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ABSTRACT
Urinary tract infection (UTI) encompasses a variety of clinical syndromes ranging 

from mild to life-threatening conditions. As such, it represents an interesting model for 
the development of an analytically based scoring system of disease severity and/or host 
response. Here we test the feasibility of this concept using 1H NMR based metabolomics 
as the analytical platform. Using an exhaustively clinically characterized cohort and taking 
advantage of the multi-level study design, which opens possibilities for case–control and 
longitudinal modeling, we were able to identify molecular discriminators that characterize 
UTI patients. Among those discriminators a number of compounds  (e.g. acetate, 
trimethylamine and others) showed association with the degree of bacterial contamination 
of urine, whereas others, such as, for instance, scyllo-inositol and para-aminohippuric acid, 
are more likely to be the markers of morbidity.
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INTRODUCTION
Despite the progress made in understanding the mechanistic basis of many diseases 

in the last century, medicine is still essentially ‘more an art than a science’ [1]. Discovery of 
biochemical markers is thought to improve this, making diagnosis more reliable, specific 
and sensitive. These markers are sought at different levels of biological processes with the 
help of genomics, transcriptomics, metabolomics and other ‘omics’ approaches. Of these, 
metabolomics focuses on the analysis of metabolites present in biological fluids. Metabolites 
are end-points of all the biochemical processes of the organism and thus their collection – 
the metabolome is the closest approximation of the physiological phenotype and as such 
has a great potential for uncovering the biology underlying diseases and providing valuable 
markers of pathology [2,3]. 

The biological interpretation of results from metabolomics studies is rather complex and 
still in an early phase of development [4]. The human body is a ‘super-organism’ that unites its 
own network of interconnected tissues and organs with multiple colonies of microorganisms 
[5]. Interpretation of changes in concentration of metabolites found in biological fluids can 
readily be performed based on the underlying metabolic pathway; however, it is not always 
possible to link the observed change in systemic metabolite concentrations to a specific tissue 
or organ [6]. Especially in the case of disruption of highly abundant metabolites, e.g. from 
energy or amino acid metabolism, additional information would be required in order to 
interpret the data in respect to the tissue of origin. In addition, a change of such metabolites 
does not always improve the knowledge about the underlying cellular mechanisms and 
biology. A way to facilitate the interpretation of clinical metabolomics data is to integrate a 
plethora of available clinical parameters and to utilize a multilevel study design that should 
provide the opportunity to access the various levels of biological processes.

One of the examples of a complex and heterogeneous clinical entity, for which current 
diagnostic methods are not straightforward, is Urinary Tract Infection (UTI) [7]. Clinical 
manifestation of UTI can cover the range from mild cystitis to advanced pyelonephritis 
potentially leading to urosepsis and kidney failure. Physical symptoms may vary from patient 
to patient and be similar to a number of other diseases, mainly of infectious origin.  Thus, 
the presence of bacteria and lymphocytes in urine can not be considered as a sole common 
denominator for UTI and even if it was, the criterion for the colony count is variable and 
anyway considered insensitive [8]. The correct and timely diagnosis relies on effective joint 
work of clinicians and microbiologists [8]. All of this explains the considerable interest 
in providing new, specific and sensitive markers for UTI, as well as for the uropathogen 
involved. The focus of the available metabolomics studies on UTI in the literature has so 
far been on the identification of pathogens: in the work of Gupta et al. a beautiful method 
with the use of 1H NMR was proposed [9–11]. However, regrettably the method is not 
quantitative nor does it provide any information about the localization of the infection 
within the urinary tract, morbidity and preferred strategy of treatment 

In the current study we investigated possibilities of using urinary metabolic profiles to 
monitor the health state of UTI patients, the degree of infection and the recovery process of 
UTI patients in the context of febrile, complicated UTI. We used a selection of samples from 
an exhaustively characterized cohort, with multiple urine samples available per individual 
and with the main pathogen identified as Escherichia coli, which is the most common 
pathogen for UTI. Samples from a group of age- and gender- matched UTI symptom-
free subjects were included as control. The longitudinal design allowed studying various 
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biological processes: not only the difference between the patients and controls, but also the 
recovery process, using each patient as its own control.

MATERIALS AND METHODS

Samples
The study protocol was approved by the ethical committee of the Leiden University 

Medical Center and all included patients gave written informed consent.
Urine samples were collected at the Emergency Department and Primary Care 

Department. The sampling was carried out at several time points: the first urine samples were 
collected at the day of enrolment as baseline samples (t=0). Clean midstream-catch urine 
cultures were obtained and were analyzed using local standard microbiological methods. 
Three-four (t=4) and thirty days (t=30) after the day of enrolment, urine samples of the 
same patients were collected and new bacterial culture tests were performed (Supplementary 
Figure 1). 

For the current study, from a database of about 700 subjects enrolled, 40 subjects, for 
which urine culture confirmed E.coli-positive complicated febrile urinary tract infection that 
recovered after antibiotic treatment, were selected. Samples from age- and gender- matched 
subjects with low bacterial culture in urine and without evidence of inflammatory diseases 
were used as controls (Table 1). A number of samples were missing, a few removed from the 
analysis due to either insufficient spectra quality or high glucose content (Supplementary 
Figure 1). In the end the study included four classes of samples originating from UTI 
symptom-free (N = 35) at day 0 (baseline control), UTI patients (N = 32) at day 0 (baseline), 
UTI patients (N= 29) at day 4 and UTI patients after recovery from infection (N = 37) at 
day 30 (Supplementary Figure 1).

Table 1. Characteristics of the studied patients and controls groups at baseline (t=0).
Characteristics UTI patients

n = 40
Controls

n = 40 p

Age, years,  median (sd) 59 (14.6) 58 (17.9) 0.9

Female, n (%) 22 (55) 22 (55) 1

Smoking, n (%) 5 (12) 5 (12) 1

Co-morbidity, n (%)

Urinary tract disorder 4 (10) 4 (10) 1

Malignancy 4 (10) 1 (3) 0.17

Heart failure 5 (13) 3 (8) 0.46

Renal insufficiency 1 (4) 0 (0) 0.13

Diabetes mellitus 6 (15) 2 (5) 0.14

Immunocompromised 1 (3) 1 (3) 1

Urine dipstick results

Nitrate 26/37 (75)* 0/37 (0)* < 0.001

Leucocyte esterase 35/37 (95)* 5/37 (14)* < 0.001

* 3 missing values
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Sample preparation
Samples were thawed, transferred into 96 deep-well plates and centrifuged at 3000g 

for 15 minutes at 4°C to remove any precipitate. For sample preparation 520 µL urine were 
mixed with 60 µL of pH 7.0 phosphate buffer (1.5 M) in 100% D2O containing 4 mM 
sodium 3-trimethylsilyl-tetradeuteriopropionate (TSP) and 2mM NaN3 in a 96 deep-well 
plate using a Gilson 215 liquid handler controlled by a Bruker Sample Track LIMS system 
(Bruker BioSpin, Karlsruhe, Germany).

NMR experiments and processing
1H NMR data were collected using a Bruker 600 MHz AVANCE II spectrometer 

equipped with a 5 mm TCI cryogenic probehead and a z-gradient system; a Bruker BEST 
(Bruker Efficient Sample Transfer) system was used in combination with a 120 µL CryoFIT™  
flow insert for sample transfer. One-dimensional (1D) 1H NMR spectra were recorded 
at 300 K using the first increment of a NOESY pulse sequence [12] with presaturation 
(γB1=50 Hz) during a relaxation delay of 4 s and a mixing time of 10 ms for efficient water 
suppression [13]. Eight scans of 65,536 points covering 12,335 Hz were recorded and zero 
filled to 65,536 complex points prior to Fourier transformation, an exponential window 
function was applied with a line-broadening factor of 1.0 Hz. The spectra were manually 
phase and baseline corrected and automatically referenced to the internal standard (TSP 
= 0.0 ppm). Phase offset artifacts of the residual water resonance were manually corrected 
using a polynomial of degree 5 least square fit filtering of the free induction decay (FID) 
[14]. In order to monitor proper filling of the NMR flow cell and for quality control 1D 
gradient profiles [15] along the z-axis were recorded for each sample prior and post data 
acquisition. Duration of 90 degree pulses were automatically calibrated for each individual 
sample using a homonuclear-gated nutation experiment [16] on the locked and shimmed 
samples after automatic tuning and matching of the probe head.

Statistical analysis.
Each spectrum was integrated (binned) using 0.014 ppm integral regions between 10 

and 1 ppm, the residual water and urea region between 6 and 4.5 ppm was excluded, resulting 
in 550 data points used for the analysis. To account for any difference in concentration 
between the samples, each spectrum was normalized to a total area of 1. Absolute values 
were log-transforsmed. All pre-processing was done using in-house developed routines in 
R statistical environment (http://www.r-project.org/). Variables were centered and unit 
variance scaled prior to statistical analysis in SIMCA-P+ (version 12.0; Umetrics, Sweden) 
software package. For initial analysis and outlier detection, principal component analysis 
(PCA) was performed using 10 components. After the initial PCA analysis the following 
regions corresponding to paracetamol and its metabolites were excluded from the analysis: 
7.5 – 6.75, 3.95 – 3.8, 3.7 – 3.45, 2.2 – 2.14 and 1.84-1.88 ppm according to Bales et al. 
{17]. For partial least squares-discriminant analysis (PLS-DA)[18] samples were categorized 
based on classes as defined by the study design. PLS model was built using 5 categories 
according to logarithm of bacterial count as a Y variable. Statistical models from supervised 
multivariate data analysis were validated by random permutation of the response variable 
and comparison of the goodness of fit (R2Y and Q2) [19–20]. For random permutation 
tests 100 models were calculated and the goodness of fit was compared with the original 
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model in a validation plot. Spectral regions responsible for the separation between classes 
in supervised models were identified based on the Variable Influence on Projection (VIP) 
values, which correspond to the importance of the variables (bins) for the model. The 
variables with a VIP value larger than 1.8 were considered significant and used for further 
analysis and identification of the responsible peak(s) within the spectrum. Prediction of class 
membership of samples by PLS-DA model was based on the predicted Y variable with the 
cut-off of 0.5.

For multilevel components analysis (MCA) using an in-house developed script in R as 
described by Jansen et al. [21] data were not log-transformed.

Univariate tests were performed to assess the statistical significance of the spectroscopic 
regions found using multivariate analysis: unpaired t-test was performed for the regions found 
as discriminating between UTI patients and controls by PLS-DA; ANOVA was performed 
on the regions that showed association with bacterial count in PLS; paired t-test was carried 
out on the regions identified in multilevel analysis. All the corresponding p-values were 
adjusted for multiple testing using Benjamini-Hochberg correction.

Identification of compounds of interest
Annotation of identified peaks was performed based on reference spectra from the 

Bruker Bioref database and in-house reference data. Confident identification was facilitated 
by the use of Statistical Total Correlation SpectroscopY method (STOCSY)[22].

Quantification of paracetamol
Quantification was performed by deconvolution and subsequent integration of 

paracetamol-glucuronide resonance at 5.10 ppm (d, 7.1 Hz) using an in-house developed 
automation routine. The absolute concentrations were calculated based on internal reference 
TSP. Values were not corrected for differential attenuation of the signals caused by relaxation 
during the mixing time and rapid-pulsing saturation effects.

RESULTS
The initial PCA on baseline samples revealed a trend in separation between UTI 

patients and controls in the scores plot of the first two principal components as shown 
in Figure 1A. However, we suspected that this could be due to over-the-counter (OTC) 
analgesics and antipyretics the patients might have taken prior to their visit to the hospital. 
Since paracetamol is one of the most commonly used OTC analgesic it was not surprising 
that we could find the major urinary metabolite of paracetamol, namely paracetamol-
glucuronide, present in higher concentration in many of the urine samples from UTI 
patients, whereas it was present only in low concentrations in very few of the control samples 
(Supplementary Figure 2). The absolute concentration of paracetamol-glucuronide was used 
to stratify samples in the PCA plot: the direction of increase of paracetamol-glucuronide 
was found to match the direction of controls-patients separation (Figure 1B). The variables, 
corresponding to paracetamol and its metabolites, also dominated the loadings plot in 
the direction of separation between UTI patients and controls. As paracetamol is not an 
infection or morbidity marker, the further analysis was performed after the exclusion of the 
regions corresponding to the drug and its metabolites.
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Figure 1. PCA scores plot of 1H NMR data from controls and UTI patients urine samples at 
baseline, first two principal components covering 14.5 and 10.2% of variation respectively. 
(A) Colored according to controls (□) and UTI patients (●). (B) Colored according to the 
logarithm of absolute concentration of paracetamol-glucuronide.

Figure 2. PCA scores plots of 1H NMR data from controls (black) and UTI patients (red) 
urine samples at baseline after removal of the regions corresponding to paracetamol and 
its metabolites. First principal component covers 11.7%, second 11.2% and third 9.8% of 
variation.

The PCA analysis of the baseline samples after the removal of spectral regions of 
paracetamol and its metabolites did not show separation between UTI patients and controls 
within the scores plot of the first two principal components; however, a clear trend was 
identified along the third principal component (Figure 2), which means that inter-individual 
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variability is to a certain extent more prominent than the disease effect. No outliers were 
detected based on distance to the model (DModX).

In the next step a supervised PLS-DA model was built for t=0 using UTI class as 
a response variable. In the scores plot of the resulting model the two groups were well 
separated (Figure 3). Cumulative explained variance (R2Y) of 0.88 and cross validated 
predictive fraction (Q2) of 0.63 were calculated for the model; the model validation plot 
showed intercepts of the R2Y and Q2 regression lines with the vertical axis at 0.63 and 
–0.11, respectively, indicating a valid model. Molecular discriminators were identified based 
on relevant regions as identified by the corresponding VIP. A list of those regions, along with 
the p-values based on t-test (corrected for multiple testing), the direction of change and 
identities of the corresponding metabolites are summarized in Table 2.
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Figure 3. Cross-validated PLS-DA scores plot of urine 1H NMR spectra of controls (□) and 
UTI patients at baseline (●), R2Y = 0.88, Q2 = 0.63.
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Table 2. Spectroscopic regions that appear as influential in various statistical models and 
statistical significance of the corresponding univariate tests adjusted for multiple testing 
using Benjamini-Hochberg method.

Controls vs. UTI patients Bacteria concentration Recovery from t=0 to 
t=30

ppm region Identity t-test 
p-value change ANOVA 

p-value change
paired 
t-test 

p-value
change

9.291 - 9.277 1-methylnicotinamide <0.0001 - <0.001 -
9.277 - 9.264 1-methylnicotinamide <0.01 -
8.977 - 8.964 1-methylnicotinamide <0.01 -
4.491 - 4.477 1-methylnicotinamide <0.01 - <0.01 -
1.941 - 1.927 Acetic acid <0.01 + <0.01 +
1.927 - 1.914 Acetic acid <0.0001 + <0.0001 +
3.196 - 3.182 Acetylcarnitine <0.01 +
2.568 - 2.555 Citric acid <0.01 -
2.541 - 2.527 Citric acid <0.01 -
4.082 - 4.068 Creatinine 0.03 -
3.073 - 3.059 Creatinine <0.01 - 0.07 -
3.059 - 3.045 Creatinine 0.09 -
7.709 - 7.696 Furoylglycine <0.01 +
7.696 - 7.682 Furoylglycine <0.01 - <0.01 -
3.959 - 3.946 Glycolic acid derivative <0.001 - <0.01 - <0.0001 +
7.859 -7.846 Hippuric acid <0.01 - <0.01 -
7.668 - 7.655 Hippuric acid <0.001 - <0.01 -
7.655 - 7.641 Hippuric acid 0.01 - 0.02 -
7.586 - 7.573 Hippuric acid <0.01 - 0.05 -
3.973 - 3.959 Hippuric acid 0.01 - 0.03 -
8.555 - 8.541 Hippuric acid (amide) <0.01 -
8.541 - 8.527 Hippuric acid (amide) <0.001 - <0.01 -
1.341 - 1.327 Lactic acid <0.01 + <0.01 +
7.764 - 7.75 Para-aminohippuric <0.001 +

3.332 - 3.318 Scyllo-inositol <0.01 +
3.455 - 3.441 Taurine <0.0001 + <0.001 + <0.0001 -
3.441 - 3.427 Taurine <0.0001 + <0.001 + <0.0001 -
3.427 - 3.414 Taurine <0.0001 + <0.01 +
3.264 - 3.250 Taurine <0.001 +
8.855 - 8.541 Trigonelline 0.01 +
4.45 - 4.436 Trigonelline <0.01 +
2.896 -2.881 Trimethylamine <0.0001 + <0.0001 +
8.486 - 8.473 Unknown <0.01 +
7.968 - 7.955 Unknown <0.001 +
7.75 - 7.736 Unknown <0.01 +

7.518 - 7.505 Unknown <0.01 +
6.686 - 6.673 Unknown <0.0001 +
6.509 - 6.496 Unknown 0.04 +
3.168 - 3.155 Unknown <0.01 -

1) two-group t-test for the healthy controls and UTI patients at baseline; positive direction of change corresponds 
to intensity of the region being higher in UTI patients compared to controls, negative – region intensity is lower in 
UTI patients compared to controls

2) ANOVA analysis for the number of bacteria present in urine; direction corresponds to the correlation to the 
number of bacteria: positive corresponds to the raise of the region intensity with the increase of the number of 
bacteria, negative - to the decrease of the region intensity with the increase of the number of bacteria 

3) paired t-test for the UTI patients at baseline and 30 days; positive direction of change corresponds to intensity of 
the region being higher at 30 days compared to baseline, negative – region intensity is lower at 30 days compared 
to baseline
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The advantage of PLS-based models is that they can easily be used to predict the class 
membership of new samples. Data of the UTI patients at t=4 were predicted using the 
two-class PLS-DA model that was built as described above. Of a total of 29 urine samples 
included in the prediction set, 19 (65.5%) were classified as controls, whereas 10 (34.5%) 
samples were classified as UTI (Figure 4). Besides using data from the 4-days time point as 
prediction set, we also performed a separate analysis for the 30-days time point (Figure 4). 
In this case, out of 37 samples collected, 32 (86.5%) were attributed to the group of controls 
and 5 (13.5%) were categorized as UTI. 
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Figure 4. Predicted response value for two-class PLS-DA model based on controls (black 
bars) and UTI patients (red bars) at baseline: blue bars are the t=4 and t=30 classified as 
controls, grey are the t=4 and t=30 samples classified as UTI patients at t=0.

An important parameter characterizing UTI patients is the number of bacteria in 
urine; however, bacteria can also be present in urine of the individuals, who do not exhibit 
any symptoms of UTI [23]. We built a PLS regression model from NMR data of urine at 
baseline using the result of bacterial culture as response variable. Since bacterial count and 
UTI classification do not fully correlate we expected to obtain a slightly different model 
as compared to the model built based on UTI classification for this timepoint. Using 2 
components a cumulative R2Y = 0.78 and Q2 = 0.44 were obtained and model validation 
showed intercepts of the R2Y and Q2Y regression lines with the vertical axis at 0.63 and 
-0.12, respectively, in the model validation plot. As can be seen from the PLS scores plot 
(Figure 5) the samples with the highest bacteria concentration in urine were very distinct 
from the rest forming a separate cluster, whereas the rest of the samples were overlapping. 
The spectral regions responsible for the correlation of the 1H NMR data and bacterial count 
were chosen on the basis of the corresponding VIP. A list of those regions, along with the 
p-values derived from ANOVA (corrected for multiple testing), the direction of change and 
identities of the corresponding metabolites are summarized in Table 2.
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Figure 5. Scores plot of the PLS model of urine 1H NMR spectra at baseline vs. the number 
of bacteria (CFU/mL) found in urine (R2Y = 0.78, Q2 = 0.44). Colored by the number of 
bacteria.

To better understand the process of patient recovery and to find the spectroscopic 
regions that correlate with this process, we took advantage of the longitudinal study design. 
One of the statistical methods suitable for such analysis is multilevel component analysis 
(MCA) that separates variation present in the data into two levels: between-individual and 
within-individual. We performed this analysis on the 29 patients for which both the data 
from the baseline and from the 30-days time point were available and concentrated on the 
within-individual information. This should best reflect the recovery from the baseline, when 
patients are diagnosed as infected, to 30 days, when they are considered UTI symptom-free. 
PCA scores plot of the first two principle components that cover 15.8 and 14.8% of the 
variation, respectively, showed good separation between baseline and t=30 time points (data 
not shown). The PLS-DA model of this data had high quality parameters (R2Y = 0.98, Q2 = 
0.96 for four components), showed stability in permutation test (intercepts of the R2Y and 
Q2 regression lines with the vertical axis were at 0.42 and -0.6, respectively) and perfectly 
separated the two time points (data not shown). The NMR spectral regions responsible 
for the separation between baseline and the t=30 time point were identified based on VIP 
values. The underlying metabolites as well as the p-values from paired t-test (corrected for 
multiple testing) and the direction of change are summarized in Table 2. 

DISCUSSIONS
UTI represents a complex clinical entity, for which diagnostics is not straightforward: 

there is no single test or criteria for it [7]. In the current paper we approach identification 
of metabolites that characterize UTI and its pathology with the use of 1H NMR. We 
demonstrate how the use of clinical data and multiple samples per individual can enrich 
the biological interpretation of the findings. To reduce the heterogeneity typically posed by 
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UTI research, as a first attempt the smaller selection of UTI subjects from a bigger cohort 
was used, with similar diagnosis and with the major pathogen being E. coli. A set of matched 
controls was also available.

Unlike in animal experiments, in clinical research assigning people to certain groups is 
not always unconditional. The diagnosis of a disease can be fuzzy and defining the ‘healthy’ 
group is even more difficult, as there is hardly a definition of healthy. Thus, it may be very 
advantageous to supplement a traditional ‘case-control’ design with a more complex study 
design and the use of additional clinical data. When used without extra information, ‘case-
control’ analysis might even be misleading. For example, the separation of the control 
and UTI groups was seen in the first two principal components of PCA; however, this 
discrimination was not disease-related, but the result of patients taking the antipyretic and 
analgesic drug paracetamol. An analysis strategy for such type of data is to identify all of 
the spectroscopic regions that contain signals from drug-related compounds and to exclude 
them prior to further analysis. However, it is not feasible to account for the whole range of 
the medication used and, more importantly within the context of clinical metabolomics 
studies in general, to account for drug-related shifts in metabolism, especially in the case of 
long-term treatment regimes of chronic conditions. It is essential to consider such effects 
when developing the study design in order to minimize or control such influences.

Samples from 4 days after admission, when the patients were still under therapy, but on 
the way to recovery, were used to check if the modeled differences were related to the effect 
of medication or not. The fact that the majority of those samples were classified as healthy by 
the model built on baseline samples is an indication that the model is not reflecting therapy/
drug intake, but is indeed related to the clinical difference between the groups.

The samples from the 30-days time point, when UTI patients were symptom-free, 
could also be used to gain additional information on the performance of the model as well 
as to get insight into the underlying biology. When predicted using the PLS-DA model 
built on the baseline UTI infected and UTI symptom-free samples, most of the 30-days 
samples (86.5%) were projected to the control group. Those few, which were still predicted 
as infected UTI patients, may have another condition (as we do not know at this point how 
specific our model is) or have asymptomatic UTI. On the other hand, they can be healthy 
and be false positives, as the predictive ability of our model, estimated by cross-validation 
was 63%. Despite that, considering the prediction of 30-days samples as an independent 
statistical test for our model, it gives very satisfactory results. 

Pair-wise analysis for baseline and 30-days samples from the same individuals was 
conducted in order to monitor the recovery process. It revealed a number of classifiers 
and improved their statistical significance. The identified metabolites overlapped with the 
compounds from the model discriminating healthy and UTI subjects, however a few of them 
were unique (para-aminohippuric acid, scyllo-inositol and a few unidentified compounds).

Besides the multilevel design, the advantage of the current study was the exhaustive 
clinical characterization of the patients. Among the variety of clinical parameters available, 
the number of bacteria in urine was of specific importance. We performed regression-
based analysis of the relation between the 1H NMR data and the bacterial load in urine 
as determined by bacterial culture. The classifiers that emerged from this analysis were to 
a certain extent overlapping with the classifiers derived from the discriminative model on 
baseline samples. This was no surprise, since UTI is generally characterized by the presence 
of bacteria in urine.
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When comparing the lists of discriminators obtained from the different models 
(discriminating UTI patients from controls, modeling the recovery process and modeling 
the data against the degree of bacterial contamination of urine) it is evident that there is a 
large overlap which makes biological interpretation of the results feasible. For instance, some 
of the overlapping metabolites were already known from the literature to be related to the 
bacterial contamination of urine: acetate, lactate and trimethylamine [9]. Others, if they 
were found only in the comparative analysis of the two groups, could be attributed based on 
previous studies to certain phenomena. Hippuric acid, for example, is often associated with 
the gut microflora [24] and taurine with liver toxicity [25]. However, our findings suggest 
that they are also associated with the bacterial contamination of urine, which obviously does 
not mean that they are not related to the mentioned physiological processes as well, but that 
a complex network of interconnected factors is involved. The metabolites that appear to be 
related to the recovery process might be considered as potential morbidity markers. One 
of them, para-aminohippuric acid, is a well-established diagnostic marker for renal plasma 
flow and glomerular filtration [26]. The recovery from the complicated, tissue-invasive UTI 
is associated with the resumption of the kidneys’ function, so the positive change in para-
aminohippuric acid corroborates our assumption that some of the markers discovered in the 
paired analysis are the markers of morbidity.

CONCLUSION
In the current paper we used a metabolomics approach to profile UTI, which is on the 

one hand one of the most common infectious diseases among the adults, and on the other 
hand a disease that still lacks markers of morbidity. Using 1H NMR profiles of urine we 
generated various statistical models: (a) discriminating UTI patients and control subjects, 
(b) following the recovery process of UTI patients and (c) associating urine metabolic 
content with bacterial contamination. The discriminative model was able to classify most 
of the independent samples correctly according to their diagnosis, which indicates its high 
predictive ability. Comparing the sets of molecules derived from different analyses, we 
concluded that some of the compounds (e.g. trimethylamine and acetate) can be attributed 
to the effect of bacterial contamination of urine; others (e.g. para-aminohippuric acid, 
scyllo-inositol) can be considered markers of morbidity.
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SUPPORTING INFORMATION
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Supplementary Figure 1. Design of the study.
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Supplementary Figure 2. Paracetamol-glucuronide doublet in baseline samples colored by 
controls (black) and UTI patients (red).




