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C h a p t e r 4

Collective oscillations in bubble
clouds
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4.1 Introduction

In this Chapter the collective oscillations of a bubble cloud in an acoustic field are
theoretically analysed with concepts and techniques of condensed matter physics.
More specifically, we will calculate the eigenmodes and their excitabilities, eigenfre-
quencies, densities of states, responses, absorption, and participation ratios to better
understand the collective dynamics of coupled bubbles and address the question of
possible localization of acoustic energy in the bubble cloud. The radial oscillations
of the individual bubbles in the acoustic field are described by coupled linearized
Rayleigh-Plesset equations. We explore the effects of viscous damping, distance be-
tween bubbles, polydispersity, geometric disorder, size of the bubbles, and size of the
cloud. For large enough clusters, the collective response is often very different from
that of a typical mode, as the frequency response of each mode is sufficiently wide
that many modes are excited when the cloud is driven by ultrasound. The reason is
the strong effect of viscosity on the collective mode response, which is surprising, as
viscous damping effects are small for single bubble oscillations in water. Localization
of acoustic energy is only found in the case of substantial bubble size polydispersity
or geometric disorder. The lack of localization for weak disorder is traced back to
the long-rang 1/r interaction potential between the individual bubbles. The results
of the present Chapter are connected to recent experimental observations of collec-
tive bubble oscillations in a two-dimensional bubble cloud, where pronounced edge
states and a pronounced low frequency response had been observed, both consistent
with the present theoretical findings. Finally, an outlook to future possible experi-
ments is given.

The dynamics of an isolated bubble in an acoustic field is well understood. It
can theoretically be well described with the Rayleigh-Plesset equation and extensions
thereof [57, 114–116]. The experiments with a single stable sonoluminescing bubble
have experimentally confirmed this theory [117].

The situation is much more complicated for interacting bubbles. First, the sound
emission of an oscillating bubble is felt by the neighboring bubbles in a very large
range, as the corresponding Bjerknes potential only decays with 1/r , where r is the
distance between the bubbles [57, 116]. Second, oscillating bubbles attract or reply
each other (depending on their mutual size and the driving pressure [75]) thanks to
the secondary Bjerknes forces [57,116]. As we already mentioned in the introductory
Chapter of this thesis, interacting bubbles are the genuine case in nature and technol-
ogy. So further progress in the fundamental understanding of the collective behavior
of bubble clouds is desired.

Some progress could be achieved by eliminating the second of the above men-
tioned complications, namely mutual bubble attraction or repulsion: By exposing air
pockets in artificial crevices on a plain surface at well-defined distances to ultrasonic
extension waves, [118–120] studied the collective collapse of a bubble cloud with
bubbles at fixed positions, thereby decoupling the radial oscillations from the trans-
lational dynamics of the coupled bubbles. They found that an extended Rayleigh-
Plesset equation – with an extra term taking into consideration the sound emission of
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all other bubbles [116,121,122] – well describes the collective dynamics, provided that
their mutual distance is large enough. Applying the same trick of trapping gas pockets
in artificial crevices of geometrically patterned hydrophobic surfaces, but now driven
with only small pressure amplitudes, [123] studied collective modes of coupled os-
cillating micromenisci in a plane (“two-dimensional bubble cloud”), experimentally
finding a resonance at much lower frequency as compared to the one of a single mi-
cromeniscus. The origin of the shift is due to the acoustic coupling of the oscillating
micromenisci that produces collective modes.

This present work builds on these earlier papers [118,119,123], but aims at a more
detailed and fundamental understanding of the spectrum and the response to driv-
ing. We will employ concepts and techniques of condensed matter physics which
recently experienced a revival in soft condensed matter physics, successfully analyz-
ing vibrational modes in jammed systems (see [33,36,52,124,125]). More specifically,
the calculation of the eigenmodes and their excitabilities, eigenfrequencies, densities
of states, responses, absorption, and participation ratios turned out to be extremely
useful to better understand the dynamics of these jammed systems. We will show in
this Chapter that this is also the case for the dynamics of coupled bubbles.

In particular, employing these concepts will allow us to address the question
whether localization of acoustic energy in bubble clouds is possible. This possibility
has been conjectured several times [126–128], but never been analysed with the con-
cepts and techniques of modern condensed matter physics. We want to compare the
localization of energy in a bubble cloud with the classical Anderson localization [4] of
waves in disordered condensed matter. Here localization refers to the fact that waves,
which are extended (like plane waves) in the absence of disorder, can become local-
ized in the presence of disorder. Then a localized state or eigenmode is concentrated
around a point in space and has an amplitude that falls off exponentially with the
distance from the center. The occurrence of localized eigenmodes in systems that
are described with wave-type equations is of a general nature and can be extended to
many systems such as sound modes, gravity waves, diffusion on random lattices etc.
, [129, 130]. It is therefore a natural question to ask whether localization also plays a
major role in collective bubble oscillations, where the disorder can result from both
the positional disorder of the bubble centers and from the bubble polydispersity. As
we shall see, localization does play some role, but the effects are subtle, partly due to
the long-range nature of the bubble-bubble interaction term, which is very different
from the short-range interaction common in condensed matter physics. Instead of
exponential localization of the modes there is only power law localization.

The phase space to be explored is considerable, being spanned by bubble radius,
polydispersity, viscosity, distance between the bubbles, and the underlying struc-
ture of the bubble array. For simplicity and for better comparison with experiment,
as in [118, 119, 123] we take the positions of the bubbles to be fixed. This however
hardly limits the applicability of our approach and our results: Whenever the period
of the relevant resonance frequencies is much shorter than the timescale for rear-
rangements of the bubble cloud, an adiabatic approximation in which the positions
of the bubbles are consider fixed, suffices. This applies to many situations of practical
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interest.

Already here in the Introduction we illustrate the richness and subtlety of the
mode and response behavior of coupled bubble oscillators at various frequencies in
Fig. 4.1. The analysis of the full spectrum will reveal both the aforementioned low-
energy collective modes with nearby bubbles oscillating in phase and modes with
nearby bubbles oscillating in anti-phase that have resonant frequencies larger than
those of individual bubbles. This contributes to the nontrivial Density of States (DOS)
of the collective modes, which, as common in condensed matter physics, has pro-
found consequences on the response. For better accessibility of the Chapter for the
fluid dynamics community, we will explain the origin of these main features along
Figure 4.1 in an overview of our results in Section 4.2.
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Figure 4.1: Examples of eigenmodes and response fields for a system of N = 1225,
20% polydisperse bubbles (with mean radius R0 = 5μm), each of which is represented
by a circle. The radii of the circles in the plot are proportional to the amplitude of
the oscillation and the color shows the phase. (a1-a4) Going from left to right 1st,
7th, 107th and 807th mode, respectively. (b1-b4) Response of the system to uniform
driving with the 1st, 7th, 107th, and 807th eigenfrequency, respectively.

The Chapter is organized as follows: Section 4.2 qualitatively discusses the vari-
ous competing effects and summarizes and physically accounts for the main results.
Section 4.3 is dedicated to the formalisms that we used to calculate the spectrum of a
cluster of mono- and polydisperse bubbles, calculation of the response of these sys-
tems upon driving, and definitions of the quantities we will use to address the proper-
ties of both the eigenvibrations and the response. Naturally, this section will be rather
technical. In Section 4.4 we present the main results for the case of monodisperse
clusters of bubbles positioned in regular ordered arrays. In Section 4.5 we study the
effect of disorder introduced by polydispersity and briefly discuss the effects of mak-
ing the underlying structure random. The last section is dedicated to an outlook on
possible experiments to study collective behavior of bubbles in bubbly clouds.
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4.2 Qualitative discussion of the physical ingredients
and competing effects and main results

The parameter space of coupled bubble oscillations is huge: bubble size and poly-
dispersity, bubble distances, liquid viscosity, thermal diffusivity, surface tension, and
density, the corresponding material properties of the gas, and the geometry of bubble
arrangements. Clearly, the parameter is far too large to fully explore. So we must re-
strict ourselves to pinpoint the main trends and to isolate the most important effects.
In order to guide the reader’s intuition and to set the stage for the further analysis,
in this section we will first summarize the most relevant parameters that affect the
collective bubble oscillation problem and we will qualitatively summarize the main
results.

4.2.1 Single bubble properties: resonance frequency, damping and
Q-factor

When surface tension effects are small (as is the case for bubbles larger than a few
μm), the resonance frequency Ω0 of a single bubble with ambient (i.e., static) radius
R0 is the Minnaert frequency [116]

Ω0 =
√

3p∞
0 /ρ

1

R0 , (4.1)

where p∞
0 is the ambient pressure and ρ the density of the liquid. Its viscous damping

rate Γ is given by

Γ= μ

ρ(R0)2 . (4.2)

Out of the resonance frequency and the damping rate one can define a quality Q =
Ω0/Γ. For a bubble one obtains

Q = Ω0

Γ
=

√
p∞

0 ρ

μ
R0. (4.3)

The Q-factor determines the sharpness of the resonance and response of an oscilla-
tor: the larger Q , the more the response is peaked around its natural oscillation fre-
quency Ω0 (throughout this Chapter we will use the terms sharpness of the resonance
and Q factor interchangeably). An example of this behavior is shown in Fig. 4.1(a1)
and (b1): in (a1) we plot the lowest frequency (collective) eigenmode, which is the
least damped in the spectrum (see Section 4.3.2 for details). Panel (b1) is a response of
the system when uniformly driven with the lowest resonant frequency; the response
field is hardly distinguishable from the single-mode behavior in Fig. 4.1(a1). For the
rest of the mode examples depicted in Fig. 4.1(a2-a4), the effect of damping is more
pronounced, influencing the response, see Fig. 4.1(b2-b4). We come back to the ori-
gin of the different behavior at low and high frequencies below.
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For a given fluid, the Q-factor can be tuned by the bubble radius. For water at
atmospheric pressure, the Q factor is already about 5 for a bubble with a radius of
only 1μm. Hence single bubbles of sizes larger than a few μm are weakly damped,
i.e., are sharp resonators: the effect of viscosity is small.

4.2.2 Bubble-bubble interactions

The coupling of bubble-bubble oscillations is mediated through the pressure field,
which falls off inversely proportional to the distance from an oscillating bubble. This
makes the interaction term very different from the short-ranged (near-neighbor-like)
interactions that one usually encounters in condensed matter physics: here the inter-
actions are long-ranged, and each bubble interacts with many others. This has sev-
eral important consequences, one of which is that it appears to suppress the classical
Anderson localization with exponentially decaying eigenmodes (see Section 4.5.3 for
details). An example of this behavior is shown in Fig. 4.1(a4) where we depict a high-
frequency eigenmode of a strongly disordered system (20% polydispersity in the static
bubble radii, see Section 4.5.2): compared to high-frequency modes in other (stan-
dard) systems described by the wave equation, this mode does not only have a group
of bubbles oscillating, but rather a small amplitude background coupled to it.

Other important implications are that the bubble-bubble interactions are never
small in large clouds, as each bubble feels many others, and that the strength of the
interactions, i.e., interaction parameter K , is essentially tuned by varying the ratio:

K = 〈R0〉
d

, (4.4)

where 〈R0〉 is the average static bubble radius and d the average distance between
bubbles (cf. [118]).

4.2.3 The Density of States (DOS)

The presence of interactions between the bubbles will lead to collective modes (like
the ones in Fig. 4.1(a1-a4)), which we can label with their resonance frequency. Like
any damped harmonic oscillator, each mode will have a Lorentzian response curve
whose width in frequency is of order 1/Q . An important quantity for a large array of
bubbles is the Density of States (DOS), D(ω). For a cloud of N bubbles, N D(ω)dω is
the number of modes with resonance frequency betweenω and ω+dω. In condensed
matter theory, the DOS is quite important for determining response properties. How-
ever, we are not aware of any previous systematic study of the DOS for collective bub-
ble oscillations.

4.2.4 Excitation field

In this study, we will focus the analysis of the response to the case in which the bubble
oscillations are driven by a homogeneous pressure field. This is the case most rele-
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vant for the patterned surface experiments, in which the wavelength of the sound is
much larger than the sample size. Results for spatially dependent pressure fields are
in principle accessible by our analysis, but we will not explored them here.

This type of driving leads to an averaging, weighted by the susceptibility of a mode
to in-phase excitation. Modes with lots of neighboring bubbles oscillating in anti-
phase are driven much less effectively than modes with more oscillations in phase.
Therefore, the fact that all bubbles are driven with the same phase, has important
implications for the response (examples shown in Fig. 4.1(b1-b4)).

4.2.5 The effect of viscous damping and number of bubbles on col-
lective dynamics

We already saw above that since the single-bubble Q-factor is large, viscous effects
on single bubble oscillations are typically small. But this is not necessarily so for col-
lective response. In the simplest case, the Q factor of collective modes is not very
different from that of a single bubble, so that its frequency response has a width of
order 1/Q . Actually, if we excite an array of N bubbles by a frequency ω, we will only
observe single-mode-like response if there are no other modes within a frequency
window of order 1/Q around ω. In other words, we will have

single mode response for N D(ω)/Q � 1,

multi-mode response for N D(ω)/Q� 1. (4.5)

Clearly, even though the quality factor Q may be large, the sharpness of the individual
mode resonances competes with the increase in number of modes N when the cloud
gets larger. Moreover, this effect is strongly dependent on the shape of D(ω): for low
frequencies, where D(ω) is found to be small, it is possible to observe single collective
mode response even for reasonable values of N (e.g. mode in Fig. 4.1(a1) vs. response
in Fig. 4.1(b1)), but for relatively high frequencies, where D(ω) is large, it is virtually
impossible to see single-mode behavior in response (e.g. modes in Figs. 4.1(a3-a4) vs.
response in Figs. 4.1(b3-b4)). So even though the damping itself is small, in the latter
case the effect of damping is large, through the overlap of the modes. These consid-
erations also affect the possibility to see localization effects of modes, accompanying
the discussion in Section 4.2.2 .

4.2.6 Polydispersity

In experiments, bubbles have different static radii, and hence have different individ-
ual bubble resonance frequencies. This is actually the most important source of dis-
order in this system, because bubbles which have similar single-bubble resonances
are resonantly coupled, those which have different ones are effectively only weakly
coupled. Consequently, even the introduction of polydispersity as small as a few per-
cent in an ordered bubble arrays will turn out to destroy most of the coherent collec-
tive modes of the ordered system. Note also that because of the long-range pressure-
mediated interaction, bubbles which are relatively far away but which have similar
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single bubble resonant frequencies can exhibit strong effective coupling. As a result,
the most important factor determining the spectrum is the polydispersity of the bub-
bles.

As we shall see, the strongly disordered modes are mostly found at higher fre-
quencies, where the D(ω) is also large (see Figs. 4.1(a3-a4)). In view of Eq. (4.5), upon
driving we will typically observe multi-mode response in this frequency range. The
averaging over many modes will turn out to wash out much of the disorder in the indi-
vidual modes: the average response is more coherent than one might have expected,
as it turns out to be concentrated at the edges of the sample, like in Fig. 4.1(b4). This
pronounced response of the bubbles at the edge of the bubble cloud qualitatively
resembles the experimental observations of [118, 119], where the phenomenon had
been called “shielding” of the inner bubbles. (Note however that in [118,119] the bub-
bles are oscillating in the non-linear regime so that no quantitative agreement can be
expected.)

In line with the above arguments, the lowest frequency modes are those where
many bubbles oscillate mostly in phase, Fig. 4.1(a1). These modes are less sensitive
to the disorder, and moreover, since the low-frequency density of states is very small,
upon driving these modes can be observed as isolated modes. The existence of a
low frequency collective response is qualitatively consistent with the experimental
observation of [123], who found the most pronounced frequency response of col-
lectively oscillating micromenisci around 150 kHz, though the resonance of a single
micromeniscus was around 800 kHz.

In this Chapter, we will only study bubble size distributions which are relatively
well peaked, e.g. like a Gaussian distribution with a width up to 20%, as this appears
to be the experimentally most relevant case. We have also explored distributions with
power law tails for small radii (like the Wigner distribution), as well as uniform dis-
tribution of finite width, and the obtained results are qualitatively similar with the
Gaussian ones.

4.2.7 Influence of geometry and geometric disorder

Geometric disorder, e.g. due to randomness in the placement of bubbles, appears to
have a relatively unimportant effect, provided that bubbles are never extremely close
to each other. We in fact see little difference between various ordered bubble arrays
(square, hexagonal, rhombic) and disordered bubble arrangements. This appears to
be due to the long-range pressure-induced interaction, which makes the coupling
quite insensitive to details of the local geometry.

4.2.8 Effect of dimensionality

In this Chapter, we focus on two-dimensional bubble arrays, both because of the rel-
evance to the recent experiments and because the modes and response are easier to
illustrate in two dimensions. We already saw above that because of the long-ranged
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interactions, the local geometry hardly matters. Likewise, many of our results will
carry over to three-dimensional arrays.

4.2.9 Localization

What sets our system apart from the usual systems displaying localization effects,
is the long-range nature of the interaction. We do see localization-like behavior in
the individual modes in quantities like the participation ratio, especially for extremal
bubbles at large polydispersity, but as we shall detail in Section 4.5.3 of this Chapter,
due to the long-range coupling between the bubbles, there is no true exponential
localization of the eigenmodes (as already mentioned in Section 4.2.2). Localization
effects that we observe play a limited role in the response: These modes are mostly
found in a frequency range where multi-mode averaging already washes out many of
the disorder effects on individual modes.

4.3 Oscillations of the bubbles

4.3.1 Extended Rayleigh-Plesset equation with driving

The dynamics of interacting bubbles in a cluster can be described with the extended
Rayleigh-Plesset equation (see e.g. [118,119,121,122]):

Ri R̈i + 3

2
Ṙ2

i = 1

ρ

[(
p∞

0 + 2σ

R0
i

−pv

)(R0
i

Ri

)3κ
− 2σ

Ri
+pv −4μ

Ṙi

Ri
− (p∞

0 −Pa sin(ωd · t))
]

− ∑
j �=i

R2
j R̈ j +2R j Ṙ2

j

ri j
, (4.6)

where Ri (t) is the radius of the i th bubble and R0
i its static value, ρ is the density of

the surrounding liquid, σ is the surface tension, μ is the viscosity, Pa is the pressure
driving amplitude, p∞

0 is the ambient pressure, pv is the vapor pressure and ri j the

distance between the center of the i th and the j th bubble. Since the sizes of bubbles
we are going to treat in this study are small (of order a few μm) compared to the
thermal diffusion length on the oscillation time scales, we will assume that the gas
inside the bubble follows an ideal gas law, modeled with the polytropic coefficient
κ= 1 ( [114], [131]). For simplicity we will neglect the pressure of the liquid vapor (for
water at 20oC it is only 0.023atm).

Small driving limit

In the limit of small driving, Pa � p∞
0 , Eq. (4.6) can be linearized about the static

values R0
i . This results in a set of coupled damped linear oscillators ( [132]. Switching
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to dimensionless variables by substituting Ri = R0
i (1+qi ) in (4.6), we get:

¨̃qi (t)+
∑
j �=i

√
R0

j R0
i

ri j

¨̃q j (t)+ 4μ

ρ(R0
i )2

˙̃qi (t)+(Ω0
i )2q̃i (t)= Pa

ρ(R0
i )2

( R0
i

〈R0
i 〉

)1/2
sin(ωd ·t), (4.7)

where q̃i (t) =
(

R0
i

〈R0
i 〉

)5/2

qi (t) is a rescaled displacement of the i th bubble to make the

equation symmetric in the bubble indices i and j , and ωd is a driving frequency. The
brackets 〈·〉 denote an average over the bubble size distribution. We also used the fact
that

(Ω0
i )2 = 3p∞

0

ρ(R0
i )2

+ 4σ

ρ(R0
i )3

, (4.8)

is simply the (squared) single-bubble resonance frequency, i.e., the resonance fre-
quency of each individual bubble i in the absence of damping and of interactions
with any of the other bubbles. This equation generalizes that of (4.1) given in the in-
troduction; as remarked there, the surface tension term is small for bubbles of radius
larger than several μm.

Eq. (4.7) is the linearized Rayleigh-Plesset equation with damping, coupling and
driving that is the starting point for our calculations. For simplicity we can rewrite
Eq. (4.7) in matrix form:

Ĉ | ¨̃q(t)〉+ ζ̂| ˙̃q(t)〉+ Ω̂|q̃(t)〉 = |P〉exp(−ıωd t), (4.9)

where we used a quantum mechanics-like notation |q̃〉 for the vector that contains
all the individual displacements q̃i of the bubbles. Ĉ is a symmetric coupling matrix
that has diagonal elements [Ĉ ]i i equal to 1 and off-diagonal elements [Ĉ ]i j equal to√

R0
i R0

j /ri j . ζ̂ is a diagonal friction matrix with elements [ζ̂]i i = 4μ/(R0
i )2ρ, while the

matrix Ω̂ is a diagonal matrix whose elements are simply the square of the single-
bubble resonant frequencies, [Ω̂]i i =Ω2

i . The driving term on the right hand side is

the vector |P〉 whose elements are Pi = Pa/(ρ(R0
i )2) · (R0

i /〈R0
i 〉)1/2. Depending on the

presence of polydispersity in our system, the approach to solving the matrix Eq. (4.9)
numerically differs. Therefore we will address each case separately.

4.3.2 Spectrum of the system

Monodisperse system

When the initial bubble sizes are all the same, ζ̂= ζ1̂, Ω̂=Ω2
01̂ and Pi is the same for

all the bubbles. To find all the resonant frequencies of the system, we need to solve
the homogeneous equation, i.e., without the driving term. We assume a solution of
the form |q̃(t)〉 = |u〉exp(−ıωt). Substituting this solution into Eq. (4.9) without the
driving, we can rewrite the equation in the eigenvalue form:

Ĉ |u〉 =
(Ω2

0 − ıωζ

ω2

)
1̂|u〉. (4.10)
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Let us first consider the eigenvalue equation without the damping (i.e., ζ = 0), and
denote its eigenvalues by ω̃i . These eigenvalues are real, and so are the corresponding
eigenmodes |ui 〉. The latter means that all the bubbles oscillate either in-phase or in
anti-phase (corresponding to a phase difference of π). We see that these eigenmodes
are also the eigenmodes of the damped case (ζ �= 0) in Eq.(4.10) (this is valid only for
monodisperse systems), while the eigenvalues become the complex frequencies:

ω±
i =− ıζω̃2

i

Ω2
0

±
ω̃i

√
4Ω4

0 −ζ2ω̃2
i

2Ω2
0

. (4.11)

The real part of this solution corresponds to resonant frequency of the mode, and the
imaginary part is the damping of the resonance (widths of the Lorentzians, 1/Q). We
choose for resonant eigenfrequencies the positive solutions, i.e., the ω+1.

In general, eigenmodes |u〉 are complex vectors, and the imaginary part describes
the phases with which bubbles oscillate. Only in the case of monodisperse bubbles
Im(|u〉)≡ 0 and consequently bubbles oscillate in phase or anti-phase.

Polydisperse system

In the case when the static bubble radii Ri are not the same, i.e., R0
i �= R0

j , the equation

of motion for the system becomes more complicated to solve. In cases like these it
is numerically convenient to go to (larger) phase space, and search for the solution
there. Eq. (4.9) without the driving will be rewritten in the following way:

ˆ̃C ẏ + ˆ̃Ωy = 0, (4.12)

where

y =
[ ˙̃q

q̃

]
; ˆ̃C =

[
0 Ĉ
Ĉ ζ̂

]
; ˆ̃Ω=

[−Ĉ 0
0 Ω̂

]
. (4.13)

The new variable y is a vector in the phase space formed out of the degrees of freedom
q̃ and their velocities ˙̃q . A solution has the form y = Φ̄e−γt , where the set {γi } are the
eigenvalues of C̃−1Ω̃, and the corresponding (complex) eigenvectors {Φ̄i } satisfy the

orthogonality relation Φ̄T
i C̃Φ̄ j = 0, for i �= j . Since ẏ =− ˆ̃C−1 ˆ̃Ωy , we again arrive at the

familiar eigenvalue problem:

ˆ̃C−1 ˆ̃Ω

[
Φ(1)

Φ(2)

]
= γ

[
Φ(1)

Φ(2)

]
. (4.14)

The imaginary parts of the eigenvalues {γi } are the resonant frequencies, and the real
parts are the damping rates2.

1We note in passing that it is easy to work out the above equations by hand for the instructive case of a
system of two bubbles. In this case the matrix Ĉ has off-diagonal terms due to the pressure-coupling. One
finds a lower-frequency in-phase mode and a higher-frequency anti-phase mode, which demonstrates a
general observation of Section 4.1.

2The formalism presented in this Subsection can, of course, also be used for treating the monodis-
perse systems. The only advantage of the monodisperse approach, described in Subsection 4.3.2, is the



86 Collective oscillations in bubble clouds

4.3.3 Response of the system to harmonic driving

Driving of the monodisperse system

We are interested in the long-time limit response of the system when driven with a
real frequency ωd . The following formulae are valid for arbitrary real frequency ωd ,
although in most of our presented results, we will set ωd to the resonant frequencies
of the system. We proceed by substituting the solution |q̃〉 = |W 〉e−ıωd t into the Eq.
(4.9), which then gives us:

(−ωd
2Ĉ − ıωdζ1̂+Ω21̂)|W 〉 ≡ Ξ̂|W 〉 = |P〉. (4.15)

To find the response vector we can act on the driving amplitude vector with Ξ̂−1. For
every driving frequency we have |W (ωd )〉 and these vectors are complex because of
the presence of damping. The response of the system written in terms of the eigen-
vectors of the undriven system is:

|W (ωd )〉 =
n∑

j=1

〈u j |P〉
−ωd

2(Ω2/ω̃2
i )− ıωdζ+Ω2

|u j 〉. (4.16)

According to this equation, the response of the system can be thought of in terms of
the sum of many independent damped harmonic oscillators (the modes), each one
of which has a response given by the factor in the denominator. This is precisely the
picture which underlies the discussion of Section 4.2.5 of the distinction between the
single-mode response and the multi-mode response. Moreover, the extent to which
each mode is excited, is given by the overlap 〈u|P〉; as discussed below, we will refer
to it as the ‘excitability’ of a mode. Since |P〉 is a vector with only positive items, this
excitability is largest for the modes where all bubbles oscillate in phase, and zero for
perfectly antisymmetric modes. Cf. the discussion in Section 4.2.4.

Driving of the polydisperse system

We now apply the driving P̃ (t) to the coupled polydisperse bubble system eq. (4.12),

ˆ̃C ẏ + ˆ̃Ωy = P̃ , where P̃ (t)=
[

0
P (t)

]
. (4.17)

To find the response, we need to go to the undriven eigenbasis. The calculation is
tedious, but the final form is a straightforward generalization of Eq. (4.16) for the
monodisperse case,

|W (ωd )〉 =
2n∑
j=1

〈Φ(2)
j |P〉

γ j − iωd
|Φ(2)

i 〉. (4.18)

As already mentioned above, it is convenient to introduce the excitability in con-
nection with the driving — it describes the overlap between the eigenmode |ui 〉 of

dimensionality of the solution space: instead of searching for N solutions in 2N -dimensional space, we
are searching it in N -dimensional space.
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the system (|Φ(2)
i 〉 for the polydisperse system) and the driving amplitude vector |P〉,

i.e., χi
M = 〈ui |P〉 (χi

M = 〈Φ(2)
i |P〉). This quantity tells us if an eigenmode can be excited

when the system is driven with a certain resonant frequency. Keep in mind, however,
that the weight of an eigenmode in the response is also determined by the resonance
curve factor (e.g. Eq. (4.16)) and by the interference between modes. We will also
present the response excitability, which represents the overlap between the response
vector and the driving amplitude χi

R = 〈W (ωd )|P〉, as well as absorption, which is
defined as the dissipated energy during one period of driven oscillation and given
by the imaginary part of the overlap of the response and driving vectors (absorption
∼∫2π/ω

0 d tRe(〈P |eiωt )Re(|W 〉)∼ Im(〈P |W 〉)).

4.3.4 Localization of vibrations

We will now explore the localization behavior of the eigenvectors of the system and of
the response to driving. A standard way to explore this is by looking at the behavior
of the so-called participation ratio P (ω), which is defined as follows:

P (ωi )= 1

N

(
∑

j |v j
i |2)2

∑
j |v j

i |4
. (4.19)

Here the |vi 〉 are either the eigenmodes |ui 〉 of the system (|Φ(2)
i 〉 for the polydisperse

system), or the response vectors |W (ωi
d )〉. If P (ωi ) is of order 1 it means that the mode

(response) is extended, and if it is of order 1/N the mode (response) is normally called
localized. However, we will later show that due to the long-ranged interactions, this
picture is over-simplified.

4.4 Results: Monodisperse bubbles on a lattice

Although in experiments bubble polydispersity is always present, in the interest of de-
veloping intuition about the system we first consider an “idealized” case of monodis-
perse bubbles on a lattice.

4.4.1 Undriven system

As explained in Section 4.1, we perform numerical simulations of clusters of bub-
bles, whose dynamics is described with the linearized extended Rayleigh-Plesset Eq.
(4.7). Most of the presented results are for system sizes N ∼ 1000 bubbles in 2D. We
study some of the behavior for system sizes N ∼ 10000 to check for finite size ef-
fects. Parameters that we use in simulations are: damping constant μ = 2 ·10−3Pa s,
density of water ρ = 103kg /m3, surface tension σ = 0.073N/m, atmospheric pressure
patm = 101.325kPa, static bubble radius R0 ≈ 5μm and pitch d = 200μm, and we
explore three different geometries — rhombic, square and hexagonal. With these pa-
rameters Eq. (4.8) gives a single bubble resonant frequency Ω0 ≈ 4M H z. Frequencies



88 Collective oscillations in bubble clouds

0

π

 −π

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Six eigenmodes of the undriven monodisperse 2D bubble cluster. For this
illustration we chose (going from left to right in rows) the 1st, 3rd, 5th, 9th, 1128th and
1218th mode of the system with 1225 bubbles in rhombic geometry. The radii of the
circles in the plot are proportional to the amplitude of the oscillation and the color
shows the phase. Note how in the eigenmodes bubbles oscillate either in phase or in
antiphase.

will be plotted in units of Ω0. The corresponding values of the sharpness of the reso-
nances Q , defined in (4.3), and the interaction parameter K , defined in (4.4), are then
Q0 
 25 and K0 = 1/40 (we label these reference values with a subscript 0). These
quantities will be different when we consider polydisperse systems in Section 4.5.

Spectrum

Starting from Eq. (4.9), we solve the undriven eigenvalue problem, and obtain eigen-
modes and eigenvalues. A few of the obtained eigenmodes (from different parts of
the spectrum) are shown in Fig. 4.2. The size of the bubbles is proportional to the
amplitude of the oscillation and the color shows the phase. Note how, in agreement
with the earlier analysis in Section 4.3.2, in the eigenmodes bubbles oscillate either in
phase or in antiphase, giving the modes their plane-wave like structure. Although dif-
ferent arrangements of the bubbles (rhombic, hexagonal,...) naturally have different
symmetry axes, the general features of the mode profile remains robust, as already
indicated in 4.2.7.

A histogram of the resonant frequencies (real parts of the eigenvalues), i.e., the
density of states (see Section 4.2.3), for different system sizes in rhombic geometry
is shown in Fig. 4.3(a) in both linear (main panel) and semi-logarithmic (inset) scale.
There is a pronounced peak in the spectrum at the single bubble resonant frequency.
As in [123], we also observe resonant frequencies much lower in the spectrum, whose
origin lies in the acoustic coupling of the bubbles. Some of these collective low-
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Figure 4.3: (a) Density of states for the 2D monodisperse bubble cluster in rhom-
bic geometry on a log-linear scale. Different curves represent different system sizes.
Note the pronounced peak in the spectrum at the single bubble resonant frequency.
As mentioned in Section 4.1, due to the coupling between the modes, there are reso-
nant frequencies in the spectrum lower than the single bubble one. Arrows mark the
value in the DOS, where the response changes from single-mode to multi-mode one
(as defined in Subsection 4.2.5). (b) Scaling of the lowest frequency mode with the
increase of the system size. The value of the lowest frequency is rescaled with N 1/4 to
emphasize the asymptotic approach to a constant value in the thermodynamic limit.

frequency modes are depicted in Fig. 4.2(a-c). The arrows in the inset of Fig. 4.3(a)
mark the crossover from the single-mode behavior (N D(ω)/Q� 1) at low frequencies
to multi-mode response at higher frequencies. Clearly, for these parameters only one
or a few isolated low-frequency modes can be observed in response.

Fig. 4.3(b) shows the finite size effects for the lowest frequency mode, where all
bubbles oscillate in phase, and the mode is of course of the size of the system. It is
damped the least and scales with the system size as ω2

lowest ∼ 1/L = 1/N 1/2. This

behavior is different from the usual ω2
lowest ∼ 1/L2 scaling in systems described by

the wave equation, and originates in the long-range interaction of the bubbles in a
cluster3. To emphasize the finite size effects we rescale the lowest frequency with
N 1/4 in this figure. Note that systems with N ∼ 1000 are large enough to capture the
essential behavior of the bubble clusters. As in the case of modes, the geometry does
not play a significant role (see also Section 4.2.7).

Mode participation ratio

Examples of eigenmodes presented in Fig. 4.2 indicate an extended nature (they are
spanning the system). To quantify this behavior, for every eigenmode we calculated
the participation ratio defined in Section 4.3.4. This result is shown in Fig. 4.4 for dif-
ferent system sizes and rhombic geometry at the resonant frequency of each mode.

3The way to understand this scaling is as follows: Starting from Eq. (4.10), in which we can ignore the
damping, and noting that the lowest mode is approximately uniform, we see that in the large-N limit the

scaling-structure of the equation is such that ω2 ∫L
0 r dr (R0/r )∼ω2L ∼Ω2

0. Hence ω∼ L−1/2 ∼ N−1/4.
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Figure 4.4: Participation ratio of the eigenmodes as a function of the rescaled reso-
nant frequency. Data points are joined by lines for clarity. Different curves repre-
sent different system sizes, and the geometry we use is rhombic. Eigenmodes of the
monodisperse system are collective plane-wave like modes that span the system and
are of extended nature.

Except for the lowest frequency modes, that are extended throughout the system
(PM (ω)∼ 1) the rest of the modes form a plateau with an average PM (ω)∼ 0.4. In this
idealized case of monodisperse bubble clusters, there are no truly localized eigen-
modes (modes where the motion is localized on a single bubble or a small group of
bubbles), only plane-wave like collective modes. This behavior is independent of the
geometry of the problem.

4.4.2 Driven system

As stated in the Section 4.2.5, the analysis of the response to driving presents us with
an unexpected effect, namely the effective damping, which washes out features in the
response. In this Subsection we present additional details and results.

Response participation ratio and response excitability

A few characteristic examples of the response of the system to uniform driving with
resonant frequencies (Eq. (4.16)) are shown in Fig. 4.5. Except for the first few re-
sponses (driving with the lowest frequencies) that have plane-wave like structure
(Fig. 4.5(a-c)), the rest of the response patterns are similar and dominate at the sys-
tem boundaries (representatives shown in Fig. 4.5(d-e)). This property is also clearly
measured by the participation ratio of the response vectors, shown in Fig. 4.6(a) for
three different system sizes and rhombic geometry. Namely, for most of the driving
frequencies in the spectrum the response participation ratio defined in Section 4.3.4
is PR (ω)� 0.3 and decreases with the increasing system size, indicating a boundary
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Figure 4.5: Response of the monodisperse 2D cluster of 1225 bubbles, when driven
with (going from left to right in rows) the 1st, 3rd, 5th, 50th, 107th and 1107th resonant
frequency. The radii of the circles around the bubble locations are proportional to the
amplitude of the oscillation and the color shows the phase. Note how the response
fields are featureless for driving above the lowest eigenfrequencies, due to both the
overlap of many modes which washes out single-mode effects, and because modes
with strong out-of-phase oscillations couple weakly to the uniform pressure driving,
as discussed in Sections 4.2.4 and 4.2.5.

confinement4. The thickness of the boundary layer monotonically decreases with
rising ωd . This is clearly visible also in Figs. 4.5(d-f).

Figures 4.5(d-f) indicate an important clue for understanding the nature of these
response fields. One can see that the majority of bubbles oscillate almost in phase
with the driving. This leads to resemblance between the response and the uniform
driving field, as captured by the upswing in the response excitability, Fig. 4.6(b) (in-
troduced in Section 4.3.4). We find this behavior to be robust to introducing disorder.
It is intriguing that in the experiments of [118], the observed oscillations resemble the
low and high frequency response fields (the ones with high χR (ω)).

Mode excitability and contributions

We interpret the absence of extreme sensitivity on ω as it is seen in the mode partic-
ipation ratio (cf. fig. 4.2) and the almost in-phase oscillation as a consequence of the
excitation of many modes (as N D(ω)Q � 1, see the explanation in Section 4.2.5). To
illustrate this point, we analyze the eigenmode content of the response fields. Accord-
ing to Eq. (4.16), the eigenmode enters the response weighed by two factors: (i) the
mode excitability (defined in Section 4.3.4) and (ii) its Lorentzian (i.e., the mode reso-

4Obviously, these are not localized responses in the sense of Anderson localization (i.e., due to disorder),
but are corresponding to edge states in finite systems.



92 Collective oscillations in bubble clouds

0.0

0.2

0.4

0.6

0.8

1.0

Rhombic
Square
Hexagonal

N = 1600
N = 3600
N = 10000

N = 10000

Rhombic geometry

Ω �
�

P R

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Ω���0

Rhombic
Square
Hexagonal

N = 1600
N = 3600
N = 10000

N = 10000

Rhombic geometry

Χ
�Ω

�
R

(b)

Figure 4.6: (a) Participation ratio of the response vs. scaled driving frequency for
three different system sizes and rhombic geometry. Apparently localized response
corresponding to driving with high frequency modes, is actually an edge response
restricted to the system boundaries. The inset shows robustness of the behavior of
the P (ω) to the change of the geometry. (b) Response excitability vs. scaled driving
frequency for different cases as in (a). The response field resembles the uniform driv-
ing amplitude when the system is driven with the lowest frequency mode or with
the modes at the high end of the spectrum. Inset shows the robustness to geometry
change. In both (a) and (b) panels, data points are connected with lines for clarity.

nance curve) evaluated at the driving frequency. The normalized value of the first fac-
tor rapidly decays towards zero across the spectrum, except for the lowest mode for
which it is normalized to one, Fig. 4.7(a)5. However, the resonance factor controlled
by the mode Q-factor (see Section 4.2.1) singles out modes closest to the driving fre-
quency. The final contribution of the eigenmodes is determined by an interplay of
these two numbers; we plot characteristic outcomes in Fig. 4.7(b1-b4).

Due to its excitability, the lowest mode always contributes significantly,
Fig. 4.7(b1-b4). However, the striking result is that since the density of modes is large
(except for a few lowest, the rest∼ N eigenmodes are clustered around the single bub-
ble resonant frequency, Fig. 4.3(a)), the single mode resonance width (i.e., the inverse
Q-factor of the mode) is always large enough to allow many modes in the vicinity of
ωd to be excited (see already Section 4.2.1 and 4.2.5). This effect leads to cancellation

5Note that due to the symmetry, half of the modes are antisymmetric, and therefore have zero excitabil-
ity.
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Figure 4.7: (a) Excitability of eigenmodes, normalized by the value for the lowest
mode for three different system sizes and rhombic geometry. Note that for clarity data
points between resonant frequencies have been connected by straight lines. Due to
the symmetry, only half of the modes can be excited. Except for the lowest mode that
resembles the driving amplitude, the excitability of the rest of the modes falls to zero
quickly across the spectrum. This behaviour is robust to the change of the geome-
try (not shown here). (b1-b4) Eigenmode contributions to the typical responses for
a system of N = 1225 bubbles and rhombic geometry. Considerable contribution of
the lowest eigenmode is present in every response. When the system is driven with a
frequency from within the peak of the density of states, many modes with resonant
frequencies close to this value contribute almost equally to the response, (b4).

of detailed features of eigenmodes and to the “multi-mode” synchronized oscillation
of bubbles in the response field. Fig. 4.7(b4) is a representative case, where the driving
frequency falls inside the peak of the density of states, leading essentially to excitation
of all the modes.

In terms of the sharpness of collective resonances (introduced in Section 4.2.5)
and the mode density, the resonance width D(ω)/Q ∼ D(ω)μ/〈R0〉 needs to be� 1/N
for individual modes to be seen. In the presented data so far we did not include results
with varying Q-factor (i.e., bubble radii or viscosity) or interaction parameter K (i.e.,
bubble radii or pitch). Indeed, the focus of this section was on varying system size
and geometry, since the formalism presented in Section 4.3 is numerically simpler for
the case of monodisperse bubbles, allowing us to study large systems and finite size
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effects. We will vary Q and K for the more experimentally relevant case of disordered
clusters in the next Section 4.5.

4.5 Results: Polydisperse bubbles on a lattice

After gaining understanding of the behavior of the “ideal” monodisperse case in the
previous Section, we can proceed with introducing disorder into the system. As ex-
plained in the Introduction, the experimental parameter space is vast. The system is
most sensitive to the changes of polydispersity of static bubble radii (Section 4.2.6),
the sharpness of collective resonances (Section 4.2.1 and 4.2.5), and the interaction
parameter (Section 4.2.2). In this Section we vary these parameters.

4.5.1 Weak disorder

To get an intuition of what happens to the spectrum of the 2D bubble cluster when
we introduce polydispersity, we first draw static bubble radii from a Gaussian distri-
bution with a small width of 1%. To be able to compare the results with the ones
of the monodisperse case, the Gaussian distribution is centered around the param-
eters we have used in the previous section, namely the ambient radius R0 = 5μm
and the bubble distance d = 200μm. All other parameters are fixed at the values of
the previous sections. Beside introducing polydispersity, we will also vary Q and K ,
through varying the aforementioned parameters, and express them in the units of
Q0 ∼ Rmono

0 /μmono and K0 ∼ Rmono
0 /dmono . The data presented in this subsection

are for systems of N = 1225 bubbles.

Spectrum

The main effect on the properties of the system, when disorder is introduced, is the
appearance of (quasi)localized eigenmodes at the high-frequency end of the spec-
trum, Fig. 4.8(b) (black dashed curve). An example of a quasi-localized mode is given
in Fig. 4.8(2) — from here on we refer to panels illustrating examples of eigenmodes
or response as Fig. 4.8(2) etc. The value of 1% polydispersity is enough to localize a
significant fraction of the eigenmodes. These quasi-localized modes have amplitudes
concentrated on a group of bubbles, with some resemblance to the coherent waves
of the monodisperse system.

At this point we can compare the influence of the three control parameters on the
density of states. Compared to the monodisperse case Fig. 4.8(a) (black solid line), in-
troducing the polydispersity broadens the density of states, Fig. 4.8(a) (black dashed
line). The broadening is accompanied with a shift of the peak position towards fre-
quencies belowΩ0 (this will become more obvious with the increase of polydispersity
in the next subsection, Fig. 4.12(a)).

The Q-factor, i.e., the width of the collective resonances, is not expected to in-
fluence the spectrum, i.e., the positions of the collective resonances as long as Q is
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Figure 4.8: Spectrum, example modes, and mode participation ratio for systems with
disorder: (a) Density of states for a system of N = 1225 bubbles. Initial bubble radii
are coming from a Gaussian distribution with the width of 1%. Different curves are
for different value of the interaction parameter: the black dashed curve is for param-
eters as in the monodisperse case (solid black line), but with 1% of polydispersity;
the gray dash-dotted one is for the case of average bubble radii being five times big-
ger (this also increases the sharpness of the resonances, which by itself has negligible
influence on D(ω)); the solid gray line is for the case in which the interaction param-
eter K is thirteen times as strong. Note how the spectrum broadens once disorder is
introduced. The inset shows the same data as in the main panel, but on a semi-log
scale. (b) Mode participation ratio for systems as in (a). Even 1% of polydispersity lo-
calizes modes at the high-end of the spectrum. This effect is clearly seen in the inset
of (b) where we plot PM for the monodisperse (black solid line) and 1% polydisperse
(dashed black line) cluster. To emphasize the effects of disorder, in (1) and (2) we
are plotting examples of modes that have approximately the same eigenfrequency,
ω/Ω0 ≈ 1 (marked in fig. 4.8b), but are either coming from the monodisperse (1) or
1% polydisperse (2) spectrum, respectively. Once K is increased (Section 4.2.2), local-
ization gets suppressed, as captured with the solid gray line in (b). This can also be
seen in the example mode (3) (again for ω/Ω0 ≈ 1), that starts to recover plane wave
like behavior. In both the (a) and (b) panels, data points are connected by lines for
clarity.
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large. Indeed, a five-fold change of the Q-factor through increase of 〈R0〉 (with K kept
constant by corresponding change of pitch d) introduces a negligible broadening of
the DOS peak, which we therefore do not plot. (However, the Q-factor will become
crucial for response.)

The interaction parameter K tends to shift the peak to higher frequencies while
significantly broadening it, Fig. 4.8(a) (dash-dotted and solid line). The stiffening of
the oscillators is due to the increased interaction strength, see also Section 4.2.2. An-
other consequence of the stiffening is the suppression of the localized eigenmodes
at the high end of the spectrum, Fig. 4.8(b)(dot-dashed and solid line) and mode de-
picted in Fig. 4.8(3).
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Figure 4.9: Main panel: Response participation ratio as a function of driving fre-
quency for a system of N = 1225 1% polydisperse bubbles. Panels (1-4) show re-
sponse fields of different systems, driven with ω/Ω0 ≈ 1. For 〈Q〉 = Q0 and K = K0

(see Section 4.4), black dashed line, PR (ω) does not noticeably differ from the result
of the monodisperse case. This can be seen when comparing panels (1) (response of
the monodisperse system), and (2) (response of the 1% polydisperse system). Once
we change 〈Q〉, through changing μ, and K , through changing d , oscillations in the
plateau of PR (ω) are introduced, which originate from PM (Fig. 4.8(b)) and P mono

M
(Fig. 4.3(b)) respectively. This can also be seen in panels (3) and (4) where a response
of systems with 〈Q〉= 4Q0,K = K0 and 〈Q〉 =Q0,K = 13K0 respectively is plotted. In
the main panel, data points are connected with lines for clarity.

The response fields strongly resemble the monodisperse case, with a mostly fea-
tureless edge character for driving at frequencies within the peak of the density of
states (Fig. 4.9(2)), and a plane wave like shape for low-frequency driving. The pres-
ence of disorder manifests itself in slight random variation of the bubble oscillation
phase in the response. Although the high frequency eigenmodes are progressively
more localized towards the spectrum edge, the density of states remains high enough
for effective damping to wash out features of the response to even the highest fre-
quency driving.

Following the discussions in Section 4.2.5 and at the end of the previous Sec-
tion, we expect that an increase of the Q-factor counteracts the tendency of effective
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damping at a given density of states in the spectrum around the driving frequency.
In other words, there is a shift towards a single mode response, as the weight is fo-
cused to fewer modes in the response (see Section 4.2.5). We indeed see in Fig. 4.9(3)
that the edge like response fields obtain local features, resembling the eigenmode
shapes. On the other hand, the increase of K introduces a plane wave like modu-
lation (Fig. 4.9(4)), resembling the ideal system eigenmode shape. The increase of
interactions between bubbles causes local out of phase (“optical-like”, as standardly
called in condensed matter physics) oscillations and weakens the effect of disorder.

Mode and response participation ratio

We also observe this change by analyzing the behavior of the mode and response par-
ticipation ratios PM (ω) and PR (ω). In the mode participation ratio, PM (ω), there are
characteristic oscillations within the plateau (at PM ≈ 0.4), which are not sensitive to
the change of the Q-factor and K . The main panel of Fig. 4.8(b) demonstrates this ro-
bustness to changes in both the Q-factor and the interaction parameter through the
mean initial bubble radius 〈R0〉 (the curves have similar oscillation features, except
for spanning different ranges in frequency). Looking at the response participation
ratio PR (ω) however reveals no oscillations when the Q-factor is kept at lower val-
ues, Fig. 4.9 (black dashed line). As the Q-factor is increased by changing μ (Fig. 4.9
gray dot-dashed line), the oscillations characteristic of the mode participation ratio
PM (ω) appear in the plateau of PR (ω). This is a manifestation of the increasingly “sin-
gle mode” nature of the response as the resonances are sharpened (i.e., Q-factor in-
creased). There is an increased resemblance of the response and eigenmode shapes
at a given (driving-, and eigen-) frequency. On the other hand the increase of the
interaction parameter produces the same end result of oscillations of PR , but in a
slightly different way: the response fields pick up the ideal system eigenmode shapes
and consequently the oscillations from PM of Fig. 4.4.

Frequency response and absorption

We now address the implications of our results on experimentally observable quanti-
ties. We therefore study both the frequency response εR and the absorption of the sys-
tem, when driven uniformly with some frequency ω, taken to be in the range 0 to 3Ω0.
In Fig. 4.10(a) we show the frequency response for three different sets of values of
Q and K . The pronounced peak in the case of 〈Q〉 = Q0 and K = K0 (dashed black
line) is the response positioned at the lowest frequency mode. This mode is the least
damped one, and follows the uniform driving the most, therefore giving the strongest
response. Inset shows a zoom-in of the main panel, where one can see a second, sig-
nificantly smaller peak, corresponding to the response at the second lowest frequency
mode. Once we increase the 〈Q〉 factor (dot-dashed gray line), existing peaks become
more pronounced, and additional peaks appear (see inset) as is expected when the
mode Lorentzians are narrower. As we have learnt from the density of states of the
system with increased interaction parameter K (Fig. 4.8(a)), the spectrum becomes
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broader and stretches to lower frequencies, therefore shifting the response peak.
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Figure 4.10: (a) Frequency response of the system of N = 1225, 1% polydisperse bub-
bles to uniform driving. Contrary to previous plots, where data points at resonant
frequencies are connected by straight lines, here the frequency is varies continuously.
The pronounced peak in the case of 〈Q〉 =Q0 and K = K0 (dashed black line) is the re-
sponse at the lowest frequency mode. Inset shows a zoom-in of the main panel, where
one can see a second, significantly smaller peak, corresponding to the response at the
second lowest frequency mode. Once we increase the 〈Q〉 factor (dot-dashed gray
line), existing peaks become more pronounced, and additional peaks appear (see
inset) as expected. Increasing interaction parameter K stretches the spectrum, and
therefore moves the resonant peaks to lower frequencies, at the same time lowering
their intensity. (b) Absorption, defined as the time averaged dissipated energy under
driving for systems as in (a).

The absorption gives the time averaged dissipated energy under driving. When
driving is at resonant frequency of a mode, that mode contributes to absorption pro-
portionally to its damping coefficient and the overlap between the mode and the uni-
form driving vector (cf. Section 4.3.3). In Fig. 4.10 (b) we show the absorption curves
for three different sets of values of Q and K as in (a). Although intuitively one ex-
pects high absorption for the modes with highest damping, which is the case for the
highest-frequency modes of the system, we find the highest absorption around the
lowest resonance, which is weakly damped but has the largest overlap with the uni-
form driving (dashed black curve). Increase of the sharpness of the resonances lowers
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Figure 4.11: Six eigenmodes of the undriven, 20% polydisperse 2D bubble cluster. For
this illustration we chose (going from left to right in rows) the 1st, 3rd, 5th, 107th,
507th and 1107th mode of the system with 1225 bubbles in rhombic geometry. The
radii of the circles around the bubble location are proportional to the amplitude of the
oscillation and the color shows the phase. Note the strong Anderson-like localization
of the eigenmodes.

the damping and therefore the absorption (dot-dashed gray line).

4.5.2 Strong disorder

In this subsection we present results for the case of strongly disordered bubble clus-
ters on a lattice, where we impose 20% of polydispersity in initial bubble sizes. At this
level of disorder, Anderson localization of modes is dominant and has a strong impact
on the response to driving. The main effects of strong disorder on the response, that
we present in this subsection, are the appearance of quasi-localized low-frequency
and high-frequency modes and optical-like delocalized high-frequency modes.

Spectrum

Demonstrative examples of eigenmodes in the presence of strong disorder are shown
in Fig. 4.11. In the lowest frequency modes of Fig. 4.11(a-c) the underlying plane wave
like pattern is still visible with an addition of a few strongly oscillating bubble groups,
constituting a so-called quasi-localized mode. The rest of the spectrum is populated
with very localized or quasi-localized modes, typical examples of which are shown in
Fig. 4.11(d-f). The mode participation ratio, presented in Fig. 4.12(b), captures the
localization behavior well. Even the lowest modes show PM � 0.4, whereas most of
the spectrum has PM ∼ 1/N , i.e., is localized on the single bubble level. The inter-
action parameter K induces the same qualitative change as in the low disorder case,
suppressing localization (less effectively in the high-end tail of D(ω)).
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Figure 4.12: Spectrum, example modes and mode participation ratio for systems with
disorder: (a) Density of states for a system of N = 1225 bubbles. Initial bubble radii
are coming from a Gaussian distribution with the width of 20%. Different curves are
for different value of the interaction parameter: the black dashed curve is for parame-
ters as in the monodisperse case but with 20% of polydispersity; the gray dash-dotted
one is for the case of average bubble radii being five times bigger (this also increases
the sharpness of the resonances, which by itself has negligible influence on D(ω));
the solid gray line is for the case of pitch decreased ≈ 13 times. For comparison we
also included D(ω) of the monodisperse system, solid black line. Note how the spec-
trum broadens with the increase of disorder. The inset shows the same data as the
main panel on a semi-log scale, with the monodisperse system omitted. (b) Mode
participation ratio for systems as in (a). 20% of polydispersity localizes almost all
modes (dashed black line) compared to the monodisperse case (solid black line). To
emphasize the effects of disorder, in (1) and (2) we are plotting examples of modes
that have approximately the same eigenfrequency, ω/Ω0 ≈ 1, but are coming from
the monodisperse and 20% polydisperse spectrum respectively. Once K is increased
(Section. 4.2.2), localization gets suppressed, as captured with the solid gray line in
(b). This can also be seen in the example mode (3) (again for ω/Ω0 ≈ 1), that starts to
recover plane wave like quality. In both (a) and (b) panels, data points are connected
by lines for clarity.
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Figure 4.13: Response of the 20% polydisperse 2D cluster of 1225 bubbles, when
driven with (going from left to right in rows) the 1st, 3rd, 5th, 107th, 507th and 1107th
resonant frequency. The radii of the circles around the bubble locations represents
the amplitude of the oscillation and the color shows the phase. Examples (b) and
(c) are good representatives of the quasi-localized response fields, and (f) shows an
example of a delocalized optical-like high-frequency response.

As mentioned in the previous subsection, the density of states differs significantly
from the monodisperse case, Fig. 4.12(a). The previously sharp single bubble reso-
nance peak (solid black line) becomes wide, and somewhat shifts to lower frequen-
cies (dashed black line). A long tail appears in the D(ω) up to 3Ω0, sparsely popu-
lated by very localized modes — an example of a quasi-localized mode is depicted
in Fig. 4.12(2). The increase of the interaction between the bubbles and sharpness
of the resonances parameters induce the same qualitative changes as in the low dis-
order case. Localization and quasi-localization of the modes is captured by the PM ,
Fig. 4.12(b). Compared to the monodisperse case (solid black line and example mode
depicted in Fig. 4.12(1)), 20% of polydispersity localizes all the modes, dashed black
line and example mode depicted in Fig. 4.12(2). Once the interaction parameter is
increased, like in the low-disorder case, modes start to recover the plane-wave like
character (Fig. 4.12(3)).

Response fields and response participation ratio

In the response fields, Fig. 4.13, there is a recognisable underlying pattern similar to
the low-disorder case (plane-wave and edge like response), on top of which there is a
large number of single bubble oscillations with rapidly fluctuating phases. This can
be understood as an effect of the broadening of the density of states, which causes the
mechanism of effective damping to be less efficient, Fig. 4.15. The fluctuating phase
pattern that appears in the response field is then due to the underlying eigenmode. A
consequence of the observations above is that the response fields show localization.
This is manifested in the calculated participation ratio, which is plotted in Fig. 4.14
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Figure 4.14: Response participation ratio of a system of N = 1225, 20% polydisperse
bubbles. Response to driving with frequencies within the peak of the now broad D(ω)
is localized, while PR (ω) increases for high-frequency driving (dashed black curve),
where the modes are sparse and effective damping suppressed (response to driving
with the highest frequency is shown in (2)). Once K or Q are increased (dash-dotted
and solid gray line, respectively), the high-frequency response becomes localized, but
in different ways, see main text. The effect on the highest resonant frequency driving
is shown in (3) and (4). The solid black curve shows the data for the monodisperse
system as a comparison. In the plots, data points are connected by lines for clarity.

(dashed black curve). It is interesting to note that in the eigenmodes the disorder
produces a large variation of amplitudes as well as phases at the single bubble level,
while in the response fields it is mostly the phase that significantly fluctuates.

A surprising feature is that the above explanations fail in the case of highest
driving frequencies, where the response becomes delocalized (as in Fig. 4.13(f) and
Fig. 4.14(2)). We can however understand this by observing that the highest part of
the spectrum Ω�ω� 3Ω is very sparse, containing just a few modes. This allows the
lowest mode, which is off-resonance but has 〈P |ui 〉 ∼ 1, to dominate the contribution
of the very few highest near on-resonance eigenmodes, which have 〈P |ui 〉 ∼ 0. As we
increase the Q-factor, the highest frequency modes become more localized, giving a
more localized response. With increased interaction parameter, the response shifts
towards the monodisperse response, with a pronounced edge-like structure.

Response excitability and mode contributions

The basic influence of the sharpness of the individual resonances and interaction pa-
rameter of bubble-bubble interactions parameters is qualitatively the same as for low
disorder. In this case, increasing any of the two leads to localization of the highest
driving frequency responses, albeit through different mechanisms, Fig. 4.14. With
increasing sharpness, i.e., increase of the resonance factor for the highest modes, the
contribution to response shifts away from the lowest mode, Fig. 4.15(b). The response
becomes quasi-localized, resembling the highest eigenmode coupled to a uniform
background. On the other hand, increasing K causes the system to behave more sim-
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Figure 4.15: (a) Response excitability of a system of N = 1225, 20% polydisperse bub-
bles. For most of the driving frequency range, χR behaves as in the low-disorder case
(black solid line). As we drive the system with highest eigenfrequencies, response
starts to look like the uniform driving field considerably. Increasing Q localizes the
response, hence reducing the resemblence to the driving. (b) Eigenmode contribu-
tions to the typical responses. Compared to the low-disorder case, the contribution of
the lowest eigenmode is not significantly higher in every response. When a system is
driven with a frequency within the now broad peak of D(ω), a number of modes � N
gets excited (i.e., effective damping is less efficient), making the eigenmodes more
visible in the response. Insets show the influence of the Q-factor and K parameters.
In both (a) and (b) panels, data points are connected with lines for clarity.

ilarly to the ideal system (see also the discussion in Section 4.5.1), and the response
acquires the familiar edge shape along some local disorder events, again leading to
localization, but of the edge type. The plot of response excitability, Fig. 4.15(a), shows
that the highest driving response resembles the inform driving field the most (dashed
black curve), but localizes at higher values of K or Q .
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Figure 4.16: (a) Frequency response of the system of N = 1225, 20% polydisperse bub-
bles to uniform driving. The pronounced peak in the case of 〈Q〉 = Q0 and K = K0

(dashed black line) is the response at the lowest frequency mode. Inset shows a zoom-
in of the main panel, where one can see a second, significantly smaller peak, corre-
sponding to the response at the next few lowest frequency modes. Note that the ra-
tio of the primary and secondary peak heights is smaller here than at low disorder
(Fig. 4.10). Once we increase the 〈Q〉 factor (dot-dashed gray line), existing peaks be-
come more pronounced, and additional peaks appear (see inset) as expected (More
peaks appear than at low disorder, inset of Fig. 4.10(a), since here the modes are more
sparse). Increasing interaction parameter K stretches the spectrum, and therefore
moves the resonant peaks to lower frequencies, at the same time lowering their in-
tensity. (b) Absorption, defined as the time averaged dissipated energy under driving
for systems as in (a).

Frequency response and absorption

Fig. 4.16 shows the frequency response and the absorption (Section 4.3.3) results for
the strongly disordered systems. The essential features are interpreted in the same
way as for the low disorder case, Section 4.5.1. The higher amount of polydispersity
however explicates two main effects of disorder. Firstly, the low density of modes at
lower frequencies is responsible for the appearance of more pronounced secondary
peaks in the frequency response, (Fig. 4.16(a)). Secondly, the relative intensity of the
primary and secondary peaks changes considerably. At 1% polydispersity the ratio
was around 100, while in the present case of 20% polydispersity it is lowered to around



4.5 Results: Polydisperse bubbles on a lattice 105

60. This parameter is easily accessible to experiments, and was considered in the
analysis of micromeniscus oscillations [123], where the numerical model predicted a
much higher ratio than found in the measurement data. In that work, disorder is not
explicitly taken into account, while our results suggest it may be a decisive factor. The
overall absorption becomes lower with the introduction of more disorder, Fig. 4.16(b).

4.5.3 Exponential vs. power-law localization

Let us finish this Section with a more detailed analysis of the subtle issue of
whether we observe true exponential Anderson localization or a power-law like quasi-
localization. Exponential localization is typical for systems with local interactions,
whereas for the bubble clusters analyzed in this Chapter the pressure-mediated in-
teractions fall off inversely with distance, i.e., are long-ranged.

For illustrative purposes, we also simulated bubble clusters with the same param-
eters as in Section 4.5.2 (i.e., 20% polydispersity), but now artificially cutting off all
long-range interactions, thus allowing only for the nearest neighbor interactions. In
order to see the quantitative effect of different interactions on the eigenmodes, we
analyze the squared amplitude of each bubble, |ui |2, as a function of its radial dis-
tance from the maximal amplitude bubble in the mode, for both short- and long-
range interaction.

Fig. 4.17 summarizes our findings: In (a) we plot the highest frequency mode of
a cluster with a long-range interaction, and observe a power-law behavior. For com-
parison, in the inset we plot both the mode from the main panel and the highest
frequency mode of a cluster with a short range interaction. The difference between
the exponential and the power-law localization is captured well. In (b), variables that
we plot are the same as in (a), only the mode that we study has an eigenfrequency
close to the single bubble resonant one.

As can be seen in the main panels of Fig. 4.17, the scaling exponent we observe
varies from mode to mode and even within one mode due to the large scatter. Naïve
analysis, that takes into an account only the fact that the bubbles interact like 1/ri j ,
would give |ui |2 ∼ 1/r−2. However, our modes rarely have only one bubble carrying
the oscillation: most of the time we have groups of a few bubbles oscillating strongly,
with differing phases. As an example, if maximal oscillation occurs for two bubbles
which have opposite phases, a bubble far from them would essentially feel a dipole
interaction. If this would be the case, one should observe |ui |2 ∼ 1/r−4. We believe
that our results reflect a combination of the two behaviors.

In the end let us mention the interesting question of when and how does the tran-
sition from exponential to power-law localization happen. Previous theoretical and
numerical studies find Anderson localization of acoustic energy in bubbly liquids in a
narrow frequency range around single bubble resonant frequency [126,127]. At simi-
lar disorder strength we find power-law localization of modes at similar frequencies.
Within our approach focused on bubble oscillations we trace back the different na-
ture of localization to 1/r interaction [116,121,122].
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Figure 4.17: Quantitative comparison of the falloff of the amplitude |ui |2 of the eigen-
modes as a function of distance r from the bubble with the largest oscillation am-
plitude, of clusters with a long- and short-range interaction. Both clusters have
N = 2025, 20% polydisperse bubbles. (a) Log-Log plot of the highest frequency mode
of a cluster with a long-range interaction. Power-law localization can be clearly seen.
Inset compares the mode plotted in the main panel, with the highest frequency mode
of a cluster with a short-range interaction. We use Log-Linear scale to emphasize the
exponential behavior of the latter mode. (b) As in (a), only comparing modes with an
eigenfrequency close to the single bubble resonant frequency.

4.5.4 Polydisperse bubbles on a random underlying structure

As noted in the introduction, the case of random underlying structure is relevant
for experimental 3D systems. In this section we consider random bubble positions,
drawn from a uniform distribution. We discard bubbles that have neighbours closer
than 3〈R0〉 and limit ourselves to 20% polydispersity.

We find that all the conclusions and analysis of the results for this case are quali-
tatively the same as in the case of 20% polydisperse bubbles on a lattice, considered
in the preceding subsections. To avoid repetition, we omit plots of the relevant quan-
tities. Mode and response fields are shown in Figs. 4.18 and 4.19, and are analogous
to Figs. 4.11 and 4.13.
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Figure 4.18: Six eigenmodes of the undriven, 20% polydisperse 2D bubble cluster on
a random underlying pattern. For this illustration we chose (going from left to right in
rows) the 1st, 3rd, 5th, 107th, 507th and 1107th mode of the system with 1225 bubbles
in square geometry. The radii of the circles around the bubble locations is propor-
tional to the amplitude of the oscillation and the color indicates the phase. Note the
strong Anderson-like localization of the eigenmodes.

The main quantitative difference, brought by the random underlying structure, is
observed in Fig. 4.18(b,c). Namely, the quasi-localized character of the modes is more
pronounced, due to the fact that occasionally bubbles can be close to each other,
taking the role of a single, relatively large bubble.

4.6 Outlook on experimental verification

The present Chapter has presented the results of a theoretical analysis, but one of
course wonders what features could directly be confirmed in experiments. To ad-
dress this question we come back to the experiments of [118, 119] and [123] which
had motivated the present study. In both of these studies the collectively responding
bubbles (or menisci) were fixed in space to a two-dimensional array. Such geometri-
cal constraint indeed eases the visualization of the bubble oscillations. The two most
prominent collective features may be the existence of the pronounced edge states
which first had been seen by [118] and the pronounced low-frequency response as
seen by [123]. We suggest to study how these collective features evolve with increasing
bubble number N . Moreover, we suggest to study how more localized modes evolve
once disorder is introduced through a more polydisperse bubble size distribution. It
would also be interesting to observe how the increase of viscosity affects the mode
response and how the theoretical prediction – an enhanced multi-mode response –
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Figure 4.19: Response of the 20% polydisperse 2D cluster of 1225 bubbles on a ran-
dom underlying pattern, when driven with (going from left to right in rows) the 1st,
3rd, 5th, 107th, 507th and 1107th resonant frequency. The radii of the circles around
the bubble locations represent the amplitude of the oscillation and the color the
phase.

materializes in the experiments.
Though experimental observation may be easiest for 2D bubble configurations,

an extension to the 3D case is possible: [133] succeeded to trap bubbles with optical
tweezers and exciting these bubbles with an acoustic field is clearly feasible. Presently
however one is constrained to a few bubbles only, due to the technical complications.

Also the case of freely moving bubbles in 3D in an acoustical field is becoming
experimentally accessible, thanks to the tremendous progress in 3D particle tracking
velocimetry [134,135]. [136] have recently extended these methods to the tracking of
thousands bubbles. However, the obstacle still to be taken here is to provide sufficient
spatial resolution to monitor the volume oscillation of each individual bubble. Due
to the Bjerknes forces of first and second kind [116] the bubbles in an acoustic field
organize in bubble streamers [73, 121, 122, 137], leading to a highly inhomogeneous
bubble distribution in space.

For collectively oscillating bubble in 3D the experimentally most accessible quan-
tity may be the absorption spectrum, as shown in figures 4.10b or 4.16b. Again, one
can only expect to identify general features and trends with control parameters such
as with the total number of bubbles or with the viscosity.

In any case, bridging the gap between the present theoretical analysis of collec-
tively (linearly) oscillating bubbles in either two or three dimensions and real world
experiments is still a major task ahead of us, but we are convinced that the present
analysis has identified striking and often surprising effects which are – as pointed out
and examplified in the Introduction – very relevant for various phenomena in nature
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and technology.
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