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Abstract

Background: Approximately 80% of the a- and 10% of the B-thalassaemias are caused
by genomic deletions involving the a- and B-globin gene clusters on chromosome 16p13.3 and
11p15.5 respectively. Gap-PCR, Southern blot analysis, and fluorescent in situ hybridisation
are commonly used to identify these deletions; however, many deletions go undetected using
conventional techniques.

Methods: Patient samples for which no abnormalities had been found using
conventional DNA techniques were analysed by a three-color multiplex ligation-dependent
probe amplification assay. Two sets of 35 and 50 probes, covering a region of 700 kb of the
o- and 500 kb of the B-globin gene cluster, respectively, were designed to detect rearrangements
in the a- and B-globin gene clusters.

Results: In 19 out of 38 patient samples, we found 11 different a-thalassaemia deletions,
six of which were not previously described. Two novel deletions leaving the a-globin gene cluster
intact were found to cause a complete downregulation of the downstream a-genes. Similarly, 31
out of 51 patient samples were found to carry 10 different deletions involving the 3-globin gene
cluster, three of which were not previously described. One involves the deletion of the locus
control region leaving the -globin gene cluster intact.

Conclusions: These deletions, which are not easily detected by conventional techniques,
may have clinical implications during pregnancy ranging from mild to life threatening microcytic
haemolytic anaemia in neonates. The approach as described here is a rapid and sensitive method
for high resolution analysis of the globin gene clusters and for any region of the genome.

Introduction

Thalassaemias are inherited haemoglobin disorders characterised by a quantitative
reduction of the a- or B-globin chains [1,2,3]. Genomic deletions involving the a-globin gene
cluster on chromosome 16p13.3 are the most common molecular cause of a-thalassaemia (~80-
90% of cases). Rearrangements in the B-globin gene cluster on 11p15.4 account for ~10% of all
B-thalassaemia mutations and hereditary persistence of fetal haemoglobin (HPFH) syndromes.
Besides the most common ones a large variety of less frequently occurring thalassaemia
deletions have been found in different populations. At least 60 different deletions involving
the - and more than 50 involving the a-globin gene cluster have been described to date [4,5]
(http://globin.cse.psu.edu/hbvar/menu.html).

The molecular tests commonly used to identify these deletions are gap-PCR, Southern
blot analysis and fluorescent in situ hybridisation (FISH) analysis [6-10]. Gap-PCR can only be
applied to known deletions, Southern blot analysis is time consuming and technically demanding
and success is very much dependent upon the hybridisation probes available, and FISH analysis
involves laborious cell culturing to generate metaphase chromosome spreads and has a low
resolution (>20kb).

Recently, a simple technique suitable for rapid quantitative analysis, multiplex ligation-
dependent probe amplification (MLPA), has been described [11]. This technique is based on the
ligation and PCR amplification of two adjacently hybridising oligonucleotides. Each oligonucleotide
pair is designed to give a product of a unique length, and by using common ends all probes can be
amplified with one primer pair. Using a fluorescent label allows probe separation on a capillary
sequencing system. This method has been applied successfully in a number of genes in which
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deletions and duplications are common [12-14]. In the original description, the probes were
generated by cloning into specially developed M13 vectors. Recently, we have simplified this
method by using chemically synthesised oligonucleotides. Discrimination of probes based on
chemically synthesized oligonucleotides (~40-60 nt) was doubled using two universal primer
sets each labelled with a different fluorophore, allowing up to 40 probes to be used in a single
reaction [15].

To simplify the detection of a- and [-thalassaemia deletions and increase the
resolutions, we designed two probe sets for each cluster. For the a-cluster, two probe sets of
35 probe pairs in total were designed with an average distance of ~20 kb, covering a genomic
region of ~700 kb. For the B-cluster, a total of three probe sets consisting of 50 probe pairs
were designed covering a region of ~500 kb and an average distance of ~10 kb. Control DNA of
known a- and B-thalassaemia deletion carriers was used and the deletion characterised by an
independent method. Two groups of patient samples suspected of having a (large) deletion in
either the a- or B-globin gene cluster, based on haematological findings, were analysed in this
assay.

Materials and methods

Patients

Patients suspected of having haemoglobinopathies were referred to our laboratory for
haematological, biochemical, and DNA analysis [16]. Based on this analysis, they were diagnosed
as a- and/or B-thalassaemia carriers. The patients suspected for a-thalassaemia in whom no
abnormalities were found by gap-PCR for the seven most common a-thalassaemia deletions and
non-deletion types of a-thalassaemia were excluded by direct sequencing of the a-genes, were
selected for MLPA. Some showed either an unbalanced o/ chain synthesis ratio (< 0.8) and/or
inclusion bodies [17] indicative for a deletion of both a-genes on the same allele [18]. In addition,
a few patients presented with haemoglobin H (HbH) disease, but analysis thus far only revealed
one mutation, suggesting a deleted allele in trans. Some showed the presence of possible
junction fragments by Southern blot, in which the deletion could not be characterised due to
lack of probes in the region flanking the potential deletion. In total, 38 possible a-thalassaemia
carriers were selected to be screened for rearrangements in 16p13.3. These samples were
collected during a period of approximately 5 years.

Patients were selected who presented with a microcytic hypochromic anaemia in the
presence of elevated HbA, levels, for which standard DNA analysis revealed no abnormalities
in the B-globin gene sequence or the 5'and 3’UTR. These samples include patients showing a
high HbF expression, indicative for HPFH, (3f)°- or ®y(*ydp)°-thalassaemia, and patients showing
normal HbA, and HbF levels with o/ chain synthesis ratios higher than 1.5, indicative for
deletions involving the complete cluster and/or the regulatory elements. A total of 51 samples
were analysed by MLPA.

As positive controls for MLPA of the a-globin gene cluster, we used seven deletions
confirmed previously by gap-PCR (- - 5t, -a®7 , -o*?, - - Med! - _ Pl __ THAl gnd — (a)?*°, indicated
as black bars in Figure 1B). Two other deletions (33 kb - -P'"! and the -a”-°) were previously
characterised by Southern blot analysis and direct sequencing of the amplified break point
fragments [19,20]. For MLPA of the B-cluster, the Dutch Il (e%y*y)°5B-thalassaemia of 112 kb [21],
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the 50 kb Belgian (yop)°-thalassaemia [22], the 25-30 kb Chinese [°-thalassaemia [23], the 12.6
kb Dutch | B°thalassaemia [24] and the Indian (-619 bp) B°-thalassaemia deletions [25], all
previously characterised by Southern blot analysis, were used as positive controls (Figure 2).

Probe design
In total 35 probe pairs were designed to detect rearrangements on 16p13.3,
covering approximately 700 kb from the telomere to the MSLN gene (Table 3, Figure 1). For
each probe pair, the common ends correspond to either the MLPA amplification primers
(forward tag 5-GGGTTCCCTAAGGGTTGGA-3’; reverse tag 5’-TCTAGATTGGATCTTGCTGGC-3')
[11] or the multiplex amplifiable probe hybridisation (MAPH) primers (forward tag
5’-GGCCGCGGGAATTCGATT-3’; reverse tag 5’-CACTAGTGAATTCGCGGC-3’) [26], which allows
simultaneous amplification and detection of the separated fragments in different colours.
Similarly, 34 probe pairs to be analysed in two colours were designed to detect
rearrangements in on 11p15.4 (Table 1, Figure 2). A third probe set, consisting of an additional
16 probe pairs, was designed for fine mapping some of the deletions found by MLPA (Table 2).
In order to detect all 50 probe sets in the same fragment analysis sample run, a third common
extension was used for the additional probe set, which allowed the use of a third colour (M13
forward tag 5’-GGCGATTAAGTTGGGTAAC-3’; M13 reverse tag 5'-GTTCACACAGGAAACAGC-3’) .
Unique sequence was identified using the BLAT program (http://genome.ucsc.edu)
[27], and care was taken that no known sequence variants were present in the primer annealing
site. Probes within each set were designed to produce PCR products differing by 2 bp in length to
allow separation in the size range from 80-125 bp using capillary electrophoresis on an ABI 3700
sequencer (Applied Biosystems, Foster City, CA). Primers have been designed using the RAW
program (MRC-Holland, Amsterdam, The Netherlands) such that the melting temperature of the
hybridising regions of each probe was at least 65°C with a GC percentage between 35% and 60%.
The oligonucleotides were from Illumina (San Diego, CA), synthesised in a salt-free
environment (50 nmol scale) and used without further purification. The downstream primer of
each probe pair was 5’ phosphorylated to allow ligation. Separate probe mixes were prepared
to allow the detection of deletions in either the a- or B-globin gene clusters, combining two sets
of probes with MLPA and MAPH common ends at a final concentration of 4 fmol/pl. The a- and
[B-globin gene MLPA probe mixes are available on request (http://www. LGTC.nl).

MLPA Reaction

Reagents for MLPA and subsequent PCR amplification were purchased from MRC-
Holland. All primers used for PCR amplification were purchased from Sigma-Genosys (Cambridge,
UK). The MLPA reactions were performed as described by Schouten et al. [11] and White et al.
[15]. In brief, approximately 200 ng of genomic DNA in a final volume of 5 pl was heated for 5
minutes at 98°C. After cooling to room temperature, 1.5 pl of the probe mix and 1.5 pl SALSA
hybridisation buffer (MRC-Holland) were added to each sample, followed by heat denaturation
(2 min at 95°C), hybridisation (16 hrs at 60°C). Ligation was performed by adding 32 pl of ligation
mix at 54°C for 10 minutes and the reaction was stopped by incubating 5 minutes at 95°C. PCR
amplification was carried out for 33 cycles in a final volume of 25 pl, adding both the MAPH-F and
—R and the MLPA-F and —R primer sets to a final concentration of 100 and 200 nM, respectively,
with MAPH-F being labelled with HEX and MLPA-F labelled with FAM. The third common primer set
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Figure 1 (A) Schematic representation of the short arm of chromosome 16 (16p13.3), showing a 700
kb region containing the a-globin gene cluster. Grey bars above the cluster indicate the minimal tiling
path of clones covering this region. Oval shape denotes the telomeric repeat region and solid boxes
the genes throughout the regions (adapted from Daniels et al. [29]). Vertical arrows show locations
of the probe pairs; colours correspond to colour label used in MLPA reaction and probe numbers to
numbers in Table 3. Bars below the figure indicate deletions found by MLPA, vertical lines marking the
first and last probe deleted. Open boxes mark the region where deletion breakpoint should be located.
Red indicates novel deletions found in this study. Blue indicates deletions previously described, but
more accurately mapped by MLPA. The number of unrelated individuals found during analysis is
indicated between brackets. (B) Schematic presentation of part of 16p13.3 showing the a-globin gene
cluster. Black bars show deletions (all confirmed by gap-PCR or Southern blot analysis) used as positive
controls to set up the assay. Green bars show deletions resembling described deletions in length and
position of the breakpoints. The identity can only be determined by gap-PCR and direct sequencing.
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Figure 2 (A) Schematic representation of the short arm of chromosome 11 (11p15.4), showing a 500
kb region containing the B-globin gene cluster. The genes throughout the regions are indicated as
solid boxes. The minimal tiling path of clones covering this region is indicated by grey bars above the
cluster. Deletions found by MLPA are shown as bars below the figure; the colours of the bars are as
indicated in Figure 1. The brown bars represent deletions found during this analysis and confirmed by
gap-PCR. (B) Schematic presentation of the region surrounding the 3-globin gene and deletions found
during this analysis or used as positive controls.
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used for the beta-globin gene cluster is called M13-F and M13-R; the primers were labelled with
ROX and added to a final concentration of 100 nM. A size standard (0.05 pl ROX 500, Applied
Biosystems, www.appliedbiosystems.com) was added to each well and products were separated
by capillary electrophoresis on the ABI 3700 sequencer (Figure 3).

Data analysis

For quantitative analysis, trace data from GeneScan (Applied Biosystems) were exported
to Excel (Microsoft; www.microsoft.com) to calculate allelic loss in the patient samples tested
[15]. In brief, two probes for unlinked loci were included per probe set as a reference in each
sample. The height of each a- (or -) globin cluster specific probe peak was divided by the sum
of the heights of the two reference probe peaks to give a ratio. The median ratio for each probe
across all samples was calculated and this value was used to normalise each probe to 1.0, which
corresponds to a copy number of two. The upper threshold for deletions was set at 0.75 and the
lower threshold for duplications at 1.25. The normalising factor for each sample was calculated
as the mean value of the unaffected probes within a sample (defined as falling between 0.8 and
1.2) and dividing all values within that sample by this value.

All samples were tested at least twice. Detection of deletions is simplified by the fact
that a series of flanking probes all generate a decreased signal. In cases of unlinked or single
probe deletions, the region covering the MLPA probes is amplified and sequenced to rule out the
presence of rare sequence variants under the ligation site.

Results

Design of the MLPA assay for a-thalassaemia rearrangements

Fragment analysis in the size range of 80-125 bp allows the simultaneous amplification
of approximately 20 probes differing 2 bp in length. To maximise the number of loci that can be
analysed in a single MLPA assay, we used a second primer set with common ends, to allow co-
amplification of the two primer sets under the same PCR conditions. Probes were designed for
each gene and pseudo-gene in the a-globin gene cluster, in the unique sequences LO and L1, at
the HS-40, the MPG gene, and more proximal at conserved sequences, respectively, 20 and 9
kb from the MPG gene (Figure 1). More distally, two probes were designed flanking the 3’'HVR,
known to be involved in many rearrangements of the a-cluster, and 15 probes at approximate
intervals of 13-50 kb with the most proximal probe localised in the MSLN gene, known to be
deleted in the alpha-thalassaemia mental retardation syndrome (ATR-16) [28,29]. The 35 probe
pairs shown in Table 3 can detect all of the deletions described to date.

Of the 35 probes tested in triplicate on 14 healthy individuals, two gave a standard
deviation of greater than 12% (Table 3, probes 17a and 21a). These probes were considered to be
unreliable and were excluded from further calculations. To investigate the efficacy of the assay,
DNA samples of nine carriers with known deletions were used as positive controls. All could be
detected unequivocally and their extent could be confirmed (black bars in Figure 1B).

To demonstrate that duplications are also reliably detected, we tested a homozygote
and heterozygote carrier for the common -o*” deletion, which results in the loss of the a.-
specific 3’UTR and a heterozygote for the so called a-triplication, which is characterised by a
duplication of the a.-specific 3’UTR. The results are summarised in Figure 3.
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MLPA for -thalassaemia rearrangements and HPFH

Similar to the a-cluster, 34 probes were designed for loci in the 3-globin gene cluster
and flanking regions. The region spans from the olfactory receptor gene OR52D1 to OR52A4
and covers an area of approximately 370 kb (Table 1, Figure 2). Most large deletions reported
so far are located in this region and all should be detectable. In order to detect small deletions
removing part or all of the B-gene [30], a subset of closely spaced probes (Figure 2B) surrounding
the B-globin gene were selected. A third probe set was designed with different common ends
(M13-F and —R) to allow amplification and detection with a third colour. Loci were selected in
between some widely spaced probes and towards the centromere. Standard deviations for these
probe sets were calculated on 19 healthy individuals; none showed standard deviations greater
than 12%.

Positive controls (marked as black bars in Figure 2) were used to test the capacity of the
MLPA assay to detect the deletions found by other methods in these patients. Probes covering
deleted loci showed half the intensity of the surrounding probes, matching the positions and
extensions of all the six known deletions.

Patient samples for o-thalassaemia

Our MLPA analysis revealed a large deletion involving the a-globin genes in 19 out of
38 patients. In the remaining 19 patients, 11 different deletions were detected, affecting either
the a-globin genes or the regulatory elements known to be involved in globin gene expression.
Six showed no resemblance to previously described deletions and were considered to be new
(--%, --%" (o), (oan)?Y, - - A8, - -MK) One has been described (Dutch Il a’-thalassaemia) but the
breakpoint position and deletion length could not be determined at the time [31]; FISH analysis
performed in John Radcliff Hospital in Oxford revealed an approximate deletion length of 300
kb (Higgs, personal communication). Four deletions show similarity with previously described
deletions (Figure 1B, last 4 deletions). One 14 year old Dutch girl showed haematological
parameters typical for an a’-thalassaemia carrier (MCV 65 fl, MCH 19.5 pg, RBC 5.79x1012 and
positive HbH inclusion bodies test). The a-genes were structurally intact and we only detected
the deletion of a single probe 5a (Figure 1A (aa)?" ). The location of this probe coincides with
one of the the cis-acting elements that regulate a-gene expression, known as the HS-40.

Patient samples for 3-thalassaemia

Analysis of the 51 samples suspected for 3-thalassaemic rearrangements or HPFH using
MLPA revealed 10 different deletions in 31 out of patient 51 samples. In the remaining 20 samples
a deletion of the probe sets tested could be excluded. In three cases, deletions were detected
which do not match those described to date and are considered to be new. All three deletions,
found in Dutch carriers, silence the expression of the complete globin gene locus and were named
Dutch IV (ey*y)dB°%-, Dutch V e%*y5B°%- and Dutch VI (e%y*y5)°-thalassaemia. One matched the
HPFH-2 deletion and was confirmed by breakpoint PCR [8]. One sample belonged to a patient
described in 1996 by Abels et al. [32] as a carrier of Dutch Il (e%y*y3p)°-thalassaemia, however
the deletion length was not determined at that time. Now the deletion length is estimated to be
at least larger than 400 kb and the 5’breakpoint located between position 5408246 and 5387552
(UCSC Genome Browser, May 2004) (Figure 2A). Five deletions match the length and breakpoint
locations of previously described deletions, two of which, the Croatian (ey33)°- (at least > 108 kb)
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and the Filipino °-thalassaemia (at least > 45 kb), were incompletely mapped. More accurate
length estimations were obtained by MLPA, being between 128-143 kb and 109-122 kb,
respectively. The other three showed similarity to the Dutch | 12.6 kb [°-thalassaemia deletion
(in seven independent patients of Dutch origin), the 13.4 kb Sicilian (53)°-thalassaemia deletion,
which are also frequently found in the Mediterranean basin [33,34] and the 32.6 kb Indian
SyAv(8B)°-thalassaemia [35], found in four independent chromosomes from Surinam-Hindustani
subjects (Figure 2B.).

Discussion

We describe the application of MLPA for high resolution mapping of deletions causing
a- and B-thalassaemia. Using synthetic oligonucleotides, 35 loci along a genomic region of 700
kb from the tip of the short arm of chromosome 16, containing the alpha-globin gene cluster,
could be analysed in two colours in a single reaction. More loci could be analysed simultaneously
by using a third pair of amplification primers, labelled with a third fluorophore. This increased
the number of probes to 50 loci spanning a genomic region of 500 kb on 11p15.4 and used to
detect rearrangements causing -thalassaemia or HPFH. Although slightly better results can be
obtained when performing the PCR with the three sets of labelled universal primers separately,
the ligation of all 50 probes was done in a single tube reaction. The fragment analysis was
performed on a single sample of the three pooled PCR products per patient, which allowed the
simultaneous analysis of 86 patient samples along with 10 normal controls in a 96 wells format
fragment analysis run on the ABI 3700.

The use of chemically synthesised oligonucleotides instead of cloning the half-
probes into M13 vectors, as originally described for MLPA [11], allows cheap and rapid probe
development, which increases the flexibility of MLPA for characterising genomic rearrangements.
Only 2 out of 85 probes (2%) were excluded from further calculations due to standard deviations
higher than 12% when tested on a validation set of 12 wild type controls. The majority showed
standard deviations between 0.05 and 0.08. Although these deviations seem significant, please
note that due to the probe density rearrangements are mostly detected using a series of flanking
probes (>2).

The ability to detect rearrangements in both regions was tested using positive controls,
heterozygous for the seven most common a-thalassaemia deletions confirmed by gap-PCR, and
fortwo less frequent mutations, Dutch | and -a.”, confirmed by Southern blot analysis. By selecting
12 probes closely distributed along the 40 kb a-globin gene cluster, all of the common deletion
types (except for the --* and --™4") could be distinguished from each other by MLPA. In our eyes,
the simplicity, work-load, and cost make MLPA a superior alternative to Southern blot analysis
when a single technique is preferred for the detection of deletions causing a-thalassaemia in a
research setting. When desired, gap-PCR can be used for independent confirmation. Similarly, six
positive controls were selected, based on confirmation by different methods (Southern blotting
and/or direct sequencing of break point fragments) and tested for the beta-cluster probe set. All
of the probes expected to be deleted were confirmed in the heterozygotes tested.

In 19 and 20 samples large rearrangements involving the a- and [-globin genes,
respectively, could be excluded. Point mutations or micro-deletions affecting expression and
located in between the probes, would not be picked up by MLPA. However, since iron levels were
not known for some patients and anaemia due to iron deficiency could easily be mistaken for a.- or
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normal HbA, B-thalassaemia, we believe that negative samples may fall into this category.

Polymorphisms in the genome, interfering with probe annealing and ligation of the
two probe pairs, may cause the loss of probe signal leading to a false positive MLPA result
[11,14,36]. During the screening of patient samples suspected for a-thalassaemia one case
showed repeatedly the deletion of a single probe 5a (in Figure 2A), named the (oo)?" deletion
found in an adopted child. This probe was selected in a highly conserved region of the HS-40,
not containing the polymorphic sites known to be present in human populations [37]. Deletion
of this regulatory element is expected to give a severe down regulation of a-gene expression of
the affected chromosome. Even though nothing can be said about the extent of deletion, the
fact that the HbH inclusion bodies test was positive and that no other rearrangements involving
the a-genes were found, is strongly in favour of a deletion involving the HS-40. Whether or not
this deletion, which is at maximum 30 kb in length, involves also HS-33 as found by Higgs et
al. [38] needs further analysis. These types of deletions in human carriers may contribute to
understand the mechanisms involved in regulation of downstream o-gene expression [39] and
will be studied further.

In conclusion, MLPA is an attractive alternative for FISH analysis for screening large
deletions, for example in ATR-16 syndrome [9,10]. The tiling paths of cloned probes currently
available for cytogenetic analysis of the 16p13.3 and 11p15.4 are shown in Figure 1 and 2.
The distribution of synthetic probes coincide with the available cosmids, and allows a higher
resolution of mapping than the available BAC or PAC probes. In contrast to in situ hybridisation,
no laborious cell culture to generate metaphase spreads is necessary. MLPA can be performed
directly on (stored) DNA samples.

MLPA uses standard technology only, that is, hybridisation, ligation, PCR, and capillary
electrophoresis. Since most diagnostic laboratories have these technologies operational,
implementation of MLPA should be straightforward. The robustness, simplicity, and intrinsic
redundancy (probe density) of this approach, and the additional specificity offered by the ligation
step, make MLPA an attractive technique for the detection and characterisation of copy number
variaton (deletions/duplications) in any region of the genome, particularly for high resolution
analysis, and those regions not amenable to analysis by array comparative genomic hybridisation
(array CGH) [40].
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probes labelled in three colours tested on a wildtype DNA sample. The upper window shows 17 probes
in green, 17 probes in blue, and 16 probes in red, all between 80 and 125 bp in length. In the lower
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wildtype and a heterozygote for the Dutch IV (gy)53°-thalassaemia deletion. The corresponding probes
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x-axis, the y-axis showing the ratios calculated for each probe. (B) The first scatter plot represents
the deletion of all the a-cluster specific probes on one allele as found in the - - ¥ a’-thalassaemia
deletion; the two independent control probes are indicated on the right. The second scatter plot
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located in the 3’UTR of the a,-globin gene, which demonstrates the capacity of the assay to detect
copy number changes.
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