polynomials of a primitive quartic CM-field K, and
we give a running time bound and a proof of correctness
of this algorithm. This is the first proof of correctness and
the first running time bound of any algorithm that computes
these polynomials.

1 Introduction

The Hilbert class polynomial HK ∈ Z[X] of an imaginary quadratic
number field K has as roots the j-invariants of complex elliptic curves
having complex multiplication (CM) by the ring of integers of K. These
roots generate the Hilbert class field of K, and Weber [93] computed HK

for many small K. The CM method uses the reduction of HK modulo
large primes to construct elliptic curves over Fp with a prescribed num-
ber of points, for example for cryptography. The bit size of HK grows
exponentially with the bit size of K: it grows like the discriminant ∆
of K, and so does the running time of the algorithms that compute it
([22, 2]).

If we go from elliptic curves (genus 1) to genus-2 curves, we get
the Igusa class polynomials HK,n ∈ Q[X] (n = 1, 2, 3) of a quartic
CM-field K. Their roots are the Igusa invariants of all complex genus-
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2 curves having CM by the ring of integers of K. As in the case of
genus 1, these roots generate class fields and the reduction of Igusa class
polynomials modulo large primes p yields cryptographically interesting
curves of genus 2. Computing Igusa class polynomials is considerably
more complicated than computing Hilbert class polynomials, in part
because of their denominators. Recently, various algorithms have been
developed: a complex analytic method by Spallek [79] and van Wame-
len [88], a p-adic method by Gaudry, Houtmann, Kohel, Ritzenthaler,
and Weng [31, 32] and Carls, Kohel, and Lubicz [13, 14], and a Chinese
remainder method by Eisenträger and Lauter [21], but no running time
or precision bounds were available.

This chapter describes a complete and correct algorithm that com-
putes Igusa class polynomials HK,n ∈ Q[X] of quartic CM-fields K =
Q(
√

∆0,
√
−a+ b

√
∆0), where ∆0 is a real quadratic fundamental dis-

criminant and a, b ∈ Z are such that −a + b
√

∆0 is totally negative.
Our algorithm is based on the complex analytic method of Spallek and
van Wamelen. The discriminant ∆ of K is of the form ∆ = ∆1∆2

0

for a positive integer ∆1. We may and will assume 0 < a < ∆, as
Lemma 9.9 below shows that each quartic CM-field has such a repre-
sentation. We disregard the degenerate case of non-primitive quartic
CM-fields, i.e., those that can be given with b = 0, as abelian varieties
with CM by non-primitive quartic CM-fields are isogenous to products
of CM elliptic curves, which can be obtained already using Hilbert class
polynomials. We give the following running time bound for our algo-
rithm, where we use Õ(g) to mean “at most g times a polynomial in
log g”.

Main Theorem. Algorithm 11.1 computes HK,n (n = 1, 2, 3) for any
primitive quartic CM-field K. It has a running time of Õ(∆7/2

1 ∆11/2
0 )

and the bit size of the output is Õ(∆2
1∆3

0).

An essential part of the proof is the denominator bound, as provided
by Goren and Lauter [35, 36].

We do not claim that the bound on our running time is optimal, but
an exponential running time is unavoidable, because the degree of the
Igusa class polynomials (as with Hilbert class polynomials) is already
bounded from below by a power of the discriminant.

Overview

Section 2 provides a precise definition of the Igusa class polynomials
that we will work with, and mentions other definitions occurring in
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the literature. Our main theorem is valid for all types of Igusa class
polynomials.

Instead of enumerating curves, it is easier to enumerate their Jaco-
bians, which are principally polarized abelian varieties. Van Wamelen
[88] gave a method for enumerating all isomorphism classes of princi-
pally polarized abelian varieties with CM by a given order. We give an
improvement of his results in Section 3.

Section 4 shows how principally polarized abelian varieties give rise
to points in the Siegel upper half space H2. These points are matrices
known as period matrices. Two period matrices correspond to isomor-
phic principally polarized abelian varieties if and only if they are in the
same orbit under the action of the symplectic group Sp4(Z).

In Section 5, we analyze a reduction algorithm that replaces period
matrices by Sp4(Z)-equivalent period matrices in a fundamental domain
F2 ⊂ H2. In Section 6, we give an upper bound on the entries of the
reduced period matrices computed in Section 5.

Absolute Igusa invariants can be computed from period matrices
by means of theta constants. Section 7 introduces theta constants and
gives formulas that express Igusa invariants in terms of theta constants.
The formulas that we give are much simpler than those that appear
in [79, 97] or the textbook [27], reducing the formulas from more than
a full page to only a few lines. We then give bounds on the absolute
values of theta constants and Igusa invariants in terms of the entries of
the reduced period matrices computed in Section 5. We finish Section 7
by showing how to evaluate the theta constants, and hence the absolute
Igusa invariants, to a given precision.

Section 8 bounds the degree of Igusa class polynomials and Section 9
gives the bounds of Goren and Lauter [35, 36] on the denominators.
Section 10 shows how to reconstruct a rational polynomial from its
complex roots, and the precision needed for that in terms of an upper
bound on the denominator of the polynomial and the absolute values of
the zeroes.

Finally, Section 11 puts all the results together into a single algo-
rithm and a proof of the main theorem.

2 Igusa class polynomials

The Hilbert class polynomial of an imaginary quadratic number field K
is the polynomial of which the roots in C are the j-invariants of the
elliptic curves over C with complex multiplication by the ring of integers
OK of K. For a genus-2 curve, one needs three invariants, the absolute
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Igusa invariants i1, i2, i3, instead of one, to fix its isomorphism class.

2.1 Igusa invariants

Let k be a field of characteristic different from 2. Any curve of genus 2
over k, i.e., a projective, geometrically irreducible algebraic curve over k
of which the genus is 2, has an affine model of the form y2 = f(x), where
f ∈ k[x] is a separable polynomial of degree 6. Let α1, . . . , α6 be the six
distinct roots of f in k, and let a6 be the leading coefficient. For any
permutation σ ∈ S6, let (ij) denote the difference (ασ(i) − ασ(j)). We
can then define the homogeneous Igusa-Clebsch invariants in compact
notation that we explain below, as

I2 = a2
6

∑
15

(12)2(34)2(56)2,

I4 = a4
6

∑
10

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 = a6
6

∑
60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 = a10
6

∏
i<j

(αi − αj)2,

The sum is taken over all distinct expressions (in the roots of f) that are
obtained when σ ranges over S6. The subscript indicates the number of
expressions encountered. More precisely, there are 15 ways of partition-
ing the six roots of f into three subsets of two. Each yields a triple f1,
f2, f3 of monic quadratic polynomials over k, and the summand in I2 is
the product of their discriminants. Similarly, for I4 there are 10 ways of
partitioning the six roots of f into two subsets of three, and each yields
a summand that is the product of two cubic discriminants. For each of
the 10 ways of partitioning the six roots of f into two subsets of three,
there are 6 ways of giving a bijection between those two subsets, and
each gives a summand for I6. Finally, I10 is simply the discriminant
of f , which is non-zero as f is separable. The invariants I2, I4, I6, I10

were introduced by Igusa [45], who denoted them by A,B,C,D and
based them on invariants of Clebsch [15].

By the symmetry in the definition, each of the homogeneous invari-
ants is actually a polynomial in the coefficients of f , hence an element
of k. Actually, we will use another homogeneous invariant given by
I ′6 = 1

2 (I2I4 − 3I6), which is better than I6 as we will see in Section 7.
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We define the absolute Igusa invariants by

i1 =
I4I
′
6

I10

, i2 =
I2I

2
4

I10

, i3 =
I5
4

I2
10

.

The values of the absolute Igusa invariants of a curve C depend only on
the k-isomorphism class of the curve C. For any triple (i01, i

0
2, i

0
3), if 3

and i03 are non-zero in k, then there exists a curve C of genus 2 (unique
up to isomorphism) over k with in(C) = i0n (n = 1, 2, 3), and this curve
can be constructed using an algorithm of Mestre [61]. We deal with the
case i03 = 0 in Section III.5.

Definition 2.1. Let K be a primitive quartic CM-field. The Igusa class
polynomials of K are the three polynomials

HK,n =
∏
C

(X − in(C)) ∈ Q[X] (n ∈ {1, 2, 3}),

where the product ranges over the isomorphism classes of algebraic
genus-2 curves over C of which the Jacobian has complex multiplication
by OK .

For the definitions of the Jacobian and complex multiplication, see
Chapter I. We will see in Section 3 that the product in the definition
is indeed finite. The polynomial is rational, because any conjugate of a
CM curve has CM by the same order.

2.2 Alternative definitions

In the literature, one finds various sets of absolute Igusa invariants [12,
35, 50, 45, 61, 98]. Most notably, Igusa defined homogeneous invariants
J2n (n = 1, . . . , 5) in terms of a general hyperelliptic equation and used
them to define absolute invariants that have good reduction behaviour
at all primes, including 2 and 3.

A triple of invariants that seems standard (up to the powers of 2) in
computations [28, 79, 88, 97] is Spallek’s j1 = 2−3I5

2I
−1
10 , j2 = 2I3

2I4I
−1
10 ,

j3 = 23I2
2I6I

−1
10 . However, our choice of absolute invariants i1, i2, i3

yields Igusa class polynomials of much smaller height, both experimen-
tally (see Appendix 3.1) and in terms of the proven bounds of Corol-
lary 7.11 and Theorem 9.1. See also Remarks 7.6 and 9.3.

If the base field k has characteristic 0, then Igusa’s and Spallek’s
absolute invariants, as well as most of the other invariants in the liter-
ature, lie in the Q-algebra A of homogeneous elements of degree 0 of
Q[I2, I4, I6, I

−1
10 ]. Our main theorem remains true if (i1, i2, i3) in the

definition of the Igusa class polynomials is replaced by any finite list of
elements of A.
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Interpolation formulas

If we take one root of each of the Igusa class polynomials, then we get a
triple of invariants and thus (if i3 6= 0) an isomorphism class of curve of
genus 2, which doens’t necessarily have CM. That way, the three Igusa
class polynomials describe d3 triples of invariants, where d is the degree
of the polynomials. The d triples corresponding to curves with CM by
OK are among them, but the Igusa class polynomials give no means of
telling which they are.

To solve this problem, (and thus greatly reduce the number of curves
to be checked during explicit CM constructions), we use the following
modified Lagrange interpolation:

ĤK,n =
∑
C

in(C)
∏
C′ 6=C

(X − i1(C ′))

 ∈ Q[X], (n ∈ {2, 3}).

If HK,1 has no roots of multiplicity greater than 1, then the triples
of invariants corresponding to curves with CM by OK are exactly the
triples (i1, i2, i3) such that

HK,1(i1) = 0, in =
ĤK,n(i1)
H ′K,1(i1)

(n ∈ {2, 3}).

Our main theorem is also valid if we replace HK,2 and HK,3 by ĤK,2

and ĤK,3.
If HK,1 has only double roots, then these interpolation formulas are

useless. In practice, this never happens, and we deal with the theoretical
possibility that it does happen in Section III.5.

This way of representing algebraic numbers like our i2, i3 in terms
of others appears in Hecke [40, Hilfssatz a in §36], and is sometimes
called Hecke representation [38, 23]. The idea to use this modified La-
grange interpolation in the definition of Igusa class polynomials is due
to Gaudry, Houtmann, Kohel, Ritzenthaler, and Weng [32], who give a
heuristic argument that the height of the polynomials ĤK,n is smaller
than the height of the usual Lagrange interpolation.

3 Abelian varieties with CM

Instead of enumerating CM curves, we enumerate their Jacobians, which
are principally polarized abelian varieties. In the current section, we give
an algorithm that computes a representative of every isomorphism class
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of complex principally polarized abelian varieties with CM by the ring
of integers OK of a primitive quartic CM-field K.

Section 3.1 gives the general algorithm, for CM-fields of arbitrary
degree, Section 3.2 specializes to the case of quartic CM-fields, and Sec-
tion 3.3 gives details on how ideals should be represented and computed.

3.1 The general algorithm

Algorithm 3.1.
Input: A CM-field K with maximal totally real subfield K0 such that
K does not contain a strict CM-subfield.
Output: A complete set of representatives for the equivalence classes
of principally polarized abelian varieties over C with CM by OK , each
given by a triple (Φ, a, ξ) as in Theorem I.5.2.

1. Let T be a complete set of representatives of the equivalence
classes of CM-types of K with values in C.

2. Let U be a complete set of representatives of the quotient

O∗K0
/NK/K0(O∗K).

3. Let I be a complete set of representatives of the ideal class group
of K.

4. Take those a in I such that (aaDK/Q)−1 is principal and generated
by an element ξ ∈ K such that ξ2 is totally negative in K0. For
each such a, choose such an element ξ ∈ K.

5. For every pair (a, ξ) as in step 4 and every unit u ∈ U , take the
CM-type Φ consisting of those embeddings of K into C that map
uξ to the positive imaginary axis.

6. Return those triples (Φ, a, uξ) of step 5 for which Φ is in T .

Proof. By Theorem I.5.2.1, the output consists only of principally polar-
ized abelian varieties with CM by OK . Conversely, by Theorem I.5.2.2,
every principally polarized abelian variety A with CM by OK is iso-
morphic to A(Φ, a, ξ) for some triple (Φ, a, ξ), where Φ is the CM-type
of A.
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By Lemmas I.5.4 and I.5.6, the CM-type Φ is unique exactly up to
equivalence of CM-types. This uniquely determines Φ in T .

By Theorem I.5.2.4, we can get a ∈ I. We get that A is isomorphic to
A(Φ, a, uξ) for some u ∈ O∗K0

and a unique triple (Φ, a, ξ) with Φ ∈ T , a
in the set of step 4, and ξ as found in step 4. Only the choice of u ∈ O∗K0

is left and by Theorem I.5.2.4, the isomorphism class of A(Φ, a, uξ)
depends exactly on the class of u in O∗K0

/NK/K0(O∗K).

Remark 3.2. Algorithm 3.1 is basically Algorithm 1 of van Wame-
len [88] with the difference that we do not have any duplicate abelian
varieties.

3.2 Quartic CM-fields

We now describe, in the quartic case, the sets T and U of Algorithm 3.1,
and the number of isomorphism classes of principally polarized CM
abelian surfaces.

By Lemma I.3.4, we can take the set T to consist of a single CM-
type if K is cyclic and we can take T = {Φ,Φ′} if K is non-Galois. The
corollary to the following lemma gives the set U .

Lemma 3.3. If K is a primitive quartic CM-field, then

O∗K = µKO∗K0
,

where µK ⊂ O∗K is the group of roots of unity, which has order 2 or 10.

Proof. As K has degree 4 and does not contain a primitive third or
fourth root of unity, it is either Q(ζ5) or does not contain a root of
unity different from ±1. This proves that µK has order 2 or 10. A
direct computation shows that the lemma is true for K = Q(ζ5), so we
assume that we have µK = {±1}.

Let ε (resp. ε0) be a generator of O∗K (resp. O∗K0
) modulo torsion.

Then without loss of generality, we have ε0 = εk for some positive
integer k. so either k = 1 and we are done, or k = 2.

Suppose that we have k = 2. As K = K0(
√
ε0) is a CM-field, we

find that ε0 is totally negative, and hence ε−1
0 is the conjugate of ε0.

Let x = ε − ε−1 ∈ K. Then x2 = −2 + ε0 + ε−1
0 = −2 + Tr(ε0) ∈ Z is

negative, so Q(x) ⊂ K is imaginary quadratic, contradicting primitivity
of K.

Corollary 3.4. If K is a primitive quartic CM-field, then we have

O∗K0
/NK/K0(O∗K) = O∗K0

/O∗2K0
= {±1,±c},

where c is the class of the fundamental unit ε of K0.
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Proof. This follows from Lemma 3.3, because of NK/K0(µK) = {1}.

Lemma 3.5. Let K be a quartic CM-field. If K is cyclic, then there
are h1 isomorphism classes of principally polarized abelian surfaces with
CM by OK . If K is non-Galois, then there are 2h1 such isomorphism
classes.

Proof. Proposition I.5.3 gives the number h1 ·#O∗K0
/NK/K0(O∗K), but

counts every abelian variety twice if K is non-Galois and four times if
K is cyclic Galois (see Lemma I.3.4). Corollary 3.4 shows that we have
#O∗K0

/NK/K0(O∗K) = 4.

3.3 Implementation details

In practice, Algorithm 3.1 takes up only a very small portion of the
time needed for Igusa class polynomial computation. The purpose of
this section is to show that, for primitive quartic CM-fields, indeed
Algorithm 3.1 can be run in time Õ(∆) and to show that the size of the
output for each isomorphism class is small: only polynomial in log ∆.

It is well known that lists of representatives for the class groups
of number fields K of fixed degree can be computed in time Õ(|∆|

1
2 ),

where ∆ is the discriminant of K. For details, see Schoof [73]. The rep-
resentatives of the ideal classes that are given in the output are integral
ideals of norm below the Minkowski bound, which is 3/(2π2) |∆|1/2 for
a quartic CM-field.

The algorithms in [73] show that for each a, we can check in time
Õ(|∆|

1
2 ) if aaDK/Q is principal and, if so, write down a generator ξ.

As O∗K = µKO∗K0
, it suffices to check, for each of the roots of unity ζ

in K, if ζξ is totally imaginary (note that Q(ζ5) is the only primitive
quartic CM-field with more than 2 roots of unity). Then the set T and
the group O∗K0

/NK/K0(O∗K) are already given in Section 3.2, where the
fundamental unit ε is a by-product of the class group computations.
In particular, it takes time at most Õ(|∆|) to perform all the steps of
Algorithm 3.1.

A priori, the bit size of ξ can be as large as the regulator of K, but
we can easily make it much smaller as follows. We identify K ⊗R with
C2 via the embeddings φ1, φ2 in the CM-type Φ, and we consider the
standard Euclidean norm on C2. Then we find a short vector

b |ξ|−1/2 =
(
φ1(b) |φ1(ξ)|−1/2

, φ2(b) |φ2(ξ)|−1/2
)

in the lattice OK |ξ|−1/2 ⊂ C2 using the LLL-algorithm (see [57]) and
replace a by ba and ξ by (bb)−1ξ. By part 4 of Theorem I.5.2, this does
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not change the corresponding isomorphism class of principally polarized
abelian varieties. This also doesn’t change the fact that ξ−1 is in OK
and that a is an integral ideal. Finally, we compute an LLL-reduced
basis of a ⊂ OK ⊗R = C2. We get the following result.

Lemma 3.6. If we run Algorithm 3.1 in the way we have just described,
then on input of a primitive quartic CM-field K, given as

K = Q(
√

∆0,

√
−a+ b

√
∆0)

for integers a, b,∆0 with 0 < a < ∆, it takes time Õ(∆). For each triple
(Φ, a, ξ) in the output, the ideal a is given by an LLL-reduced basis, and
both ξ ∈ K and the basis of a have bit size O(log ∆).

Proof. First, compute the ring of integers OK of K using the algorithm
of Buchmann and Lenstra [9]. This takes polynomial time plus the time
needed to factor the discriminant of the defining polynomial of K, which
is small enough because of the assumption 0 < a < ∆. Then do the
class group computations as explained above.

For each triple (Φ, a, ξ), before we apply the LLL-reduction, we can
assume that a is an integral ideal of norm below the Minkowski bound,
hence we have

NK/Q(ξ−1) = NK/Q(a)2NK/Q(DK/Q) ≤ C∆3

for some constant C.
The covolume of the lattice

|ξ|−1/2OK ⊂ OK ⊗R = C2

is NK/Q(ξ−1)∆1/2, so we find a vector b |ξ|−1/2 ∈ |ξ|−1/2OK of length
at most C ′NK/Q(ξ−1)1/8∆1/8 for some constant C ′. In particular, bbξ−1

has all absolute values below C ′
2
NK/Q(ξ−1)1/4∆1/4. Therefore, bbξ−1

has bit size O(log ∆) and norm at most C ′8NK/Q(ξ−1)∆, so b has norm
at most C ′4∆1/2.

This implies that ba has norm at most C ′′∆, so an LLL-reduced
basis has bit size O(log(covol(ba))) = O(log ∆).

All elements x ∈ K that we encounter can be given (up to multipli-
cation by units in O∗K0

) with all absolute values below
√
NK/Q(a) |ε|.

Therefore, the bit size of the numbers that are input to the LLL-
algorithm is Õ(RegK) = Õ(∆1/2), hence every execution of the LLL
algorithm takes time only Õ(∆1/2) for each ideal class.
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4 Symplectic bases

Let (Cg/Λ, E) be a principally polarized abelian variety. For any basis
b1, . . . , b2g of Λ, we associate to the form E the matrix N = (nij)ij ∈
Mat2g(Z) given by E(bi, bj) = nij . We say that E is given with respect
to the basis b1, . . . , b2g by the matrix N .

The lattice Λ has a basis that is symplectic with respect to E, i.e.,
a Z-basis e1, . . . , eg, v1, . . . , vg with respect to which E is given by the
matrix Ω, given in terms of (g × g)-blocks as

Ω =
(

0 1g
−1g 0

)
. (4.1)

The vectors vi form a C-basis of Cg and if we rewrite Cg and Λ in
terms of this basis, then Λ becomes ZZg + Zg, where Z is a period
matrix, i.e., a symmetric matrix over C with positive definite imaginary
part. The set of all g × g period matrices is called the Siegel upper half
space and denoted by Hg. It is a topological subspace of the Euclidean
2g2-dimensional real vector space Matg(C).

There is an action on this space by the symplectic group

Sp2g(Z) = {M ∈ GL2g(Z) : M tΩM = Ω} ⊂ GL2g(Z),

given in terms of (g × g)-blocks by(
A B
C D

)
(Z) = (AZ +B)(CZ +D)−1.

The association of Z to (Cg/ZZg +Zg, E) gives a bijection between the
set Sp2g(Z)\Hg of orbits and the set of principally polarized abelian
varieties over C up to isomorphism. We call this set of orbits the Siegel
moduli space.

4.1 A symplectic basis for Φ(a)

Now it is time to compute symplectic bases. In Algorithm 3.1, we com-
puted a set of abelian varieties over C, each given by a triple (Φ, a, ξ),
where a is an ideal inOK , given by a basis, ξ is in K∗ and Φ is a CM-type
of K. We now identify a with the lattice Λ = Φ(a) ⊂ Cg and recall that
the bilinear form E : a × a → Z is given by E : (x, y) 7→ TrK/Q(ξxy).
We can write down the matrix N ∈ Mat2g(Z) of E with respect to
the basis of a. Computing a symplectic basis of a now comes down to
computing a change of basis M ∈ GL2g(Z) of a such that M tNM = Ω,
with Ω as in (4.1). This is done by the following algorithm.



50 Chapter II. Computing Igusa class polynomials

Algorithm 4.2.
Input: A matrix N ∈ Mat2g(Z) such that N t = −N and detN = 1.
Output: M ∈ GL2g(Z) satisfying M tNM = Ω.

For i = 1, . . . , g, do the following.

1. Let e′i ∈ Z2g be a vector linearly independent of

{e1, . . . , ei−1, v1, . . . , vi−1}.

2. From e′i, compute the following vector ei, which is orthogonal to
e1, . . . , ei−1, v1, . . . , vi−1:

ei =
1
k

e′i − i−1∑
j=1

(et
jNe

′
i)vj +

i−1∑
j=1

(vt
jNe

′
i)ej

 ,

where k is the largest positive integer such that the resulting vector
ei is in Z2g.

3. Let v′i be such that et
iNv

′
i = 1. We will explain this step below.

4. From v′i, compute the following vector vi, which is orthogonal to
e1, . . . , ei−1, v1, . . . , vi−1 and satisfies et

iNvi = 1:

vi = v′i −
i−1∑
j=1

(et
jNv

′
i)vj +

i−1∑
j=1

(vt
jNv

′
i)ej .

Output the matrix M with columns e1, . . . , eg, v1, . . . , vg.

Existence of v′i as in step 3 follows from the facts that N is invertible
and that ei ∈ Z2g is not divisible by integers greater than 1. Actually
finding v′i means finding a solution of a linear equation over Z, which
can be done using the LLL-algorithm as in [57, Section 14].

If we apply the Algorithm 4.2 to the matrix N mentioned above
it, then the output matrix M is a basis transformation that yields a
symplectic basis of Λ with respect to E. For fixed g, Algorithm 4.2
takes time polynomial in the size of the input, hence polynomial time
in the bit sizes of ξ ∈ K and the basis of a. Lemma 3.6 tells us that
for g = 2, we can make sure that both ξ ∈ K and the basis of a have
a bit size that is polynomial in log ∆, so obtaining a period matrix Z
from a triple (Φ, a, ξ) takes time only polynomial in log ∆. This implies
also that the bit size of Z (as a matrix with entries in a number field)
is polynomial in log ∆.
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4.2 A symplectic basis for (z, b)

Let K be a quartic CM-field with real quadratic subfield K0 and let
δ =
√

∆0 ∈ K0.
We have seen in Section I.5.3 that every triple (Φ, a, ξ) as in Sec-

tion I.5.2 is up to equivalence of the form a = zb+b−1, ξ = (z−z)−1δ−1,
Φ = {φ : K → C : Imφξ > 0}.

For a triple in this form, we can give the following explicit symplectic
basis. Let K0 → K0 : x 7→ xc be the non-trivial automorphism.

Theorem 4.3. Let K be a quartic CM-field and let the notation be as
above. Let b1, b2 be a basis of b. Then we have b1bc2 − bc1b2 = sN(b)δ
for some s ∈ {±1}.

The basis

Φ(zb1), Φ(zb2), −sN(b)−1Φ(bc2), sN(b)−1Φ(bc1)

of Φ(a) is symplectic with respect to the polarization corresponding to ξ.
The period matrix for this symplectic basis is given by

Z =
2∑
i=1

φi

(
−z
δ

(
b21 b1b2
b1b2 b22

))
.

Proof. Let |·| be an archimedean norm on K0. Then |b1bc2 − bc1b2| is the
covolume of b in K0⊗R, which is N(b) |δ|, hence we have b1bc2− bc1b2 =
sN(b)δ with s ∈ {±1}. Recall E(Φ(u),Φ(v)) = TrK/Q(ξuv). A direct
computation shows that the given basis of Φ(a) is symplectic for E. For
example, we have

E(Φ(zb1),−sN(b)−1Φ(bc2)) = −sN(b)−1TrK/Q(ξzb1bc2)

= −sN(b)−1TrK0/Q(ξ(z − z)b1bc2)

= sN(b)−1TrK0/Q(δ−1b1b
c
2)

= sN(b)−1δ−1(b1bc2 − bc1b2) = 1.

Write Φ = {φ1, φ2} and note that for all x ∈ K0, we have φ1(xc) =
φ2(x) and φ2(xc) = φ1(x). The symplectic basis reads(

φ1(zb1)
φ2(zb1)

)
,

(
φ1(zb2)
φ2(zb2)

)
,
−s
N(b)

(
φ2(b2)
φ1(b2)

)
,

s

N(b)

(
φ2(b1)
φ1(b1)

)
.

Let V ∈ Mat2(C) have the first two vectors as columns and V ′ ∈
Mat2(R) the last two, so Z = V ′

−1
V . Then we have

detV ′ = −(sN(b)−1)2 det
(
φ1(bc2) φ1(bc1)
φ1(b2) φ1(b1)

)
= −sN(b)−1φ1(δ), so
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V ′−1 = φ1(δ)−1

(
−φ1(b1) φ2(b1)
−φ1(b2) φ2(b2)

)
= −

(
φ1(b1δ−1) φ2(b1δ−1)
φ1(b2δ−1) φ2(b2δ−1)

)
and hence Z is as in the theorem.

We will need the determinant of the imaginary part of Z later. We
give it now as it can easily be derived from the proof of Theorem 4.3.
Indeed with V and V ′ as in that proof, the matrix V ′ is real, hence
ImZ = V ′

−1 ImV and det ImZ = (detV ′)−1 det(ImV ). We have seen
detV ′ in the proof and we have

det ImV = (Imφ1(z))(Imφ2(z))N(b)φ1(δ)
= −| Im(φ1z) Im(φ2z)|N(b)φ1(δ),

so we get
detY = | Im(φ1z) Im(φ2z)|N(b)2. (4.4)

5 The fundamental domain of the Siegel
upper half space

In the genus-1 case, to compute the j-invariant of a point z ∈ H =
H1, one should first move z to the fundamental domain for SL2(Z),
or at least away from Im z = 0, to get good convergence. We use the
term fundamental domain loosely, meaning a connected subset F of Hg
such that every Sp2g(Z)-orbit has a representative in F , and that this
representative is unique, except possibly if it is on the boundary of F .

In genus 2, when computing θ-values at a point Z ∈ H2, as we will do
in Section 7, we move the point to the fundamental domain for Sp4(Z).

5.1 The genus-1 case

For g = 1, the fundamental domain F ⊂ H is the set of z = x+ iy ∈ H
that satisfy

(F1) − 1
2 < x ≤ 1

2 and

(F2) |z| ≥ 1.

One usually adds a third condition x ≥ 0 if |z| = 1 in order to make
the orbit representatives unique, but we will omit that condition as we
allow boundary points of F to be non-unique in their orbit. To move
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z into this fundamental domain, we simply iterate the following until
z = x+ iy is in F :

1. z ← z + b−x+ 1
2c,

2. z ← − 1
z if |z| < 1. (5.1)

We will also phrase this procedure in terms of positive definite (2×2)-
matrices Y ∈ Mat2(R), which will come in handy in the genus-2 case.
We identify such a matrix

Y =
(
y1 y3

y3 y2

)
with the positive definite binary quadratic form f = y1X

2 + 2y3XY +
y2Y

2 ∈ R[X,Y ]. Let φ be the map that sends Y to the unique element
z ∈ H satisfying f(z, 1) = 0.

Note that SL2(Z) acts on Y via (U, Y ) 7→ UY U t. Now φ induces
an isomorphism of SL2(Z)-sets from the set of positive definite (2× 2)-
matrices Y ∈ Mat2(R) up to scalar multiplication to H.

Note that φ−1(F) is the set of matrices Y satisfying

− y1 < 2y3 ≤ y1 ≤ y2, (5.2)

where the first two inequalities correspond to (F1), and the third in-
equality to (F2). We say that the matrix Y is SL2(Z)-reduced if it
satisfies (5.2).

We phrase and analyze algorithm (5.1) in terms of the matrices Y .
Even though we will give some definitions in terms of Y , all inequali-
ties and all steps in the algorithm will depend on Y only up to scalar
multiplication.

Algorithm 5.3.
Input: A positive definite symmetric (2× 2)-matrix Y0 over R.
Output: U ∈ SL2(Z) and Y = UY0U

t such that Y is SL2-reduced.

Start with Y = Y0 and U = 1 ∈ SL2(Z) and iterate the following two
steps until Y is SL2-reduced.

1. Let

U ←
(

1 0
r 1

)
U and Y ←

(
1 0
r 1

)
Y

(
1 r
0 1

)
for r = b−y3/y1 + 1

2c.
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2. If y1 > y2, then let

U ←
(

0 1
−1 0

)
U and Y ←

(
0 1
−1 0

)
Y

(
0 −1
1 0

)
.

Output U, Y .

We can bound the running time in terms of the minima of the ma-
trix Y0. We define the first and second minima m1(Y ) and m2(Y ) of a
symmetric positive definite (2 × 2)-matrix Y as follows. Let m1(Y ) =
ptY p be minimal among all column vectors p ∈ Z2 different from 0 and
let m2(Y ) = qtY q be minimal among all q ∈ Z2 linearly independent
of p. Note that the definition of m2(Y ) is independent of the choice of p.
We call m1(Y ) also simply the minimum of Y . If Y is SL2-reduced, then
we have

m1(Y ) = y1, m2(Y ) = y2 and
3
4
y1y2 ≤ detY ≤ y1y2,

so for every positive definite symmetric matrix Y , we have

3
4
m1(Y )m2(Y ) ≤ detY ≤ m1(Y )m2(Y ). (5.4)

As we have

Y −1 =
1

detY

(
0 1
−1 0

)
Y

(
0 −1
1 0

)
,

it also follows that

mi(Y −1) =
mi(Y )
detY

, (i ∈ {1, 2}). (5.5)

For any matrix A, let |A| be the maximum of the absolute values of
its entries.

Lemma 5.6. Algorithm 5.3 is correct and takes O(log(|Y0| /m1(Y0)))
additions, multiplications, and divisions in R. The inequalities

|Y | ≤ |Y0| and |U | ≤ 2(detY0)−1/2 |Y0|

hold for the output, and also for the values of Y and U throughout the
execution of the algorithm.
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Proof. The upper bound log(|Y0| /m1(Y0))/ log(3) + 2 on the number of
iterations is proven on the last page of Section 7 of [57]. Each iteration
consists of an absolutely bounded number of operations in R, which
proves our bound on the number of operations.

Next, note that |Y | is decreasing throughout the algorithm. Indeed,
step 2 only swaps entries and changes signs, while step 1 decreases |y3|
and leaves y1 and detY = y1y2−y2

3 invariant, hence also decreases |y2|.
This proves that we have |Y | ≤ |Y0| throughout the course of the algo-
rithm.

Now let C0 ∈ Mat2(R) be such that C0C
t
0 = Y0 holds. Then we have

|C0| ≤ |Y0|1/2 and hence
∣∣C−1

0

∣∣ = |detC0|−1 |C0| ≤ (detY0)−1/2 |Y0|1/2.
As we have UC0(UC0)t = Y , we also have |UC0| ≤ |Y |1/2 ≤ |Y0|1/2.
Finally, |U | =

∣∣UC0C
−1
0

∣∣ ≤ 2 |UC0|
∣∣C−1

0

∣∣ ≤ 2(detY0)−1/2 |Y0|.

5.2 The fundamental domain for genus two

For genus 2, the fundamental domain F2 is defined to be the set of
Z = X + iY ∈ H2 for which

(S1) the real part X =
(
x1 x3

x3 x2

)
is reduced, i.e., − 1

2 ≤ xi <
1
2

(i = 1, 2, 3),

(S2) the imaginary part Y is (GL2-)reduced, i.e., 0 ≤ 2y3 ≤ y1 ≤ y2,
and

(S3) |detM∗(Z)| ≥ 1 for all M ∈ Sp4(Z), where M∗(Z) is defined by

M∗(Z) = CZ +D for M =
(
A B
C D

)
∈ Sp4(Z).

Every point in H2 is Sp4(Z)-equivalent to a point in F2, and we will
compute such a point with Algorithm 5.9 below. This point is unique up
to identifications of the boundaries of F2 as we will see in Lemma 5.20.
We call points in F2 Sp4(Z)-reduced.

Reduction of the real part is trivial and obtained by X 7→ X + B,
for a unique B ∈ Mat2(Z). Here X 7→ X +B corresponds to the action
of (

1 B
0 1

)
∈ Sp4(Z)

on Z.
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Reduction of the imaginary part is reduction of positive definite
symmetric matrices as in Algorithm 5.3, but with the extra condition
y3 ≥ 0, which can be obtained by applying the GL2(Z)-matrix(

1 0
0 −1

)
.

It follows that UY U t is reduced for some U ∈ GL2(Z), and to reduce
the imaginary part of Z, we replace Z by

UZU t =
(
U 0
0 (U t)−1

)
(Z). (5.7)

Condition (S3) has a finite formulation. Let G consist of the 38
matrices 

0 0 −1 0
0 1 0 0
1 0 e1 0
0 0 0 1

 ,


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 e1

 ,


0 0 −1 0
0 1 0 0
1 −1 d 0
0 0 1 1

 ,


0 0 −1 0
0 0 0 −1
1 0 e1 e3

0 1 e3 e2

 ,

(5.8)

in Sp4(Z), where d ranges over {0,±1,±2} and each ei over {0,±1}.
Gottschling [37] proved that, under conditions (S1) and (S2), condition
(S3) is equivalent to the condition

(G) |detM∗(Z)| ≥ 1 for all M ∈ G.

Actually, Gottschling went even further and gave a subset of 19 elements
of G of which he proved that it is minimal such that (G) is equivalent
to (S3), assuming (S1) and (S2).

For our purposes of bounding and computing the values of Igusa
invariants, it suffices to consider the set B ⊂ H2, given by (S1), (S2),
and

(B) y1 ≥
√

3/4.

The condition (B) follows immediately from (S1) and |z1| ≥ 1, which is
equivalent to |det(N∗0 (Z))| ≥ 1 for the upper left matrix in (5.8) with
e1 = 0, so B contains F2.
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5.3 The reduction algorithm for genus 2

The reduction algorithm that moves Z ∈ H2 into F2 is as follows.

Algorithm 5.9.
Input: Z0 ∈ H2.
Output: Z in F2 and a matrix

M =
(
A B
C D

)
∈ Sp4(Z)

such that we have Z = M(Z0) = (AZ0 +B)(CZ0 +D)−1.

Start with Z = Z0 and iterate the following 3 steps until Z is in F2.
During the course of the algorithm, keep track of M ∈ Sp4(Z) such that
Z = M(Z0), as we did with U in Algorithm 5.3.

1. Reduce the imaginary part as explained in Section 5.2.

2. Reduce the real part as explained in Section 5.2.

3. Apply N to Z for N ∈ G with |detN∗(Z)| < 1 minimal, if such
an N exists.

The algorithm that moves Z ∈ H2 into B is exactly the same, but
with F2 replaced by B everywhere and with G replaced by {N0}. We
will give an analysis of the running time and output of Algorithm 5.9
below. The only property of the subset G ⊂ Sp4(Z) that this analysis
uses is that it contains N0, hence the analysis is equally valid for the
modification that moves points into B.

We will bound the number of iterations by showing that detY is
increasing and bounded in terms of Y0, that we have an absolutely
bounded number of steps with |y1| ≥ 1

2 , and that every step with |y1| <
1
2 leads to a doubling of detY .

Lemma 5.10. For any point Z ∈ H2 and any matrix M ∈ Sp4(Z), we
have

det ImM(Z) =
det ImZ

|detM∗(Z)|2
.

Proof. In [48, Proof of Proposition 1.1] it is computed that

ImM(Z) = (M∗(Z)−1)t(ImZ)M∗(Z)−1. (5.11)

Taking determinants on both sides proves the result.
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Steps 1 and 2 of Algorithm 5.9 do not change detY , and Lemma 5.10
shows that step 3 increases detY , so detY is increasing throughout the
algorithm.

The following result allows us to bound m2(Y ) and detY during the
algorithm. It is also crucial in Section 6, where we use it to bound the
entries of the reduced period matrix.

Lemma 5.12. For any point Z = X + iY ∈ H2 and any matrix M ∈
Sp4(Z), we have

m2(ImM(Z)) ≤ 4
3

max{m1(Y )−1,m2(Y )}.

Proof. We imitate part of the proof of [48, Lemma 3.1]. If we replace
M by (

(U t)−1 0
0 U

)
M

for U ∈ GL2(Z), then the matrix (ImM(Z))−1 gets replaced by the
matrix U(ImM(Z))−1U t, so we can assume without loss of generality
that (ImM(Z))−1 is reduced. By (5.11), we have

(ImM(Z))−1 = (CX − iCY +D)Y −1(CX + iCY +D)t

= (CX +D)Y −1(XCt +Dt) + CY Ct, (5.13)

where M =
(
A B
C D

)
.

As the left hand side of (5.13) is reduced, its minimum m1 is its upper
left entry. Let (c1, c2, d1, d2) ∈ Z4 be the third row of M and let c =
(c1, c2), d = (d1, d2) ∈ Z2. We compute that the upper left entry of
(5.13) is m1((ImM(Z))−1) = (cX + d)Y −1(Xct + dt) + cY ct.

The matrix M is invertible, so if c is zero, then d is non-zero. As
both Y −1 and Y are positive definite, this implies that

m1((ImM(Z))−1) ≥ min{m1(Y ),m1(Y −1)}.

By (5.4) and (5.5), we get

m2(ImM(Z)) ≤ 4 det ImM(Z)
3m1(ImM(Z))

=
4

3m1((ImM(Z))−1)

≤ 4
3

max{ 1
m1(Y )

,
detY
m1(Y )

}

≤ 4
3

max{m1(Y )−1,m2(Y )},

which proves the result.
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Lemma 5.14. There is an absolute upper bound c, independent of the
input Z0, on the number of iterations of Algorithm 5.9 in which Z sat-
isfies y1 ≥ 1

2 at the beginning of step 3.

Proof. Let C be the set of points in H2 that satisfy (S1), (S2) and
y1 ≥ 1

2 . At the beginning of step 3, both (S1) and (S2) hold, so we need
to bound the number of iterations for which Z is in C at the beginning
of step 3. Suppose that such an iteration exists, and denote the value of
Z at the beginning of step 3 of that iteration by Z ′. As detY increases
during the algorithm, each iteration has a different value of Z, so it
suffices to bound the number of Z ∈ Sp4(Z)(Z ′) ∩ C. By [48, Theorem
3.1], the set

C = {M ∈ Sp4(Z) : C ∩M(C) 6= ∅}

is finite. As C surjects onto Sp4(Z)(Z ′)∩C via M 7→M(Z ′), we get the
absolute upper bound #C on the number of iterations with Z ∈ C.

Lemma 5.15. At every iteration of step 3 of Algorithm 5.9 in which
we have y1 <

1
2 , the value of detY increases by a factor of at least 2.

Proof. If y1 <
1
2 , then for the element N0 ∈ G, we have |detN∗0 (Z)|2 =

|z1|2 = |x1|2 + |y1|2 ≤ 1
2 , so by Lemma 5.10, the value of detY increases

by a factor ≥ 2.

We can now bound the number of iterations. For any matrix Z =
X + iY ∈ H2, let t(Z) = log max{m1(Y )−1,m2(Y )}.

Proposition 5.16. The number of iterations of Algorithm 5.9 is at
most O(t(Z0)) for every input Z0.

Proof. Let c be the constant of Lemma 5.14, let Z0 be the input of
Algorithm 5.9 and let Z be the value after k iterations. By Lemmas
5.15 and 5.12, we have

2k−c detY0 ≤ detY ≤ m2(Y )2 ≤ (
4
3

)2 max{m1(Y0)−2,m2(Y0)2},

hence (5.4) implies

2k−c ≤ (
4
3

)3 max{m1(Y0)−3m2(Y0)−1,m1(Y0)−1m2(Y0)}.

To avoid a laborious error analysis, all computations are performed
inside some number field L ⊂ C of absolutely bounded degree. Indeed,
for an abelian surface A with CM by OK , any period matrix Z ∈ H2

that represents A is in Mat2(L), where L is the normal closure of K,
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which has degree at most 8. For a running time analysis, we need to
bound the height of the numbers involved. Such height bounds are also
used for lower bounds on the off-diagonal part of the output Z, which
we will need in Section 7.

The height h(x) of an element x ∈ L∗ is defined as follows. Let
S be the set of absolute values of L that extend either the standard
archimedean absolute value of Q or one of the non-archimedean absolute
values |x| = p−ordp(x). For each v ∈ S, let deg(v) = [Lv : Qv] be the
degree of the completion Lv of L at v. Then

h(x) =
∑
v

deg(v) max{log |x|v , 1}.

We denote the maximum of the heights of all entries of a matrix Z ∈ H2

by h(Z).
Next, we give bounds on the value of |M | during the execution of

the algorithm. This will provide us with a bound on the height of
the entries of Z. Indeed, if we have Z = M(Z0), then it follows that
h(Z) ≤ 2(log |M |+ h(Z0) + log 4).

Lemma 5.17. There exists an absolute constant c > 0 such that the
following holds. The value of log |M | is at most cmax{log |Z0| , 1} dur-
ing the first iteration of Algorithm 5.9 and, in each iteration, increases
by at most cmax{t(Z0), 1}, where t is as above Proposition 5.16.

Proof. For step 1, it follows from equation (5.7) and Lemma 5.6 that
the value of log |M | increases by at most log |Z|+ t(Z)+log 8. In step 2,
the value of log |M | increases by at most log(1 + 2 |Z|). In step 3, the
value of log |M | increases by at most log 4 by the definition of G.

Therefore, it suffices to bound log |Z| appropriately at the beginning
of steps 1 and 2. Note that log |Y | decreases during step 1, while log |X|
increases by at most max{log |Z| , 0} + log 16. Therefore, it suffices to
give a bound for log |Z| only at the beginning of step 1. Note that for
the first iteration, the bound log |Z| = log |Z0| suffices.

At the beginning of step 3, we have |xi| ≤ 1
2 , and Y is reduced.

We can thus use Lemma 5.12 to bound the coefficients of Y , and get
|Y | ≤ 4et(Z0)/3. This proves that we have log |Z| ≤ 3 max{t(Z0), 1}.
During step 3, the matrix Z gets replaced by

N(Z) = (AZ +B)(CZ +D)−1

= 1
det(CZ+D) (AZ +B)

(
0 1
−1 0

)
(CZ +D)

(
0 −1
1 0

)
,

where

N =
(
A B
C D

)
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is in the set G. We have |N(Z)| ≤ |det(CZ +D)|−1 (2 |Z| + 1)2 |N |2.
We have already bounded |Z|, and we also have |N | ≤ 4, so we only
need to bound |det(CZ +D)|−1. Lemma 5.10 gives

|det(CZ +D)|−2 = (det ImN(Z))(det Im(Z))−1.

Let M ′ be such that we have Z = M ′(Z0) and let M = NM ′, then
Lemma 5.12 tells us that the numerator is at most

4 max{m1(Y0)−1,m2(Y0)}/3.

Applying the fact that the determinant of Im(Z) increases during the
execution of the algorithm, we thus find

|det(CZ +D)|−2 = 4 max{m1(Y0)−1,m2(Y0)}/(3 det Im(Z0)),

which is at most 16/9 max{m1(Y0),m2(Y0)}3 by (5.4). Therefore, for
Z and N as in step 3, we have log |N(Z)| = c′max{t(Z0), 1}, hence we
find that c′max{t(Z0), 1} is an upper bound for log |Z| at the beginning
of step 1 for every iteration but the first.

Theorem 5.18. Let L ⊂ C be a number field. Algorithm 5.9, on input
Z0 ∈ Mat2(L) ∩ H2, returns an Sp4(Z)-equivalent matrix Z ∈ F2. The
running time is Õ(h(Z0) log |Z0|) + Õ(t(Z0)4). Moreover, the output Z
satisfies

h(Z) = c′max{h(Z0), t(Z0)2, 1},

for some absolute constant c′.

Proof. By Proposition 5.16 and Lemma 5.17, the value of log |M | is
bounded by O(log |Z0|) + O(t(Z0)2) throughout the algorithm, so the
height of every entry of Z is bounded by O(t(Z0)2) + O(h(Z0)). This
implies that each basic arithmetic operation in the algorithm takes time
at most Õ(t(Z0)2) + Õ(h(Z0)). By Lemma 5.6, the first iteration takes
O(log |Z0|) + O(t(Z0)) such operations, and all other O(t(Z0)) itera-
tions take O(t(Z0)) operations, so there are O(log |Z0|) + O(t(Z0)2)
arithmetic operations, yielding a total running time for the algorithm
of Õ(t(Z0)4) + Õ(h(Z0) log |Z0|)

In Section 7, we bound the Igusa invariants in terms of the entries
of the period matrix Z. One of the bounds that we need in that section
is a lower bound on the absolute value of the off-diagonal entry z3 of Z.
It is supplied by the following corollary.
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Corollary 5.19. Let Z0 ∈ Mat2(L) ∩ H2 be the input of Algorithm
5.9 and let z3 be the off-diagonal entry of the output. Then either z3

is zero or we have − log |z3| ≤ c′max{h(Z0), t(Z0)2, 1} for an absolute
constant c′.

Proof. The field L is a subfield of C, which gives us a standard absolute
value v. If z3 is non-zero, then the product formula tells us that we
have − log |z3| = − log |z3|v =

∑
w 6=v log |z3|w ≤ h(z3), which is at most

c′max{h(Z0), t(Z0)2, 1} by Theorem 5.18.

5.4 Identifying points on the boundary

Now that we know how to move points to the fundamental domain F2,
the following lemma shows how to see if two points in F2 are Sp4(Z)-
equivalent. Using this lemma, one could, for example, eliminate du-
plicate abelian varieties if one chooses to use a non-proven alternative
method for the class group computations in Algorithm 3.1. We do not
need this lemma for the proof of the main theorem.

Lemma 5.20. For every element Z of F2, the set Sp4(Z)(Z)∩F2 can
be computed as follows.

1. Let S3 = {N(Z) ∈ H2 | N ∈ G, |detN∗(Z)| = 1}.

2. For Z ′′′ ∈ S3, let SZ′′′ be the set of U ∈ GL2(Z)/{±1} such that
UZ ′′′U t satisfies (S2).

We can compute SZ′′′ as follows.

(a) Let U be one element of SZ′′′ , which can be found using
GL2(Z)-reduction of ImZ ′′′ as explained in Section 5.2, and
let Y = UZ ′′′U t.

(b) Write

Y =
(
y1 y3

y3 y2

)
∈ Mat2(R)

and let G ⊂ GL2(Z)/{±1} be the stabilizer of Y , which is
given as follows. Let V be the subset of GL2(Z) that contains(

0 1
1 0

)
if and only if y1 = y2,(

1 −1
0 −1

)
if and only if 2y3 = y1,(

1 0
0 −1

)
if and only if y3 = 0,
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and no other elements, so V has 0, 1, or 2 elements. Then
we have G = 〈V 〉 ⊂ GL2(Z)/{±1}, which has order 1, 2, 4,
or 6.

(c) We have SZ′′′ = GU .

Let S2 = {UZ ′′′U t | Z ′′′ ∈ S1, U ∈ SZ′′′}.

3. Let S1 = {Z ′′ + T (Z ′′) ∈ H2 | Z ′′ ∈ S2}, where T (Z ′′) ∈ Mat2(Z)
is the unique matrix such that Z ′ = Z ′′ + T (Z ′′) satisfies (S1).

We have S1 = Sp4(Z)(Z) ∩ F2.

Proof. Let Z ′ be an element of S1 and let M ∈ Sp4(Z) be the matrix

M =
(

1 T
0 1

)(
U 0
0 (U t)−1

)
N, (5.21)

where N , U , and T = T (Z ′′) are as in steps 1, 2, and 3, hence we have
M(Z) = Z ′. By construction, Z ′ is Sp4(Z)-equivalent to Z and satisfies
(S1) and (S2). Moreover, we have |detM∗(Z)| = |detN∗(Z)| = 1, and
Z satisfies (S3), so for any M ′ ∈ Sp4(Z), we compute

|detM ′∗(Z ′)| = |det(M ′M)∗(Z)| |detM∗(Z)|−1 ≥ 1.

Therefore, Z ′ also satisfies (S3) and we have S1 ⊂ Sp4(Z)(Z) ∩ F2.
Conversely, let M ∈ Sp2g(Z) be such that M(Z) is in F2. For any

M ′ ∈ Sp4(Z), let l(M ′) be the lower half of M ′, i.e., the (2× 4)-matrix
having as rows the third and fourth row of M ′. As both Z and M(Z)
lie in F2, we have |detM∗(Z)| = 1, and Z satisfies (S1), (S2), and
|z1| , |z2| ≥ 1. The proof of [37, Satz 1] shows that this implies that we
have l(M) = (U t)−1l(N) for some U ∈ GL2(Z) and some N ∈ G.

Now M and (
U 0
0 (U t)−1

)
N

are symplectic matrices with the same lower half, and this implies that
(5.21) holds for some symmetric integer matrix T . In particular, the
matrix

U(ImN(Z))U t = ImM(Z)

satisfies (S2), hence Z ′′ = U(N(Z))U t is an element of S2. Finally, by
uniqueness of T (Z ′′), we have T = T (Z ′′) and hence M(Z) is an element
of S1.

It remains to show that the set SZ′′′ computed in steps a–c is correct.
This follows from the fact that if both UY U t and Y are reduced, then
(U mod ±1) is in the stabilizer G of Y .
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6 Bounds on the period matrices

This section is needed only for the proof of the runtime bound of our
algorithm, not for the algorithm itself. In Sections 3 – 5, we gave an
algorithm that computes one period matrix Z in the fundamental do-
main F2 of the Siegel upper half space H2 for every isomorphism class
of principally polarized abelian surface over C with CM by OK . In Sec-
tion 7, we give bounds on the Igusa invariants in terms of the minima
of ImZ. The purpose of the current section is therefore to bound these
minima. The main result is Corollary 6.2 below.

6.1 The bound on the period matrix

The period matrix Z was computed via a reduction algorithm, starting
from the fairly arbitrary period matrix obtained in Algorithm 4.2. As
a result, we are unable to obtain optimal bounds via an analysis of the
way Z was computed. Instead, use a period matrix Z ′ coming from a
pair (z, b) as in Section I.5.3 on which we can get certain bounds, and
transfer those bounds to Z using Lemma 5.12. Working directly with
the period matrix Z ′ instead of Z in our algorithms is not an option,
because Z ′ will not always be in the fundamental domain F2, where
Section 7 needs it to be.

The bounds on Z and Z ′ are given by the following two results. For
a quartic CM-field K, let ∆ be the discriminant of K and let ∆0 be the
discriminant of its real quadratic subfield K0, so we have ∆ = ∆1∆2

0,
where ∆1 is the norm of the relative discriminant of K/K0.

Proposition 6.1. Let K be a primitive quartic CM-field. Every prin-
cipally polarized abelian surface with complex multiplication by OK has
a symplectic basis for which the period matrix Z ′ = X ′ + iY ′ satisfies

π2

6∆0
≤ detY ′ ≤ ∆1/2

1

4
and

2π√
6∆0

≤ m1(Y ′) ≤ m2(Y ′) ≤ ∆1/4
1 ∆1/2

0

3
.

We will prove Proposition 6.1 later.

Corollary 6.2. Let K be a primitive quartic CM-field and let Z be any
period matrix corresponding to a principally polarized abelian surface
with CM by OK . Then we have

m2(ImZ) ≤ max

{
2
√

2√
3π

∆0,
4
9

∆1/4
1 ∆1/2

0

}
.
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Proof of Corollary 6.2. Any such period matrix Z can be obtained via
Sp4(Z)-transformation from the matrix Z ′ of Proposition 6.1. Lemma
5.12 bounds the second minimum m2(ImZ) in terms of the minima
of Y ′:

m2(ImZ) ≤ 4
3

max{m1(Y ′)−1,m2(Y ′)}.

6.2 A good pair (z, b)

Let K be a primitive quartic CM-field and let (z, b) be a pair as in
Section I.5.3, so z is an element of K and b is a fractional ideal in K0.
Let I(z) =

∏
φ |Imφz|, where the product ranges over the embeddings

φ : K → C up to complex conjugation, so I(z)2 = NK/Q( 1
2 (z − z)).

The following lemma bounds the consecutive minima of the imagi-
nary part of the period matrix corresponding to the symplectic basis of
Theorem 4.3.

Lemma 6.3. Let (z, b) be as in Section I.5.3. Let Z = X + iY be
the period matrix corresponding to the symplectic basis of Theorem 4.3.
Then we have detY = I(z)N(b)2 and

2

∆1/2
0

N(b)I(z)1/2 ≤ m1(Y ) ≤ m2(Y ) ≤ 2∆1/2
0

3
N(b)I(z)1/2.

Proof. The period matrix is given by

Z =
2∑
i=1

φi

(
z

δ

(
b21 b1b2
b1b2 b22

))
for some basis b1, b2 of b. Let Y = ImZ. Recall that the first minimum
m1(Y ) of Y is the minimal value of (m,n)Y (m,n)t for (m,n) ∈ Z2 \
{(0, 0)}. Let t = mb1 + nb2 ∈ b−1. Then we have

(m,n)Y (m,n)t = Im(φ1(zt2δ−1)) + Im(φ2(zt2δ−1))

≥ 2I(zt2δ−1)1/2

= 2I(z)1/2∆−1/2
0

∣∣NK0/Q(t)
∣∣ .

As we have
∣∣NK0/Q(t)

∣∣ ≥ N(b) for t 6= 0, we get

m1(Y ) ≥ 2N(b)∆−1/2
0 I(z)1/2.

The determinant of Y is given in (4.4). Finally, the inequality
m1(Y )m2(Y ) ≤ 4

3 detY gives the upper bound on m2(Y ).
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To prove Proposition 6.1, we need to find a pair (z, b) for which we
have both a good upper and a good lower bound on I(z)N(b)2. We first
give an upper bound that holds for every pair (z, b). Then we show how
to find (z, b) such that I(z)N(b)2 is large and we give a lower bound on
I(z)N(b)2 for that particular pair.

Lemma 6.4. Let K be a quartic CM-field with real quadratic sub-
field K0. Suppose that zb + b−1 is an OK-submodule of K for z ∈ K
and b a fractional OK0-ideal. Then (z − z)b2OK contains the relative
different DK/K0 ⊂ OK . Moreover, we have I(z)N(b)2 ≤ 2−2∆1/2

1 .

Proof. For any α ∈ OK , we have αw ∈ zb + b−1 for all w ∈ b−1.
Therefore, we have α = uz + v with u ∈ b2 and v ∈ OK0 . We thus find
that α − α = u(z − z) is in (z − z)b2 for all α ∈ OK . The set of all
α − α as α ranges over K generates the relative different DK/K0 as an
OK-ideal, which proves the inclusion of ideals.

Taking the norm NK/Q of this inclusion, we find that the fractional
Q-ideal (24I(z)2NK0/Q(b)4) contains (∆1). The square root of this is
the bound.

The following lemma gives the lower bound.

Lemma 6.5. Let K be a quartic CM-field and K0 its real quadratic
subfield. Let δ =

√
∆0 be a generator of the different of K0.

Every pair (z′, b′) such that z′b′ + b′−1 is an OK-ideal is equivalent
to a pair (z, b) with

I(z)N(b)2 ≥ I(z) ≥ π2

6
∆−1

0 .

Proof. By Theorems I.5.8 and I.5.9, we can assume b′ = OK0 . Identify
a′ = z′OK0 +OK0 with its image Φ(a′) inside Cg. Then a′ is a lattice
of covolume ∆0I(z′). For B ≥ 0, define the set S by

S = {z ∈ C2 |
2∑
i=1

|zi| ≤ B
1
4 } ⊂ Cg.

Then S has volume BC with C = π2/6. Take B = 24C−1∆0I(z′),
so that by Minkowski’s convex body theorem, there exists a non-zero
element y = bz′+d ∈ a′ ∩S with b, d ∈ OK0 . As we have y ∈ S, we find∏2
i=1 |φi(y)| ≤ ( 1

2

∑2
i=1 |φi(y)|)2 ≤ 2−2B1/2.

Let b = bOK0 + dOK0 ⊂ OK0 , choose a, c ∈ b−1 ⊂ K0 such that
ad− bc = 1, and let

z =
az′ + c

y
=
az′ + c

bz′ + d
, a = zb + b−1, and ξ = (z − z)−1δ−1.



7. Theta constants 67

Then we have a = y−1a′ and ξ = yyξ′, so (Φ, a, ξ) is equivalent to
(Φ, a′, ξ′), hence (z, b) is equivalent to (z′,OK0).

For i = 1, 2, we now have (with y = bz′ + d and using ad− bc = 1)

Imφiz = Imφi
az′ + c

y
=

Imφiz
′

|φiy|2
.

Taking the product over all i, we find

I(z) ≥ B−124I(z′) ≥ π2/(6∆0).

Note that we have N(b) ≥ 1, hence the bounds in the lemma follow.

Proof of Proposition 6.1. Given a principally polarized CM abelian sur-
face A, let z ∈ K and the ideal b ⊂ OK0 be as in Lemma 6.5. By
Lemmas 6.4 and 6.5, we have

π2

6
∆−1

0 ≤ I(z)N(b)2 ≤ 1
4

∆1/2
1 .

Let Z be the period matrix corresponding to the symplectic basis of
Theorem 4.3. Then Lemma 6.3 proves the bounds that we need to
prove.

Remark 6.6. The lower bound of Lemma 6.5 is in fact something that
holds in greater generality: in the language of the Hilbert upper half
space from Remark I.5.10, this lower bound is Lemma 2.2 of [86] and
tells us something about the ‘floors’ of the fundamental domain for the
action of SL2(OK0).

7 Theta constants

To compute the absolute Igusa invariants corresponding to a point Z ∈
H2, we use theta constants, also known as theta null values. For z ∈ C,
let E(z) = eπiz. We call an element c ∈ {0, 1

2}
4 a theta characteristic

and write c = (c1, c2, c3, c4), c′ = (c1, c2) and c′′ = (c3, c4). We define
the theta constant of characteristic c to be the function θ[c] : H2 → C
given by

θ[c](Z) =
∑
n∈Z2

E((n+ c′)Z(n+ c′)t + 2(n+ c′)c′′t),

and following Dupont [20], we use the short-hand notation

θ16c2+8c1+4c4+2c3 = θ[c].
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We call a theta characteristic — and the corresponding theta constant
— even or odd depending on whether 4c′c′′t is even or odd. The odd
theta constants are zero by the anti-symmetry in the definition, and
there are exactly 10 even theta constants θ0, θ1, θ2, θ3, θ4, θ6, θ8, θ9, θ12

and θ15.

7.1 Igusa invariants in terms of theta constants

Let T be the set of even theta characteristics and define

S = {C ⊂ T | #C = 4,
∑
c∈C

c ∈ Z4}.

Then S consists of 15 subsets of T called Göpel quadruples, each consist-
ing of 4 even theta characteristics. We call a set {b, c, d} ⊂ T of three
distinct even theta characteristics syzygous if it is a subset of a Göpel
quadruple, so there are 60 syzygous triples. Define

h4 =
∑
c∈T

θ[c]8,

h6 =
∑

b,c,d∈T
syzygous

±(θ[b]θ[c]θ[d])4

h10 =
∏
c∈T

θ[c]2,

h12 =
∑
C∈S

∏
c∈T\C

θ[c]4,

(7.1)

where we explain the signs in h6 below. Each hk is a sum of tk monomials
of degree 2k in the 10 even theta constants, where t4 = 10, t6 = 60,
t10 = 1, and t12 = 15. The signs in h6 are defined uniquely by the facts
that h6 is a modular form for Sp4(Z) and that the coefficient of(

θ[0, 0, 0, 0] θ[0, 0, 0, 1
2 ] θ[0, 0, 1

2 , 0]
)4

is +1. More explicitly, the coefficient of(
θ[b1, b2, b3, b4] θ[c1, c2, c3, c4] θ[d1, d2, d3, d4]

)4

is −1 to the power

b1 + b2 + c1 + c2 + d1 + d2 + b1c1 + b2c2 + b4c2 + b1c3 − b2c4+
b1d1 − b3d1 + c1d1 + b2d2 + c2d2 + c4d2 + c1d3 − b2b3c1+
−b2b4c2 − b1b2c3 − b2b3d1 − b3c1d1 − b1c3d1 − b2c3d1 − b2b4d2+
−b4c2d2 − b1b2d3 − b1c1d3 − b2c1d3.
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To compute and check this rule for the sign, we used the action of Sp4(Z)
on the squares of the theta constants, as made explicit by Dupont [20,
Section 6.3.1].

Remark 7.2. Another way of defining hk is as follows. Define Eisen-
stein series on the 2× 2 Siegel upper half space H by

ψk(Z) =
∑
C,D

det(CZ +D)−k,

where the sum is taken over the set of bottom halves (C,D) of elements
of Sp4(Z) up to left multiplication by SL2(Z). Next, define

χ10 = −43867(21235527 · 53)−1(ψ4ψ6 − ψ10)

χ12 = 131 · 593(213375372337)−1(3272ψ3
4 + 2 · 53ψ2

6 − 691ψ12).

Then we have h4 = 22ψ4, h6 = 22ψ6, h10 = −214χ10, and h12 = 2173χ12.
See also Igusa [46, p. 189] and [47, p. 848].

Lemma 7.3. Let Z be a point in H2. If h10(Z) is non-zero, then the
principally polarized abelian variety corresponding to Z is the Jacobian
of a curve C/C of genus 2 with invariants

I2(C) = h12(Z)/h10(Z),

I4(C) = h4(Z),

I ′6(C) = h6(Z),

I10(C) = h10(Z).

Proof. This is the result on page 848 of Igusa [47]. Earlier results of
this form are due to Bolza [5].

Remark 7.4. Thomae’s formula ([65, Thm. IIIa.8.1], [85]) gives an
equation for a curve C with J(C) corresponding to Z in terms of the
theta constants. Formulas of the form of Lemma 7.3 can be derived by
writing out the definition of Ik using Thomae’s formula and using stan-
dard identities between the theta constants. This was done by Bolza [5],
and also by Spallek [79]. Spallek did not give h6, but instead gave an
explicitly written out version of h4, h10, h12, and

h16 =
∑
C∈S
d∈C

θ[d]8
∏

c∈T\C

θ[c]4,

filling a full page, together with the formulas for I2, I4, I10 of Lemma
7.3 and the formula

I6(C) = h16(Z)/h10(Z).
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The same page-filling formulas later appeared in [97] and [27], and, in
a form that fills ‘only’ half a page, in [20, Section 6.3.3].

Corollary 7.5. Each element of the ring Q[I2, I4, I
′
6, I
−1
10 ] can be ex-

pressed as a polynomial in the theta constants divided by a power of
the product of all even theta constants.

By Corollary 7.5, if we give upper and lower bounds on the absolute
values of the theta constants, then we get upper bounds on the absolute
values of the absolute Igusa invariants. Furthermore, we can bound the
precision needed for the theta constants in terms of the precision needed
for the absolute invariants.

Remark 7.6. Our invariants i1, i2, and i3 are chosen to have the mini-
mal number of factors h10 in the denominator. Lemma 7.3 is part of the
motivation for this choice. This choice is also good for the denominators,
as we will see in Remark 9.3.

7.2 Bounds on the theta constants

For Z ∈ H2, denote the real part of Z by X and the imaginary part
by Y , write Z as

Z =
(
z1 z3

z3 z2

)
,

and let xj be the real part of zj and yj the imaginary part for j = 1, 2, 3.
Recall that B ⊂ H2 is given by

(S1) X is reduced, i.e., −1/2 ≤ xi < 1/2 for i = 1, 2, 3,

(S2) Y is reduced, i.e., 0 ≤ 2y3 ≤ y1 ≤ y2, and

(B) y1 ≥
√

3/4.

Proposition 7.7. For every Z ∈ B, we have

|θj(Z)− 1| < 0.405 j ∈ {0, 1, 2, 3}∣∣∣∣ θj(Z)
2E( 1

4z1)
− 1
∣∣∣∣ < 0.348 j ∈ {4, 6}∣∣∣∣ θj(Z)

2E( 1
4z2)

− 1
∣∣∣∣ < 0.348 j ∈ {8, 9} and∣∣∣∣ θj(Z)

2((−1)j + E(z3))E( 1
4 (z1 + z2 − 2z3))

− 1
∣∣∣∣ < 0.438 j ∈ {12, 15}.
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Proof. The proof of Proposition 9.2 of Klingen [48] gives infinite series
as upper bounds for the left hand sides. A numerical inspection shows
that the limits of these series are less than 0.553, 0.623, 0.623 and 0.438.
Klingen’s bounds can be improved by estimating more terms of the theta
constants individually and thus getting a smaller error term. This has
been done in Propositions 6.1 through 6.3 of Dupont [20], improving the
first three bounds to 0.405, 2 |E(z1/2)| ≤ 0.514 and 2 |E(z2/2)| ≤ 0.514.
The proof of [20, Proposition 6.2] shows that for the second and third
bound, we can also take 0.348.

Corollary 7.8. For every Z ∈ B, we have

|θj(Z)| < 1.41, (j ∈ {0, 1, 2, 3})
|θj(Z)| < 1.37, (j ∈ {4, 6, 8, 9})
|θj(Z)| < 1.56. (j ∈ {12, 15})

Proof. These upper bounds follow immediately from (S2), (B), and
Proposition 7.7.

Lemma 7.9. Let z3 be a non-zero complex number with Im(z3) ≥ 0
and |Re(z3)| ≤ 1

2 . Then we have |1− E(z3)| ≥ min{ 1
4 , |z3|}.

Proof. If |Re(z3)| ≥ 1
6 , then

∣∣1− eπiz3∣∣ ≥ sin(π/6) = 1
2 . If Im(z3) ≥ 1

10 ,
then

∣∣1− eπiz3∣∣ ≥ 1− eπ/10 > 1
4 .

If |Re(z3)| < 1
6 and Im(z3) < 1

10 , then let a = πiz3, so

∣∣1− eπiz3∣∣ =
∣∣∣∣a+

a2

2!
+
a3

3!
+ · · ·

∣∣∣∣ ≥ |a| (1− |a| (e− 2)) ≥ |z3|

Lemma 7.10. For every Z ∈ B, we have

0.59 < |θj(Z)| , (j ∈ {0, 1, 2, 3})
1.3 exp(−π4 y1) < |θj(Z)| , (j ∈ {4, 6})
1.3 exp(−π4 y2) < |θj(Z)| , (j ∈ {8, 9})

1.05 exp(−π4 (y1 + y2 − 2y3)) < |θ12(Z)| , and
1.12 exp(−π4 (y1 + y2 − 2y3))ν < |θ15(Z)| ,

where ν = min{ 1
4 , |z3|}.

Proof. This follows from Proposition 7.7 if we use Lemma 7.9 and the
bounds

|1 + E(z3)| > 1, exp(−π
4
yi) ≥ 0.506 (i ∈ {1, 2}) and

exp
(
−π

4
(y1 + y2 − 2 |y3|)

)
> exp

(
−π

2
y2

)
≥ 0.256.
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Corollary 7.11. For every Z ∈ B, we have

log2 |h4(Z)| < 8,
log2 |h6(Z)| < 13,

log2 |h10(Z)| < 11,
log2 |h12(Z)| < 17,
− log2 |h10(Z)| < π(y1 + y2 − y3) + 3 + max{2,− log2 |z3|},

log2 |in(Z)| < 2π(y1 + y2 − y3) + 64 + 2 max{2,− log2 |z3|}
(n ∈ {1, 2, 3}).

Proof. The upper bounds on h4, h10, h12, and h16 follow from the bounds
of Corollary 7.8. The lower bound on h10 follows from the bounds of
Lemma 7.10. The upper bounds on in follow from the formulas of
Lemma 7.3 and the bounds on hk.

Remark 7.12. Lemma 7.3, together with Corollary 7.11, gives a con-
structive version of (Weil’s) Theorem I.6.3. Indeed, if z3 = 0, then the
principally polarized abelian surface A(Z) corresponding to Z is the
product of the polarized elliptic curves C/(z1Z + Z) and C/(z2Z + Z),
while if z3 6= 0, then Corollary 7.11 shows that we have h10(Z) 6= 0, so
A(Z) is the Jacobian of the curve of genus 2 given by Lemma 7.3.

7.3 Evaluating Igusa invariants

Next, we show how to obtain approximations of absolute Igusa invari-
ants from approximations of theta constants.

Let z ∈ C be a complex number and n a non-negative integer. An
approximation z̃ of z of absolute precision n is an element of 2−nZ[i] ⊂
C. The (absolute) error of z̃ is ε(z̃) = |z̃ − z|.

Let k be a non-negative integer and f : Ck → C a map. For example,
for k = 2, we have addition and multiplication, for k = 0, we have the
constant π, and for k = 1, we have the exponential map exp, and
for every fixed m ∈ Z, the exponentiation x 7→ xm. For elements
z1, . . . , zk ∈ C with approximations z̃1, . . . , z̃k, let z = f(z1, . . . , zk) and
let z̃ be f(z̃1, . . . , z̃k), rounded to a nearest element of 2−nZ[i].

For each of the examples f above, the approximation z̃ of z can be
computed from z̃1, . . . , z̃k in time

Õ(n+ max{0, log |z̃| , log |z̃i| (i = 1, . . . , k)})

using “fast multiplication” techniques (see e.g. [3]). The error ε(z̃) is at
most

|z − f(z̃1, . . . , z̃k)|+ 2−n.
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Actually, the advantage of using absolute precision is that we do not
have a rounding error in the case of addition, so that we can leave out
the term 2−n and get ε(z̃) ≤ ε(z̃1) + ε(z̃2). For multiplication, we have

ε(z̃) ≤ ε(z̃1) |z2|+ ε(z̃2) |z1|+ ε(z̃1)ε(z̃2) + 2−n.

Algorithm 7.13.
Input: A positive integer s and approximations θ̃j(Z) of all even theta
constants θj(Z) for some Z ∈ B with an absolute error of at most 2−s.
Output: Approximations ĩn(Z) of the Igusa invariants in(Z) for n =
1, 2, 3.

1. Evaluate each of the products A in the definition (7.1) of the
functions h4, h10, h12, and h16 by factor-by-factor multiplication
with an absolute precision of s, i.e., start with A ← 1 and let
A← AB for every factor B.

2. Evaluate each of the sums of in the definitions of h4, h6, h10, and
h12 by term-by-term addition with an absolute precision of s.

3. Evaluate

i1 = 28h4h6h
−1
10 , i2 = 25h12h

2
4h
−2
10 , and i3 = h5

4h
−2
10

with an absolute precision of s.

Proposition 7.14. Let u = 3 + π(y1 + y2 − y3) + max{2,− log2 |z3|}.
If s is > 13 + 2u, then the output of Algorithm 7.13 has an error of at
most 2100+3u−s. The running time is Õ(s) as s tends to infinity, where
the implied constants do not depend on the input.

Proof. For any term A in step 1, let Ai be A after i factors have been
multiplied together, so |Ai| ≤ 1.56i. Let Ãi be the approximation of
Ai that is computed in the algorithm, and let Ã = Ã2k be the ap-
proximation of A obtained in this way. Then for the error, we have
ε(Ã0) = 0 and ε(Ãi+1) = 1.56ε(Ãi) + 1.56i2−s + 2−s. By induction,
we get ε(Ãi) < 22+i−s, so that the approximation Ã of each term A

in hk has an error of at most ε(Ã) < 22+2k−s. The error of h̃k itself
will therefore be less than tk22+2k−s < 240−s, where t4 = 10, t6 = 60,
t10 = 1, and t12 = 15.
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Next, we evaluate h−1
10 . Let h̃10 be the approximation that we have

just computed, so |h10 − h̃10| < 212−s and |h10| > 2−u. As we have
s > 13 + u, we find

|h−1
10 − h̃

−1
10 | =

|h10 − h̃10|
|h10h̃10|

≤ 212−s

2−u2−u(1− 212−s+u)
< 214+2u−s,

so we find an approximation of h−2
10 with an error of at most 214+2u−s.

Finally, we evaluate i1, i2, and i3, and the bound on their errors
follows from the absolute value and error bounds on hk and h−1

10 .

7.4 Evaluating theta constants

The following algorithm is the naive way of evaluating theta constants,
which we will use in our running time bound. Its running time is quasi-
quadratic, while Dupont’s (AGM-)method [20, Section 10.2] is heuris-
tically quasi-linear. We will not prove bounds on the running time or
precision of Dupont’s method in this thesis.

Algorithm 7.15.
Input: A positive integer s, an approximation Z̃ of a matrix Z ∈ B
with sufficiently small error, and the theta characteristic c ∈ {0, 1

2}
2g.

Output: An approximation Ã of θ[c](Z) with absolute error at most
2−s.

1. Compute
R =

⌈
(0.4s+ 2.2)1/2

⌉
∈ Z.

2. With an absolute precision of t = s+1+b2 log2(2R+1)c, compute
an approximation Ã of

A =
∑
n∈Z2

|ni|≤R

E
(

(n+ c′)Z(n+ c′)t + 2(n+ c′)c′′t
)
.

3. Output Ã.
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Theorem 7.16. The output of Algorithm 7.15 is correct if the input
is given with an absolute error of at most 2−t−1. The algorithm takes
time Õ(s2).

Proof. A precision of t in the input and the evaluation ensures that each
term of the output approximation Ã of A has an error of at most 2−t,
so that we have ∣∣∣A− Ã∣∣∣ ≤ (2R+ 1)22−t ≤ 2−s−1.

Next, we have

|A− θ[c](Z)| ≤
∑
n∈Z2

|n1|>R or |n2|>R

exp
(
−3π

4
((n1 + c1)2y1 + (n2 + c2)2y2)

)
,

because 0 ≤ 2y3 ≤ y1 ≤ y2 implies n2
1y1+n1n2y3+n2

2y2 ≥ 3
4 (n2

1y1+n2
2y2)

for all n ∈ R2. Now for positive real numbers t and non-negative
integers l, let

f(t, l) =
∞∑
k=l

exp(−3
4
πk2t),

so that we find

|A− θ[c](Z)| ≤ 4f(y1, R)f(y2, 0) + 4f(y1, 0)f(y2, R),

If t ≥
√

3/4, then we have

f(t, l) ≤
∞∑
k=l2

exp(−3
4
πtk) < 1.15 exp(−3

4
πtl2),

so

|A− θ[c](Z)| < 5.29
2∑
i=1

exp(−3
4
πyiR

2) < 2−s−2.

Therefore, we have ∣∣∣Ã− θ[c](Z)
∣∣∣ < 2−s−1.

For each term, it takes time Õ(t) = Õ(s) to evaluate the term and
add it to the result. The number of terms is (2R + 1)2 = Õ(s), which
proves the running time.
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8 The degree of the class polynomials

Let K be a primitive quartic CM-field. In this section we give asymp-
totic upper and lower bounds on the degree of Igusa class polynomials
of K. These bounds are not used in the algorithm itself, but are used
in the analysis of the algorithm.

Denote the class numbers of K and K0 by h and h0 respectively,
and let h1 = h/h0. The degree of the Igusa class polynomials HK,n for
n = 1, 2, 3 is the number h′ of isomorphism classes of curves of genus 2
with CM by OK . By Lemma 3.5 we have h′ = h1 if K is cyclic and
h′ = 2h1 otherwise. The degree of the class polynomials ĤK,n is h′− 1.
The following result gives an asymptotic bound on h1, and hence on the
degree h′.

Lemma 8.1 (Louboutin [58]). There exist effective constants d > 0
and N such that for all primitive quartic CM-fields K with ∆ > N , we
have

∆1/2
1 ∆1/2

0 (log ∆)−d ≤ h1 ≤ ∆1/2
1 ∆1/2

0 (log ∆)d.

Proof. Louboutin [58, Theorem 14] gives bounds∣∣∣∣ log h1

log(∆1∆0)
− 1

2

∣∣∣∣ ≤ d log log ∆
log ∆

for ∆ > N . As we have ∆ > ∆0∆1, this proves the result.

9 Denominators

Let K be a primitive quartic CM-field. In this section we give upper
bounds on the denominators of the Igusa class polynomials of K. By the
denominator of a polynomial f ∈ Q[X], we mean the smallest positive
integer c such that cf is in Z[X].

A prime p occurs in the denominator of H1 if and only if there is
a curve C with CM by OK such that C has stable bad reduction at a
prime p over p. It is known that abelian varieties with complex multi-
plication have potential good reduction at all primes, but this doesn’t
imply that Jacobians reduce as Jacobians: the reduction of the Jacobian
of a smooth curve C of genus two can be a polarized product of elliptic
curves E1 × E2. The stable reduction of C is then the union of those
elliptic curves intersecting transversely. For details, we refer to Goren
and Lauter [35, 36], who study this phenomenon and use the embedding

OK → End(E1 × E2)
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to bound both p and the valuation of the denominator of H1 at p.
We will first give the bounds of Goren and Lauter [35, 36] which

hold in general, but are expected to be far from asymptotically optimal.
These are the only bounds that we will use in our running time analysis.
Then we give optimal bounds conjectured by Bruinier and Yang [8] for
special cases and proven by Yang [98] in cases that are even more special.
We end this section by giving a counterexample to a bound conjectured
by Lauter [54].

9.1 The bounds of Goren and Lauter

The bounds of Goren and Lauter are given in terms of integers a, b, d
such that K is given by K = Q(

√
−a+ b

√
d). For d, one can take the

discriminant d = ∆0 of the real quadratic subfield K0. We will prove
in Lemma 9.9 below that one can take a < 8π−1(∆1∆0)1/2, where
∆1 = NK0/Q(∆K/K0) is the norm of the relative discriminant. The
denominator itself does not depend on the choice of a, so we can replace
a by this bound on a in all denominator bounds below.

The main result of this section is the following.

Theorem 9.1. Let K be a primitive quartic CM-field and write

K = Q
(√
−a+ b

√
d
)

with a, b, d ∈ Z.

The denominator of each of the Igusa class polynomials of K divides
214h′D2 for

D =

( ∏
p<4da2

p prime

pb4f(p)(1+log(2da2)/ log p)c

)h′
,

where f(p) is given by f(p) = 8 if p ramifies in K/Q and satisfies p ≤ 3,
and given by f(p) = 1 otherwise.

Furthermore, the result above remains true if we replace d by ∆0 and
a by b8π−1(∆1∆0)1/2c in the definition of D. We then have logD =
Õ(h′∆) = Õ(∆3/2

1 ∆5/2
0 ) as ∆ tends to infinity.

We will prove this result below.

Remark 9.2. Theorem 9.1 as stated holds for the absolute Igusa in-
variants i1, i2, i3 of Section 2. For another choice of a set S of absolute
Igusa invariants, take positive integers c3 and k such that c3(2−12I10)kS
consists of modular forms of degree k with integral Fourier expansion.
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Then the denominator divides ch
′

3 D
k. See the proof of Theorem 9.1

below for details.
Using the formulas for the Igusa invariants of Lemma 7.3, one can

verify that all elements of Z[2−15I2I10, 2
−2I4, 2

−2I ′6, 2
−12I10] have an

integral Fourier expansion. For this Fourier coefficient computation, see
Appendix 1. For our invariants, we have c3 = 214 and k = 2.

Remark 9.3. Our invariants i1, i2, and i3 are chosen to have the
minimal value for k. Remark 9.2 is part of the motivation for this
choice. This choice is also good for getting small absolute values of the
coefficients, as we have seen in Remark 7.6. We have k = 1 for i1 and
k = 2 for i2 and i3.

We did not normalize our invariants with powers of 2 to get c3 = 1,
because invariants without these powers of 2 are easier to remember and
yield smaller class polynomials in practice.

Remark 9.4. It follows from Goren [34, Thms. 1 and 2] that Theo-
rem 9.1 remains true if one restricts in the product defining D to primes
p that divide 2 ·3 ·c3∆ or factor as a product of two prime ideals in OK .
See also Goren and Lauter [36, Tables 3.3.1 and 3.5.1].

The first part of the proof of Theorem 9.1 is the following bound on
the primes that occur in the denominator.

Lemma 9.5 (Goren and Lauter [35]). The coefficients of each of the
polynomials HK,n(X) and ĤK,n for K = Q(

√
−a+ b

√
d) a primitive

quartic CM-field are S-integers, where S is the set of primes smaller
than 4da2.

Proof. Corollary 5.2.1 of [35] is this result with 4d2a2 instead of 4da2.
We can however adapt the proof as follows to remove a factor d. In [35,
Corollary 2.1.2], it suffices to have only N(k1)N(k2) < p/4 in order for
two elements k1 and k2 of the quaternion order ramified in p and infinity
to commute. Then, in the proof of [35, Theorem 3.0.4], it suffices to
take as hypothesis only p > d(Tr(r))2. As we have d(Tr(r))2 ≥ dδ1δ2 ≥
N(x)N(by∨), this implies that x and by∨ are in the same imaginary
quadratic field K1. As in the original proof, this implies that ywy∨ is
also contained inK1 and hence ψ(

√
r) ∈M2(K1), so there is a morphism

K = Q(
√
r) 7→M2(K1), contradicting primitivity of K.

Remark 9.6. Lemma 9.5 as phrased above is for class polynomials
defined in terms of the invariants i1, i2, i3 of Section 2. If other invari-
ants are used, then the result is still valid if the primes dividing c3 of
Remark 9.2 are added to S.
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Recent results of Eyal Goren bound the exponents to which primes
may occur in the denominator as follows.

Lemma 9.7 (Goren-Lauter [36]). Let K be a primitive quartic CM-
field and C/C a curve of genus 2 that has CM by OK . Let v be a
non-archimedean valuation of L(in(C)), normalized with respect to Q
in the sense that v(Q∗) = Z holds, and let e be its ramification index
(so ev is normalized with respect to L(in(C)). Let k and c3 be as in
Remark 9.2.

Then we have

−v(in(C)) ≤ 4k(log(2da2)/ log(p) + 1) + v(c3) if e ≤ p− 1, and

−v(in(C)) ≤ 4k(8 log(2da2)/ log(p) + 2) + v(c3) otherwise. (9.8)

Moreover, e ≤ p− 1 is automatic for p 6= 2, 3.

Proof. Theorem 7.0.4 of Goren and Lauter [36] gives the valuation
bounds.

Next, we show e ≤ 4 for p > 2. Let L ⊂ C be isomorphic to the
normal closure of K, let Φ be the CM-type of C and Kr ⊂ L its reflex
field. The extension Kr(in(C))/Kr is unramified by the main theorem
of complex multiplication I.9.1. In particular, the ramification index of
any prime in L(in(C))/Q is at most its ramification index in L/Q. By
Lemma I.3.4, the field L has degree 4 over Q or has degree 2 over a
biquadratic subfield, hence we have e ≤ 4 for p > 2.

Lemma’s 9.5 and 9.7 hold for any representation of K of the form
K = Q(

√
−a+ b

√
d), hence in particular for such a representation with

da2 minimal. The following result gives a lower and an upper bound on
the minimal da2.

Lemma 9.9. Let K be a quartic CM-field with discriminant ∆ and let
∆0 be the discriminant of the real quadratic subfield K0.

For all a, b, d ∈ Z such that K = Q(
√
−a+ b

√
d) holds, we have

a2 > ∆1 and d ≥ 1
4∆0. Conversely, there exist such a, b, d ∈ Z with

d = ∆0 and a2 < ( 8
π )2∆1∆0.

Proof. The lower bounds are trivial, because ∆0 divides 4d and ∆1

divides a2− b2d ≤ a2. For the upper bound, we show the existence of a
suitable element −a+ b

√
∆0 using a geometry of numbers argument.

We identify K ⊗Q R with C2 via its pair of infinite primes. Then
OK is a lattice in C2 of covolume 2−2

√
∆. Let ω1, ω2 be a Z-basis

of OK0 , and consider the open parallelogram ω1(−1, 1) + ω2(−1, 1) ⊂
OK0 ⊗R ∼= R2. We define the open convex symmetric region

VY = {x ∈ C2 : Re(x) ∈ ω1(−1, 1)+ω2(−1, 1), (Imx1)2+(Imx2)2 < Y }.
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Then vol(VY ) = 4π
√

∆0Y and by Minkowski’s convex body theorem,
VY contains a non-zero element α ∈ OK if we have

vol(VY ) > 24 covolOK = 4
√

∆.

We pick Y =
√

∆1∆0π
−1 + ε, so that α exists.

Let r = 4(α − α)2, which is of the form −a + b
√

∆0 with integers
a and b. Now a = 1

2 |r1 + r2| = 2(2 Imx1)2 + 2(2 Imx2)2 < 8Y =
8
√

∆1∆0π
−1 + 8ε. As a is in the discrete set Z, and we can take ε

arbitrarily close to 0, we find that we can even get a ≤ 8
√

∆1∆0π
−1

and hence a2 ≤ ( 8
π )2∆1∆0.

Proof of Theorem 9.1. Lemma 9.5 proves that the denominator of the
Igusa class polynomials is divisible only by primes dividing D.

Next, let v be any normalized non-archimedean valuation of HKr

and c any coefficient of HK,n or ĤK,n. Then c is a sum of products,
where each product consists of at most h′ factors in(C) for certain n’s
and C’s. This shows that −v(c) is at most h′ times the right hand side
of (9.8), hence v(Dc) ≥ 0. As this holds for all v, it follows that Dc
is an integer. This concludes the proof that DHK,n and DĤK,n are in
Z[X].

The fact that we can replace a and d as in the theorem is Lemma 9.9.
Next, we prove the asymptotic bound on D. Note that the exponent
of every prime in D1/h′ is linear in log ∆, as is the bit size of every
prime divisor of D. Therefore, logD is Õ(h′N), where N = O(∆) is the
number of prime divisors of D, which finishes the proof of Theorem 9.1.

9.2 The bounds of Bruinier and Yang

In this section, we give an improvement of the bounds in Theorem 9.1,
which is proven only for a small subset of the set of CM-fields. The
denominator bound in this section is not directly relevant to our main
theorem, but is interesting as it is optimal.

Let Kr
0 be the real quadratic subfield of the reflex field Kr of K (as

defined e.g. in the proof of Lemma 9.7). Then we have Kr
0 = Q(

√
∆1).

Theorem 9.10 (Yang [98]). Let K be a primitive quartic CM-field such
that ∆0 and ∆1 are prime and OK is monogenic over OK0 , i.e., of the
form OK = OK0 [α] for some α ∈ K. Let k and c3 be as in Remark 9.2.

For any fractional OK0-ideal a, let

ρ(a) = #{A ⊂ OKr | NKr/Kr
0
A = a}.
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Let d ⊂ OKr
0

be the relative discriminant of Kr/Kr
0, and for any t ∈ d−1,

let
Ct =

∏
p⊂OKr

0
p prime

NKr
0/Q

(p)(ordp(t)+1)ρ(tdp−1) ∈ Z.

Let S be the set of pairs (n, `) ∈ Z2 such that n is positive, odd, and
less than

√
∆0, that ` satisfies 4 |`| < (∆0 − n2)

√
∆1, and that

t(`, n) = (4`+ (∆0 − n2)
√

∆1)/(8∆0) ∈ Kr
0

is an element of d−1.
Then the denominator of the constant coefficient of each Igusa class

polynomial HK,n of K divides

D′ = ch
′

3

∏
(n,`)∈S

Ckt(`,n).

Proof. Note first that D′ is indeed finite, because ρ(tdp−1) is zero unless
p divides the integral ideal td.

As OK is monogenic over OK0 , the relative discriminant of K/K0

is a square modulo 4, hence the same holds for its norm ∆1. As ∆1 is
prime, this implies that it is 1 modulo 4, and that the discriminant of
Kr

0 = Q(
√

∆1) is equal to ∆1.
Under the conditions that we just checked, Theorem 9.1 of [98] states

exactly D′HK,n ∈ Z[X], except that it does so

• only for Spallek’s absolute invariants

• under the assumption that K has only two roots of unity.

The proof applies to all absolute invariants. If, furthermore, K is not
isomorphic to Q(ζ5), then its number of roots of unity is indeed 2. This
proves the result for K 6∼= Q(ζ5).

For K = Q(ζ5), we have seen in Example I.6.1 that the Jacobian
J(C) of C : y2 = x5 + 1 has CM by OK . By Lemma 3.5, this is the
only principally polarized abelian surface with CM by OK . The Igusa
invariants I2, I4, and I6 of this curve are zero, which proves the result
also for K = Q(ζ5).

Remark 9.11. Theorem 9.10 is stated only for the constant coefficient
of the class polynomials HK,n. The bound comes from an arithmetic
intersection number of cycles. From the fact that the relevant cycles
are effective and intersect properly ([98]), it should be straightforward
to derive that the bound holds for all coefficients of HK,n and in fact
even for ĤK,n.



82 Chapter II. Computing Igusa class polynomials

Remark 9.12. The denominator bound D′ is sharp in the sense that
(by [98, Corollary 1.6]) the set of primes dividing D′ are exactly the
primes p such that there exists a curve with CM by OK of stable bad
reduction at a prime over p.

Remark 9.13. If Bruinier and Yang’s conjecture ([8, equation (1.10)],
[98, Conjecture 1.1]) is true, then Theorem 9.10 holds in slightly greater
generality.

9.3 Counterexample to a conjectured formula

A conjecture of Lauter [54] also bounds the primes dividing the de-
nominators of Igusa class polynomials by stating that each such prime
divides ∆ − x2 for some non-negative integer x < ∆1/2. However, the
field K = Q[X]/(X4 + 558X2 + 31873) with ∆0 = 17 and ∆1 = 31873
is a counterexample, as demonstrated by the corresponding entry in
the ECHIDNA database [50]. The prime 7499 divides the denomina-
tors of the class polynomials, but does not divide ∆− x2 for any small
enough x. The conjecture did not go down without a fight: our search
of the database reveiled only 17 counterexamples among thousands of
CM-fields, and we know no counterexamples with class number h ≤ 14.

10 Recovering a polynomial from its roots

In this section, we show how to compute a polynomial from complex
approximations of its roots. This will tell us the precision to which we
need to know these roots. The algorithms in this section are well known
to the experts, but we did not find an error analysis in the literature.

We will compute an approximation of a polynomial from approxi-
mations of its roots in Sections 10.1 and 10.2. Then in Section 10.3,
we compute numerators and denominators of the coefficients from their
approximations.

10.1 Polynomial multiplication

For a complex polynomial g, let |g|1 (resp. |g|∞) be the sum (resp.
maximum) of the absolute values of the coefficients of g. We find
|g1g2|∞ ≤ |g1|∞ |g2|1 and |g|1 ≤ (deg(g) + 1) |g|∞.

The following algorithm computes products of integer polynomials.
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Algorithm 10.1.
Input: Polynomials g1, g2 ∈ Z[X], given by the binary expansions of
their coefficients.
Output: The product g1g2 ∈ Z[X].

1. Let k = dlog2 |g1|∞e+ dlog2 |g2|∞e+ dlog2(deg(g1) + 1)e.

2. Evaluate the polynomials at 2k by writing the binary expansions
of their coefficients after each other with the appropriate number
of zeroes between them.

3. Multiply the results of step 2 using fast integer multiplication.

4. Read off the binary expansions of the coefficients of g1g2 from the
result of step 3.

This algorithm has a running time ofM((deg(g1g2)+1) log2 |g1g2|∞),
whereM(n) = O(n log n log log n) is the time needed for a multiplication
of n-bit integers. See also [90, Corollary 8.27].

For a complex polynomial g ∈ C[X] and a positive integer p, an
approximation g̃ of g with absolute precision p is an object of the form
2−p(a + ib), where a and b are polynomials in Z[x] given by the bi-
nary expansions of their coefficients. Complex numbers are complex
polynomials of degree 0 and have approximations as such, which is ex-
actly the notion of approximation from Section 7.3. The error of an
approximation g̃ of a polynomial g is ε(g̃) = |g − g̃|∞. Suppose we have
approximations g̃k = 2−p(ak+ibk) of gk for k = 1, 2 with absolute preci-
sion p. The following algorithm computes an approximation g̃1g2 of the
product g1g2 with the same absolute precision. It does so by computing
the product g̃1g̃2 exactly, and then reducing the precision back to p.

Algorithm 10.2.
Input: Approximations g̃1 = 2−p(a1 + ib1) and g̃2 = 2−p(a2 + ib2) of
complex polynomials g1, g2.
Output: An approximation g̃1g2 = 2−p(a+ ib) of g1g2.

1. Compute a′ = a1a2 − b1b2 and b′ = a1b2 + b1a2 in Z[X] using
Algorithm 10.1.
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2. Let a ∈ Z[X] be obtained from a′/2p ∈ Q[X] by rounding each
coefficient to the nearest integer. Let b ∈ Z[X] be obtained from
b′/2p in the same way.

Lemma 10.3. Algorithm 10.2 takes time

M((deg(g1g2) + 1)(log2 |g1g2|∞ + 2p)).

The error ε(g̃1g2) is at most

|g1|1 ε(g̃2) + |g2|1 ε(g̃1) + (deg(g1) + 1)ε(g̃1)ε(g̃2) + 2−p.

Proof. The running time bound follows from the fact that we simply
apply Algorithm 10.1 four times. The triangle inequality for |·|∞ gives
us the bound on the error.

10.2 Recovering a polynomial from its roots

Let z1, . . . , zn be complex numbers. The purpose of this section is to
compute an approximation of f =

∏n
i=1(X − zi) ∈ C[X] from an ap-

proximation of z1, . . . , zn. Suppose that we know si ∈ Q satisfying
|zi|+ 1 ≤ si for i = 1, . . . , n, and let s =

∏
si.

Algorithm 10.4.
Input: an integer u > 0 and approximations z̃1, . . . , z̃n of z1, . . . , zn
with error

ε(z̃i) ≤ 2−u−
∑
j 6=i log2 sj−3 log2 n−3.

Output: an approximation f̃ of f =
∏n
i=1(X − zi) ∈ C[X] with error

ε(f̃) ≤ 2−u.

1. Build a binary tree of depth l = dlog2 ne with at n of the leaves
the n linear polynomials X− z̃i, and at the remaining 2l−n leaves
the constant polynomial 1.

2. From the leaves up to the root, at every node t of the tree, put the
product g̃t of the two nodes below it, computed by Algorithm 10.2
with absolute precision p = u +

∑
j log2 sj + 3 log2 n + 3, where

the sum is taken over those j that are not below the node t.

3. Output the root of the tree.
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Theorem 10.5. Algorithm 10.4 is correct and has a running time of

O(nm log(nm)2 log log(nm)),

where m = max{u, log n, log s}.

Proof of Theorem 10.5. For every node t of the tree, denote by d(t)
the set of leaves i below t. For every node t of the tree, let gt be the
polynomial

gt =
∏
i∈d(t)

(X − zi)

of which the polynomial g̃t computed in the algorithm is an approxima-
tion. Let bk be the maximum over all nodes t at distance at most k to
the leaves of

|gt|1
∏
i∈d(t)

s−1
i .

Similarly, let κk be the maximum over all nodes t at distance at most
k to the leaves of

max{2−p, ε(g̃t)
∏
i∈d(t)

s−1
i }.

Then bk ≤ 1 for all k. Therefore, by Lemma 10.3, we have

κk+1 ≤ 2κk + (2k + 1)κ2
k + 2−p ≤ 3κk + (2k + 1)κ2

k.

If κ0 ≤ n−3, then by induction this implies that κk ≤ 4kκ0 for all k, so
κl < (2n)2κ0. In particular, the error of each coefficient of the output
is at most (2n)2κ0s.

This means that κ0 = 2−u−3 logn−3−log2 s is sufficient. At the k-th
level of the tree, there are 2l−k polynomial multiplications of degree at
most 2k where each coefficient has a bit size of O(m), so each of the l <
1+log2 n levels takes time O(M(nm)), which proves the complexity.

Remark 10.6. Algorithm 10.4 is Algorithm 10.3 of [90], except that we
round the coefficients back to a fixed precision after every polynomial
multiplication. A direct application of the algorithm in [90] would yield
exactly the product

n∏
k=1

(X − z̃k)

with a very large denominator in time that is quasi-quadratic rather
than quasi-linear.
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10.3 Recognizing rational coefficients

There are various ways of recognizing a polynomial f ∈ Q[X] from an
approximation f̃ . If one knows an integer D such that the denominator
of f divides D, and the error ε(f̃) is less than (2D)−1, then Df is
obtained from Df̃ by rounding the coefficients to the nearest integers.

Other methods to compute f from f̃ are based on continued frac-
tions, where the coefficients of f are obtained via the continued fraction
expansion of the coefficients of f̃ , or on the LLL-algorithm, where the
coefficients of an integral multiple of f arise as coordinates of a small
vector in a lattice [57, Section 7]. Such methods have the advantage
that only a bound B on the denominator needs to be known, instead of
an actual multiple D. This is very useful in practical implementations,
because one can guess a small value for B, which may be much smaller
than any proven D. In the case of Igusa class polynomials, there ex-
ist a few good heuristic checks of the output when using a non-proven
bound B, such as smoothness of the denominators, and successfulness
of explicit CM constructions.

For our purpose of giving a proven running time bound however, we
prefer the first method of rounding Df̃ , since it is easy to analyze and
asymptotically fast. The following algorithm computes D for the case
of Igusa class polynomials.

Algorithm 10.7.
Input: The discriminant ∆ of a primitive quartic CM-field K and the
degree h′ of the Igusa class polynomials of K.
Output: The integer D of Theorem 9.1, which satisfies DHK,n ∈ Z[X]
for n = 1, 2, 3.

1. List all primes up to the number 4da2 as in Theorem 9.1.

2. Raise each prime in the list to the exponent in Theorem 9.1.

3. Compute the product of the integers of step 2 using a binary tree,
just as we used a binary tree to compute a product of polynomials
in Algorithm 10.4. See also [90, Exercise 10.8].

Algorithm 10.7 takes time Õ(logD), so we conclude that we can
compute HK,n from an approximation H̃K,n in time Õ(logD) plus time
linear in the bit size of H̃K,n, provided that we have ε(H̃K,n) < (2D)−1.
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11 The algorithm

Algorithm 11.1.
Input: A positive quadratic fundamental discriminant ∆0 and positive
integers a and b such that the the field

K = Q(
√
−a+ b

√
∆0)

is a primitive quartic CM-field of discriminant greater than a.
Output: The Igusa class polynomials HK,n for n = 1, 2, 3.

1. Compute a Z-basis of OK using the algorithm of Buchmann and
Lenstra [9] and use this to compute the discriminant ∆ of K.

2. Compute a complete set {A1, . . . , Ah′} of representatives of the h′

isomorphism classes of principally polarized abelian surfaces over
C with CM by OK , using Algorithm 3.1. Here each Aj is given
by a triple (Φj , aj , ξj) as in Section 3.3.

3. From ∆ and h′, compute a number D such that DHK,n is in Z[X]
for n = 1, 2, 3, using Algorithm 10.7.

4. For j = 1, . . . , h′, do the following.

(a) Compute a symplectic basis of aj using Algorithm 4.2. This
provides us with a period matrix Wj ∈ H2 ∩Mat2(L), where
L ⊂ C is the normal closure of K.

(b) Replace the period matrix Wj by an Sp4(Z)-equivalent pe-
riod matrix Zj ∈ F2 ∩Mat2(L), using Algorithm 5.9.

(c) Let uj = d3 + (y1 + y2 − y3)π + max{2,− log2 |z3|}e, where

Zj =
(
z1 z3

z3 z2

)
and yk = Im zk (k = 1, 2, 3).

5. Let p = dlog2D + 3 log2 h
′ + 4e +

∑h′

j=1(2uj + 40). This is the
precision with which we will approximate the Igusa invariants.

6. For j = 1, . . . , h′, do the following.

(a) Evaluate the theta constants in Zj , using Algorithm 7.15, to
a precision rj = 101 + 7uj + p.
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(b) Use Algorithm 7.13 to evaluate in(Aj) for (n = 1, 2, 3) to
precision p.

7. For n = 1, 2, 3, do the following.

(a) Use Algorithm 10.4 to compute an approximation H̃K,n of
HK,n for n = 1, 2, 3 from the approximations of Igusa invari-
ants of step 6b.

(b) Compute DHK,n by rounding the coefficients of DH̃K,n to
nearest integers.

(c) Output HK,n.

The polynomials ĤK,n (n = 2, 3) of Section 2.2 can be computed from
the approximations of in(C) and i1(C) efficiently using Algorithm 10.9
of [90] (see also [23, Section 4]). However, instead of doing a detailed
rounding error analysis of that algorithm, we give a more naive and
slower algorithm that is still much faster than the running time in our
Main Theorem. To compute the polynomials ĤK,n, we simply modify
step 7a as follows:

1. Evaluate each summand in the definition of the polynomial ĤK,n

using Algorithm 10.4.

2. Evaluate H̃K,n using a binary tree as in Algorithm 10.4 with ad-
dition instead of multiplication.

We now recall and prove the main theorem.

Main Theorem. Algorithm 11.1 computes HK,n (n = 1, 2, 3) for any
primitive quartic CM-field K. It has a running time of Õ(∆7/2

1 ∆11/2
0 )

and the bit size of the output is Õ(∆2
1∆3

0).

Proof. We start by proving that the output is correct. By Proposi-
tion 7.14, the precision rj for the theta constants suffices to get the
absolute Igusa invariants with precision p. Corollary 7.11 tells us that
we have |in(Zj)| ≤ 26uj+77. These bounds and Theorem 10.5 show that
it suffices to know the absolute Igusa invariants to precision p in order to
get a precision of 1 + log2D bits for the coefficients of HK,n. By Theo-
rem 9.1, the polynomials DHK,n have integer coefficients, so a precision
of 1 + log2D for the coefficients of HK,n suffices for recognizing these
coefficients and getting a correct output. This proves that the output
of Algorithm 11.1 is correct.
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Next, we bound the precisions p and rj . We start by bounding uj ,
for which we need an upper bound on y1 + y2 − y3 and a lower bound
on z3. We have y2 ≥ y1 and y3 ≥ 0, hence y1 + y2 − y3 ≤ 2y2, and
Corollary 6.2 gives the upper bound

y2 ≤ max{ 2
√

2√
3π

∆0,
4
9

∆1/4
1 ∆1/2

0 }.

We claim that the off-diagonal entry z3 of Zj ∈ H2 is non-zero.
Indeed, if z3 = 0, then Zj = diag(z1, z2) with z1, z2 ∈ H = H1 and
Aj is the product of the elliptic curves corresponding to z1 and z2,
contradicting the fact that Aj is simple (Theorem I5.2). The claim and
Corollary 5.19 together now give an upper bound on log(1/z3), which
is polynomial in log ∆ by Lemma 3.6.

We now have

uj = O(max{ 2
√

2√
3π

∆0,
4
9

∆1/4
1 ∆1/2

0 }),

h′ = Õ(∆1/2
1 ∆1/2

0 ), and by Theorem 9.1 also logD = Õ(∆3/2
1 ∆5/2

0 ).
We find that p is dominated by our bounds on logD, hence we have
p = Õ(∆3/2

1 ∆5/2
0 ) and also rj = Õ(∆3/2

1 ∆5/2
0 ).

Finally, we can bound the running time. Under the assumption that
K is given as K = Q(

√
−a+ b

√
∆0), where ∆0 is a positive fundamen-

tal discriminant and a, b are positive integers such that a < ∆0, we can
factor (a2 − b2∆0)∆2

0 and hence find the ring of integers in step 1 in
time O(∆).

As shown in Section 3.3, step 2 takes time Õ(∆1/2). Step 3 takes
time Õ(D) = Õ(∆3/2

1 ∆5/2
0 ).

For every j, step 4a takes time polynomial in log ∆ by Lemma 3.6
and Theorem 5.18. The same holds for steps 4b and 4c and each sum-
mand of step 5. The number of iterations or summands of these steps
is 2h′ = Õ(∆1/2

1 ∆1/2
0 ) by Lemmas 8.1 and 3.5. In particular, steps 4

and 5 take time Õ(∆1/2
1 ∆1/2

0 ).
We now come to the most costly step. By Theorem 7.16, it takes

time Õ(r2
j ) to do a single iteration of step 6a. In particular, all iterations

of this step together take time Õ(∆7/2
1 ∆11/2

0 ).
The j-th iteration of step 6b takes time Õ(r) and hence all iterations

of this step together take time Õ(∆2
1∆3

0). Finally, by Theorem 10.5, step
7a takes time Õ(h′) times Õ(p), which is Õ(∆2

1∆3
0). The same amount

of time is needed for the final two steps.
The output consists of h′+ 1 rational coefficients, each of which has

a bit size of Õ(∆3/2
1 ∆5/2

0 ), hence the size of the output is Õ(∆2
1∆3

0).
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This proves the main theorem, except when using the polynomials
ĤK,n (n = 2, 3) of Section 2.2. With the naive method of evaluat-
ing ĤK,n that we described in Algorithm 11.1, it takes Õ(h1) times as
much time to evaluate H̃K,n from the Igusa invariants as it does to eval-
uate HK,n. This Õ(∆5/2

1 ∆7/2
0 ) is still dominated by the running time of

the rest of the algorithm.

It also follows that, if one uses Dupont’s [20] quasi-linear method
of evaluating theta constants as mentioned in Section 7.4, the heuristic
running time of Algorithm 11.1 is Õ(∆2

1∆3
0), which can still be improved

if better bounds on the denominators are found. In fact, if we also use
a guess for the height of the class polynomials, then we can compute
class polynomials in quasi-linear time without proof of correctness.

If the goal is to construct a genus-two curve C/k with a point
P ∈ J(C)(k) of prime order N (as it is in the cryptographic appli-
cations), then correctness of the output (C,P ) can be proven efficiently
afterwards by checking P 6= [N ]P = 0. By doubling the precision every
time the output is incorrect, and assuming Dupont’s method is quasi-
linear in the required precision, this yields a method that is quasi-linear
in the bit size of the class polynomials.



ChapterIII
The irreducible components of the CM locus

Abstract. In this chapter, we show how to replace genus-2
class polynomials by smaller and more natural objects: the
irreducible components of the CM-by-K locus in the moduli
space.

In Chapter II, we gave an algorithm to compute the Igusa class
polynomials of any primitive quartic CM-field K. Though Igusa class
polynomials are the objects that are studied in the literature on explicit
CM constructions of curves of genus 2, it is actually much better from
a practical perspective to work with their irreducible factors over Kr

0.
We will explain why in Example 3.1 and Section 4 below.

At the same time, though Igusa class polynomials HK,1, ĤK,2, ĤK,3

of K in practice specify exactly what the abelian surfaces with CM by
OK are, and though in practice they define the field CMKr,Φr , this is
not guaranteed, as the polynomial HK,1 might not have a simple root.
To get actual theorems about computing CM abelian surfaces or the
field CMKr,Φr , we will need to look at the moduli space of CM-by-K
points.

The current chapter combines these approaches: we study the irre-
ducible components over Kr

0 of the moduli space of CM-by-K points.
We then show what to change in the algorithms of Chapter II in order
to compute these components.

We did not work directly with these irreducible components in Chap-
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ter II to avoid making that chapter too heavy, and because Igusa class
polynomials are the objects used in existing literature.

1 The moduli space of CM-by-K points

The quotient Sp2g(Z)\Hg of Section II.4 parametrizes the isomorphism
classes of complex principally polarized abelian varieties of dimension g
in an analytic way. This (coarse) moduli space has an algebraic model
Ag/Q that parametrizes these isomorphism classes algebraically.

For g = 1, the variety Ag is simply the affine line A1 with the j-
invariant as its coordinate. For g = 2, we take the moduli space M2

of curves of genus 2 and embed it into Ag by taking Jacobians. The
space M2 is given in terms of the Igusa invariants of Section II.2 as
the I10 6= 0 locus of the 3-dimensional weighted projective space with
coordinates I2, I4, I6, I10 (see Igusa [45]).

Let K be a CM-field of degree 2g and Φ a CM-type of K with values
in Q ⊂ C. We will restrict to primitive quartic CM-fields soon, but
give general definitions now because we want to give an 8-dimensional
example later. Let (Kr,Φr) be the reflex of (K,Φ) and let Kr

0 be the
maximal totally real subfield of K. For the definitions, see Chapter I.

We define the CM-by-(K,Φ)-locus CMK,Φ ⊂ Ag(Q) to be the set
of points A ∈ Ag(Q) such that there exists an embedding ι : OK →
End(A) of type Φ. Two CM-types Φ and Φ′ of K are called equivalent
if there is an automorphism σ of K such that Φ′ = Φσ holds. Recall
from Section I.4 that CMK,Φ and CMK,Φ′ coincide if Φ and Φ′ are
equivalent.

The CM-by-K-locus CMK is the union of CMK,Φ over all equiva-
lence classes of CM-types Φ of K.

Lemma 1.1. The set CMK,Φ is finite and stable under Gal(Q/Kr
0).

Proof. Finiteness is Proposition I.5.3. The set is stable under the action
of Gal(Q/Kr) by the definition of Kr in Section I.4. It is stable under
complex conjugation by Lemma I.9.2.

2 The irreducible components of CMK,Φ

Now let K be a primitive quartic CM-field. As the CM-types of K
are primitive, we know that all abelian varieties with CM by OK are
simple (Theorem I.5.2.3), hence are Jacobians by Weil’s Theorem I.6.3.
In particular, the set CMK,Φ is contained in M2 ⊂ A2, hence can be
given in terms of Igusa invariants.
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Lemma 2.1. If K/Q is cyclic quartic Galois, then all 4 CM-types Φ
of K are equivalent and we have CMK = CMK,Φ.

If K/Q is quartic non-Galois, then there are two equivalence classes
of CM-types Φ and Φ′. The sets CMK,Φ and CMK,Φ′ are disjoint,
defined over the quadratic field Kr

0 and Galois conjugate to each other.

Proof. The equivalence classes of CM-types are given in Example I.7.5.
The set CMK,Φ depends only on the equivalence class of Φ by 1.

In the non-Galois case, as Φ is primitive and not equivalent to Φ′,
we find that CMK,Φ and CMK,Φ′ are disjoint by Lemma I.5.6. The fact
that they are defined over Kr

0 is Lemma 1.1.
Finally, if σ ∈ Gal(Q/Q) is non-trivial on Kr

0, then σ◦Φ is equivalent
to Φ′, hence by Lemma I.4.2, we have σCMK,Φ = CMK,σΦ = CMK,Φ′ .

Let G = Gal(Q/Kr
0). We partition the set CMK,Φ into its G-orbits

B1, . . . , Bn. Each Bi can be defined in terms of equations with co-
efficients in Kr

0. Note that these G-orbits are irreducible over Kr by
Corollary I.9.3. These orbits do not have an analogue in the genus-one
case, since the action of Gal(K/K) on CMK is transitive there.

In the case n ≥ 2, a set of defining equations for Bi can be smaller
and easier to handle than a set of defining equations for all of CMK or
all of CMK,Φ. Moreover, there are advantages of working with Bi or
CMK,Φ as opposed to CMK , as we will see in Section 4.

The following result was observed experimentally together with An-
dreas Enge while looking at the ECHIDNA database [50].

Theorem 2.2. Let K be a primitive quartic CM-field. Then the number
of irreducible components of CMK,Φ over Kr

0 is a power of 2.

Proof. As we just mentioned, by Corollary I.9.3, the irreducible compo-
nents over Kr are exactly the irreducible components over Kr

0. The set
CMK,Φ is non-empty because the union CMK of CMK,Φ and its Galois
conjugate CMK,Φ′ is non-empty by Proposition I.5.3.

Let S+ be the group of pairs (a, u) with a a fractional OK-ideal
and u ∈ K∗0 a totally positive element such that aa = uOK . Then we
have a natural homomorphism K∗ → S+ given by v 7→ (vOK , vv). Let
C+ = S+/K

∗ be the set of K∗-orbits. The set of equivalence classes
of triples (Φ, a, ξ) from Section I.5.2 with Φ fixed and a, ξ varying is a
C+-torsor under the action

(b, u) · (Φ, a, ξ) = (Φ, b−1a, uξ).
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(see the proof of Proposition I.5.3.) In particular, it suffices to show
that the cokernel of the (Galois) map

ClKr → C+ (2.3)
b 7→ (NΦr(b), NKr/Q(b))K∗

from the main theorem of complex multiplication (I.9.1) has order a
power of 2.

We claim that this cokernel has exponent 1 or 2. Let (a, u)K∗ ∈ C+

be any element. It suffices to show that (a2, u2)K∗ is in the image of
the map (2.3).

Let b = NΦ(a). Then Lemma I.8.4 gives

(NΦr(b), NKr/Q(b)) = (NK/Q(a)aa−1, NK/Q(a)2)

= NK/Q(a)u−1(a2, u2),

which proves that (a2, u2)K∗ is in the image.

3 Computing the irreducible components

Let K be a primitive quartic CM-field. In Section II.2, we defined Igusa
class polynomials by taking products and sums over all of CMK . To
work with only one orbit Bi for G = Gal(Q/Kr), there are two things
that need to change in the algorithm of Chapter II:

1. we need to find all triples (Φ, a, ξ) corresponding to a single G-
orbit, and

2. we need to be able to recognize coefficients in Kr
0 instead of Q.

For item 1, we can use the explicit Galois action in the main theorem
of complex multiplication (I.9.1). So we can find exactly all triples
(Φ, a, ξ) corresponding to a single G-orbit Bi by computing

a. one such triple (Φ, a, ξ),

b. the class group ClKr of the reflex field, and

c. the reflex type norm map NΦr : ClKr → ClK .

For item 2, if we work with sufficiently high precision, we can use the
LLL-algorithm to recover elements of Kr

0 from their approximations a.
Indeed, we can take a Q-basis {1,

√
D} of Kr

0. Then we need to find
integers d, x, y such that |x + y

√
D − ad| is small and |x| , |y| , |d| are
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not too large. This amounts to finding short vectors in a lattice, and
can be done using the LLL-algorithm [55, 57]. As we know bounds on
the denominators from Section II.9, we can make the required precision
effective. This shows that we can adapt the algorithms of Chapter II to
make the main theorem of that chapter valid also when restricting to a
single G-orbit Bi. This solves item 2.

A potential other method for dealing with item 2 is the following.
Write Kr

0 = Q(
√
D) and let σ be a generator of Gal(Kr

0/Q). We know
how to find the Gal(Q/Kr

0)-orbits B1, . . . , Bn, but we do not know how
to tell which of those orbits are σ-conjugate. There is a more general
version of the explicit Galois action on CM abelian varieties that de-
scribes the action of all elements of Gal(Q/Q), but we do not know how
to make that explicit in terms of the triples (Φ, a, ξ) (see [52, Chapter 7]
or [64, Thm. 10.1]).

Let F be an Igusa class polynomial for Bi. Suppose we do know
how to compute the set of triples (Φ, a, ξ) of σBi from the set of triples
of Bi. (Alternatively, we can simply guess σBi = Bj for different j
and recognize good output since Igusa class polynomials have smooth
denominators.) From σBi, compute σF , and hence the rational poly-
nomials a = (F + σF )/2 and b = (F − σF )/(2

√
D). We then have

F = a+ b
√
D.

Example 3.1. Consider the non-Galois quartic CM-field

K = Q
(√
−62 + 10

√
5
)
,

and let Φ be a CM-type of K with values in a field L′. The reflex field
of Φ is the field

Kr = Q
(√
−31 + 2w

)
⊂ L′

with w ∈ L′ the square root of 209 that belongs to Φ as in Example I.7.7.
We computed one of the irreducible components of CMK,Φ over

Kr
0 = Q(w) using Magma [7]. It is given in terms of Igusa invariants

(i1, i2, i3) of Chapter II by H1(i1) = 0 and H ′1(i1)in = Ĥn(i1) for n =
2, 3, where the class polynomials H1, Ĥ2, Ĥ3 are given in Figure III.1.

We also give the polynomial H1 for the full CM locus CMK (Fig-
ure III.2) so that its size can be compared. We use \ to continue a
number on the next line. By restricting to CMK,Φ, the degree gets cut
in half, but the bit size of the coefficients doubles, since they are in a
field of degree 2. Then by restricting to one of the two irreducible com-
ponents, we save a factor 2 in both the degree and the bit sizes of the
coefficients. This explains why H1 for all of CMK takes about 4 times
as much space as H1 for one component.
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4141512H1 = 64430176561X2+

+ (205979078609524124783186427w

− 2977804995699524132924128431)X

+ 1
2

(−5989798058911821291359304620360613w

+ 86593506017412522675907964506455189),

254161514Ĥ2 =

(−2454824558012170122865050318993532473w

+ 35488986976522847855248253994749432769)X

+ 28768580464678570992891511300020790788865449w

− 415902543137343993908045193128947052915790897,

244161514Ĥ3 =

(−46704828432019435152440758726755388043516900604046875w

+ 675203871999156667302727347262228663935171080625421875)X

+ 679079867385550495809638344092030714651189434647926317296875w

− 9817343757568579773462300542972200305315399159578183102671875.

Figure III.1: The Igusa class polynomials for one irreducible com-
ponent of CMK,Φ for K = Q(

√
−62 + 10

√
5) and Φ a CM-type

of K with reflex field Q(
√
−31 + 2w), where w2 = 209.

+ 269367906727345961584860889X8

− 33128880546035571578256427748821805963065110X7

+ 760725219835798482803057024121173485345642256181420678103101X6

− 201836841928853870869673149461673014490785144130607309326594 \

00091100X5

+ 133215353686803856040610047747939496199893025334951028522948 \

971180071435884X4

− 829347448567954740436008416770958878225775808266301555556353 \

6247717943492256000X3

+ 464337306516263812668271334283446442447453436180272653149457 \

8699071343804782750000X2

+ 732462014111027434438225593367846913026584394848893801366481 \
643515834623557125000000X

+ 220093549307982637631998652937565840956847210136744902156820 \
90021485695620015625000000

Figure III.2: This is 13429241479215121672H1 for the field K =
Q(
√
−62 + 10

√
5).
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Example 3.2. Let w =
√

13, and consider the non-Galois quartic CM-
field F = Q(

√
−27 + 4w). We have seen in Example I.10.4 that the

class field CMF,Ψ for any CM-type Ψ of F equals the Hilbert class field
HF of F .

The reflex field of such a CM-type Ψ is K = Q(
√
−54 + 2

√
521) by

Example I.7.7. Let Φ be any CM-type of K with reflex field F . Then
(K,Φ) is the reflex of (F,Ψ) for some CM-type Ψ of F .

Figure III.3 gives the Igusa class polynomial H1 ∈ F0[X] for such a
CM-type Φ. Any root of this polynomial generates HF over F . In a
naive implementation of the algorithm we have just described with 200
digits precision, computing H1 took time less than 3 seconds in Magma
V2.16-1 [7] on a standard PC.

1012H1 = 10201X7

+ (155205162116358647755w + 559600170220938887110)X6

+ (152407687697460195175920750535594152550w

+ 549513732768094956258970636118192859400)X5

+ 1
2

(2201909580030523730272623848434538048317834513875w

+ 7939097894735431844153019089320973153011210882125)X4

+ (1047175262927393182849164587480891367594710449395570625w

+ 3775644104882200832865729346429752069380200097845736875)X3

+ 1
2

(90739291480049485513675299110604131111640471324738060 \

7234375w

+ 327165168130591119268893142372375309476346120037916993 \

8284375)X2

+ (1501416604965651986004588022297124411339065052590506998 \
7454062500w

+ 541343455503671907856059844455869398930835318514053659 \
78411062500)X

+ 1
2

(32085417029115132212877701052175189051312077050549053 \

7777676328984375w

+ 115685616293120067038709321144324285012570966768326545 \
9917987279296875) ∈ Q(w)[X]

Figure III.3: The Igusa class polynomial H1 of the field K =
Q(
√
−54 + 2

√
521), when restricting to one CM-type Φ of K

with reflex field Q(
√
−27 + 4w), where w2 = 13.
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To compute HF using Kummer theory, one needs to take a 7-th
root of an element in the degree-24 number field F (ζ7). On the same
machine, with the Magma function HilbertClassField, it takes about
2 minutes to compute the Hilbert class field of F . This is a lot longer
than the 3 seconds we needed for computing H1. The output is the field
HF = F [X]/P with

P = X7 + (−49w − 133)X5

+ (8036w − 10955)X4

+ (247401w − 880005)X3

+ 1
2 (24737797w − 68979519)X2

+ 1
2 (533791741w − 1896276501)X

+ 1
2 (6759148445w − 11784293007) ∈ F0[X].

4 The CM method

Now let g be an arbitrary positive integer again. Suppose we want
to construct a g-dimensional abelian variety over a finite field with a
prescribed irreducible characteristic polynomial f of the Frobenius en-
domorphism. The field K = Q[X]/(f) is a CM-field of degree 2g and
the constant coefficient f(0) = pm is a prime power.

Take any point A of CMK and look at the reduction Ã of A modulo
a prime P/p of a field of definition k ⊃ Kr of A. Let Φ be the CM-type
of A, and let Frob ∈ End(Ã) be the Frobenius endomorphism. Then we
have the following result.

Theorem 4.1 (Shimura-Taniyama formula [78, Thm. 1 in §1]). The
morphism Frob is an element of the ring OK ⊂ End(Ã) and generates
the ideal NΦr(Nk/Kr(P)) of OK .

Corollary 4.2. The abelian variety Ã is isomorphic over Fp to an
abelian variety with characteristic polynomial f if and only if a power
of π = (X mod f) ∈ K generates the ideal NΦr(Nk/Kr(P)) of OK .

Proof. See Honda and Tate [84].

The corollary shows that, when doing CM constructions as above, it
is good to first find out for which CM-type Φ the element π generates
the reflex type norm of an ideal and then restrict to A ∈ CMK,Φ.
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Example 4.3. Suppose we want to construct an abelian surface A over
the finite field of q = pk elements with a given Frobenius endomorphism
π in a non-Galois CM-field K. Let Φ be a CM-type of K.

A common case is that p splits completely in K. Indeed, this is one
of the only two unramified decomposition types of p in K for which A is
ordinary (Goren [34]). Moreover, this is what will happen by construc-
tion in Chapter IV.

If p splits completely in K, then it factors as pOK = p1p1p2p2.
The 4 primes q/p of Kr have the 4 distinct type norms given up to
complex conjugation by NΦr(q) = p1p2 and NΦr(q) = p1p2. We thus
find NΦr(q)k = πOK for at most one q. To get an abelian surface A with
Frobenius endomorphism π (up to complex conjugation), it is essential
that we reduce modulo a prime above such a prime q. This amounts to
taking A to be a point of

CMK,Φ mod (q ∩Kr
0).

By Theorem 4.1, we know Frob to be a generator of NΦr(q)k. This
fact and the fact Frob · Frob = pk determine Frob uniquely up to roots
of unity in O∗K . As non-Galois quartic CM-fields do not have non-trivial
roots of unity, we find that Frob is determined uniquely up to ±1, that
is, up to quadratic twists of A.

In Example 3.1, reducing modulo a prime above q amounts to replac-
ing w ∈ Kr

0 by (w mod q) ∈ Fp, and then taking a solution (i1, i2, i3) ∈
F3
pk to H1(i1) = 0 and in = Ĥn(i1)/H ′1(i1) for n = 2, 3.

For the prime p = 2128 + 463, which splits completely in K, there
is a unique element π ∈ OK with ππ = p and such that NK/Q(π − 1),
which is the order of the corresponding abelian variety, is a prime times
a small integer. For that element π, we have that NK/Q(π − 1) is 4
times the prime

N = 2254 − 5632861158402111064848197526240511442172628827329154462023.

We computed the appropriate prime q in Kr and found

w ≡ 247135999804258747492727825167682242163 (mod q).

We substitute this root modulo p in the class polynomials of Exam-
ple 3.1, and find a solution

i1 = 186664603574701364556020498489782319955,
i2 = 248015365398797493486326534484503677658,
i3 = 92979908727002348130966293837941380436 ∈ Fp.

Mestre’s algorithm [61] (available in Magma [7]) allows us to construct a
curve C : y2 = f(x) from this solution. Either the Jacobian of C or the



100 Chapter III. The irreducible components of the CM locus

Jacobian of its quadratic twist C ′ has order 4N . The quadratic twist is
given by C ′ : y2 = cf(x) for a non-square c ∈ Fp. By taking random
points on the Jacobians of C and C ′ and multiplying them by 4N , we
can check which of the two has the appropriate number of points. We
find that the Jacobian of the curve

C : y2 = x6 + 194876360407882453864339562084283578641x4

+ 72507634844552606901950607039139106841x3

+ 215701338546912274238542720250901753991x2

+ 149128889692643278587362953981454162789x
+ 277144679648822640993017616187904126204

over Fp has a point of order N . In particular, the Frobenius endomor-
phism of this Jacobian is π.

Example 4.4. Let l be an odd prime number and consider the field
K = Q(ζ) for a primitive l-th root of unity ζ. Then K is a CM-field
of degree l − 1 and we let g = (l − 1)/2. We know one point in CMK

explicitly as the Jacobian of a hyperelliptic curve: the Jacobian J(C) of
the curve C : y2 = xl + 1 of genus g given in Example I.6.1. We know
by that example that J(C) has type Φ = {ζ 7→ ζl : l = 1, . . . , g}.

Suppose we want to use this curve to construct an abelian variety
over a finite field with a prescribed Frobenius endomorphism π ∈ K.
By Corollary 4.2, this is possible only if we can write a power of πOK
as a type norm for the reflex type Φr of the CM-type Φ.

Composing ι on the right with an automorphism σ of K replaces Φ
by Φ ◦ σ and Φr by Φr ◦ σ−1. This does not change the possible values
of NΦr . We thus find that there is one “correct” equivalence class of
CM-type Φ.

Example 4.5. In Chapter IV, we construct Weil numbers π as type
norms with respect to the reflex of a CM-type Φ1. When that chapter
was published as [26], we were unaware of Corollary 4.2.

Example 5.4 of that chapter uses the the curve

y2 = x17 + 1.

We used random CM-types Φ1 of Q(ζ17) for constructing π, and then
tried to use the curve C of Example 4.4 to construct an abelian variety
with Frobenius endomorphism π. We found that with some CM-types
Φ1, we always failed, while with others, we always succeeded.

The CM-type Φ1 = {ζ17 7→ ζk17 : k = 1, 3, 5, 6, 8, 10, 13, 15} was one
of the ‘successful’ ones. It turns out that this CM-type Φ1 is equivalent
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to the type Φ of Example 4.4 above. Indeed, with σ(ζ17) = ζ5
17, we have

Φ1 = Φ ◦ σ.
By Corollary 4.2, we could have started out with Φ immediately

instead of trying random CM-types Φ1 until successful.

5 Double roots

In this section, let K be a primitive quartic CM-field. The Igusa class
polynomials ĤK,2, ĤK,3 of Section II.2.2 are useful only if HK,1 has a
simple root. In practice, it never seems to happen that HK,1 has a non-
simple root. This is not surprising as the coefficients grow exponentially
with the degree of these polynomials.

If we want a proven algorithm for computing CMK,Φ or an irre-
ducible factor, then this argument isn’t strong enough. In this section,
we prove the following results.

Theorem 5.1. Algorithm II.11.1 can be adapted so that it computes a
set of defining polynomials for CMK,Φ in time Õ(∆7/2

1 ∆11/2
0 ) for any

primitive quartic CM-field K and CM-type Φ. The output is given as a
set of polynomial equations for the irreducible factors over Kr

0.

Theorem 5.2. Algorithm II.11.1 can be adapted so that it computes
the field CMKr,Φr of Chapter I in time Õ(∆7/2

1 ∆11/2
0 ) for any primitive

quartic CM-field K and CM-type Φ of K.

The output in Theorem 5.2 is an ordered set of generators and a
minimal polynomial of each generator in terms of the earlier ones.

If i1(C) is distinct for all C ∈ CMK , then the field extension
CMKr,Φr/Kr

0 is simply given over Kr
0 by the polynomial HK,1 for one

Gal(Q/Kr
0)-orbit in CMK,Φ. If moreover i3(C) is non-zero for all C ∈

CMK , then the points of a component Bj of CMK,Φ ⊂ M2 are those
points with HK,1(i1) = 0, ĤK,n(i1) = inH

′
K,1(i1) for n = 2, 3, where

the sums and products in the definitions of the class polynomials are
restricted to Bj . In practice, this is the whole story, though it is not
a proof. The rest of this section proves the theorems without these
assumptions.

As explained in Section 3, we can restrict to the irreducible compo-
nents of CMK,Φ. Note that all i3(C)’s for one component are Galois
conjugate, so that one is zero if and only if all are. It is therefore possi-
ble to check i3(C) 6= 0 simply by checking HK,3(0) = 0. In particular,
we can use the absolute invariants (i1, i2, i3) of Section II.2 if i3(C) 6= 0,
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and otherwise choose

(i1, i2, i3) =
{

(I2
2I
′
6I
−1
10 , I

′5
6 I
−3
10 , 0) if I4 = 0 and I ′6 6= 0;

(I5
2I
−1
10 , 0, 0) if I4 = I ′6 = 0.

(5.3)

This choice guarantees that every triple (i1, i2, i3) defines a unique point
in M2. For details, see Cardona and Quer [12], who use similar invari-
ants.

The polynomial ĤK,2 gives a “modified Lagrange interpolation” for
i2(C) in terms of i1(C). If more curves C have the same i1-value, then
we can take the minimal polynomial H∗2 of i2(C) over Q(i1(C)) and
replace ĤK,2 by a “modified Lagrange interpolation” of the coefficients
of H∗2 and do something similar for i3(C). The rest of the current section
does that in a formal way.

Fix one element C ∈ CMK,Φ, given by its triple (Φ, a, ξ). Let

G0 = Gal(CMKr,Φr/Kr) = IKr/HKr,Φr

as in Section I.9. For any g ∈ G0, we can compute g(C) via the Galois
action of the main theorem of complex multiplication I.9.1. We can then
test g(i1(C)) = i1(C) using the absolute value bounds on the conjugates
on i1(C) and the denominator bound on the norm. In particular, we
can compute the groups

G1 = {g ∈ G0 : g(i1(C)) = i1(C)} and
G2 = {g ∈ G1 : g(i2(C)) = i2(C)}.

Next, we define

H1 =
∏

g∈G0/G1

(X − g(i1(C))) ∈ Q[X] ⊂ C[X],

H∗2 =
∏

g∈G1/G2

(X − g(i2(C))) ∈ Q(i1(C))[X] ⊂ C[X],

H∗∗3 =
∏
g∈G2

(X − g(i3(C))) ∈ Q(i1(C), i2(C))[X] ⊂ C[X].

We compute H1 and approximate gH∗2 for all g ∈ G0/G1 and gH∗∗3 for
all g ∈ G0/G2. Then let

H2 =
∑

g∈G/G1

(gH∗2 )(X2)
∏

h∈G0/G1
h6=g

(X1 − h(i1(C))) ∈ Q[X1, X2],

H∗3 =
∑

g∈G1/G2

(gH∗∗3 )(X3)
∏

h∈G1/G2
h6=g

(X2 − h(i2(C))) ∈ Q(i1(C))[X2, X3].
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Again, we compute H2 and approximate gH∗3 for all g ∈ G/G1.
Finally, let

H3 =
∑

g∈G/G1

(gH∗3 )(X2, X3)
∏

h∈G0/G1
h6=g

(X1 − h(i1(C))) ∈ Q[X1, X2, X3].

Finally, we compute H3. As all computations mentioned above can be
done in the time mentioned in Theorem 5.1, the following lemma proves
that theorem.

Lemma 5.4. The zero set of (H1, H2, H3) ⊂ Q[X1, X2, X3] in Q3 is
exactly the orbit of C ∈ CMK,Φ under the action of G = Gal(Q/Kr).

Proof. The polynomial H1 is the minimal polynomial of C, hence has
as its roots exactly the values of i1(g(C)) when g ranges over G.

If we substitute one of these values i01 = i1(g(C)) for X1, then H2

becomes a univariate polynomial in X = X2. In fact, this univariate
polynomial is a non-zero constant times gH∗2 , hence its roots are the
values of ghi2(C) where h ranges over G1/G2. As hG1 leaves gi1(C)
invariant, the roots of gH∗2 are exactly the values of i2 corresponding
to i01.

Suppose we substitute one of these pairs (i01, i
0
2) = gh(i1, i2)(C) for

(X1, X2) in H3. Then H3 becomes a univariate polynomial in X =
X3. In fact, it becomes a non-zero constant times H∗∗3 . By the same
argument as above, we find that the roots of this polynomial are exactly
the i3-values corresponding to our pair (i01, i

0
2).

As mentioned just below equation (5.3), the triples (i1, i2, i3)(g(C))
determine g(C) completely.

Proof of Theorem 5.2. By Lemma 5.4, we have a tower of fields

Kr ⊂ Kr(i1(C)) ⊂ Kr(i1(C), i2(C)) ⊂ Kr(i1(C), i2(C), i3(C)),

where the minimal polynomials of i1(C), i2(C), and i3(C) are given by
H1, H2(i1(C), X), and H3(i1(C), i2(C), X). As the largest field in this
tower equals CMKr,Φr , this proves Theorem 5.2.





ChapterIV
Abelian varieties with prescribed embedding
degree

This chapter appeared as David Freeman, Peter Stevenhagen, and Mar-
co Streng, Abelian Varieties with Prescribed Embedding Degree [26] in
Algorithmic Number Theory, ANTS-VIII, volume 5011 of Lecture Notes
in Computer Science, 2008.

Abstract. We present an algorithm that, on input of a
CM-field K, an integer k ≥ 1, and a prime r ≡ 1 mod k,
constructs a q-Weil number π ∈ OK corresponding to an
ordinary, simple abelian variety A over the field F of q ele-
ments that has an F-rational point of order r and embedding
degree k with respect to r. We then discuss how CM-methods
can be used to explicitly construct A.

1 Introduction

Let A be an abelian variety defined over a finite field F, and r 6= char(F)
a prime number dividing the order of the group A(F). Then the em-
bedding degree of A with respect to r is the degree of the field extension
F ⊂ F(ζr) obtained by adjoining a primitive r-th root of unity ζr to F.

The embedding degree is a natural notion in pairing-based cryptog-
raphy, where A is taken to be the Jacobian of a curve defined over F.
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In this case, A is principally polarized and we have the non-degenerate
Weil pairing

er : A[r]×A[r] −→ µr

on the subgroup scheme A[r] of r-torsion points of A with values in the
r-th roots of unity. If F contains ζr, we also have the non-trivial Tate
pairing

tr : A[r](F)×A(F)/rA(F)→ F∗/(F∗)r.

The Weil and Tate pairings can be used to ‘embed’ r-torsion subgroups
of A(F) into the multiplicative group F(ζr)∗, and thus the discrete loga-
rithm problem in A(F)[r] can be ‘reduced’ to the same problem in F(ζr)∗

[60, 29]. In pairing-based cryptographic protocols [67], one chooses the
prime r and the embedding degree k such that the discrete logarithm
problems in A(F)[r] and F(ζr)∗ are computationally infeasible, and of
roughly equal difficulty. This means that r is typically large, whereas k
is small. Jacobians of curves meeting such requirements are often said
to be pairing-friendly.

If F has order q, the embedding degree k = [F(ζr) : F] is simply
the multiplicative order of q in (Z/rZ)∗. As ‘most’ elements in (Z/rZ)∗

have large order, the embedding degree of A with respect to a large
prime divisor r of #A(F) will usually be of the same size as r, and
A will not be pairing-friendly. One is therefore led to the question
of how to efficiently construct A and F such that A(F) has a (large)
prime factor r and the embedding degree of A with respect to r has a
prescribed (small) value k. The current paper addresses this question
on two levels: the existence and the actual construction of A and F.

Section 2 focuses on the question whether, for given r and k, there
exist abelian varieties A that are defined over a finite field F, have an
F-rational point of order r, and have embedding degree k with respect
to r. We consider only abelian varieties A that are simple, that is, not
isogenous (over F) to a product of lower-dimensional varieties, as we
can always reduce to this case. By Honda-Tate theory [84], isogeny
classes of simple abelian varieties A over the field F of q elements are
in one-to-one correspondence with Gal(Q/Q)-conjugacy classes of q-
Weil numbers, which are algebraic integers π with the property that all
embeddings of π into C have absolute value

√
q. This correspondence is

given by the map sending A to its q-th power Frobenius endomorphism
π inside the number field Q(π) ⊂ End(A)⊗Q. The existence of abelian
varieties with the properties we want is thus tantamount to the existence
of suitable Weil numbers.

Our main result, Algorithm 2.12, constructs suitable q-Weil numbers
π in a given CM-field K. It exhibits π as a type norm of an element in
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a reflex field of K satisfying certain congruences modulo r. The abelian
varieties A in the isogeny classes over F that correspond to these Weil
numbers have an F-rational point of order r and embedding degree k
with respect to r. Moreover, they are ordinary, i.e., #A(F)[p] = pg,
where p is the characteristic of F. Theorem 3.1 shows that for fixed K,
the expected run time of our algorithm is heuristically polynomial in
log r.

For an abelian variety of dimension g over the field F of q elements,
the group A(F) has roughly qg elements, and one compares this size to
r by setting

ρ =
g log q
log r

. (1.1)

In cryptographic terms, ρ measures the ratio of a pairing-based system’s
required bandwidth to its security level, so small ρ-values are desirable.
Supersingular abelian varieties can achieve ρ-values close to 1, but their
embedding degrees are limited to a few values that are too small to be
practical [30, 69]. Theorem 3.4 discusses the distribution of the (larger)
ρ-values we obtain.

In Section 4, we address the issue of the actual construction of
abelian varieties corresponding to the Weil numbers found by our algo-
rithm. This is accomplished via the construction in characteristic zero
of the abelian varieties having CM by the ring of integers OK of K,
a hard problem that is far from being algorithmically solved. We dis-
cuss the elliptic case g = 1, for which reasonable algorithms exist, and
the case g = 2, for which such algorithms are still in their infancy. For
genus g ≥ 3, we restrict attention to a few families of curves that we can
handle at this point. Our final Section 5 provides numerical examples.

2 Weil numbers yielding prescribed
embedding degrees

Let F be a field of q elements, A a g-dimensional simple abelian variety
over F, and K = Q(π) ⊂ End(A) ⊗Q the number field generated by
the Frobenius endomorphism π. Then π is a q-Weil number in K: an
algebraic integer with the property that all of its embeddings in Q have
complex absolute value

√
q.

The q-Weil number π determines the group order of A(F): the F-
rational points of A form the kernel of the endomorphism π− 1, and in
the case where K = Q(π) is the full endomorphism algebra End(A)⊗Q
we have

#A(F) = NK/Q(π − 1).
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In the case K = End(A)⊗Q we will focus on, K is a CM-field of degree
2g as in [84, Section 1], i.e., a totally complex quadratic extension of a
totally real subfield K0 ⊂ K.

Proposition 2.1. Let A, F and π be as above, and assume K = Q(π)
equals EndF(A)⊗Q. Let k be a positive integer, Φk the k-th cyclotomic
polynomial, and r - qk a prime number. If we have

NK/Q(π − 1) ≡ 0 (mod r),
Φk(ππ) ≡ 0 (mod r),

then A has embedding degree k with respect to r.

Proof. The first condition tells us that r divides #A(F), the second that
the order of ππ = q in (Z/rZ)∗, which is the embedding degree of A
with respect to r, equals k.

By Honda-Tate theory [84], all q-Weil numbers arise as Frobenius
elements of abelian varieties over F. Thus, we can prove the existence
of an abelian variety A as in Proposition 2.1 by exhibiting a q-Weil
number π ∈ K as in that proposition. The following lemma states what
we need.

Lemma 2.2. Let π be a q-Weil number. Then there exists a unique
isogeny class of simple abelian varieties A/F with Frobenius π. If K =
Q(π) is totally imaginary of degree 2g and q is prime, then such A have
dimension g, and K is the full endomorphism algebra EndF(A)⊗Q. If
furthermore q is unramified in K, then A is ordinary.

Proof. The main theorem of [84] yields existence and uniqueness, and
shows that E = EndF(A)⊗Q is a central simple algebra over K = Q(π)
satisfying

2 · dim(A) = [E : K]
1
2 [K : Q].

For K totally imaginary of degree 2g and q prime, Waterhouse [92,
Theorem 6.1] shows that we have E = K and dim(A) = g. By [92,
Prop. 7.1], A is ordinary if and only if π+ π is prime to q = ππ in OK .
Thus if A is not ordinary, the ideals (π) and (π) have a common divisor
p ⊂ OK with p2 | q, so q ramifies in K.

Example 2.3. Our general construction is motivated by the case where
K is a Galois CM-field of degree 2g, with cyclic Galois group generated
by σ. Here σg is complex conjugation, so we can construct an element
π ∈ OK satisfying πσg(π) = ππ ∈ Z by choosing any ξ ∈ OK and
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letting π =
∏g
i=1 σ

i(ξ). For such π, we have ππ = NK/Q(ξ) ∈ Z. If
NK/Q(ξ) is a prime q, then π is a q-Weil number in K.

Now we wish to impose the conditions of Proposition 2.1 on π. Let
r be a rational prime that splits completely in K, and r a prime of OK
over r. For i = 1, . . . , 2g, put ri = σ−i(r); then the factorization of r
in OK is rOK =

∏2g
i=1 ri. If αi ∈ Fr = OK/ri is the residue class of

ξ modulo ri, then σi(ξ) modulo r is also αi, so the residue class of π
modulo r is

∏g
i=1 αi. Furthermore, the residue class of ππ modulo r is∏2g

i=1 αi. If we choose ξ to satisfy∏g
i=1 αi = 1 ∈ Fr, (2.4)

we find π ≡ 1 (mod r) and thus NK/Q(π−1) ≡ 0 (mod r). By choosing
ξ such that in addition

ζ =
∏2g
i=1 αi =

∏2g
i=g+1 αi (2.5)

is a primitive k-th root of unity in F∗r , we guarantee that ππ = q is a
primitive k-th root of unity modulo r. Thus we can try to find a Weil
number as in Proposition 2.1 by picking residue classes αi ∈ F∗r for
i = 1, . . . , 2g meeting the two conditions above, computing some ‘small’
lift ξ ∈ OK with (ξ mod ri) = αi, and testing whether π =

∏g
i=1 σ

i(ξ)
has prime norm. As numbers of moderate size have a high probabil-
ity of being prime by the prime number theorem, a small number of
choices (αi)i should suffice. There are (r − 1)2g−2ϕ(k) possible choices
for (αi)

2g
i=1, where ϕ is the Euler totient function, so for g > 1 and large

r we are very likely to succeed. For g = 1, there are only a few choices
(α1, α2) = (1, ζ), but one can try various lifts and thus recover what
is known as the Cocks-Pinch algorithm [25, Theorem 4.1] for finding
pairing-friendly elliptic curves.

For arbitrary CM-fields K, the appropriate generalization of the map

ξ 7→
∏g
i=1 σ

i(ξ)

in Example 2.3 is provided by the type norm. A CM-type of a CM-
field K of degree 2g is a set Φ = {φ1, . . . , φg} of embeddings of K into
its normal closure L such that Φ ∪ Φ = {φ1, . . . , φg, φ1, . . . , φg} is the
complete set of embeddings of K into L. The type norm NΦ : K → L
with respect to Φ is the map

NΦ : x 7−→
∏g
i=1 φi(x),

which clearly satisfies

NΦ(x)NΦ(x) = NK/Q(x) ∈ Q. (2.6)
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If K is not Galois, the type norm NΦ does not map K to itself, but to
its reflex field K̂ with respect to Φ. To end up in K, we can however
take the type norm with respect to the reflex type Ψ, which we will
define now (cf. [77, Section 8]).

Let G be the Galois group of L/Q, and H the subgroup fixing K.
Then the 2g left cosets of H in G can be viewed as the embeddings of
K in L, and this makes the CM-type Φ into a set of g left cosets of H
for which we have G/H = Φ ∪ Φ. Let S be the union of the left cosets
in Φ, and put Ŝ = {σ−1 : σ ∈ S}. Let Ĥ = {γ ∈ G : γS = S} be the
stabilizer of S in G. Then Ĥ defines a subfield K̂ of L, and as we have
Ĥ = {γ ∈ G : Ŝγ = Ŝ} we can interpret Ŝ as a union of left cosets of Ĥ
inside G. These cosets define a set of embeddings Ψ of K̂ into L. We
call K̂ the reflex field of (K,Φ) and we call Ψ the reflex type.

Lemma 2.7. The field K̂ is a CM-field. It is generated over Q by the
sums

∑
φ∈Φ φ(x) for x ∈ K, and Ψ is a CM-type of K̂. The type norm

NΦ maps K to K̂.

Proof. The first two statements are proved in [77, Chapter II, Proposi-
tion 28] (though the definition of Ĥ differs from ours, because Shimura
lets G act from the right). For the last statement, notice that for γ ∈ Ĥ,
we have γS = S, so γ

∏
φ∈Φ φ(x) =

∏
φ∈Φ φ(x).

A CM-type Φ of K is induced from a CM-subfield K ′ ⊂ K if it
is of the form Φ = {φ : φ|K′ ∈ Φ′} for some CM-type Φ′ of K ′. In
other words, Φ is induced from K ′ if and only if S as above is a union
of left cosets of Gal(L/K ′). We call Φ primitive if it is not induced
from a strict subfield of K; primitive CM-types correspond to simple
abelian varieties [77]. Notice that the reflex type Ψ is primitive by
definition of K̂, and that (K,Φ) is induced from the reflex of its reflex.
In particular, if Φ is primitive, then the reflex of its reflex is (K,Φ)
itself. For K Galois and Φ primitive we have K̂ = K, and the reflex
type of Φ is Ψ = {φ−1 : φ ∈ Φ}.

For CM-fields K of degree 2 or 4 with primitive CM-types, the reflex
field K̂ has the same degree as K. This fails to be so for g ≥ 3.

Lemma 2.8. If K has degree 2g, then the degree of K̂ divides 2gg!.

Proof. We have K = K0(
√
η), with K0 totally real and η ∈ K totally

negative. The normal closure L of K is obtained by adjoining to the
normal closure K̃0 of K0, which has degree dividing g!, the square roots
of the g conjugates of η. Thus L is of degree dividing 2gg!, and K̂ is a
subfield of L.
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For a ‘generic’ CM-field K the degree of L is exactly 2gg!, and K̂
is a field of degree 2g generated by

∑
σ

√
σ(η), with σ ranging over

Gal(K0/Q).
From (2.6) and Lemma 2.7, we find that for every ξ ∈ OK̂ , the

element π = NΨ(ξ) is an element of OK that satisfies ππ ∈ Z. To make
π satisfy the conditions of Proposition 2.1, we need to impose conditions
modulo r on ξ in K̂. Suppose r splits completely in K, and therefore in
its normal closure L and in the reflex field K̂ with respect to Φ. Pick
a prime R over r in L, and write rψ = ψ−1(R) ∩ OK̂ for ψ ∈ Ψ. Then
the factorization of r in OK̂ is

rOK̂ =
∏
ψ∈Ψ rψrψ. (2.9)

Theorem 2.10. Let (K,Φ) be a CM-type and (K̂,Ψ) its reflex. Let
r ≡ 1 (mod k) be a prime that splits completely in K, and write its
factorization in OK̂ as in (2.9). Given ξ ∈ OK̂ , write (ξ mod rψ) =
αψ ∈ Fr and (ξ mod rψ) = βψ ∈ Fr for ψ ∈ Ψ. If we have∏

ψ∈Ψ αψ = 1 and
∏
ψ∈Ψ βψ = ζ (2.11)

for some primitive k-th root of unity ζ ∈ F∗r, then π = NΨ(ξ) ∈ OK
satisfies ππ ∈ Z and

NK/Q(π − 1) ≡ 0 (mod r),
Φk(ππ) ≡ 0 (mod r).

Proof. This is a straightforward generalization of the argument in Ex-
ample 2.3. The conditions (2.11) generalize (2.4) and (2.5), and imply
in the present context that π−1 ∈ OK and Φk(ππ) ∈ Z are in the prime
R ⊂ OL over r that underlies the factorization (2.9).

If the element π in Theorem 2.10 generates K and NK/Q(π) is a
prime q that is unramified in K, then by Lemma 2.2 π is a q-Weil num-
ber corresponding to an ordinary abelian variety A over F = Fq with
endomorphism algebra K and Frobenius element π. By Proposition 2.1,
A has embedding degree k with respect to r. This leads to the following
algorithm.

Algorithm 2.12.
Input: a CM-field K of degree 2g ≥ 4, a primitive CM-type Φ of K,
a positive integer k, and a prime r ≡ 1 (mod k) that splits completely
in K.
Output: a prime q and a q-Weil number π ∈ K corresponding to an
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ordinary, simple abelian variety A/F with embedding degree k with
respect to r.

1. Compute a Galois closure L of K and the reflex (K̂,Ψ) of (K,Φ).
Set ĝ ← 1

2 deg K̂ and write Ψ = {ψ1, ψ2, . . . , ψĝ}.

2. Fix a prime R | r of OL, and compute the factorization of r in
OK̂ as in (2.9).

3. Compute a primitive k-th root of unity ζ ∈ F∗r .

4. Choose random α1, . . . , αĝ−1, β1, . . . , βĝ−1 ∈ F∗r .

5. Set αĝ ←
∏ĝ−1
i=1 α

−1
i ∈ F∗r and βĝ ← ζ

∏ĝ−1
i=1 β

−1
i ∈ F∗r .

6. Compute ξ ∈ OK̂ such that (ξ mod rψi) = αi and (ξ mod rψi) =
βi for i = 1, 2, . . . , ĝ.

7. Set q ← NK̂/Q(ξ). If q is not prime, go to Step (4).

8. Set π ← NΨ(ξ). If q is not unramified in K, or π does not gener-
ate K, go to Step (4).

9. Return q and π.

Remark 2.13. We require g ≥ 2 in Algorithm 2.12, as the case g = 1
is already covered by Example 2.3, and requires a slight adaptation.

The condition that r be prime is for simplicity of presentation only;
the algorithm easily extends to square-free values of r that are given as
products of splitting primes. Such r are required, for example, by the
cryptosystem of [6].

3 Performance of the algorithm

Theorem 3.1. If the field K is fixed, then the heuristic expected run
time of Algorithm 2.12 is polynomial in log r.

Proof. The algorithm consists of a precomputation for the field K in
Steps (1)–(3), followed by a loop in Steps (4)–(7) that is performed
until an element ξ is found that has prime norm NK̂/Q(ξ) = q, and
we also find in Step (8) that q is unramified in K and the type norm
π = NΨ(ξ) generates K.
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The primality condition in Step (7) is the ‘true’ condition that be-
comes harder to achieve with increasing r, whereas the conditions in
Step (8), which are necessary to guarantee correctness of the output,
are so extremely likely to be fulfilled (especially in cryptographic appli-
cations where K is small and r is large) that they will hardly ever fail
in practice and only influence the run time by a constant factor.

As ξ is computed in Step (6) as the lift to OK̂ of an element ξ ∈
OK̂/rOK̂ ∼= (Fr)2ĝ, its norm can be bounded by a constant multiple
of r2ĝ. Heuristically, q = NK̂/Q(ξ) behaves as a random number, so
by the prime number theorem it will be prime with probability at least
(2ĝ log r)−1, and we expect that we need to repeat the loop in Steps
(4)–(7) about 2ĝ log r times before finding ξ of prime norm q. As each
of the steps is polynomial in log r, so is the expected run time up to
Step (7), and we are done if we show that the conditions in Step (8)
are met with some positive probability if K is fixed and r is sufficiently
large.

For q being unramified in K, one simply notes that only finitely
many primes ramify in the field K (which is fixed) and that q tends to
infinity with r, since r divides NK/Q(π − 1) ≤ (

√
q + 1)2g.

Finally, we show that π generates K with probability tending to 1
as r tends to infinity. Suppose that for every vector v ∈ {0, 1}ĝ that is
not all 0 or 1, we have ∏ĝ

i=1(αi/βi)vi 6= 1. (3.2)

This set of 2ĝ − 2 (dependent) conditions on the 2ĝ − 2 independent
random variables αi, βi for 1 ≤ i < ĝ is satisfied with probability at
least 1− (2ĝ − 2)/(r − 1). For any automorphism φ of L, the set φ ◦Ψ
is a CM-type of K̂ and there is a v ∈ {0, 1}ĝ such that vi = 0 if φ ◦ Ψ
contains ψi and vi = 1 otherwise. Then αi is (ψi(ξ) mod R), while βi is
(ψi(ξ) mod R), so (π/φ(π) mod R) is

∏ĝ
i=1(αi/βi)vi . By (3.2), if this

expression is 1 then v = 0 or v = 1, so φ ◦Ψ = Ψ or φ ◦Ψ = Ψ, which
by definition of the reflex is equivalent to φ or φ being trivial on K, i.e.,
to φ being trivial on the maximal real subfield K0. Thus if (3.2) holds,
then φ(π) = π implies that φ is trivial on K0, hence K0 ⊂ Q(π). Since
π ∈ K is not real (otherwise, q = π2 ramifies in K), this implies that
K = Q(π).

In order to maximize the likelihood of finding prime norms, one
should minimize the norm of the lift ξ computed in the Chinese Re-
mainder Step (6). This involves minimizing a norm function of degree
2ĝ in 2ĝ integral variables, which is already infeasible for ĝ = 2.
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In practice, for given r, one lifts a standard basis of OK̂/rOK̂ ∼=
(Fr)2ĝ to OK̂ . Multiplying those lifts by integer representatives for the
elements αi and βi of Fr, one quickly obtains lifts ξ. We also choose,
independently of r, a Z-basis of OK̂ consisting of elements that are
‘small’ with respect to all absolute values of K̂. We translate ξ by
multiples of r to lie in rF , where F is the fundamental parallelotope
in K̂ ⊗R consisting of those elements that have coordinates in (− 1

2 ,
1
2 ]

with respect to our chosen basis.
If we denote the maximum on F ∩ K̂ of all complex absolute values

of K̂ by MK̂ , we have q = NK̂/Q(ξ) ≤ (rMK̂)2ĝ. For the ρ-value (1.1)
we find

ρ ≤ 2gĝ(1 + logMK̂/ log r), (3.3)

which is approximately 2gĝ if r gets large with respect to MK̂ . We
would like ρ to be small, but this is not what one obtains by lifting
random admissible choices of ξ.

Theorem 3.4. If the field K is fixed and r is large, we expect that (1)
the output q of Algorithm 2.12 yields ρ ≈ 2gĝ, and (2) an optimal choice
of ξ ∈ OK̂ satisfying the conditions of Theorem 2.10 yields ρ ≈ 2g.

Open problem 3.5. Find an efficient algorithm to compute an element
ξ ∈ OK̂ satisfying the conditions of Theorem 2.10 for which ρ ≈ 2g.

We will prove Theorem 3.4 via a series of lemmas. Let Hr,k be the
subset of the parallelotope rF ⊂ K̂⊗R consisting of those ξ ∈ rF ∩OK̂
that satisfy the two congruence conditions (2.11) for a given embedding
degree k. Heuristically, we will treat the elements of Hr,k as random
elements of rF with respect to the distributions of complex absolute
values and norm functions. We will also use the fact that, as K̂ is totally
complex of degree 2ĝ, the R-algebra K̂ ⊗R is naturally isomorphic to
Cĝ. We assume throughout that g ≥ 2.

Lemma 3.6. Fix the field K. Under our heuristic assumption, there
exists a constant c1 > 0 such that for all ε > 0, the probability that a
random ξ ∈ Hr,k satisfies q < r2(ĝ−ε) is less than c1r

−ε.

Proof. The probability that a random ξ lies in the set V = {z ∈ Cĝ :∏
|zi|2 ≤ r2(ĝ−ε)}∩rF is the quotient of the volume of V by the volume

2−ĝ
√∣∣∆K̂

∣∣r2ĝ of rF , where ∆K̂ is the discriminant of K̂. Now V is

contained inside W = {z ∈ Cĝ :
∏
|zi|2 ≤ r2(ĝ−ε), |zi| ≤ rMK̂}, which
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has volume

(2π)ĝ
∫

x∈[0,rM
K̂

]ĝ∏
|xi|2≤r2(ĝ−ε)

∏
|xi|dx < (2π)ĝ

∫
x∈[0,rM

K̂
]ĝ

rĝ−εdx = (2πMK̂)ĝr2ĝ−ε,

so a random ξ lies in V with probability less than

(4πMK̂)ĝ
∣∣∆K̂

∣∣−1/2
r−ε.

Lemma 3.7. There exists a number QK̂ , depending only on K̂, such
that for any positive real number X < rQK̂ , the expected number of
ξ ∈ Hr,k with all absolute values below X is

ϕ(k)(2π)ĝ∣∣∆K̂

∣∣ X2ĝ

r2
.

Proof. Let QK̂ > 0 be a lower bound on K̂ \ F for the maximum of all
complex absolute values, so the box VX ⊂ K̂ ⊗ R consisting of those
elements that have all absolute values below X lies completely inside
(X/QK̂)F ⊂ rF . The volume of VX in K̂ ⊗ R is (πX2)ĝ, while rF

has volume 2−ĝ
√∣∣∆K̂

∣∣r2ĝ. The expected number of ξ ∈ Hr,k satisfying

|ξ| < X for all absolute values is #Hr,k = r2ĝ−2ϕ(k) times the quotient
of these volumes.

Lemma 3.8. Fix the field K. Under our heuristic assumption, there
exists a constant c2 such that for all positive ε < 2ĝ−2, if r is sufficiently
large, then we expect the number of ξ ∈ Hr,k satisfying NK̂/Q(ξ) < r2+ε

to be at least c2rε.

Proof. Any ξ as in Lemma 3.7 satisfies NK̂/Q(ξ) < X2ĝ, so we apply
the lemma to X = r(1/ĝ+ε/2ĝ), which is less than rQK̂ for large enough
r and ε < 2ĝ − 2.

Lemma 3.9. Fix the field K. Under our heuristic assumption, for all
ε > 0, if r is large enough, we expect there to be no ξ ∈ Hr,k satisfying
NK̂/Q(ξ) < r2−ε.

Proof. Let Ô be the ring of integers of the maximal real subfield of
K̂. Let U be the subgroup of norm one elements of Ô∗. We embed U
into Rĝ by mapping u ∈ U to the vector l(u) of logarithms of absolute
values of u. The image is a complete lattice in the (ĝ − 1)-dimensional
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space of vectors with coordinate sum 0. Fix a fundamental parallelotope
F ′ for this lattice. Let ξ0 be the element of Hr,k of smallest norm.
Since the conditions (2.11), as well as the norm of ξ0, are invariant
under multiplication by elements of U , we may assume without loss of
generality that l(ξ0) is inside F ′ + C(1, . . . , 1). Then every difference
of two entries of l(ξ0) is bounded, and hence every quotient of absolute
values of ξ0 is bounded from below by a positive constant c3 depending
only on K. In particular, if m is the maximum of all absolute values
of ξ0, then NK̂/Q(ξ) > (c3m)2ĝ. Now suppose ξ0 has norm below r2−ε.
Then all absolute values of ξ0 are below X = r(1/ĝ−ε/2ĝ)/c3, and X <
rQK̂ for r sufficiently large. Now Lemma 3.7 implies that the expected
number of ξ ∈ Hr,k with all absolute values below X is a constant times
r−ε, so for any sufficiently large r we expect there to be no such ξ, a
contradiction.

Proof of Theorem 3.4. The upper bound ρ > 2gĝ follows from (3.3).
Lemma 3.6 shows that for any ε > 0, the probability that ρ is smaller
than 2gĝ− ε tends to zero as r tends to infinity, thus proving the lower
bound ρ ? 2gĝ. Lemma 3.8 shows that for any ε > 0, if r is sufficiently
large then we expect there to exist a ξ with ρ-value at most 2g+ ε, thus
proving the bound ρ > 2g. Lemma 3.9 shows that we expect ρ > 2g− ε
for the optimal ξ, which proves the bound ρ ? 2g.

For very small values of r we are able to do a brute-force search for
the smallest q by testing all possible values of α1, . . . , αĝ−1, β1, . . . , βĝ−1

in Step 4 of Algorithm 2.12. We performed two such searches, one in
dimension 2 and one in dimension 3. The experimental results support
our heuristic evidence that ρ ≈ 2g is possible with a smart choice in the
algorithm, and that ρ ≈ 2gĝ is achieved with a randomized algorithm.

Example 3.10. Take K = Q(ζ5), and let Φ = {φ1, φ2} be the CM-
type of K defined by φn(ζ5) = e2πin/5. We ran Algorithm 2.12 with
r = 1021 and k = 2, and tested all possible values of α1, β1. The total
number of primes q found was 125578, and the corresponding ρ-values
were distributed as follows:

2 4 6 8
Ρ

5000

10 000

15 000

20 000

25 000
ð

2 4 6 8
Ρ

50

100

150

200

250
ð
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The smallest q found was 2023621, giving a ρ-value of 4.19. The curve
over F = Fq for which the Jacobian has this ρ-value is y2 = x5 + 18,
and the number of points on its Jacobian is 4092747290896.

Example 3.11. Take K = Q(ζ7), and let Φ = {φ1, φ2, φ3} be the
CM-type of K defined by φi(ζ7) = e2πi/7. We ran Algorithm 2.12 with
r = 29 and k = 4, and tested all possible values of α1, α2, β1, β2. The
total number of primes q found was 162643, and the corresponding ρ-
values were distributed as follows:
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The smallest q found was 911, giving a ρ-value of 6.07. The curve over
F = Fq for which the Jacobian has this ρ-value is y2 = x7 + 34, and the
number of points on its Jacobian is 778417333.

Example 3.12. Take K = Q(ζ5), and let Φ = {φ1, φ2} be the CM-
type of K defined by φi(ζ5) = e2πi/5. We ran Algorithm 2.12 with
r = 2160 + 685 and k = 10, and tested 220 random values of α1, β1. The
total number of primes q found was 7108. Of these primes, 6509 (91.6%)
produced ρ-values between 7.9 and 8.0, while 592 (8.3%) had ρ-values
between 7.8 and 7.9. The smallest q found had 623 binary digits, giving
a ρ-value of 7.78.

4 Constructing abelian varieties with given
Weil numbers

Our Algorithm 2.12 yields q-Weil numbers π ∈ K that correspond, in
the sense of Honda and Tate [84], to isogeny classes of ordinary, simple
abelian varieties over prime fields that have a point of order r and
embedding degree k with respect to r. It does not give a method to
explicitly construct an abelian variety A with Frobenius π ∈ K. In this
section we focus on the problem of explicitly constructing such varieties
using complex multiplication techniques.

The key point of the complex multiplication construction is the fact
that every ordinary, simple abelian variety over F = Fq with Frobenius
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π ∈ K arises as the reduction at a prime over q of some abelian variety
A0 in characteristic zero that has CM by the ring of integers of K.
Thus if we have fixed our K as in Algorithm 2.12, we can solve the
construction problem for all ordinary Weil numbers coming out of the
algorithm by compiling the finite list of Q-isogeny classes of abelian
varieties in characteristic zero having CM by OK . There will be one
Q-isogeny class for each equivalence class of primitive CM-types of K,
where Φ and Φ′ are said to be equivalent if we have Φ = Φ′ ◦ σ for an
automorphism σ of K. As we can choose our favorite field K of degree
2g to produce abelian varieties of dimension g, we can pick fields K for
which such lists already occur in the literature.

From representatives of our list of isogeny classes of abelian varieties
in characteristic zero having CM by OK , we obtain a list A of abelian
varieties over F with CM by OK by reducing at some fixed prime q
over q. Changing the choice of the prime q amounts to taking the
reduction at q of a conjugate abelian variety which also has CM by OK
and hence is F-isogenous to one already in the list.

For every abelian variety A ∈ A, we compute the set of its twists,
i.e., all the varieties up to F-isomorphism that become isomorphic to A
over F. There is at least one twist B of an element A ∈ A satisfying
#B(F) = NK/Q(π−1), and this B has a point of order r and the desired
embedding degree.

Note that while efficient point counting algorithms do not exist for
varieties of dimension g > 1, we can determine probabilistically whether
an abelian variety has a given order by choosing a random point, mul-
tiplying by the expected order, and seeing if the result is the identity.

The complexity of the construction problem rapidly increases with
the genus g = [K : Q]/2, and it is fair to say that we only have satis-
factory general methods at our disposal in very small genus.

In genus one, we are dealing with elliptic curves. The j-invariants of
elliptic curves over C with CM by OK are the roots of the Hilbert class
polynomial of K, which lies in Z[X]. The degree of this polynomial is
the class number hK of K, and it can be computed in time Õ(|∆K |).

For genus 2, we have to construct abelian surfaces. Any principally
polarized simple abelian surface over F is the Jacobian of a genus 2
curve, and all genus 2 curves are hyperelliptic. There is a theory of
class polynomials analogous to that for elliptic curves, as well as several
algorithms to compute these polynomials, which lie in Q[X]. The genus
2 algorithms are not as well-developed as those for elliptic curves; at
present they can handle only very small quartic CM-fields, and there
exists no rigorous run time estimate. From the roots in F of these poly-
nomials, we can compute the genus 2 curves using Mestre’s algorithm.
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Any three-dimensional principally polarized simple abelian variety
over F is the Jacobian of a genus 3 curve. There are two known families
of genus 3 curves over C whose Jacobians have CM by an order of
dimension 6. The first family, due to Weng [95], gives hyperelliptic
curves whose Jacobians have CM by a degree-6 field containing Q(i).
The second family, due to Koike and Weng [51], gives Picard curves
(curves of the form y3 = f(x) with deg f = 4) whose Jacobians have
CM by a degree-6 field containing Q(ζ3).

Explicit CM-theory is mostly undeveloped for dimension ≥ 3. More-
over, most principally polarized abelian varieties of dimension ≥ 4 are
not Jacobians, as the moduli space of Jacobians has dimension 3g − 3,
while the moduli space of abelian varieties has dimension g(g + 1)/2.
For implementation purposes we prefer Jacobians or even hyperellip-
tic Jacobians, as these are the only abelian varieties for which group
operations can be computed efficiently.

In cases where we cannot compute every abelian variety in charac-
teristic zero with CM by OK , we use a single such variety A and run
Algorithm 2.12 for each different CM-type of K until it yields a prime
q for which the reduction of A mod q is in the correct isogeny class.
An example for K = Q(ζ2p) with p prime is given by the Jacobian of
y2 = xp + a, which has dimension g = (p− 1)/2.

5 Numerical examples

We implemented Algorithm 2.12 in MAGMA and used it to compute
examples of hyperelliptic curves of genus 2 and 3 over fields of crypto-
graphic size for which the Jacobians are pairing-friendly. The subgroup
size r is chosen so that the discrete logarithm problem in A[r] is ex-
pected to take roughly 280 steps. The embedding degree k is chosen so
that rk/g ≈ 1024; this would be the ideal embedding degree for the 80-
bit security level if we could construct varieties with #A(F) ≈ r. Space
constraints prevent us from giving the group orders for each Jacobian,
but we note that a set of all possible q-Weil numbers in K, and hence
all possible group orders, can be computed from the factorization of q
in K.

Example 5.1. Let η =
√
−2 +

√
2 and let K be the degree-4 Ga-

lois CM-field Q(η). Let Φ = {φ1, φ2} be the CM-type of K such
that Im(φi(η)) > 0. We ran Algorithm 2.12 with CM-type (K,Φ),
r = 2160 − 1679, and k = 13. The algorithm output the following field
size:
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q = 31346057808293157913762344531005275715544680219641338497449500238872\
30035061716540892530853973205578151445285706963588204818794198739264\
123849002104890399459807463132732477154651517666755702167 (640 bits)

There is a single Fq-isomorphism class of curves over Fq whose Jaco-
bians have CM by OK and it has been computed in [88]; the desired
twist turns out to be C : y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x + 1. The
ρ-value of Jac(C) is 7.99.

Example 5.2. Let η =
√
−30 + 2

√
5 and let K be the degree-4 non-

Galois CM field Q(η). The reflex field K̂ is Q(ω) where

ω =
√
−15 + 2

√
55.

Let Ψ be the CM-type of K such that Im(φi(η)) > 0. We ran Algorithm
2.12 with the CM-type (K,Φ), subgroup size r = 2160 − 1445, and
embedding degree k = 13. The algorithm output the following field
size:

q = 11091654887169512971365407040293599579976378158973405181635081379157\
07830213092751652003623786192531077127388944453303584091334492452752\
69309408919298654153381935518866167783400231181308345981461 (645 bits)

The class polynomials for K can be found in the preprint version of [97].
We used the roots of the class polynomials mod q to construct curves
over Fq with CM by OK . As K is non-Galois with class number 4,
there are 8 isomorphism classes of curves in 2 isogeny classes. We found
a curve C in the correct isogeny class with equation y2 = x5 + a3x

3 +
a2x

2 + a1x+ a0, with

a3 = 37909827361040902434390338072754918705969566622865244598340785379492\
06229349302307887220632471591953460261515915189503199574055791975955\
8344078795784842127002632600401437108457032108586548189769

a2 = 18960350992731066141619447121681062843951822341216980089632110294900\
98526734892756700435114431697785479098782721806327279074708206429263\
7519831093512508318537351901282000421070182572671506056432

a1 = 69337488142924022910219499907432470174331183248226721112535199929650\
66326048728150177351432967251207037416196614255668796808046612641767\
9222737491253665415344405882465731376523304907041006464504

a0 = 31678142561939596895646021753607012342277658384169880961095701825776\
70412620481848230687778916790603969757571449880417861689471274167016\
3886087129669411781204243813332617272038494020178561119564.

The ρ-value of Jac(C) is 8.06.
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Example 5.3. Let K be the degree-6 Galois CM-field Q(ζ7), and let
Φ = {φ1, φ2, φ3} be the CM type of K such that φn(ζ7) = e2πin/7. We
used the CM-type (K,Φ) to construct a curve C whose Jacobian has
embedding degree 17 with respect to r = 2180 − 7427. Since K has
class number 1 and one equivalence class of primitive CM-types, there
is a unique isomorphism class of curves in characteristic zero whose
Jacobians are simple and have CM by K; these curves are given by
y2 = x7 + a. Algorithm 2.12 output the following field size:

q = 15755841381197715359178780201436879305777694686713746395506787614025\
00812175974972634937716254216816917600718698808129260457040637146802\
81270204406861277269259077188966205156107806823000096120874915612017\
18492420684320462175923294626335763719251697987740263891168971441085\
53148110927632874029911153126048408269857121431033499 (1077 bits)

The equation of the curve C is y2 = x7 + 10. The ρ-value of Jac(C) is
17.95.

We conclude with an example of an 8-dimensional abelian variety found
using our algorithms. We started with a single CM abelian variety A in
characteristic zero and applied our algorithm to different CM-types until
we found a prime q for which the reduction has the given embedding
degree.

Example 5.4. Let K = Q(ζ17). We set r = 1021 and k = 10 and
ran Algorithm 2.12 repeatedly with different CM-types1 for K. Given
the output, we tested the Jacobians of twists of y2 = x17 + 1 for the
specified number of points. We found that the curve y2 = x17 + 30 has
embedding degree 10 with respect to r over the field F of order

q = 6869603508322434614854908535545208978038819437.

The CM-type was

Φ = {φ1, φ3, φ5, φ6, φ8, φ10, φ13, φ15},

where φn(ζ17) = e2πin/17. The ρ-value of Jac(C) is 121.9.

1 Originally, we tried different random CM-types until it worked. The CM-type
Φ written in the example turned out to work. Actually, we could have predicted this
correct CM-type. See Example III.4.5.





ChapterV
Abelian surfaces with p-rank 1

This chapter appeared before up to minor corrections as Laura Hitt
O’Connor, Gary McGuire, Michael Naehrig, and Marco Streng, A CM
construction for curves of genus 2 with p-rank 1, arXiv:0811.3434v2 [43].
The final published form may differ from this version.

Abstract. We construct Weil numbers corresponding to
genus-2 curves with p-rank 1 over the finite field Fp2 of p2

elements. The corresponding curves can be constructed using
explicit CM constructions. In one of our algorithms, the
group of Fp2-valued points of the Jacobian has prime order,
while another allows for a prescribed embedding degree with
respect to a subgroup of prescribed order. The curves are
defined over Fp2 out of necessity: we show that curves of p-
rank 1 over Fp for large p cannot be efficiently constructed
using explicit CM constructions.

1 Introduction

The p-rank of an abelian variety A over a field k of characteristic p is
the integer r = r(A) such that the group A[p](k) of p-torsion points over
an algebraic closure k of k has order pr. It satisfies 0 ≤ r ≤ g, where
g is the dimension of A, and we call A ordinary if r is equal to g. If

http://arxiv.org/abs/0811.3434v2
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A is supersingular, that is, if A becomes isogenous over k to a product
of supersingular elliptic curves, then we have r = 0, and the converse
holds for abelian surfaces: if r = 0 and g = 2, then A is supersingular.

This shows that for an abelian surface A, besides the ordinary and
supersingular cases, there is only one intermediate case: the case where
A has p-rank 1. Most CM constructions of curves of genus two [79, 97,
24, 26] generate curves that are ordinary with probability tending to 1,
while another [69] constructs only supersingular curves. We focus on
the intermediate case, for which no constructions existed yet.

The p-rank r(A) depends only on the isogeny class of A over k, and
any simple abelian surface A of p-rank 1 over a finite field k is isogenous
to the Jacobian of a curve over k of genus 2 (see Section 2). By the
p-rank of a curve C, we mean the p-rank of its Jacobian JC .

Let k be the finite field of order q = pn. The Frobenius endomor-
phism π of a simple abelian variety over k is a Weil q-number, i.e., an
algebraic integer π such that |π|2 = q holds for every embedding of the
field K = Q(π) into the complex numbers. A theorem of Honda and
Tate [84] states that this defines a bijection between the set of isogeny
classes of simple abelian varieties over k and the set of Weil q-numbers
up to Galois conjugacy.

We characterize those Weil numbers corresponding to abelian sur-
faces with p-rank 1 in Section 2, show their existence in Section 3 and
give algorithms for finding them in Section 4. In Section 3 we also ex-
plain why curves of p-rank 1 over Fp for large p cannot be efficiently
constructed using explicit CM constructions.

The construction of an abelian variety A corresponding to a given
Weil q-number π dates back to Shimura and Taniyama [78] and Honda
[44]. It exhibits A as the reduction of a characteristic-0 abelian variety
with complex multiplication (CM) by Z[π] and is also known as the CM
method. We explain this explicit CM construction in Section 5. For now,
it suffices to say that the computational complexity of this construction
grows very rapidly with the size of the field K = Q(π). Therefore,
our algorithms will look for Weil q-numbers π only in fixed small input
fields K.

Let A be an abelian variety over the finite field k and suppose that
A(k) has a subgroup of prime order r. The embedding degree of A with
respect to r is the degree of the field extension k(ζr)/k, where ζr is a
primitive r-th root of unity. The Weil and Tate pairings on A with
respect to r have their image in 〈ζr〉 ⊂ k(ζr)∗, and in order to compute
these pairings, one needs to work with k(ζr). As the embedding degree
is the order of q in (Z/rZ)∗, it is close to r for most curves, while for
pairing-based cryptography, one wants r to be large and the embedding
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degree to be small. Algorithm 3 in Section 4 provides curves with p-rank
1 and a prescribed small embedding degree.

We used our algorithms to compute various examples, which we
give in Section 8. Each example was computed in a few seconds on a
standard PC.

2 Characterization of abelian surfaces with
p-rank one

It follows from the definition that the p-rank r(A) of an abelian variety A
does not change under extensions of the base field, and that it satisfies
r(A × B) = r(A) + r(B) for any pair of abelian varieties A and B.
It is also well-known that the p-rank is invariant under isogeny (see
Lemma 2 below). In particular, the non-simple abelian surfaces of p-
rank 1 are exactly those isogenous to the product of an ordinary and
a supersingular elliptic curve. Both types of elliptic curves are well
understood, so we focus on simple abelian surfaces. We use the word
isogeny to mean isogeny defined over the base field k, unless otherwise
stated. We use the same convention for the definition of simple abelian
variety.

Our algorithms are based on a characterization of Weil numbers
corresponding to simple abelian surfaces of p-rank 1, which we give in
this section. A major part of this characterization can already be found
in Goren [34] and Gonzalez [33, proof of Thm. 3.7], but we give a proof,
as this result is the foundation of our construction.

Let k be the finite field of q = pn elements and let π be a Weil
q-number. For every embedding of the field K = Q(π) into C, complex
conjugation on K is given by π 7→ q/π. As this automorphism of K
doesn’t depend on the choice of the embedding, we denote it by x 7→ x
and call it complex conjugation. If we letK0 be the fixed field of complex
conjugation, then K0 is totally real and K is either equal to K0 or it is
a CM-field, that is, a totally imaginary quadratic extension of a totally
real number field.

Lemma 1. A simple abelian variety A over the field k of q = pn ele-
ments has dimension 2 and p-rank 1 if and only if the following three
conditions hold for its Frobenius endomorphism π:

(1) the field K = Q(π) is a CM-field of degree 4,

(2) the prime p factors in K as pOK = p1p1p
e
2, with e ∈ {1, 2}, and

(3) we have πOK = pn1 pen/22 with e as in (2).
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Note that condition (3) implies that en is even.

We prove Lemma 1 using the following formula for the p-rank of an
abelian variety.

Lemma 2 ([33, Prop. 3.1]). Let A be a simple abelian variety over k
and let K = Q(π), where π is the Frobenius endomorphism of A. There
is an integer m such that 2 dim(A) = m degK holds. Suppose that p
factors in K as pOK =

∏
i p
ei
i and let fi be given by #(OK/pi) = pfi .

Then we have r(A) =
∑
meifi, where the sum is taken over those i for

which π 6∈ pi holds.

Proof. The degree deg g and separable degree degs g of an isogeny g :
A → B of abelian varieties are defined to be the degree and separable
degree of the induced embedding of function fields g∗ : k(B) → k(A).
We have #(ker g)(k) = degs g, hence pr(A) is the separable degree of the
multiplication-by-p map on A. As the separable degree is multiplicative
under composition, we find that the p-rank of A depends only on its
isogeny class, hence we can assume that EndkA contains the maximal
order OK by [78, Prop. 7 in §7.1].

The existence of m follows from [84, Thm. 1(2)]. The theory in [78,
§7] shows how to factor the multiplication-by-p map into multiplication-
by-pi maps for prime ideals pi, and that the multiplication-by-pi map
has degree pfim. The Frobenius endomorphism π is totally inseparable
by [78, Thm. 1(iii) in §2.8], hence so is multiplication-by-pi if pi con-
tains π. If pi is coprime to π, then [78, Prop. 6 in §2.8] shows that it is
separable, hence satisfies degs pi = deg pi.

Proof of Lemma 1. If A has dimension 2 and p-rank 1, then Lemma 2
tells usm = 1, henceK has degree 4 and exactly one prime p1|p with π 6∈
p1, which is unramified and has residue degree 1. This implies pOK =
p1p1q, where q is prime in the fixed field K0 of complex conjugation.

To prove that (2) and (3) hold, it now suffices to prove that q does
not split in K/K0. Suppose that it does, say q = q1q1. Then by
[84, Thm. 1(1)], the fact m = 1 implies that ordq1(π) is either 0 or
equal to the degree n = deg k/Fp. We also have ordq1(π) + ordq1(π) =
ordq1(ππ) = n, hence one of q1 and q1 does not divide π, i.e., contradicts
uniqueness of p1.

Conversely, if π satisfies (1), (2), and (3), then Lemma 2 implies
r(A) = m with 2 dim(A) = m degK and [84, Thm. 1(1)] implies m =
1.

Corollary 3. A simple abelian surface A/k of p-rank 1 is absolutely
simple, that is, simple over k, and is isogenous to the Jacobian of a
curve C over k.
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Proof. Suppose that k′/k is an extension of degree d such that we have
Ak′ ∼ E × F . The Frobenius endomorphism of Ak′ is πd and the
characteristic polynomial of its action on the `-adic Tate module of A
for l 6= p is the product of the (quadratic) characteristic polynomials of
the action on the Tate modules of E and F .

On the other hand, part (3) of Lemma 1 implies that Q(πd) is equal
to K, which is a field of degree 4. This is a contradiction, hence A is
absolutely simple.

By [59, Theorem 4.3], any absolutely simple abelian surface over a
finite field k is isogenous to the Jacobian of a curve.

Remark 4. The conditions (1), (2), and (3) of Lemma 1 are equivalent
to conditions (M) of Theorem 2.9 of Maisner and Nart [59], i.e., to the
characteristic polynomial f = X4− a1X

3 + (a2 + 2q)X2− qa1X + q2 of
π satisfying

(1) f is irreducible,

(2) ordp(a1) = 0,

(3) ordp(a2) ≥ n/2,

(4) and that (a2 + 4q)2 − 4qa2
1 is not a square in the ring of p-adic

integers Zp.

Remark 5. For an elliptic curve E over a finite field k, the rank of the
Z-algebra Endk(E) of k-endomorphisms is either 2 or 4, and these cases
correspond exactly to the cases r(E) = 1 and r(E) = 0.

For abelian surfaces A, the p-rank r(A) cannot be computed from
the Z-rank of the endomorphism algebra. In fact, for absolutely simple
abelian surfaces A, the ring Endk(A)⊗Q is always a CM-field of degree
4, while both r(A) = 1 and r(A) = 2 occur (see also [33, Thm 3.7(ii)]).

3 Existence of suitable Weil numbers

Let p be a prime that factors in K as in (2) of Lemma 1. The fact that
not all primes over p have the same ramification index or residue degree
implies that the degree-4 extension K/Q is not Galois. As K has a
non-trivial automorphism, complex conjugation, the normal closure L
of K has Galois group D4. We therefore have to restrict to non-Galois
quartic number fields K with Galois group D4.

In the case e = 2, the prime p ramifies in K, hence divides its
discriminant. Since explicit CM constructions are feasible only for small
fields K, i.e., fields K of small discriminant, this means that we can
construct the curve C corresponding to π only for very small values
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of p. For such small values of p, not only are the curves less interesting,
especially from a cryptographic point of view, it also becomes possible
to construct them using a more direct approach such as by enumerating
all curves C of genus 2 over Fp and computing the group orders of their
Jacobians. Therefore, we will focus on the case e = 1. For e = 1,
condition (3) of Lemma 1 implies 2|n, so that curves are defined only
over fields containing Fp2 . This is the reason why we construct our
curves over Fp2 and not over Fp, and this is why curves of p-rank 1
over Fp for large p cannot be efficiently constructed using explicit CM
constructions.

We have found that all fields with p-rank-1 Weil p2-numbers are
quartic non-Galois CM-fields. However, not all quartic non-Galois CM-
fields have p-rank-1 Weil p2-numbers, and we give a complete charac-
terization in Section 6.

For now, we give two lemmas that put a condition on the CM-fields
K that is slightly too strong, but is easy to check and is satisfied by
‘most’ non-Galois quartic CM-fields.

Lemma 6. Let K be a quartic CM-field and let p be a prime that
factors in K as pOK = p1p1p2. Suppose that p1 = αOK is principal.
Then π = αα−1p is a Weil p2-number that satisfies the conditions of
Lemma 1.

Proof. The number π satisfies ππ = p2, hence is a Weil p2-number. Con-
ditions (1) and (2) of Lemma 1 are satisfied by assumption. Moreover,
we have p2 = p(p1p1)−1 = p(αα)−1OK , so that we have πOK = p2

1p2,
i.e., condition (3) is also satisfied.

The condition on p of Lemma 6 is stronger than the condition that
there exists a Weil p2-number in K with e = 1. The following lemma
gives a necessary and sufficient criterion on K for the existence of primes
p satisfying this stronger condition.

For a non-Galois quartic CM-field K, let L be its normal closure
over Q and let d be the discriminant of the real quadratic subfield K0

of K. Then we have K = K0(
√
r) for a totally negative element r ∈ K0,

and s = NK0/Q(r) ∈ Q is not a square, because K is non-Galois. Let
dr be the discriminant of the real quadratic field Kr

0 = Q(
√
s). Note

that this field is independent of the choice of r. Indeed, the element r is
well-defined up to squares in K∗0 , hence s is well-defined up to squares
in Q∗.

A prime discriminant is a number that is −4 or ±8 or is ±p ≡ 1
(mod 4) for an odd prime p. The discriminant of a quadratic field can be
written uniquely as a product of distinct prime discriminants in which
at most one even factor occurs.
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Lemma 7. Let K be a non-Galois quartic CM-field. The following are
equivalent

(1) there exists a prime p that factors in K as pOK = p1p1p2 with
p1 principal;

(2) the Dirichlet density of the set of primes p as in (1) is (4hK)−1,
where hK is the class number of K;

(3) there is a prime that ramifies in L/K;

(4) not all prime discriminants in the discriminant factorization of
dr occur in that of d.

Proof. The implication (2)⇒ (1) is trivial. Now suppose that (1) holds,
so the decomposition group of p1 in Gal(L/Q) is Gal(L/K) and the ideal
class of p1 is trivial. By the Artin isomorphism ClK → Gal(H/K),
this implies that the decomposition group of p1 in Gal(H/K) is trivial
for the Hilbert class field H of K. As the decomposition group of p1

in Gal(L/K) is non-trivial, this implies that L is not contained in the
maximal unramified abelian extension H of K, so L/K ramifies at some
prime and (3) holds.

For the proof of (3)⇒ (2), we use again that the primes p as in (1)
are those for which there exists a prime in L over p with decomposition
group Gal(L/K) in L/Q and trivial decomposition group H/K. Let
M ⊃ H be Galois over Q. Since (3) implies L ∩ H = K, we find
Gal(HL/K) = Gal(H/K) × Gal(L/K) and hence that exactly 1 in
every 8hK elements σ ∈ Gal(M/Q) satisfies 〈σ|L〉 = Gal(L/K) and
σ|H = 1. The conjugation class of Gal(L/K) in Gal(L/Q) has two
elements, hence the set of all σ yielding the appropriate factorization is
twice as large, i.e., consists of 1 in every 4hK elements of Gal(M/Q). By
Chebotarev’s density theorem [66, Theorem 13.4], this implies that the
density of primes with this factorization is (4hK)−1, which proves (2).

Now, it remains to prove (3) ⇔ (4). Let L0 be the compositum of
K0 and Kr

0 in L. A prime q ∈ Z ramifies in L/K if and only if its inertia
group in Gal(L/Q) contains Gal(L/K) or its conjugate. This is equiv-
alent to q ramifying in L0/K0, that is, to the prime discriminant in dr

corresponding to q not occurring in the prime discriminant factorization
of d.

Example 8. The field K = Q[X]/(X4 +12X2 +2) does not satisfy the
conditions of Lemma 7, because it has d = 8 · 17 and dr = 8.

For ‘most’ non-Galois quartic CM-fields K, the discriminant dr does
not divide d, in which case the conditions of Lemma 7 hold. This means
that if we try to find our Weil numbers by taking random primes p and
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checking if there exists a Weil p2-number π ∈ K as in Lemma 1, then
we have a probability (4hK)−1 of success.

4 The algorithms

The discussion in Section 3 leads to the following algorithm.

Algorithm 1.
Input: A non-Galois CM-field K of degree 4 and a positive integer `.
Output: A prime p of ` bits and a Weil p2-number π corresponding to
the Jacobian JC of a curve of genus 2 over Fp2 such that #JC(Fp2) is
prime.

(1) Take a random positive integer p of ` bits.

(2) If p is prime, continue. Otherwise, go to Step 1.

(3) If pOK factors as p1p1p2, continue. Otherwise, go to Step 1.

(4) If p2
1p2 is principal, let π0 be a generator and let v = π0π0p

−2 ∈
O∗K0

. Otherwise, go to Step 1.

(5) If we have v = NK/K0(w) for some w ∈ O∗K , then put π = w−1π0.
Otherwise, go to Step 1.

(6) If N(uπ − 1) is prime for some u ∈ {±1}, then replace π by uπ.
Otherwise, go to Step 1.

(7) return p, π.

Note that the group order N(π − 1) of JC has about 4` bits since
we have N(π − 1) ≈ N(π) = p4.

Theorem 9. If Algorithm 1 terminates, then the output is correct.
Fix the input field K and assume that it satisfies the conditions of

Lemma 7. If K has no prime ideal of norm 2, and no prime above 2 is
ramified in K/K0, then the heuristic expected runtime of the algorithm
is polynomial in `.

Proof. The output π is a Weil p2-number satisfying the conditions of
Lemma 1, and the corresponding abelian surface A has #A(Fp2) =
N(π − 1) rational points, which proves that the output is correct.

All numbers we encounter have logarithmic absolute values and
heights that are bounded linearly in `, while the field K is fixed. This
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shows that, using the algorithms of [16], all steps, including the pri-
mality and principality tests, as well as finding a generator of p2

1p2 and
trying to extract a square root of v, take time polynomial in `. It there-
fore suffices to prove that the heuristic expected number of iterations of
Step 1 is quadratic in `.

The number p has a heuristic probability 1/(` log 2) to be prime by
the Prime Number Theorem. This shows that for each time Step 3 is
reached, one expects to run Step 1 about ` log 2 times.

We will ‘prove’ that the heuristic bound holds even if we restrict
in Step 3 to p1 principal and generated by α. By Lemma 7, the den-
sity of the set of primes p that factor in the appropriate way and for
which α exists is (4hK)−1, so we arrive at Step 4 (with p1 = (α)) with
probability (4hK)−1.

Note that π = −αα−1p is a generator of p2
1p2, so we pass Step 4

with π0 = wπ for some unit w ∈ O∗K .
Note that we have p2 = ππ, hence v = ww, proving that we pass

Step 5 as well.
We now only need to show that N(π − 1) is prime with sufficiently

high probability. Treating α as a random element of O = OK , we wish
to know the probability that X = N(π − 1) is prime, i.e., not divisible
by any prime q < X. For each such q, we consider the homomorphism

ϕ : (O/qO)∗ → (O/qO)∗ : x 7→ xx−1N(x),

which sends (α mod q) to (−π mod q). Now we have q|N(π − 1) if
and only if π ≡ 1 (mod q) for some prime q|q of K. Let ϕq be the
composition of ϕ with the natural map (O/qO)∗ → (O/q)∗. Note that
we have π ≡ 1 (mod q) if and only if α is an element of ϕ−1

q (−1). If we
define

Pq = 1−
#
⋃

q|q ϕ
−1
q (−1)

#(O/qO)∗
,

then the heuristic probability of q - N(π − 1) equals Pq. As the homo-
morphism ϕ sends 1 to 1, we find Pq > 0 for all q > 2.

For q = 2, note that we have N(x) = 1. Then for all q | q with
q = q, take (x mod q) ∈ (O/q)∗ with x 6= x, which is possible, because
2 is unramified in K/K0. For q | q with q 6= q, take exactly one of
(x mod q) and (x mod q) equal to 1, which is possible because q has
norm ≥ 4. Then xx−1 6≡ 1 ≡ −1 (mod q) for all q | q, which proves
P2 > 0.

We use the lower bound Pq > 0 for q ≤ 17.
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For q ≥ 19, note that we have

Pq ≥ 1−
∑
q|q

# kerϕq

#(O/qO)∗
≥ 1−

∑
q|q

1
# imϕq

and that imϕq ⊃ ϕq(F∗q) = (F∗q)
4 has order ≥ (q− 1)/4, hence we have

Pq ≥ 1− 4
4

q − 1
> 1− 17

q
.

We thus find heuristically that N(π − 1) is prime with probability
at least a positive constant times

Y =
∏

19≤q<X
prime

(
1− 17

q

)
.

We find log(Y ) > −
∑
q

17
q , and the right hand side, by Mertens’ theo-

rem [39, Thm. 427 in 22.7], is 17 log logX plus something that converges
to a constant if X tends to infinity. In particular, we find that 1/Y is at
most polynomial in logX ≈ 4`, which is what we needed to prove.

Remark 10. For more detailed heuristics on prime order Jacobians of
curves of genus 2 than what is in the proof of Theorem 9, see Weng [96,
§5.2.2].

Remark 11. The conditions of Lemma 7 are sufficient in Theorem 9
and, as we said before, they hold for ‘most’ non-Galois quartic CM-
fields. They are however not necessary, and we give strictly weaker
conditions in Section 6.

The following lemma shows that the conditions on the decomposition
of 2 in K are necessary in Theorem 9, and that these conditions are not
specific to p-rank 1, or even to abelian surfaces. These conditions vanish
however if one allows the group order to be ‘almost prime’ in the sense
that it is a prime times a ‘small’ (say ≤ 16) positive integer.

Lemma 12. Let π be the Frobenius endomorphism of an abelian variety
A over a finite field k of odd characteristic, and let K = Q(π). If one
of the following conditions holds, then the order of A(k) is even.

(1) K has a prime ideal q of norm 2,

(2) K is totally real, or

(3) K is a CM-field with totally real subfield K0 and K has a prime
ideal q|2 that is ramified in K/K0.
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Proof. If q has norm 2, then we have π 6≡ 0 (mod q), hence π − 1 ≡ 0
(mod q), which implies 2|N(π − 1).

In the other two cases, complex conjugation is trivial on the group
(O/q)∗ of odd order. Note that ππ ∈ Q implies that π2 = ππ is trivial
in that group, hence so is π. We see again that π − 1 ≡ 0 (mod q)
implies 2|N(π − 1).

Our second algorithm is a modification of Algorithm 1 in which we
start with an element α ∈ OK , instead of with a prime p, and check
if p = N(α) is a prime that decomposes in the appropriate manner.
We use Algorithm 2 as a stepping stone towards Algorithm 3, which
allows one to prescribe the embedding degree of the output by imposing
congruence conditions on α.

Algorithm 2.
Input: A non-Galois CM-field K of degree 4 and a positive integer `.
Output: A prime p of ` bits and a Weil p2-number corresponding to
the Jacobian JC of a curve C of genus 2 over Fp2 such that JC has
p-rank 1 and a prime number of Fp2-rational points.

(1) Take a random element α of OK of which the norm N(α) has `
bits.

(2) If p = N(α) is prime in Z, continue. Otherwise, go to Step 1.

(3) If the prime β = pα−1α−1 of OK0 remains prime in OK , then let
π = α2β. Otherwise, go to Step 1.

(4) If N(uπ − 1) is prime for some u ∈ {±1}, then replace π by uπ.
Otherwise, go to Step 1.

(5) return p, π.

Theorem 13. If Algorithm 2 terminates, then the output is correct.
Fix the input field K and assume that it satisfies the conditions of

Lemma 7. If K has no prime ideal of norm 2, and no prime above 2 is
ramified in K/K0, then the heuristic expected runtime of the algorithm
is polynomial in `.

Proof. By Lemma 6, the output π is a Weil p2-number satisfying the
conditions of Lemma 1, and the corresponding abelian surface A has
#A(Fp2) = N(π − 1) rational points, which proves that the output is
correct.
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Lemma 7 shows that among the elements α of OK of prime norm,
at least about 1 in every 4hK has the appropriate factorization, so if we
treat N(α) and N(π − 1) as random integers as we did in the proof of
Theorem 9, then we find again that the heuristic expected runtime is
polynomial in `.

Remark 14. Actually, the heuristic probability of passing from Step 3
to Step 4 in Algorithm 2 is 1/2 instead of only (4hK)−1 as can be seen
by applying Chebotarev’s density theorem to the quadratic extension
LH/H from the proof of Lemma 7.

Algorithm 3 constructs p-rank-1 curves with prescribed embedding
degree by imposing congruence conditions on α in a way that is similar to
what is done in the algorithm of Freeman, Stevenhagen, and Streng [26].

Algorithm 3.
Input: A non-Galois CM-field K of degree 4, a positive integer κ and
a prime number r ≡ 1 (mod 2κ) that splits completely in K.
Output: A prime p and a Weil p2-number π corresponding to the
Jacobian JC of a curve C of genus 2 over Fp2 that has p-rank 1 and
embedding degree κ with respect to a subgroup of order r.

(1) Let r be a prime of K dividing r, let s = rr−1r−1 and compute a
basis b of OK .

(2) Take a random element x of F∗r and a primitive 2κ-th root of
unity ζ ∈ F∗r .

(3) Take the ‘small’ α ∈ OK such that α mod r = x, α mod r = xζ
and α mod s = x−1. Here ‘small’ means that the coordinates
with respect to the basis b are ≤ r/2.

(4) If p = NK/Q(α) is prime in Z, continue. Otherwise, go to Step 2.

(5) If the prime β = pα−1α−1 of OK0 remains prime in OK , let
π = α2β. Otherwise, go to Step 2.

(6) return p, π.

Theorem 15. If Algorithm 3 terminates, then the output is correct. If
the input field K is fixed and satisfies the conditions of Lemma 7, then
the heuristic expected runtime of the algorithm is polynomial in r.
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Proof. The facts that the output has p-rank 1 and a Jacobian of order
N(π − 1) are proven as in the proof of Theorem 13.

If r divides the group order N(π− 1), then the embedding degree is
the order of (p2 mod r) in the group F∗r (see also [26, Proposition 2.1]).
So to prove that JC has embedding degree κ with respect to r, it suffices
to prove that p2 mod r is a primitive κ-th root of unity in F∗r and that
r divides N(π − 1).

Let φ be the non-trivial automorphism of K0. Then we have β =
φ(αα), hence π mod r = (α mod r)2(φ(αα) mod r). Inside Fr, we have

(φ(αα) mod r) = (αα mod s) = (α mod s)(α mod s)
= (α mod s)2 = x−2,

hence we have (π mod r) = 1, so r divides N(π − 1). Moreover,

(p2 mod r) = (p2 mod r) = (α mod r)2(α mod r)2(φ(αα) mod r)2

= (α mod r)2(α mod r)2x−4 = ζ2

is a primitive κ-th root of unity.
This finishes the proof of the correctness of the output. Next we

prove the heuristic runtime. As r splits completely, α is a lift of some
element modulo r. We treat its norm p = N(α) as a random integer of
4 log2 r bits. The rest of the proof is as the proof of Theorem 13.

Remark 16. Actually, the prime r does not need to split completely
in Algorithm 3. It suffices to have rOK = rrs, where r is prime and s
may be prime or composite.

Remark 17. Note that if Algorithm 2 or 3 terminates, then K satisfies
the conditions of Lemma 7, which are therefore not only sufficient, but
also necessary for each of these algorithms to terminate.

Let A be a g-dimensional abelian variety over the finite field k of
q elements. Its ρ-value with respect to a subgroup of A(k) of order r
is defined to be ρ = g log q/ log r. As we have log #A(k) ≈ g log q, the
ρ-value measures the ratio between the bit size of r and the bit size of
the order of the full group of rational points on A. It is at least about
1 if q is large. If we have A = JC , then a point on A can be represented
by a g-tuple of points on C, hence ρ is also the ratio between the bit
size of a group element of A and the bit size of r. For cryptography, one
wants the ρ-value to be as small as possible to save bandwidth when
transmitting points on JC .

The prime p, computed as the norm of the element α in Step 4, is
expected to satisfy log(p) ≈ 4 log(r). Since our p-rank-1 curve is de-
fined over Fp2 , its ρ-value is ρ = 2 log(p2)/ log(r) ≈ 16. For a more
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detailed version of this heuristic analysis of the ρ-value, see Freeman,
Stevenhagen, and Streng [26], who compute a ρ-value of about 8 for
their ordinary abelian surfaces with prescribed embedding degree. For
cryptographic applications, a ρ-value of 16 or even 8 is larger than de-
sired, but it does show that pairing-based cryptography is possible for
curves of genus 2 with p-rank 1.

When working with odd embedding degree κ, the embedding field
Fp(ζr) could be smaller than the field Fp2(ζr) = Fp2κ that is suggested
by the embedding degree κ (see also Hitt [42]). This may influence the
security of pairing-based cryptography, but can easily be avoided by
restricting to even embedding degree κ, or by only accepting primes p
such that r does not divide pκ − 1.

5 Constructing curves with given
Weil numbers

We will now explain the explicit CM construction of a curve C/Fp2
such that J(C̃) corresponds to our Weil p2-number π. A more detailed
exposition can be found in [27].

Honda’s CM construction of the abelian variety corresponding to a
given Weil q-number π is based on the theory of complex multiplication
of abelian varieties of Shimura and Taniyama [78, in particular §13,
Thm. 1]. The analogous theory for elliptic curves is even more clas-
sical and dates back to the early 19th century. The first algorithmic
application of the CM construction of elliptic curves is its application
to primality proving by Atkin and Morain [1].

The construction starts by taking an abelian variety A over a number
field F such that we have End(A) ∼= OK , where K is a field containing
π, and reduces this variety modulo an appropriate prime P of F . For
our p-rank-1 Weil numbers π, one can take K = Q(π) and any prime
P dividing p.

In the dimension-2 case, instead of writing down the abelian surface
A itself, one only writes down the absolute Igusa invariants j1, j2, j3 ∈ F
of the curve C of which A is the Jacobian. These invariants are the first
three of a set of 10 invariants given on page 641 of [45]. One then
reduces the invariants modulo P and, assuming (j1 mod P) is a unit,
constructs C̃ = (C mod P) from the reduced invariants using Mestre’s
algorithm [61]. Honda’s construction shows that J(C̃) or its quadratic
twist corresponds to our Weil p2-number π.

In all practical implementations, the invariants jn ∈ F are repre-
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sented by polynomials H1, H2, H3 or H1, Ĥ2, Ĥ3 called Igusa class poly-
nomials. We explain the polynomials Ĥn later, but the polynomials Hn

are given by
Hn =

∏
C

(X − jn(C)),

where the product ranges over isomorphism classes of curves C such
that we have End(J(C)) ∼= OK . For every triple (j1, j2, j3) of zeroes
jn ∈ Fp of Hn with j1 6= 0, one thus obtains a unique Fp-isomorphism
class of curves. Assuming j1(C) 6∈ P for some C, a twist of at least
one of the curves we obtain has Weil number π. Let C̃ be such a curve.
As we know the group order N(π − 1) of J(C̃)(Fp2), we can quickly
check whether we have the correct curve by taking random points on
its Jacobian and multiplying them by N(π − 1).

As the field K is fixed, so are its class polynomials. They can there-
fore be precomputed using any of the three known algorithms: the com-
plex analytic method of Spallek [79] and van Wamelen [88], for which
Streng [82] recently gave the first runtime analysis and proof of correct-
ness, the 2-adic method of Gaudry, Houtmann, Kohel, Ritzenthaler, and
Weng [32], and the Chinese remainder method of Eisenträger and Lauter
[21]. Alternatively, class polynomials can be found in the ECHIDNA
database [50].

The alternative class polynomials Ĥn are given by

Ĥn =
∑
C

jn(C)
∏
C′ 6∼=C

(X − j1(C ′)), (n = 2, 3)

where both the product and the sum range over isomorphism classes of
curves C for which End(J(C)) ∼= OK holds. For any such C, we have
jn(C)H ′1(j1(C)) = Ĥn(j1(C)). This implies that if every coefficient
of H1 has a denominator that is not divisible by p, and (H1 mod p)
has a non-zero root of multiplicity 1, then we can compute the Igusa
invariants of a curve C̃, which is automatically either the curve we
want or a quadratic twist. The idea of using Ĥn and not the more
standard Lagrange interpolation is due to Gaudry, Houtmann, Kohel,
Ritzenthaler, and Weng, who show in [32] that Ĥn heuristically has a
much smaller height.

6 A sufficient and necessary condition

As said before, the condition of Lemma 7 are sufficient for all three
algorithms to work and necessary for Algorithms 2 and 3. They are
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also easy to check and true for ‘most’ non-Galois quartic CM-fields.
The current section gives a weaker condition that is both sufficient and
necessary for Algorithm 1 to work. We also give examples to show that
this condition is non-trivial and strictly weaker than that of Lemma 7.

Let K be a non-Galois CM-field of degree 4. Let C/K be a curve
of genus 2 over the algebraic closure K of K such that End(JC) ∼= OK
holds. Such C are known to exist. The field Q(j) ⊂ K generated over
Q by all 10 absolute Igusa invariants j1(C), . . . , j10(C) of [45, page 641]
is called the field of moduli of C. For any subfield X ⊂ K, let X(j) be
the compositum X ·Q(j). Write K = K0(

√
r) for some r ∈ K0 and let

Kr
0 = Q(

√
NK0/Q(r)) (as before).

Lemma 18. Let K,Kr
0,K(j) be as above and let G be the Galois group

of the normal closure of K(j) over Q. Let S be the set of primes p
that factor in K as pOK = p1p1p2 and such that there exists a Weil
p2-number π such that we have πOK = p2

1p2.
The Dirichlet density of S is

#{σ ∈ G | ordσ = 2, σ|Kr
0
6= idKr

0
}

#G
.

If S is non-empty, then it has positive density.

Corollary 19. If Algorithm 1 terminates on input K, then σ as in
Lemma 18 exists for K. Conversely, if K is fixed and σ exists for K,
then Algorithm 1 heuristically has a polynomial runtime.

Proof of Corollary 19. If Algorithm 1 terminates, then S is non-empty,
hence σ exists by Lemma 18. If σ exists, then the proof of Theorem 9
is valid, so Algorithm 1 heuristically has a polynomial runtime.

To prove Lemma 18, we need some more theory. Let L be the normal
closure of K. A CM-type of K is a set Φ of two embeddings ϕ : K → L
that satisfies Φ∩Φ = ∅. Let C be a curve as above, and let Φ = {ϕ1, ϕ2}
be its CM-type as defined in [78, §5.2]. The exact definition of this CM-
type will not be important to us.

The reflex field

Kr = Q(
∑
i ϕi(x) : x ∈ K) ⊂ L

of K with respect to Φ is one of the two non-Galois CM subfields of
L of degree 4 that are not conjugates of K. Its real quadratic subfield
Kr

0 does not depend on Φ and is exactly the field Kr
0 that we have seen

above Lemma 7. By [77, Prop. 20.3(i)], we have Kr
0 ⊂ Q(j), so that we

have the inclusions of fields shown in Figure V.1.
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Figure V.1: Inclusions between the fields

The main theorem of complex multiplication gives Kr(j) as an un-
ramified abelian extension of Kr. To state it, we need to define the
type norm of the reflex type of Φ. Let ΦL be the set of extensions of
elements of Φ to L, so ΦL is a CM-type of L and so is the set Φ−1

L of
inverses of elements of L. The set of restrictions of Φ−1

L to Kr is a CM-
type Φr = {ψ1, ψ2} of Kr called the reflex of Φ [78, §8.3]. By [78, §8.3
Prop. 29], for any fractional OKr-ideal a, there is a unique fractional
OK-ideal NΦr(a) such that we have

NΦr(a)OL =
2∏
i=1

ψi(a)OL.

The map NΦr from ideals of Kr to ideals of K is called the type norm
with respect to Φr.

Theorem 20 (Main Theorem 1 in §15.3 of [78]). The field extension
Kr(j)/Kr is abelian and unramified. Its Galois group corresponds via
the Artin map to ClKr/H0, where H0 is the group of ideal classes [a]
such that NΦr(a) is principal and generated by an element µ ∈ K with
µµ ∈ Q∗.

The following lemma computes NΦr(q) for certain primes q.
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Lemma 21. Let K be a quartic CM-field and p a prime that factors in
K as pOK = p1p1p

e
2.

(1) The prime p factors in Kr
0 as se for a prime s, which splits in

Kr as sOKr = qq; and

(2) we have NΦr(q) = p2/e
1 p2 (up to complex conjugation).

Proof. Let P ⊂ OL be the unique prime over p1. Part (1) follows from
the fact that the decomposition group of P is Gal(L/K) and that the
inertia group has order e.

For part (2), let s be the generator of Gal(L/K), let s′ be the genera-
tor of Gal(L/Kr) and set r = ss′. Then ΦL ⊂ Gal(L/Q) has 4 elements
and satisfies ΦL〈s〉 = ΦL and Φ−1

L 〈s′〉 = Φ−1
L , hence Φ−1

L is {1, s, s′, ss′}
or its complex conjugate, and we have Φr = {1, s|Kr} up to complex
conjugation. Take ψ1 = 1, ψ2 = s. We compute

NΦr(q)OL = (qOL)(sqOL) =
(
P(s

′
P)
)(

(sP)(ss
′
P)
)

= P2
(

(s
′
P)(ss

′
P)
)

= (p2/e
1 OL)(p2OL),

up to complex conjugation, which proves (2).

Proof of Lemma 18. Let p be a prime number that is unramified in K.
We prove that p is in S if and only if its decomposition group in the
normal closure of K(j) is of order 2 and acts non-trivially on Kr

0. Cheb-
otarev’s density theorem [66, Theorem 13.4] then proves the formula for
the density. Moreover, if S is non-empty, then σ exists, hence the den-
sity is positive.

Let p be a prime number and let σ ∈ G be its p-th power Frobenius.
Suppose p is in S and write pOK = p1p1p2. The image of σ in Gal(L/Q)
generates Gal(L/K) or its conjugate, hence has order 2. It follows that
p is inert in Kr

0/Q and splits into two factors q and q in Kr. Lemma 21
shows that the type norm of q is NΦr(q) = p2

1p2 = πOK or its complex
conjugate, and we have ππ ∈ Q∗, so we find [q] ∈ H0, hence σ2 is trivial
on Kr(j) and in particular on Q(j).

Recall that Q(j) is the field generated over Q by the absolute Igusa
invariants of C and that C is any curve with CM by OK . In particular,
we can replace C by τC for any automorphism τ of K/Q. This shows
that σ2 is also trivial on τQ(j) for any τ , and hence σ2 is trivial on the
normal closure of Q(j). As it is also trivial on the normal closure L of
K, we find that it is trivial on the normal closure of K(j) and hence σ
is in the set of Lemma 18.

Conversely, suppose that σ2 is trivial and σ is non-trivial on Kr
0.

As σ|L generates Gal(L/K) or a conjugate, we find that p factors as
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pOK = p1p1p2. Again, the prime p is inert in Kr
0/Q and splits into two

factors q and q in Kr with type norms p2
1p2 and its complex conjugate.

As we have σ2 = 1, we find by Theorem 20 that p2
1p2 = πOK holds for

some π ∈ OK that satisfies ππ ∈ Q∗. Since also ππ is positive and has
absolute value p2, it is a Weil p2-number and p is in S.

Example 22. For the field K = Q[X]/(X4 + 12X2 + 2) of Example 8,
we can find Q(j) in the ECHIDNA database [50] and compute that
Q(j) contains the field F = Q(

√
2 +
√

2), which is cyclic Galois over Q
and contains Kr

0 = Q(
√

2). Any automorphism of F of order 2 is trivial
on Kr

0, so the density of S in Lemma 18 is 0 and none of our algorithms
works for this field.

Example 23. For the field K = Q[X]/(X4+20X2+5), we have 13 ∈ S,
so that S has positive density and Algorithm 1 works for K. However,
the discriminant dr = 5 of Kr

0 = Q(
√

5) is a prime discriminant and
occurs in the prime discriminant factorization d = (−4) · (5) · (−19) of
K0. This shows that K does not satisfy the conditions of Lemma 7,
which are therefore too strong for Algorithm 1.

7 Factorization of class polynomials mod p

While experimenting with the explicit CM construction for curves of
p-rank 1, we found that in the (ramified) case e = 2 of Lemma 1,
the polynomial H1 mod p has no roots of multiplicity 1 in Fp, which
made working with Ĥn impossible. The current section explains this
phenomenon, and shows how to adapt H1, Ĥ2, Ĥ3 to deal with this
situation. We also explain the analogue of this for the situation e = 1,
for which there is no problem.

Let K, C, and j be as in Section 6. If j1(C) 6= 0 is a simple root
of H1, which is ‘usually’ the case, then we have Q(j) = Q(j1(C)) since
we can compute jn(C) from j1(C) using the polynomials Ĥ2 and Ĥ3 as
we have seen in Section 5. The Kummer-Dedekind theorem thus relates
the factorization of (H1 mod p) ∈ Fp[X] to the factorization of p in (an
order in) Q(j).

Lemma 24. Let p be a prime that factors in K as pOK = p1p1p2, and
let n be the smallest positive integer such that en is even and (p1p

e/2
2 )n

is generated by a Weil pn-number π. Then any prime q of Kr lying over
p decomposes in Kr(j)/Kr into distinct primes of residue degree en/2.
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Proof. Recall from Theorem 20 that Kr(j) is the unramified abelian
extension of Kr such that the Artin map induces an isomorphism

ClK/H0 → Gal(Kr(j)/Kr),

where H0 ⊂ ClK is the subgroup of ideal classes [a] such that NΦr(a) is
principal and generated by an element µ ∈ K with µµ ∈ Q∗.

The Artin isomorphism sends [q] to a generator of the decomposition
group of q, so it suffices to prove that [q] has order en/2 in the quotient
group ClKr/H0. Lemma 21 computes that NΦr(qm) is either (p2/e

1 p2)m

or its complex conjugate, so the smallest integer m with [qm] ∈ H0 is
exactly m = en/2.

Corollary 25. Let p, n be as in Lemma 24. Then p splits into prime
factors of residue degree n in Q(j)/Q. Each factor occurs exactly e
times.

Proof. Each prime factor p has residue degree en/2 in Kr(j)/Kr by
Lemma 24 and 2/e in Kr/Q by Lemma 21, hence n in Kr(j)/Q. As
all ramification of p takes place in Kr

0/Q, we find that the ramification
index of p in Kr(j)/Q is e.

We have seen in Figure V.1 on page 139 that Q(j) contains Kr
0. As

the residue degree and ramification index of p in Kr/Kr
0 are 1, we find

that the residue degree and ramification index of p are also n and e in
Q(j)/Q.

Corollary 26. If p factors in K as pOK = p1p1p
2
2, then (H1 mod p) ∈

Fp[X] has no roots of multiplicity 1 in Fp.

Proof. The polynomial H1 ∈ Q[X] is monic and the denominators of
the coefficients are not divisible by p because they are Igusa invariants
of a curve that has potential good reduction modulo p. Let c ∈ Z not
divisible by p be such that H1(cX) is in Z[X] and let f ∈ Z[X] be
an arbitrary irreducible factor of H1(cX) ∈ Z[X]. We find an order
O = Z[X]/f in Q(j). Each irreducible factor g ∈ Fp[X] of (H1 mod p)
corresponds to the prime ideal p = (p, g(X)) of O. As every prime over
p ramifies in Q(j)/Q by Corollary 25, we find that p is either ramified
or singular. By the Kummer-Dedekind theorem (Theorem 8.2 of [81]),
both cases imply that the roots of g have multiplicity at least 2 as roots
of H1.

This shows that H1, Ĥ1, Ĥ2 cannot be used for the case e = 2. To
get around this, we replace H1 by an irreducible factor f ∈ Kr

0[X]
and Ĥn by the unique polynomial Sn of degree at most deg(f) − 1
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that is congruent modulo f to Ĥn(H1/f)−1. If we write pOKr = s2,
then (f mod s), (S2 mod s), (S3 mod s) ∈ Fp[X] can be used in exactly
the same way as (H1 mod p), (Ĥ2 mod p), (Ĥ3 mod p) and do not suffer
from Corollary 26.

Corollary 27. For all but finitely many of the primes p that decompose
as pOK = p1p1p

e
2, the reduction (H1 mod p) ∈ Fp[X] is a product of

distinct irreducible polynomials in Fp[X] of degree n for n given in
Lemma 24 (and depending on p).

Proof. We exclude the primes dividing the denominator of any coeffi-
cient of H1, as well as those dividing the discriminant. Then all roots
of (H1 mod p) in Fp are simple roots. Let f,O be as in the proof of
Corollary 26. Then p does not divide the index of O in its maximal
order. The fact that every prime of Q(j) has residue degree n implies
that every irreducible factor of f mod p has degree n.

8 Examples

Algorithm 1

We provide examples of p-rank-1 curves C/Fp2 such that the Jacobian
JC is simple and has prime order. The CM-field for all examples is
K = Q(α), where α is a root of the polynomial X4+34X2+217 ∈ Q[X],
which satisfies the conditions of Lemma 7. We give the prime p, the
coefficients a1 and a2 of the minimal polynomial

f = X4 − a1X
3 + (a2 + 2p2)X2 − a1p

2X + p4

of the Frobenius endomorphism and the coefficients ci ∈ Fp2 of the
curve equation

C : y2 = c6x
6 + c4x

4 + c3x
3 + c2x

2 + c1x+ c0.

The group order of the Jacobian is #JC(Fp2) = N(π − 1) = f(1). The
field Fp2 is given as Fp(σ), where σ2 = −3. Section headings describe
the number of bits of the group order #JC(Fp2).

Each example was generated in a few seconds on a standard PC after
pre-computation of the Igusa class polynomials of K.
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160-bit group size

p = 924575392409, a1 = 3396725192754
a2 = 2876182159630959921399337, c6 = σ

c4 = 349419850452 · σ + 621473390194
c3 = 638315825844 · σ + 895470286740
c2 = 247903071476 · σ + 504258872407
c1 = 494346973570 · σ + 326558224146
c0 = 721392332677 · σ + 210623692149

192-bit group size

p = 236691298903769, a1 = −9692493559086
a2 = −58992172275797931791883572663, c6 = σ

c4 = 144046547562595σ + 31854049506043
c3 = 134634542821316σ + 20155601614364
c2 = 159093189820788σ + 52669766944798
c1 = 223684436822489σ + 66232364455191
c0 = 206430094481010σ + 170879851904277

256-bit group size

p = 15511800964685067143, a1 = 2183138494024250742
a2 = −871403391229975003782565554464700664457, c6 = 1
c4 = 7019198877313644539 · σ + 8886572032497699458
c3 = 8069566800142565548 · σ + 11092851174307405252
c2 = 8339873208295381793 · σ + 13688811293938352344
c1 = 10474983032301001361 · σ + 14509908493781086362
c0 = 4803877905347330504 · σ + 12900291622358663970

Algorithm 3

192-bit group size, embedding degree 12

Let K be the field K = Q[X]/(X4+13X2+41) and let κ = 12. It took a
few seconds to find the smallest prime r > 2192 that splits completely in
K and Q(ζ12), which is r = 2192+18513. We ran Algorithm 3 with input
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K,κ, r. The algorithm terminated after about 11 minutes and found a
prime p and a Weil p2 number with p-rank 1 and embedding degree 12
with respect to a subgroup of order r. Using p and precomputed Igusa
class polynomials, we were able to find an equation for the corresponding
hyperelliptic curve C in less than a second. We only give p, because π
and the coefficients of C would take up too much space.

p =142003856595807482747635387048977088071520136032341569

014612056864049709760143646636956724980664377491196079

730519617723521029855649462172148699393958968638652107

696147277436345811056227385195781997362304851932650270

514293705125991379





Appendix 1. The Fourier expansions of Igusa
invariants

Abstract. We show by which integers we can divide the
Igusa modular forms I4, I ′6, I10, and I2I10 so that the quo-
tient still has integral Fourier coefficients.

Every theta constant θ[c] has a Fourier expansion

θ[c](Z) =
∑

T∈Mat2(Q)

aT · exp
(
2πi Tr(ZT )

)
.

In fact, the definition of θ[c] in Section II.7 already tells us that this is
true with

aT =
∑
n∈Z2

(n+c′)(n+c′)t=T

(−1)2(n+c′)tc′′ ∈ Z,

where c is written as c = (c′, c′′), with column vectors n, c′, and c′′.
The functions h4, h6, h12, and h10, defined in terms of theta con-

stants in equation II.(7.1) are modular forms for Sp4(Z). It is known
that this implies that they have a unique Fourier expansion, that more-
over aT 6= 0 implies that 2T has integral entries and even integral diag-
onal entries, and that we have

aT = aUtTU for all U ∈ GL2(Z).

Following Lemma II.7.3, we identify the Igusa invariants I4, I6, I10,
and I2I10 with the modular forms h4, h6, h10, and h12. Section II.9
requires us to use modular forms with integral Fourier expansion, and
we would like to choose these functions as small as possible. In other
words, we want their Fourier coefficients to be integral with gcd equal
to 1. The following result supplies such functions.
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Lemma 1.1. The Fourier coefficients of 2−2h4, 2−2h6, 2−12h10, and
2−15h12 are integers. Moreover, each of these four modular forms has
a Fourier coefficient equal to 1.

Proof. Let I be the set of functions on Hg with integral Fourier expan-
sion. We have θ[c] ∈ 1+2I for c′′ = 0 and θ[c] ∈ 2I for c′′ 6= 0. As there
are 6 even theta characteristics c with c′′ 6= 0, we find

h10 =
∏
c even

θ[c]2 ∈ 212I.

Moreover, we have θ[c]4 ∈ Z + 8I, and since h4 and h6 are polynomials
in fourth powers of theta constants, this proves h4, h6 ∈ Z+8I. Table 1
gives a0 = 4 for h4 and h6, and shows that h10 has a coefficient 212.
This proves the lemma for all but 2−15h12.

Next, consider

h12 =
∑
C∈S

∏
c∈T\C

θ[c]4,

where T is the set of 10 even theta characteristics and S is the set of
15 Göpel quadruples. In other words, the set T \ C ranges over those
subsets of T of 6 elements with sum in Z2. We claim that no summand
has only 2 factors with c′′ 6= 0. Indeed, the other 4 factors would be
the theta constants with c′′ = 0, and their characteristics sum up to
0 mod Z2, showing that the 2 remaining factors are equal. This proves
the claim.

Write h12 = C + D, where C (resp. D) is the sum of those terms
with at least 4 (resp. exactly 3) factors with c′′ 6= 0. We have C ∈ 216I.

There are exactly three non-zero elements c′′ ∈ {0, 1
2}

2, namely d1 =
(0, 1

2 ), d2 = ( 1
2 ,

1
2 ), and d3 = (0, 1

2 ). We claim

D =
∑

a∈{0,1}3

( 3∏
i=1

θ[(aidi, d4−i)]4
)(∏
c′ 6≡

∑3
i=1 aidi

(mod Z2)

θ[(c′, 0)]4
)
.

Indeed, each term on the right is a term in D. Conversely, every term
of D has exactly one factor θ4 for each c′′ = d3−i to make the c′′-
coordinates sum up to an element of Z2. The sum of their c′-coordinates
is
∑
aidi modulo Z2, hence so is the sum of the c′-coordinates of the

theta characteristics with c′′ = 0. This proves that this term also occurs
on the right, which proves the claim.

As the θ’s with c′′ 6= 0 are in 2I and the θ4’s with c′′ = 0 are in
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1 + 8I, we can replace the latter by 1 in the product and get

D ≡
3∏
i=1

(
θ[(0, di)]4 + θ[(di, di)]4

)
(mod 215I).

Next, we show that each factor on the right is in 25I. By the symmetry
in the definition of the theta constants, one can see not only θ[(0, d)] ∈
2I, but also f = θ[(di, di)] − θ[(0, d)] ∈ 4I. It follows that θ[(0, d)]4 +
(θ[(0, d)] + f)4 is in 25I, hence h12 ∈ 215I. Conversely, Table 1 shows
that 215 occurs as a coefficient.

(a 2b c) 2−2h4 2−2h6 2−12h10 2−15h12

0 0 0 1 1 0 0
0 0 1 240 −504 0 0
1 1 1 13440 44352 1 1
1 0 1 30240 166320 −2 10
0 0 2 2160 −16632 0 0
1 1 2 138240 2128896 −16 −88
1 0 2 181440 3792096 36 −132
2 2 2 604800 24881472 240 2784
2 1 2 967680 65995776 −240 −8040
2 0 2 1239840 90644400 32 17600
0 0 3 6720 −122976 0 0
1 1 3 362880 15422400 99 1275
1 0 3 497280 23462208 −272 736
2 2 3 1814400 234311616 −1800 13080
2 1 3 2903040 453454848 2736 −14136
2 0 3 2782080 530228160 −1464 −54120
3 3 3 3642240 883802304 15399 48303
3 2 3 5987520 1945345248 −19008 38016
3 1 3 6531840 2818924416 27270 −256410
3 0 3 8467200 3327730560 −43920 1073520
0 0 4 17520 −532728 0 0

Table 1: The Fourier coefficients of certain modular forms for Sp4(Z).
The entries next to (a, 2b, c) are the coefficients aT , where T is the
matrix

(
a
b
b
c

)
.

Remark 1.2. We claimed in Remark II.7.2 that we have h4 = 22ψ4,
h6 = 22ψ6, h10 = −214χ10, and h12 = 2173χ12, where ψk is the Siegel
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Eisenstein series of weight k and χk is defined in terms of Eisenstein
series in that remark. Table 1 allows us to give a proof of this claim.

Indeed, the graded ring of modular forms for Sp4(Z) is equal to
C[ψ4, ψ6, ψ10, ψ12] by [47], so we see h4 = c4ψ4 and h6 = c6ψ6 for
certain constants c4 and c6, and we see that there are linear relations
between h10, ψ4ψ6, and χ10, and between h12, ψ3

4 , ψ2
6 , and χ12. Using

tables containing coefficients of ψ4, ψ6, χ10, and χ12, such as those of
Resnikoff and Saldaña [68], we can find the appropriate linear relations.

It seems that the entry with (a, 2b, c) = (3, 3, 3) for χ10 has a missing
sign in the tables of Resnikoff and Saldaña, since it is the only one that
does not agree with our table.



Appendix 2. An alternative algorithm for
enumerating CM abelian varieties

Abstract. We give an alternative for Algorithm II.3.1
for computing all triples (Φ, a, ξ). It uses the pairs (z, b) of
Section I.5.3. We also generalize a much cited result from
Spallek’s thesis [79].

2.1 Reduced pairs (z, b)

Let K be a CM-field of degree 2g with maximal totally real subfield K0.
Suppose we have g = 2 or, more generally, that the different of K0 is
principal.

In Section I.5.2, we saw that the principally polarized abelian vari-
eties with CM byOK correspond to equivalence classes of triples (Φ, a, ξ)
consisting of a CM-type Φ of K, an fractional OK-ideal a, and an el-
ement ξ ∈ K with DK/Qaaξ = OK and Imφξ > 0 for all φ ∈ Φ.
Two such triples (Φ, a, ξ) and (Φ, a′, ξ′) with the same type Φ are called
equivalent if there is an element u ∈ K∗ with a′ = ua and ξ′ = (uu)−1ξ.

In Section I.5.3, we saw that each triple (Φ, a, ξ) is given up to equiv-
alence by a = zb+b−1, ξ = (z−z)−1δ−1, and Φ = {φ : K → C | Imφξ >
0} with z ∈ K and b a fractional OK0 -ideal such that zb + b−1 is an
OK0-submodule of K. We call two such pairs (z, b) equivalent if they
give rise to equivalent triples (Φ, a, ξ) with the same CM-type Φ.

Let S be a complete set of representatives for the ideal class group of
OK0 . For every b ∈ S, let Tb be a half-open fundamental parallelepiped
for translation by b−2 in K0⊗R. Let V be a union of 2g half-open cones
such that V is a fundamental domain for multiplication by (O∗K0

)2 in
K0 ⊗R. Recall I(z) =

∏
φ∈Φ |Imφz| and let N = NK0/Q.

Lemma 2.3. Every equivalence class of pairs (z, b) contains a pair with

1. I(z)N(b)2 maximal in the equivalence class,
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2. b ∈ S,

3. Im z ∈ V ,

4. Re z ∈ Tb.

Proof. For the fact that a maximum exists, see the analogous case of
the Hilbert fundamental domain. That is, see Remark I.5.10 and [86,
§I.2].

Next, note that for u ∈ K∗0 , we have u−1(zb + b−1) = (u−2z)(ub) +
(ub)−1, which does not change I(x)N(b), so b can be taken in S. By
taking u to be a unit in O∗K0

, we even find Im z ∈ V . Next, we can
translate z by any element of b−2, which gives us Re z ∈ Tb.

Remark 2.4. The conditions in Lemma 2.3 are bounds of a fundamen-
tal domain for the action of SL2(OK0) mentioned in Remark I.5.10. See
[86, §I.3].

The pairs (z, b) of Lemma 2.3 satisfy I(z)N(b)2 > Cg∆−1
0 for some

constant Cg depending only on g. For g = 2, this is Lemma II.6.5
with C2 = π2/6, and for other g, it is a straightforward generalization.
Moreover, if we write K = K0(

√
D) for some D ∈ OK0 , then we find√

D = az + b with a ∈ b2, b ∈ OK0 . In other words, we have

z =
√
D − b
a

.

We find a ∈ b2∩V ′ for the union of cones V ′ =
√
DV −1 ⊂ K0⊗R, and

N(a)2 < I(
√
D)N(b)2C−1

g ∆0, so there are finitely many possibilities
for a. We also find b ∈ OK0∩aTb, which yields finitely many possibilities
for b.

Assuming we can compute the unit group and class group of K0, as
well as all elements a ∈ b2 below a given norm bound up to multiplica-
tion by (O∗K0

)2, this gives us the following algorithm.

Algorithm 2.5.
Input: A CM-field K = K0(

√
D) such that the different of the totally

real subfield K0 is principal, and a CM-type Φ of K. A Z-basis of OK .
Output: At least one representative (z, b) of every equivalence class.

1. Compute a set of representatives S of the class group of K0.

2. Write each element of the Z-basis of OK in the form xi + yi
√
D

with xi, yi ∈ K0.
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3. For each b ∈ S, compute all a ∈ b2 up to multiplication by (O∗K0
)2

such that such that (1) φ(a) > 0 holds for all φ ∈ Φ and (2) we
have

|N(a)| ≤ N(b)2
√
|N(D)|∆0C

−1
g .

4. For each pair (b, a) compute a half-open fundamental domain
Tab−2 for translation by ab−2 in R2.

5. For each (b, a), compute all b ∈ OK0 ∩ Tab−2 for which a divides
b2 −D.

6. For each triple (b, a, b) and each basis element xi + yi
√
D of OK ,

check if yia ∈ b2, xi ± yib ∈ OK0 , and a−1yi(D − b2) ∈ b−2 hold.
Remove the triple from the list if one of these conditions is not
satisfied.

7. For each triple (b, a, b), return the pair (z, b) for z = (
√
D− b)/a.

After running this algorithm, there may still be duplicate elements
in the list. It is possible to eliminate them by taking only the pairs (z, b)
that satisfy the conditions of Lemma 2.3, and by using the appropriate
identifications of the boundaries of the Hilbert fundamental domain as
in [86, §I.3].

Another way to remove duplicates is to use the Sp4(Z)-reduction
algorithm II.5.9 followed by the algorithm of Lemma II.5.20.

2.2 Real quadratic fields

In the case g = 2, as K0 is quadratic, the class group and the fun-
damental unit can be computed using the theory of reduced indefinite
binary quadratic forms as was done by Shanks [74, 75]. It is relatively
straightforward to derive from that theory a method for enumerating
the elements of norm below a bound B, and we do that below. We use
Lenstra [56] as our main reference.

Actually, we show how to compute the group of totally positive units
O∗+K0

and the strict class group Cl+(K0) of fractional ideals modulo K∗+0 ,
but it is easy to check if an element of O∗K0

is a square and thus compute
the class group and unit group.

We study (indefinite) binary quadratic forms ax2 + bxy + cy2 over
Z with discriminant b2 − 4ac equal to ∆0 > 0. To each such form, we
associate the fractional OK0-ideal

Z +
√

∆0 − b
2a

Z.
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This gives a bijection between the set of binary quadratic forms of dis-
criminant ∆0, and the set of fractional OK0 -ideals provided with a Z-
basis with first basis element 1. This bijection induces in turn a bijection
between Cl+(K0) and the set of forms up to SL2(Z) ([56, §3]). An in-
definite quadratic form is called reduced if∣∣√∆0 − 2|a|

∣∣ < b <
√

∆0

holds, and called almost-reduced if b is in the interval Ja, defined by

Ja =
{

]−|a|, |a|] if |a| >
√

∆0,]√
∆0 − 2|a|,

√
∆0

[
otherwise.

We call an ideal reduced if it corresponds to a reduced form. Every
class in Cl+(K0) contains a reduced ideal, and the following linear-time
algorithm computes an equivalent reduced form for any input form.

Algorithm 2.6.
Input: a binary quadratic form (a, b, c) of discriminant ∆0.
Output: an SL2(Z)-equivalent reduced form.

1. Set (a, b, c)← (c,−b, a).

2. Let b′ ∈ Ja be equivalent to b modulo 2a and let c′ = (b2 −
∆0)/(4a). Set (a, b, c)← (a, b′, c′).

3. If (a, b, c) is not reduced, go to step 1.

For the fact that this algorithm is linear-time, see [56, Section 4].
If we apply this algorithm to a reduced form f , then it stops after a
single iteration and returns another reduced form ρ(f). The map ρ is
a permutation of the set of reduced forms and two reduced forms are
SL2(Z)-equivalent if and only if they are in the same 〈ρ〉-orbit ([56,
Section 5]).

We can now start by listing all reduced forms. We then repeatedly
apply ρ to partition them into 〈ρ〉-orbits. While doing this, we also
compute a set of representatives S of the 〈ρ〉-orbits. Every time we
apply ρ, if we have f2 = ρ(f1) and the ideal bj corresponds to the
form fj , we can compute the element x ∈ K∗0 satisfying b2 = xb1. The
unit group O∗+K0

is generated by the x that we get if we repeatedly apply
ρ to OK0 until we get OK0 back.
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More sophisticated methods use short representations of x and com-
pute those not by repeatedly applying ρ but by moving through the
cycle of reduced ideals in a smarter way as in Buchmann, Thiel, and
Williams [10]. For our running time bounds, writing out x is fast
enough.

Now that we have the class group and unit group, we show how to
enumerate all ideals of norm at most B. The norm of the ideal corre-
sponding to (a, b, c) is 1/a by [56, Section 2]. Using only the SL2(Z)-
transformations

T =
(

1 m
0 1

)
(m ∈ Z),

which changes only the second basis element, one can make a quadratic
form almost-reduced (step 2 of Algorithm 2.6). In particular, every ideal
b with B ∩Q = Z comes from an almost-reduced form. In particular,
the ideals of norm below B are exactly the ideals nb−1 with n ∈ Z
and b corresponding to an almost-reduced form (a, b, c) with an2 ≤ B.
Therefore, we enumerate all almost-reduced forms with a ≤ B. If we
apply the reduction algorithm to them, then we either end up with OK0

or with an element of S that does not represent the trivial ideal class. In
particular, we either know a generator or know that it is non-principal.
This gives us all elements of norm at most B up to the action of the
unit group.

Next, we bound the running time of the algorithms we have just
described. Enumerating all reduced forms takes time Õ(∆0), simply by
enumeration of all pairs a, b satisfying the definition of ‘reduced’ and
checking if ∆0−b2 is divisible by 4a. If we denote the number of divisors
of n by d(n), then it is well known that we have d(n) = O(nε) for every
ε > 0 (see e.g. [39, Thm. 315 in XVIII]). The number of reduced forms
is therefore easily seen to be at most

b
√

∆0c∑
b=1

d(∆0 − b2) = O(∆
1
2 +ε
0 ).

If h0 is the class number of K0, and R0 is its regulator, then the
length of each ρ-orbit satisfies

1
2 l log 2 < R0 <

1
2 l log ∆0

by [56, (11.4)]. In particular, we have

R0h0 <
1
2 (log ∆0)

∑
l = O(∆

1
2 +ε
0 ),

which one could also derive from the class number formula.
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Computing the fundamental unit by walking along one ρ-orbit takes
l < 2R0/ log 2 = O(∆1/2+ε

0 ) steps. It involves numbers of which the
height increases by something polynomial in log ∆0 at each step, hence
it takes time O(∆1+ε

0 ) using fast multiplication. We get that the whole
class group and unit group algorithm we just described takes time
O(∆1+ε

0 ).
Listing all almost-reduced forms with a ≤ B takes time Õ(B2),

where we use Õ(X) to mean “up to factors that are at most polynomial
in logX and log ∆0.” Each has a bit size that is O(log ∆0), hence the
linear-time reduction algorithm takes time O(log ∆0) for each of them.
It needs to be run at most 2R0/ log 2 times and hence finds a generator
that has height Õ(R0). We find that determining all elements of norm
at most B (up to (O∗K0

)2) takes time Õ(R0B
2).

2.3 Analysis of Algorithm 2.5

Let K be a quartic CM-field with real quadratic subfield K0 and sup-
pose we apply Algorithm 2.5 to K. Step 1 computes the unit group
in time Õ(∆0). Step 2 is polynomial-time. In step 3, we compute the
elements a ∈ b2 by listing the integral ideals ab−2 of norm at most
B =

√
|N(D)|∆0C

−1
g = Õ(∆1/2

1 ∆0). This takes time Õ(R0B
2) (by the

method of the previous section) for each of the h0 possibilities for b.
The total time is O(∆1∆5/2+ε

0 ).
For each of the h0 ideals b, the number of a’s is at most the number

of ideals of norm at most B, which is Õ(B) for any quadratic field.
The ideal ab−2 was given by a ‘small’ basis even before we com-

puted a. Therefore, we get a very reasonable fundamental parallelogram
Tab−2 efficiently, and can enumerate the b’s in almost linear time. The
number of b’s found in step 5 for each (b, a) is at most N(ab−2) ≤ B.

There were Õ(h0B) pairs (b, a), so the time needed for step 5 is at
most Õ(h0B

2) = Õ(∆1∆5/2
0 ). At the end of step 5, we then have at

most Õ(h0B
2) triples (b, a, b).

The ideal ab−2 was given by a ‘small’ basis even before we com-
puted a. Therefore, we get a very reasonable fundamental parallel-
ogram Tab−2 efficiently, and can enumerate the b’s in almost linear
time. The number of b’s found in step 5 for each (b, a) is at most
N(ab−2) ≤ B. There were Õ(Bh0) pairs (b, a), so this step takes time
at most Õ(B2h0) = Õ(∆1∆5/2

0 ).
At the end of step 5, we then have at most Õ(h0B

2) triples (b, a, b).
Writing out a for each triple gives an extra factor R0 in the running
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time, so we get a running time of Õ(h0R0B
2) = O(∆1∆5/2+ε

0 ), which
proves the following result.

Theorem 2.7. On input a quartic CM-field K, Algorithm 2.5 runs in
time O(∆1∆5/2+ε

0 ).

2.4 Generalization of Spallek’s formula

Spallek, in her thesis [79], gave a formula for the period matrices of
a complete set of representatives of the isomorphism classes of abelian
surfaces with CM by a given primitive quartic CM-field K of which the
real quadratic subfield K0 has class number one. This formula has been
the method of choice of other authors and even made it into a textbook
[27, 97]. The theory of the Section I.5.3 allows us to simplify Spallek’s
results and to generalize them to arbitrary primitive quartic CM-fields.

Let K be a primitive quartic CM-field with real quadratic subfield
K0 and let ω ∈ K0 be such that OK0 = Z[ω].

Lemma 2.8. Suppose that z ∈ K is such that zOK0 +OK0 is an OK-
ideal. Let φ1, φ2 be the embeddings of K into C given by φ1ω > φ2ω
and Imφ1(z) > 0 > Imφ2(z). Then the abelian variety corresponding
to the pair (z, b) has a period matrix

Zz =
2∑
i=1

φi

(
zδ−1

(
ω2 ω
ω 1

))
∈ H2.

Proof. Choose b1 = ω and b2 = 1 in Theorem II.4.3.

Theorem 2.9. Let K be a primitive quartic CM-field. A complete set
of representatives for the isomorphism classes of abelian varieties over
C with CM by OK can be obtained as follows.

1. Let Φ = {φ1, φ2} be a CM-type of K.

2. Let ε ∈ O∗K0
be such that 〈−1〉 × 〈ε〉 has odd index in O∗K0

.

3. Let K′ ⊂ K be such that {zOK0 +OK0 : z ∈ K′} is a complete set
of representatives of the ideal classes of K that contain an ideal
of the form zOK0 +OK0 .

4. Let K = ±K′ ∪ ±εK′.

5. If K is cyclic Galois, return

{Zz | z ∈ K, Imφ1z > 0 > Imφ2z}.
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6. If K is non-Galois, return

{Zz | z ∈ K, Imφ1z > 0}.

Proof. Algorithm II.3.1 gives a complete set of representatives of the
isomorphism classes of principally polarized abelian varieties over C
with CM by OK . Theorems I.5.8 and I.5.9 show that the ideal classes
a of step 4 of Algorithm II.3.1 are exactly the ones that contain a rep-
resentative of the form zOK0 +OK0 . Moreover, ξ = (z − z)−1δ−1 gives
a choice of ξ as in step 4 of Algorithm II.3.1.

We use Corollary II.3.4 to compute O∗K0
/NK/K0(O∗K) (which con-

sists of the classes of ±1 and ±ε) and Lemma I.3.4 to compute a com-
plete set of representatives for the equivalence classes of CM-types ({Φ}
if K is cyclic Galois and {Φ, {φ1, φ2}} if K is non-Galois).

Multiplication of ξ by u ∈ O∗K0
corresponds exactly to multiplication

of z by u−1, so K corresponds exactly to the set of triples (a, ξ, u) of
step 5 of Algorithm II.3.1. Steps 5 and 6 are the same as step 6 of
Algorithm II.3.1.



Appendix 3. Experimental results

Abstract. We show that our choice of absolute Igusa in-
variants leads to smaller class polynomials experimentally.
We also study how the denominator and numerator of the
coefficients of class polynomials grow with the discriminant
of the CM-field.

3.1 Good absolute Igusa invariants

We computed Igusa class polynomials of over a thousand fields in the
ECHIDNA database [50] for the 13 invariants listed in Table 2.

i1 = I4I
′
6/I10 as in Chapter II

i2 = I2I
2
4/I10 as in Chapter II

i3 = I5
4/I

2
10 as in Chapter II

i4 = I4I6/I10 the invariant i1 in ECHIDNA [50]
i5 = I5

2/I10 23 times Spallek’s j1 (see [79])
i6 = I3

2I4/I10 ECHIDNA’s i2; 2−1 times Spallek’s j2
i7 = I3

2I6/I10 ECHIDNA’s i3; 2−3 times Spallek’s j3
i8 = I ′6/(I2I4)
i9 = I ′26 /I

3
4

i10 = I2I
′
6/I

2
4

i11 = I ′26 /(I2I10)
i12 = I3

4/(I2I10)
i13 = I4/I

2
2 an invariant used by van Wamelen [89]

Table 2: Table of Igusa invariants

For each class polynomial H, we computed the coefficient with the
largest absolute value of the primitive integral polynomial dH, where d
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is the denominator of H. Figures 2–4 show how these coefficients grow
relative to the coefficients for i4. Our invariants i1, i2, i3 from Chapter II
are yellow, those of Spallek (i5, i6, i7) are red, and ECHIDNA’s i4 is
blue. The purple and green invariants have denominators that are not
of the form Ik10.

We computed a least-squares fitting linear map, which is shown in
Table 3 and Figures 2–4.

Figure 2: The logarithm of the largest coefficient of the integral Igusa
class polynomial for the given invariant (on the vertical axis) relative to
the logarithm of the largest coefficient of the polynomial for i4 (on the
horizontal axis). We used SAGE [70] to draw this graph and the others
in this section.

Table 3 shows that, out of the invariants that we tried, the best
invariant is i1.

It is followed by six invariants i8, i9, i10, i11, i12, and i13 that are not
elements of the ring Q[I2, I4, I6, I−1

10 ], but of its fraction field. These are
invariants that we disregarded in Chapter II as they are not guaranteed
to be finite. In practice, they are always finite, and the algorithm of
Chapter II can be made to work for these invariants. The table shows
that these invariants yield good class polynomials Hn.

We computed the (interpolating) class polynomials Ĥn for the triple
i1, i8, i9 and the field K = Q[X]/(X4 + 450X2 + 28153) with class
number 14. This yielded class polynomials Ĥ2 and Ĥ3 that are much
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Figure 3: The largest coefficient of the Igusa class polynomial for the
given invariant relative to the largest coefficient of the polynomial for i4.

Figure 4: The largest coefficient of the Igusa class polynomial for the
given invariant relative to the largest coefficient of the polynomial for i4.
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i1 = I4I
′
6/I10 = h4h6/h10 Chapter II 0.6686

i8 = I ′6/(I2I4) = h6h10/(h4h12) 0.7012
i9 = I ′26 /I

3
4 = h2

6/h
3
4 0.7590

i10 = I2I
′
6/I

2
4 = h6h12/(h

2
4h10) 0.7740

i11 = I ′26 /(I2I10) = h2
6/h12 0.8666

i12 = I3
4/(I2I10) = h3

4/h12 0.8716
i13 = I4/I

2
2 = h4h

2
10/h

2
12 0.9818

i4 = I4I6/I10 = h4h16/h
2
10 ECHIDNA 1

i2 = I2I
2
4/I10 = h2

4h12/h
2
10 Chapter II 1.0294

i3 = I5
4/I

2
10 = h5

4/h
2
10 Chapter II 1.4203

i7 = I2
2I6/I10 = h2

12h16/h
4
10 Spallek 1.7799

i6 = I3
2I4/I10 = h4h

3
12/h

4
10 Spallek 1.7949

i5 = I5
2/I10 = h5

12/h
6
10 Spallek 2.5921

Table 3: The invariants sorted by the slopes of the lines in Figures 2–4.

larger instead of smaller than the class polynomials for the invariants
i1, i2, i3.

A possible explanation of this phenomenon is the fact that the de-
nominators of the polynomials Ĥn are divisible by the prime divisors
of both the denominator of the first invariant and the n-th invariant.
To fix this, one would need invariants that have the same denominator
modular form. We therefore also computed the Igusa class polynomials
H1, Ĥ2, and Ĥ3 for the same field also for the triple i8, i11, and i12,
which shares the denominator h4h12. However, the class polynomials
for i1, i2, and i3 are still smaller. As we have not tested all quotients
of modular forms of small height, there may exist invariants that are
better than i1, i2, i3.

After i8, . . . , i13, the next two invariants i4 and i2 are roughly of
equal size. As the triple of invariants (i1, i2, i4) is algebraically (in fact,
linearly) dependent, this triple does not determine a point in the three-
dimensional moduli space. The next invariant is i3, which explains why
we chose the triple (i1, i2, i3) (up to constant factors) as our absolute
Igusa invariants in Chapter II.

The invariants i5, i6, i7 are much used in the computational litera-
ture (see [17, 97, 88] and up to constants also Spallek [79]). This is for
historical reasons rather than efficiency reasons, as Spallek based them
on the first three of 10 lexicographically ordered invariants of Igusa [45].
Table 3 shows that they yield class polynomials that are larger than the
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class polynomials for i1, i2, and i3.
We save only a constant factor in the bit sizes of the polynomials

by using our invariants instead of Spallek’s. However, as with the use
of class invariants for elliptic curves such as Weber functions (see e.g.
Schertz [71]), a constant factor makes a big difference in practice for
these large polynomials.

Example 3.10. We took the example K = Q[X]/(X4 + 15X2 + 55)
from [97]. There, the invariants i5, i6, and i7 are used, and the minimal
polynomial of i5 is not printed due to its size. The minimal polynomial
of i6 takes up a lot less space, and is given in Figure 5. The minimal
polynomial of i7 is about as large as the one for i6.

31211141316X8

−27779096536726653818950674601921971890292396045107400000X7

+346720036970164864520633999647836053021001931772327731602397500000000X6

−323935892173647531870709212399984173294274072173523094304605750150875000000000000X5

−209372188379501941132201276457668070320842985529512926296239981565946640625000000 \

0000000X4

+603288625340422507388887591081772665967647934740738205039824762464032519531250000 \

00000000000000X3

−234016705253685894380561947610280137543191874931402823057202858579513193969726562 \

500000000000000000000X2

+105347345309814515146862103901160150349725383070903879520477458135413894500732421 \

875000000000000000000000000X

−127166837276051396256529080756023511024819431152186984264705390881185904455184936 \

52343750000000 ∈ Z[X].

Figure 5: A constant times the minimal polynomial of i6(C) for
a curve C with CM by the maximal order of K = Q[X]/(X4 +
15X2 + 55) as in [97].

With our invariants of Chapter II, the complete output of the class
polynomial computation is given in Figure 6. Note that each of the
polynomials is a lot smaller than the one in Figure 5.

3.2 Asymptotics of bit sizes

For thousands of CM-fields in the ECHIDNA database, we took the
largest coefficient c of the primitive integral polynomial dH, where H
is the class polynomial H for the invariant i4, and d is the denominator
of H.

We used SAGE [70] to find a least-square fitting surface for the set
of points

(log ∆0, log ∆1, log log c) ∈ R3,
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134H1 =28561X8 − 63024286247286000X7+

5089603200935139203672250000X6−

491194385305230285106635375000000X5+

15070824051791205356231328929687500000X4−

161861362817640620712844383632812500000000X3+

307857688685507527504191774536132812500000000X2+

68920458051660239778562561706542968750000000000X−

11003047923373720724198232610702514648437500000000

112136Ĥ2 =90966043775189898900000X7−

8453896932952685422851138300000000X6+

4810669345723139916396063321918750000000X5−

217790660707366708688888934365271875000000000X4+

2812670721061255380870829679611341796875000000000X3−

5812006085609229658899261853637167968750000000000000X2−

1248060962351653325988960727184738159179687500000000000X

+ 215389197036958387031899522270161437988281250000000000000

112136Ĥ3 =10544496589569296093552499375000000X7−

918790071418575878284368261181220625000000000X6+

88671860116857539020294922874122782695312500000000X5−

2720629806557588039359833283968744866542968750000000000X4+

29219693869772398316627802410434325592736816406250000000000X3−

55575385207252011052618036472504817648925781250000000000000000X2−

12441725942738194717698740313052143355579376220703125000000000000X+

1986302919403709292533996122809376722078323364257812500000000000000

Figure 6: The Igusa class polynomials for the CM-field K =
Q[X]/(X4 + 15X2 + 55) as defined in Chapter II.

and found the approximate relation

log log c ≈ 0.53 log ∆0 + 0.58 log ∆1 + 0.35.

From this, we conclude that the bit size log2 c of c seems to grow roughly
like (∆0∆1)1/2, just like the degree of H (see Section II.8). We plot-
ted log log c in terms of log log(∆0∆1) in Figure 7, which supports this
estimate for the growth.

If the bit sizes of the coefficients grow like (∆0∆1)1/2, then the bit
size of H grows like ∆0∆1. As we used only relatively small examples,
this may not be the correct asymptotic growth of the Igusa class polyno-
mials, but it should give a good indication for the accessible examples.

The gap between the proven bound in the runtime and the much
smaller expected size of the class polynomials is explained by

1. the fact that the denominator bounds of Goren and Lauter in
Section II.9 are not optimal,

2. the fact that our bounds in Section II.6 are not optimal, and
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Figure 7: The double logarithm log log c of the largest coefficient c of
the Igusa class polynomial for i4 as a function of log(∆0∆1). The slope
of the line is 0.58.

3. the fact that we use a quasi-quadratic method for computing theta
constants in Section II.7.
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[71] Reinhard Schertz. Die singulären Werte der Weberschen Funktio-
nen f, f1, f2, γ2, γ3. J. Reine Angew. Math., 286/287:46–74, 1976.
(cited on page 163)
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[73] René Schoof. Computing Arakelov class groups. In J. Buhler and
P. Stevenhagen, editors, Surveys in Algorithmic Number Theory
[11], pages 447–495, 2008. (cited on page 47)

[74] Daniel Shanks. Class number, a theory of factorization, and genera.
In 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol.
XX, State Univ. New York, Stony Brook, N.Y., 1969), pages 415–
440, Providence, R.I., 1971. Amer. Math. Soc. (cited on page 153)

[75] Daniel Shanks. The infrastructure of a real quadratic field and
its applications. In Proceedings of the Number Theory Conference
(Univ. Colorado, Boulder, Colo., 1972), pages 217–224, Boulder,
Colo., 1972. Univ. Colorado. (cited on page 153)

[76] Goro Shimura. On the class-fields obtained by complex multipli-
cation of abelian varieties. Osaka Math. J., 14:33–44, 1962. (cited
on pages 14, 17, 35, and 36)

[77] Goro Shimura. Abelian Varieties with Complex Multiplication and
Modular Functions. Princeton University Press, 1998. Sections 1–
16 essentially appeared before in [78]. (cited on pages 110, 138,
and 174)

[78] Goro Shimura and Yutaka Taniyama. Complex multiplication of
abelian varieties and its applications to number theory, volume 6
of Publications of the Mathematical Society of Japan. The Math-
ematical Society of Japan, Tokyo, 1961. Sections 1–16 essentially
reappeared in [77]. (cited on pages 18, 19, 20, 21, 22, 24, 25, 29,
30, 31, 32, 34, 98, 124, 126, 136, 138, 139, and 174)

[79] Anne-Monika Spallek. Kurven vom Geschlecht 2 und ihre An-
wendung in Public-Key-Kryptosystemen. PhD thesis, Institut für
Experimentelle Mathematik, Universität GH Essen, 1994. http:
//www.uni-due.de/zahlentheorie/theses_de.shtml. (cited on
pages 14, 15, 24, 40, 41, 43, 69, 124, 137, 157, 159, and 162)

[80] Peter Stevenhagen. Hilbert’s 12th problem, complex multiplication
and Shimura reciprocity. In Class field theory – its centenary and

http://www.uni-due.de/zahlentheorie/theses_de.shtml
http://www.uni-due.de/zahlentheorie/theses_de.shtml


Bibliography 175

prospect (Tokyo, 1998), volume 30 of Adv. Stud. Pure Math., pages
161–176. Math. Soc. Japan, Tokyo, 2001.

[81] Peter Stevenhagen. The arithmetic of number rings. In J. Buh-
ler and P. Stevenhagen, editors, Surveys in Algorithmic Number
Theory [11], 2008. (cited on page 142)

[82] Marco Streng. Computing Igusa class polynomials. arXiv:0903.
4766, appears as Chapter II in this thesis, 2008. (cited on page 137)

[83] Marco Streng. Divisibility sequences for elliptic curves with com-
plex multiplication. Algebra & Number Theory, 2(2):183–208,
2008.

[84] John Tate. Classes d’isogénie des variétés abéliennes sur un corps
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1 Priemgetallen

De getaltheorie is de studie van de “positieve gehele getallen” 1, 2, 3,
4, . . ..

Met de “delers” van zo’n getal bedoelen we de positieve gehele getal-
len waardoor je het kan delen zodat de uitkomst weer een geheel getal
is. De delers van 6 zijn bijvoorbeeld 1, 2, 3, 6. Het getal 4 is geen deler
van 6, omdat 6/4 = 3

2 geen geheel getal is.
Als een geheel getal groter dan 1 is, en geen andere delers heeft

dan 1 en zichzelf, dan noemen we het getal een “priemgetal”. Zo is
bijvoorbeeld 5 een priemgetal, want de enige delers van 5 zijn 1 en 5.
Het getal 6 is geen priemgetal, omdat niet alleen 1 en 6, maar ook 2 en
3 delers van 6 zijn.

Elk positief geheel getal is te krijgen door priemgetallen met elkaar
te vermenigvuldigen. Zo is bijvoorbeeld 2010 te schrijven als 2010 =
2 · 3 · 5 · 67. (We gebruiken hier een punt (·) om vermenigvuldiging aan
te duiden.) Het is bekend dat zo’n schrijfwijze voor elk getal uniek is,
en in die zin zijn de priemgetallen dus de bouwstenen van de gehele
getallen voor vermenigvuldiging.

2 Een probleem uit de getaltheorie

Laten we eens een voorbeeld bekijken van een probleem waar een getal-
theoreticus zich mee bezig zou kunnen houden.

De kwadraten zijn de getallen die te schrijven zijn als een getal maal
zichzelf, zoals

1 · 1 = 1, 3 · 3 = 9,
2 · 2 = 4, 4 · 4 = 16.
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Als a een geheel getal is, dan schrijven we vanaf nu voor het gemak a2

in plaats van a · a.
Nu kun je je bijvoorbeeld afvragen welke priemgetallen er te krijgen

zijn door twee kwadraten bij elkaar op te tellen. Een aantal voorbeelden:

2 = 12 + 12, 17 = 42 + 12,

5 = 22 + 12, 29 = 52 + 22,

13 = 32 + 22, 37 = 62 + 12.

Met de priemgetallen 3, 7, 11, 19, 23 en 31 kan dit niet (probeer maar
uit). Zit er een patroon in deze getallen?

3 De oplossing

Deel je de bovenstaande priemgetallen door 4 en bekijk je de rest, dan
valt er iets op: de priemgetallen 2, 5, 13, 17, 29 en 37, die te schrijven
zijn als som van twee kwadraten, hebben allemaal rest 1 of 2, en de
priemgetallen 3, 7, 11, 19, 23 en 31, die niet zo te schrijven zijn, heb-
ben allemaal rest 3. Dit patroon blijkt zich voort te zetten en is een
wiskundige stelling:

Stelling 1. Gegeven een priemgetal p. Als de rest van p bij deling door
4 gelijk is aan 1 of 2, dan is p te krijgen door twee kwadraten bij elkaar
op te tellen. Als de rest van p bij deling door 4 niet gelijk is aan 1 of 2,
dan is p niet te krijgen door twee kwadraten bij elkaar op te tellen.

Deze stelling werd in 1640 door de Franse jurist Pierre de Fermat
geformuleerd. Het oudste bekende bewijs werd in 1749 gegeven door de
Zwitser Leonhard Euler. Men bewijst zo’n stelling niet door heel veel
priemgetallen uit te proberen, maar door via een logische beredenering
te beargumenteren dat de bewering waar is voor elk priemgetal p.

Het geven van zo’n bewijs gaat te ver voor deze samenvatting, maar
we kunnen wel het belangrijkste ingrediënt van een modern bewijs noe-
men: de wortel i van −1. Met een “wortel” van een getal n bedoelen
we een getal m zodat geldt m2 = n. Het getal 3 is bijvoorbeeld een
wortel van 9, want er geldt 32 = 9. Voor n = −1 of n = 2 bestaat
zo’n wortel helemaal niet in de gehele getallen, maar wiskundigen la-
ten zich hierdoor niet tegenhouden en introduceren gewoon een nieuw
getal i =

√
−1 waarvoor geldt i2 = −1. Door de gehele getallen uit

te breiden met dit soort “algebräısche getallen” ontstaat het vakgebied
van de algebräısche getaltheorie. We kunnen die getallen ook optellen
en vermenigvuldigen en krijgen dan getallen als 3 + 2 · i.
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Voor getallen van de vorm a+ b ·
√
−n met gehele getallen a, b en n,

gebruikt men de “norm”
a2 + b2 · n.

Het feit dat het priemgetal 13 te schrijven is als som van de twee kwa-
draten 32 en 22 correspondeert zo met het feit dat 13 de norm is van
3 + 2 · i. Met wat meer werk kan je getallen als 3 + 2 · i gebruiken om
Stelling 1 te bewijzen.

4 Een variant op het probleem

Wat nu als we willen weten welke priemgetallen te schrijven zijn als een
kwadraat plus 2 maal een kwadraat? Zo hebben we

3 = 12 + 2 · 12, 17 = 32 + 2 · 22,

11 = 32 + 2 · 12, 19 = 12 + 2 · 32,

maar zijn de getallen 5, 7, 13 en 23 niet zo te schrijven.
Voor dit probleem kijken we eenvoudigweg naar een wortel van −2,

die we schrijven als
√
−2. Het bewijs van Stelling 1 (dat we niet gege-

ven hebben) blijkt te veralgemeniseren te zijn en levert een soortgelijke
stelling op:

Stelling 2 (Euler). Gegeven een priemgetal p. Als de rest van p bij
deling door 8 gelijk is aan 1, 2 of 3, dan is p te schrijven als som van
een kwadraat en 2 maal een kwadraat. Als de rest van p bij deling door
8 niet gelijk is aan 1, 2 of 3, dan is p niet zo te schrijven.

Vervolgens kan je je afvragen welke priemgetallen te schrijven zijn
als een kwadraat plus 3 maal een kwadraat, of als een kwadraat plus
4 maal een kwadraat. Dat kan allemaal met ongeveer hetzelfde bewijs,
gebruikmakend van de wortel van −3 of juist van −4.

Maar bij 5 gaat het mis! Als je op de manier van Stellingen 1 en 2
wilt zeggen welke priemgetallen er te schrijven zijn als een kwadraat plus
5 maal een kwadraat, dan blijkt dat je niet meer genoeg hebt aan alleen
de wortel van −5. Gelukkig blijkt er toch een enigszins soortgelijke
stelling te bestaan, maar voor het bewijs daarvoor gebruikt men naast
de wortel van −5 opeens ook de wortel van 5.

Als je de 5 vervangt door nog grotere getallen n, dan heb je vaak
nog veel ingewikkeldere algebräısche getallen nodig dan de wortel van 5.
Welke, daar kun je achter komen met de theorie van de “complexe ver-
menigvuldiging van elliptische krommen”. Dit is de “complex multipli-
cation” die ook in de titel van dit proefschrift voorkomt.



188 Nederlandse samenvatting

5 Fietsbanden

In plaats van de lijn van de reële getallen, maken we gebruik van het
vlak van de “complexe getallen”. De reële getallen vormen daarin een
horizontale lijn, en een getal

√
−n leggen we recht boven de 0 op afstand√

n van 0, zoals in het volgende plaatje.

√
−5

√
−5 + 1

0

√
−5 + 2

√
−5− 1

1 2−1

2
√
−5 + 1

2
√
−5 2

√
−5 + 2

2
√
−5− 1

3

√
−5 + 3

2
√
−5 + 3

In dit vlak hebben we een rechthoek aangegeven. Stel nu dat je deze
rechthoek uitknipt en langs de stippellijnen aan zichzelf plakt. Je krijgt
dan een soort wc-rolletje.

Als dat wc-rolletje flexibel genoeg is, dan kan je ook de dikke lij-
nen aan elkaar plakken. Wat je dan krijgt, lijkt nog het meest op een
fietsband. Buiten Nederland zouden we zeggen: het oppervlak van een
donut. Stel dat je een donut volledig bedekt met glazuur. De vorm van
ons geplakte rechthoekje is dan dezelfde als de vorm van het glazuur
van de donut. Wiskundigen noemen dit oppervlak een torus.

Een torus. Asteroids.
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In zekere zin plakken wiskundigen de randen van de rechthoek aan
elkaar zonder hem te buigen, precies zoals bij het computerspelletje
Asteroids: daarbij speel je op een plat vlak, maar alles wat aan de zijkant
het beeld uitgaat, verschijnt weer aan de andere zijkant, en hetzelfde
geldt voor de boven- en onderkant.

6 Elliptische krommen

We noemen de verzameling oplossingen (x, y) van een vergelijking van
de vorm

y2 = x3 + ax+ b (6.1)

voor zekere getallen a en b, een “elliptische kromme”.
Als we kijken naar de reële oplossingen, dan kunnen we deze kromme

tekenen in het vlak met coördinaten x en y. Dat levert dan een plaatje
op als op pagina 9.

Als we de lijn van de reële getallen vervangen door het vlak van de
complexe getallen, dan is de oplossingsverzameling geen kromme, maar
een oppervlak. En als we er op de juiste manier naar kijken, dan blijkt
dit oppervlak ook weer de vorm van een torus te hebben.

Het omgekeerde is ook waar: elke torus die we krijgen door een
rechthoekje van complexe getallen te plakken is (binnen de regels van
de “complexe analyse”) om te vormen tot een elliptische kromme!

Er blijkt nog meer waar te zijn: als je begint met de rechthoek die
hoort bij een getal

√
−n, dan kan de genoemde vervorming zo uitgevoerd

worden dat de getallen a en b niet zomaar complexe getallen zijn, maar
algebräısche getallen.

In het geval n = 5 krijg je bijvoorbeeld

a = b =
4420 ·

√
5 + 9875

27
.

Merk de wortel
√

5 van 5 op, die een rol speelt in de oplossing van het
getaltheorieprobleem. Dat uitgerekend dat getal

√
5 hier voorkomt is

geen toeval: dat kan verklaard worden met de theorie van complexe
vermenigvuldiging van elliptische krommen.

We kunnen dat preciezer maken met behulp van de “j-invariant”

j =
110592a3

64a3 + 432b2
,

die aangeeft wanneer twee elliptische krommen in zekere zin “hetzelfde”
zijn. Twee elliptische krommen zijn hetzelfde als ze dezelfde j-invariant
hebben.
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Door het bestuderen van de relevante vervormingen, heeft men for-
mules gevonden die de j-invariant rechtstreeks uitdrukken in ons com-
plexe getal z =

√
−n, dat de bovenkant van de rechthoek aangeeft. De

exacte betekenis van de formules is voor deze samenvatting niet belang-
rijk, ze staan hier enkel ter illustratie:

j(z) = 256
(θ8

0 − θ4
0θ

4
1 + θ8

1)3

θ8
0θ

8
1(θ4

0 − θ4
1)2

, met

θ0 = 1 + 2
∞∑
n=1

q
1
2n

2
,

θ1 = 1 + 2
∞∑
n=1

(−1)nq
1
2n

2
en

q = e2πiz

Het symbool ∞ in deze formules betekent “oneindig” en geeft aan dat
we oneindig veel, steeds kleinere, getallen bij elkaar optellen. We kunnen
met deze formule de j-invariant dus niet uitrekenen op een computer,
maar wel benaderen door hem gedeeltelijk uit te rekenen. Met behulp
van wiskundige theorie kunnen we exact maken hoe ver we j(z) moeten
benaderen om de exacte waarde te kennen. Er blijkt dat geldt

j(
√
−5) = 632000 + 282880

√
5,

met wederom die wortel van 5.
Als we onze −5 nu vervangen door een ander negatief geheel ge-

tal −n, dan kunnen we de j-invariant j(
√
−n) bekijken. Volgens de

theorie van complexe vermenigvuldiging is dit precies het getal dat we,
naast

√
−n, moeten toevoegen om stellingen te krijgen over priemge-

tallen van de vorm a2 + nb2. Als je wilt weten welke priemgetallen
te schrijven zijn als kwadraat plus 14 maal een kwadraat, dan kan je
bijvoorbeeld gebruik maken van

j(
√
−14) =4055096128 + 2867386368

√
2+

1792
√

10241006292718 + 7241484995756
√

2.

De gëınteresseerde wiskundige lezer kan hier veel meer over lezen in het
zeer toegankelijke boek [19] van David A. Cox.

7 Pinpassen en slimme prijskaartjes

Een heel ander soort toepassing van elliptische krommen vindt men in
de cryptografie, waarbij gegevens of elektronische systemen worden be-
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veiligd met behulp van wiskunde. Deze beveiliging is erop gebaseerd
dat sommige berekeningen eenvoudig uit te voeren, maar moeilijk terug
te draaien zijn. Zo kan je met een computer heel snel twee grote priem-
getallen p en q met elkaar vermenigvuldigen. De uitkomst is dan een
groot getal N en ondanks decennia van onderzoek is er nog geen snelle
manier bekend om achter p en q te komen als je alleen N weet.

Tegenwoordig worden de magneetstrips van bankpasjes op vrij grote
schaal gekopieerd door criminelen die betaalautomaten ombouwen. De
oplossing daarvoor is op de meeste passen al aanwezig in de vorm van
de EMV-chip. Die chip bevat twee priemgetallen die alleen in de chip
beschikbaar zijn. Bij elke betaling kan je bankpasje dankzij het “RSA-
protocol” bewijzen dat het echt jouw bankpasje is. De chip gebruikt
daarvoor de priemgetallen p en q zonder ze te verraden. Dit maakt het
(met de huidige stand van de wetenschap) onmogelijk om de chips van
deze passen te kopiëren.

De laatste tijd worden ook passen die op afstand leesbaar zijn steeds
populairder. Denk aan de OV-chipkaart die je niet meer uit je por-
temonnee hoeft te halen, je paspoort waar je foto en vingerafdruk op
zijn opgeslagen, en misschien wel de pas waarmee je het kantoor in en
uit kan. Verder wordt het steeds meer mogelijk om streepjescodes in
bijvoorbeeld winkels, apotheken en magazijnen te vervangen door goed-
kope chips die RFID-tags heten.

Doordat deze pasjes en RFID-tags op afstand uit te lezen zijn, zijn er
veel veiligheids- en privacyrisico’s. Goede beveiliging is dus belangrijk.

Aan de andere kant hebben juist deze passen veel minder energie
tot hun beschikking dan bijvoorbeeld de chip op een bankpasje. Er is
namelijk geen plaats voor een batterij en ze kunnen ook geen contact
maken met netstroom. Ze moeten al hun energie daarom via een kleine
antenne uit het magnetische veld van het leesapparaat halen.

Door de beperkte hoeveelheid energie is een RFID-tag niet in staat
het RSA-protocol van je bankpasje uit te voeren. Hier bieden elliptische
krommen, die we hierboven al tegenkwamen, uitkomst.

Er bestaat namelijk ook cryptografie die gebruik maakt van ellip-
tische krommen. Die biedt, voor zover bekend, evenveel veiligheid als
RSA met veel lichtere berekeningen. Cryptografie met elliptische krom-
men kan wel op RFID-tags uitgevoerd worden.

Om elliptische krommen te maken die geschikt zijn voor cryptografie,
kan je gebruik maken van dezelfde theorie van “complexe vermenigvul-
diging” die eerder al genoemd werd. Daarbij gebruikt men dezelfde
speciale waarden van de j-functie die we hierboven al tegenkwamen.
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8 Dubbele donuts

Dit proefschrift gaat niet over elliptische krommen, maar over krommen
van geslacht 2. Denk even terug aan de donuts. Stel nu dat twee donuts
iets te dicht bij elkaar hebben gelegen op de bakplaat en daardoor aan
elkaar geplakt zijn. En stel nu dat we deze dubbele donut volledig met
glazuur bedekken. Het glazuur vormt dan wat we noemen een dubbele
torus, eentje met twee handvatten, zoals op het volgende plaatje.

Vergelijking (6.1) wordt dan vervangen door

y2 = x6 + ax4 + bx3 + cx2 + dx+ e

voor zekere getallen a, b, c, d en e. Daarbij hoort het plaatje op pa-
gina 12, maar ook het plaatje op de omslag.

Met een aantal wijzigingen bestaat er dan nog steeds een theorie van
complexe vermenigvuldiging. Daarin moet bijvoorbeeld de j-invariant
vervangen worden door drie invarianten die Igusa-invarianten heten.

Je kunt je nu afvragen of er met deze krommen ook getaltheoreti-
sche vraagstukken opgelost kunnen worden. Tegelijkertijd bestaat er
ook cryptografie met krommen van geslacht 2. Daarmee is ongeveer
hetzelfde mogelijk als met elliptische krommen, en het is nog maar de
vraag welke krommen het “best” zijn.

9 Wat staat er in dit proefschrift?

In dit proefschrift wordt de theorie van complexe vermenigvuldiging van
krommen van geslacht 2 bestudeerd en zo expliciet mogelijk gemaakt,
zodat er berekeningen mee gedaan kunnen worden.

Hoofdstuk I geeft een algemene inleiding in de theorie van com-
plexe vermenigvuldiging. Vervolgens wordt in dat hoofdstuk door mid-
del van “klassenlichamentheorie” beschreven welke soorten getaltheo-
retische problemen kunnen worden opgelost met behulp van complexe
vermenigvuldiging van krommen van geslacht 2.
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Hoofdstuk II beschrijft hoe je de exacte waarden van de bovenge-
noemde Igusa-invarianten krijgt. Dat wil zeggen, er wordt beschreven
en hoe, en hoe nauwkeurig, je ze moet benaderen om ze exact te be-
palen. Het belangrijkste resultaat van dit (langste) hoofdstuk is een
bovengrens op hoe lang deze berekeningen duren.

Hoofdstuk III geeft nog wat extra theorie en wijst belangrijke verbe-
teringen aan voor de berekeningen van hoofdstuk II. Die verbeteringen
zijn weggelaten in hoofdstuk II, omdat dat hoofdstuk al lang genoeg is.

Hoofdstuk IV, geschreven samen met David Freeman en Peter Ste-
venhagen, beschrijft hoe je de Igusa-invarianten gebruikt om krommen
te maken die geschikt zijn voor cryptografische protocollen gebaseerd
op “bilineaire afbeeldingen”.

Hoofdstuk V, geschreven met Laura Hitt, Gary McGuire en Michael
Naehrig, beschrijft een soortgelijke constructie, maar dan voor een speci-
aal soort krommen van geslacht 2: die waarvan de p-rang, een invariant
die voor alle eerdere constructies 0 of 2 is, gelijk is aan 1.
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