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Preface

This dissertation reports about my research that was performed at Leiden University

between 2000 and 2004 and at Florida State University in the summer of 2001. This

research was partly funded by the dutch foundation of science, NWO (project number

612-053-001) and the FSU Cornerstone Program for Centers of Excellence.

The work described in this dissertation is a continuation on previous work performed

by Robert van Engelen at Leiden University. One of the initial goals of the project

was to extend CTADEL with a number of advanced numerical techniques. In chapter 7

we describe how CTADEL is able to automatically generate code for semi-Lagrangian

formulations. Lagrangian-type formulations have a number of interesting properties in

comparison with Eulerian-type formulations, for example a possible increase in the time

step size. Use of Lagrangian formulations increases complexity and thus poses a new

challenge to CTADEL.

The CTADEL tool was designed with automatic code generation for numerical weather

prediction models in mind. In the chapter 4, CTADEL showed its strength with condi-

tional expressions; a number of trigger functions to determine entrainment and detrain-

ment that take place in a cloud. In chapter 5, we describe how CTADEL can generate

code for an ocean model. Another extension we made to CTADEL was to let the model

specification call external library functions, which we show in chapter 6. As a test case,

we specified a turbulence model. In this model we have also implemented an experi-

mental implementation for a certain implicit differential equation.
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Chapter 1

Introduction

Increasing processing power and the development of new high-performance architec-

tures such as large networks of workstations (for example the Beowulf project [73] and

the Grid architecture [21]), multi-core processors [28] and simultaneous multi-threading

[77] have led to opportunities for developers of numerical models to change the focus

on more numerical detail, finer resolution or larger computational domains. Efficient

execution of large-scale application codes is usually a primary requirement in many

cases. High efficiency can only be achieved by utilizing architecture-independent effi-

cient algorithms and exploiting specific architecture-dependent characteristics of a given

computer architecture. For example, a loop optimization like software-pipelining can

increase instruction level parallelism on VLIW processor architectures [44], while high-

level code rewriting systems might improve performance on parallel architectures [2].

However, platform specific versions of source code must be avoided in order to limit

development and maintenance complexity. This requires a significant programming

effort to implement the changes in the simulation application since a simple plug-and-

play development paradigm with software components for scientific applications does

not exist as of yet. This can lead to huge amounts of undocumented code, for which

new versions have to be developed with every new emerging computer architecture.

Usually, the problem can be formulated on an abstract level. For example, by a set of

mathematical equations, which is independent of any computational resource. Several

types of tools exists which deal with systems of equations on an abstract level. For

example problem solving environments (PSEs), like the Matlab package, provide the

user with an interactive environment for symbolic specification of models. These PSEs

11



12 CHAPTER 1. INTRODUCTION

execute the specification by means of an interpreter which is inefficient, however, and

additional tools like a Matlab compiler are needed to obtain efficient code. Therefore, a

problem-specific code generator, called CTADEL, has been developed in order to exploit

architecture-independent and dependent optimizations.

1.1 Problem Solving Environments

”A PSE is a computer system that provides all the computational facilities

needed to solve a target class of problems. These features include advanced

solution methods, automatic and semiautomatic selection of solution meth-

ods, and ways to easily incorporate novel solution methods. Moreover,

PSEs use the language of the target class of problems, so users can run

them without specialized knowledge of the underlying computer hardware

or software. By exploiting modern technologies such as interactive color

graphics, powerful processors, and networks of specialized services, PSEs

can track extended problem solving tasks and allow users to review them

easily. Overall, they create a framework that is all things to all people: they

solve simple or complex problems, support rapid prototyping or detailed

analysis, and can be used in introductory education or at the frontiers of

science” - Gallopoulos, Houstis and Rice

Problem solving environments can provide a programming paradigm for application

development by means of software composition; the automatic translation of a prob-

lem, defined at a high level of abstraction, into an executable code. Software modeling

and development at a high abstract level allow the application developers to react more

quickly to new developments. For example, the SCIRun is a problem solving environ-

ment that allows scientists and engineers to interactively steer a computation, changing

parameters, recompute, and then revisualize all resulting data, within the same program-

ming environment [38, 57].

Furthermore, studies have shown that programmer productivity, measured by lines

of code over time, varies little between languages. Languages that automate more of the

low-level work allow a programmer to accomplish more in fewer lines of code.
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1.2 Numerical Weather Forecasting

Many decisions in today’s society are made based on weather forecasts. Because of

the major economic impact of such decisions, research and development of numerical

weather forecast systems has been ongoing since the beginning of the twentieth century.

Today, numerical weather forecasting, as part of climate modeling, is classified as one

of the “Grand Challenges” in computational science [90]. Simulating atmospheric pro-

cesses is computationally intensive: a typical forecast of the next day’s weather requires

about a trillion arithmetic operations. Even given the immense processing power of to-

day’s supercomputers, a 24-hour weather forecast may still take an hour to complete.

Generally, this is the maximum amount of time, and no more time than this can safely

be allotted in order to meet the time constraints imposed by the timely delivery of the

forecast. Despite the allocation of significant computing power, the quality of weather

forecasts can sometimes be disappointingly poor. One of the reasons is that atmospheric

circulation processes comprise inherently unstable phenomena, and the mathematical

equations governing these processes are nonlinear: a small disturbance of the atmo-

sphere in one part of the globe may have a disproportional large effect on atmospheric

motion somewhere else. This also limits the validity of long-term predictions to about

two weeks ahead, at the most.

Another reason for inaccurate weather forecasts is the limited resolution of numer-

ical forecast models in general. Grid points lie tens of kilometers apart, too coarse for

modeling local meteorological effects. Though the problem of sensitivity cannot be

overcome, we can still improve short-term forecasts by refining the resolution. How-

ever, since this increases the total number of operations to be performed within the time

span allocated, computing power must increase accordingly.

Distributed computers can significantly speed up weather forecasting. Basically, the

forecast is computed for small patches of the atmosphere in parallel. Because the atmo-

sphere can be tiled into smaller patches, the computing time for a forecast is inversely

proportional to the number of patches, assuming that each patch can be handled by one

processor of the parallel computer. Although the basic principles of parallel computa-

tion are clear, the parallel implementation of weather forecasts is still a major research

topic. One reason for this is that the appearance of several different types of parallel

computer architectures has made application development considerably more difficult,

because a single, general paradigm for parallel programming does not exist yet. For
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example, for message passing several systems exist, like MPI-1 and MPI-2 [23, 49],

OpenMP [10] and PVM [43]. Although MPI has been declared a standard paradigm,

code written with MPI is hard to understand for non-parallel programming experts and

consequently hard to maintain and use.

1.3 TheCTADEL Code Generator

The original CTADEL code generator was developed at Leiden University by Robert van

Engelen [86]. The design objective is the so-called machine-independent ”programming-

in-the-large environment”1, which must be able to generate efficient execution codes for

different computer architectures that are typically from architecture-independent prob-

lem specifications. In this respect, a challenging application for code generation is the

HIRLAM limited area numerical weather forecast system [20, 32]. HIRLAM is a coop-

erative project of Denmark, Finland, France, Iceland, Ireland, the Netherlands, Norway,

Spain, and Sweden. It is used in several of these European countries for routine weather

forecast productions.

Over the past four years, several parallel implementations of the HIRLAM forecast

model have been realized: a data-parallel implementation, a message-passing version,

a data-transposition code, and others. All modifications required for these implemen-

tations were made by hand starting from the (vectorized) HIRLAM reference code. As

a result, several versions of the forecast system are now available. Clearly, this is an

undesirable situation from a maintenance point of view. It also hampers the inclusion

of new insights into the model by meteorologists, since they are not acquainted with

the parallelization techniques. Furthermore, making these implementations efficient on

several types of high performance computer architectures results in a formidable task,

since each computer system requires computer architecture-dependent optimizations.

A problem solving environment and code generator can assist the application de-

veloper in alleviating the task of coding different implementations for different target

hardware architectures. Such a software development environment that integrates soft-

ware solutions for a specific application is called an application driver.

1Programming-in-the-large is concerned with the overall architecture of software systems; it deals

with the composition of large systems out of modules, the interfaces between the modules and their

specification, and the evolution of the resulting architecture over time[75].
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Initially the CTADEL project focused on the generation of codes for the so-called dy-

namics of the HIRLAM weather forecast model. In this continuation project we extended

CTADEL with other advanced numerical techniques like (semi) Lagrangian techniques

and we investigated the possibility of applying CTADEL to a subset of the physics rou-

tines.

Based on the successful experiences of generating codes for the HIRLAM numerical

weather forecast system, the CTADEL system has gradually matured into a small-scale

computer algebra system that has the potential of manipulating and transforming spec-

ifications for a wider range of applications. For example, we programmed an ocean

model using the CTADEL tool.

1.4 Thesis Outline

In this section, an outline of this dissertation is given.

Chapter 2 In this chapter an overview of the CTADEL tool is given. Accompanied with

an easy to understand example, the important phases of the code generation are

explained. We will discuss the specification language, calledATMOL , the GPAS

reduction system, the DICE common subexpression eliminator and the final code

generation phase.

In addition, some related research efforts in computational science and engineer-

ing are discussed.

Parts of this chapter have been published in [81].

Chapter 3 In this chapter we show the setup for all the experiments we have performed

with the generated code.

Chapters 4, 5 and 6With a number of example applications we show how we can ex-

tend the application domain of CTADEL. We will show models which deal with

a convection scheme (chapter 4), a coupled ocean–atmosphere model (chapter 5)

and a turbulence scheme (chapter 6). These example models show some of the

application domains for the CTADEL system and the extensions we have included

in the system.

Parts of this chapter have been published in [78, 79, 80].
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Chapter 7 This chapter is devoted to the incorporation and the generation of code for

semi-Lagrangian formulations. The use of semi-Lagrangian formulations can

increase performance of NWPs, but specifying semi-Lagrangian formulations

poses new challenges on CTADEL. We show how we have implemented semi-

Lagrangian formulations and how they can be used with an example model. Fur-

thermore, we show an elaborate method, called Halo On Demand, for optimizing

communication costs for distributed architectures.

Parts of this chapter have been published in [82, 83, 84, 85].



Chapter 2

Overview

In this chapter we will give an overview of the CTADEL system and we will present

some of the modules of the system. For a more detailed description of the CTADEL

system we refer to [86].

2.1 Ctadel

Many attempts have been made to solve scientific or physical models numerically using

computers. Today, a large collection of libraries, tools, and Problem Solving Environ-

ments (PSEs) have been developed for these problems. The computational kernels of

most PSEs consist of a large library containing routines for several numerical solution

methods. These routines form the templates for the resulting code. Examples of these

are, the Linear Algebra Kernels (LAKe) [54] or the range of libraries based on the LIN-

ear algebra PACKage (linpack) system [53], e.g. the Linear Algebra PACKage (lapack)

system [59], Parallel Linear Algebra Package (plapack) [56] and the Java version of

lapack (jlapack) [9].

A different approach to the so-called library-based PSEs consists of a collection of

tools that generate code based on a problem specification without the use of a library.

The power of such a system is determined by the expressiveness of the problem speci-

fication language and the underlying translation techniques. Examples of these systems

are general purpose PSE systems like maple [46] or SciNaps [1] or domain specific

PSE programs like SciFinance [71]. CTADEL belongs to this class of PSEs. Further-

more, a hardware description of the target platform is included in CTADEL ’s problem

17



18 CHAPTER 2. OVERVIEW

specification. This makes it possible to produce efficient codes for different types of

architectures.

The CTADEL system provides an automated means of generating specific high per-

formance scientific codes. These codes are optimized for a number of different architec-

tures such as serial, vector, or shared virtual memory and distributed memory parallel

computer architectures. One of the key elements of this system is the usage of alge-

braic transformation techniques and powerful methods for global common subexpres-

sion elimination. These techniques ensure the generation of efficient high performance

codes.

The problem specification language for CTADEL is called the ATmospheric MOdel-

ing Language (ATMOL ) [88]. The primary design objectives were ease of use, concise

notation, and the adaptation of common notational conventions. The high-level con-

structs inATMOL are “declarative” and “side-effect free” required for the application of

transformations to translate and optimize the intermediate stages of the model and its

code.ATMOL is strongly typed and requires the typing of objects before they are used.

This helps to pinpoint problems with the specification at an early stage before code syn-

thesis takes place.ATMOL supports both high-level and low-level language constructs

such as Fortran-like programming statements which are used to implement and optimize

the target numerical code.

In figure 2.1 we show a small example of a specification inATMOL . The variable

xfo is first declared as a three dimensional grid of floating point values on a surface

calledsurfaceo. Then the variable is beeing assigned a value with the expressionra−
atmrad − ocnrad − sl. The where construct serves as a kind of macro, CTADEL

replaces the termatmrad with the expressionxb*asta . The designer can anotate the

specification by inserting comments, preceded by the percent sign.

2.2 A Brief Overview of the System

In this section we will briefly explain some of the components of the CTADEL system.

For a more thorough explanation the reader is referred to [86]. Figure 2.2 shows a sim-

plified diagram of the complete system. We discuss the specification languageATMOL ,

theGPASreduction system, theDICE common subexpression eliminator and the code

generator in more detail in the next subsections. The system consists of the following

components,
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xfo :: float field(x,y,z) on surface_o.

xfo = (ra - atmrad - ocnrad - sl

% local radiation itensity

where ra = rad((j-1)*dyo+(ny1-1)*dya+0.5*dyo)

% atmospheric radiation

where atmrad=xb*asto

% sensible and latent flux

where sl = lambda*(sst-asto)

% ocean infrared

where ocnrad = xc * sst

).

Figure 2.1: An example specification inATMOL for the variablexfo .

Scripts A collection of scripts is provided which contains libraries of PDE-based op-

erators, skeletons of computer codes, predefined procedures for symbolic manip-

ulation. Also the specification of the model can be specified as a script. Loading

and compiling of scripts takes place via a terminal-based command interface.

Rule base A collection of rule bases containing various transformation rules and strate-

gies for applying transformations. The rulebase transformation strategy can be

interactively applied on expressions.

Parser The parser scans the input, analyses the syntax and parses scripts and user com-

mands.

Symbolic evaluator Expressions are symbolically evaluated which results in the ex-

pansion of symbolic functions and procedures and the evaluation of symbolic

expressions.

DICE The common subexpression eliminator. The input and output follow the format

of the static single assignment (SSA) form [14, 47].

Synthesizer The construction of the (attributed) abstract syntax tree is handled by the

synthesizer. The grammar productions and associated semantic rules are dy-

namically extended, because new user-defined functions and operators must be
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Evaluator
Symbolic Inference

Engine

Latex
Generator

HTML
Generator

Code
Generator

Rule
Base

Scripts

Parser

DICE GPAS Synthesizer

.tex .html .f

Figure 2.2: A simplified diagram of the CTADEL system.
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integrated from their abstract specifications. Global value range and function

monotonicity information are propagated through the abstract syntax tree (AST)

which results, for example, in the symbolic derivation of array bounds of (multi-

dimensional) variables used in the code.

Latex/HTML generator Generation of documentation from the specification is pos-

sible in both Latex formatting languages and HTML format. The HTML re-

ports provide the feedback to a user of the system by automatically including

inline cross-references from the high-level specifications to the low-level gener-

ated codes.

Code generator From the abstract syntax tree optimized Fortran 77 or HPF code is

generated.

2.2.1 ATMOL: A Domain-Specific Language for Atmospheric Mod-

eling

When the CTADEL was built, the choice was made to design a completely new program-

ming language instead of using an existing specification language. This has resulted in

ATMOL , see eg [88], a high-level language that provides a means for the specification of

a PDE-based problem in a natural way. Its power of expressiveness is close to the declar-

ative mathematical formulation of a model in vector notation. Just a few constraints

were imposed on the design of the language namely, transparency, self-containment and

extensibility.

All elements from the language both predefined in the system or user-defined should

be transparent to the user. In this way, a user of the system can inspect the definitions

and its specifications at every step of the compilation process and adapt them when

necessary. Therefore, the language should be self-contained and extendable, that is, it

should be possible to define new language constructs, like matrix/vector operations, in

the language itself.

The CTADEL system depends heavily on computer algebra techniques for the sym-

bolic manipulation of expressions. For the incorporation of common mathematical

language constructs, such as vector and matrix operations and general arithmetic op-

erations, an attempt was made to combine the ”best and most convenient” language

features present in the Maple, Mathematica and Matlab packages.
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Parsing of theATMOL language is based on operator precedence grammar for the

syntax of expressions, which is a commonly used technique in symbol computing [41].

The expression syntax based on operator precedence grammars can easily be changed

or extended by (re)defining (new) prefix, infix and postfix operators.

2.2.2 The GPAS Reduction System

The ”General-Purpose Symbolic and Algebraic computer System”(GPAS) reduction

system is one of the main components of the CTADEL system. Its main purpose is

the symbolic manipulation of algebraic expressions. Examples of this are symbolic

differential and integration, discretization, factorization, transformations on conditional

expressions and the generation and optimization of program codes.

In many mathematical models for scientific problems the operators and functions

exhibit properties such as associativity and commutativity. For the symbolic simplifi-

cation of scientific models and the generation of code for the models, it is crucial that

these properties are fully exploited. The associative and commutative laws are captured

in modular forms. This enables the underlying term rewriting system of GPAS to be

implemented using a strong pattern matching algorithm. The use of modular forms also

alleviates some of the phase-ordering problems

2.2.3 Common Subexpression Elimination

An occurrence of an expression in a program is a common subexpression if it meets

the following criteria: there is another occurrence of some expression and the operands

of this expression remain unchanged between the evaluation [50]. Typically, the nu-

merical schemes of a model based on partial differential equations can be optimized by

removing these redundant computations. This operation requires the (partially) com-

puted results of subexpressions to be stored in temporary variables until the results are

no longer needed.

Common subexpression elimination (CSE) is generally applied on an intermediate,

low-level, representation of the program by regular compilers. By raising this opti-

mization to the higher-level of the numerical schemes, DICE can represent the tempo-

rary variables in a symbolic way, for example, as multi-dimensional array variables. It

should be clear that using temporary variables this way can dramatically increase mem-
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ory usage.

DICE is the Domain-shift Invariant Common-subexpression Eliminator of the CTADEL

system. The DICE global optimizer exploits a heuristic cost model of a target computer

architecture. In this way common subexpressions are eliminated only if they yield a re-

duction in hardware cost as a balance between computing time and memory resources.

Since DICE is applied on declarative program-language constructs, it is not hindered by

control flow which can prevent more optimal common subexpression elimination.

For matching common subexpressions, DICE exploits the associative and commuta-

tive properties of operators. In addition, to find array-based common subexpressions, the

pattern matching of the indexed array variables in the expressions requires the derivation

of linear index transformations. In the CTADEL system, common subexpression elim-

ination is an essential part of the compilation process and a user can experiment with

different forms of codes derived with different techniques. To this end, the CTADEL

system allow the user to specify the strength of the CSE elimination by setting optional

weights for several operators in order to enable or disable the elimination of found

subexpressions.

DICE accepts sets of assignments in a semi Static Single Assignment (SSA) repre-

sentation. Code is in SSA form if every variable being assigned a value occurs as the

target of only one assignment and if it occupies its own memory-location [50]. Repre-

senting code in SSA-form is a commonly used technique in optimizing and restructuring

compilers and allows for a more thorough dependence analysis [47]. Because a vari-

able is assigned a value only once, there are no destructive assignments. Therefore,

code in SSA-form contains no write-write or false dependencies. By definition of the

SSA-form, aliasing of variables is not possible.

The intermediate form of an SSA-type code produces by DICE may have a large de-

mand on the memory resources of a target machine. Each temporary variable introduced

by the common subexpression elimination process is assigned only once, so no reusing

of arrays can be applied. By applying advanced loop optimizations like loop fusion, we

can apply array contraction. Array contraction enables the decrease of memory usage

by stripping indexes of the temporary arrays [25]. We have not built this into Ctadel,

because advanced compilers can do this from the generated source code.
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2.2.4 Multi-Platform Code Generation

One of the objectives for the CTADEL system was to allow the model designer to write

architecture independent model specifications. It is the responsibility of CTADEL to

take care of multi-platform code generation and architecture dependent optimizations.

Aside from a set of simplified hardware-parameters for the DICE module, such as

variable load and store costs, CTADEL generates code through the application of low-

level architecture-specific code restructuring transformations. Furthermore, CTADEL

has adopted data distribution and domain-splitting methods for distributed parallel com-

putation. Therefore, code generation is possible for serial-, vector-, and distributed/shared

memory architectures. The target code produced by the CTADEL backend module is a

Fortran dialect, e.g. Fortran 77 for serial architectures or High Performance Fortran for

shared memory architecture. Extending CTADEL to produce other high-level program-

ming languages, like C or Java, is straightforward.

Domain Splitting Methods

Domain splitting is a common technique in parallel code: a global domain is decom-

posed into local subdomains. A processor is assigned a single subdomain on which

it calculates a given function. If data is needed from another subdomain, this can be

exchanged explicitly, for example by MPI-calls, or implicitly, for example by shared

memory. In case no data is needed from other subdomains, for example embarrassingly

parallel problems, it is challenging to assign subdomains to processors by means of a

load balancing algorithm [13].

A common way to exchange data between neighboring subdomains is the halo

method, which entails the creation of a ring around a subdomain overlapping adja-

cent subdomains. Prior to the generation of code for a specific computer architecture,

CTADEL symbolically derives the bounds for the computation of each (temporary) ar-

ray variable of the intermediate code. CTADEL also determines the size of the halo.

Furthermore, the global stencil information from the numerical schemes for the funda-

mental (input) variables gets calculated. It was an implementation decision to calculate

the stencil for the input and not the output variables of the model. More information

about the halo method and CTADEL can be found in chapter 7.
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Low-level Code Restructuring

In CTADEL, the associative algebraic properties of sequential statement composition and

the associative and commutative property of parallel statement composition are used in

pattern matching code constructs by the restructuring transformations. These transfor-

mations can be (interactively) applied on the code. Several transformations, like loop

interchange, loop unrolling and data-parallel conversion of code can be implemented.

2.3 Related work

Little work has been done in the field of automatic generation of program codes that

are based on a mathematical specifications. A number of related projects on automatic

code generation or automatic parallelization exists and we mention a few below. Here,

we give a brief overview of related work in scientific problem solving. We divided

this overview into three sub-categories: numerical libraries, symbolic compilers and

restructuring compilers.

2.3.1 Numerical Libraries

Usually programmers tend to “convert” a problem by hand into a program. Several nu-

merical libraries are available to help the programmer by offering a substantial amount

of standardized numerical routines. For example, the Basic Linear Algebra Subpro-

grams (BLAS) is available and optimized for a large set of computer architectures

[18]. The LAPACK[59] and the parallelPLAPACK[56] provide the user with a col-

lection of direct linear solvers. Several other variants ofLAPACKexist, for exam-

ple, SCALAPACK, which is optimized for shared memory parallel architectures, and

JLAPACK, a version for java virtual machines.

However, problem specific information is not used by these libraries, although e.g.

the Broadway compiler [26] uses annotations from these libraries for optimizing pro-

grams. This approach can yield efficient applications for multiple types of architectures,

but programmers tend to be reluctant in the (re)use of “yet another library” and program

the numerical problems by hand by tweaking standard examples from ”numerical cook-

books” like [61].



26 CHAPTER 2. OVERVIEW

2.3.2 Problem Solving Environments

Problem solving environments can provide a programming paradigm for application

development by means of software composition, which is the automatic translation of

a problem, defined at a high level of abstraction, into an executable code. Software

modeling and development at a high abstract level allow the application developers

to react more quickly on new developments. Furthermore, studies have shown that

programmer productivity, measured by lines of code over time, varies little between

languages. Languages that automate more of the low-level work allow a programmer

to accomplish more in fewer lines of code. Well known examples of problem solving

environments include Matlab and Maple.

Special packages for these PSEs exist which produce program codes. For example,

the MathWorks package is a compiler for Matlab specifications which generatesC and

C++ codes. However, these compilers usually do not exploit target architecture specific

optimizations.

2.3.3 Restructuring, Parallelizing and Symbolic Compilers

The use of parallelizing compilers for the restructuring of scientific codes has been an

ongoing research topic for many years. The main problem is how to detect the course-

grain parallelism from a sequential program in order to effectively use the resources

of a parallel architecture without the need for writing a separate parallel version of the

program.

Restructuring compilers take a program written in a high-level programming lan-

guage as input. First, the program is parsed and an abstract syntax tree (AST) is gen-

erated, on which standard optimizations can be applied. The restructuring compiler

can perform optimizations on the AST by applying a set of transformations. Then, the

compiler generates the restructured program in a high-level language, either the same

or different as the input language. The set of transformations, which can be provided

by the system itself or by the programmer, is usually applied using a pattern-matching

mechanism. These compilers use dependence analysis to prove that the semantics of a

program is not changed by a transformation.

An example is the Falcon project [16]. It uses an existing high-level array language,

Matlab, as source language and performs static, dynamic, and interactive analysis to

generate Fortran 90 programs with directives for parallelism. It includes capabilities for
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interactive and automatic transformations.

An example of a rewriting compiler is the MT1 compiler [8]. This compiler is a

source to source compiler that enable the automatic conversion of programs that oper-

ate on so-called dense matrices into equivalent program operating on so-called sparse

matrices. The latter are matrices in which the presence of many zeros can be exploited

to reduce storage requirements and computational time. Clearly, more powerful trans-

formations than the traditional program transformations are required, because the data

structures must be adapted in order to exploit the characteristics of data. Also more

general transformations can be specified, for example to perform advanced loop opti-

mizations. This makes the MT1 compiler a perfect intermediate between the generated

code from CTADEL and a standard Fortran compiler.

Tolmach and Oliva [76] also take a subset of an existing functional language, ML,

as source language and produceC or ADAprogramming codes. They make use of a

so-called type-based macro-extension technique, which they call templates and which

resembles the concept of CTADEL-templates. Their work, however, is not targeted to-

ward code generation for mathematical models, but as an aid to speed up application

develoment in traditional languages.
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Chapter 3

Experimental Setup

In this chapter we will discuss the hardware and software setup we used in the various

experiments we performed. Since this dissertation presents work done over a period of

four year, several hardware setups were used. When we compare the performance of

the code generated by CTADEL with reference code we have run these codes under the

same circumstances and with the same compiler settings.

In the following sections, we will give a brief description of every platform and the

presented label for this platform will be used in the remainder of this dissertation to

identify this setup.

3.1 Scalar Architecture

In this section we list the different scalar processor architectures.

PENT-II A commodity pc with a Pentium II processor, running the GNU operating

system, with a Linux kernel version 2.0.36. The used machine was equipped with

a 333 MHz Pentium II processor and 64 MB ram.

The compiler used for the platform is the GNU Fortran compiler, version 2.95.2

with the standard optimization turned on (g77 -O2 ).

ATHLON A commodity personal computer, running the Linux/GNU operating sys-

tem, with a Linux kernel version 2.4.10. The used machine was equipped with a

700 MHz AMD Athlon processor and 384 MB RAM.

29
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On this platform the GNU Fortran compiler, version 3.0.3, was used. We used the

standard optimization flags.

PENT-IV An ordinary desktop pc with a Pentium IV processor, running the Linux/GNU

operating systems, with Linux kernel 2.4.18. The used machine was equipped

with a single 1800 MHz processor and 256 MB RAM.

For the compilation of the programs we used both the GNU and Intel Fortran

compiler. We used the Intel Fortran Compiler for Linux, IFC version 7.0, with

optimizations for the Pentium IV (-O3 -tpp7 -axW) turned on. For the GNU G77

compiler, version 0.5.26/2.96-113, we used the default optimization flags (-O3 -s

-march=i686).

3.2 Shared Memory Parallel Architecture

In this section we list the only shared memory parallel architecture we used, a sun

enterprise server.

SUNE450 A Sun E450 enterprise server with four 400 MHz UltraSPARC-II proces-

sors, running Solaris 7. The used machine was equipped with 4 GB RAM.

3.3 Distributed Memory Parallel Architecture

In this section we list the different distributed memory parallel architecture.

DAS1 The DAS computer[33]. This is a wide-area distributed computer with 200 pro-

cessing nodes, spread out over four clusters. All these cluster contain nodes which

consists of a Pentium Pro processor, running a Linux 2.2.14-5.0 kernel. The nodes

within a cluster are interconnected with fast ethernet for operating system re-

lated traffic like NSF and a 1.2 Gb/s Myrinet network [51] for low-latency, high-

bandwith user-level data communication. The four clusters are interconnected

over an ATM network. However, we only run jobs on a single cluster.

The reader is referred to [33] for more information about the DAS system. The

DAS system is also referred to as a “Beowulf” cluster[62].



3.3. DISTRIBUTED MEMORY PARALLEL ARCHITECTURE 31

The compiler used for the platform is the GNU Fortran compiler, version 2.95.2

with the standard optimization turned on (g77 -O2 ). For data communication

between the different nodes we made use of the MPICH implementations [55] of

the MPI library [23].

DAS2 The DAS-2 computer[31] is the successor ofDAS1. It is a wide-area distributed

computer with 200 processing units, spread out over five clusters. Each unit con-

tains a dual Pentium-III processor and is equipped with at least 512 MB RAM.

The units are running a Linux kernel version 2.4.7-10smp. For our experiments

we used a limited number of units. For each unit we used both processors, but

denote each single processor as a node in the remainder of this dissertation.

The nodes within a local cluster are connected by a Myrinet-2000 network [51],

which is a high-speed interconnection network. In addition, Fast Ethernet is used

as OS network, for example for file distribution.

Myrinet-2000 is a switched network, capable of full-duplex data rates up to 2+2

Gb/s and has low latencies in the range of a few micro-seconds. The Myrinet is

connected with a high-speed level-3 switch. For communication we make use of

the MPICH implementation of the MPI message system [55].

For communication between clusters the Globus toolkit can be used. However,

we run all our experiments on only one cluster.

On this system we used the GNU compiler, version 3.0.3, with default optimiza-

tion flags for both the original and generated codes. For communication between

the nodes on this computer the MPI library was used.
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Chapter 4

Extending the Application Domain:

The Kain–Fritsch Convection Scheme

The CTADEL system was developed with the dynamics of a weather forecasting system

in mind. In this chapter we show how CTADEL was extended so that the convection

scheme could be incorporated.

The convection scheme we use in this chapter is the Kain–Fritsch (KF) convection

scheme [40]. A number of trigger functions are calculated to determine if and how much

entrainment and detrainment take place in a cloud. Because of these conditions, it is

difficult to generate an efficient implementation for vector architectures. For this scheme

we developed a new feature of CTADEL: template based code generation. Also do these

trigger functions make it harder to generate efficient code for e.g. vector architectures,

something that is also not easily solved by CTADEL.

4.1 Background

In this section we go into further detail about the theory and specification of the KF con-

vection scheme and the use of templates in CTADEL. For reference we used the hand-

written implementation of the convection scheme in the HIRLAM system, a numerical

weather prediction system in operational use at several European meteorological insti-

tutes [20, 32].

33
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4.1.1 The KF convection scheme

This scheme is an one-dimensional entraining/detraining plume model in which only a

small number of clouds per vertical column (grid box) is resolved. The reason for this

is that the mesoscale models for which it was designed, have rather small grid boxes

which contain only a small number of different clouds.

In these grid boxes the available buoyant energy (ABE) is consumed by fluctuations

in mass in the box. An increase in mass flux can be seen as an increase in the number of

clouds present in the grid box, while a decrease in mass flux is indicative of a reduction

of the number of clouds. This consummation of mass flux is assumed to take place in

time τc, whereτc is the advection time at the Lifting Condensation Level (LCL) which

lies between 1800 and 3600 seconds. Because of closing of the continuous functions the

parameterized mass flux of the single cloud is usually not enough to remove all ABE in

time τc; to achieve the full consumption of the ABE the mass flux is adjusted to a level

where the remaining ABE is less than 10% of the initial value.

Entrainment and detrainment of mass flux in the cloud takes places because of two

processes: up-, and downdraft in the cloud and through environmental air.

One of the important parameters for the updraft calculations is the rate at which

environmental air is entrained into the cloud. This rate is assumed to be

δMe = Mu0(0.03δp/R), (4.1)

whereδMe is the environmental entrainment rate,δp the depth of the layer in Pa,R

andMu0 respectively the updraft radius and mass flux at the cloud base. Equation (4.1)

prescribes that when there is no detrainment, the updraft mass flux doubles if it travels

500 hPa upwards. The updraft mass, with which this environmental air mixes, must

become available at the same rate, which leads to

δMt = δMe + δMu. (4.2)

HereδMt is the total rate of mass entrainment into the mixing region andδMu is the rate

of mass entrainment from the updraft into the mixing region. As mentioned previously,

the amount of mass that detrains out of the cloud will be dependent on the mixtures of

environmental and updraft air. For these sub-parcel mixtures a Gaussian distribution

functionf is assumed [40] which reads

f(x) = Ag

(
e−(x−m)2/2σ2 − k

)
, (4.3)
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wherex is the fraction of environmental air in the mixtures,m is the distribution mean

(in this case 0.5),σ is the standard deviation (1/6) andk an constant so thatf(0) = f(1)

= 0, sok = e−4.5. Ag is defined such that

∫ 1

0
f(x)dx = 1, (4.4)

which means thatAg = (0.97σ
√

2π)−1. The distribution in equation (4.3) gives a spec-

ification of the rates at which various mixtures are generated. Assuming that the sub-

parcel size is independent of the mixing proportion, the total mass distribution can be

obtained simply by multiplying the frequency distributionδMt, so

δMe + δMu = δMt

∫ 1

0
f(x)dx. (4.5)

The individual components of this distribution are given by

δMe = δMt

∫ 1
0 xf(x)dx,

δMu = δMt

∫ 1
0 (1− x)f(x)dx.

(4.6)

From these equations the total entrainment into and detrainment out of the updraft can

be calculated. As the negatively buoyant parcels detrain from the updraft, the updraft

detrainment rate (Mud) is determined from

Mud = δMt

∫ 1

xc

xf(x)dx. (4.7)

Similarly, the environmental entrainment rateMee is calculated by

Mee = δMt

∫ xc

0
(1− x)f(x)dx, (4.8)

wherexc is the fractional amount of environmental mass that just yields a neutrally

buoyant mixture. A very smallxc (very dry air) will therefore cause a high detrainment

rate while very moist environmental air will enhance the updraft through a largeMee.

A number of functions are used to trigger convection. In the current implementa-

tion of the model for the HIRLAM numerical weather prediction (NWP) model, three

functions are used. Those functions are based on:

1. The temperature perturbations associated with the vertical wind speed perturba-

tions.
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2. The relative humidity.

3. The boundary layer turbulence.

These trigger functions have a certain common feature, namely conditional calcula-

tions. Dependent on the outcome of these conditions a number of other functions are

calculated. Programming this by hand should be an easy job because the programmer

knows certain details about the conditions. This knowledge allows him to make as-

sumptions, which allow full optimization of the call-graph. Automatic code generation

tends to be more conservative, and therefore this leads to less efficient programs.

For example, one trigger depends on the relative humidityRh and can be thought of

as variance in the relative distribution∆Trh which reads

∆Trh =



0.25(Rh(LCL)− 0.75)Qmix/(∂Qs/∂T )

if 0.75 ≤ Rh(LCL) ≤ 0.95

(1/Rh(LCL)− 1)Qmix/(∂Qs/∂T )

if Rh(LCL) > 0.95

0 otherwise,

(4.9)

whereQs andQmix represent the environmental and the saturation mixing ratios,T

the temperature andRh(LCL) the relative humidity at the lifting condensation level.

Programmed by hand, this function is a straight forward piece of code and the original

hand-written Fortran code looks like

IF(RHLCL.GE.0.75.AND.RHLCL.LE.0.95)THEN

DTRH = 0.25*(RHLCL-0.75)*QMIX/DQSDT

ELSEIF(RHLCL.GT.0.95)THEN

DTRH = (1./RHLCL-1.)*QMIX/DQSDT

ELSE

DTRH = 0.

ENDIF

Using a template the resulting code generated by CTADEL looks like

IF(0.LE.RHLCL(i)-7.5E-1)THEN

IF(9.5E-1-RHLCL(i).LT.0)THEN

DTRH(i)=QMIX(i)*(1.0/RHLCL(i)-1)/DQSDT(i)
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ELSE

DTRH(i)=QMIX(i)*(RHLCL(i)*2.5E-1-1.875E-1)

/DQSDT(i)

ENDIF

ELSE

DTRH(i)=0.0

ENDIF

If Rh(LCL) is greater than0.95 the generated template based code also only needs two

comparisons while the hand-written code needs three comparisons. The template we

used for this case looks like

if ( Cond >= Val1 ) then {

if ( Cond <= Val2 ) then {

rangedep := Expr2

} else {

rangedep := Expr3

}

} else {

rangedep := Expr1;

}.

This template compares a certain conditionCond for valuesVal1 andVal2 and

calculates expressionsExpr1 , Expr2 or Expr3 based on the outcome of these com-

parisons. The assumption is made by the programmer thatVal1 is less thanVal2 , so

CTADEL does not have to cover all edges of the call graph.

4.2 Templates in Ctadel

The use of templates is a well known concept to maintain a certain level of abstraction

while keeping full control of essential details, e.g. [22, 74]. Templates are used in sev-

eral high-level programming languages likeC++ [3], however these languages restrict

the use of templates to the front-end of the compiler. By moving the usage of templates

to the back-end of the compiler, we can implement (near) optimal numerical solutions

methods for several types of computer architectures. It also allows the use of library
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calls to existing optimized libraries. Ideally, one wants to hide the use and implementa-

tion of templates as much as possible for the user of the system. An additional constraint

for templates in CTADEL is to keep the implemented templates as generic as possible

to prevent a large database with application specific code. However, this is not always

possible for efficiency reasons and a trade-off has to be made between abstraction and

implementation.

The idea about templates in CTADEL is based on two principles, abstraction and

implementation.

4.2.1 Abstraction

The use of templates can hide many low level implementation details. An optimal nu-

merical method for a specific computer architecture might be inefficient for another one.

Since a template is only filled in at a late stage of code generation, we can hide these

implementation details to the user. By using a template we can do a generalization over

similar cases; they are general and reusable. Furthermore, hiding these details in the ear-

lier stages of code generation can improve correctness of the specification and speedup

the code generation process. For example if a special numerical solver is needed, it can

be programmed from scratch or it can be based on a template without knowledge of

the actual implementation details. CTADEL type-checks the arguments and usage of the

template, which can be polymorphic, and, if correct, take care of the actual implemen-

tation for the target architecture.

A template looks like a polymorphic declaritive function which returns an−dimensional

variable (withn > 1). It takes a number of parameters, performs a list of operations

and returns a value. For every variable one can denote a type, like float, or an abstract

type which is dynamically filled in when instantiated by CTADEL. Every variable has a

domain, the range for which it is declared, e.g. for a 50 by 50 points array the domain

can bei=1..50 by j=1..50. One can also give a domain as a parameter to the template,

for example to range on which a function can be applied.

A simple example of a polymorphic template is thereduce template. It is used in

the implementation of the calculation of an integral. The user specifies the integral oper-

ator and CTADEL translates this internally into the reduce template, with the appropriate

summation operationF . The template looks like

reduce(a :: _T, _D :: domain(index), _F
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:: associative(_T -> _T -> _T)) :: _T function

{ reduce := unit_element(_F);

for _D do reduce := apply_op(_F, reduce, a)

}.

This template performs a (reduce) operation_F on all elements of variablea with

type_T (i.e. a grid of reals) in domain_D. The actual implementation of operator_F

can be another template or (simple) function, predefined by CTADEL or the user.

4.2.2 Implementation

Templates are not target language specific, there is no link between the template and

for example Fortran. Rather, they are specified in an abstract representation, which is

readily translatable into the target language. In the final stage CTADEL has to generate

programming codes for the specified target architecture and target language. By using

language-independent templates, only the final’s stage depends on the target language.

Generating code for different target languages, likeFortran 77 or high performance

Fortran (HPF), is therefore postponed until the back-end of CTADEL. This ensures a

high degree of portability and maintainability of the implemented methods.

Because a specific function is not implemented or an existing template is too general,

the user can choose to implement additional templates. These user templates are parsed

and type-checked by CTADEL as normal templates, but the responsibility for correctness

lays with the user.

In figure 4.1 we show a schematic overview of the implementation of templates in

CTADEL. The user specifies the model in a script, where (s)he can make use of prede-

fined or hand-written templates. These templates are parsed and the actual arguments

of their usage in the script are type checked by the front-end of the system. During

code generation every statement is evaluated using atemplate_eval call, just be-

fore generating the target language. Thetemplate_eval function type instantiates

the correct template, when needed.

4.2.3 Toy Example of a Template

In this section we provide a small toy example of a template calledp_loc to explain

some of the details of templates in CTADEL. The template, which takes as input a
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Figure 4.1: A schematic overview of template usage in CTADEL.

variableE, a domain declarationD and a valueF, calculates a sum and tries to find the

first indexn such that
n∑
i

Ei > F. (4.10)

The code of this template reads

p_loc(E :: float, D :: domain(index),

F :: float) :: integer function

{

tmp :: float;

tmp := 0;

p_loc := 1;

for D do {

tmp := tmp + E;

if (tmp > F) then {

p_loc := index(D);

jumpout

}

};

}.

If we use this template in the following specification
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A :: float field(x,y) on

i=1..nn by j=1..mm.

B :: integer field(x) on i=1..nn.

B = p_loc(A, j=2..mm,2.0).

CTADEL produces the following piece of Fortran code for a scalar architecture

DO 100 i=1,nn

tv_1=0.0

ploc0=1

DO 101 j=2,mm

tv_1=tv_1+A(i,j)

IF(tv_1.GT.2.0)THEN

ploc0=j

GOTO 1000

ENDIF

101 CONTINUE

1000 B(i)=ploc0

100 CONTINUE

Naive automatic code generation without the use of templates would first calculate

every possible sum of the array A and then search for a possible solution. This is because

CTADEL only knows about the data-dependences betweenA andB. For example the

next piece of Fortran code was generated by an older version of CTADEL without the

use of templates

DO 1000 i = 1,nn

t(i,mm) = 0

1000 CONTINUE

DO 1010 j = mm,2,-1

DO 1020 i = 1,nn

t(i,j-1)=A(i,j)+t(i,j)

1020 CONTINUE

1010 CONTINUE

DO 1030 i = 1,nn

DO 1040 j = 1,mm



42 CHAPTER 4. THE KAIN–FRITSCH CONVECTION SCHEME

IF (2.0.LT.t(i,j)) THEN

B(i) = j

GO TO 1050

ENDIF

1040 CONTINUE

B(i) = 1

1050 CONTINUE

1030 CONTINUE

This last sample Fortran code is less efficient with respect to execution time com-

pared to the code generated with the use of templates. This is especially true when a

solution can be found with a low index. Because of the polymorphic character of the

template,E does not have to be a simple array, but can be an expression of which the

evaluation is computational expensive. Furthermore, it is obvious that the last code is

inefficient with respect to memory usage.

4.3 Experiments and Results

In this section the code generated by CTADEL for the Kain–Fritsch convection scheme

is compared with the original hand-written code. We ran the code on two types of com-

puter architectures, the scalar architecture[ATHLON] and the distributed architecture

[DAS2] . For an explanation of the hardware setup, see chapter 3.

We ran both codes with a variable number of horizontal grid points and a constant

number of 31 vertical grid points, a typical number for the Hirlam numerical weather

prediction (NWP) model. For the input data we took data from a Hirlam run and mapped

this to the input grid. Since the horizontal resolution of Hirlam is in the order of100

grid point, for an input grid of1000 points we have to copy the Hirlam input ten times.

Also we ran the codes on a variable number of nodes on the distributed architecture.

Like we mentioned before, the original code stores its temporary results in scalar

variables. Data-dependencies make it possible for the hand-written code to do a sub-

stantial amount of calculations in one big loop. CTADEL, on the other hand, keeps all

the temporary computed results in arrays and makes use of a lot of small loops. This

gives some extra overhead during execution. Optimizations, like loop fusion [4, 11],

should make it possible for CTADEL to perform scalar conversion. These optimizations
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Figure 4.2: Execution times (s) as a function of the input grid size for the generated

code and the reference code for the KF scheme.

are not applied yet in CTADEL since they require a powerful data flow dependency and

control flow dependency analysis when dealing with conditional statements. A source

to source compiler, like MT1 [8], could be used to perform these optimizations.

In figure 4.2 we ran both generated code and hand-written code on a scalar archi-

tecture with a variable number of grid points. Since the model is one dimensional and

the computations are thus performed ‘column-wise’, in the vertical direction only, we

could expect a linear function of the execution times with respect to the grid size. This

is indeed almost the case, for example with a size of1000 grid points the execution

time of the generated code by CTADEL is 7.81 seconds while the execution time is83.9

seconds with a grid size of10000. From figure 4.2 we can conclude that the generated

code from CTADEL can compete with the hand-written code on a scalar architecture.

The difference in execution times is around 10% between both codes.

For the distributed memory architecture we made the generated code parallel by
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Figure 4.3: Execution times (s) as a function of the number of nodes without MPI com-

munication with a grid size of 25000 by 31 points for the generated and the reference

code for the KF scheme.

domain splitting, with the MPI library for communication between the nodes. Since the

convection scheme is a one dimensional scheme, all calculations are done on a vertical

column and no data is needed from adjacent columns, we only need communication at

the start and end of the calculations. This makes the problem embarrassingly parallel,

and we could therefore expect an almost linear speedup1 when running on multiple

nodes.

In figure 4.3 we show the execution times for the execution of both the generated

code and the hand-written code with a constant grid size of 25000 by 31 and a varying

number of nodes. The performance from the generated code from CTADEL can compete

with the hand-written code, as we can see from this figure.

1For speedup we use the definition from Quinn [65] which uses the execution time of a parallel algo-

rithm on a number of processing nodes compared to the execution time of the fastest sequential algorithm.
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To find out the scalability of the algorithms as a function of the grid size, we executed

both codes with a constant number of 32 nodes and a variable grid size, for which we

show the execution times in figure 4.4. As expected from previous figures, this is a near

linear function.

4.3.1 Conclusion

From the experiments we can conclude two things. First, we see that automatically gen-

erated code can compete with hand-written code. Although the generated code has a

slightly higher execution time in all cases, no additional loop optimizations were per-

formed. Other experiments, for example in section 6.1 and [87], have shown that this

can have some positive performance impact on the generated code. The second thing

we can observe from the figures is that both codes achieve a near linear speedup when

we do not take communication times into consideration. Since the convection model is

one dimensional, this is as expected.



Chapter 5

Extending the Application Domain: A

Coupled Atmosphere–Ocean Model

In this chapter we show the possibilities of CTADEL on a coupled ocean–atmosphere

model, a quasi-geostrophic climate dynamics model [17]. Coupled models impose cer-

tain difficulties on their implementation; often these models use multiple resolutions on

the computational grids and separate time steps. This also assesses certain constraints

on the interaction between the different parts of the model and the parallelization of the

model. By default CTADEL assumes one resolution is used for the whole model, which

is not feasable for this coupled model, which contains two submodels. We have ex-

tended CTADEL in such a way that resolution is coupled to a variable. For data exchange

between the two submodels, we made use of the library calls to external interpolation

spline routines.

This chapter is organized as follows, in section 5.1 we discuss some of the theory

of the Quasi-Geostrophic model. In sections 5.2, 5.3 and 5.4 we show the specification

of the model and the implementation in CTADEL, while we show some experiments we

performed with the generated code in section 5.5.

5.1 Quasi-Geostrophic Dynamics

For the sake of understandability and readability we will explain the quasi-geostrophic

dynamics model only in some detail. For a more detailed account, the interested reader

is referred to [17]. The model describes a mid-latitude coupled climate model, which is
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used in an attempt to understand how the ocean climatology is modified by atmospheric

coupling. At present, the best comprehensive coupled climate models run at resolutions

far coarser than those needed to model the inertial recirculation. The model presented in

this chapter is an attempt to explicitly include eddies in general, and inertial recirculation

in particular, within the framework of an idealized climate setting. The basic model

consists of a quasi-geostrophic channel atmosphere coupled to a simple, rectangular

quasi-geostrophic ocean. Heat and momentum exchanges between the ocean and the

atmosphere are mediated via mixed layer models and the system is driven by steady,

latitudinally dependent incident solar radiation.

Solar radiation is the basic force behind the global climate. About 30% is reflected

back to space while the remaining part is absorbed mostly at bottom interface, whether

it be land or water. Heat transfers to the atmosphere occur either through sensible or

latent fluxes, or long wave radiative surface emissions to which the atmosphere is almost

totally opaque.

The model is based on a classicalβ-plane mid-latitude representation and a two

layered version of the quasi-geostrophic (QG) equations. For the most part, classical

QG models are adiabatic, i.e. thermodynamics are neglected [30]. If the standard QG

scaling is used and the usual Rossby number expansion is employed, the momentum

equations yield the non-dimensional vorticity equation

(
∂

∂t
+ J(pi))(∇2pi + βy) = wi1z +HF, (5.1)

whereJ denotes the Jacobian operator,pi is the layer pressure,y is the meridional coor-

dinate. The quantitywilz denotes the layer vertical velocity,HF denotes the horizontal

frictional effects and

β =
∂f

∂y
(5.2)

with the Coriolis forcef = 2ρ sinψ, with ρ the rotation of the earth andψ the latitude.

The final dimensional forms of the QG equations for both ocean and atmosphere

layers can now be derived, for example the first layers reads,

d
dt
q1 = A1h∇6p1 + f0

H1
(wek − E(−H1 − h1+))

q1 = ∇2p1

f0
+ βy − f0

g′H1
(p1 − p2),

(5.3)

wherePx represents the layer pressure on layerx, f0 denotes the effects of the upper and

lower layer horizontal frictional processes,A is a constant andHx the distance between
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Figure 5.1: A graphical representation of the data grid for the quasi-geostrophic mode.

Both ocean (below) and atmosphere model have their own grid size. Data exchange

between the models takes place just before execution of an ocean step using spline

interpolation.
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layers. Here∇6p1 is used as closure for the latter and super slip boundary conditions

(i.e.∇2pi = ∇4pi = 0).

5.2 Specification and Implementation

In this section we describe the specification of the quasi-geostrophic model using the

ATMOL specification language for CTADEL and one of the main problems with this

specification, the separate domain resolutions.

5.2.1 Spatial resolutions

Both the ocean and atmosphere model have their own spatial domain resolution, which

leads to several problems when combining both models into a mixed model. For exam-

ple, when exchanging data between the two models, a spatial interpolation has to take

place. Another problem arises with differentiation of a function, since CTADEL cannot

assume a default grid size, but has to determine this from the context. For example, one

would normally write a differentiation as,

coordinates := [dx,dy].

Q = diff(P,y).

which would be translated into

DO 10 j = 1,m-1

DO 20 i = 1,n

Q(i,j) = (P(i,j-1) - P(i,j)) / dy

20 CONTINUE

10 CONTINUE

This example assumes that distances between grid points are the same for every variable

in the model. Since we work with two different grid sizes, this assumption is false. One

possibility is to hard-code the distance between two grid-points into the specification,

which is not desirable. Therefor we couple the specification of a domain to its spatial

grid sizes. For example, the definition of a domain could look like,

domain_a := i=1..X_a by j=1..Y_a by k=1..Z_a.

domain_a‘coordinates := [dxa,dya].
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OCEAN ATMOS ATMOS ATMOS ATMOS

Figure 5.2: Sequential execution of the ocean and atmosphere steps for the Quasi-

Geostrophic Dynamics model.

If we define a variable with this domain CTADEL knows which distances to choose

from. A problem arising with this implementation is when two variables with different

domains are combined in one equation. This has been isolated in the spline interpolation

step.

5.2.2 Implementation

For the sake of separation of concern we divided the original model in three clearly

distinguishable sub-parts,

1. Initialization. In this initial data for the model is calculated for the ocean and

atmosphere models. We discuss this step in section 5.3.

2. Ocean step and atmosphere steps. The ocean step performs one time step for

the ocean model, which we will explain in section 5.4. The atmosphere step

goes analogue with the ocean part, this sub-part performs one time step for the

atmosphere model. This part highly resembles the ocean step and we therefore do

not discuss this part.

3. Data coupling, the coupling between the ocean and atmosphere model. Before

every step, an interpolation is performed between ocean and atmosphere variables.

This is also discussed in section 5.4.

A possible extension to the specification could be a high-grain parallelization of

steps two and three. In figure 5.2 we see the current sequential execution of the model,

while in figure 5.3 a possible parallel implementation is shown. Unfortunately data

dependencies did not allow for a trivial parallelization; for example it has to be taken

into account when data has to be exchanged between the models. This would require a

redesign of the original model, which is beyond the focus of this work.
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Figure 5.3: Parallel execution of the ocean and atmosphere steps for the Quasi-

Geostrophic Dynamics model.

In the implementation of the original model, several numerical library calls were

made. For example, for finding the solution to a tridiagonal matrix a tridiag solver was

called. The use of calling external library calls from a specification has been incor-

porated in CTADEL. In section 6.1 we show the implementation of this feature when

calling external library calls for implicit equations. Furthermore, we do make use of

templates for this specification. The use of templates makes it possible to offer a num-

ber of standard numerical solution methods to the designer of the model , but leaves

the actual implementation to CTADEL. The user can therefore specify the usage of a

method while CTADEL can pick an appropriate and optimal implementation for the tar-

get architecture. For example when a Fourier analysis is needed the user can specify

this like

V = Fourier(Q),

without bothering about the actual implementation; CTADEL decides if a library call

should be made to an existing optimized library or fill in the code itself. In the current

implementation CTADEL makes use of default numerical functions, likespline2 from

[61]. See section 4.2 for an explanation of the implementation of templates in CTADEL.

5.3 Initialization

In the first phase of the model, a number of general input parameters and initial data

are read in, after which model specific data are calculated from these parameters. The

original implementation of the model also could perform special tasks in this initializa-

tion phase, like some sort of crash recovery from an aborted previous run. We did not

implement this in our specification.
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An example equation belonging to this first step is equation (5.3) which reads in the

CTADEL specification,

qcomp(P,DX,DY,H,GP,NL) := (C + sign *(f_zero/(GP * H))*(DPO)

where C = (DX*(lapl P)/f_zero + beta * Y)

where sign = (1 if k>1 \\ -1 otherwise)

where (DPO=

(P-(P@(k=k+1))) if k<NL \\

((P@(k=k-1))-P) otherwise

)

where Y = (j-1)*DY

).

CalcO(P,DX,DY, H,GP) :=

( zq(P,DY, H,GP,nlo) if borderj_O \\

mqo(P,DY, H,GP) if borderi_O \\

qcomp(P, DX, DY, H, GP,nlo) otherwise

).

This specification shows two generalized functions (including some boundary condi-

tions) which, for example, can be called by,

qo = CalcO(po,dxom2, dyo, H_o, g_prime).

In this example,qo gets assigned the value

qo() =


zq() if condition borderj O is true,

mqo() if condition borderi O is true,

qcomp() else.

(5.4)

In the quasi-geostrophic model for the calculation of the barotropic mode, achsolv

routine function is used, which uses a Fourier and a tridiag solver. In our specification

we make use of templates to deal with these solvers; in the current specification CTADEL

calls an external library function [61] to find a solution. A sample specification for this

reads like,

tp_ch2 = (ch_solv(boundary_south, aa, ba) where aa=1/dyaˆ2).

tp_ch3 = (ch_solv(boundary_north, aa, ba) where aa=1/dyaˆ2).
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5.4 Ocean and Atmosphere step

In this part of the specification, one ocean time step is calculated. A typical ’dynamics’

equation which can be found is the calculation of the auxiliary currents, e.g. wind

tendencies. The specification for the ocean dynamics reads,

u_ag = (-C*(P1-P2)*dxam2/f_zero

where P1=((pa@(j=j+1)) if j<nya \\

(pa@(j=nya)) otherwise)@(k=1)

where P2=((pa@(j=j-1)) if j>1 \\

(pa@(j=1)) otherwise)@(k=1)

where C=(0.5 if noborder(nya) \\ 0 otherwise)

).

v_ag = (-1/2*((P@(i=i+1))-(P@(i=i-1)))*dxam2/f_zero

where P=pa@(k=1)) if noborder(nya) \\

0 otherwise.

In these equations we make heavily use of conditional statements for border conditions.

The atmosphere step goes analogue with the ocean part, this sub-part performs one

time for the atmosphere model. This part highly resembles the ocean step and we there-

fore do not discuss this part.

In the QG model the atmospheric model gets called for every time-step. The ocean

model is calculated only afternstr steps, withnstr a parameter for the model. Before

the actual ocean model step is performed, data gets exchanged between the ocean and

atmospheric variables. Between atmospheric steps no data get exchanged between the

different variables.

The exchange takes place in two steps. First, several boundary conditions are checked.

Second, data gets interpolated between the different models using spline interpolations.

In the specification of the models, we make use of library calls to these functions.

5.5 Experimental Results

In this section the code generated by CTADEL for the quasi-geostrophic model is com-

pared with the original hand-written code. Since the original code was not hand-optimized,
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we can expect a performance difference with the generated code by CTADEL which per-

forms some aggressive optimizations like common subexpression elimination. Standard

compiler optimizations like loop optimization [34] where not applied. We ran the code

on a scalar type of architecture,[ATHLON] . For an explanation of the hardware setup,

see chapter 3.

All test-runs used an input grid with variable number of horizontal and vertical

points and two layers per model. For some experiments we used a fixed number of

thousand time-steps while we also conducted experiments with diverging time-steps.

In order to reduce external influences on these times, we ran each experiment a num-

ber of times and calculated the average execution time. Because the deviations from

these average times are in the order of tenths of percents, we do not include them in the

figures.

With each run of the programs we compared the output of the generated code with

the reference code. Since numerical solution methods are used over several time-steps,

small differences appear in the output of both programs. However, these differences

turned out to be relatively small and therefore acceptable.

In figure 5.4 we show the execution times for both the generated code and the hand-

written code with a varying input grid size and a constant number of 1000 time-steps.

As we see from both graphs, the code generated by CTADEL has a performance gain

of 30% over the hand-written code. We also see that neither of the codes has a linear

execution time with increasing input sizes, although one would expect this. We attribute

this to the limited memory resources on the test machine leading to swapping; with an

input size of more than 300 grid points, the model could not run properly anymore.

5.6 Conclusion

In this chapter we have shown how CTADEL can generate code from a specification

for a model which uses two different resolutions. By default CTADEL assumes one

resolution is used, which is not feasable for this model. We have extended CTADEL in

such a way that resolution is coupled to a variable. For data exchange between the two

submodels, we made use of the library calls to external interpolation spline routines.

With some experiments we show that automatic generated code outperforms the hand-

written codes for the quasi-geostrophic model.
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Figure 5.4: Execution times from the generated and reference code for the quasi-

geostrophic model with a varying input grid size. Execution times are in seconds.



Chapter 6

Extending the Application Domain: A

Turbulence Scheme

In this chapter we describe how to extend CTADEL in order to generate code for a

turbulence scheme and specifically we discuss how additional problems related to these

schemes, namely the specification of implicit equations, can be dealt with.

6.1 Turbulence

A turbulence scheme is a computationally intensive component of many large scale

models, e.g. numerical weather prediction models. These prediction models can be

characterized by having two main computational components, thedynamicsand the

physics. The dynamicsare primarily involved with the fluid dynamics of the atmo-

sphere, while thephysicsdeal with the computation of the physical parameterizations.

Turbulence schemes are part of the physics component.

When specifying turbulence schemes, one of the problems is the presence of implicit

equations in the scheme. Implicit equations are harder to solve compared to explicit

equations. In the explicit case one variable is defined as a function of other variables. In

the implicit case an equation relating the two or more variables is given which cannot

usually be solved to directly give one variable as a function of another. This prevents

a straight-forward computation and one has to search for a solution. A PDE-problem

solver needs to recognize this kind of equations and produce a solution method.

As a test-case for a turbulence scheme we have chosen the CBR scheme, designed
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by Cuxart, Bougeault and Redelsperger [12, 66, 70]. The CBR scheme is in use by

the HIRLAM system and is part of the physics module. In this scheme the vertical

distance, or mixing length, is calculated for which particles can travel up or downward

until their kinetic energy becomes zero. The set of equations for these calculations are

implicit differential equations. This poses a challenge for CTADEL where equations are

specified in an explicit form.

This chapter is organized as follows: in section 6.2 we explain some of the basics of

turbulence in general and the CBR scheme in particular. We show the implementation

for solving implicit equations in CTADEL in section 6.3, while section 6.4 addresses the

produced code and some simulation results.

6.2 Turbulence scheme

In this section we will briefly explain the role of a turbulence scheme in a numerical

weather prediction (NWP) model, followed by a more detailed view on the CBR turbu-

lence scheme.

6.2.1 Physics and Dynamics

State of the art NWP models solve the basic equations of motion and conservation of

mass. For example those for momentum are the Navier Stokes equations. For the sake of

the current discussion, we will reduce these to the advection equations for momentum,

which read

∂ui

∂t
= −uj · ∇jui (6.1)

with ∇j = ∂
∂xj

andui(i = 1, 2, 3) the velocity components of the wind.

It is neither useful nor feasible to solve equation (6.1) for every point in space and

time. Instead, the equations are first averaged over suitable space-time domains. Then

equation (6.1) becomes

∂ui

∂t
= −(uj + u′j) · ∇j(ui + u′i), (6.2)

where· · · denotes averaging and· · ·′ denotes deviations from the average value. When

we work out equation (6.2) and we use the fact that the average over the deviations is
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zero, we obtain

∂ui

∂t
= uj · ∇jui + u′j · ∇ju′i. (6.3)

(6.3.a) (6.3.b)

Equation (6.3) consists of two terms,

(6.3.a) This term resembles the original equation (6.1) but now for the averaged quan-

tities. In meteorological research, this term is usually referred to asdynamics.

To be more precise,dynamicswould also include similar terms in the full Navier

Stokes equations and in the other “primitive” equations.

(6.3.b) The second term in equation (6.3) describes the covariances between the de-

viations of the wind components from their average values. NWP models deal

with these and similar terms in the other equations in a package that is well dis-

tinguished from the dynamics; that package is usually referred to as thephysics.

The physics package also treats processes not described by the basic equations of

motion, like phase transitions, solar radiation, and surface processes.

In principle, an equation for the time evolution of the physics terms in equation

(6.3.b) can be derived by feeding them back into equation (6.1). However, this would

result in the appearance of third order covariances, for which, indeed, new equations

can be derived involving fourth order covariances, and so on. To get a solvable set of

equations, the system is ‘closed’ by a process called ‘parameterization’: one tries to

express the covariances in terms of the average quantities, symbolically given by

∂X

∂t
= F1X(ui, uj, T, q, . . .) (6.4)

with X ∈ (ui, uj, T, q) whereT and q stand for the temperature and the moisture,

respectively. Beside the temperatureT we also use the potential temperatureθ, which

reflects the temperature a parcel can get by pressure compression or decompression

when moving downwards or upwards. The potential temperature is therefore related to

the temperature and the pressure, given by

θ = T (
p0

p
)κ (6.5)

with p the presure,p0 a standard pressure andκ a constant with, for a perfect gas, the

value2/7 in HIRLAM .
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The effect of the physics terms in equation (6.3) is seen in nature as turbulence in

the wind field. Hence, the package to parameterize those terms is called the ‘turbulence

scheme’.

In the discrete model the distances between the horizontal points are much larger

than the distances between the vertical points. In equation (6.3.b) the gradients of the

horizontal components (j = {1, 2}) can be neglected compared to the vertical compo-

nent (j = 3). Therefore, we can ignore all components in equation (6.3.b), except those

that involve the vertical components. This immediately points out an essential differ-

ence between dynamics and physics: dynamics involve horizontal differencing, whereas

physics work ‘column-wise’: all operations act on quantities in a vertical column of the

atmosphere.

6.2.2 CBR Turbulence Scheme

In HIRLAM , the turbulence scheme is the CBR scheme [12]. The basis of this scheme

is the complete equation system for the second-order turbulent fluxes, variances and co-

variances. In the CBR scheme, it is recognized that equation (6.4) is not sufficient to

accurately describe turbulence. To describe the time development of the second order

covariances, some additional equations are needed, like

∂u′iu
′
j

∂t
= F2X(ui, uj, T, q, u′iu

′
j, . . .). (6.6)

In order to accurately describe atmospheric turbulence, the CBR scheme assumes one

additional equation. This is the equation for the time evolution of the turbulent kinetic

energy, given by

ε =
1

2

∑
u′iu

′
j. (6.7)

This yields a prognostic equation forε. Equation (6.4) is modified to make use of the

now known turbulent kinetic energy, which results in

∂X

∂t
= F3X(ui, uj, T, q, ε, . . .), (6.8)

where X is allowed to includeε, soX ∈ (ui, uj, T, q, ε). The prognostic equation for

the turbulent kinetic energy (TKE), symbolically defined in equation (6.8) forX = ε,
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reads
∂ε
∂t

= 1
ρref

∂
∂xk

(ρrefukε)− u′iu
′
k

∂ui

∂xk

+ g
θvref

δi,3u′iθ
′
v

− 1
ρref

∂
∂xj

(
−CερrefLε

1/2 ∂ε
∂xj

)
− Cε

ε3/2

L
.

(6.9)

The virtual potential temperature is represented byθv, L is the mixing length,g the

gravity acceleration andδi,j is the Kronecker delta tensor. The mixing lengthL at a

given levelz is determined as a function of the stability profile∂θ
∂z

. The algorithm forL

relies on the computation of the maximum vertical displacement of a parcel of air.

In a relatively stable situation, the potential temperature at the levels abovez is

higher than that atz and therefore a parcel cannot easily move to a higher level. The

only way that the parcel can go up, is if it has a vertical velocity, which is sufficient to

overcome the temperature gradient. This implies that it must have sufficient turbulent

kinetic energy. The initial kinetic energy of the parcel is assumed to be the mean kinetic

energyε(z) at the levelz. A parcel will have the possibility to go upwards untilε(z)

equals the energy absorbed by the temperature profile. Similarly a parcel may go down-

wards, leading to an equation for the downwards mixing length. The implicit equations

for the upwards componentlup and downwards componentldown read

∫ z+lup
z

g
θvref

(θv(z
′)− θv(z)) dz′ = ε(z),∫ z

z−ldown

g
θvref

(θv(z)− θv(z
′)) dz′ = ε(z).

(6.10)

In CBR, the total mixing lengthL is assumed to be the geometric mean of both compo-

nents

L =
√
lup ∗ ldown. (6.11)

Equation 6.10 constitutes implicit equations forlup andldown.

6.3 Implementation

In this section the specification in CTADEL of the CBR turbulence scheme is described.

The focus will be one of the problems presented by the scheme: implicit equations. In

this section we focus on the implicit integral equations given by equation (6.10) forlup

andldown.
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The CBR scheme is defined as a set of continuous equations, which will be solved

numerically. For this purpose the continuous domain is transformed into a grid, and the

equations are discretized. Next, a discrete solution according to these discrete equations

is obtained on the grid-points. The real solution, however, does not have to be on a

discrete grid-point. Therefore the CBR scheme performs a linear interpolation to find

the real solution in the continuous domain.

Equation (6.10) consists of two components, an upwards and downwards mixing

length. Because calculation of both components use the same principle we will only

discuss the downward component.

6.3.1 Implicit equations

The equation (6.10) for the mixing lengthL components can be symbolically rewritten

as

f(λ) = 0. (6.12)

This equation is an implicit equation which needs a solution method. Several of these

solution methods exists, e.g.,

1. Elaborate methods, like Newton-Raphson or Runge-Kutta. These are popular

methods and applied in many models.

2. Naive methods like a step method. This algorithm calculatesf with small variable

steps (∆λ) until a change of sign is detected, which means a solution of equation

(6.12) has been found.

Newton-Raphson like methods are the most popular because these methods can be

faster in finding a solution, compared to step methods [37]. However, in the hand-coded

CBR scheme a step method is applied for two reasons. First, if a solution does exists,

the step method guarantees it will find it. Second, if multiple solutions exists, the first

found solution will be the one which is the closest to the origin of the search.

With the step method a number of monotonically increasing valuesln is chosen, so

this implies thatln+1 > ln. With these valuesf(ln) is calculated. A solution is assumed

to be betweenln andln+1 if the outcome off changes sign between these two values.

For example, iff(ln) < 0 andf(ln+1) > 0, λ is assumed to lie in betweenln andln+1.

We can findλ by linear interpolation betweenf(ln) andf(ln+1). An example is given

in figure 6.1.
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ln ln+1

f(l)

l

Figure 6.1: Example plot off(l). With the step method a number of monotonically

increasing valuesln is chosen, so this implies thatln+1 > ln. With these valuesf(ln) is

calculated. A solution is assumed to be betweenln andln+1 if the outcome off changes

sign between these two values. For example, iff(ln) < 0 andf(ln+1) > 0, λ is assumed

to lie in betweenln andln+1.
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It is possible to find several solutions forλ. In the CBR scheme it is assumed that

the solution forλ is the first solution that is found. Additionally, it is also possible that

the CBR scheme does not find a solution forλ in the available range. In this case CBR

chooses the largest possibleln allowed by the model as a solution forλ.

6.3.2 Specification

Automatic code generation for an implicit equation consists of three issues:

1. recognition of the implicitness of the equation,

2. determination of an efficient solution method,

3. generating efficient codes for the chosen solution method.

The first issue is basically a specification problem. In CTADEL the specification

A = integrate(F,eta=l..z)

means

A =
∫ z

l
B dη. (6.13)

Depending on whether the values ofl andA are defined in an other specification rule,

CTADEL should be able to distinguish if these variables are input or output variables

and if this specification is an explicit or implicit equation. Since CTADEL does not

enforce a strict type specification of variables or order of the specification rules, it is not

always possible to recognize the type of equation. Therefore, the code generator has

to keep track of the kind of usage of variables. In the above example, for example, if

the variableA was defined by a previous specification and the variablel is an output

variable, CTADEL can indicate this equation as implicit. As an alternative, the user can

specify the implicitness of the equation through the use of the?= operator, e.g.

l ?= A = integrate(F,z=z..l)

This operator tells CTADEL that the expression on the right-hand side of the operator

should be solved for the variable on the left-hand side. In this example, for a given

variableA andF, we should solve the equation forl.

The second issue deals with the fact that an implicit equation can be solved in many

ways. The code generator has to choose an optimal solution method. One way of doing
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this is automatically. CTADEL has to recognize the type of equation and pick a solution

method suitable for this class of implicit equation. A drawback of this method is that

an “optimal” solution method not only depends on the kind of equation, but also on the

kind of input data. Another way is that the user specifies the complete solution method.

Both methods have their advantages. CTADEL can try multiple solution methods, but it

needs to have knowledge of various types of equations. It can be assumed that the user

has this knowledge, and therefore the second method seems to be preferable. However,

the selected solution method by the user might not be optimal. CTADEL can therefore

search for a viable solution method and ask the user, as a last attempt. However, in the

current implementation it is assumed that the user does have this knowledge and the

user has to explicitly specify the implicitness of the equation and the give the solution

method CTADEL should use.

Third, after the determination of an solution method, the generator has to generate

efficient code for this method. We have tried to do this using a transformation based

method. In the next two sections this method is discussed. Some parts of the specifica-

tion and fragments of the generated code are also shown. Another possible method is

library based, where the specification calls an external library function for the solution

of the problem. Both methods have their advantages. Calling an external routine will

provide an efficient solution method if it is assumed that an optimal library routine is

available. This method has also the disadvantage of an extra overhead. When CTADEL

supplies its own specification, the generated codes are inlined and can be further opti-

mized by common subexpression elimination.

6.3.3 A Sample Code Generated by Automatic Transformation

After picking a solution method, the generator has to produce code for this method. We

extended the knowledge base with a number of rewriting rules to accomplish this.

CTADEL makes use of a knowledge base in order to transform specifications and to

produce efficient codes. This knowledge base, which uses a pattern-matching mecha-

nism, makes use of rewriting rules. These rules are divided into groups, called strategies.

A user can specify a number of strategies to solve a problem. Rules look like

strategy; pattern

=> action

[<- condition].
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Examples of rewriting rules are

diff; diff(Const,_)

=> {0}

<- is_constant(Const).

opdiff; df(exp(X), 1)

=> exp(X).

The first rule means

∂ Const

∂ ξ
= 0, if Const is a constant. (6.14)

The second rule is a rewriting rule for differentiating an exponential function. A rewrit-

ing rule for solving an implicit equation could look like

implicit; Var ?= F(Var) == 0

=> solution method

specification for Var.

In our specification we use the following algorithm

1. Find the first occurrence where F changes sign.

2. Perform an interpolation to find the continuous solution if a solution is found.

The specification for the first step looks like

D_T1 ?= firstloc(

integrate(F,k=1..nlev)

-E_tk==0,

j=1..nlev).

Internally CTADEL transforms this into

D_T1 = Conditional_integrate((zbeta *

((D_T0 @ (k=j)) - t_v_p) *

(wdzh @ (k=j))) - E_tk == 0,

k=1..nlev,D_T12).
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The operationConditional integrate performs two things. First it performs a

stepwise summation of the function and second it checks with each step if a change of

sign has occurred. When the operation finishes the variableD T1 satisfies the conditions

k∑
D T1(i,k)−1

F − E tk ≤ 0, (6.15)

k∑
D T1(i,k)

F − E tk > 0. (6.16)

if a solution was found. If no solution was found, the variableD T1 holds the value of

0 in which case no interpolation is needed.

Generating code from the specification ofD_T1 yields the following Fortran code

DO 1430 k = 1,nlev

DO 1440 i = 1,nhor

DO 1450 j = k,1,-1

dt12(i,k) = dt12(i,k)-

. 9.80665*wdzh(i,j)*(1-

. dt0(i,j)/TPVIR(i,k))

IF (dt12(i,k).GT.TKE(i,k)) THEN

dt1(i,k) = j

GO TO 1460

ENDIF

1450 CONTINUE

dt1(i,k) = 0

1460 CONTINUE

1440 CONTINUE

1430 CONTINUE

After these loops, a discrete index is found and the continuous downwards part of the

mixing length is calculated, with respect to the continuous level height∆z.

Finally the mixing length can be specified as Equation (6.11)

L = sqrt( (D_T3 + ((D_T2) @ (j=k))) *

(U_T3 + ((U_T2) @ (j=k)))).
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In this specification, both the downwards and upwards component consist of a discrete

part and a continuous part. When no solution is found, this continuous part is equal to

zero.

6.4 Results

In this section the code generated by CTADEL for the CBR scheme is compared with

the reference turbulence code from HIRLAM . For the distributed architecture we used

a suitable wrapper to distribute the initial data. We also applied some standard opti-

mizations like loop-fusion. To see the influence of the underlying computer hardware,

we ran the code on a variety of architectures, like[PENT-II] , [SUNE450] and the

[DAS1] . For an explanation of the hardware setup, see chapter 3.

Parallelization of the codes for the multiprocessor architectures was done manually.

This was done by domain-splitting; each node only computes an appropriate part of the

input grid. Because of the ’column-wise’ behavior of the CBR scheme, data distribution

is only needed before and after the calculations. On the DAS computer we used the MPI

package for data distribution.

For the compilation of the programs we used the GNU Fortran compiler, version

2.95.2, for all architectures, with standard optimization turned on (g77 -O2 ). With

each run of the programs we compared the output of the generated code with the refer-

ence code. Since the turbulence scheme is a numerical model, small differences appear

in the output of both programs. However, these differences are relatively small and

therefore acceptable.

All test-runs used an input grid with 31 vertical points and variable number of hor-

izontal points. This number of vertical points is typical for the HIRLAM system. The

results in table 6.1 reflect the absolute execution times. In order to reduce external in-

fluences on these times, we run each experiment a number of times and calculated the

average execution time. Because the deviations from these average times are in the

order of milliseconds, we do not include them in the tables or figures.

For the execution times, we only measured the calculation of the turbulence routines

and not the extra overhead of reading and writing the input and output to and from disk.

On the multi-processor architectures we included also process-synchronization in the

execution times.
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Generated Reference

PENTII 2.290 2.322

SUNE450 0.6021 0.6141

DAS1 20 nodes 0.1748 0.1897

Table 6.1: Execution times (s) on different architectures for the generated code and the

reference code for the CBR-scheme using a 5000x31 input gird.

From table 6.1 we see that the generated code by CTADEL is comparable to the

hand-written reference code on several different architectures.

To compare the scalability of the different codes we ran them on a multiple number

of nodes on the DAS. We carried out two different experiments for which we compared

the speedup,

1. A constant number of nodes (20) and a variable horizontal number of grid points.

2. A constant number of grid points (15000) and a variable number of processor

nodes.

In Fig. 6.2 we ran both the generated code and the reference code with an input-

grid of 15000 x 31 on a different number of nodes of the DAS system and present the

execution times. If one looks in more detail, the generated code from CTADEL has a

small advantage over the hand-written reference code. This advantage decreases slightly

with an increasing number of nodes. The resulting speedup of both codes is shown in

Fig. 6.3. For speedup we took the definition from [65], which defines speedup as the ra-

tio between the time needed for a sequential algorithm to perform a computation and the

time needed to perform the same computation on a machine incorporating parallelism.

For our experiments we used the execution times of the parallel implementation on a

single node as the sequential algorithm.

We see two interesting issues in Fig. 6.3:

1. Both codes show a good scalability.

2. The speedup for the reference code and the generated code seems to be super-

linear.
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Figure 6.2: Execution time (s) as function of the number of nodes for the generated

code and reference code for the CBR-scheme. Both codes were ran with an input-grid

of 15000x31 on a different number of nodes of the DAS computer.
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Figure 6.3: Speedup on the DAS computer for the generated code and reference code

for the CBR-scheme. Both codes were ran with an input-grid of 15000x31 on a different

number of nodes of the DAS computer. The horizontal axis gives the number of nodes

while the vertical axis gives the relative speedup.
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Figure 6.4: Execution time (s) on 20 nodes of the DAS computer as function of the

number of horizontal gridpoints for both the generated code and the reference code for

the CBR-scheme.

The second issue is related to the L2 cache of the Pentium Pro which has a size of 512

KByte. With an input grid of 10000x31, a single processor has an inefficient cache uti-

lization. Since multiple processors only get a part of the input grid, the cache efficiency

increases with the number of processors. This continues until the cache efficiency is

optimal. For example, the relative speedup between one and five nodes is5.1 (still

super-linear), while this number between twenty and forty nodes drops to1.9 (near lin-

ear, which would be2.0). Therefore, we can conclude that speedup is not an appropriate

measure for these experiments. This can be further demonstrated by increasing the input

grid to 35000 x 31, where we obtain a speedup of 300 for 100 nodes. The reason for

this fact is that the memory usage on one processor is so huge, that the node has to swap

data to disk.

For Fig. 6.4 we ran both codes on 20 nodes of the DAS computer and varied the
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number of horizontal gridpoints. We see that the generated code for the turbulence

scheme is slightly faster than the reference code.

From the experiments in this section we draw three conclusions. First, in all exper-

iments the generated code by CTADEL is equal in performance to slightly faster than

the hand-written reference code. Second, on the DAS system we obtain an artificial

super-linear speedup due to a limited cache/memory capacity if one uses a small num-

ber of processors. Third, taken into account this artifact of super-linearity, the speedup

is near linear as could be expected from the fact that no communication is necessary.

Finally, it should be mentioned that the generated code by CTADEL has a larger mem-

ory usage (1.2 times) than the reference code. It is expected that the inclusion of better

loop-optimizations in CTADEL could reduce this usage.
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Chapter 7

Semi-Lagrangian Formulations

Several formulations for solving advection equations exist, for example Eulerian and

(semi-)Lagrangian formulations. Because of its simplicity, CTADEL used Eulerian schemes

for solving these equations. However, Lagrangian-type formulations have a number of

interesting properties in comparison with Eulerian-type formulations, for example a

possible increase in the time step size. Use of Lagrangian formulations increases com-

plexity and thus poses a new challenge to CTADEL.

In section 7.1 we will first describe some theory behind semi-Lagrangian and Eu-

lerian formulations. We will only briefly touch the physical theory behind these for-

mulations and the interested reader is referred to [72]. In section 7.2 we describe the

sequential implementation of the semi-Lagrangian method and in section 7.3 we show

how CTADEL is able to automatically generate code for semi-Lagrangian formulations.

Automatic code generation for semi-Lagrangian formulations is a new challenge for the

CTADEL system and we discuss new features like dimension-independent interpolation

methods and an iterative approach for calculating expressions. In section 7.4 we show

some results from experimental runs from the generated code. In these experiments we

see that communication cost becomes the limiting factor on execution time on massive

parallel machines. In section 7.5 we show a method, called “Halo On Demand”, to

optimize communication between processors.

75
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7.1 Theory

In this subsection we will discuss some of the numerical theory behind semi-Lagrangian

formulations.

7.1.1 Introduction

State of the art NWP models solve the basic equations of motion and mass. It is neither

useful nor feasible to solve these equations for every point in space and time. Instead, the

equations are first averaged over suitable space-time domains. The distances in the time

domain, the size of a time step, are often determined by the numerical methods applied.

The HIRLAM system contains the following options: fully explicit versus semi-implicit

schemes in combination with Eulerian versus Semi-Lagrangian advection formulations.

In an Eulerian scheme, the variables are determined on fixed points in a discretized

space (see figure 7.1a), at every time step. In general in a Lagrangian formulation, on

the other hand, one follows the particles along the path they follow in time (this path is

called the “trajectory”). In a Lagrangian formulation, after some time, the chosen set of

particles will be distributed irregularly.

7.1.2 Size of the Time Step

A number of numerical integration techniques require, for stability, that the Courant or

Courant-Friedricks-Lewy (CFL) criterion should be met. This criterion reads,

C ≡ v∆t

∆x
≤ 1, (7.1)

with C the Courant number,∆t and∆x, respectively the time step and spatial steps

andv is the maximum speed of an event. For explicit schemes in NWPs this event is

the speed of sound, while with semi-implicit methods and a semi-implicit scheme this

event is equal to the much lower velocity values of meteorological waves. Therefore,

semi-implicit schemes already allow a significant increase of∆t with constant∆x over

explicit schemes. Lagrangian formulations give a complete decoupling ofv which can,

in principle, yield infinitely large time steps, in as far as stability of the advection scheme

is the limiting criterion. However, the time step is bounded by other parts of the NWP,

like the physics and accuracy considerations. In practice the time step can be increased

by a factor of at least 3 [64, 72].
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Figure 7.1: Different formulations of physical problems: (a) Eulerian formulation; (b)

Semi-Lagrangian formulation.F is the required variable andF− the value from the

particle that moves via displacement vectorαm to coordinates(x, y). The coordinates

(p, q) are used as base to calculateF− using interpolation.

7.1.3 Numerical Principles of Semi-Lagrangian formulations

Physical problems, like NWPs, can be formulated in different ways. A common way

is to describe the model in an Eulerian formulation: at each time step the variables are

determined on fixed points in space (see figure 7.1a). A different way is the Lagrangian

formulation. With this formulation, a set of particles is chosen, which is followed as

they evolve in time. However, after some time the chosen set of particles will be dis-

tributed irregularly. As a result the required variables are known at the places where

the particles are concentrated and almost no information is known at other places. A

method that combines both formulations is known as semi-Lagrangian. Each time step

the trajectories of only the set of particles, which during that time step ends exactly in

one of the fixed grid points are computed (see figure 7.1b).

In figures 7.1a and 7.1b the basic numerical principles of Eulerian and Semi-Lagrangian

formulations are presented in a two-dimensional grid.

Eulerian For every time step a quantityF is calculated based on other variables at

point (x, y) and its direct neighbors in the input grid.

Semi-Lagrangian For every time step, the trajectory of each particle is determined. For
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each grid point (the arrival point of the particle) the displacements in all dimen-

sions to the departure point of the particle are determined. This departure point

reflects the spatial position of the particle at the beginning of the time step. These

displacements are calculated with an iterative process using the wind speeds at

the arrival and departure points in time and space.

After finding the departure point of the trajectory, the valueF− from the beginning

of the time step is determined by interpolation. Using this value and the found

displacement vectorαm, the new value forF is calculated. This can be seen as

following a particle from timetn to tn + ∆t, where we know that the particle

arrives at(x, y) at timet + ∆t following pathαm. Here∆t is the applied time

step. This can be done with a two or three time step scheme. With the three step

scheme, besides the departure point, also the midpoint of the the trajectory at time

tn + 0.5 ∗∆t is calculated.

The algorithm for numerically calculating the quantityF can therefore be summa-

rized in three steps:

1. Iteratively find the vectorαm with end point(x, y). In a finite number of steps the

displacements to the departure point of the particle is determined using inter- or

extrapolation. In each step we determine a discrete base-point(p, q) and use this

point, among others depending on the interpolation method, to determine the start

point of the vector.

2. Since the start point of the vector will not be on a grid point, we have to determine

F− by using an interpolation over values of grid points surrounding the departure

point.

3. Finally, we update the value of the variable at the arrival point.

The complexity of the semi-Lagrangian method originates from the fact that the

resulting values not only depend on neighboring points, but on points that are possibly

far away. The location of the departure points must be determined iteratively, because

it depends on an interpolation of the wind fields at departure and arrival points. Both

are only known after interpolation in space (at the departure point) and extrapolation in

time (at the arrival point). This can be illustrated by a simple example (taken from [72]),
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namely the one-dimensional advection equation forF ,

dF

dt
=
δF

δt
+ U(x, t)

δF

δx
= 0, (7.2)

whereU(x, t) is a given function. We assume that the valuesF are known at all grid-

pointsxm at the departure timetn. In that case the semi-Lagrangian formulation deter-

mines the values on the grid points at timetn + ∆t by

F (xm, tn + ∆t)− F (xm − αm, tn)

∆t
= 0, (7.3)

where the displacementαm is the distance a particle travels in thex-direction in

time ∆t. If αm is known, the value ofF at arrival pointxm and timetn + ∆t can be

calculated with equation (7.3). The valueαm can be obtained by approximatingU(x, t)

by

αm = ∆tU(xm − αm, tn). (7.4)

This equation can be solved by an iteration process

α(k+1)
m = ∆tU(xm − α(k)

m , tn), (7.5)

with an initial guess forα(0)
m . The values ofU , possibly between grid points, are de-

termined by an interpolation formula. An interpolation method should also be used to

obtain the valuesF (xm − αm, tn) in equation (7.3). It is possible to apply a linear,

quadratic, cubic or linear/cubic interpolation procedure. This method can straightfor-

wardly be extended to multi-dimensional problems, see [72].

7.2 Sequential Code

In this section we discuss the specification of an advection model using a semi-Lagrangian

formulation. We first discuss the specification and code generation of sequential scalar

Fortran code. When specifying a semi-Lagrangian method, two important issues arise:

firstly, determination of the displacement vectorαm using an iterative process; secondly,

interpolation between grid points of variables.

Displacement vector

Finding the displacement vector for the semi-Lagrangian method is done in a number

of steps, applied at each grid point. First, an initial displacement vector is chosen, and
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the departure point is calculated. This initial vector is estimated from the wind velocity

from the previous time-step and the derivative of the grid distance and time step (e.g.,

dx/dt); this yields a rough estimate of the distance the particle could have traveled in the

previous time step. A new displacement vector is calculated from the wind fields at the

departure and the arrival points. This new displacement vector is fed back to recalculate

the departure point. This can be repeated until a fix-point is found, in numerical sense.

However, because of computational reasons the number of iterations is fixed. In the

current implementation of the HIRLAM NWP a number of2 is used. Summarizing, the

determination of the displacement vector is as follows:

1. Estimate an initial displacement vector.

2. Calculate coordinates for a new displacement vector1.

3. Calculate values by interpolation from grid points.

4. Repeat steps 2 and 3 once more.

For this iterative process we added a specialBLOCKconstruction to the CTADEL

system. A block is a coupled system of equations, for which the outcome of each

iteration is used in the next step. A block construction also has a single convergence

test attached. For simplicity one can compare it with aDO-WHILEconstruction in a

programming language. An example block statement looks like,

BLOCK (n<5) (

A = F(n-1) * B(n-1) iter on n.

B = B(n-1) + G(n-1) iter on n.

).

For some variablesA,B,F,G this block describes a fixed number of iterations for the

equationsAn = Fn−1 ∗ Bn−1 andBn = Bn−1 + Gn−1 with n the iteration counter

and pre-determined initial values. Because of this construct, CTADEL can perform loop

fusion on the 2 statements and keep the dimension of the arrays. In a naive implementa-

tion, CTADEL would have to add an extra dimension to the arrays (forn), which can be

1Instead of keeping track of the length of the displacement vector, the coordinates for the base-point

of the departure point are stored. For example, in figure 7.1b, the coordinates(p, q) are stored instead of

the length/direction of vectorαm.
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impractical (for large iteration counts) to impossible (for complex convergence criteria,

like An < 0.01). Another practical use arises when generating parallel code, shown in

section 7.3.

Interpolation Methods

Interpolation methods are “building blocks” for programmers of numerical models.

However, programming them by hand is not as trivial as it may look. Writing interpo-

lation methods creates large expressions consisting of several indirectly indexed array.

A programming error is quickly made and debugging large expressions with indexed

arrays is cumbersome. Furthermore, once a method is chosen, it is usually difficult to

switch to another method. Automatic code generation of these methods relieves the

programmer of this task.

We adapted the CTADEL system to allow “pluggable” interpolation methods. In this

way, interpolation methods are transparent for the user (the developer of the model) and

they allow the user to define his own methods. Specification of interpolation methods is

done in a script file, which can be included and extended by the user. Compilation of a

specification using interpolation methods is divided into three steps:

1. The include file and the model specification are read by CTADEL and parsed.

CTADEL recognizes templates and checks the arguments for type and dimension.

2. A specific interpolation method is picked. This process can be done on criteria like

grid-type or user specification. In the sequel we always pick the easiest method,

the linear interpolation.

3. The specification for the interpolation method is merged in the model.

To show the concept of automatic code generation of interpolation we give a small ex-

ample for the linear interpolation of a three-dimensional array. In this example, interpo-

lation takes place over the variablePARGusing the weight variablesPALFA, PBETAand

PGAMA; the integer arraysKP, KQ andKRcontain the coordinates of the displacement

vector. For each dimension, a variable is used for the weight and displacement vectors;

for examplePGAMAandKR for the vertical dimension. The result of the calculation is

stored in the variablePRES.

An interpolation in CTADEL can be specified asinterpol(PARG, PALFA,

KP) . Although this specification is only one-dimensional, it can be easily extended
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interpol() alphavec()

interp_quad FORTRAN

USER CTADEL COMPILER

interp_lin

interpolation
specifications

Figure 7.2: Simplified diagram of the process of code generation for interpolation meth-

ods by CTADEL.

to a multi-dimensional case. This can be done, because in our implementation, the re-

sult of one interpolation can be fed as an argument to another interpolation. So, the

three-dimensional specification of the previous example looks like

PRES = interpol(PARG, PALFA, PBETA, PGAMA, KP, KR, KQ),

which is semantically equivalent with

PRES = interpol(

interpol(

interpol(PARG,PALFA,KP),

PBETA,KR

),

PGAMA,KQ

).

When CTADEL parses the specification of the model, theinterpol operation is

translated into an internal function calledalphavec for every dimension. In this way,

we can easily specify and pick several interpolation methods. In theory, we can even

use different interpolation methods for different dimensions. For example, a quadratic

method for the horizontal domain and a linear method for the vertical domain. The
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specification for thealphavec function, in this example overloaded with two different

interpolation methods, is given by

alphavec(_F, _A, _V, _X)‘interp_overloaded :=

[ interp_lin, interp_quad ]

with interp lin and interp quad respectively a linear and a quadratic method.

The parameters ofalphavec , prefixed by an underscore, denote the variable or ex-

pression to interpolate (F), the displacement vector (A), the coordinates of the vector

(V) and the coordinate to interpolate on (X).

In the front-end of CTADEL, the interpolation method is picked from the overloaded

interpolation methods fromalphavec . For example, the specification for the linear

method looks like

interp_lin(F :: float dim Unit1, A :: float dim _, V :: coordinate,

X :: coordinate) :: float dim Unit1 :=

({A} * F @ (X=V+1)) + ((1-{A}) * F @ (X=V)).

The generated code looks like

DO i,j,k

t_4(i,j,k)=1-PBETA(i,j,k)

DO i,j,k

t_6(i,j,k)=1-PALFA(i,j,k)

DO i,j,k

PRES(i,j,k)=(1-PGAMA(i,j,k))*(PBETA(i,j,k)*(PARG(KP(i,j,k),1+K

. Q(i,j,k),KR(i,j,k))+(PARG(1+KP(i,j,k),1+KQ(i,j,k),KR(i,j,k))-PA

. RG(KP(i,j,k),1+KQ(i,j,k),KR(i,j,k)))*PALFA(i,j,k))+t_4(i,j,k)*(

. PALFA(i,j,k)*PARG(1+KP(i,j,k),KQ(i,j,k),KR(i,j,k))+PARG(KP(i,j,

. k),KQ(i,j,k),KR(i,j,k))*t_6(i,j,k)))+PGAMA(i,j,k)*(PBETA(i,j,k)

. *(PARG(KP(i,j,k),1+KQ(i,j,k),1+KR(i,j,k))+(PARG(1+KP(i,j,k),1+K

. Q(i,j,k),1+KR(i,j,k))-PARG(KP(i,j,k),1+KQ(i,j,k),1+KR(i,j,k)))*

. PALFA(i,j,k))+t_4(i,j,k)*(PALFA(i,j,k)*PARG(1+KP(i,j,k),KQ(i,j,

. k),1+KR(i,j,k))+PARG(KP(i,j,k),KQ(i,j,k),1+KR(i,j,k))*t_6(i,j,k
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. )))

ENDDO

ENDDO

ENDDO

This piece of code consists of three different three-dimensional loops. The common

subexpression eliminator decided to keep outcome of the expressions1−BETA(i, j, k)

and1−PALFA(i, j, k) in temporary variables. Loop fusion could be applied to merge

all three loops into one.

We should point out one important difference between the handwritten code and the

generated code. In the handwritten code,PALFA, PBETAandPGAMAare calculated

within a loop over the vertical domain from three-dimensional variables and can there-

fore be passed as a two-dimensional parameter to an interpolation function. For the

handwritten code, these three variables have the following property,

∑
i=1..n V (X, Y, i) = 1 : ∀X, Y ∈ domain and

V ∈ {PALFA,PBETA,PGAMA},
(7.6)

with n the number of points used in the interpolation. For the linear interpolation,

with n = 2, this givesV (X,Y, 1) + V (X, Y, 2) = 1. For the specification we take

this property into account and use, for example,V (X, Y ) and1 − V (X, Y ) instead of

V (X, Y, 1) andV (X, Y, 2) for the linear interpolation.

The hand written version of this interpolation, as it appears in the HIRLAM code,

with loop indexesJX andJY, looks like,

IDX = KP(JX,JY)

IDY = KQ(JX,JY)

ILEV = KR(JX,JY)

ILM1 = ILEV - 1

PRES(JX,JY) = PGAMA(JX,JY,1)*(

+ PBETA(JX,JY,1)*( PALFA(JX,JY,1)*PARG(IDX-1,IDY-1,ILM1)

+ + PALFA(JX,JY,2)*PARG(IDX ,IDY-1,ILM1) )

+ + PBETA(JX,JY,2)*( PALFA(JX,JY,1)*PARG(IDX-1,IDY ,ILM1)

+ + PALFA(JX,JY,2)*PARG(IDX ,IDY ,ILM1) ) )

+ + PGAMA(JX,JY,2)*(

+ PBETA(JX,JY,1)*( PALFA(JX,JY,1)*PARG(IDX-1,IDY-1,ILEV)
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+ + PALFA(JX,JY,2)*PARG(IDX ,IDY-1,ILEV) )

+ + PBETA(JX,JY,2)*( PALFA(JX,JY,1)*PARG(IDX-1,IDY ,ILEV)

+ + PALFA(JX,JY,2)*PARG(IDX ,IDY ,ILEV) ) )

7.3 Parallelization

Parallelization of the dynamics of a NWP is usually done by domain-splitting. The com-

putational domain is split-up and mapped onto the underlying architectural hierarchy,

for example, a two-dimensional mesh. Because of communication patterns , splitting is

only done in the horizontal domain. When data is needed from an adjacent domain this

is communicated, for example, with a message system like MPI [55].

With the semi-Lagrangian method, indirect array addressing is used for finding the

displacement vector. Theoretically, it is possible that with every iteration step, data is

needed from a different processing node. This results in irregular communications. It

should be noted that this only applies for interpolations; other calculations for the model

can be done in parallel.

Based on a realistic maximum wind speed value, the applied horizontal grid size and

the time step, it can be shown that the horizontal distance between the arrival point and

the departure point of the vector will never be greater than four grid size values (∆x).

This means that the base point for the interpolation will be at most three grid points

away from the initial point. Because we need some adjacent points from the end point

for the interpolation, the total maximum distance will be five grid points.

In HIRLAM these observations are used and the system offers two methods: extrap-

olation of the trajectory or the use of anhalo . Extrapolation is used at the edges of

the model domain. The halo contains a view on (border) data from neighbor process-

ing nodes and it is used during iterations. Before the iteration process these halos are

exchanged and no data exchange is needed between iteration steps. In the current im-

plementation of HIRLAM a halo of width 5 is used, as explained previously. In case

this is value not sufficient, the program aborts. Also, it is assumed that the size of the

domains available on the neighboring processors is sufficient to cover the halo, i.e., that

the domain on each processor is at least 5 by 5 grid points. This limits the number of

processors. In realistic implementations, the resolutions are in the order of 100 grid

points or more per processor; so this is not a serious limitation.

For the automatic code generation for code for border data we look at two target
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Figure 7.3: Three different processors at different positions in the partitioned data space.

Corner processor 1 in (a) receives data from three adjecent processors. Processor 2 in

(b) receives data from five adjecent processors. Processor 3 in (c) receives data from

eight neighbor processors. In the figure, dotted areas represent data transmitted with the

Halo method while striped areas represent data obtained by extrapolation.

Fortran dialects:

HPF Automatic code generation of code for border data is trivial for high perfor-

mance Fortran (HPF). Thehalo approach resembles the concept of “shadow

regions”. For each array that shares its border data with adjacent processes, the

HPF | SHADOW— and the| DISTRIBUTE— directives need to be generated

and HPF takes care of the distribution. Since CTADEL makes use of theblock

structure for the iterative search, we know exactly which data needs to be shared.

Fortran 77 In Fortran 77 we have to make use of a message passing system2. In our

case, we make use of the widespread MPICH implementation of MPI [55]. Since

we known which borders need to be exchanged before the iterative search, we

can simply generate MPI calls before this block. In our case, we make use of

MPI_Sendrecv and we assume that an appropriate cpu mapping has been per-

formed with, e.g.,MPI_Cart_create , see for example [58].

Not every processor has to send the same amount of data; corner processors only

have to send to 3 neighbor processors, border processors to 5 neighbor processors and

center processors to 8 neighbor processors, see figure 7.3. When we increase the num-

ber of processors, the amount of data transmitted per node decreases. However, the

2Although shared memory is an option too, we did not investigate this.
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total amount of transmitted data increases. The average amount of data to transmit per

processor is in the order of

O((N − 1)/(N ×N)), (7.7)

with a cpu-mesh ofN × N processors. The total amount of transfered data increases

with orderO(N).

In the Full Halo method each processor receives data from all its neighbor proces-

sors, e.g. the processors not laying on the borders receives data from 8 processors. This

could be done in 8 separate communications steps, for every neighbor processor data is

exchanged. Disadvantage of this method is that we have to send/receive 4 large and 4

small data blocks. An alternative, more efficient way is to have only 4 communications

in two steps. In figure 7.4 we have drawn this method in case of 4 processors. In step

one, data is exchanged in north-south and south-north direction and and in step two,

data is exchanged in west-east/east-west direction. For example, data for the halo of

processor 4 from processor 2 is received in the first step. In the second step processor 4

receives data from processor 3, which also contains the corner of processor 1. It is nec-

essary to complete the north-south communication before the east-west communication

starts.

7.4 Experimental Results

In this section the code generated by Ctadel for the semi-Lagrangian scheme is com-

pared with the reference code from HIRLAM. Advanced compilers apply loop fusion

and other otimizations. However, the available compiler on our distributed architecture,

gcc, was not capable of these optimizations yet. Hence we applied them by hand on the

generated code.

7.4.1 Setup for the Experiments

To see the influence of the underlying computer hardware, we ran the code on a variety

of architectures, like[PENT-IV] and [DAS2] . For an explanation of the hardware

setup, see chapter 3.

In the automatically generated code, from all calculated expressions the values are

stored in memory and no memory reuse is performed. For example, all temporary vari-

ables (introduced by the common subexpression elimination), are kept in separate vari-
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Figure 7.4: A four processor grid. Each processor has its own copy of the border data

of the neighbor processors, denoted as halo and shown in the picture as square around

the processors data. Communication of halo data is first done north-south/south-north

(a) and in step two west-east/east-west (b).

ables while memory reuse might be possible. Since the number of iterations is rather

low, this is not a serious restriction. However, with very large input grids, this can be-

come a problem since memory is usually not an unlimited resource on most computers.

At the moment we trust on techniques like array contraction, either applied by hand or

by an optimizing Fortran compiler.

7.4.2 Experiments on a Scalar Architecture

The test-run on the scalar architecture was done with an input grid of 31 vertical points

and a horizontal resolution of 114 by 100. These numbers are typical for the HIRLAM

system. For our experiments we used real input data from the HIRLAM system. We only

ran one time-step for the model. The results in table 7.1 reflect the absolute execution

times measured with themclock Fortran timer. In order to reduce external influences

on these times, we ran each experiment a number of times and calculated the average

execution time. Because the deviations from these averages are in the order of a few

percent, we do not include them in the tables and figures. The “(opt.)” annotation

denotes code with additional manual applied loop optimizations, like loop fusion.
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Intel IFC compiler GNU G77 compiler

Generated Code 0.373 0.585

Generated Code (opt.) 0.342 0.530

Reference Handwritten Code 0.335 0.545

Table 7.1: Execution times (s) on a scalar architecture for a114x100x31 input grid

for the semi-Lagrangian formulations on a scalar architecture with the Intel Fortran

compiler (IFC) and the Gnu Fortran-77 compiler (G77).

As we can see from table 7.1, the automatic generated code performs slightly better

than the handwritten code, when we use the gnu Fortran compiler. This advantage

diminishes when we make use of the Intel compiler. This compiler is an aggressive

optimizing compiler, which fully exploits the Pentium IV processor architecture. This

processor has the capability of executing 4 floating point operations in parallel (called

Streaming Single-instruction- multiple-data Extension (SSE) by Intel) [7]. This explains

the big differences between the code produced by the Gnu and Intel compiler. In table

7.1, we notice that the reference code gains more benefit from the Intel compiler then

the generated code. However, the differences are rather small.

7.4.3 Experiments on a Distributed Memory Parallel Architecture

For all our experiments, we have made use of a distributed memory parallel architecture,

the[DAS2] . For an explanation of the hardware setup, see chapter 3.

For the experiments on the DAS system, we applied domain-splitting for paralleliza-

tion and made use of the full halo method as described in section 7.3. The horizontal

domain is mapped on the processors in a square way. For example, when we use9

processors this is seen as a square of3× 3 and the domain is mapped onto this square.

The test-runs for the DAS system were done with an input grid of 31 vertical points

and a horizontal resolution of114 by 100 points. Because of domain-splitting, this

means that on, for example,4 processors (2x2) each processor works on an input grid

of 57x50x31.

In figure 7.5 we show the execution times on the DAS system on a varying number

of processors. We assume that in production system the input is already available on the

nodes or gets distributed through a high-speed interconnection network. Therefore, we
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Figure 7.5: Execution times (s) on the DAS system for a114x100x31 input grid on a

varying number of processors for the generated and the reference code for the semi-

Lagrangian formulations.

do not include the initial reading from disk and distributing of the input data in these

execution times. However, communication between iterations and data collection at the

end of the runs are included in the timings.

From figure 7.5 we see that both codes perform the same and both do not show a

linear speedup. This can be attributed to communication. One would expect that with

an increasing number of processors and a decreasing input size the amount of data to

be sent will decrease. From equation (7.7) we see that the amount of data send per

processor decreases. However, analysis shows that above25 processors most of the

time is spent in communications.

In figure 7.6 we have split execution time of an experiment into computation and

communication parts. As we can see from this figure, the computation time shows a

nearly linear speedup with an increasing number of processors. However, since the
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Figure 7.6: Performance analysis of an experiment split up in computation and com-

munication time as a function of the number of processors used when using semi-

Lagrangian formulations.

communication time increases almost lineary, the effective speedup of the model will

not increase linearly. In the next subsection we show a more elaborate analysis of the

execution time and communication time, called Halo on Demand.

7.5 Halo on Demand

In the previous sections we have explained how to automatically generate code for semi-

Lagrangian methods from a specification of the model using the CTADEL tool. With a

small number of experiments we have shown that these generated codes can compete

with hand-written code on both scalar and parallel architectures. However, with both

the generated and handwritten code, we observed a decrease in efficiency on the parallel

architecture with an increasing number of processors. Analysis of the execution times
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revealed that with a large number of processors used for computation, the time spent

communicating data between the processors became larger than the computational time.

In this section we describe a solution, called “Halo on Demand”, to improve com-

munication. With this method, we examine the input data at runtime and we determine

the kind of data to communicate and to which processor we have to communicate this

data to. Using this strategy we are able to decrease the amount of data to be sent and

thus decrease the communication time and increase the effective speedup of the model.

7.5.1 Halo on Demand strategy

One of the drawbacks of the Full Halo method is the large amount of data transferred

between different processors. In figure 7.7 a scenario is drawn where computations

are performed on nine processes. With the Full Halo method processor5 receives halo

data from eight other processors. However, if we look at the wind-flow in figure 7.7,

only data from three processors is needed. An optimal implementation should therefore

only transfer data that is actually needed based on the dynamically determined wind-

direction.

Before the iterative search of the displacement vectorαm, an initial guessα0
m is

made. When we analyze this vector at runtime, we can make a prediction of the wind

direction. With this information we decide to which processor we send data. For ex-

ample, in figure 7.7, sending data to from the processor number 5 to “west” processor

number 6 with a west wind is ineffective. In this case only data from processors num-

bered 1, 2 and 4 have to send data to processor 5. As explained in section 7.3, we do this

in two communication steps. An improvement of 50% procent compared to the full halo

method which needs 4 communication steps. In theory, the direction of the displacement

vector can change during the iterative search; the direction of the initial guess vectorα0
m

was wrong. However, we never observed this happen in our experiments.

We call this strategy where not all halo data is transfered, “Halo on Demand”. It is

a dynamic application-driven data communication strategy.

7.5.2 Related Work

A lot of effort and research have been devoted to communication problems with parallel

programs. Several solutions exist, mainly targeted on data layout or global scheduling,
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Figure 7.7: Calculation with a horizontal domain mapped on nine processors. With

the Full Halo method, processor5 (hatched area) receives data (gray area) from eight

neighbor processors. Based on realistic wind-flow directions (expressed by arrows) data

is only needed from processors1, 2 and4 in this example.
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see e.g. [60, 65]. We look at two approaches, one of which resembles the Full Halo ap-

proach: the HPF shadow region, and the other resembles the Halo on Demand strategy:

the Inspector-Executor method.

The Full Halo approach resembles the concept of “shadow regions” in High Per-

formance Fortran (HPF), see for example [36] and the VFC compiler [5]. The Fortran

programmer instructs the compiler about the shadow regions and shadow region widths

by means of theSHADOWandDISTRIBUTE directives and the hpf-compiler generates

the appropriate code for data transfer. An HPF example with shadow regions looks like

REAL, DIMENSION (1000) :: A

!HPF$ DISTRIBUTE(BLOCK), SHADOW(1:2) :: A

FORALL (i = 2, 998)

A(i) = 0.25 * (A(i) + A(i-1) + A(i+1) + A(i+2)

END FORALL

This piece of code performs a computation on a one-dimensional arrayA. This array

is distributed over a number of processors. Each processor can keep most of the data

local and only needs the boundary values (one at the beginning and two at the end). It

is the compiler that takes care of the communication.

Basically, the shadow region is equivalent with the Full Halo approach. HPF per-

forms some of the work the programmer has to do with the Full Halo approach. How-

ever, programming the halo by hand might give some opportunities for fine-tuning and

optimizations. Another draw back is the fact that HPF compilers are not as widely

available as communication libraries likeMPI.

The Inspector-Executor approach was developed by Saltzet al. [69]. Its goal is

to hide latency problems for parallel problems with irregular data accesses. With this

method the compiler compiles a loop into two separate loops, an inspector and an ex-

ecutor. The inspector examines the data access patterns in the loop body and creates a

schedule for fetching the remote values. After that, the executor retrieves these remote

values according to this schedule and performs the real execution of the loop. As an

optimization one can reuse the communication schedule if the inspector finds that the

access pattern is the same for multiple iterations. An pseudo code example is given in

figure 7.8 and figure 7.9.
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for iteration = 1 to n

for i = startindex to endindex

a[i] = b[i] + c[ia[i]]

end

process(a)

end

Figure 7.8: Pseudo code example for the Inspector-Executor approach; the original loop.

The Inspector-Executor method resembles the Halo on Demand strategy; the data

is first examined before the actual data transfer and execution takes place. However,

the Inspector-Executor is based on low-level data access patterns, while the Halo on

Demand strategy includes high-level application dependent information. The Halo on

Demand examines the content of certain variables to make an assumption about the

wind-direction and based on that analysis sends a large amount of data before the iter-

ations. The Inspector-Executor examines the access pattern of the variables and based

on that it decides to exchange data. If we would apply the Inspector-Executor method

to our model, it would generate a lot of communication with small messages during and

within the iteration steps. The total amount of data to be sent would be smaller, but the

final communication times would be higher.

7.5.3 Experiments

In this section we present a number of experiments. In subsection 7.5.4 we show ex-

periments with current input data (grid size114 × 100 × 31), taken from a reference

NWP. This data is read in by a dedicated process, divided by a domain-splitting algo-

rithm and distributed over the worker processors. The processors are configured as a

two-dimensional mesh ofN × N processors, with1 ≤ N ≤ 11. Only the horizontal

plane of the input data grid is split up over the processors. For example, ifN = 2 we

use4 processors, and for a total input grid of114 × 100 horizontal points, this results

in an input grid of57 × 50 per processor. However, this yields unrealistic small input

grids on large cpu-configurations. We, therefore, also run a number of experiments with

larger data sets. We took the original data and interpolated this to a sixteen (4×4) times

larger grid (456 × 400 × 31 points). We show the experiments with this enlarged set
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//inspector phase

for i = startindex to endindex

a[i]=b[i] + c.inspect

end

//create the communication schedule

c.schedule()

for iteration = 1 to n

// fetch the remote values

c.fetch()

for i = startindex to endindex

a[i] = b[i] + c.execute(ia[i])

end

process(a)

end

Figure 7.9: Pseudo code example for the Inspector-Executor approach, the transformed

loop.

in subsection 7.5.5. Although this data set is unrealistically large for current weather

applications, it might become the default standard for future simulations3.

For all our experiments we have made use of a distributed memory parallel archi-

tecture, the[DAS2] . For an explanation of the hardware setup, see chapter 3. All code

was compiled with the MPICH mpif77 compiler, which is a wrapper for the GNU G77

compiler, version 3.2.2. All timings were measured with theMPI_Wtime call, which

yields the wall time clock as a double precision. All experiments were run hundred

times to get accurate timings by calculating the average time for every experiment.

To present the results of the experiments we use different graphs:

Communication Time. For each processor, we show the measured communication

time. With this data we calculate an average communication time for every mesh-size

used, and these lines are called “Average over all processors”. Communication time is

3Technology has caught up with us and this enlarged size is already the standard for simulations at the

time of writing this dissertation.
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not equal for all processors since the border processors have to send fewer data then the

center processors (see section 7.3). Therefore, deviations from the average communica-

tion time are significant. To express this, we also calculate the average communication

time per processor for every mesh-size and denote these points as “Averages per proces-

sor”. For a mesh-size ofN ×N this yieldsN2 values.

To show the impact of external events on our measurements, we plotted the maxi-

mum and minimum communication time from every experiment. In theory, these values

should be the same for experiments with the same set parameters. For example, for a

mesh-size of ten by ten processors, the maximum should be the same for every run since

the amount of data to be sent is constant and does not change between experiments.

Amount of Data Exchanged. For each processor, we also measure the size (in bytes)

of the data that are sent to the neighbor processors. With these numbers we calculate

a) the average size for each mesh-size over all processors and b) the average size of

transferred data for each mesh-size per (single) processor.

Computation Time. For each processor, we present the measured computation time.

With these numbers we also draw two graphs. In contrast to the amount of data ex-

changed, computation time is almost the same for all processors. Deviations from the

average originate from the domain splitting process where in certain cases the domain

could not be distributed in equal sizes to all processors. For example,100 grid-points

distributed over 3 processors, means sizes of33, 33 and34 points.

Allthough deviations where negligible small, for some experiments we found some

unanticipated high values for a tiny amount of experiments. We suspect this to be ex-

ternal to our program, which show up in our experiments since we measure wall clock

time. Therefore, we plotted the maximum and minimum computation time for every

experiment.

7.5.4 Experiments with current input data

In figure 7.10 we show the communication time for both the Full Halo method (7.10a)

and Halo on Demand strategy (7.10b). We observe an interesting paradox in figure 7.10:

although the amount of data sent per processor decreases with an increasing number

of processors, the time taken to communicate this smaller amount increases. We will

explain this in subsection 7.5.7.

We show the minimum and maximum communication time per experiment for the
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Full Halo method (7.11a) and Halo on Demand strategy (7.11b) in figure 7.11. In an

ideal world, we would see only two values per cpu mesh-size; maximum and minimum

communication times would be the same for every experiment with the same parame-

ters. However, the DAS2 cluster is used in the real world, where we have to take a large

number of external influences into account. The effect of other users using the same

Myrinet switch in a multi-programmed multi-user environment or external hardware in-

fluences like slightly different bus frequencies can influence our measurements. In both

figures, we see that a number of values have a huge deviation from the average. How-

ever, the number of outliers is too small with respect to the total number of experiments

that we do not think this is a serious problem.

The amount of data sent per processor is shown in figures 7.12a and 7.12b. The

graphs in figure 7.12 match the predicted function(N − 1)/(N × N) for the average

amount of data sent (see subsection 7.3).

In figure 7.13 we show the computation time for both methods. We can make the

following observations:

1. Computation times scale nearly perfectly linear (even slightly super-linear with

a large number of processors, caused by an improved usage of data cache of the

processors).

2. The computational overhead caused by the Halo on Demand strategy can be ne-

glected.

In figure 7.14 we show the minimum and maxium computation time for the Full

Halo method (7.14a) and Halo on Demand strategy (7.14b). We would expect these

values to adhere to the values from figure 7.13, which they do but for a tiny amount of

outliers. We presume this to be a hardware glitch.

7.5.5 Experiments with future input data

To investigate the impact of the size of the input grid, we run the previous experiments

on a 16 times larger input grid. We took the input data from our reference NWP and

interpolated these to a4× 4 bigger data field, resulting in a456× 400× 31 input grid,

which might become the default grid size for future NWPs.

In figures 7.15a and 7.15b we show the communication times. Compared with the

results from the experiments with the current input (see figures 7.10a and 7.10b) we ob-
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Figure 7.10: Communication time for a current sized input grid with semi-Lagrangian

methods with (a) Full Halo and (b) Halo on Demand. For every individual processor we

plot the average from all the runs and we denote this as “Averages per processor”. For

every permutation of the number of processors we calculate the average of all processors

for that number of processors and denote this as “Average over all processors”.
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Figure 7.11: Maximum and minimum communication time per experiment for a current

sized input grid with semi-Lagranian formulations with (a) Full Halo and (b) Halo on

Demand. For every permutation of the number of processors we calculate the average

of all processors for that number of processors and denote this as “Average over all

processors”.
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Figure 7.12: Average number of bytes sent per node and over all processors on a current

sized input grid with semi-Lagrangian methods with (a) Full Halo and (b) Halo on

Demand.
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Figure 7.13: Average computation time per node and all processors on a current sized

input grid with semi-Lagrangian methods for (a) Full Halo and (b) Halo on Demand.
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Figure 7.14: Maximum and minimum computation time per experiment for a current

sized input grid for semi-Lagrangian formulations for (a) Full Halo and (b) Halo on

Demand. For every permutation of the number of processors we calculate the average

of all processors for that number of processors and denote this as “Average over all

processors”.
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serve a remarkable difference. The communication time is an almost constant function,

independent of the number of processors. We explain this in subsection 7.5.7.

We show the minimum and maximum communication time per experiment for the

Full Halo method in figure 7.16a and Halo on Demand strategy in figure 7.16b. We

observe some extreme outliers in this figure; for example with 9 processors the maxi-

mum of a significant number of experiments has twice the communication time as the

average. In figure 7.15 we see that these are values from a small number processors. We

suspect a hardware glitch or a (DMA) cache problem.

The figures 7.17a and 7.17b present the absolute amount of data sent per processor.

Compared to the results with a current input (see figures 7.12a and 7.12b) we observe

an increase of data sent with a factor of 4. This is as expected; the area of the input grid

increases with an factor of 16, but the circumference only increases with a factor of 4.

This does not hold for the computation time, given in figures 7.18a and 7.18b, which

depends on the surface size of the input grid. Compared to figures 7.13a and 7.13b, we

see, as expected, an increase of computation time with a factor of 16.

We show the minimum and maxium computation time for the Full Halo method in

figure 7.19a and Halo on Demand strategy in figure 7.19b.

7.5.6 Speedup

To show the effect of the Halo on Demand strategy on the total execution times we have

calculated the speedup of the model with and without the use of the Halo on Demand

strategy. In figure 7.20a we show the speedup of the Full Halo method and the Halo on

Demand strategy as a function of the number of processors using a current input size.

For an enlarged input grid this speedup is shown in figure 7.20b. From these figures we

see that

• When increasing the data input size, the speedup increases. Computation time is

in the order ofO(N2), withN×N the input size, while communication time is in

the order ofO(N). So, with an increasingN we spend more time in computation

and have relatively less overhead of communication.

• The Halo on Demand strategy gives an increased speedup compared to Full Halo

method.
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Figure 7.15: Average communication time per node and over all processors on a fu-

ture sized input grid for semi-Lagrange forumlations for (a) Full Halo and (b) Halo on

Demand.
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Figure 7.16: Maximum and minimum communication time per experiment on a future

sized input grid with semi-Lagrangian formulations with (a) Full Halo and (b) Halo on

Demand. For every permutation of the number of processors we calculate the average

of all processors for that number of processors and denote this as “Average over all

processors”.
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Figure 7.17: Average number of bytes send per node and over all processors on a future

sized input grid for semi-Lagrangian formulatons for (a) Full Halo and (b) Halo on

Demand.
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Figure 7.18: Average computation time per node and over all processors on a future

sized input grid for semi-Lagrangian formulations for (a) Full Halo and (b) Halo on

Demand.
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Figure 7.19: Maximum and minimum computation time per experiment for a future

sized input grid for semi-Lagrangian formulations for (a) Full Halo and (b) Halo on

Demand. For every permutation of the number of processors we calculate the average

of all processors for that number of processors and denote this as “Average over all

processors”.
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Figure 7.20: Speedup for the Halo on Demand strategy and the Full Halo method for

semi-Lagrangian formulations using (a) a current sized and (b) a future sized input grid.
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7.5.7 Discussion on communication time

When analyzing the communication time in figures 7.10 and 7.15, one can observe an

interesting paradox: although the data sent per processor decreases, the communication

time stays constant (figures 7.15a and 7.15b) or increases (figures 7.10a and 7.10b) with

an increasing number of processors. There are a number of reasons for this behavior:

Synchronization Although all communication is done asynchronously and non-blocking,

some kind of synchronization is required. A process can only continue compu-

tation after it has received all its data. There will always be one processor the

slowest and all his neighbors have to wait for it. Since we have to send several

blocks of data, like a domino effect, this synchronization will affect all processors

after a number of data exchanges. Because of this, communication time will not

decrease linearly if we send less data per processor using an increasing number

of processors.

Bandwidth Several performance studies on Myrinet have shown that with a decreas-

ing message size, the effective bandwidth of the Myrinet network decreases. For

example Myricom performed extensive benchmarking [52] on the Myrinet-2000

network and found that bandwidth can become near zero for very small messages

and almost 400 MB/s for large messages. Similar results were found by Bhoud-

jang et al. [6] on a predecessor of[DAS2] , the [DAS1] ,which used an older

version of the Myrinet network.

7.6 Conclusion

The use of semi-Lagrangian formulations can increase performance of NWPs. How-

ever, implementing these formulations by hand can be an error prone job. For finding

the displacement vector an iterative process is used and with each step several interpo-

lations have to be performed. In this chapter we have described how we adapted the

CTADEL system in order to automaticly generate code for semi-Lagrangian formula-

tions. We introduced a “plugable” system for interpolations, where the user can either

provide his (dimensionless) interpolation methods or use a number of predefined meth-

ods, available in the system. Furthermore, we introduced ablock operator in order to

perform iterative operations. With this operator we can define a set of equations which
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are continuously carried out until a convergence condition holds. The generated code

from CTADEL can compete with the hand-written reference code in execution time.

On parallel architectures communication can become a huge bottleneck limiting

speedup. Since the communication pattern is dependent on the input data and can

change during execution of the model, we cannot optimize this at compile time. In

this chapter we have analyzed timings of the execution of the iterative search for a

displacement vector for the semi-Lagrangian formulation for a convection model on a

distributed memory parallel cluster. We have shown that with regular data sets commu-

nication time can become the dominant limiting factor for the total execution time on a

large number of processors.

In order to optimize execution time, optimizing communication cost will be a ne-

cessity. This can be achieved in two ways. First one can try to reduce the influence of

communication time by increasing the input data size and thus the computation time.

We have shown that, as expected, increasing the input data size with a factor of 16,

relatively less time is spent in communication and the speedup becomes nearly linear.

However, also with a bigger input data set there will be an upper bound on speedup

due to communication time becoming a dominantly limiting factor when using a large

number of processors.

Therefore, we have developed a strategy, called Halo on Demand, to reduce commu-

nication. With Halo on Demand, a dynamic data driven strategy, we are looking at the

displacement vector to predict the wind-direction. Using this run-time analysis we are

able to significantly cut back the amount of transfered data. This results in a decrease in

communication time and an increase in speedup. At this moment, the Halo on Demand

is programmed by hand. Ctadel should be adapted to generate this automatically, to

avoid the substantial manual programming effort now needed.
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Conclusions

Many attempts have been made to solve scientific or physical models numerically using

computers. In this thesis we have shown a brief overview of the CTADEL system. Fur-

thermore, we showed a number of example applications for CTADEL and the extensions

we implemented in the system.

The CTADEL system provides an automated means of generating specific high per-

formance scientific codes. These codes are optimized for a number of different archi-

tectures, like serial, vector, or shared virtual memory and distributed memory parallel

computer architectures. One of the key elements of this system is the usage of alge-

braic transformation techniques and powerful methods for global common subexpres-

sion elimination. These techniques ensure the generation of efficient high performance

codes.

The system consists of several modules of which we described four in more detail.

First, theATMOL specification language, a high-level language that provides a means for

the specification of a PDE-based problem in a natural way. Second, the GPAS reduction

system, one of the main components used for the symbolic manipulation of algebraic

expressions. Third, DICE, the common subexpression elimination. And fourth, the

back-end code generator.

In chapters 4, 5 and 6 we showed a number of example applications. We specified

the models, let CTADEL generate code for it and compared the performance of these

codes with the hand-written versions of the applications. Each of these applications

were picked to show a particular strength of CTADEL or to show a novel implementation

for methods in CTADEL. For example, in the turbulence model we let the specification
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call external functions from a library. In this model we have also implemented an exper-

imental implementation for a certain implicit differential equation. In another example,

the coupled ocean–atmosphere model, we show how CTADEL can deal with models

with different time-steps for the submodels. In the third example, CTADEL showed

its strength with conditional expressions; a number of trigger functions to determine

entrainment and detrainment that take place in a cloud.

Although CTADEL is mainly targeted towards weather forecasting, we found no

significant problem applying automatic code generation for an ocean model. We, there-

fore, strongly believe that CTADEL can also be applied in other important application

domains, for example the domain of fluid dynamics .

Several formulations for solving semi-implicit equations exist, for example Eulerian

and (semi-)Lagrangian formulations. Because of its simplicity, CTADEL used Eule-

rian schemes for solving these equations. However, Lagrangian-type formulations have

a number of interesting properties in comparison with Eulerian-type formulations, for

example a possible increase in the time step size. Use of Lagrangian formulations in-

creases complexity and thus poses a new challenge to CTADEL. In chapter 7 we showed

some of the theory behind semi-Lagrangian formulations. We showed the implemen-

tation of these formulations in CTADEL and how a specification of a model can use

these formulations. We compared the performance of the automatically generated code

and hand-written code and we observed an interesting aspect with execution on a dis-

tributed memory parallel cluster. With an increasing number of computing nodes, com-

munication time between nodes became larger than computation time. We analyzed the

communication patterns and designed a novel communication method, called Halo On

Demand. With this method we could decrease communication time and, thus, increase

overal performance.
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Samenvatting(in Dutch)

Bij het ontwerpen en programmeren van software voor grootschalige rekenmodellen,

stuit de ontwikkelaar vaak op een aantal praktische problemen. Bijvoorbeeld, bij het

omzetten van het model naar een daadwerkelijk computerprogramma, zal rekening

moeten worden gehouden met het type architectuur waar de simulatie op zal worden

gedraaid. Zo zal een programma geschreven voor een vector architectuur in het alge-

meen niet optimaal werken op een cluster van conventionele seriële computers en vice

versa.

Het optimaliseren van een programma voor een bepaald type architectuur is een

arbeidsintensieve taak. Bovendien zijn computer architecturen alweer verouderd binnen

een jaar dat ze op de markt verschijnen en nieuwe architecturen kunnen nieuwe eisen

aan het programma opleggen waardoor het optimaliseren weer van voren kan beginnen.

Een ander probleem treedt op wanneer men het onderliggende rekenmodel wil aan-

passen. Vaak is de software die het model simuleert, niet goed gedocumenteerd of

is door het optimaliseren de relatie met het model niet goed meer te herkennen en is

aanpassen van de software geen triviale taak geworden. Hierdoor kan het makkelijk

gebeuren dat er fouten in de software sluipen.

Een mogelijke oplossing voor deze problemen is om het model te simuleren door

middel van het direct uitvoeren van een specificatie van het model. Een voorbeeld hier-

van is het programma Matlab. De gebruiker specificeert de wiskundige vergelijkingen

van het model in een Matlab-specifieke hoger-niveau specificatietaal waarna het pro-

gramma deze uitrekent. De gebruiker hoeft geen rekening te houden met het type com-

puter architectuur en een verandering van het model kan snel doorgevoerd worden in de

specificatie. Nadelen van deze methode zijn dat de vergelijkingen niet geoptimaliseerd

worden of dat er niet gebruik wordt gemaakt van architectuur-specifieke hardware en

het model dus sub-optimaal wordt berekend.

In dit proefschrift wordt een andere oplossing besproken, de CTADEL compiler. Net
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als bij Matlab specificeert de gebruiker zijn model in een hoger-niveau specificatietaal

waarna deze wordt vertaald naar een efficiënte hogere programmeertaal. De gebruiker

kan het type computer architectuur aangeven waarvoor code moet worden gegenereerd.

De kracht van dit systeem hangt onder andere af van zijn kennis van numerieke meth-

odes en in dit proefschrift worden een aantal uitbreidingen van geavanceerde numerieke

methodes in het CTADEL systeem besproken en gedemonstreerd.

De door CTADEL gegenereerde taal voor ieder model hebben we op diverse soorten

computersystemen, zoals beschreven in hoofdstuk 3, getest op correctheid en prestatie.

We vergelijken deze programma’s met een handgeschreven versie van het model. In

bijna alle gevallen blijkt dat de code gegenereerd door CTADEL een vergelijkbare of

zelfs betere prestatie (sneller) geeft.

In hoofdstuk 2 geven we een overzicht van het CTADEL systeem en de belangrijk-

ste stappen van het vertaal proces van specificatietaal, genaamdATMOL naar efficïente

hogere programmeertaal. De kracht van het systeem wordt grotendeels bepaald door het

herschrijven van wiskundige specificaties. Hierbij wordt het stelsel van vergelijkingen

vereenvoudigd, waarbij wordt gekeken of bepaalde berekeningen op een efficiëntere

manier kunnen worden uitgevoerd en of een uitdrukking niet meerdere keren wordt

berekend.

In de hoofdstukken 4, 5 en 6 laten we een aantal uitbreidingen van CTADEL sys-

teem zien. Voor iedere uitbreiding bekijken we de praktische toepassing hiervan met

een voorbeeld model. In hoofdstuk 4 beschrijven we een sjabloon systeem en hoe dit

kan worden toegepast bij het modelleren van een convectie model en hoe CTADEL hi-

ervoor automatisch code voor genereert. In hoofdstukken 5 en 6 laten we zien hoe

we CTADEL hebben aangepast, zodat er gebruik kan worden gemaakt van (numerieke)

functies in externe bibliotheken van functies. In hoofdstuk 5 beschrijven we dit aan de

hand van een gemengd oceaan/atmosfeer model, terwijl we in hoofdstuk 6 de specifi-

catie en het genereren van een turbulentie model laten zien. Dit model maakt gebruik

van een bepaald type impliciete vergelijkingen en we laten zien hoe CTADEL code kan

genereren voor dit soort vergelijkingen.

Veel gebruikte methodes bij het oplossen van vergelijkingen binnen numerieke weersverwacht-

ingsmodellen zijn de Euleriaanse en de (semi-)Langrangiaanse methodes. Vanwege de

eenvoud van specificatie, was de Euleriaanse methode de standaard oplosmethode in

CTADEL. In hoofdstuk 7 laten we zien hoe we CTADEL hebben aangepast om de semi-

Langrangiaanse oplosmethode te gebruiken. We laten zien hoe een gebruiker zijn model
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moet specificeren om deze methode te gebruiken. Verder gaan we in op een nieuwe

door ons ontwikkelde methode om de communicatie tussen processoren op een parallel

systeem te optimaliseren. Dit is een dynamische methode die gestuurd wordt door de

toepassing.
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