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Chapter 8

Asynchronous Extended

Spiking Neural P Systems

with Astrocytes

Abstract
A variant of spiking neural P systems was recently investigated by the authors
[Pan, Wang, Hoogeboom: Spiking Neural P Systems with Astrocytes, submitted],
where astrocytes have excitatory and inhibitory influence on synapses. In this
work, we consider this new system in the non-synchronized (i.e., asynchronous)
mode: in any step, when a neuron is enabled, it is not obligatorily fired, making a
global clock dispensable. It is proved that asynchronous spiking neural P systems
with astrocytes are universal (when using extended rules).

8.1 Introduction

Spiking neural P systems (SN P systems, for short) are a class of distributed
and parallel computation models inspired by the way neurons communicate by
means of electrical impulses of identical shape (called spikes). SN P systems were
introduced in [16], and then investigated in a large number of papers. Readers
can refer to the recent handbook [35] for general information in this area.

Briefly, an SN P system consists of a set of neurons placed as the nodes of a
directed graph. The content of each neuron consists of a number of copies of a
single object type, called the spike. The rules assigned to neurons allow a neuron
to send information to all other neurons that are connected to it.

Classically, an SN P system works in a synchronized manner. A global clock
is assumed, and in each time unit, for each neuron with applicable rules one of
these rules is nondeterministically chosen, which are then applied on the tick of
the clock, for all neurons at the same time. While globally parallel, the work
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of the system is sequential in each neuron as (at most) one rule is applied in
each neuron. Output can be defined in the form of the spike train produced by a
specified output neuron, then measuring the timing between events, or counting
the number of spikes in that neuron.

However, both from a mathematical point of view and from a neuro-biological
point of view, it is rather natural to consider non-synchronized systems, where
the application of rules is not obligatory, and no global clock is assumed. The
neuron may remain unfired, maybe receiving spikes from the neighbouring neu-
rons. Thus the unused rule may be used later, or it may loose its applicability.
If further spikes made the rule non-applicable, then the computation continues
in the new circumstances (maybe other rules are enabled now). With this mo-
tivation, asynchronous SN P systems were introduced in [4], and it was proved
that asynchronous SN P systems with extended rules are equivalent with Turing
machines.

Recently, a variant of spiking neural P systems with astrocytes was considered
in [28], where an astrocyte can sense at the same time the spike traffic along
several neighboring synapses. In an SN P system with astrocytes, each astrocyte
ast has a given threshold t. Suppose that there are k spikes passing along the
neighboring synapses. If k is larger than the threshold t, then the astrocyte ast
has an inhibitory influence on the neighboring synapses, and the k spikes are
suppressed (that is, they are removed from the system). If k is less than the
threshold t, then the astrocyte ast has an excitatory influence on the neighboring
synapses, the k spikes survive and pass to the destination neurons. If k equals t,
then the astrocyte ast non-deterministically chooses an inhibitory or excitatory
influence on the neighboring synapses.

Actually, astrocytes were already introduced into spiking neural P systems in
[3, 31]. The functioning of astrocytes defined in [3, 28, 31] are different, although all
of them are inspired by living astrocytes. In [3], two kinds of astrocytes are defined:
excitatory astrocytes and inhibitory astrocytes. Astrocytes defined in [31] are a
particular case of those considered in [3], with an inhibitory role; furthermore,
the use of astrocytes defined in [31] adds a new degree of non-determinism to the
functioning of the system, by the branching due to the non-deterministic choice
of the surviving spike.

In this work, building [4], on we prove that spiking neural P systems with
astrocytes are equivalent with Turing machines in the non-synchronized case. In
our proof of universality, forgetting rules are not used, and they are actually
replaced by the inhibitory influence of astrocytes. Moreover, all neurons in our
construction work in a deterministic way (the nondeterminism in choosing the
rules of a neuron is compensated by the nondeterminism from astrocytes).

In the universality proof in [4], the SUB modules of systems contain a pa-
rameter T , where T depends on the maximum number of SUB instructions that
act on a same counter in the simulated register machine. However, in the present
work, all modules of systems are constructed in a uniform way in the sense that
all modules are independent of the particular register machine that is simulated
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(more specifically, for different register machines the combination of modules used
is different; while the modules used are same).

The rest of this paper is organized as follows. In the next section, we introduce
some necessary prerequisites. In Section 8.3, we present spiking neural P systems
with astrocytes. In Section 8.4, we prove that spiking neural P systems with
astrocytes are universal in non-synchronized case. Final remarks are presented in
Section 8.5.

8.2 Prerequisites

Readers can refer to [38] for basic language and automata theory, as well as to
[30] for basic membrane computing. We here only fix some necessary notions and
notations.

For an alphabet V , V ∗ denotes the set of all finite strings over V , with the
empty string denoted by �. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead of
{a}∗, {a}+.

Regular expressions are built starting from � and single symbols using the
operators union (∪), concatenation (⋅) and star (∗). The language represented by
expression E is denoted by L(E), where L(�) = ∅.

By NRE we denote the families of Turing computable sets of numbers. (Thus,
NRE is the family of length sets of recursively enumerable languages.)

A register machine is a construct M = (m,H, l0, lℎ, I), where m is the number
of registers (each holding a natural number), H is the set of instruction labels,
l0 is the start label (labeling an ADD instruction), lℎ is the halt label (assigned
to instruction HALT), and I is the set of instructions. Each label from H labels
exactly one instruction from I, thus precisely identifying it. The instructions are
of the following form (and have the given intended meaning):

∙ li : (ADD(r), lj , lk) (add 1 to register r and then nondertiministically go to
one of the instructions with labels lj , lk),

∙ li : (SUB(r), lj , lk) (if register r is non-zero, then subtract 1 from it, and go
to the instruction with label lj ; otherwise, go to the instruction with label
lk),

∙ lℎ : HALT (the halt instruction, the computation stops).

A register machine M computes (generates) a number n in the following way.
The register machine starts with all registers empty (i.e., storing the number
zero). It applies the instruction with label l0 and proceeds to apply instructions
as indicated by labels (and, in the case of SUB instructions, by the contents of
registers). If the register machine reaches the halt instruction, then the number
n stored at that time in the first register is said to be computed by M . The set
of all numbers computed by M is denoted by N(M). It is known that register
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machines compute all sets of numbers which are Turing computable, hence they
characterize NRE [27].

Without loss of generality, it can be assumed that l0 labels an ADD instruction
and that in the halting configuration all registers different from the first one are
empty, and that the output register is never decremented during the computation
(its content is only added to).

We use the following convention. When the power of two number generat-
ing/accepting devices D1 and D2 are compared, number zero is ignored; that is, we
write N(D1) = N(D2) when we actually mean that N(D1)−{0} = N(D2)−{0}
(this corresponds to the usual practice of ignoring the empty string in language
and automata theory).

8.3 Spiking Neural P Systems with Astrocytes

In this section, we introduce the variant of asynchronous spiking neural P systems
with astrocytes (ASNPA systems, for short). For more details on such kind of
systems, please refer to [4] and [28].

An (extended) spiking neural P system with astrocytes, of degree m ≥ 1, ℓ ≥ 1,
is a construct of the form

Π = (O, �1, . . . , �m, syn, ast1, . . . , astl, out), where:

∙ O = {a} is the singleton alphabet (a is called spike);

∙ �1, . . . , �m are neurons, of the form �i = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in �i;

b) Ri is a finite set of extended rules of the following form:

E/ac → ap

where E is a regular expression over a, and c ≥ 1, p ≥ 1 with c ≥ p. 1

∙ syn ⊆ {1, 2, ...,m} × {1, 2, ...,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

∙ ast1, . . . , astl are astrocytes, of the form asti = (synasti , ti), where 1 ≤ i ≤ ℓ,
synasti ⊆ syn is the set of synapses controlled by the astrocyte asti, ti ∈ ℕ

is the threshold of the astrocyte asti;

∙ out ∈ {1,2,...,m} indicate the output neuron.

1We adhere to the practice where the number of spikes sent is not larger than the number

of spikes removed from the neuron. This turns out to be only a technical constraint: a set of

‘parallel’ neurons is used to increase the number of spikes where necessary.
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The rules E/ac → ap with p ≥ 1 are called (extended) firing (we also say
spiking) rules, and they are applied as follows. If the neuron �i contains k spikes,
and ak ∈ L(E), k ≥ c, then rule E/ac → ap ∈ Ri can be applied. This means
consuming (removing) c spikes (leaving k − c spikes in neuron �i), the neuron is
fired, sending p spikes out along all outgoing synapses. These spikes then reach
the neighbouring neurons, unless they are intercepted by one of the astrocytes, as
explained shortly below. If L(E) = {ac}, then the rule is written in the simplified
form ac → ap.

In the non-synchronized case, considered here, the definition of a computa-
tional step in an ASNPA system is easy. In each moment, any neuron is free to
use an applicable rule or not. Hence, if a rule in neuron �i is enabled at step t, it
is not necessarily applied at that step, the neuron can remain still in spite of the
fact that it contains rules which are enabled by its contents. If the enabled rule
in neuron �i is not applied, and neuron �i receives new spikes, making the rule
non-applicable, then the computation continues in the new circumstances (where
maybe other rules are enabled).

Note that in “classical” membrane computing a global clock is assumed, mark-
ing the time for the whole system, and the functioning of the system is synchro-
nized. In the synchronized mode, in each time unit, if a neuron �i is enabled,
then one of its rules must be used. It is possible that two or more rules in a neu-
ron are applicable at the same time, and in that case, only one of them is chosen
non-deterministically. Thus the neurons together work in parallel (synchronously),
while each separate neuron sequentially processes its spikes, using only one rule
in each time unit.

Astrocytes work as follows. An astrocyte can sense the spike traffic along
the neighboring synapses. For an astrocyte asti, suppose that there are k spikes
passing along the neighboring synapses in synasti . If k > ti, then the astrocyte
asti has an inhibitory influence on the neighbouring synapses, and the k spikes are
suppressed (that is, the spikes are removed from the system). If k < ti, then the
astrocyte asti has an excitatory influence on the neighboring synapses, all spikes
survive and pass to the destination neurons. If k = ti, then the astrocyte asti non-
deterministically chooses an inhibitory or excitatory influence on the neighboring
synapses.

It is important to point out that when a neuron spikes, its spikes immediately
leave the neuron along all synapses. This in particular means that (i) if the spikes
are not suppressed by any astrocyte, these spikes reach the target neurons simul-
taneously (as in the synchronized system, no time is needed for passing along a
synapse from one neuron to another neuron); (ii) if any astrocyte has inhibitory
influence on the synapse, then these spikes are suppressed simultaneously, which
means that astrocytes remove the spikes in the synchronized way.

It is possible that two or more astrocytes control the same synapse. In this
case, if all these astrocytes have excitatory influence on the synapse, then the
spikes along this synapse can survive and pass to the destination neurons; if one
of these astrocytes has inhibitory influence on the synapse, then the spikes along
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this synapse are suppressed and removed from the system.
A configuration of the system is described by the number of spikes present in

each neuron. The initial configuration is defined by the number of initial spikes
n1, . . . , nm. Using the rules as described above, one can define transitions among
configurations. Any sequence of transitions starting from the initial configuration
is called a computation. A computation halts when it reaches a configuration
where no rule can be used.

Because in asynchronous SN P systems with astrocytes, an enabled rule can
be applied at any moment, the result of a computation can no longer be reliably
defined in terms of the steps between two consecutive spikes as in one of the stan-
dard SN P system definitions. Therefore, in this work, the result of a computation
is defined as the total number of spikes sent into the environment by the output
neuron. Specifically, if there is a halting computation of an SN P system where the
output neuron sends out exactly n spikes, then the system generates the number
n.

Halting computations that send no spike out can be considered as generating
number zero, but, in this work, we adopt the convention to ignore number zero
when the computation power of two devices is compared. The reason is technical:
we want to consider blocked computations without output as failure.

Note that the definitions in this paper specify systems with extended rules
(introduced by [6], meaning that more than one spike can be emitted) but without
forgetting rules (meaning that at least one spike must be emitted when firing).
Astrocytes are an effective alternative method for removing spikes, so forgetting
rules are not necessary in our considerations.

We denote by N(Π) the set of numbers generated in the asynchronous way by
an ASNPA system Π. By Nasyn

gen SNPA(extend) we denote the family of such sets
of numbers generated by ASNPA systems, using extended rules.

8.4 Universality of ASNPA Systems

In this section, ASNPA systems are proved to be universal in the generative mode.

Theorem 1
NRE = Nasyn

gen SNPA(extend).

Proof
We show that NRE ⊆ Nasyn

gen SNPA(extend); the converse inclusion is straight-
forward (simulating the system by a Turing machine). To this aim, we use the
characterization of NRE by means of register machines used in the generative
mode. Let us consider a register machine M = (m,H, l0, lℎ, I). As introduced in
Section 8.2, without any loss of generality, we may assume that in the halting
configuration, all registers different from the output register 1 are empty, and
that this register is never decremented during a computation. In what follows, a
specific ASNPA system Π will be constructed to simulate the register machine
M .
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Each register r of M will be implemented by a neuron �r in Π, and if the
register contains the number n, then the associated neuron will have 6n+6 spikes.
A neuron �li is associated with each label li ∈ H . We construct modules ADD and
SUB to simulate the instructions of M , connecting the appropriate label-neurons,
and introducing further auxiliary neurons �

l
(j)
i

, j = 1, 2, 3, . . . . Finally an output
module FIN is constructed to output computation results.

The modules will be specified in a graphical form. Neurons are denoted by
rounded rectangles with the number of initial spikes inside; arrows between these
rounded rectangles represent the synapses. An astrocyte is denoted by a rhombic
box with “arms” touching the synapses; each arm indicates that the astrocyte
controls the spike traffic of the corresponding touched synapse; the equation t = k
inside the rhombic box denotes that the astrocyte has threshold k.

In the initial configuration, all neurons are empty except that neuron �l0 as-
sociated with label l0 of M has two spikes inside to set the system working, and
each counter neuron �r contains 6 spikes representing empty counters. In general,
when a label-neuron �li , li ∈ H , has two spikes inside, then it becomes active and
the module associated with instruction li starts to work, simulating the instruc-
tion. Simulation is transferred to another instruction when the next label-neuron
obtains two spikes.

Module ADD – simulating an ADD instruction li : (ADD(r), lj , lk).
Module ADD, shown in Figure 8.1, is composed of 2 astrocytes and 12 neurons:
neuron �r for register r; neurons �li , �lj , �lk for labels li, lj, lk; and 8 auxiliary

neurons �
l
(1)
i

, . . . , �
l
(8)
i

. The astrocyte ast
(1)
li

touches two synapses (�
l
(5)
i

, �
l
(7)
i

)

and (�
l
(5)
i

, �
l
(8)
i

), and its threshold is 6. The astrocyte ast
(2)
li

touches synapse

(�
l
(8)
i

, �lk) and its threshold is 3.

Let us assume that at a computational step instruction li : (ADD(r), lj , lk) has
to be simulated, with two spikes present in neuron �li and no spike in any other
neurons, except in those neurons associated with registers.

Having two spikes inside, neuron �li may fire, sending 2 spikes out. These
spikes will simultaneously go to neurons �

l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

. Each of these three
neurons can fire, and indeed must fire before neuron �

l
(4)
i

is enabled. Then, with

6 spikes inside, neuron �
l
(4)
i

sends 6 spikes to neurons �r (simulating the increase

of the value of register r with 1) and �
l
(5)
i

. With 6 spikes inside, neuron �
l
(5)
i

can

use its rule a6 → a3, sending 3 spikes to each of the neurons �
l
(6)
i

, �
l
(7)
i

and �
l
(8)
i

.
At that moment there are 6 spikes passing along the synapses controlled by

astrocyte ast
l
(1)
i

which has threshold 6. The astrocyte ast
l
(1)
i

non-deterministically
chooses an inhibitory or excitatory influence on its controlled synapses. This choice
determines whether the next label-neuron activated will eventually be �lj or �lk .

If astrocyte ast
l
(1)
i

chooses an inhibitory influence on its controlled synapses,
then only neuron �

l
(6)
i

receives 3 spikes from neuron �
l
(5)
i

. In turn it will send
2 spikes to neuron �

l
(8)
i

, which then can send its 2 spikes to neuron �lk at one
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Figure 8.1: Module ADD simulating li : (ADD(r), lj , lk)
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moment. The synapse (�
l
(8)
i

, �lk) is controlled by astrocyte ast
l
(2)
i

but the number
of spikes is less than the threshold 3 and the 2 spikes reach neuron �lk . At that
moment system Π starts to simulate the instruction lk of M .

If astrocyte ast
l
(1)
i

chooses an excitatory influence on the synapses it controls,
then 3 spikes reach each of the neurons �

l
(6)
i

, �
l
(7)
i

and �
l
(8)
i

. With 3 spikes inside,
neuron �

l
(7)
i

can send 2 spikes to neuron �lj starting the simulation of the instruc-
tion with label lj of M . With 3 spikes inside, neuron �

l
(8)
i

cannot apply any rule
until further 2 spikes coming from neuron �

l
(6)
i

arrive in neuron �
l
(8)
i

. Then, hav-
ing 5 spikes inside, neuron �

l
(8)
i

can send 5 spikes to neuron �lk
i

at one moment.

However, these 5 spikes passing along the synapse (�
l
(8)
i

, �lk
i
) are suppressed by

astrocyte ast
l
(2)
i

and vanish from the system.
Note however that the system is asynchronous. There is no way to force the

module to fire any of the neurons �
l
(6)
i

and �
l
(8)
i

. Thus the possibility exists that

3 new spikes arrive (the next time that instruction l′i is simulated) to neuron �
l
(6)
i

and/or neuron �
l
(8)
i

while that neuron is not yet empty. A careful case analysis
now shows that this leads to more than 3 or 5 spikes in neuron �

l
(6)
i

or neuron �
l
(8)
i

,
respectively. This effectively means that label lk becomes unreachable, blocking
computations taking that branch. Most importantly however, it does not introduce
halting but unwanted computations.

Therefore, from firing neuron �li , the system may non-deterministically fire
one of neurons �lj and �lk , which correctly simulates the ADD instruction li :
(ADD(r), lj , lk). Any other computation will stop without generating an output.

Module SUB – simulating a SUB instruction li : (SUB(r), lj , lk).
Module SUB, shown in Figure 8.2, is composed of 3 astrocytes ast(1)li

, ast(2)li
, ast(3)li

and 18 neurons: neurons �r for register r, neuron �li , �lj , �lk for labels li, lj , lk,
and 14 auxiliary neurons �

l
(1)
i

, �
l
(2)
i

, . . . , �
l
(14)
i

.
An instruction li is simulated in Π in the following way. Initially, neuron li

has two spikes, and the other neurons are empty, except neurons associated with
registers. Assume that at one moment neuron �li fires and sends 2 spikes to
neurons �

l
(1)
i

and �
l
(2)
i

. Neuron �
l
(1)
i

will produce one spike and send it to neuron
�r . There are the following two cases, depending whether the counter r contains
a positive value or not.
Positive counter. If neuron �r has 6n+6 (n > 0) spikes (corresponding to the fact
that the number stored in register r is positive), then after receiving one spike from
neuron �

l
(1)
i

, neuron �r has 6n+ 7 spikes, and the enabled rule a7(a6)+/a7 → a6

will fire, sending 6 spikes to neurons �
l
(2)
i

and �
l
(3)
i

, respectively. For neuron �
l
(2)
i

,
there are following two cases.

(a) Neuron �
l
(2)
i

has not consumed the first 2 spikes (received from neuron �li)
before getting the second 6 spikes from neuron �r. Then, with 8 spikes inside,
neuron �

l
(2)
i

will send 6 spikes to neuron �
l
(3)
i

. This number is larger than the
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Figure 8.2: Module SUB simulating li : (SUB(r), lj , lk)
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threshold 5 of astrocyte ast
(1)
li

, thus the spikes are suppressed. With 6 spikes
(from neuron �r) inside, neuron �

l
(3)
i

sends 4 spikes to neurons �
l
(4)
i

and
�
l
(5)
i

, respectively. Again however, all the spikes sent out from neuron �
l
(3)
i

are suppressed by astrocyte ast
(2)
li

as the total number of 8 spikes passing

along the synapses is larger than the threshold 7 of astrocyte ast
(2)
li

). In this
case, neither of the neurons �lj and �lk receive a spike, which means that
computations in system Π abort, outputting no spike into the environment.

(b) Neuron �
l
(2)
i

receives the first 2 spikes from neuron �li , and rule a2 → a2

is applied before the 6 spikes from neuron �r arrive in neuron �
l
(2)
i

, then
later these 6 spikes will be consumed and 4 spikes will be sent to neuron
�
l
(3)
i

. These numbers are less than the threshold and all spikes will arrive in
neuron �

l
(3)
i

. When neuron �
l
(3)
i

first receives the 2 spikes from neuron �
l
(2)
i

it cannot apply any rule. When it receives the 6 spikes from neuron �r , the
contents of �

l
(3)
i

will be 8 spikes, while �
l
(2)
i

contains 6 spikes. Now both �
l
(2)
i

and �
l
(3)
i

are enabled. There are two situations:

∙ Enabled rule a8 → a3 is not applied before the 4 spikes from neuron
�
l
(2)
i

arrive in neuron �
l
(3)
i

. Then neuron �
l
(3)
i

accumulates 12 spikes,
the number of spikes is greater than 8, thus, no rule is enabled and the
computation aborts.

∙ Neuron �
l
(3)
i

applies the rule a8 → a3 before receiving the 4 spikes from
neuron �

l
(2)
i

. Then 3 spikes are sent out to both neurons �
l
(4)
i

and �
l
(5)
i

.
So, there are 6 spikes passing along the synapses controlled by astrocyte
ast

(2)
li

. The number 6 is less than the threshold 7 of this astrocyte, hence
these spikes can reach neurons �

l
(4)
i

and �
l
(5)
i

. With an odd number of

spikes inside (an even number plus the three just received), neuron �
l
(4)
i

can fire by using the rule a(a2)+/a3 → a2. Now neuron �lj receives 2
spikes, and the system Π starts to simulate instruction lj of M . At the
same time neuron �

l
(4)
i

again has an even number of spikes. In the other
branch, with 3 spikes inside, neuron �

l
(5)
i

can send 3 spikes to neuron

�
l
(6)
i

. However, these 3 spikes are suppressed by astrocyte ast
(3)
li

and
do not reach their destination neuron �

l
(6)
i

. Note that, after sending 3
spikes out, neuron �

l
(3)
i

will then receive 4 spikes from neuron �
l
(2)
i

and

produce 4 spikes, but these spikes are suppressed by astrocyte ast
(2)
li

and cannot reach neurons �
l
(4)
i

and �
l
(5)
i

.

Zero counter. If neuron �r initially has 6 spikes (corresponding to an empty regis-
ter r), then at one moment after receiving the additional spike from �

l
(1)
i

, neuron
�r has 7 spikes inside, sending 5 spikes to �

l
(2)
i

and �
l
(3)
i

, respectively. Neurons
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�
l
(2)
i

and �
l
(3)
i

are designed in such a way that their behaviour in the case of an
empty counter is completely analogous to the non-zero case described above, ex-
cept that the crucial numbers 6 and 8 of spikes are to be replaced by 5 and 7,
leading to the same way incorrect computations abort, while a correct simulation
will fire two spikes from �

l
(4)
i

. We omit the cases where the computation aborts,

and only consider the correct branch (corresponding to the second item from (b)
above in the non-zero case).

(b) Consider that neuron �
l
(2)
i

contains 5 spikes received from �r, which means
that it already sent 2 spikes to neuron �

l
(3)
i

. With 7 spikes inside, neuron

�
l
(3)
i

can apply the rule a7 → a2.

∙ Neuron �
l
(3)
i

first consumes 7 spikes and sends 2 spikes to neurons �
l
(4)
i

and �
l
(5)
i

, respectively, and later sends 4 spikes out by using the rule

a4 → a4, then each neuron �
l
(4)
i

and �
l
(5)
i

receives only 2 spikes from

neuron �
l
(3)
i

(the 4 spikes sent out from neuron �
(3)
li

are suppressed by

astrocyte ast
(2)
li

). Neuron �
l
(4)
i

gets 2 spikes and keeps an even number
of spikes, thus, no rule can be used and neuron �lj receive no spikes.
With 2 spikes inside, neuron �

l
(5)
i

will send one spike to neuron �
l
(6)
i

,

which of course is not blocked by astrocyte ast
(3)
li

. Neuron �
l
(6)
i

will
send a spike to each of the neurons �

l
(7)
i

, . . . , �
l
(12)
i

. The six neurons
will send their spike to neuron �

l
(13)
i

. With 6 spikes inside, neuron �
l
(13)
i

can send 6 spikes to neuron �r (reestablishing the number 0 in register
r) and �

l
(14)
i

. Neuron �
l
(14)
i

will send 2 spikes to neuron �lk . This neuron
becomes active, and the system Π can start to simulate instruction lk
of M .

The simulation of SUB instruction is correct: system Π starts from �li and
ends in �lj (if the number stored in register r is great than 0 and decreased by
one), or in �lk (if the number stored in register r is 0).

Note that there is no interference between the ADD modules and the SUB
modules, other than correctly firing the neurons �lj or �lk , which may label in-
structions of the other kind. However, it is possible to have interference between
two SUB modules. Specifically, if there are several SUB instructions lt that act on
register r, then when instruction li : (SUB(r), lj , lk) is simulated, neurons �

l
(2)
t

and
�
l
(3)
t

not involved in the active instruction that is simulated nevertheless receive 6
or 5 spikes from neuron �r. We show that this does not lead to unwanted halting
computations. In all cases, if the simulation does not continue as desired, a module
will be blocked, which then forces the computation to abort when that module
later might be started. Consider the number of spikes contained in each neurons
�
l
(2)
t

and �
l
(3)
t

before receiving these spikes from neurons �r, we distinguish the
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following five cases.

(1) If both neurons �
l
(2)
t

and �
l
(3)
t

are empty before receiving 6 or 5 spikes from
neuron �r, then after receiving these spikes, both of them contain 6 or 5
spikes (as we will see below, this is the initial state of case (2)). With 6 or 5
spikes inside, neuron �

l
(2)
t

sends 4 spikes to neuron �
l
(3)
t

and these spikes can
reach their destination neuron �

l
(3)
t

. For neuron �
l
(3)
t

, there are two possible
situations:

(a) If neuron �
l
(3)
t

consumes the first received 6 or 5 spikes from neuron
�r before the 4 spikes from neuron �

l
(2)
t

arrive, then it will send 4

spikes out and contains 4 spikes (this is the initial state of case (3)).
With 4 spikes inside, neuron �

l
(3)
t

can send 4 spikes out by using the

rule a4 → a4. However, all the spikes sent out from neuron �
l
(3)
t

are
suppressed by astrocyte ast

l
(2)
t

and none can reach their destination
neurons �

l
(4)
t

and �
l
(5)
t

.

(b) If neuron �
l
(3)
t

does not consume the first received 6 or 5 spikes before
the 4 spikes arrive, then with 10 or 9 spikes inside (this is the initial
state of case (4)), neuron �

l
(3)
t

cannot apply any rule.

(2) If both neurons �
l
(2)
t

and �
l
(3)
t

have 6 or 5 spikes inside before receiving 6
or 5 spikes from neuron �r, then after receiving these spikes, both these
neurons contain 12, 11 or 10 spikes, and no rule can be used.

(3) If neuron �
l
(2)
t

has 0 spikes and neuron �
l
(3)
t

has 4 spikes inside before receiv-
ing 6 or 5 spikes from neuron �r, then after receiving these spikes, neuron
�
l
(2)
t

can send 4 spikes to neuron �
l
(3)
t

. With 10 or 9 spikes inside, neuron
�
l
(3)
t

cannot fire any rule even it receives 4 spikes from neuron �
l
(2)
t

.

(4) If neuron �
l
(2)
t

has 0 spikes and neuron �
l
(3)
t

has 10 or 9 spikes inside before

receiving 6 or 5 spikes from neuron �r, then similar to case (3), neuron �
l
(2)
t

sends 4 spikes to neuron �
l
(3)
t

and neuron �
l
(3)
t

cannot apply any rule.

(5) If neuron �
l
(2)
t

has 6 or 5 spikes and neuron �
l
(3)
t

has 0 spikes inside (that is,

after simulating the SUB instruction lt : (SUB(r), lj , lk), it is possible that
there are 6 or 5 spikes left in neuron �

l
(2)
t

) before receiving 6 or 5 spikes
from neuron �r, then after receiving these spikes, neuron �

l
(2)
t

contains 12,
11 or 10 spikes and cannot apply any rule. Neuron �

l
(3)
t

can send 4 spikes
out but all the spikes are suppressed by astrocyte ast

l
(2)
t

.

Therefore, the only computations in Π which can reach the neuron �lℎ asso-
ciated with the halting instruction of M are the computations which correctly
simulate the instructions of M and correspond to halting computations in M .
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Module FIN – outputting the result of a computation.

Figure 8.3: Module FIN (outputting the result of the computation)

Module FIN is shown in Figure 8.3. Assume that the computation in M halts,
which means that the halting instruction is reached, and the number stored in
register 1 is n (we may assume that n ≥ 1, because number 0 is ignored when the
computation power of computing devices is compared). This means that neuron
�lℎ in Π has two spikes inside and rule a2 → a2 is enabled; neuron �1 has 6n+6
spikes. When neuron �lℎ fires it sends 2 spikes to neuron �

l
(1)
ℎ

which then (eventu-

ally) sends one spike to neuron �1, corresponding to the first register of M . From
now on, neuron �1 can fire, sending out one spike for each 6 spikes present in it.
If the number of spikes in neuron �1 is 7, then no rule is enabled in neuron �1.
The computation in Π ends, and the number of spikes sent into the environment
by system Π is n, which is exactly the number stored in register 1 of M when the
computation of M halts.

From the description of the modules and their work, it is clear that the register
machine M is correctly simulated by system Π. Therefore, N(Π) = N(M). This
completes the proof.

8.5 Conclusions and Remarks

In this work, we have considered spiking neural P systems with astrocytes used
in a non-synchronized way: if a rule is enabled at some step, this rule is not
obligatorily immediately used. Further spikes may make the rule non-applicable.
Such systems are comparable to Petri nets which are also used in an asynchronous
way. Without further features Petri nets are not computationally complete. One
such feature is the use of inhibitor arcs in the net which indicate that a transition
may fire only if the associated place is empty. We have proved that asynchronous
SN P systems with astrocytes are universal. This can be compared to the case of
Petri nets by observing that the astrocyte has an inhibiting kind of action.

There remain several open problems about asynchronous SN P systems with
astrocytes. We just list two of them. We have used extended rules and do not know
whether or not asynchronous SN P systems with astrocytes are Turing complete
when using only standard rules. Second, the nondeterminism in our systems orig-
inates both from the uncertainty of the moment of firing and the two possible
actions when the number of spikes equals the threshold of the astrocyte (follow-
ing our earlier paper [28]). It would be natural to concentrate the nondeterminism
in a single feature, i.e., to make the astrocytes purely deterministic.
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