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 11.  Type 1 diabetes

The earliest known record of diabetes dates from 1552 B.C., when the 3rd 
Dynasty Egyptian papyrus by physician Hesy-Ra mentioned polyuria  (frequent 
urination) as a symptom of the disease. Over the years, diabetes was described 
and studied by Egyptians, Greeks, Chinese, Indians, English, Frenchs, Germans, 
Czechs, Italians, Canadians, Americans, and others. However, was not until the 
last century, in 1959, that the two major types of diabetes were recognized:  type 
1 (insulin-dependent)  diabetes  and  type 2 (non-insulin-dependent) diabetes. 

Nowadays diabetes affects over 150 million people worldwide with this number 
expected to double by 2025; about 90% cases of diabetes are type 2 (Zimmet et al, 2001). 
However, the fraction of type 2 diabetics in different parts of the world varies substantially, 
almost certainly for environmental and lifestyle reasons, though these are not known in 
detail. Since type 2 diabetes is not the topic of this thesis, it will not be described at length. 

Diabetes mellitus type 2, also called type 2 diabetes, Non Insulin Dependent Diabetes 
Mellitus (NIDDM) or Adult diabetes, is a metabolic disorder that is primarily characterized 
by insulin resistance, relative insulin deficiency, and hyperglycemia, and is presently of 
unknown etiology although there is a strong inheritable genetic connection. About 55% of 
type 2 are obese (Eberhart et al, 2004) -chronic obesity leads to increased insulin resistance 
that can develop into diabetes, most likely because adipose tissue is a source of chemical 
signals (hormones and cytokines). Conversely, type 2 diabetes causes obesity (Camastra 
et al, 1999). Additional factors found to increase risk of type 2 diabetes include aging 
(Jack et al, 2004), high-fat diets (Lovejoy, 2002) and a less active lifestyle (Hu, 2003).

Diabetes mellitus type 1, also known as type 1 diabetes (T1D), Insulin Dependent 
Diabetes Mellitus (IDDM) or Juvenile Diabetes, is an autoimmune disease that results 
in the permanent destruction or damage of insulin producing beta-cells in the islets 
of Langerhans of the pancreas. Destruction of these cells leads to insulin deficiency. 
Therefore, T1D is lethal unless treatment with exogenous insulin via injections 
replaces the missing hormone. Although, the clinical consequences of the disease have 
been extensively investigated, the exact cause(s) of T1D are not yet fully understood. 
Genetic and environmental factors have been suggested to contribute to the etiology 
of T1D along with other factors (see Box 1 on page 14). So far, the research core on 
diabetes has focused on the peripheral endocrinology and nervous system. Nowadays, 
the impact of diabetes on the central nervous system (CNS) is highly recognized 
but it was not always the case until few decades ago. To study disease initiation, 
progression, and treatments without exposing humans to unnecessary and potentially 
unethical risks animal models have been developed. Animal models have contributed 
important knowledge regarding the study of diabetes. The physiology of mice, rats, 
and other animals is remarkably conserved in comparison to the human condition. 
Broad spectrum of animal models of T1D have become available over the last 40 
years. They comprise spontaneous models, in which disease develops unprovoked, 
and experimental models induced by various types of intervention (Table 1, page 15).
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1.1. Animal models of diabetes

1.1.1. Spontaneous Models

The two major models used are the so-called Bio Breeding (BB) rats and the Non 
Obese Diabetic (NOD) mice, which develop the disease with similarities to human 
T1D. These animals derived from inbreeding over many generations by selecting for 
hyperglycaemia. As a result, many genes and phenotypes have been enriched, but not 
all will be relevant to the pathophysiology of diabetes, either in rodents or in humans. 
It is noteworthy that a main advantage of these models is the possibility to study the 
pre-diabetic state, which is impossible in humans. Other models comprise the Long 
Evans Tokushima Lean (LETL) rat and the LEW.1AR1/Ztm- iddm rat (Table 1). For 
sake of clarity, only the model used in the current thesis will be described below. 

1.1.1.a. The NOD mouse

The NOD mice were first used in the study of cataract development (i.e. JcI-ICR mouse) 
(Makino et al, 1980). Insulitis, which is the lymphocytic infiltration of the islets of 
Langerhans, is present by the time mice reach 4-5 weeks of age. This state is followed 
by beta-cells destruction and ultimately leads to a drastic decrease in circulating insulin. 
In the pre-diabetic state (4-5 weeks of age), NOD mice show lower glycemia and higher 
insulinemia in response to a glucose tolerance test compared with C57Bl/6 control strain 
(Amrani et al, 1998). Frank diabetes typically begins between 12 and 30 weeks of age. 
Unlike human T1D, ketoacidosis (metabolic acidosis is caused by high concentrations 
of ketone bodies and breackdown of fatty acids) is relatively mild and affected animals 
can survive for weeks without the administration of insulin. In addition and in contrast 
to the findings of most studies in humans, there is a larger gender difference with 80% 
of females, but only 50% of males developing diabetes in some colonies (Atkinson 
and Leiter, 1999). This variation is not surprising knowing that sex steroids are part of 
the mechanisms underlying the well-recognized immune sexual dimorphism, which is 
particularly evident in autoimmune diseases (Ansar Ahmed et al, 1985). Moreover, NOD 
diabetes can be modulated not only by multiple immunotherapeutic agents (Bach 2002), 
but also by various other factors, including melatonin, insulin growth factor-1 (IGF-1), 
leptin, insulin and drugs modulating its secretion or sensitivity, and environmental factors 
such as temperature fluctuations, variations of protein and carbohydrate intake, and stress.

Stressful life events and diabetes onset linkage have been reported in 
clinical and experimental studies (Homo-Delarche et al, 1991; Djarova and; 
Dube, 1998.). As part of the endocrine response to stress, glucocorticoids exert 
well-known anti-inflammatory and immunosuppressive actions but also act 
as counterregulatory hormones inducing hyperglycemia. Therefore, in T1D, 
glucocorticoids might have both potentially beneficial and deleterious effects. 
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1.1.2. Experimental models

Most of the experimentally induced models correspond to highly artificial situations 
far from the conditions in which spontaneous disease develops. However, they have 
made possible remarkable progresses in understanding the pathogenesis of T1D. 
Chemically-induce, transgenic, and immunomanipulated mice are among these models. 
In the following section, the experimental model used in the present thesis is described. 
 
1.1.2.b. Chemically induced T1D: Streptozotocin-induced diabetes mice 

Pharmacological methods of inducing T1D by damaging the pancreas also exist. These 
include the administration of toxins such as streptozotocin (STZ) (Junod et al, 1969) 
and alloxan. Streptozotocin is a glucosamine–nitrosourea compound isolated from 
Streptomyces achromogenes with broad-spectrum antibiotic and anti-neoplastic activity 
(Bono et al, 1976). It is a powerful alkylating agent that has been shown to interfere 
with glucose transport (Wang and Gleichmann, 1998), glucokinase function (Zahner and 
Malaisse, 1990) and induce multiple DNA strand breaks (Bolzan and Bianchi, 2002). It is 
taken up into the insulin-producing beta-cells of the islets of Langerhans via the GLUT-2 
glucose transporter (Schnedl et al, 1994). The GLUT-2 glucose transporter is absent at 
the blood–brain barrier (Kumagai, 1999), thus excluding direct effects of STZ on the 
brain following systemic administration. A single large dose of STZ can produce diabetes 
in rodents, probably as a result of direct toxic effects. Alternatively, multiple small doses 
of STZ are used (e.g. 40 mg/kg on five consecutive days) to study the immunological 
pathways that lead to insulitis and cell death (Mensah-Brown et al, 2002; Holstad and 
Sandler, 2001). STZ-diabetic rodents are hypoinsulinaemic, but do not require insulin 
treatment to survive. Blood glucose levels typically are 20-25 mmol/l, which is 5 fold 
over normal concentration. In rodents, hyperglycemia induces an insulinopenic (lack 
of insulin) diabetes in which immune destruction plays a role, as in human T1D. 
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The origin of the autoimmune process that 
leads to type 1 diabetes (T1D) involve 
genetic predisposition (as T1D is known 
as a hereditary disease on basis of the 
relatively high rate of familial transmission 
(1)) and environmental factors, and 
their interactions, which creates the 
conditions required for disease onset. 
The patterns of familial transmission, 
combined with data from animal models, 
indicate that the determinism of T1D 
is polygenic and multifactorial. The 
search predisposition genes is complex, 
especially as most if not all predisposition 
genes appear to be basically “normal” i.e. 
without mutations or deletions. A fortuitous 
combination of these genes, together with 
permissive or triggering environmental 
factors, provokes the disease. Each of 
these genes may be present in a large 
proportion of healthy subjects (notably 
the patient’s nondiabetic relatives). 

Evidence for the role of environmental 
factors:
Several lines of evidence point to a major 
role of environmental factors in the 
pathogenesis of  T1D. First, more than 60% 
of identical twins are discordant for the 
disease, and it is quite unlikely that this is 
due to differential somatic rearrangement of 
T cell receptors. Second, disease frequency 
varies enormously from country to country 
(2), and these differences cannot simply 
be explained by ethnic genetic differences 
since migrants from countries with a low 
T1D frequency to countries with a high 
frequency are more susceptible than their 
compatriots (3). Intriguingly, northern 
countries are more exposed to the disease 
than southern countries (2); it will be critical 
to discover the factor(s) responsible for this 

North/South gradient. Third, a number of
apparently nonimmunological interventions 
can increase or decrease the disease rate in 
animal models: specific diets (low essential 
fatty acid (4) or protein intake (5, 6)) and 
several viral infections (7-11) can reduce 
disease susceptibility in spontaneous 
models of T1D, the NOD mice and the 
BB rats, while Kilham’s virus (12) and 
cow’s milk (13,14) can increase it in 
BB rats. These factors, particularly viral 
infections, probably explain the variations 
in disease frequency found between NOD 
colonies (15). Not only do environmental 
factors seem to influence T1D onset, they 
can also apparently alter the course of the 
disease. These factors can be shared by 
the whole population (climatic factors, 
hygiene, etc.), or by a given family 
(e.g. eating habits), or be specific to the 
individual (e.g. travels and sexual partners). 
Several studies have focused on many 
potential environmental factors involved 
in the etiology of T1D, such as viruses 
(16-18), bacteria’s (19-22), toxic agents 
(23, 24), food constituents (5, 6, 13, 14), 
stress (25-28). These factors essentially 
modulate the expression of predisposing 
genes, either positively (predisposing 
factors) or negatively (protective factors). 
In the case of triggering factors, disease 
onset is directly related to the encounter 
with the environmental factor (usually 
single and limited in time), which can then 
be considered as the cause of the disease. 
In the “modulation” hypothesis, the 
disease can only appear in the fraction of 
the population at genetic risk and it is on 
this population that environmental factors 
(usually multiple and chronic) exert their 
positive or negative effect. The available 
data suggests that T1D is of the second type.

Box 1: Etiology of type 1 diabetes



Spontaneous models 

NOD mouse: inbreed 1. strain. Develop Type 1A-Immune Mediated Diabetes. 
Autoimmune etiology that is heavily influenced by both genetics and environment 
(1).
BB rat: inbreed strain. Diabetes in BB rats is also an autoim2. mune disorder. Substrain 
BB/Wor has profound T-cell lymphopenia (condition in which there exists an 
abnormally low number of lymphocytes in the blood) (2).
Long Evans Tokushima Lean (L3. ETL) Rat: autoimmune T1D (3)
LEW.1AR1/Ztm- iddm rat: autoi4. mmune T1D, spontaneous mutation within a Mhc-
congenic LEW.1AR1 colony (4). 

Experimental models:

Transgenic 

T Ce1. ll Receptor (TCR) Tg (transgenic) Mouse: many cell clones isolated from the 
spleens of diabetic NOD mice, pancreas of pre-diabetic NOD, islet-transplanted 
diabetic NOD mice, and from islets of NOD mice. Many of these clones have been 
utilized to produce TCR transgenic (Tg) mice on various backgrounds (5)
"Hu2. manized" Mice: transgenic expression in mice of human genes (6).

Chemically-induced

all1. oxan (7) 
streptoz2. otocin (8) 

Immunomanipulation

thymectomy pe1. rformed within 2 days after birth can induce a flourishing state of 
autoimmunity in mice (9).
adult thymectomy and subl2. ethal irradiation (10, 11).
athymic rats with transfer of normal sp3. leen cells (12).

Table 1. Animal models of type 1 diabetes
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2. Hypothalamic-pituitary-adrenal axis and type 1 diabetes

2.1. HPA axis

The hypothalamic-pituitary-adrenal (HPA) axis refers to a complex set of homeostatic 
interactions between the hypothalamus (brain area); the pituitary gland (structure located 
below the hypothalamus), and the adrenal glands (small pair of pyramidal organs located 
on top of the kidneys). The HPA axis regulates responses to stress and modulates various 
body processes including growth, metabolism, immune response, mood, reproduction, 
sexuality, and energy balance. The core of the HPA axis is the paraventricular nucleus 
of the hypothalamus (PVN). The PVN contains neuroendocrine neurons, the so-
called parvocellular neurons, which synthesize and secrete vasopressin (AVP) and 
corticotropin-releasing hormone (CRH). These two peptides can act in synergy on the 
anterior lobe of the pituitary gland to stimulate the secretion of the adrenocorticotropic 
hormone (ACTH) from corticotrope cells. In turn, ACTH enters peripheral circulation 
where it reaches the adrenal cortex to induce glucocorticoid hormones production 
(cortisol in humans, corticosterone in rats and mice). Glucocorticoids exert a negative 
feedback on the PVN and pituitary to suppress CRH and ACTH production, respectively. 

Corticosterone is a major stress hormone and has effects on wide arrays of tissues 
in the body, including the brain. In the brain, corticosterone acts via two types of 
receptors - mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). These 
receptors are widely expressed throughout the brain by many different types of cells 
including neuron and glia. MR and GR have different affinities to glucocorticoids (GCs) 
with MR showing a greater affinity (10 fold higher) than GR. As a consequence, MR 
is fully occupied under basal circulating levels whereas GR becomes occupied only 
when glucocorticoids levels rise above normal. One important target of glucocorticoids 
is the hippocampus, an area of the limbic system that plays a critical role in memory, 
learning and spatial navigation. This structure is a major modulator of the HPA axis; 
hippocampal MR controls the inhibitory tone of this limbic structure on the HPA axis 
in terms of basal reactivity (Reul et al, 2000). This effect of GCs via MRs is modulated 
by GRs that become progressively occupied after stress and during the circadian rise 
of GCs. Therefore, predominant MR activation maintains hippocampal excitability 
and, through inhibitory projections to the PVN, basal HPA activity. Conversely, with 
rising GCs concentrations, GR activation suppresses the hippocampal output, resulting 
in a disinhibition of PVN neurons (de Kloet et al, 1998). In summary, a deficiency 
in MR is predicted to allow more GC release, thus leading to more pronounced GR-
mediated effects. Therefore, the functions mediated by both receptor types are linked, 
and the balance in MR- and GR-mediated effects is important in the HPA regulation.

2.1.1. Stress concept

Stress is the disruption of homeostasis through physical or psychological stimuli. Internal 
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or external potential disturbances (stressors) activate two systems that serve to normalize 
the disturbed functions: the rapid sympatho-adrenomedullar system and the slow-acting 
HPA axis. The activation of the sympathetic branch result in the release of stress hormones 
including adrenaline from the adrenal medulla. Therefore, activation of noradrenergic 
neurons leads to temporarily elevated noradrenaline (NA) levels in specific areas of the 
brain resulting in functional changes of neurons carrying NA receptors. Activation of the 
HPA system, leads to increase GCs release from the adrenal cortex, which in turn will act 
in the brain at those sites where its receptors are enriched (Figure 1) (Joëls et al, 2007).

Sympathetic nervous output produces the fight-or-flight response, causing the body 
to divert blood flow to large muscles as the body prepares to run away from or fight 
something. Lower blood flow is then directed to the digestive system and other organs that 
do not assist in flying or fighting. Some stressors can cause continual sympathetic nervous 
system activation with very little opportunity for the parasympathetic nervous system to 
be activated. The activation of the parasympathetic system stops the fight-flight responses. 

Experimental studies have investigated many different types of stressors, and their 
effects on the HPA axis in many different contexts. Analysis of the literature suggests 
that different classes of stressor employ different stress circuits. Severe physiologic 
("systemic") stress appears to trigger brainstem/circumventricular organ systems that 
project directly to the PVN. In contrast, stressors requiring interpretation with respect 
to previous experience ("processive" stressors) reach the PVN by way of multisynaptic 
limbic pathways. Stressors of the latter category may thus require interaction with 
homeostatic information prior to promoting an HPA axis response. The HPA stress 
response thus appears to be a product of both the physiologic importance of the stimulus 
and the specific pathways a given stimulus excites (Herman et al, 1996). The activation 
of the HPA axis will ultimately trigger GCs secretion. In healthy condition this highly 
reactive system will turns on and off its responses to stressors. However, if adaptation to 
stress fails, the stress system responds slowly, or the stress reactions persist, circulating 
GC levels remain elevated for a prolonged period of time and an enhance vulnerability to 
disease for which the individual is predisposed may occur (de Kloet and de Rijk, 2004).

Figure 1: Brain regions activated after stress 
exposure (Amy: amygdala, Hipp: hippocampus, PFC: 
prefrontal cortex) and output of these areas through 
the hypothalamus (HYP). A resulting  activation of 
the fast acting sympatho-adrenomedullar system 
(right) and the slower acting HPA axis system (left) 
will affect the function of peripheral organs and feed 
back to the brain via adrenaline and corticosterone, 
respectively. Adrenaline will finally rise central release 
of noradrenaline leves from the locus coeruleous (LC), 
reaching again the amygdala, prefrontal cortex and 
hippocampus among other areas. Corticosterone will 
act on brain areas where its receptors are enriched.
SNS = sympathetic nervous system; ACTH = adreno-
corticotropin hormone; CRH = corticotropin releasing 
hormone.
Reprinted with permission from Joëls and Krugers, 
Neural Plasticity 2007.
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2.2. Hypothalamic-pituitary-adrenal axis alterations in type 1 Diabetes

When T1D develops, the insulin producing beta-cells in the islets of Langerhans from 
the pancreas are destroyed (Figure 2A). Hence, hyperglycemia develops; however, since 
insulin controls glucose intake, lack of insulin creates of state of cellular starvation. Both 
hyperglycemia and cellular starvation coexist and, under certain conditions such as T1D, 
can generate metabolic stress.

The metabolic stress will activate the HPA axis (Figure 2B) in an attempt to restore 
homoeostasis and recover from metabolic disturbance. The HPA axis activation will 
ultimately raise basal plasma GCs levels, which will be followed by the shut down of the 
HPA axis via GCs negative feedback. 

However, previous reports in T1D animal models showed GR downregulation in the 
hippocampus (Tornello et al, 1981) and HPA axis hyperactivity (Chan et al, 2001 and 
2002) (Figure 2C). These results explain, in part, the chronic hypercorticism observed 
in T1D patients and animals. On the other hand, GCs exert an hyperglycemic effect, 
inhibiting cellular glucose uptake in the periphery and also in neurons and astrocytes of 
brain regions such as the hippocampus (Munck et al, 1984; Sapolsky, 1992). Therefore, 
pre-existing hyperglycemia will become chronic state. In this way, continuous metabolic 
alterations will contribute to the defective shut-off of the stress response. When 
HPA axis activity is chronically elevated or managed inefficiently, various forms of 
pathophysiologies are promoted, such as dysfunction of the hippocampus (McEwen 
1998; Sapolsky, 1992). 

In summary, in agreement with published reports, diabetic animals showed a sustained 
stimulation of the HPA axis, with elevated basal plasma GC levels. In addition, adrenal 
hypertrophy, and spleen and thymus atrophy was found; characteristics also of long-
lasting exposure to high amounts of GCs (Scribner et al, 1993; Oster et al, 1988; Bellush, 
et al, 1991). The observation that diabetic animals show a poor shut-off of the stress 
response (Magarinos and McEwen 2000; Chan et al, 2001; McEwen et al, 2002) suggests 
insensitivity to feedback mechanisms and is consistent with the reported resistance to the 
dexamethasone suppression test (Scribner et al, 1993) and downregulation of GR levels 
in the hippocampus of STZ rats (Tornello et al, 1981). In conclusion, processes to adapt 
to the metabolic imbalance will be created in T1D, involving poor glucose homeostasis, 
chronically elevated GC levels, increased HPA axis reactivity, and metabolic adjustments. 
Extreme metabolic adjustments can induce and significantly accelerate hippocampal 
remodeling, increasing its vulnerability to diabetes, and cognitive dysfunctions. 
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Figure 2. HPA axis alterations in type 1 diabetes. Metabolic stress develops when insulin-producing 
cells destroy leads to hyperglycemia (A). As a consequence, the activation of the HPA axis triggers 
an increase in corticosteroids levels (B). The chronic high corticosterone concentration, on one hand 
exacerbates glucose secretion, and on the other hand acts on the HPA axis in order to shut-off the stress 
response and restore the homeostasis (C). According to the literature, in type 1 diabetes this response 
is disrupted.

3. Impact of Type 1 Diabetes

3.1. Central Nervous System

Diabetic nephropathy, neuropathy, and retinopathy are traditionally considered the 
late complications of diabetes, whereas CNS was believed to be spared from diabetic 
complications. However, substantial evidence from clinical and experimental studies 
demonstrates that diabetes causes primary disease duration-related impairments in 
CNS function besides secondary sequelae of cerebrovascular events mediated by 
diabetic macrovascular disease (Li et al, 2002; Sima et al, 2004). In particular, hyper- 
and hypoglycaemic episodes may result in acute cerebral dysfunction (Biessels et al, 
1994; Cryer et al, 1994). The consequences of these acute insults to the brain are well 
recognized. However, there is little knowledge about functional and structural cerebral 
alterations that develop more insidiously in diabetes. Long-term effects of diabetes on 
the brain are manifested at the structural, neurophysiological and neuropsychological 
level. The emerging view is that the diabetic brain features many signs that are best 
described as accelerated aging. 

In diabetic rodents, structural abnormalities including synaptic and neuronal alterations, 
degeneration, neuronal loss, glycogen accumulation, dilated and fragmented endoplasmic 
reticulum, increased microtubuli, and irregular nuclei have been demonstrated (Bestetti 
and Rossi, 1980 and 1982; Garris et al, 1982, Luse, 1970, Mukai et al, 1980, Magarinos 
and McEwen 2000, Saravia et al, 2001; McEwen 2002). In addition, impaired long-
term potentiation in the hippocampus (indicative of pre- and post-synaptic deficits) 
was reported (Biessels et al, 1996). The hippocampus is also vulnerable to damage by 
stroke and head trauma, susceptible to damage during aging, chronic stress (Sapolsky 
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1992), and sensitive to the effects of diabetes (Gispen and Biessels, 2000; Magarinos 
and McEwen 2000; Saravia et al, 2002). However, it is also a plastic and adaptable brain 
region that is capable of considerable structural reorganization. Studies from McEwen 
(2002) have shown that STZ induction perturbs structural plasticity of the hippocampus 
and its sensitivity to glucose and oxidative stress. His studies suggest that STZ-diabetes 
might cause a reduced number of dendrite spines and decreased total length of dendrites 
of pyramidal neurons of the hippocampus (Magarinos and McEwen, 1995). Other 
studies by Martinez-Tellez et al (2005) showed that dendritic morphological changes 
also occurs in pyramidal neurons located in structures related to cognitive processes such 
as, prefrontal cortex, occipital cortex and hippocampus, in the STZ-diabetic rats. The 
authors suggest that these results together with the available literature, indicate that nitric 
oxide (NO), GCs, stress, astrogliosis, and glutamate may participate in the dendritic 
morphological changes. 

3.2. Behavior

Diabetes-related cognitive dysfunctions were first reported in 1922 (Miles and Root, 
1922). Subsequent studies have demonstrated impairments in CNS function. Impairments 
in learning and memory, problem solving, and intellectual development have been 
documented in T1D patients (Ryan and Williams, 1993; Ryan et al, 1993; Kramer, 1998; 
Parisi and Uccioli, 2001; McCarthy et al, 2002; Schoenle, 2002). Cognitive dysfunction 
and impaired intellectual development are evident in a duration-related manner in T1D 
patients independent of hypoglycemic episodes (Kramer, 1998; Schoenle, 2002). 

Stress and stress hormones affect different aspects of learning and memory. MR 
signaling can enhance performance on spatial hippocampal-dependent cognitive tasks 
(de Kloet et al, 1999) and its chronic blockade impairs spatial memory (Douma et al, 
1998). Decreasing GR signaling attenuates the impairing effects of GR activation on 
cognition (Nicholas et al, 2006). Acute elevation of GCs facilitates the formation of 
memories of events associated with strong emotions (McGaugh, 2000; Roozendaal, 
2000). Chronically, however elevated GC levels contribute to impairment of cognitive 
function and promote damage to brain structures such as the hippocampus (McEwen and 
Sapolsky, 1995; Lupien and McEwen, 1997; Sapolsky, 2002). This inverse-U function 
of GCs is a reflection of the diversity of receptors for GCs in the hippocampus (de kloet 
et al, 1993).

 Impaired performances in the Morris water maze are typically observed in STZ-
induced diabetes rats (Lowy et al, 1993; Biessels et al, 1996; Lupien and McEwen, 
1997) and are associated with impaired LTP in the hippocampus (Biessels et al, 1996). 
It is reported that STZ diabetes does not disturb operant behaviors for food reward 
(Kaleeswari et al, 1986) but facilitates retention of passive avoidance in rats and mice 
(although not always) (Bellush and Rowland, 1989; Flood et al, 1990; Mayer et al, 
1990). In addition, diabetic rodents consistently displayed performance deficits in more 
complex learning tasks, such as an active avoidance T-maze, or a Morris water maze 
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depending on the duration of STZ diabetes (Biessels et al, 1996 and 1998; Flood et 
al, 1990; Popovic et al, 2001). However, discrepancies exist among several behavioral 
studies and may be partially explained by differences in task complexity, animal models 
used and duration of diabetes. A key factor, however, appears to be the nature of the 
stimulus used in behavioral paradigms. There are clear indications that the physiological 
responses to a novel environment or to stressful stimuli, which are often part of learning 
paradigms, are larger in STZ-diabetic than in non-diabetic rodents (Bellush et al, 1991; 
Bellush and Rowland, 1989; Flood et al, 1990). For example, enhanced retention of 
simple passive avoidance task in diabetic rodents has been attributed to an increased 
sensitivity to the foot shock (Bellush and Rowland, 1989, Flood et al, 1990).

4. Scope of the thesis

4.1. Rational and Objective

Peripheral and autonomous neuropathies are well-known and devastating complications 
of type 1 diabetes. However, T1D can also impact the integrity of the CNS, and the 
reason why T1D affects CNS integrity remains to be elucidated. 

Diabetic animals show high circulating glucocorticoid levels, increased sensitivity 
to stress, and morphological alteration in various brain areas. How these changes occur 
is not known, but hypercorticism per se can evoke a similar neurodegenerative cascade. 
The conditions of aberrant GCs levels appear (i) to enhance the vulnerability to metabolic 
insults of brain areas showing a high degree of plasticity, such as the hippocampus and 
(ii) may underlie the impairment of cognitive performance. 

In T1D, a fundamental question in the central neuropathophysiology is whether GCs 
aggravate the functional and morphological signs of neurodegeneration and cognitive 
impairment. Therefore, the objective of the present study is to elucidate the role of GC 
excess and GC-stress system activity in T1D mice in relation to morphological indices 
for neuronal viability and cognitive performance. 

4.2. Hypothesis

We hypothesize that under conditions of T1D, excess GCs and dysregulation of the GC-
stress system will contribute to cerebral damage by making the brain more vulnerable 
to metabolic insults and causing concomitant cognitive disturbances. We propose that 
T1D leads to a more fragile state of the brain in which high levels of GCs may enhance 
the potential for damage and attenuate  protective mechanisms, thus precipitating 
impairment in cognitive function. We expect to unravel GCs and diabetes interactions 
and relationships.
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4.3. Questions to address

I. Is there neuronal damage in diabetes? (maybe as a consequence of GCs excess in 
diabetes?)

II. What is the pattern of HPA (re)activity in response to diabetes in time?
III. Do cognitive disturbances parallel these changes?
IV. Are GCs responsible for brain alterations in diabetes? 
V. Will treatment with anti-glucocorticoids (RU486) prevent and/or restore these 

alterations?

4.4. Experimental approach 

To allow generalization of the results, pharmacological and genetic animal models for 
diabetes, the STZ-induced and NOD mice, respectively, will be used. For both animal 
models there are indications of an aberrant functioning GC-stress system (i.e. GC 
hypersecretion). To test our hypothesis we planned:

I. To measure parameters of neuronal damage in NOD pre-diabetic, non-diabetic and 
diabetic mice and in STZ-diabetic and control mice.

II. To test HPA axis (re)activity in both models. For this purpose blood samples will 
be collected to measure basal concentrations of GCs and ACTH. Also central 
parameters of HPA activity (in situ hybridization of mRNA of MR, GR, CRH, AVP) 
will be measured.

III. To test cognitive abilities at certain time points of specific HPA (re)activity in the 
Morris water maze, novel-place recognition, open field, elevated plus maze, forced 
swimming test. General measures of activity will be recorded as well.

IV. To use the glucocorticoid antagonist RU486 in order to elucidate the role of GCs and 
attenuate vulnerability to damage and enhance protection. We discovered that RU486 
acts like a double-edged sword: the antagonist blocks the damaging impact of excess 
GR stimulation while maintaining the beneficial effects of the ‘neuroprotective’ MR. 
After four consecutive days of RU486 administration, prevention and/or amelioration 
of neuropathological signs and restoration of cognitive abilities will be studied.

4.5. Chapters 

Chapter 2 delineates the HPA axis functionality in a genetic model of T1D, the NOD 
mice. Central parameters of the HPA axis as well as C-peptide and cytokine levels were 
measured in pre-diabetes and diabetes states. In this model, the results suggest that an 
enhanced ACTH release may signal the onset of diabetes. Chapter 3 addresses the 
underlying mechanism of hypercorticism in STZ mice. Central parameters of the HPA 
axis and specifically adrenal function were investigated at different time points after STZ-
injection. The study demonstrates that adrenal hypersensitivity to ACTH precedes and 
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maintains the state of chronically elevated glucocorticoids levels. Chapter 4 describes 
molecular parameters in the hippocampus of the STZ-diabetic mice that could reflect 
functional abnormalities of astrocytes and neurons. Parameters of astrocytic and neuronal 
disturbances such as apolipoprotein E and markers for oxidative stress and early gene 
expression respectively, were measured between control and diabetic mice. The results 
showed hippocampal disturbances in this model of T1D, which could be a primary 
basic mechanism underlying the well-known brain alterations associated with diabetes. 
Chapter 5 reveals the role of GCs in STZ-induced diabetic mice, at the molecular and 
cognitive levels. After the administration of glucocorticoid receptor antagonist (RU486 
or mifepristone) for 4 consecutive days to non-diabetic and diabetic mice, the novel 
placement recognition test was performed and molecular hippocampal parameters 
reflecting functional abnormalities were measured. Normalization of neuropathological 
signs and cognitive abilities was found. In Chapter 6 the experimental data are discussed 
and placed in a conceptual framework highlighting the central action of glucocorticoids 
in the onset and progression of diabetes neuropathology.
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