
Spiking Neural P Systems
Wang, J.

Citation
Wang, J. (2011, December 20). Spiking Neural P Systems. IPA Dissertation
Series. Retrieved from https://hdl.handle.net/1887/18261
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/18261
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18261


Chapter 2

Limited Asynchronous Spiking

Neural P Systems

Abstract
In a biological system, if a long enough time interval is given, an enabled chemical
reaction will finish its reaction in the given time interval. With this motivation,
it is natural to impose a bound on the time interval when an enabled spiking rule
in a spiking neural P system (SN P system, for short) remains unused. In this
work, a new working mode of SN P systems is defined, which is called limited
asynchronous mode. In an SN P system working in limited asynchronous mode, if
a rule is enabled at some step, this rule is not obligatorily used. From this step on,
if the unused rule may be used later, it should be used in the given time interval. If
further spikes make the rule non-applicable, then the computation continues in the
new circumstances. The computation result of a computation in an SN P system
working in limited asynchronous mode is defined as the total number of spikes sent
into the environment by the system. It is proved that limited asynchronous SN P
systems with standard spiking rules are universal. If the number of spikes present
in each neuron of a limited asynchronous SN P system with standard spiking rules
is bounded during a computation, then the power of a limited asynchronous SN P
system with standard spiking rules falls drastically, and we get a characterization
of semilinear sets of numbers.

2.1 Introduction

Spiking neural P systems (SN P systems, for short) are a class of distributed
and parallel computation models inspired by the way neurons communicate by
means of electrical impulses of identical shape (called spikes). SN P systems were
introduced in [16], and then investigated in a large number of papers. Readers can
refer to [35] for general information in this area, and to the membrane computing



14 Introduction

website from [1] for the up-to-date information.
Briefly, an SN P system consists of a set of neurons placed in the nodes of a

directed graph, where neurons send signals (which are called spikes, denoted by
the symbol a in what follows) along synapses (arcs of the graph). Spikes evolve
by means of standard spiking rules, which are of the form E/ac → a; d, where E
is a regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. In
other words, if a neuron contains k spikes such that ak ∈ L(E), k ≥ c, then it
can consume c spikes and produce one spike after a delay of d steps. This spike is
sent to all neurons connected by an outgoing synapse from the neuron where the
rule was applied. There are also standard forgetting rules, of the form as → �,
with the meaning that s ≥ 1 spikes are forgotten if the neuron contains exactly s
spikes. Moreover, an extension of this type of rules was considered in [6], allowing
more than one spike to be generated by the rule.

An SN P system works in a synchronized manner. A global clock is assumed,
and in each time unit, the rule to be applied in each neuron is nondeterministically
chosen, a chosen rule must be applied for each neuron with applicable rules, and
the work of the system is sequential in each neuron: only (at most) one rule
is applied in each neuron. One of the neurons is considered to be the output
neuron, and its spikes are also sent to the environment. The moments of time
when a spike is emitted by the output neuron are marked with 1, and the other
moments are marked with 0. This binary sequence is called the spike train of the
system; it might be infinite if the computation does not stop. Various numbers
can be associated with a spike train, which can be considered as computed (or
generated) by an SN P system.

Synchronized SN P systems using standard rules were proved to be computa-
tionally complete both in the generating and the accepting case [16]. In the proof
of these results, the synchronization plays a crucial role. However, both from a
mathematical point of view and from a neuro-biological point of view, it is rather
natural to consider non-synchronized systems, where the use of rules is not oblig-
atory. Even if a neuron has a rule enabled in a given time unit, this rule is not
obligatorily used. The neuron may remain unfired, maybe receiving spikes from
the neighboring neurons. If the unused rule may be used later, it is used later,
without any restriction on the interval when it has remained unused. If further
spikes made the rule non-applicable, then the computation continues in the new
circumstances (maybe other rules are enabled now). With such motivation, asyn-
chronous SN P systems were introduced in [4], and it is proved that asynchronous
SN P systems with extended rules are equivalent with Turing machines. How-
ever, it remains open whether asynchronous SN P systems with standard rules
are universal.

In the definition of asynchronous SN P systems from [4], there is no restriction
on the time interval in which an enabled spiking rule remains unused. However,
in a biological system, if a long enough time interval is given, an enabled chemical
reaction will finish its reaction within the given time interval. So, it is natural to
impose a bound on the time interval in which a spiking rule remains unused. Such



Chapter 2 15

variant of asynchronous mode is called limited asynchronous mode. In an SN P
system working in limited asynchronous mode, if a rule is enabled at some step,
this rule is not obligatorily used in the same step. However, if from this moment on
the rule remains applicable, it should be used in the given time interval. If further
spikes arriving in the neuron make the rule non-applicable, then the computation
continues in the new circumstances. The computation result of a computation in
an SN P system working in limited asynchronous mode is defined as the total
number of spikes sent into the environment by the system. In this work, we prove
that limited asynchronous SN P systems with standard spiking rules are universal.

In a general asynchronous SN P system, since there is no restriction on the
time interval when an enabled spiking rule remains unused, the feature of delay is
not very helpful and was not used in the universality result of [4]. However, in a
limited asynchronous SN P system, the feature of delay adds functionality. Thus,
in the proof of the universality result in this work, the feature of delay is used
and plays a crucial role, which shows some “programming capacity". A general
asynchronous SN P system with standard rules loses “programming capacity"
from both extended rules and the feature of delay. So, our research gives some
hint to support the conjecture that a general asynchronous SN P system with
standard rules is non-universal [4].

2.2 Prerequisites

Readers can refer to [38] for basic language and automata theory, as well as to [30]
for basic membrane computing. We here only introduce some necessary notations
and notions.

For an alphabet V , V ∗ denotes the set of all finite strings over V , with the
empty string denoted by �. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead of
{a}∗, {a}+.

Regular expressions are built starting from � and single symbols using the
operators union (∪), concatenation (⋅) and star (∗), where non-necessary paren-
theses are omitted. The language represented by expression E is denoted by L(E),
where L(�) = ∅.

By NRE we denote the families of Turing computable sets of numbers. (NRE
is the family of length sets of recursively enumerable languages.)

A register machine is a construct M = (m,H, l0, lℎ, I), where m is the number
of registers (each holds a natural number), H is the set of instruction labels, l0
is the start label (labeling an ADD instruction), lℎ is the halt label (assigned to
instruction HALT), and I is the set of instructions. Each label from H labels only
one instruction from I, thus precisely identifying it. The instructions are of the
following forms:

∙ li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),



16 Limited Asynchronous Spiking Neural P Systems

∙ li : (SUB(r), lj , lk) (if register r is non-zero, then subtract 1 from it, and go
to the instruction with label lj ; otherwise, go to the instruction with label
lk),

∙ lℎ : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way.
The register machine starts with all registers empty (i.e., storing the number
zero). It applies the instruction with label l0 and proceeds to apply instructions
as indicated by labels (and, in the case of SUB instructions, by the content of
registers). If the register machine reaches the halt instruction, then the number
n stored at that time in the first register is said to be computed by M . The set
of all numbers computed by M is denoted by N(M). It is known that register
machines compute all sets of numbers which are Turing computable, hence they
characterize NRE [27].

Without loss of generality, it can be assumed that l0 labels an ADD instruction
and that in the halting configuration all registers different from the first one are
empty, and that the output register is never decremented during the computation
(its content is only added to).

We use the following convention. When the power of two number generat-
ing/accepting devices D1 and D2 are compared, number zero is ignored; that is,
N(D1) = N(D2) if and only if N(D1)− {0} = N(D2)− {0} (this corresponds to
the usual practice of ignoring the empty string in language and automata theory).

2.3 Limited Asynchronous Spiking Neural P Sys-

tems

In this section, we recall the definition of spiking neural P systems, and intro-
duce a new working mode of spiking neural P systems, which is called limited
asynchronous mode.

A spiking neural P system (an SN P system, for short), of degree m ≥ 1, is a
construct of the form

Π = (O, �1, . . . , �m, syn, out), where:

∙ O = {a} is the singleton alphabet (a is called spike);

∙ �1, . . . , �m are neurons, of the form �i = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in �i;

b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1,
d ≥ 0;

(2) as → �, for some s ≥ 1, with the restriction that for each rule
E/ac → a; d of type (1) from Ri, as /∈ L(E);



Chapter 2 17

∙ syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

∙ out ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are standard firing rules (we also say standard spiking
rules), and they are applied as follows. If neuron �i contains k spikes, and ak ∈
L(E), k ≥ c, then the rule E/ac → a; d can be applied. The application of this
rule means that c spikes are consumed (removed) (thus only k − c spikes remain
in �i), neuron �i is fired, which produces a spike after d time units (as usual in
membrane computing, a global clock is assumed, marking the time for the whole
system, hence the functioning of the system is synchronized). If d = 0, then the
spike is emitted immediately; if d = 1, then the spike is emitted in the next step,
etc.. If the rule is used in step t and d ≥ 1, then in steps t, t+1, t+2, . . . , t+d− 1
neuron �i is closed (this corresponds to the refractory period from neurobiology),
so that it cannot receive further spikes (if a neuron has a synapse to a closed neuron
and tries to send a spike along it, then the spike is lost). In step t+ d, neuron �i

spikes and becomes open again, so that it can receive spikes (the received spikes
can be used in step t + d + 1). If a rule E/ac → a; d has E = ac, then we will
write it in the simplified form ac → a; d.

The rules of type (2) are forgetting rules. They are applied as follows. If neuron
�i contains exactly s spikes, then the rule as → � from Ri can be used, which
means that all s spikes are removed from �i.

Extended rules were considered in [6] to obtain universal systems. In our paper
we only consider standard rules, but we recall extended rules to compare the
notions. Extended rules are of the form E/ac → ap; d, and used in the following
way. When a rule E/ac → ap; d is used, c spikes are consumed and p spikes are
produced after a delay of d steps. A rule with p ≥ 1 is called an extended firing
rule. A rule with p = d = 0 is written in the form E/ac → �, which is called an
extended forgetting rule.

In the synchronized mode, in each time unit, if a neuron �i can use one of its
rules, then a rule from Ri should be used. Since two firing rules, E1/a

c1 → a; d1
and E2/a

c2 → a; d2, can have L(E1)∩L(E2) ∕= ∅, it is possible that two or more
rules can be applied in a neuron, and in this case, only one of them is chosen
non-deterministically. Note that the neurons work in parallel (synchronously),
but each neuron sequentially processes its spikes, using only one rule in each time
unit.

In this work, we consider a new working mode of SN P systems, which is called
limited asynchronous mode. In an SN P system working in limited asynchronous
mode, a single upper bound b (b ≥ 2) on time intervals is given, valid for all
rules. If a rule in neuron �i is enabled at step t and neuron �i receives no spike
from step t to step t+ b− 2, then this rule can and must be applied at a step in
the next time interval b (that is, at a non-deterministically chosen step from t to
t+ b− 1). If the enabled rule in neuron �i is not applied, and neuron �i receives
new spikes, making the rule non-applicable, then the computation continues in



18 Limited Asynchronous Spiking Neural P Systems

the new circumstance (maybe other rules are enabled now).
It is necessary to point out that (1) when a neuron spikes, then after a delay

of d steps (d ≥ 0), its spikes immediately leave the neuron, and reach the tar-
get neurons simultaneously (that is, there is no time needed for passing along a
synapse from one neuron to another neuron); (2) as in the synchronous mode, if a
rule is applied at step t and d ≥ 1, then at steps t, t+1, t+2, . . . , t+ d− 1 neuron
�i is closed (so it cannot receive further spikes), and it becomes again open at
step t+ d.

A configuration of the system is described by the number of spikes present
in each neuron and the open-closed states of neurons as well as the time that
has elapsed for each rule since it became applicable. The initial configuration is
defined by the number of initial spikes n1, . . . , nm with all neurons being open (as
no rule was used before). Using the rules as described above, one can define tran-
sitions among configurations. Any sequence of transitions starting from the initial
configuration is called a computation. A computation is considered as successful
when it reaches a configuration where all neurons are open and no rule can be
used.

Because in a limited asynchronous SN P system, an enabled rule can be applied
at any moment in the next time interval b, in the spike train the number of
occurrences of 0 between two occurrences of 1 can have a variation from 0 to b.
Hence the result of a computation can no longer be defined in terms of the steps
between two consecutive spikes as in the synchronized mode. Therefore, in this
work, the result of a computation is defined as the total number of spikes sent
into the environment by the output neuron. Specifically, if there is a successful
computation of a limited asynchronous SN P system where the output neuron
sends out exactly n spikes, then the system generates a number n. Equivalently,
the result of a computation can also be the number of spikes present in a specified
neuron in the halting configuration: consider an additional neuron, which receives
the spikes emitted by the previous output neuron and has no rule inside. When
the computation halts, the content of this neuron is the result of the computation.

Successful computations that send no spike out can be considered as generating
number zero, but in this work, we adopt the convention to ignore number zero
when the computation power of two devices is compared.

We denote by N lasyn
gen (Π) the set of numbers generated in the limited asyn-

chronous way by an SN P system Π. By N lasyn
gen SNP we denote the family of such

sets of numbers generated by limited asynchronous systems with standard rules.
In what follows, we only consider limited asynchronous SN P systems with

standard rules. Because there is no confusion, limited asynchronous SN P systems
with standard rules are often simply called limited asynchronous SN P systems.

As usual, SN P systems are represented graphically, which may be easier to
understand than in a symbolic way. We use an oval containing the spiking rules
and (if present) the number of spikes (in the form an for n spikes present in
a neuron) inside to represent a neuron, and a directed graph to represent the
structure of an SN P system: the neurons are placed in the nodes of the graph



Chapter 2 19

and the edges represent the synapses. The output neuron has an outgoing arrow,
suggesting its communication with the environment. For simplicity, neuron �i in
the picture is labelled by i.

We here point out that the asynchronous mode given in this work is not a
“true" asynchronous mode in the following sense, and hence the word “limited"
is used. (1) SN P systems considered in this work have a global clock to mark
the time for the whole system instead of clock freeness. (2) The fixed time bound
for the execution intervals actually gives the possibility to predict some timing
relatives. For example, in the system given in Figure 2.1, the spike passing along
the path �s�1 . . . �b+1�t arrives at least one step later than the one passing along
the path �s�b+2�t. However, in a true asynchronous mode, it would be not possible
to predict such timing relations.

a

aa ;0
s aa ;0

aa ; 0 aa ; 0
⋯

t

b2

1
b1

Figure 2.1: A limited asynchronous SN P system with time bound b.

2.4 An Example

In this section, we give an example to clarify the definition of limited asynchronous
mode.

Example 1. Consider the SN P system Π shown in Figure 2.2, which consists
of four neurons. In the initial configuration, all neurons are empty except that the
output neuron �out has one spike. The number b ≥ 2 is arbitrary.

a

aa ; 0

aa ; 0

1

out

aa ; 0

aa ;b

a
�
 3

2

Figure 2.2: SN P system Π.



20 An Example

First, we consider that system Π works in the synchronous mode. At step
1, neuron �out fires, sending one spike to neurons �1, �2, and the environment,
respectively. At step 2, with one spike inside, each of neurons �1 and �2 fires,
sending a spike to neuron �3. At step 3, neuron �3 removes its spikes by rule
a2 → �. From now on, there is no spike in each neuron of system Π, and each
neuron in system Π is open, so the computation halts. During the computation,
system Π sends only one spike into the environment. The set of numbers generated
by system Π in the synchronous mode is {1}.

Now, we consider that system Π works in the limited asynchronous mode,
where the time bound associated with all rules is b. With one spike in neuron
�out, rule a → a; 0 is enabled at step 1. In the next b steps, neuron �out cannot
receive any spike from other neurons. So rule a → a; 0 can and must be applied
at one of steps 1, 2, . . . , b. We assume that rule a → a; 0 in neuron �out is applied
at step t1 (1 ≤ t1 ≤ b), sending a spike to neurons �1, �2 and the environment,
respectively, then each of neurons �1 and �2 will fire by rule a → a; 0 at one of
steps t1 + 1, t1 + 2, . . . , t1 + b.

If neurons �1 and �2 fire at a same step, then neuron �3 receives two spikes.
With two spikes inside, rule a2 → � in neuron �3 is enabled, and these two spikes
are removed at one of the next b steps. In this way, system Π contains no spike
and all neurons are open, so the computation halts.

If neurons �1 and �2 fire at different steps, then we assume that neuron �3

receives the first spike at step t2 and the second one at step t3, where t1+1 ≤ t2 <
t3 ≤ t1 + b. Rule a → a; b in neuron �3 is enabled and free to be applied at one
of steps from t2 to t3 (more precisely, it can be applied before neuron �3 receives
the second spike; after neuron �3 receives the second spike, the content of neuron
�3 changes and rule a → a; b cannot be applied). We consider the following two
cases.

∙ If rule a → a; b is applied before step t3 (we assume that the moment is step
t4, t2 ≤ t4 ≤ t3), then neuron �3 sends a spike to neuron �out at step t4 + b,
and it is closed at steps from t4 to t4 + b − 1 because of the delay of rule
a → a; b. Especially, neuron �3 is closed at step t3, since t4 ≤ t3 < t4 + b.
So, neuron �3 cannot receive the second spike sent out from one of neurons
�1 and �2 at step t3. After step t4 + b, all neurons in system Π have no
spike except that the output neuron �out has one spike, which is a same
configuration with the initial one. In this way, the computation continues.

∙ If rule a → a; b is not applied before step t3, then neuron �3 is open and
receives the second spike at step t3. In this way, the content of neuron �3

is changed, rule a → a; b cannot be applied, and rule a2 → � is enabled.
These two spikes in neuron �3 are removed at one of the next b steps, and
the computation halts.

In general, the computation in system Π halts if neurons �3 receives two spikes at a
same step or accumulates two spikes that are received at different steps; otherwise,
system Π reaches a same configuration as the initial one (especially, in this case,



Chapter 2 21

system Π will send a spike to the environment). Therefore, N lasyn
gen (Π) = ℕ ∖ {0},

where ℕ is the set of natural numbers.

2.5 Universality of Limited Asynchronous SN P

Systems

We prove that limited asynchronous SN P systems with standard spiking rules
are Turing universal by simulating a register machine. Although not explicitly
obvious from the statement of the result, the characterization is valid for every
fixed time bound of SN P systems.

Theorem 1
N lasyn

gen SNP = NRE.

Proof
We show that NRE ⊆ N lasyn

gen SNP ; the converse inclusion is straightforward but
cumbersome (for similar technical details, please refer to Section 8.1 in [30]).

Let us consider a register machine M = (m,H, l0, lℎ, I) with the properties
specified in Section 2.2: the result of a computation is the number from register 1,
and this register is never decremented during the computation. In what follows,
a specific limited asynchronous SN P system with standard spiking rules Π will
be constructed to simulate the register machine M , where a time bound b is
associated with all spiking rules.

System Π is composed of some modules. These modules are interconnected
by shared neurons. We present these modules graphically instead of symbolic
way. By the structure of these modules, we can easily see how these modules are
interconnected by shared neurons to form the whole system Π. So, we omit the
formal description of system Π, and focus on the construction of modules and the
explanation of these modules.

We construct modules ADD and SUB to simulate the instructions of M , as
well as an output module FIN to output computation results. Each register r of
M will have a neuron �r in Π, and if the register contains the number n, then the
associated neuron will have 2n spikes. The rules in neuron �1 differ in those for
the other registers — neurons �r (r ≥ 2). The reason is that �1 must additionally
interact with the output module FIN (and the number stored in register 1 is
never decremented). Neuron �1 contains a rule a(a2)+/a3 → a; b; while neuron �r

(r ≥ 2) contains rules a(a2)+/a3 → a; b and a → a; 9b. A neuron �li is associated
with each label li ∈ H , and some auxiliary neurons �

l
(j)
i

, j = 1, 2, 3, . . . , will also

be considered (remember that each li ∈ H is associated with a unique instruction
of M , hence all neurons �li , �l

(j)
i

are precisely associated with a unique instruction

of M).
In the initial configuration, all neurons are empty except that neuron �l0 as-

sociated with label l0 of M has one spike inside. In general, when a neuron �li ,



22 Universality of Limited Asynchronous SN P Systems

li ∈ H , has one spike inside, then neuron �li becomes active and the module
associated with instruction li starts to work, simulating the instruction li.

The initial instruction of M , the one with label l0, is an ADD instruction.

Module ADD: Simulating an ADD instruction li : (ADD(r), lj , lk).
Module ADD is designed for simulating an ADD instruction li : (ADD(r), lj , lk).

Although this module is valid for each register r, in our arguments we have to
distinguish between r = 1 and r ≥ 2 as register 1 has been implemented differently
from the other registers. This is a consequence of the property of M : the number
stored in register 1 is not decremented during a computation and the result of a
computation is stored in that register (more precisely, in system Π, neuron �1 is
related to module FIN that takes care of outputting computation results). The
ADD module for ADD instructions that act on register r (r ≥ 2) is shown in Figure
2.3, which consists of two parts. The first part contains the “initial" neuron �li

together with 8 auxiliary neurons responsible for updating the contents of neuron
�r for register r. The second part consists of six additional neurons and will send a
spike to exactly one of the consecutive “initial" neurons �lj , �lk for the instructions
with labels lj, lk. The ADD module for an ADD instruction li : (ADD(1), lj , lk) is
the same with the module shown in Figure 2.3 except that �1 has only a rule
a(a2)+/a3 → a; b.

In what follows, we first check the work of module ADD assuming that r ≥ 2.
After we have shown correctness in this case, we add some remarks for the special
register r = 1. Due to the inherent nondeterminism in the application of the rules
our argumentation involves a tedious case-by-case analysis.

Let us assume that M is at a step when we have to simulate an instruction
li : (ADD(r), lj , lk), with one spike present in neuron �li (like �l0 in the initial
configuration) and no spike in any other neurons except those neurons associated
with the registers. Having one spike in neuron �li , rule a → a; 0 is enabled. At
one of the next b steps (assume it is at step t1), neuron �li fires, sending a spike
to neurons �

l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

, respectively. With one spike inside, rule a → a; 0

in each of neurons �
l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

is enabled. Each of these neurons will fire

at one of the next b steps (that is, at a step from t1 +1 to t1 + b), sending a spike
to neurons �r , �l

(5)
i

and �
l
(8)
i

, respectively. In what follows, we check the work of
neurons �r, �l

(5)
i

and �
l
(8)
i

.

For neuron �
l
(5)
i

, we consider the following three possible cases (according to

the time when neurons �
l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

fire).

(1) If neurons �
l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

fire at a same step, then neuron �
l
(5)
i

receives
3 spikes at the same step. Neuron �

l
(5)
i

will wait since no rule in neuron �
l
(5)
i

is enabled.

(2) If any two of neurons �
l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

fire at a same step while the
other one fires at a different step, then neuron �

l
(5)
i

will have two possible



Chapter 2 23

Figure 2.3: Module ADD for simulating li : (ADD(r), lj , lk), where r ≥ 2.



24 Universality of Limited Asynchronous SN P Systems

situations, no matter whether the number of the first received spikes is two
or one.

(a) If the number of first received spikes is two (resp. one) and the enabled
rule a2 → � (resp. a → �) fires before the later spike (or spikes) from
neurons �

l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

arrives (or arrive) in neuron �
l
(5)
i

, then the

later received spike (or spikes) is (or are) removed by rule a → � (resp.
a2 → �). So neuron �

l
(5)
i

has 0 spike inside.

(b) If neuron �
l
(5)
i

does not forget the first received spike (or spikes) before

the later spikes (or spike) arrive in it, then neuron �
l
(5)
i

will accumulate
3 spikes and no rule is enabled in it.

(3) If each of neurons �
l
(1)
i

, �
l
(2)
i

, �
l
(3)
i

fires at different steps, then neuron �
l
(5)
i

will have the following three possible situations.

(a) If neuron �
l
(5)
i

forgets the first received spike by rule a → � before
the second spike arrives, and the second received spike is also removed
before the third one arrives, then the third spike will also be removed
by rule a → �. So neuron �

l
(5)
i

has 0 spike inside.

(b) If neuron �
l
(5)
i

does not forget the first received spike, but both the

first and second received spikes are removed by rule a2 → � before the
third spike arrives, then the third received spike is also removed by rule
a → �. So neuron �

l
(5)
i

has 0 spike inside.

(c) If neuron �
l
(5)
i

does not forget any spike received from neurons �
l
(1)
i

,
�
l
(2)
i

and �
l
(3)
i

, then it has 3 spikes inside.

Note that computations in all the above cases start from step t1 + 1, and end
not more than step t1 + 2b. Because of delays, the possible spikes from neurons
�
l
(6)
i

(along the path �
l
(3)
i

�
l
(8)
i

�
l
(6)
i

�
l
(5)
i

), �
l
(7)
i

(along the path �
l
(3)
i

�
l
(8)
i

�
l
(7)
i

�
l
(5)
i

),

�
l
(4)
i

(along the paths �
l
(1)
i

�r�l
(4)
i

�
l
(5)
i

and �
l
(2)
i

�r�l
(4)
i

�
l
(5)
i

) arrive in neuron �
l
(5)
i

as not earlier than step t1 +2b+1. That is, neuron �
l
(5)
i

receives spikes only from
neurons �

l
(1)
i

, �
l
(2)
i

and �
l
(3)
i

from step t1 + 1 to step t1 + 2b. Therefore, neuron

�
l
(5)
i

has 0 or 3 spikes inside at step t1 + 2b. (As we will see below, for the case
neuron �

l
(5)
i

has 0 spike inside at step t1+2b, all the related computations go to a
“wrong" simulation. System Π will abort and send no spike into the environment.
In this way, all computation results of Π are results of correct simulations of M
in the sense that the number 0 is ignored when the power of two computation
devices are compared.)

For neuron �r, we consider the following three possible cases.

(1) If neurons �
l
(1)
i

and �
l
(2)
i

fire at a same step, then the number of spikes in

neuron �r increases by two (corresponding to that the number stored in



Chapter 2 25

register r of M is increased by one) and no rule in neuron �r is enabled.
Note that the possible spikes from neurons �

l
(6)
i

and �
l
(7)
i

arrive in neuron
�
l
(5)
i

after step t1 +14b+1; and neuron �
l
(5)
i

has 0 or 3 spikes inside at step
t1 + 2b. So neuron �

l
(5)
i

has 0 or 3 spikes inside at step t1 + 14b.

(2) If neurons �
l
(1)
i

and �
l
(2)
i

fire at different steps (note that the distance be-

tween these two steps is less than b− 1), and neuron �r applies its enabled
rule after it receives the first spike, then neuron �r will be closed for at
least b steps because of the delay b and 9b in rules a(a2)+/a3 → a; b and
a → a; 9b. So the second spike from neurons �

l
(1)
i

and �
l
(2)
i

is lost. In this
case, the number of spikes in neuron �r is not increased, which is a “wrong"
simulation (as we will see below, the simulation in system Π aborts and
outputs no spike into the environment).
The spike sent out from neuron �r moves to neuron �

l
(4)
i

, and then to neuron
�
l
(5)
i

, where this spike arrives in neuron �
l
(5)
i

at one of steps from t1 + 2b

to t1 + 13b because of the time bound and the delay associated with rules.
Note that the possible spikes from neurons �

l
(6)
i

and �
l
(7)
i

arrive in neuron
�
l
(5)
i

after step t1 +14b+1; and neuron �
l
(5)
i

has 0 or 3 spikes inside at step
t1+2b. So neuron �

l
(5)
i

has 1 or 4 spikes after it receives a spike from neuron

�
l
(4)
i

; at one of the next b steps, rule a4 → a; 0 or a → � is applied (so, it is
possible that neuron �

l
(9)
i

receives a spike from �
l
(5)
i

; as we will see below,

after that, neuron �
l
(9)
i

will receive no spike anymore; so rule a2 → a; 0 in

neuron �
l
(9)
i

will not be enabled, and the computation will abort). Therefore,
neuron �

l
(5)
i

has 0 spikes inside at step t1 + 14b.

(3) If neurons �
l
(1)
i

and �
l
(2)
i

fire at different steps, but the enabled rule in neuron
�r is not applied before the second spike from neurons �

l
(1)
i

and �
l
(2)
i

arrives
in neuron �r , then the number of spikes in neuron �r is increased by two and
no rule in neuron �r is enabled. Note that the possible spikes from neurons
�
l
(6)
i

and �
l
(7)
i

arrive in neuron �
l
(5)
i

after step t1 +14b+1; and neuron �
l
(5)
i

has 0 or 3 spikes inside at step t1 + 2b. So neuron �
l
(5)
i

has 0 or 3 spikes
inside at step t1 + 14b.

Therefore, in all computations in the above cases, neuron �
l
(5)
i

has 0 or 3 spikes
inside at step t1 + 14b.

According to the number of spikes in neuron �
l
(5)
i

at step t1+14b and the time
when neurons �

l
(6)
i

and �
l
(7)
i

fire, we consider the following three cases.

(1) If neuron �
l
(5)
i

has 0 spike at step t1+14b, then no matter when neurons �
l
(6)
i

and �
l
(7)
i

fire, neuron �
l
(5)
i

always removes the spikes received from neurons

�
l
(6)
i

and �
l
(7)
i

by rules a → � and a2 → �. In this case, computations in
system Π abort and no spike is sent to the environment.



26 Universality of Limited Asynchronous SN P Systems

(2) If neuron �
l
(5)
i

has 3 spikes at step t1+14b and neurons �
l
(6)
i

and �
l
(7)
i

fire at

a same step, then neuron �
l
(5)
i

has 5 spikes. Rule a5/a → a; 0 in neuron �
l
(5)
i

is enabled and applied, sending a spike to neuron �
l
(9)
i

; then rule a4 → a; 0

in neuron �
l
(5)
i

is enabled and applied, sending another spike to neuron �
l
(9)
i

.

With two spikes inside, rule a2 → a; 0 in neuron �
l
(9)
i

is enabled, and the
computation continues.

(3) If neuron �
l
(5)
i

has 3 spikes at step t1 + 14b and neurons �
l
(6)
i

and �
l
(7)
i

fire
at different steps, then there are the following two possible situations.

(a) If neuron �
l
(5)
i

receives the first spike from neurons �
l
(6)
i

, �
l
(7)
i

, and

neuron �
l
(5)
i

consumes 4 spikes by rule a4 → a; 0 before the second
spike from neurons �

l
(6)
i

, �
l
(7)
i

arrives in neuron �
l
(5)
i

, then neuron �
l
(5)
i

will remove the second spike by rule a → �. In this case, neuron �
l
(9)
i

receives only one spike from neuron �
l
(5)
i

, its rule is not enabled and
the computation aborts.

(b) If neuron �
l
(5)
i

receives the first spike from neurons �
l
(6)
i

, �
l
(7)
i

, and

the enabled rule a4 → a; 0 is not applied before the second spike from
neurons �

l
(6)
i

, �
l
(7)
i

arrives in neuron �
l
(5)
i

, then neuron �
l
(5)
i

accumulates

5 spikes. First, rule a5/a → a; 0 in neuron �
l
(5)
i

is applied, sending a

spike to neuron �
l
(9)
i

; then rule a4 → a; 0 in neuron �
l
(5)
i

is applied,
sending another spike to neuron �

l
(9)
i

. With two spikes inside, rule

a2 → a; 0 in neuron �
l
(9)
i

is enabled, and the computation continues.

Therefore, neuron �
l
(9)
i

receives two spikes from neuron �
l
(5)
i

only if neuron �r

does not fire (it is the case the number of spikes in neuron �r is increased by two)
and neuron �

l
(5)
i

accumulates 5 spikes (then neuron �
l
(5)
i

fires for two times by

rules a5/a → a; 0 and a4 → a; 0).
Hence, we have shown that Part 1 of module ADD ensures that the operation

ADD of M (the number stored in register r is increased by one) is correctly
simulated. Now we will turn to Part 2 of module ADD which ensures the correctly
simulation in that instruction lj or lk is non-deterministically chosen.

Assume that neuron �
l
(9)
i

fires at step t2 (that is, neurons �
l
(10)
i

, �
l
(11)
i

, �
l
(12)
i

receive a spike from neuron �
l
(9)
i

at step t2). At step t2 +1, both of rules a → a; 0

and a → a; 2b in neuron �
l
(11)
i

are enabled; at one of the next b steps (from step

t2 + 1 to step t2 + b), one of them is non-deterministically chosen and applied.

(1) If rule a → a; 0 is applied at one of steps from t2 +1 to t2 + b, then neurons
�
l
(13)
i

and �
l
(14)
i

receive a spike from neuron �
l
(11)
i

, respectively. Because the
spike from neuron �

l
(12)
i

arrives in neuron �
l
(14)
i

after step t2+2b, the enabled



Chapter 2 27

rule a → � in neuron �
l
(14)
i

must be applied; that is, the spike received from
neuron �

l
(11)
i

is removed before step t2+2b. Furthermore, the spike received
from neuron �

l
(12)
i

will also be removed by rule a → �. So neuron �lk receives
no spike. For neuron �

l
(13)
i

, there are the following two cases.

(a) If the spikes from neurons �
l
(10)
i

and �
l
(11)
i

arrive at neuron �
l
(13)
i

at a

same step, then rule a2 → a; 0 is enabled and must be applied at one
of the next b steps. So neuron �lj receives a spike from neuron �

l
(13)
i

,
which means that system Π starts to simulate the instruction lj of M .

(b) If the spikes from neurons �
l
(10)
i

and �
l
(11)
i

arrive at neuron �
l
(13)
i

at
different steps, then there are two situations.

∙ If neuron �
l
(13)
i

receives the first spike from neurons �
l
(10)
i

and �
l
(11)
i

,
and rule a → � is applied before the second spike from neurons
�
l
(10)
i

and �
l
(11)
i

arrives in neuron �
l
(13)
i

, then the second spike is
also removed by rule a → �. So neuron �lj receives no spike. With
no spike in neurons �lj and �lk , computations in system Π abort
and output no spike into the environment.

∙ If neuron �
l
(13)
i

receives the first spike from neurons �
l
(10)
i

and �
l
(11)
i

,
and rule a → � is not applied before the second spike from neurons
�
l
(10)
i

and �
l
(11)
i

arrives in neuron �
l
(13)
i

, then neuron �
l
(13)
i

accumu-

lates two spikes inside. Rule a2 → a; 0 is enabled and must be
applied at one of the next b steps. So neuron �lj receives a spike
from neuron �

l
(13)
i

, which means that system Π starts to simulate
the instruction lj of M .

(2) If rule a → a; 2b in neuron �
l
(11)
i

is applied, then, similar to case (1), system

Π has two possible situations: (i) neuron �lk receives a spike, while neuron
�lj receives no spike, which means that system Π starts to simulate the in-
struction lk of M ; (ii) neurons �lj and �lk receive no spike, which means that
computations in system Π abort and output no spike into the environment.

Therefore, in module ADD shown in Figure 2.3, from the step when neuron
�li fires, system Π has two possibilities: either (1) system Π non-deterministically
fires one of neurons �lj , �lk and the number of spikes in neuron �r is increased
by two; or (2) computations in system Π abort and no spike is emitted into the
environment. In the sense that the number 0 is ignored when the power of two
computation devices are compared, instruction li : (ADD(r), lj , lk) of M is correctly
simulated by module ADD of system Π.

Similar to module ADD for r ≥ 2, we can check that module ADD for r = 1
correctly simulates an ADD instruction that acts on register 1. Note that, during
the simulation, module ADD for r = 1 has possible interference with the FIN
module shown in Figure 2.5. If neuron �1 fires, then it sends a spike to neurons



28 Universality of Limited Asynchronous SN P Systems

�
l
(4)
i

and �c4 . In this case, computations in module ADD abort. In module FIN,

neuron �c4 sends a spike to neuron �c3 . With 3 spikes inside (initially, neuron �c3

has two spikes inside), rule a3 → � in neuron �c3 is enabled and applied. So, in
module FIN, although neuron �1 fires, there is no spike sent into the environment
by system Π. Therefore, the interference between module ADD (for r = 1) and
module FIN will not cause undesired computation results.

It is also possible to have interference among neurons in two ADD modules
accessing the same register. Specifically, if there are several ADD instructions
lt that act on register r, then neurons �

l
(4)
t

have the following two cases when
instruction li : (ADD(r), lj , lk) is simulated. (1) If neuron �

l
(4)
t

receives no spike
from neuron �r, then it is clear that there is no interference happened among
neurons in these ADD modules. (2) If neuron �

l
(4)
t

receives a spike from neuron �r,
then this spike moves to neuron �

l
(5)
t

and then this spike is removed by rule a → �.
Consequently, the interference among ADD modules will not cause undesired steps
in Π (i.e., steps that do not correspond to correct simulations of instructions of
M).

Module SUB: Simulating a SUB instruction li : (SUB(r), lj , lk). Note that
r ≥ 2.

Module SUB, shown in Figure 2.4, is composed of 14 neurons: neuron �r for
register r, neurons �li , �lj , �lk for instructions with labels li, lj , lk, and 10 auxiliary
neurons.

aa ; 0

a
�
a ;0

a

a a
�

�
/a

�
a ;b

a a ;9b

l �
l ���� l ����

r

l ����l �	� 
aa ; 0 aa ; 0

l ����aa ; b

l �	� 
 aa ;6b

l ��
� aa ; 0

l ����aa ; 0

l ���� aa ; 0

l �aa ; 0

a
�
 a; 0

a

l �����
a

�
 a; 0

a

l �aa ; 0

Figure 2.4: Module SUB for simulating li : (SUB(r), lj , lk)



Chapter 2 29

Instruction li is simulated in Π in the following way. Initially, neuron �li has a
spike inside, and other neurons have no spike except for neurons associated with
registers. Let t be the moment when neuron �li fires. At step t, neurons �r, �l

(1)
i

,
�
l
(2)
i

, �
l
(3)
i

receive a spike, respectively.

For neuron �
l
(5)
i

, there are the following two possible cases.

(1) If neurons �
l
(1)
i

and �
l
(2)
i

fire at a same step, then neuron �
l
(5)
i

receives 2
spikes at the same step.

(2) If neurons �
l
(1)
i

and �
l
(2)
i

fire at different steps, then neuron �
l
(5)
i

will have
two possible situations.

(a) If neuron �
l
(5)
i

receives the first spike from neurons �
l
(1)
i

and �
l
(2)
i

, and
the enabled rule a → � is not applied before the second spike from
neurons �

l
(1)
i

and �
l
(2)
i

arrives in neuron �
l
(5)
i

, then neuron �
l
(5)
i

will
accumulate two spikes inside.

(b) If neuron �
l
(5)
i

receives the first spike from neurons �
l
(1)
i

and �
l
(2)
i

, and
the enabled rule a → � is applied before the second spike from neurons
�
l
(1)
i

and �
l
(2)
i

arrives in neuron �
l
(5)
i

, then the second spike will also be
removed by rule a → �.

Computations in the above cases complete before step t+ 2b, which is before the
time when spikes from neurons �

l
(4)
i

and �
l
(6)
i

arrive in neuron �
l
(5)
i

.

For neuron �r, there are the following two cases.

(1) If neuron �r has 2n (n ≥ 1) spikes at step t, then, at step t+ 1, neuron �r

has 2n + 1 spikes (it received one spike from neuron �li), and the enabled
rule a(a2)+/a3 → a; b fires at one of the next b steps, sending a spike to
neuron �

l
(4)
i

. This spike arrives in neuron �
l
(5)
i

at one of steps from t + 2b

to t + 4b. After neuron �
l
(5)
i

receives this spike, it has 1 or 3 spikes inside
because the spike along the path �

l
(3)
i

�
l
(6)
i

�
l
(5)
i

arrives in neuron �
l
(5)
i

after
step t+ 6b+ 1.

(a) If neuron �
l
(5)
i

has 1 spike inside, then this spike is removed by rule
a → �. So neuron �

l
(5)
i

sends no spike to neuron �
l
(8)
i

. In this way,
the spike arrived in neuron �

l
(8)
i

along the path �
l
(4)
i

�
l
(7)
i

�
l
(8)
i

will be
removed by rule a → �. Similarly, we can check that the spike arrived
in neuron �

l
(5)
i

along the path �
l
(3)
i

�
l
(6)
i

�
l
(5)
i

is removed by rule a → �,
and the spike arrived in neuron �

l
(9)
i

along the path �
l
(6)
i

�
l
(10)
i

�
l
(9)
i

is
also removed by rule a → �. Therefore, no spike arrives in neurons �lj

and �lk , computations in Π abort, and system Π sends no spike into
the environment.



30 Universality of Limited Asynchronous SN P Systems

(b) If neuron �
l
(5)
i

has 3 spikes, then rule a3 → a; 0 is enabled and applied,
sending a spike to each of neurons �

l
(8)
i

and �
l
(9)
i

at one of steps from
t+2b+1 to t+5b. After this spike arrives in neuron �

l
(9)
i

, it is removed
by rule a → �, because the spike along the path �

l
(3)
i

�
l
(6)
i

�
l
(10)
i

�
l
(9)
i

arrives in neuron �
l
(9)
i

after step t+ 6b+ 2.

(i) If spikes from neurons �
l
(5)
i

and �
l
(7)
i

arrive in �
l
(8)
i

at different
steps, and they are removed by rule a → � in turn, then neuron
�lj receives no spike. So both neurons neuron �lj and �lk have
no spike inside, computations in Π abort, and system Π sends no
spike into the environment.

(ii) If spikes from neurons �
l
(5)
i

and �
l
(7)
i

arrive in �
l
(8)
i

at different steps,

and neuron �
l
(8)
i

accumulates 2 spikes inside (that is, rule a → �

is not applied before the second spike from neurons �
l
(5)
i

and �
l
(7)
i

arrives in �
l
(8)
i

), then rule a2 → a; 0 is enabled and applied, sending
a spike to neuron �lj . With one spike inside, neuron �lj becomes
active, which means that system Π starts to simulate instruction
lj of M .

(iii) If spikes from neurons �
l
(5)
i

and �
l
(7)
i

arrive in �
l
(8)
i

at a same step,

then neuron �
l
(8)
i

receives 2 spikes, and rule a2 → a; 0 is enabled.

Rule a2 → a; 0 is applied at one of the next b steps, sending a spike
to neuron �lj . With one spike inside, neuron �lj becomes active,
which means that system Π starts to simulate instruction lj of M .

In general, if neuron �r has 2n (n ≥ 1) spikes at step t, then there are the
following two possibilities:

∙ computations in Π abort and system Π sends no spike into the envi-
ronment;

∙ neuron �lj becomes active and system Π starts to simulate instruction
lj of M .

(2) If neuron �r has no spike inside at step t, then, at step t + 1, neuron �r

has 1 spike (it received one spike from neuron �li), and rule a → a; 9b is
enabled. Similar to case (1), we can check that there are two possibilities: (a)
computations in Π abort and system Π sends no spike into the environment;
(b) neuron �lk becomes active and system Π starts to simulate instruction
lk of M .

Therefore, instruction li : (SUB(r), lj , lk) of M is correctly simulated by module
SUB of system Π, in the sense that the number 0 is ignored when the power of
two computation devices are compared.

It is possible to have interference among neurons in two SUB modules. Specif-
ically, if there are several SUB instructions lt that act on register r, then when



Chapter 2 31

instruction li : (SUB(r), lj , lk) is simulated, neurons �
l
(5)
t

and �
l
(8)
t

receive a spike
along the paths �r�l

(4)
t

�
l
(5)
t

and �r�l
(4)
t

�
l
(7)
t

�
l
(8)
t

, respectively. After neurons �
l
(5)
t

and �
l
(8)
t

receive these spikes, rule a → � is enabled and applied. Consequently,
these spikes are removed and the interference among SUB modules will not cause
undesired steps in system Π.

Similarly, it is possible to have interference among neurons in an ADD module
and a SUB module, which also does not cause undesired steps in system Π. Be-
cause register 1 is not subject to SUB instructions, there is no interference among
neurons in SUB module and FIN module.

Module FIN: Outputting results of computations.

Figure 2.5: Module FIN for outputting results of computations

Module FIN is shown in Figure 2.5. Assume that the computation in M halts,
which means that the halting instruction is reached; and the number stored in
register 1 is n (we may assume that n ≥ 1, because number 0 is ignored when the
computation power of computing devices is compared). This means that neuron
�lℎ in Π has one spike inside and rule a → a; 0 is enabled; and neuron �1 has
2n spikes. Suppose that neuron �lℎ fires at step tℎ. At step tℎ, neurons �c1 , �c2

and �1 receive a spike from neuron �lℎ , respectively. Each of neurons �c1 and �c2

fires at one of the next b steps, sending a spike to neuron �c3 . No matter whether
neurons �c1 and �c2 fire at a same step or different steps, neuron �c3 has two
possibilities: (1) it accumulates 4 spike inside (note that it initially has 2 spikes



32 Limited Asynchronous SN P Systems with an Observer

inside); (2) rules a3 → a; 0 and a → � are applied in turn, and all spikes in neuron
�c3 are removed. The spike along the path �1�c4�c3 arrives in neuron �c3 after
step tℎ + 2b, so neuron �c3 has 0 or 4 spikes at step tℎ + 2b.

∙ If neuron �c3 has no spike at step tℎ + 2b, then the spike received along
the path �1�c4�c3 is removed by rule a → �. The computation aborts and
system Π sends no spike into the environment.

∙ If neuron �c3 has 4 spikes at step tℎ+2b, then after the spike along the path
�1�c4�c3 arrives in neuron �c3 , neuron �c3 has 5 spikes. Rule a5/a → a; 0 is
enabled and applied, sending a spike to neurons �out and �1, respectively.
With a spike inside, neuron �out fires, sending a spike into the environment.
After neuron �1 receives a spike from neuron �c3 , the number of spikes in it
becomes odd again.

– If the number of spikes in neuron �1 is odd and not less than 3, then
neuron �1 fires again by rule a(a2)+/a3 → a; b, sending a spike to
neuron �c4 . This spike then moves to neuron �c3 by rule a → a; b.
Neuron �c3 will fire again by rule a5/a → a; 0.

– If the number of spikes in neuron �1 is 1, then no rule is enabled in
neuron �1. Furthermore, all neurons in system Π are open. The compu-
tation in Π ends, and the number of spikes sent into the environment
by system Π is n, which is exactly the number stored in register 1 of
M when the computation of M halts.

From the description of the modules and their work, it is clear that the register
machine M is correctly simulated by system Π. It is easy to check that all rules
in system Π are standard, so N lasyn

gen (Π) = N(M) and Theorem 1 holds.

2.6 Limited Asynchronous SN P Systems with an

Observer

In the proof of Theorem 1, even if neuron �1 associated with register 1 becomes
active (this means that the computation in M reaches instruction HALT, and it is
already correctly simulated by system Π), during the stage of outputting results
of computations, it is still possible that computations in system Π abort and no
spike is sent into the environment. That is, it is possible that system Π fails to
signal an observer the correct computation result stored in neuron �1. It is natural
to consider that all computation results of correct simulations are collected by an
observer.

In the proof of Theorem 1, neurons are introduced for the registers, where
neuron �1 for the first register is implemented differently from the other neuron
registers �r . From a mathematical point of view, it is nice to have a uniform neuron
translation for the registers, so we can verify the ADD – module independent from
the register used.



Chapter 2 33

With the above two motivations from the proof of Theorem 1, we give a
new definition of successful computations and associated computation results. A
computation in a system Π is considered as successful if it satisfies the following
two conditions: (1) it reaches a configuration where all neurons are open and no
rule can be used; (2) system Π sends at least one spike into the environment, which
tells an observer that the computation has finished. The result of a successful
computation is defined as the number encoded by the number of spikes present in
a specified neuron. Note that even if a computation reaches a configuration where
all neurons are open and no rule can be used, but system Π sends no spike into
the environment, then the number encoded by the number of spikes present in a
specified neuron will not be collected by an observer.

a

aa ; 0

aa ; 0

1

aa ; 0

aa ;b

a
�
 5

4

aa ;0

aa ;2b
76

aa ; 0
8

aa ;2b

a
�
 a; 0

a 9

a
�
 a; 0

a out

2

3

Figure 2.6: A limited asynchronous SN P system Π′ with time bound k.

An example, shown in Figure 2.6, is given to illustrate the new definition,
where the time bound associated with all rules is b and the result of a successful
computation is defined as the number of spikes in neuron �2. Actually, system Π′

in Figure 2.6 is obtained by modifying and combining system Π in Figure 2.2 and
Part 2 of module ADD in Figure 2.3. Following the explanation of the work of
system Π and module ADD, we can easily check the work of system Π′. So, we
here only sketchily explain the work of system Π′ in order to illustrate the new
definition.

Initially, neuron �1 has one spike. So, rule a → a; 0 in neuron �1 is enabled at
step 1, and at one of the next k steps rule a → a; 0 is applied, sending a spike to
neurons �2, �3, �4, respectively. For neuron �5, there are the following two cases.

(1) If rule a2 → � is applied, then all neurons in system Π′ are open and no rule



34 Limited Asynchronous SN P Systems with an Observer

is enabled. Note that system Π′ sends no spike into the environment. So,
although there is one spike in neuron �2, by the new definition of successful
computations and computation results, the number 1 encoded by the num-
ber of spikes in neuron �2 is not collected by an observer. (Note that, by the
standard definition of successful computation and computation result given
in Section 2.3, the number 1 should be collected as a computation result.)

(2) If a → a; b is applied, then, similar to the work of module ADD, there are
the following three cases.

(a) If neurons �9 and �out remove the spikes received from neurons �6, �7,
�8, then the computation aborts and no spike is sent into the environ-
ment. So, the computation result in neuron �2 is not collected by an
observer.

(b) If neuron �9 fires and �out removes the spikes received from neurons
�7, �8, then the computation continues.

(c) If neuron �9 removes the spikes received from neurons �6, �7, and
�out fires, then the computation halts. Because neuron �out sends a
spike into the environment, the computation is a successful one and
the computation result in neuron �2 is collected by an observer.

Therefore, the set of numbers generated by system Π′ is ℕ ∖ {0}.
With the new definition of successful computations and computation results,

the modules in the proof of Theorem 1 can be modified as follows. We take module
ADD in Figure 2.3 as a module for all ADD instructions (that is, the set of rules
in neuron �1 is the same with the set of rules in neurons �r, r ≥ 2). Module
SUB keeps unchanged. Module FIN is simplified as shown in Figure 2.7, whose
functioning is just to signal an observer that the computation in system halts. As
in the proof of Theorem 1, number n computed by system is encoded by 2n spikes
in neuron �1 associated with register 1. We leave the check of the modified system
to readers, which is quite similar with the proof of Theorem 1. We summarize the
above discussion as the following theorem.

Theorem 2
There exist universal limited asynchronous SN P systems with an observer.

l�aa ; 0

Figure 2.7: Module FIN for signalling an observer that computations halt.



Chapter 2 35

2.7 Finite Limited Asynchronous SN P Systems

In this section, we investigate the computation power of limited asynchronous SN
P systems with a bound on the number of spikes present in the neurons. This
will restrict the behaviour of the system into a finite number of states, but we
demonstrate the systems can still generate all semilinear sets of numbers.

Let us denote by N lasyn
gen SNP (bound∗) the family of sets of numbers generated

by limited asynchronous SN P systems with a (unspecified) bound on the number
of spikes at any time in any neuron.

Lemma 3
SLIN ⊆ N lasyn

gen SNP (bound∗).

Proof
We start by observing that every semilinear set of natural numbers is the length
set of a regular language over a one letter alphabet. Looking at deterministic
automata for regular languages over a single letter e, we observe that they are
of a special form as shown in Figure 2.8. Specifically, the figure shows a generic
deterministic automation A over a single letter alphabet {e} with n + 1 states,
where the state set Q = {0, 1, . . . , n}, there is a transition from every state i to
the next one i+ 1, 0 ≤ i < n, while the last state n has a transition to one of the
predecessors q, 0 < q ≤ n, finally the set of final states equals F = {i1, . . . , ij} ⊆
Q.

10 qq−1 q1 nn−1
e

1

e e e e

e

⋯

e e

⋯

e

Figure 2.8: A deterministic automaton over a single letter alphabet {e}

Figure 2.9: The structure of limited asynchronous SN P system Π

An automaton A of the above form can be simulated by a limited asynchronous
SN P system Π (the time bound is b steps, for fixed but arbitrary b ≥ 2). The



36 Finite Limited Asynchronous SN P Systems

structure of system Π is shown in Figure 2.9. For each state i in automaton A, a
neuron �i is associated in system Π, and for each final state iv (1 ≤ v ≤ j, iv ∈ F )
we add a neuron �

i
(1)
v

located between neurons �iv−1 and �iv . Each neuron �
i
(1)
v

can receive a spike from neuron �iv−1 and send a spike to neuron �iv and �out,
respectively. Neuron �out is used to output computation results and has a spiking
rule a∗/a → a; 0. Each neuron �iv (associated with a final state iv) in system
Π has two rules: a2 → a; 0 and a → �; the other neurons (except the output
neuron) have one spiking rule a → a; 0. In the initial configuration of system Π,
only neuron �0 has one spike inside; the other neurons have no spike.

With one spike inside, rule a → a; 0 in neuron �0 is enabled. Neuron �0 will
fire at one of the next b steps, sending a spike to neuron �1. Neuron �1 receives
the spike and will send a spike (at one of the next b steps) to neurons �2 and
�out, respectively. Neuron �out receives this spike and will transfer this spike to
the environment (possibly after some steps, but as the rule is always enabled it
has to fire eventually). By the spiking rules (a → a; 0 or a2 → a; 0) in each neuron
�i (0 ≤ i ≤ n) and �

i
(1)
v

(1 ≤ v ≤ j), the spike from neuron �0 moves along the
path (�0, �1, . . . , �n) and the cycle (�n, �q, �q+1, . . . , �n). During the journey
of the spike from neuron �0, when neuron �iv (associated to a final state iv in
automation A) and its additional neuron �

i
(1)
v

simultaneously receive a spike from
neuron �iv−1, then neuron �

i
(1)
v

will send a spike to neurons �out and �iv at one of
the next b steps. For neuron �iv —first receiving a spike from neuron �iv−1 then
within the next b steps getting the second spike from �

i
(1)
v

— there are following
two possible cases.

(1) If neuron �iv receives the first spike from neuron �iv−1, and the enabled
rule a → � is not applied before the second spike from neuron �

i
(1)
v

arrives
in neuron �iv , then neuron �iv will accumulate two spikes inside and rule
a2 → a; 0 is enabled, sending a spike to neuron �iv+1 (it is possible that
neuron �iv+1 is associated to the next final state iv+1, in this way, neuron
�iv will send a spike to neurons �i(v+1)

and �
i
(1)

(v+1)

, respectively). In this

case, the spike in neuron �iv+1 continues to move, and neuron �out receives
a spike from neuron �

i
(1)
v

and will send a spike the environment.

(2) If neuron �iv receives the first spike from neuron �iv−1, and the enabled
rule a → � is applied before the second spike from neurons �

i
(1)
v

arrives in
neuron �iv , then the second spike will also be removed by rule a → �, which
means that the spike can not continue to move. So, neuron �out receives one
spike from neuron �iv and will send the last spike to the environment. In
this way, the system has chosen to halt in the final state of the automaton
A

Note that in the both above cases neuron �out will send a spike (received
from neuron �

i
(1)
v

) to the environment, which records that there is a transition
from state iv − 1 to iv. Therefore, the number of spikes produced by neuron �out

equals the length of the path (�0, �1, . . . , �iv ) and several possible copies of the



Chapter 2 37

cycle (�iv ,. . . , �n, �q, . . . , �iv ) (for the case of iv ≥ q), which corresponds to the
length of a string generated by automaton A. In general, the length set of strings
generated by automaton A is a subset of N lasyn

gen (Π).

Lemma 4
N lasyn

gen SNP (bound∗) ⊆ SLIN .

Proof
Take a limited asynchronous SN P system Π with a bound on the number of
spikes in each neuron. The number of neurons is fixed, the state of each neuron
(open/closed, the time since rules became applicable) has a bounded number of
values, and moreover the number of spikes in each neuron is bounded, hence the
number of configurations reached by Π is finite. Let C be the set of configurations
of Π, and let C0 be the initial configuration of Π.

We simply construct the right-linear grammar G = (C, {a}, C0, P ), where P
contains the following rules:

(1) C → C′, for C,C′ ∈ C such that there is a transition C ⇒ C′ in Π during
which the output neuron does not spike;

(2) C → aC′, for C,C′ ∈ C such that there is a transition C ⇒ C′ in Π during
which the output neuron spikes;

(3) C → �, for any C ∈ C in which all neurons are open and no rule is applicable.

Clearly the construction N ensures the fact that N lasyn
gen (Π) is the length set of

the regular language L(G), hence it is semilinear. Therefore, N lasyn
gen SNP (bound∗)

⊆ SLIN .

From the preceding two results we conclude the characterization of N lasyn
gen

SNP (bound∗) as semi-linear sets (over a single symbol).

Theorem 5
N lasyn

gen SNP (bound∗) = SLIN .

2.8 Conclusions and Remarks

With a biological motivation, we have considered a new working mode of SN P
systems, called limited asynchronous mode. In an SN P system working in limited
asynchronous mode, a common bound on the time interval is associated with all
spiking rules. If a rule is enabled at some step, this rule is not obligatorily used
immediately. However, if from this step on, the unused rule can be used in each
moment of the time interval, it should be used within the given time interval. If
further spikes make the rule non-applicable, then the computation continues in
the new circumstances. We have proved that limited asynchronous SN P systems
with standard spiking rules are universal.



38 Conclusions and Remarks

In the proof of the universality result in this work, the neurons are allowed
to hold arbitrarily many spikes. If the number of spikes present in each neuron
of a limited asynchronous SN P system with standard spiking rules is bounded
during a computation, then the power of a limited asynchronous SN P system with
standard spiking rules falls drastically, and we get a characterization of semilinear
sets of numbers.

In the proof of Theorem 1, delays are used in the spiking rules with the values
such as 2b, 9b, 14b. The functioning of these delays is to ensure that a spike should
arrive later than another spike at the target neuron. It is possible to remove all
delays in the spiking rules. The basic idea is that a delay k is replaced by k neurons
with the spiking rule a → a (the functioning of these k neurons is to transmit the
spike). If we consider the time bound b as a measure of asynchronous degree, then
each neuron has asynchronous degree b. However, k neurons have asynchronous
degree kb in the sense that the spike passing along the k neurons with spiking
rule a → a arrives at the target neuron at a moment in the time interval of length
kb. That is, the replacement of delays with neurons increases the asynchronous
degree. So, the above idea might work, but the replacement is not trivial, the
technical details should be carefully checked.

In this work, a time bound of application of rules is given for all rules. Of
course, we can consider that a different time bound is associated with each rule
instead of a uniform time bound for all rules. It will be interesting to check
whether in this case simpler ADD, SUB, and FIN modules can be obtained than
these modules presented in this paper. It remains open whether forgetting rules
can be removed in a universal limited asynchronous SN P system if a different time
bound is associated with each rule. Possible normal forms of limited asynchronous
SN P systems are also worth to be investigated (e.g., refer to [13]).

As usual, it is worth to investigate many other computational properties of
limited asynchronous SN P systems under different computational modes. An
interesting problem among them is to design a homogeneous universal limited
asynchronous SN P system, where “homogeneous" means that each neuron has
the same set of spiking rules [41].

Acknowledgements

The work of L. Pan and J. Wang was supported by National Natural Science Foun-
dation of China (61033003 and 30870826), Ph.D. Programs Foundation of Min-
istry of Education of China (20100142110 072), Fundamental Research Funds for
the Central Universities (2010ZD001), and Natural Science Foundation of Hubei
Province (2008CDB113 and 2008CDB180). The authors would like to thank the
three anonymous referees of the paper for their valuable comments and sugges-
tions.


