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Abstract

Children differ from adults in their response to drugs. While this may be the 
result of changes in dose-exposure (pharmacokinetics (PK)) and/or exposure- 
response (pharmacodynamics (PD)) relationships, the magnitude of these changes 
may not be solely reflected by differences in bodyweight. As a consequence, dosing 
recommendations empirically derived from adults dosing regimens using linear 
extrapolations based on bodyweight, can result in therapeutic failure, occurrence of 
adverse effect or even fatalities. In order to define rational, patient tailored dosing 
schemes, population PK-PD studies in children are needed. For the analysis of the 
data, population modeling using non-linear mixed effect modeling is the preferred 
tool since this approach allows for the analysis of sparse and unbalanced datasets. 
Additionally it permits the exploration of the influence of different covariates such 
as bodyweight, age and other covariates, to explain the variability in drug response. 
Finally, using this approach, these PK-PD studies can be designed in the most efficient 
manner in order to obtain the maximum information on the PK-PD parameters 
with the highest precision. Once a population PK-PD model is developed, internal 
and external validations should be performed. If the model performs well in these 
validation procedures, model simulations can be used to define a dosing regimen 
which in turn needs to be tested and challenged in a prospective clinical trial. This 
methodology will improve the efficacy/safety balance of dosing guidelines which will 
be of benefit to the individual child.

2.1. Introduction

Children differ from adults in their response to drugs. These differences may 
be caused by changes in the pharmacokinetics (PK) and/or pharmacodynamics (PD) 
between children and adults and may also vary between children of different ages. 
The PK of a drug includes processes of absorption, distribution, metabolism and 
elimination of a drug whereas the PD comprises the physiological and biological 
response to the administered drug and therefore may represent both efficacy and 
safety measures. While a child grows, enzyme pathways (involved in the PK), function 
and expression of receptors and proteins (involved in the PD) mature, which can be 
referred to as ‘developmental changes’ in childhood. The maturation rates of these 
developmental changes vary however between the pathways and receptors and often 
do not correlate solely with the increase in bodyweight of the child. The question is 
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therefore how to obtain data in children that allow for the study of these develop-
mental changes ultimately resulting in evidence based dosing regimens for drugs in 
children.

To date, only a small number of drugs used in children is licensed for use in this 
specific group. Up to 70% of the drugs in pediatric intensive care, and 90% of the 
drugs in neonatal intensive care, are prescribed in an off-label or unlicensed manner 
[1-4]. Pediatric dosing regimens are usually empirically derived from adult regimens 
using linear extrapolations based on bodyweight. Since these developmental changes 
are non-linear dynamic processes, this dosing paradigm may result in under or 
over-dosing particularly in specific age groups. This may cause therapeutic failure, 
occurrence of severe adverse effects or even fatalities such as fatalities occurring 
after long-term sedation with high doses of propofol [5, 6] and occurrence of the grey 
baby syndrome in neonates after treatment with chloramphenicol [7, 8]. As a result, 
dose adjustments in the younger age groups are often proposed. For vancomycin 
for example lower doses are administered in neonates younger than 1 week (20 mg/
kg/day) compared to 1-4 week-old neonates (30 mg/kg/day) and children between 1 
month and 18 years (40 mg/kg/day) [9]. 

Instead of the a priori use of bodyweight for dosing guidelines in children, detailed 
information on PK and potentially also the PD needs to be considered in order to 
define effective and safe dosing regimens throughout the pediatric age range. The 
lack of PK and PD information on drugs in children has lead to the European Regu-
lation which entered into force in 2007. This law imposes pharmaceutical companies 
to perform research in the whole pediatric age-range for all drugs that are developed 
for the European market, by requiring the submission of a pediatric investigational 
plan (PIP) in the early stages of the development of a new drug. In this PIP, a full 
description has to be given of the studies and of drug formulation in the pediatric 
population. In case little information is available about efficacy and safety of a drug, 
studies in children are only performed after more information is obtained in the 
adult population to increase the safety of the pediatric study [10-12]. The main targets 
of introducing the Pediatric Regulation were to facilitate development and availability 
of medicines in children between 0 and 17 years, to improve the availability of infor-
mation about medicines used in children, to ensure that the medicines are of high 
quality, can be administered in a safe and effective way and that pediatric studies are 
performed in an ethically correct way [10]. The reward for this effort is a six month 
supplementary production certificate for the pharmaceutical company.

Both for industry and for academic researchers, performing (PK-PD) studies in 
children in order to develop rational dosing schemes is very challenging because 
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of ethical and practical issues. Unlike studies in healthy adults, research in healthy 
children is considered to be unethical, so all pediatric studies are performed in the 
vulnerable group of children suffering from a disease. In all clinical trials, an informed 
consent has to be signed by the patient before he or she can be enrolled into a trial. 
In pediatric trials, this informed consent can not be obtained by the patient that 
participates in the trial, and is therefore replaced by the consent of the parents or 
guardians. In older age groups, in addition to this consent, an assent is used in which 
the aim of the study is explained in an age-appropriate language so that children can 
understand [1, 4, 13]. 

Apart from ethical issues, practical challenges also occur when performing studies 
in children. There are limitations to the number and volume of samples that can be 
obtained, resulting in infrequent sampling possibilities and the need for advanced drug 
assay techniques with improved sensitivity. Another complicating factor is the limited 
available number of subjects that suffers from the same disease. Finally, pharmaco-
dynamic endpoints that measure the efficacy of the drug, and which are validated for 
children may be lacking. All these factors call for highly advanced study designs and 
analysis techniques so that the burden for each child can be kept to a minimum while 
still addressing all the study objectives.

This paper aims to inform clinical pharmacologists, pediatricians and pharmacists 
about population PK-PD modeling in pediatric drug research. Advanced statistical 
tools are discussed that can be used to develop rational dosing schemes based on the 
PK and PD of a drug in children, despite practical and ethical restrictions. Using these 
tools, covariates can be identified in order to define appropriate doses and dosing 
intervals based on individual characteristics of each child with minimal burden to 
each patient. The paper also describes how to evaluate the predictive performance 
of the models by different validation methods including a prospective clinical trial. 
Ultimately, the efforts result in an individualized dosing regimen based on the PK-PD 
relation through the pediatric age-range.

2.2. PK-PD in children

Developmental changes in childhood can affect all PK processes from absorption 
until elimination as well as the pharmacodynamic effects. For example, in neonates 
intra-gastric pH is elevated (>4) which may increase the bioavailability of acid-labile 
compounds (penicillin G) and decrease the bioavailability of weak acids (phenobarbi-
tal) when given orally [14]. Additionally, gastric emptying in neonates is delayed, which 
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means that also the absorption of drugs e.g. paracetamol is slower in neonates [15, 16]. 
Other examples are changes in metabolizing enzyme capacity in children. Although 
most uridine 5’-diphosphate (UDP)-glucuronosyltransferases (UGTs) and P-450 cy-
tochromes (CYPs) are expressed during the first week of life, the activity at birth 
in comparison with adults is often low, e.g. UGT2B7 activity at birth is around 10% 
of the adult level and maturation rates of different enzyme systems are known to 
mature at different rates [14, 17-20].

In addition, renal function and liver flow are influenced by physiological changes 
depending on age, e.g. the glomerular filtration rate in mL/min/70kg in full term 
neonates is 35% of the adult value, while mL/min/70kg adult values are reached at 
approximately 1 year old [21]. When using units of mL/min/70kg however, it should 
be realized that actual values of GFR in children are still very low compared to adult 
values because of correction for differences in total body weight between adults and 
infants.

Furthermore the body composition of children changes continuously resulting in 
an age-dependent proportion of body water and fat, which influences the distribution 
of drugs. For example, the total amount of body water (80-90 % of the bodyweight) 
is higher in neonates compared to adults (55-60%). Hydrophilic drugs like aminogly-
cosides have a larger volume of distribution in neonates which can be explained by 
larger extra-cellular fluid (45% of the bodyweight) compared to adults (20%) [14, 22].

In order to characterize the specific influence of developmental changes in 
childhood on the PK of a drug, concentration-time profiles are necessary, which 
require measurements of drug concentrations. For ethical reasons, in pediatric 
studies, discomfort, like pain and anxiety associated with venipuncture, must be re-
stricted and practical issues limit the volume and amount of blood samples that 
can be obtained. Therefore, sensitive analysis techniques requiring only small blood 
samples should be used. While HPLC methods have reported to require only 50 µL 
of blood [23], more recently LC-MS methods can measure up to ten different drugs in 
volumes as low as 50-100 µL [24]. Additionally, also alternative matrices such as saliva 
should be explored as a non-invasive, more child-friendly alternative to measure a 
drug concentration. An example in this respect is a LC-MS/MS method which was 
developed and validated for the measurement of busulphan in saliva [24]. Also the use 
of a dried blood spot method e.g. for tacrolimus can facilitate the measurement of 
drugs in children [25]. Another method is capillary electrophoresis which requires only 
a low sample volume for the quantification of drugs in biological fluids [26].

Changes between children and adults may also result from differences in the 
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pharmacodynamics of a drug in children, e.g. by changes in the relative number and 
function of receptors. These age-related PD differences are until present rarely 
reported in literature, but one of the few examples is the increased sensitivity to 
d-tubocurarine, an antagonist of nicotinic neuromuscular acetylcholine receptors, in 
neonates and infants compared to children and adults [27]. Other examples are the 
observed lower minimum alveolar concentration (MAC) of isoflurane in preterm 
neonates compared to full-term neonates and older children [28, 29] and the different 
sensitivity to bronchodilators because of the lack of smooth muscles in the airways 
in neonates [30].

To study the PD of a drug in children, the use of a PD endpoint which is validated 
for use in children is a prerequisite. An illustrative example is the measurement of 
pain in young children. Since they are not able to report their pain using a visual 
analogue scale, an observational scale has been developed. This comfort behavioral 
(COMFORT-B) scale was developed and validated for use in children under the age 
of three years [31]. The scale assesses six behavioral items: alertness, calmness, muscle 
tone, body movement, facial tension, and crying (non-ventilated children) or respira-
tory response (ventilated children). All items range from 1 (no distress) to 5 (severe 
distress), resulting in a total score of varying from 6 to 30. This validated scale can 
then be used as a PD endpoint for the development of PD models for pain and/or 
sedation in children of different ages [32-34].

The influence of covariates such as the developmental changes, disease status and 
genetics on the PK and PD of drugs in children is depicted in Figure 1.

Figure 1: Schematic representation of the relationship between dose and concentration (pharmacokinetics, PK) and 
between concentration and a pharmacological (side) effect (pharmacodynamics, PD). Important covariates which may 
affect both the PK and/or PD are bodyweight, age, disease status (e.g. critically ill versus healthy children) and 
genetics.

PKDose Concentration

Developmental changes, disease status and genetics

PD Efficacy, Safety
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When both the PK and PD of a drug in children are characterized, the developed 
models can be used to derive rational dosing regimens with predictable efficacy and 
concentration profiles. An example of such a PK-PD model with a derived dosing 
regimen is an article published by Peeters et al. In this paper both the PK and the 
PD were characterized in children, the latter with the use of the COMFORT-B scale 
as pharmacodynamic endpoint [33]. Based on the model it was found that propofol 
clearance is two times higher in non-ventilated children compared to ventilated 
children and adults. For the PD, a model was derived in which an effect of propofol 
was characterized within a naturally occurring sleep pattern of children in the ICU. 
Both models (PK as well as PD) were used to simulate concentrations as well as the 
effects that could be expected using different dosing schemes (Figure 2). As a result, 
based on this PK-PD model, a propofol dose of 30mg/h was recommended for a 
child of 10 kg which will result in adequate COMFORT-B scales in the night following 
craniofacial surgery.

Figure 2: Simulation of propofol concentrations and response using COMFORT-B score versus time based on 
developed PK and PD models, after administration of different doses of propofol (0, 18, 30, and 36 mg/h) for a 10 
kg and a 5 kg non-ventilated infant in the first night at the Intensive Care following craniofacial surgery. Target 
COMFORT-B scores are between 12 and 14 preferably. Reproduced from [Peeters MY, Prins SA, Knibbe CA, DeJongh 
J, van Schaik RH, van Dijk M, et al. Propofol pharmacokinetics and pharmacodynamics for depth of sedation in 
nonventilated infants after major craniofacial surgery. Anesthesiology 2006 Mar;104(3):466-74.]
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2.3. Methods to analyse data: standard two-stage or popula-
tion approach

When concentration-time and concentration-effect datasets obtained in children 
are considered for analysis, two different methods can be applied: the standard 
two-stage approach and the population approach using non-linear mixed effect 
models [35-38]. When using the standard two-stage approach or classical approach, in 
a first step parameters are estimated in each individual based on individual concen-
tration-time profiles (figure 3A). In a second step, these parameters are summarized 
by calculating the mean or median of the parameters and the variability between 
subjects (SE or IQR). A major drawback of this methodology is that this approach 
requires a relatively high number of samples in each individual patient (Figure 3A) 
while each patient has to contribute roughly the same number of samples. Moreover 
it is very difficult to distinguish between inter-individual (variability between subjects), 
intra-individual and residual variability (variability within one subject, measurement 
error, and model misspecification) and as a result inter-individual variability is often 
overestimated [39].

Since usually only a limited number of observations can be obtained in pediatric 
subjects, the population approach using non-linear mixed effect modeling to obtain 
PK and PD parameters, is the preferred approach [37]. The population approach differs 
from the standard two stage-approach in the fact that the analysis is based on simul-
taneous analysis of all data of the entire population while still taking into account 
that different observations come from different patients (Figure 3B). Additionally 
the population approach allows not only for the analysis of dense data but also for 
sparse (limited number of observations per individual) and unbalanced data (unequal 
distribution of observations in various parts of the concentration-time profile in the 
individuals) or a combination of both. Finally both the interindividual and intra-indi-
vidual variability are separately estimated in the dataset using this approach.

As a result of this methodology, when designing a pediatric study of which the 
data will be analyzed using the population approach, it is advisable to collect samples 
at different times (or time-windows) or to set alternating sampling schemes in 
subgroups of patients. This also means that (part of the) samples can be collected 
during routine clinical sampling. Consequently, the burden for the child that partici-
pates in the trial is reduced and the statistical power to develop a model describing 
the concentration-time or concentration-effect profile is not affected or improved.



32

Chapter 2

The term ‘mixed’ in non-linear mixed effects modeling stands for a mixture of 
fixed and random effects. For the fixed effects, a structural model describing the 
PK or PD is chosen (e.g. a two-compartment model for PK or an Emax model for 
PD). The random effects quantify the variability that is not explained by the fixed 
effects. These random effects include inter-subject and intra-subject and random 
variability  (Figure 4), which are both simultaneously and separately estimated. It is 
often assumed that the variability between subjects follows a normal distribution 
with a mean of zero and variance . Equation 1 is used to describe the relationship 
between individual and population parameter estimates.

 (Equation 1)

where  represents the parameter of the ith subject,  the population mean, 
and  the variability between subjects. The residual error is in generally described 

Figure 3: Concentration-time profiles of the same study using two different approaches. In figure 3A the standard 
two-stage approach is applied to a rich dataset. 3B shows the population approach with mixed effect modeling 
applied to the same dataset using only two datapoints for each individual so a sparse dataset is created. In 3A, in 
each of the six individuals 10 samples are available. The different symbols correspond to different individuals. Each 
black line corresponds to a separate fit to the 10 data points of each individual.
In 3B, which uses the mixed effect modeling approach, two samples of the 10 per subject in 2A are used. The 
different symbols correspond to the six different individuals. The black line illustrates the concentration time plot 
based on the population mean values of the PK parameters (PRED). The grey lines show the plots of the individual 
patients, which are based on the population mean values together with the measured concentrations of the specific 
individual (IPRED).
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using a proportional error (error is dependent on the concentration, which means 
a higher absolute error at higher concentrations (equation 2)) or additive error 
(constant for all observations (equation 3)) or a combination of both. This means for 
the th observed concentration of the th individual the relation ( ):

 (Equation 2)

 (Equation 3)

where  is predicted concentration and  is a random variable with mean zero 
and variance .

In general, model building requires three different steps. First a structural model 
(fixed effects) has to be designed, then a statistical sub-model (random effects) has to 
be developed and in the final step a covariate sub-model is identified. 

The structural model describes the overall trend in the data. The choice of struc-
tural model (e.g. one, two or three-compartment model for PK and an Emax model 
for PD) is to be based upon the best a priori information about the drug to be studied 

[40]. The structural model uses fixed effects parameters such as clearance and volume 
of distribution for PK or Emax and EC50 for PD. The population values for these pa-
rameters are called typical values (TV).

After selecting the structural model, the statistical sub-model which accounts 
for the inter-individual as well as the residual variability is chosen and tested. Infor-
mation on both inter- and intra- and residual variability is of clinical value, because 
it describes differences in clinical response between and within patients and may 
therefore provide guidance to rational dose adjustments. With the population 
approach, both these random effects are obtained, apart from estimates of both the 
population values (TV) and the individual values of PK and PD parameters (so called 
post hoc parameter estimates). 

In the final step the covariate sub-model is determined which expresses re-
lationships between covariates and parameters of the structural model (e.g. 
influence of bodyweight on volume of distribution or clearance). Covariates can 
be individual-specific (age, bodyweight, genetic profile, etc) or time-varying (renal 
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function, hemodynamic parameters, body temperature etc). The covariate analysis 
will be explained more in details in the following section. 

As these three models are interrelated, the choice of the structural (and sta-
tistical) model may affect the choice of the covariate model and vice versa. The 
process of finding a model that adequately describes the data is thus an elaborate 
task, where model checking/refining is performed in several steps. To assess model 
fit in relation to the observed concentrations or effect measures, scatter plots or the 
so called goodness-of-fit plots are created (see Validation of the PK-PD models). Free 
software packages (Xpose, PSN etc.) are available to generate these plots.

The most commonly used software package for model building, which is also 
supported by the European Medicines Agency (EMEA) is the nonlinear mixed-ef-
fect modeling program NONMEM (GloboMax/ ICON, Ellicott City, MD) [4, 41-43]. 
NONMEM estimates parameters (e.g. clearance, volume of distribution or EC50) via 
a maximum likelihood approach. This means that with the given data, the estimations 
of the parameters are the estimations which occur with the highest probability. Al-
ternative software packages that can be used are for example Monolix, WinNonMix, 
USC*PAC which uses nonparametric maximum likelihood methods [44] or ADAPT 
using maximum a posteriori (MAP) methods [45].

Figure 4: In 4A, the inter-individual variability is shown between three individuals who received the same dose. 4B 
presents the intra- or residual variability by showing the concentration-time profile after repeated administration. 
Both these random variables are assumed to be normally distributed with a mean of zero and a variance of 2 or 

2 respectively.
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2.4. Covariate analysis 

To determine the optimal dose based on the individual characteristics of a patient, 
a covariate analysis has to be performed [40, 46, 47]. The aim of the covariate analysis is 
to identify specific predictors (covariates) of PK and PD variability and can typically 
be studied in population models. Covariate analysis involves the modeling of the 
distribution of the individual parameter estimates as a function of covariates which 
can be of demographic (e.g. age, bodyweight, gender), patho-physiological (e.g. renal 
or hepatic function), and genetic/environmental origin and/or be the result of the 
concomitant use of other drugs, which may influence the PK and/or PD. The identifi-
cation of predictive covariates for variability provides the scientific basis for rational 
and individualized, patient tailored dosing schemes. 

The influence of developmental changes in childhood can be explored primarily 
by using size and/or age as covariates. Size (bodyweight) can be incorporated into 
the model using two different approaches. The first approach or ‘allometric size 
approach’ includes size a priori by using a bodyweight based exponential equation 
with a fixed exponent of 0.75 for clearance and 1 for volume of distribution [48-52]. 
Once size is incorporated in the model using this fixed manner, the influence of 
age is investigated, being the difference between actual value of the PK parameter 
and the 0.75 allometric equation. When incorporating age as a covariate, different 
age descriptors may be used like postmenstrual age (PMA), gestational age (GA) or 
postnatal age (PNA) [53]. The choice for any of these age descriptors is based on the 
results of the systematic covariate analysis as described below [50, 54]. In the second 
approach or ‘systematic covariate analysis’, bodyweight is regarded as a covariate as 
any other which means that the descriptive properties on the PK parameters are 
evaluated in a systematic covariate analysis as described below [55-57]. 

In a systematic analysis, when studying the influence of covariates, scatter plots 
and summary plots of individual parameter estimates and/or weighted residuals 
versus covariates are used to screen for appropriate covariates to include in the 
covariate sub-model. Additionally these plots are used to explore the nature of the 
influence of the covariate (linear, exponential, allometric, subpopulations etc). Likely 
candidate covariates are then added to the model (forward inclusion). The influence 
of each covariate on the parameters is examined separately and compared to the 
simple model (no covariates). To assess whether the model with covariate statistical-
ly improved the fit to the data, the difference between their objective function value, 
referred to as log-likelihood ratio, is calculated. This ratio is assumed to be Chi-
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square distributed, which means that a reduction in objective function of 3.84 is con-
sidered to be significant (P<0.05) [43, 58]. Beside the reduction in objective function, 
goodness-of-fit plots of the simple model and covariate model are explored for diag-
nostic purposes. Furthermore, the confidence interval of the parameter estimates, 
the correlation matrix (indicates the relationship between two structural parame-
ters) and visual improvement of the individual plots are used to evaluate the model. 
Finally, a superior model is expected to reduce the inter-subject variance and/or 
the residual error terms. This procedure of covariate modeling implies that each 
covariate is only implemented if this can be fully justified by the data and the results 
of the statistic evaluations.

When two or more covariates are found to significantly improve the model the 
covariate that reduced the objective function most is included in the model after 
which the other covariates are tested again for their significance. After all covariates 
that significantly improved the objective function are added to the simple model, a 
backward deletion is performed, which means that each covariate is removed from 
the full model, one at a time (the one which causes the smallest increase in objective 
function first). Retaining or removing the covariate is statistically tested by the use of 
the objective function (Chi-square test) until each covariate has been tested. 

In datasets containing sparse data, there may not be enough information to accu-
rately estimate inter- and intra-individual variability. This causes the values of these 
parameters to shrink to 0, resulting in individual parameter estimates that are closer 
to the population parameter estimates than they really are. This phenomenon is 
called shrinkage [59]. Shrinkage may cause individual predictions, individual parameter 
estimates and diagnostics based on them to be less reliable. It can also hide, falsely 
introduce or distort the shape of covariate relationships.

Shrinkage is the result of properties of the data and is therefore difficult to avoid. 
One can only be aware of the presence of shrinkage, realize the influence it may have 
on the covariate analysis and use diagnostics other than those based on individual 
predictions or individual weighted residuals in the model building and model evalua-
tion procedures. 

2.5. Validation of PK-PD models

The objective of a PK or PK-PD modeling exercise is usually not just to describe 
the dataset of the sample of individuals that were studied. Generally, models are used 
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to simulate which concentrations and/or effects and their variability can be expected 
when different doses are given to future patients. These simulations may therefore 
lead to optimized dosing recommendations or to optimization of new studies for the 
entire population where the sample of individuals belongs to. It is often said that ‘all 
models are wrong, but some are useful’ [60]. In order to define whether a model is 
useful and valid for clinical and trial simulations, thorough evaluation and validation 
of the model is necessary. Although validations of PK models are only performed in 
17% of the published pediatric studies [4] and in 28% of the adults studies [61], proper 
model validations are an essential step in model building. For this purpose, different 
evaluation and validation methods are available. As described before [62], a proper 
validation and evaluation procedure includes an internal model evaluation followed 
by an external evaluation and a prospective clinical study. 

The first evaluation method is the basic internal model validation used to assess 
whether the model is able to describe the learning dataset (dataset used to develop the 
model) accurately and without bias. This evaluation should actually be considered the 
final stage of the model building procedure. Subsequently, in the external evaluation 
it is assessed whether the model is able to describe one or more external datasets 
(datasets other than the one used to develop the model) adequately. Alternatively 
if a dataset is sufficiently large the original dataset may be split in two so that the 
model is developed using one part (about two thirds) of the dataset and evaluated 
externally using the other part (one third) of the dataset. In pediatric studies, it is 
then especially important to stratify the data correctly and ascertain that all age 
groups are represented in equal proportions in both datasets. 

Various techniques are available for the validation and evaluation of population PK 
and PK-PD models (both for internal and external validation procedures).

• Basic goodness-of-fit plots ((1) individual predicted versus observed concen-
trations, 2) population predicted versus observed, 3) (conditional) weighted 
residuals versus time and 4) (conditional) weighted residuals versus dependent 
variable plots).  and  are calculated as the following:

  (Equation 4)

 (Equation 5)
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• Where  is the vector of measurements,  is the expectation of the data 
and  is the covariance matrix of the data [63].

• These plots are used in model building, but can also be used to ascertain 
that there is no trend or bias in the model predictions of the final model. 
Furthermore, these plots can also be used for both the internal and external 
evaluation of the model. 

• In a bootstrap analysis new datasets are generated by resampling from the 
original dataset and is therefore an internal validation of the model. The new 
datasets are subsequently refitted to the original model, yielding mean values 
and standard errors for every model parameter.

• A bootstrap analysis provides information on the stability of the model and 
its dependence on specific individuals in the learning dataset. With the freely 
available PSN or Wings for NONMEM software packages an automated 
bootstrap analysis can be performed. 

• In a visual predictive check (VPC) [64] a PK or PD profile is simulated a 100 to 
1000 times and lines for the median values and their 90% prediction interval 
are plotted in a graph. The observed values in the internal or external dataset 
are subsequently plotted on top of this. It can then be visually checked 
whether 90% of the observations are within the indicated prediction interval 
and whether there is no bias in the observations compared to prediction 
interval. In figure 5, two examples of a VPC are given, showing when a model 
does not work and when a model does work on the same data.

• The VPC is a simulation-based diagnostic that can be used when the PK or 
PD profiles for all individuals in the dataset are similar and it allows for easy 
interpretation of the result. For this diagnostic tool, there are not statistical 
tests and all evaluations are based on visual evaluations. When the individual 
profiles are expected to deviate largely from one another because there is 
for instance a large variability in the time and amount of dose administrated, 
or when there are many covariates, the use of this diagnostic becomes more 
difficult. 

• Another simulation-based diagnostic which can be used for both internal and 
external validations is the normalized prediction distribution error (NPDE) 
[65]. An example of an NPDE published before is shown in figure 6 [55]. This 
method yields information on how accurate the model predicts the median 
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value of the observations and the variability within them. The interpretation 
of this diagnostic is less straightforward than for the VPC, but the advantage 
of this method is that it can be used when the variability in dosing regimen 
(both in time, amounts and rates) is high or when there is a large number of 
covariates in the model. This can for instance be the case for data obtained 
during routine pediatric clinical practice. Software (e.g. NPDE add-on package 
for R) [66] to perform this analysis is freely available. For the NPDE, beside 
visual evaluation of the plots, statistical tests are available. These statisti-
cal tests are however reported to be highly sensitive and powerful, so that 
decisions for the model should primarily be based on visual assessments. An 
example is the statistically significant deviation of zero of the mean value 
because of the large number of data, while the actual deviation is small (e.g. 
0.074) and not of clinical relevance.

If the model performed well in both the evaluation procedures, the dosing 
algorithm that results from the PK-PD model needs to be tested and challenged in a 
prospective (clinical) trial. If the predictive performance of the model is corroborated 
by the trial it can be used with confidence in clinical practice.

Figure 5: Two examples of a visual predictive check (VPC) are illustrated based on the same dataset (warfarin 
concentrations and prothrombin complex activity (PCA)) using two different models. In 5A the VPC of the effect 
compartment model is shown, while in 5B the VPC of the turnover model is demonstrated. The median (black thick 
line) and the 90% intervals (black thin lines) together with the observed data (PCA) (dots) are shown. Based on 
both graphics, the turn over model is the most appropriate model since 90% of the observations are lying within 
the prediction interval. Furthermore, unlike the effect compartment model, no bias is seen in the observations.
Reproduced from [Holford N, 2005. The visual predictive check - Superiority to Standard Diagnostic (Rorschach) 
Plots. PAGE 14, Abstr 738. (http://www.page-meeting.org/?abstract=738)].
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2.6. Optimal design of pediatric studies

When new population PK-PD studies are performed, it is important to design 
these studies in the most efficient manner possible to obtain maximum information 
about the PK and PD parameters so that they can be determined with the highest 
precision [51, 67]. When designing PK-PD studies in pediatrics certain factors need to 
be taken into account e.g. age-range of the pediatric group, therapeutic index, possi-
bility to collect blood samples, availability of validated PD endpoints for children, and 
the availability of sensitive analytical methods.

When optimizing a PK or PK-PD study design, using literature data from adults or 
children of different age-ranges or possible in vitro or pre-clinical data, a concentra-
tion-time or effect-time profile for a study can be simulated. This can help to identify 
possible shortcomings in the design or to perform a power-analysis. Alternatively 
software packages are available (WINPOPT [68], PopED [67] and PFIM [69]) that can help 
to identify the optimal number and time points of observations in a study based on 
the prior information on a drug [70]. To determine the appropriate sample size certain 

Figure 6: Example of a normalized prediction distribution error (NPDE) analysis, which show the NPDE distributions 
for morphine. The normal distribution is presented by the solid line. The values for the mean and standard devia-
tion of the observed NPDE distribution are given below the histogram, with * indicating a significant difference 
of a mean of 0 and a variance of 1 at the p<0.05 level, as determined by the Wilcoxon signed rank test and 
Fisher test for variance. Additionally the distribution of NPDE vs time after the first dose and NPDE vs the log of 
the concentrations are also shown. The dotted lines represent the 90% distribution of the NPDE. Reproduced from 
[Knibbe CA, Krekels EH, van den Anker JN, DeJongh J, Santen GW, van Dijk M, et al. Morphine glucuronidation in 
preterm neonates, infants and children younger than 3 years. Clin Pharmacokinet2009;48(6):371-85] with permission 
from Wolters Kluwer Health | Adis (© Adis Data Information BV [2006]. All rights reserved.)
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factors, which are summarized in Table 1, need to taken into account. Each of these 
factors can influence the required number of patients and/or samples in a positive 
or negative way. In a study of Peeters et al. [32] only 24 patients (aged between 3 and 
24 months) were required to determine both the PK and PD since rich sampling was 
performed (median of 11 samples per child) and no covariates were found in the rela-
tively homogenous population. This in contrast to a study performed by Knibbe et al.  
[55] in which 250 children were included. This higher number was required because in 
addition to the large dispersion in age from (preterm) neonates up to toddlers of 3 
years of age, only 1 to 4 samples were available for each subject. Moreover infusion 
rates and additional bolus doses varied for each child during the study to obtain the 
desired analgesic effect. In another example [71], only 6 patients (aged between 1 and 
5 years) were required in which 7 samples per patient were collected. This lower 
number of patients (N=6) compared to the study of Peeters et al. (n=24) can be 
explained because there often exist a lower variability in PK than in PD which results 
in a lower required number of patients (Table 1).

Table 1: Factors influencing the required number of patients and/or samples per patient.

Factor Number of patients/samples

Study of PK only relatively small number of patients/samples

Study of PK-PD relationship relatively high number of patients/samples

Even distribution of covariates (age, bodyweight)  number of patients/samples

 Number of changes in dose /- number of patients/samples (depending on other aspects 
of the study design)

 Number of samples/child  number of patients

Use of optimal sampling strategies  number of patients/samples

Different sampling windows(e.g. two or three 
sampling schemes)

 number of patients/sample
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2.7. Conclusions and perspectives

In view of the European Regulation which came into force in 2007, it seems now 
time to use the progress that has been made in the field of integrated PK-PD modeling 
[72] to develop rational and individualized dosing schemes for children. Because of the 
possibility to analyse sparse and unbalanced datasets thereby minimizing the burden 
for each child, population PK-PD modeling and simulation using non-linear mixed 
effect modeling has become the preferred tool to develop effective and safe dosing 
regimens for children. Specifically in pediatrics where the developmental changes 
have to be taken into account, which may influence the PK and/or the PD of the 
drugs, this advanced statistical tool is of critical value. 

Before dosing regimens can be tested in clinical practice, proper validations 
of the models should be performed, for which recently adequate tools have been 
developed. Beside internal and external validations, prospective clinical trials, which 
allow for the evaluation of the model based dosing regimens, are needed, not only 
to adjust the proposed dosing regimen but also to convince pediatricians to use the 
information that has been generated using these modeling exercises. 

Furthermore, one of the future goals may be to explore possibilities for 
cross-validation of the models, in which the reported influences of developmen-
tal changes on a certain PK or PD parameter of one drug are evaluated for use in 
another drug that go through the same metabolic route or share the same mechanism 
of action. In this respect, physiologically-based pharmacokinetic (PBPK) models are 
needed. PBPK models consider the physiological and biochemical processes by using 
in vitro data to describe the PK of drugs [73, 74]. The combination of these two ap-
proaches may use the information that is already available in a more optimal way in 
defining effective and safe dosing regimens for every individual patient.

In conclusion, analyses of pediatric data using population PK-PD modeling and 
covariate analysis will result in individualized dosing regimens for children of different 
age, bodyweight and genetic background. Thus population PK-PD modeling consti-
tutes an innovative approach to the study of drug effects in this very special patient 
population, which is otherwise difficult to study.
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