
Spiking Neural P Systems
Wang, J.

Citation
Wang, J. (2011, December 20). Spiking Neural P Systems. IPA Dissertation
Series. Retrieved from https://hdl.handle.net/1887/18261
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/18261
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18261


Chapter 1

Introduction

This thesis is devoted to the field of membrane systems which studies the potential
of a computational model inspired by information processing in the cells and
tissues, and in our case particular that of neurons. This first chapter introduces
the basic notions involved and sketches the background of the topic, as was done
in [14]. In its final section the remaining chapters is summarized.

1.1 Membrane Computing

Science develops fast, especially in the multi-disciplinary fields, and new research
areas come out continuously. In the field of computer science, it is popular to
employ new computing ideas from biology. Natural computing is a typical exam-
ple, which includes well-known evolutionary computing, neural computing, DNA
computing, and so on. All these now classic paradigms are inspired by biological
systems [8].

Membrane computing, one of the youngest branches of natural computing, was
first proposed by Gheorghe Păun in 1998, see [15]. Its aim is to abstract computing
models from the structure and the functioning of cells in tissues or other higher
order structures. The resulting models are called membrane systems, which are
also called P systems to honour to the contribution of Păun. Since membrane
systems have powerful capability in parallel processing and significant potential
in various applications, more and more researchers begin to get interested in this
area. Already in 2003, Thomson Institute for Scientific Information (ISI, for short)
has qualified the initial paper as “fast breaking” and the domain as “emergent
research front in computer science”.

According to different organizations of cells which inspire the different com-
puting models, P systems can be classified to three main types as follows: (i)
Cell-like P systems inspired from living cells; (ii) Tissue-like P systems inspired
from tissues; (iii) Neural-like P systems inspired from neural systems. In this the-
sis, we will study the subclass of neural-like P systems which is called spiking
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neural P systems (or SN P systems, for short). As all neural-like P systems, these
systems have the network structure that is gleaned form the brain.

The human brain is a complex and enormous information processing system,
where more than a trillion neurons work in a cooperative manner to perform
various tasks. Therefore, the brain is a rich source of inspiration for informatics as
natural computing proves. Inspired from the biological phenomenon that neurons
cooperate in the brain by exchanging spikes via synapses, Păun et al. developed
the SN P systems in 2006 (see [7]). In such models, all the spikes are viewed
as indistinguishable and the abstract symbol “a” is used to represent a spike.
Different from the traditional computing models, in SN P systems the information
is encoded in a sequence of moments in time when the unique “symbol” occurs
rather than a sequence of different “symbols”. It has been proved that SN P systems
are computationally complete and a characterization of semilinear sets can be
obtained for the behaviour of SN P systems under certain restrictive conditions.

After the initial proposal of SN P systems, there have been over hundreds of
papers published in this field, we refer to [17]. Here, we will briefly introduce the
definition of standard SN P systems and shortly introduce several forms of SN P
systems motivated by additional nature-inspired featurs, as well as related notions
and main results on SN P systems.

1.2 Spiking Neural P Systems

Before starting to introduce the various “enhanced” forms of SN P systems as
studied in this thesis, it is necessary to recall the SN P systems with standard
rules. For simplicity, we will shortly refer to them as standard SN P Systems.

A spiking neural P system (an SN P system, for short), of degree m ≥ 1, is a
construct of the form

Π = (O, �1, . . . , �m, syn, out)

where the constituents are composed as follows.

1) The alphabet O = {a} consists of a single element a, called spike, the basic
unit of information;

2) Components �1, . . . , �m are neurons, specified in the form �i = (ni, Ri),
where for 1 ≤ i ≤ m,

(1) ni ≥ 0 is the initial number of spikes contained in �i,

(2) Ri is a finite set of rules that can be in one of two forms.

1⃝ Firing rules, written as E/ac → a; d —where E is a regular expression
over a specifying when the rule is enabled, parameter c ≥ 1 the number of
spikes consumed, and d ≥ 0 is the delay time, that is, the interval between
using the rule and releasing the spike. If d = 0, then d usulally is omitted
from the firing rules.
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The intended semantics of the firing rule is as follows. If the neuron �i con-
tains k spikes, ak is contained in the language L(E) specified by expression
E (this means that the regular expression E “covers” exactly the contents of
the neuron) and k ≥ c, then the firing rule E/a → a; d can be applied in this
neuron, meaning that exactly c spikes are consumed (leaving k−c spikes in
neuron �i) and producing a spike after d time units. This new spike will be
sent to all neurons which are connected to neuron �i. Neuron �i is “closed”
during the interval between applying the rule and releasing the new spike,
meaning it cannot receive any spike during that time.

2⃝ Forgetting rules take the form as → �, for some s ≥ 1, with the restriction
that as /∈ L(E) for any firing rule E/ac → a; d in neuron �i (i.e., a firing
rule and a forgetting rule cannot be enabled simultaneously in a neuron).

As suggested by its name the semantics of such rule determines that the
involved spikes disappear form the system. If neuron �i contains exactly s
spikes, then the forgetting rule as → � can be applied (and by definition
no firing rule can be enabled in this step). Applying the forgetting rule as
above means s spikes are consumed, but no new spike is produced. These
rules heve no delay.

3) The topology of the membrane system is given by relation syn ⊆ {1, 2, . . . ,m}×
{1, 2, . . . ,m}, indicating the synapses between neurons. No neuron is con-
nected to itself, that is, for all 1 ≤ i ≤ m, one has (i, i) /∈ syn ;

4) The value i0 ∈ {1, 2, . . . ,m} indicates the identity of the the output neuron
�i0 , which can send spikes to the environment, indicating special events in
the computation. The resulting “output” of the system is ususlly defined in
terms of occurrences of the output neuron firing, as detailed below.

In what follows, we briefly recall some additional notions related to SN P
systems.

In most of the literature on SN P systems, one considers SN P systems working
in a synchronous manner. Under the synchronous mode, in each time unit, each
neuron which can apply a rule should do it, but at most one rule can be applied
in each neuron. This means that there is an implicit global clock involved in the
system, and that firing of rules is globally maximally parallel (applying as many
rules as possible in the system) but locally sequential (in each neuron).

Another notion which is often used in SN P systems is the spike train, and
several ways of defining the final result of a computation are based on this notion.
The moments of time when a spike is emitted by the output neuron are marked
with 1, the moments of time when no spike is emitted are marked with 0. The
produced binary sequence is called the spike train of the system. If a computation
halts, meaning no firther rules are applicable, then its spike train is finite; if a
computation does not halt, then its spike train is infinite.

Up to now, there have been several ways of defining the computational result
of SN P systems:
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In the initial papers on SN P systems, the result was often defined as the
distance between the first two spikes of a spike train. Then in [3] several extensions
were examined. The distance between the first k spikes of a spike train, or the
distances between all consecutive spikes, taking into account all intervals or only
intervals that alternate, all computations or only halting computations, etc.

The way one generally defines the result in membrane computing can also be
considered in SN P systems, namely, the result is taken to be the total number of
spikes collected in the output neuron (or the environment) during a computation
at moment the computation halts.

Moreover, the result can obviously be defined as the spike train itself. In this
way, SN P systems are used as binary language generators.

The SN P systems mentioned above all work in the generating mode: starting
from a fixed initial configuration the nondeterministic features of the system make
it run in different computations, and the output of these conputations is collected.
Actually, an SN P system can also work in the accepting mode: no output neuron
is needed, but intead an input neuron is designated. Then as an encoding of
input n, two consecutive spikes are introduced in this input neuron, at an interval
of n time steps; the number n is accepted if the resulting computation halts.
These systems can be deterministic (meaning that for each input there is only
one resulting computation) as opposed to the generating case, where determinism
is not a very fruitful concept.

1.3 Several Other SN P Systems

After the standard SN P systems were proposed and investigated, several other
SN P systems were developed by researchers. Generally, one distinguishes various
families of SN P systems of which we present four. The first variant involves the
type of rules. This is orthogonal to the next three variants which consider different
forms of synchronization and parallellism in the system.

Extended SN P systems

In standard SN P systems, in each time step only one single spike can be produced
at a given neuron by a firing rule. Several spikes can be produced simultaneously
in extended SN P systems (see [3]). In many cases this feature makes the systems
more flexible and more easy to “program”.

SN P systems with exhaustive use of rules

In the usual SN P system (either standard SN P system or extended as discussed
above), although the system works in parallel at the level of all neurons (i.e., the
system works in the synchronous manner), at the level of each neuron only (at
most) one rule can be applied. In the SN P systems working in the exhaustive
manner, when a rule is applied, then it must be applied as many times as possible
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in that neuron so that the neuron remains as few spikes as possible. Under the
exhaustive mode, not only the system works in parallel at the level of all neurons,
but also a rule is applied in a maximally parallel manner at the level of each
separate neuron.

Asynchronous SN P systems

The SN P systems mentioned above each neuron which can apply one or several
rules should apply such a rule. In SN P systems working in the asynchronous
manner, in any step a neuron is not forced to apply any rule which are enabled
by the number of spikes it contains. At the same time, further spikes can come
into this neuron, thus changing the rules enabled in the next step. If the contents
of the neuron are not changed, a rule which was enabled in a step t can fire later.
If new spikes are received, then it is possible that other rules will be enabled –
and applied or not (see [2]).

Sequential SN P systems

In sequential SN P systems, at every step of the computation, if there is at least
one neuron with at least one rule that is firable, only one such neuron and one such
rule is allowed to be fired, both chosen non-deterministically. Such systems, not
only work sequentially at the level of all neurons, but also the rules are sequentially
applied at the level of each neuron (see [5]).

1.4 Other Variants

Additional features inspired by nature involve axons, neuron division, and astro-
cytes. These are important concepts in the remainder of this thesis.

Axon P systems

In SN P systems the main “information-processor” is the neuron, while the axon
is only a channel of communication without any other role – which is not exactly
the case in neurobiology. So, recently, a special form of spiking neural P systems,
called axon P systems, was introduced by Chen etal. in [4], which correspond
to the activity of Ranvier nodes of neuron axon. Actually, axon P systems are
a sort of linear SN P systems. The computational power of axon P systems was
investigated in [4] and our [21]. As language generators, it was proved that the
axon P systems are not computationally complete; as number generators, it can
only be proved that axon P systems can generate a non-semilinear set.

SN P systems with neuron division and budding

The biological motivation for the mechanism of neuron division and budding that
we introduce into SN P systems comes from the recent discoveries in neurobiology
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related to neural stem cells. Neural stem cells are persistent throughout life within
central nervous system in the adult mammalian brain, which ensures a life-long
contribution of new neurons to a self-renewing nervous system with about 30000
new neurons being produced every day. These observations are incorporated in
SN P systems by considering neuron division and budding, and by providing a
“synapse dictionary” according to which new synapses are generated, respectively.
In [10], SN P systems with neuron division and budding solved computationally
hard problems, where for all n,m ∈ ℕ all the instances of SAT(n,m) with at most
n variables and at most m clauses are solved in a deterministic way in polynomial
time using a polynomial number of initial neurons.

SN P systems with anti-spikes

SN P system with anti-spikes introduced in [9], is a variant of an SN P sys-
tem consisting of two types of objects, spikes and anti-spikes. The inhibitory im-
pulses/spikes are represented using anti-spikes. The anti-spikes behave in a similar
way as spikes by participating in spiking and forgetting rules. They are produced
from usual spikes by means of usual spiking rules; in turn, rules consuming anti-
spikes can produce spikes or anti-spikes (see [18]).

SN P systems with astrocytes

An important ingredient of neurobiology is missing from SN P systems: the astro-
cytes. They are cells which play an essential role in the functioning and interaction
of neurons, by feeding them differently with nutrients depending on their individ-
ual activity. More specifically, astrocytes are cells which sense at the same time
the spike traffic along several neighboring axons, and feed the respective neurons
(e.g., with calcium) depending on the spikes frequency. The first attempt to intro-
duce this kind of cells into SN P systems was made by Binder et al. in [1]. In this
model, astrocytes have the role of “excitatory and inhibitory” according to the
quantity of spikes passing through the synapse in one time. Also, a simple model
is considered by Păun in [16], where astrocytes only have the role of “inhibitory”.
In such a model, the system works in a rather restricted manner: An astrocytes
checking several axons leaves to pass only one spike along them, suppressing all
others. Obviously. SN P systems with astrocytes have stronger computing power
than the general SN P systems, thus they are also computationally complete.
However they add a new powerful feature so that this kind of models has a signif-
icant potential to be applied to various problems in terms ease of programming
and in terms of computational complexity.

1.5 A Simple Example

In order to show how an SN P system works, we give a simple example.
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The system is shown in Figure 1.1. In this figure, each neuron is represented
by an oval, marked with a label i indicating the identity of neuron �i, and having
inside both the current number of spikes and the evolution rules for that neuron.
The synapses linking the neurons are represented by directed edges; in addition,
there is an edge from neuron �3 to the environment, which indicates that this
neuron is the output one.

Figure 1.1: A simple example

In this example it is assumed that the system works in the synchronous manner
and at most one rule is applied in one time at the level of each neuron.

From Figure 1.1 we see that, in the beginning, neuron �1 contains two spikes,
�2 contains one spike and �3 contains three spikes. Therefore, in neuron �1, the
rule a2/a → a; 0 can be applied; in neuron �2, one of the two rules a → a; 0
and a → a; 1 can be applied, non-deterministically chosen; in neuron �3, the rule
a3 → a; 0 can be applied. Assume that the rule a → a; 0 is applied in neuron �2,
then one spike is sent to neurons �2 and �3, from neuron �1, one spike is sent to
neurons �1 and �3 from neuron �2, and one spike is sent to the environment from
neuron �3. Thus, the three neurons contain two, one and two spikes, respectively.
If we continue to use the rule a → a; 0 in neuron �2, then the computation will
continue (neuron �3 uses its forgetting rule a2 → � during this process). Assume
that at some step the rule a → a; 1 is applied in neuron �2, then in the next step
one spike is sent to both neuron �1 and neuron �3 from neuron �2. Note that this
neuron cannot receive any spike in this step (it is closed). Hence, in this case, the
three neurons contain one spike, no spike and one spike, respectively. In this way,
the rule a → � can be applied in neuron �1, and the rule a → a; 1 can be applied
in neuron �3, thus another spike is sent to the environment. In this step, neuron
�2 will also send a spike to both neuron �1 and neuron �3. In neuron �1, the spike
is forgotten by using the rule a → �; in neuron �3, because the rule a → a; 1 is
applied in this step, it cannot receive any spike.

Therefore, the system contains no spike and thus no rule can be applied in
any of the neurons, which means that the computation halts.

In this example, we define the result of a computation as the distance between
the first two spikes of a spike train. As explained above, at any moment, once the
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rule a → a; 1 is applied in neuron �2, the system will send the second spike to
the environment after delaying one step and then the computation halts. Hence,
the system can generate N2(Π) = ℕ+ − {1}, where ℕ+ is the set of all positive
integers (number 0 is ignored, for technical reasons: it cannot be generated by
these systems).

1.6 Overview of the Thesis

The chapters in this book are based on individual papers [6, 11, 12, 13, 19, 20, 21]
co-authored by the author of this thesis. We give a short introduction to each of
them.

In Chapter 2, we solve the open problem from [2] whether asynchronous SN
P systems with standard rules are universal. In a biological system, given a long
enough time interval, an enabled chemical reaction will finish its reaction within
the time interval. So, it is natural to impose a bound on the time interval in which
a spiking rule remains unused. In an SN P system working in limited asynchronous
mode, if a rule is enabled at some step, this rule is not obligatorily used in the
same step. However, if from this moment on the rule remains applicable, it should
be used in the given time interval. If further spikes arriving in the neuron make
the rule non-applicable, then the computation continues in the new circumstances.
We prove that limited asynchronous SN P systems with standard spiking rules
are universal. This chapter is based on [12].

In Chapter 3, we introduce SN P systems with neuron budding rules, a new
feature that enhances the efficiency of SN P systems by allowing them to generate
an exponential size synapse graph. We have shown that a very restricted type of
neuron budding rules, involving one or two synapses is sufficient to solve the SAT

problem: the first phase builds an exponential size SN P system that contains no
spikes; then, this SN P system is fed with the instance of SAT to be solved and
the answer is computed. This chapter is based on [6].

In Chapter 4, to answer the question posed in [10], a uniform family of SN
P systems with only neuron division is constructed for efficiently solving the SAT

problem. We improve the result of [10] in the sense that the SN P systems are
constructed with a constant number of initial neurons instead of linear number
with respect to the parameter n, while the computations still last a polynomial
number of steps. This chapter is based on [19].

In Chapter 5, we use the axon P systems both as number generators and
language generators. As a number generators, we consider as the result of a com-
putation the number of steps elapsed between the two moments when the output
node spikes. In this case, a characterization of the family of finite sets is given
by axon P systems with one node, and the relationship of sets of numbers gener-
ated by axon P systems with semilinear sets of numbers is also investigated. As a
language generator, the result of a halting computation is defined as the strings
associated with configurations where the system emits a spike. In this case, the
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relationships of the families of languages generated by axon P systems with finite
and context-free languages are considered. This chapter is based on [21].

In Chapter 6, we introduce a variant of SN P systems with weighted synapses,
where the potentials of neurons are processed by spiking rules, and the applica-
bility of spiking rules is under the control of given firing thresholds. The involved
values – weights, firing thresholds, potential consumed by each rule – can be either
real (computable) numbers, rational numbers, integers, or natural numbers. It is
proved that integers suffice for computing all Turing computable sets of numbers
in both the generative and the accepting modes. When natural numbers are used
for weights, potentials, and thresholds, a characterization of semilinear sets of nat-
ural numbers is obtained. It is shown that spiking neural P systems with weights
can efficiently solve computationally hard problems in a non-deterministic way.
This chapter is based on [20].

In Chapter 7, we present a variant of SN P systems with astrocytes, where an
astrocyte can sense at the same time the spike traffic along several neighbouring
synapses. With the excitatory and inhibitory role of astrocytes, it is proved that
SN P systems with astrocytes are universal even with simple neurons (each neuron
has only one spiking rule) while also all neurons can be homogeneous. If a bound
is given on the number of spikes present in any neuron along a computation, a
characterization of semilinear sets of numbers is obtained. This chapter is based
on [13].

In Chapter 8, we prove that spiking neural P systems with astrocytes are
equivalent with Turing machines in the non-synchronized way: if a rule is enabled
at some step, this rule is not obligatorily immediately used. Further spikes may
make the rule non-applicable. This chapter is based on [11].
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