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C h a p t e r 3

Localization in Granular Packings
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3.1 Introduction

As introduced in Section 1.2.1, many questions concerning the behavior of disordered
systems have been put in a new perspective by addressing them from the point of
view of the more general jamming scenario [85]. Especially for granular systems it has
turned out to be very fruitful to study the changes in the properties and the response
of granular packings as one approaches the jamming point, where the packing gets
close to an isostatic solid from the jammed side.

In Section 1.2.3, an isostatic packing is introduced as a marginal solid which has
just enough contacts to maintain stability. The average coordination number Z of a
d-dimensional isostatic packing of frictionless spheres equals Ziso = 2d [84] (see Sub-
section 1.2.3). Upon approaching this marginal solid, many static and dynamic prop-
erties exhibit anomalous behavior, associated with the fact that the excess number of
average bonds, δZ = Z −Ziso, goes to zero [7,28,54,55]. As explained in Section 1.2.1,
δZ itself scales anomalously (as the square root of the difference in density from the
one at jamming, φ−φc , [7]), the ratio G/K of the shear modulus G over the compres-
sion modulus K is found to scale as δZ , and the Debye scaling of the low-frequency
part of the density of states breaks down. Moreover, D(ω) becomes flat at low fre-
quencies above some crossover frequency ω∗ ∼ δZ , due to an excess density of low
frequency modes.

Much of this behavior was explained by Wyart et al. [28, 54, 55] in terms of the ex-
istence of an important cross-over length scale �∗ ∼ 1/δZ , the length up to which the
response is close to that of an isostatic packing (for details see Subsection 1.2.2). This
scale �∗ diverges as the jamming point is approached, but is difficult to probe directly.
Nevertheless, the length �∗ has recently been uncovered as the important cross-over
length to continuum behavior in the static response [98]. Although most of these
results pertain explicitly to packings of frictionless spheres, as we saw in Chapter 2
and as can be found in [76, 101, 103], many of these ideas can be extended and ap-
plied to ellipsoidal and frictional packings respectively, and are relevant for glasses as
well [34, 36]. The ellipsoidal case is studied in Chapter 2.

In this Chapter we are going to address another aspect of the vibrational modes. It
has been noted in several studies that both the response to a local or global deforma-
tion [98, 104] and the behavior of the vibrational eigenmodes [28, 54] of a packing be-
come much more disordered as one approaches the jamming point: as the snapshots
of two low frequency vibrational modes in Fig. 3.1 illustrate, far above the jamming
point the eigenmodes have a structure reminiscent of what is observed in a contin-
uum theory of an elastic medium, but close to the jamming point one is immediately
struck by the appearance of many disordered “swirls”. The arguments put forward by
Wyart et al. [28, 54, 55] indicate that the excess low frequency modes cannot be local-
ized on scales� �∗ since they are the vestiges of the global floppy modes that emerge
at the isostatic point. Hence, if there are any low-frequency modes away from jam-
ming, and if indeed their localization length is � �∗, we should be able to see this
length changing as the jamming point is approached. This Chapter is dedicated to
investigating whether that is the case.
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Figure 3.1: Snapshots of two low-frequency eigenmodes in our packings. The arrows
indicate the direction and magnitude of the displacements of the individual particles.
(a) At low pressure p = 10−6, close to the jamming point, the mode is very disordered,
whereas at high pressure (b) p = 3 ·10−2, the mode is more reminiscent of an elastic
shear wave. Similar features are seen in the response to a local or global deformation
[54, 98, 104].

3.1.1 Reminder on localization

Localization was discovered fifty years ago by Anderson [4], who in his study of non-
interacting electrons in a random potential found that disorder can induce electron
localization. Unlike the extended (delocalized) Bloch waves, in a localized state the
weight of the electron wave function is concentrated near some point in space; the
amplitude falls off as e−r /ξ with distance r from the center. This defines the localiza-
tion length ξ(E ) which depends on the electron energy E . The possibility that disor-
der can localize the eigenmodes of systems governed by wave equations is quite gen-
eral and extends to many systems, including sound modes [2, 5, 105] and also gravity
waves [2], light propagation [2] and diffusion on random lattices [2, 105]. Generally
speaking, in one and two dimensions there is no localization-delocalization transi-
tion: in the thermodynamic limit, for any amount of disorder, all the states are local-
ized. In this Chapter we will focus on the localization behavior of vibrational modes
of 2d frictionless packings.

3.1.2 Types of disorder

The dynamic response of granular packings is affected by three types of disorder
— bond disorder, mass disorder and geometric packing disorder. As we shall show
through various examples, any of these types is sufficient to cause localization in our
finite systems, and in practice, for realistic models of granular packings all three play
a role. Bond disorder is present for all force laws except one-sided harmonic springs,
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polydisperse particles will have varying masses, and geometric disorder is naturally
present except for especially prepared regular piles, like a regular stack of marbles.
Of course, in computer models these effects can be separated easily. In this Chap-
ter we will first address localization properties of vibrational modes in 2d granular
packings, and then try to attempt to disentangle these three contributions through
studying simpler systems, and use this to our advantage in testing our scaling predic-
tions of the localization length with the amount of disorder (Section 3.6).

3.1.3 Outline

The crucial dilemma in extracting the localization length of the vibrational modes of
granular packings is that the effective disorder is so weak that one needs prohibitively
large systems to reach the true localization regime ξ� L for most modes. (Here L is
the linear system size.) At the same time, existing methods which are based on spatial
averages (like the direct expression based on the second moment of the eigenmode
or the (Inverse) Participation Ratio method [106]) do not give much insight into the
structure of the modes when ξ approaches the system size L. More precisely, all con-
ventional methods essentially yield the same localization length in the localization
regime ξ� L, while for modes which are extended throughout the finite system one
finds ξ≈ L.

The method we introduce in this Chapter, which is motivated by earlier work on
non-Hermitian quantum problems [107, 108], is based on studying the response to
an asymmetric perturbation. It not only gives the proper localization length ξ of each
localized mode (see Fig. 3.5), but at the same time assigns a well-defined and precise
direction-dependent value ξ(φ) to each mode, that spans through our finite system
(see Fig. 3.3). For our method, one can also extract useful information about the large

system limit from studying the regime ξ
>∼ L and the scaling with the disorder, which

opens up the possibility to bring Random Matrix Theory [106, 109] to bear on this
class of problems.

This Chapter is organized as follows: First we will introduce in more detail our
method and explain how we extract the localization length. This is followed by a short
Section on the description of our packings and with a reminder on the D(ω) for these
systems. In Section 3.4 we will present our results for the case of 2d granular packings
on which we focus in this Chapter the most. This is followed by a Section on the Ran-
dom Matrix Theory and its tools, that we successfully use to prove scaling behavior
we find. The last Section is devoted to exploring our method through studying simple
1d and 2d model systems, where we can disentangle different types of disorder.

3.2 Method

Our method to extract the localization length is motivated by the work of Nelson and
Hatano [107, 108], on the delocalization transition in non-Hermitian transfer matrix
problems arising in the statistical mechanics of vortex lines in superconductors. To
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illustrate this method consider first the case of a one-dimensional chain of masses
connected by springs with spring constants ki j ( j = i±1) and periodic boundary con-
ditions. We introduce an asymmetric bias term into the equations of motion so that
the eigenvalue equation of a mode ui e−iωt becomes:

miω
2ui =

∑
j=i±1

ki j

(
ehx̂ ·�xi j u j −ui

)
. (3.1)

Here xi are the rest positions of the particles and�xi j is a vector pointing from particle
i to particle j . For h = 0 this is simply the dynamical equation for vibrations. The
trick now is that we can extract the localization length ξk of each mode k by following
whether or not its eigenvalue ω2

k changes when we turn on h in small steps. Indeed,
as long as h < 1/ξk the eigenvalue ω2

k will not change at all. To see this, note that

in this case we can perform a “gauge transformation” to a field ũi = ui ehxi which
obeys the original equation with h = 0 and which falls off exponentially on both sides
so that, in a large enough system, it obeys the periodic boundary conditions. This
implies that for h < 1/ξk , the eigenvalue ω2

k does not change. However, once h >
ξk the function ũ obtained with this transformation does not fall off exponentially
to both sides. Thus, it cannot obey the periodic boundary condition with the same
eigenvalue as it had for h < 1/ξk : its eigenvalue has to change! In practice, when we
increase h the eigenvalue ω2

k starts to change rapidly and collide with a neighboring

eigenvalue when h ≈ 1/ξ; beyond that, when h � 1/ξk the eigenvalue ω2
k moves into

the complex plane [107, 108]. Hence we can simply obtain the localization length ξk

of each mode k from the value hk at which the eigenvalue moves into the complex
plane upon increasing h: ξk = 1/hk .

It is straightforward to extend this method to higher dimensions: as above, we
simply multiply the off-diagonal elements of our dynamical matrix with an exponen-

tial e�ri j ·�h , where�ri j is the vector pointing from the center of particle i to its neighbor

j . Our probe field �h is now a vector, so by changing the angle that �h makes with the
x-axis, we can extract the angular anisotropy of the localization length ξ(φ) of each
mode.

3.3 Granular packings and D(ω)

We use 2d packings of 1000 frictionless particles which are prepared using molecular
dynamics simulations — see [31, 76, 98] for the description of our algorithm, which
gently prepares packing at a target pressure, as well as for other details. The particles
interact with the 3d Hertzian force law, fi j � δ3/2

i j , where δi j is the overlap between

particles i and j . The unit of length is the average particle diameter. Unless noted
otherwise we here present results for our most extensive studies with 20% polydis-
persity in the radii. Runs with different amount of polydispersity give similar results.
The masses mi of the grains are taken proportional to R3

i , corresponding to packing
of spheres in 2d . The confining pressure, with which we tune the distance from the
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jamming point, is in the range p ∈ (10−6,3 ·10−2) in the units of the Young modulus of
the particles. We employ periodic boundary conditions in both directions.

Our use of the 3d Hertzian force law implies that the vibrational bond strengths
ki j = d fi j /dδi j ∼ δ1/2

i j ∼ p1/3 are disordered (they vary from bond to bond) and get

weaker at smaller pressures. The natural frequency scale therefore goes down with
pressure as p1/6. As in previous studies [76], when reporting our data we will always
rescale all frequencies ω with a factor p−1/6, as to be able to compare data at different
pressures.

The vibrational modes and their density of states (D(ω) or DOS) are obtained in
the standard way, by expanding the energy about the equilibrium positions of the
grains up to quadratic terms. Just as in solid state physics (see Section 1.1.1), the dy-
namical matrix, whose elements are the second derivatives of the energy with respect
to the positions of the grains, determines the linear equations of motion of the vi-
brational modes. The dynamical matrix of a granular packing is a sparse symmetric
matrix, because each particle only interacts with a few others.

In Fig. 3.2 we show that the density of states of our packings behaves as found
before [7, 28, 54, 55, 76] for such packings: As the the jamming point is approached
by lowering the pressure, the density of low-frequency modes increases dramatically,
which, as mentioned before, is due to the nearness of the isostatic point. Represen-
tative examples of modes from the spectrum of very compressed packing are shown
in Fig. 3.2(1-4). The modes in the low-frequency range, Figs. 3.2 (1) and (2), are like
a plane-wave or consist out of a high-amplitude motion of a few particles, coupled
to a continuum structure. The amplitude of the modes in the high -frequency range,
Fig. 3.2(4) is practically localized on a few particles in the packing. The rest of the
modes in the spectrum, especially those of packings close to the jamming point, are
spanning the system and have very disordered, swirly appearance, as captured by
Fig. 3.2(3).

3.4 Measuring the localization length ξ

In this Section we will start with a systematic analysis of our data, obtained using the
method described in Section 3.2. We first discuss some properties of the localization
length of individual modes before turning to their scaling as a function of frequency,
system size and distance from the jamming point.

3.4.1 Anisotropy and spread

As we already introduced, our method allows us to study angular dependence of
the localization length. Fig. 3.3 shows the angular dependence ξ(φ) of a few typical
modes, for two different pressures. One clearly sees that ξ(φ) is a π-periodic function
and that the angular variation of ξ(φ) is significant.

While few modes, like ones in Figs. 3.3(c) and (g), have a quadrupolar structure,
the anisotropy is predominantly dipolar, as the histogram in Fig. 3.3(h) shows. Fig-
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Figure 3.2: D(ω) of our 1000 particle packings for 6 different pressures confirming
the main features of earlier studies close to jamming, [7, 28, 54, 55, 76]. (1-4) Typical
modes for the system of 10000 particles and pressure p = 3 ·10−2: (1) Plane-wave like
lowest frequency mode, (2) Quasi-localized low-frequency mode (see main text for
details), (3) Disordered mid frequency mode and (4) High-frequency mode localized
within the system size. We should note that the pattern of mode (3) is also typical for
the modes in the plateau of D(ω) of systems close to the point J.

ure 3.4 shows that the root mean square average angular variation Δξ of ξ(φ) is al-
most half ξ, and that it is slightly larger at higher frequencies. There is no strong
dependence of the anisotropy on the pressure, i.e., on the distance from the jamming
point.

The angularly averaged values ξ(ω) show also a large spread, as Fig. 3.5 illustrates
for a small value of the pressure. One also sees from this figure that most modes have a
value of ξ� L, which means that they are extended within the systems we can analyze
— only our largest frequency modes are truly localized [34, 36, 110]. We will denote
from here on the angularly averaged value of the localization length of an individual
mode by ξ.
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Figure 3.3: Polar plots of the localization length ξ(φ) in two of our granular packings:
(i) at p = 4 ·10−4 at low in (a), intermediate in (b-c), and high frequency in (d), and (ii)
at p = 1 ·10−6 at low in (e), intermediate in (f), and high frequency in (g). The angular
variation of ξ(φ) is comparable to the angularly averaged value itself. (h) Histogram
of the ratio of squared amplitudes of the fourth (quadrupole) and second (dipole)
harmonic at p = 4·10−4. Note how most modes have predominantly dipole symmetry.
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Figure 3.4: Average angular anisotropy Δξ/ξ̄ as a function of frequency for various
pressures.

3.4.2 Frequency bin-averaged localization length ξ̄(ω)

We stress that although we will follow common practice in referring to ξ as the lo-
calization length even for ξ � L, one should keep in mind that many modes extend
throughout our finite periodic system, as both Figs. 3.5, 3.2 and 3.3 illustrate.

For each dataset of the individual angularly averaged values of ξ, as in Fig. 3.5,
we determine the frequency binned average values ξ̄(ω) (each based on about 100
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Figure 3.5: Scatter plot of the angularly averaged ξ’s of all the 2000 modes of our gran-
ular packing of 1000 particles as a function of the frequency ω at pressure p = 4 ·10−6

studied with the method explained in the text. Note the large scatter and the fact that
the ξ values are of order of the linear system size L = 45 or larger throughout most of
the frequency range.

to 200 modes). The behavior of ξ̄/L as a function of (scaled) frequency is shown in
Fig. 3.6(a) for six different values of the pressure. In these average values, there is no
strong variation with pressure, i.e., with distance to jamming.

We already noted in Fig. 3.5 that most of our eigenmodes have ξ� L, i.e., are ex-
tended in our finite system. This is also clear from Fig. 3.6(a): at all but the largest
frequencies we have, ξ̄ � L. There are indeed roughly three regimes present in
Fig. 3.6(a). From high frequencies towards low frequencies, we first have a range of
high-frequency localized modes, for which ξ̄ < L. These modes are always present
at any pressure and are the high-frequency modes in which only a few (light) parti-
cles oscillate more or less in anti-phase as in an optical mode (such type of modes
generally arise immediately when disorder is introduced into an ordered system), see
Fig. 3.2(4). For intermediate-range frequencies there is a plateau in ξ̄, and a represen-
tative of a mode in this frequency range is shown in Fig. 3.2(3). Finally for the lowest
frequencies (in the frequency range where actually the excess modes appear in the
D(ω) in Fig. 3.2 at low pressures), there is an indication of an upswing in ξ̄ for small ω.
Modes depicted in Fig. 3.2(1-3) are good representatives of types of modes appearing
in the low-frequency part of the spectrum of our packings, though the plane-wave
like mode, depicted in Fig. 3.2(1), shows up only in the spectrum of sufficiently large
systems.

Plots (b) and (c) in Fig. 3.6 show histograms of distances between energy levels
of our packings. We find that the low frequency modes are extended, following the
so-called Wigner conjecture, where as high frequency modes are Anderson localized
with non-interacting level spacings (i.e., spacings follow a Poisson distribution). For
more details see Section 3.4.5, where we discuss Level Spacing Statistics.
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Figure 3.6: (a) Frequency binned and angularly averaged values of ξ̄(ω)/L for differ-
ent pressures. Note how the general trend does not depend in the distance to the
jamming point: modes in the very high-frequency end of the spectrum have ξ̄� L,
whereas the rest of the modes are extended, with ξ̄� L. (b,c) Level spacing statistics
for the modes that have ξ̄� L in (c) and for the modes with ξ̄� L in (b). The lower
frequency modes are essentially all extended and do show level repulsion in accord
with the predictions from Random Matrix Theory [106, 109] (see Section 3.4.5), while
the high frequency modes are truly localized and their level spacing is close to Pois-
sonian. The red lines indicate the frequency ranges used to obtain the level statistics
in (b) and (c) (for connection with the Random Matrix Theory see Sections 3.4.5 and
3.5).

3.4.3 Quasi-localized low-frequency modes at high pressure

From Fig. 3.6(a) of the bin-averaged ξ̄, it would appear at first sight that we see no
signature of the nearness of the jamming point. This, however, is not true: in Fig. 3.6
we show data obtained by averaging over 100-200 modes. However, this averaging
washes out systematic trends visible for the lowest frequency eigenmodes discovered
by Vitelli, Xu et al. [34, 36]. When plotted on a logarithmic scale, as in Fig. 3.7, we
see a systematic trend for ξ of the low frequency modes to decrease with increasing
pressure. As the inset of Fig. 3.7(a) illustrates, these are “quasi-localized” modes in
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which a reasonably well defined “localized” group of particles performs what looks
like a resonant oscillation that is weakly coupled to the extended elastic field. For our
limited range of L, we find ξ/L � 0.3 and a reduced anisotropy of Δξ/ξ≈ 0.2 for these
modes.

Figure 3.7: Scatter plot for the localization lengths ξ (determined to a precision of
order unity) on a logarithmic frequency scale at p = 3 ·10−2 in (a) and p = 10−6 in (b)
at system size L = 45. Note that at the large pressure the lowest-frequency modes are
localized; at small pressures this is not the case. The inset illustrates the two lowest-
frequency modes, which has ξ/L ≈ 0.3 in (a) and ξ/L ≈ 2 in (b).

As we discussed in the Introduction of this Chapter, for packings closer to the
jamming point (at lower pressures) the isostaticity length �∗ increases as 1/δZ , where
δZ is the excess contact number. Up to this scale �∗ we do not expect localized modes
at low frequencies, since up to this scale the response mirrors that of the global floppy
modes that emerge near the isostatic point. Indeed, within the system sizes we can
study there are no low-frequency “quasi-localized” modes at all at low pressures, as
Fig. 3.7(b) illustrates for p = 10−6, even though the response is in many ways more
disordered due to the nearness of the jamming point!

While our data are qualitatively in accord with the above scenario, we have un-
fortunately too few low-frequency “quasi-localized” modes to confirm quantitatively
that as we tune the packings closer to jamming, the extent of the resonant region in-
creases with �∗ ∼ 1/δZ .

3.4.4 Distribution of large ξ

We also looked at the distribution of large ξ for systems with different pressure, and
we found that this distribution has a power-law tail that goes like ξ−3, regardless of
the pressure or system size, Fig. 3.8. This scaling will be revisited in Section 3.5.



58 Localization in Granular Packings

Figure 3.8: Log-log plot of the distribution of ξ’s for different pressures; gray line
shows the power law decay.

3.4.5 Level spacing statistics

The question that we want to ask here, that will be a nice segue for the next Sec-
tion, is the following: is there an effect of the mode localization on the spectrum?
Based on the results of Random Matrix Theory (RMT) [106, 109], one expects the
following behavior: the frequencies ωi of the localized modes should be indepen-
dently distributed, so that their spacing Δωi = ωi+1 −ωi obeys a Poisson distribu-
tion, while the modes which extend throughout the system should interact and re-
pel each other, with a level spacing distribution which is given by the Wigner sur-
mise, PW (s) = πs/2exp(−πs2/4), where s = Δω/Δω. Figs. 3.6(b,c) confirm that this
expectation is fully born out by our data at all pressures. Note that the distribution in
Fig. 3.6(b) deviates somewhat from the Wigner surmise at the two highest pressures
— this is, we believe, due to the “quasi-localized” low-frequency modes discussed
above.

These results motivate a more detailed analysis of implications of RMT on the
problem at hand. Therefore we dedicate the following Section to a short exposition
of relevant details of RMT, and the useful insights that it offers.

3.5 Implications from Random Matrix Theory

We will start from relating Random Matrix Theory (RMT) to our vibrational prob-
lem. Namely, the dynamical matrix D̂ of our granular packing satisfies the conditions
that a real random matrix should satisfy in order to belong to the so-called Gaussian
Orthogonal Ensemble (GOE). The general conditions1 are that D̂ = D̂T, Di j = 0 and

1These conditions are derived for N ×N random matrices, but are valid for sparse matrices if the mean
number of non-zero elements per row or column is larger than some threshold value which is typically
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|Di j |2 = 1/N [106].
In order to analyze the energy levels of a random matrix like this, one must first

check if the spectrum is homogeneous on energy scales exceeding a certain minimal
range. However, if this is not the case, one has to do an unfolding of the spectrum
[106]. Since we have that the density of the eigenvalues, i.e., ω2

i , of our dynamical

matrix D̂ is not homogeneous, we have to perform the unfolding procedure. This
procedure is however not unique! One of natural ways to do this is as follows: We need
to find a function f (Ei ) such that the rescaled levels ei = f (Ei ) have mean spacing
1/N , the mean evaluated with respect to energy intervals [E −ΔE/2,E +ΔE/2]. The
corresponding rescaled interval goes from f (E −ΔE/2) to f (E +ΔE/2). We proceed
with the following sequence of equalities:

1

N
= Δe

ΔN
= 1

ΔN
[ f (E +ΔE/2)− f (E −ΔE/2)]

= ΔE

ΔN
f ′(E )= f ′(E )

ρ̄(E )N
(3.2)

where we used the definition for bin averaged level density ρ̄(E ) = ΔN /(NΔE ). Af-
ter integrating the above equation, one gets that the function f (E ) is actually a bin
averaged level staircase (staircase definition is σ(E ) = 1/N

∑
i Θ(E −Ei ), with Θ being

the Heaviside function). For our case this function is proportional to the square root
function, which then gives us an unfolded spectrum proportional to the density of
frequencies instead of frequencies squared.

We can proceed with analyzing the Level Spacing Statistics (LSS) of our unfolded
spectrum. Our results shown in Fig. 3.6(b) show that the modes, with localization
length larger than the system size, repel each other since their behaviour follows the
Wigner surmise:

PW (s) = π

2
s exp(−π

4
s2) (3.3)

where s =Δω2/Δω2, Δω2 is the level spacing and Δω2 is the average level spacing. Ac-
tually, we should write Δω/Δω now, since we are studying the unfolded spectrum. As
it turns out, for our system it doesn’t matter because we can write thatΔω2 ∼ 2ωt y pΔω

and Δω2 ∼ 2ωΔω so Δω2/Δω2 ∼ Δω/Δω). Once we introduce a non-zero value of
the perturbation parameter �h, we know that modes start to shift and collide, which
makes them “pop up” into the complex plane. This of course influences the level
spacing statistics! We numerically checked this: Fig. 3.9 shows how the Wigner-like
distribution transforms towards a Poisson-like one (it does not manage to transform
completely because the modes pop into the complex plane rather quickly, i.e., for
small values |�h|). This change of the behavior of energy levels, with a change of a
perturbation parameter, is a well known phenomena [111] — e.g., the inset of Fig. 3.9
shows how the level spacing statistics of a hydrogen atom in a magnetic field changes
from a Poisson distribution to the Wigner surmise as the magnetic field is increased.

smaller than two, and is satisfied in our case [106].
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Figure 3.9: Behavior of the LSS of a granular system when h is changing from 0 to
1. The inset shows the so-called Brody distribution [111], which is an interpolating
function between the Poisson and the Wigner distribution.

The presence of magnetic field spits the energy levels, giving rise to an increase in
their collision, i.e., increase in level interaction. For our systems it is the other way
around — the perturbation makes modes collide and jump into the complex plane.
This depletion of levels is responsible for less interactions between levels.

Our ultimate goal in this Section is to derive the scaling of the localization length
with the system size by using the knowledge and tools of RMT. To do this, we need to
relate our perturbation parameter |�h| (that is directly connected with the localization
length) with the typical frequency with which levels collide. To do this, we follow the
RMT prescription in reference [106].

Generally speaking, our starting point is a Hamiltonian H0, which is perturbed so
that the new Hamiltonian has the structure H(λ) = H0 +λV , where λ is the perturba-
tion parameter. According to RMT, mean temporal distance between two subsequent
collisions of a level with its neighbors, i.e., collision time λcol l , should scale as some
power of the number of levels. To find the scaling exponent one has to find the so-
called typical level velocity and then the simple estimate for the collision parameter
is:

λcol l ≈
mean level spaci ng

t y pi cal level veloci t y
, (3.4)

where the typical level velocity v is defined as:

v2 = v2
l = 〈ul |V |ul 〉2. (3.5)

The average in previous equation is taken over an ensemble.
Following the general prescription, in order to calculate the collision parameter

for the case of the spectrum of granular systems, we have to apply methods of the per-
turbation theory: The dynamical matrix D̂ of our system is a sparse random matrix
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that is Hermitian (as mentioned before). When we introduce the asymmetric pertur-
bation into the matrix (making sure that the diagonal is unchanged), our new matrix
M̂ is of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εx,x
11 ε

x,y
12 . . . . . .

ε
y,x
21 ε

y,y
22 . . . . . .

. . εx,x
33 ε

x,y
34 cx,x

i , j e
�h·�ri , j cx,y

i , j e
�h·�ri , j . .

. . ε
y,x
43 ε

y,y
44 c y,x

i , j e
�h·�ri , j c y,y

i , j e
�h·�ri , j . .

. . . . . . . .

. . cx,x
j ,i e

�h·�r j ,i c
x,y
j ,i e

�h·�r j ,i . . . .

. . c
y,x
j ,i e

�h·�r j ,i c
y,y
j ,i e

�h·�r j ,i . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By definition �r j ,i ≡ −�ri , j and ci , j ≡ c j ,i . Taking this into account, we can rewrite
our matrix as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εx,x
11 ε

x,y
12 . . . . . .

ε
y,x
21 ε

y,y
22 . . . . . .

. . εx,x
33 ε

x,y
34 cx,x

i , j e
�h·�ri , j c

x,y
i , j e

�h·�ri , j . .

. . ε
y,x
43 ε

y,y
44 c

y,x
i , j e

�h·�ri , j c
y,y
i , j e

�h·�ri , j . .
. . . . . . . .

. . cx,x
i , j e−�h·�ri , j c

x,y
i , j e−�h·�ri , j . . . .

. . c
y,x
i , j e−�h·�ri , j c

y,y
i , j e−�h·�ri , j . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The next step is to decompose our perturbed matrix M̂ into M̂ = D̂+δM̂ , where D̂
is the original dynamical matrix, and δM̂ is our perturbation which we define as:

δM̂ = M̂ − D̂ (3.6)

Written in a matrix form, δM̂ looks like:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . . . .
0 0 . . . . . .

. . 0 0 cx,x
i , j (e

�h·�ri , j −1) c
x,y
i , j (e

�h·�ri , j −1) . .

. . 0 0 c
y,x
i , j (e

�h·�ri , j −1) c
y,y
i , j (e

�h·�ri , j −1) . .
. . . . . . . .

. . cx,x
i , j (e−�h·�ri , j −1) cx,y

i , j (e−�h·�ri , j −1) . . . .

. . c y,x
i , j (e−�h·�ri , j −1) c y,y

i , j (e−�h·�ri , j −1) . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now proceed with the first order perturbation theory, since we want to find
corrections to the energy, i.e., the shifts of the eigenvalues δω2 for |�h| �= 0. In other
words:

δω2
l = 〈ul |δM̂ |ul 〉 =

d N∑
〈i , j 〉

ul
i ul

j δMi , j , (3.7)

where this sum runs over all the i , j non-zero pairs in the δM̂ , and we take 〈ul |ul 〉 = 1.
If we would expand the exponentials into Taylor series only to first order (we can do
that now because h � 1 and �ri , j is just a number of order 1), our matrix elements

would become e±�h·�ri , j − 1 ≈ ±�h ·�ri , j . The result of this expansion, to the fist order
only, is that our perturbation matrix becomes asymmetric. This now implies that our
sum is equal to zero: we have a sum of a product of a symmetric part ul

i ul
j (since

ul
j ul

i = ul
i ul

j ), and a asymmetric part δMi , j , that therefore gives
∑

A · S = 0. Let us

then not restrict ourselves to first order in h at this step, and symmetrize the product.
Then:

δω2
l =

∑
〈i , j 〉

ul
i ul

j (δMi , j +δM j ,i ) = 2
∑
〈i , j 〉

2ul
i ul

j ci , j sinh2(�h ·�ri , j /2) (3.8)

where this symmetrized sum goes over all non-zero elements in the upper diagonal
part of the δM̃ .

To be able to proceed with our calculation, we need to mention the “structure”
of the eigenvectors. Simply, we can say that if a mode is extended (which is true for
most of our modes), and our eigenvectors |ul 〉 are normalized, the individual dis-
placements within an eigenvector, ul

i , in d dimensions scale with the system size as

∼ 1/



d N 2. Therefore we can take ul
i ul

j to be of order 1/N . We will also assume that

for nearest neighbors, the ul
i ’s within a mode are correlated (of the same sign), and

come from some symmetric-around-zero distribution. These assumptions are cor-
roborated by the actual mode fields. In the end, assuming that the average distance

2we assume here effectively that the modes have a Participation Ratio which does not go down as a N−b

with b > 0
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between the neighboring particles�ri , j is constant, and equal to �a , we get the following
relation between the first energy correction and the perturbation parameter:

δω2
l �

1

N
sinh2(�h ·�a/2)N ∼ sinh2(�h ·�a/2). (3.9)

Since we are considering only small h we can expand sin(h) into series, and get that
δω2

l ∼ h2. We checked numerically how δω2
l scales, and in 1d and 2d we see scaling

with h2.
After deriving that δω2

l ∼ h2, we can now return to the equation for the typical

level velocity, (3.5). Taking our perturbation to be h2 in the lowest order, we calculate
that v2 ∼ 1. This result we have checked for various system sizes in 1 and 2 dimen-
sions.

At this point we should note that we did not average our results over an ensemble.
The reason is that we assume that the individual displacements in an extended mode
would scale as 1/



N in any ensemble member, and that an extended mode will be

extended in practically all the ensemble members.
Coming back to our starting equation (3.4), and using the relation derived above,

we can write that:

λcol l = h2
c ≈ mean level spaci ng

t y pi cal level veloci t y
∼ 1/N

1
=⇒ hc ∼ N−1/2 = L−d/2, (3.10)

where we took for the mean level spacing Δω∼ 1/N . Finally:

ξ̄∼ Ld/2, (3.11)

which is exactly the scaling that we observed! Fig. 3.10 shows that the ξ̄ ∼ L scal-
ing is well obeyed for our two-dimensional packings for the extended modes in the
range ω � 3 (as noted before the quasi-localized modes obey ξ̄ � 0.3L), while the
high-frequency localized modes for ω� 3.4 have ξ̄’s which are indeed essentially L-
independent. More generally we propose:

ξ̄∼ Ld/2/W, (3.12)

where W is a measure of the effective disorder. For our gently prepared granular pack-
ings the strength of the disorder cannot easily be varied, and therefore we will explore
this scaling in more detail in Section 3.6.

3.5.1 Distribution of large ξ’s revisited

In this Section we will address the power-law scaling of the tail of the distribution of
large ξ. As we already showed in Section 3.4.4, the distribution of large localization
length (in the units of the average ξ̄) has a power-law tail that goes like ξ−3, indepen-
dently of the distance of the packing to the jamming point (see Fig. 3.8). Using the
results from previous Section, we now derive this scaling.
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Figure 3.10: Finite size scaling for p = 4 ·10−6 and linear system size L ranging from
15 to 45, confirming that the extended states, where ξ̄ � L, scale with L, while the
high-frequency modes are, within the statistical error, L-independent.

As we elaborated extensively in previous Sections, when we turn on h ≡ |�h|, a cer-
tain number of modes starts colliding and jumping into the complex plane, whereas
some of the remaining modes shift, i.e., their spacing becomes smaller or bigger.
When we increase h further, i.e., h → h+Δh, the following behavior of the modes can
be observed: (i) modes that are already in the complex plane, continue moving in it;
(ii) modes that approached close enough after the previous change of h, i.e., are now
at a distance�Δh, will now collide and jump into C; (iii) the rest of the modes either
comes closer to their neighbors, or moves further apart. We know from both theory
(the analysis above) and numerics that δω2 ∼ h2, so when we change h to h+Δh our
mode perturbation changes to:

δω2
l ∼ h2 →h2 +hΔh ≡ δω2

l +Δδω2
l . (3.13)

Let us for a moment step back and think about the modes that have large localization
lengths. We know that these modes (in pairs) had to be very close to each other, be-
cause for a very small value of the perturbation parameter they already collided with
their nearest neighbor. So, we can first ask the question what is the number of modes
that pop into the complex plane (i.e., that have their ξ ≡ 1/hc ) when we change h by
Δh:

Nhc � v
∫ε+Δε

ε
PW (x)d x ∼ εΔε, because PW (x) ∼ x for x � 1, (3.14)

where PW is the Wigner distribution. In the previous equation the collision frequency
v , i.e.the factor that quantifies how many of the modes from Δε interval did actually
collide, is of the order of unity. It is important to note that only the linear part of the
distribution is used (see Eq. (3.3)), and this part stays linear as h is increased and the
distribution evolves towards the Poisson shape (see Fig. 3.9).

Finally let us write the density of the variable hc (i.e.ξ): Phc ∼ εΔε
Δh . According to

the present consideration, a collision means that the modes found in the range Δε
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move enough to cover this range, Δδω2 � Δε. Since Δδω2 ∼ hΔh, we have Δε ∼ hΔh
which after integration gives us ε ∼ h2. Now we can substitute all of the above into
the expression for the density Phc and get:

Phc ∼ h ·ε∼ h3 = ξ−3, (3.15)

which is exactly the result that we observed in our granular packings, see Fig. 3.8. As
we shall see in later Sections, this behavior is very robust, and will appear again.

3.6 Exploring the method

This Section is devoted to the exploration of the method we used above to extract the
localization length, [107, 108]. First, we will start with exploring in more detail how
the length we calculate is related with the true, intrinsic, localization length of the
modes. We will do this in 1d by studying a disordered chain, since it is much easier to
reach the large system limit. Next, we will justify the proposed scaling of Eq. (3.12), by
studying 2d disordered hexagonal lattices, since we can disentangle different types of
disorder (see Section 3.1.2). In the end we will apply all the knowledge presented in
this Chapter on percolation clusters in 2d as models of structurally disordered solids.

3.6.1 1d : disordered chain

(a)

localized regime

(b)

0

0

regime

Figure 3.11: (a) Localization length as a function of vibrational frequency for a one-
dimensional chain, rescaled with the square-root of the system size. L is in the range
20-800 particles. (b) Sketch of the proposed scaling regimes of the localization length.
According to this, data in panel (a) falls in the shaded region, for which ξ∼ L1/2.

We study disordered chain of particles with periodic boundary conditions, where
the disorder is introduced only by varying the masses of the particles at each site. The
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spring constants k are all the same and equal to 1. We analyzed systems of differ-
ent sizes and fixed amount of disorder (20% polydispersity in radii). As in the case of
2d granular packings, we extract the localization length of our 1d system using the
method described in Section 3.2. Although working with 1d systems is less demand-
ing CPU-time wise, all of our data is averaged only over 10 different realizations of
disorder, since we need to repeat the diagonalization of the Dynamical Matrix many
times (for each value of h), and that takes a long time.

The results obtained for a range of system sizes are shown in Fig. 3.11(a). The
localization length is rescaled with



L, following our prediction, Eq. (3.12).3 Within

the statistical error we see a collapse of our data.
The main idea of this Section is to relate the localization length that we measure

with the one for an infinitely large system. Therefore we will define ξint to be the
intrinsic localization length, the localization length if we have the same physical sys-
tem, but infinitely large. This means that when we study the system as a function of
the system size L, we will get ξ � ξint for L � ξint , since our method does give the
right localization length if the wave-functions are localized. At this point, we want
to argue that there should be a crossover for L ≈ ξint , after which we enter into the
intrinsic localization regime for any L > ξint . This argument is sketched in panel (b)
of Fig. 3.11.

(b)
const

(a)

Figure 3.12: (a) Localization length as a function of vibrational frequency for a one-
dimensional chain. L is in the range 1600-8000 particles. (b) Localization length ξ̄

averaged over the spectrum, as a function of the system size L. Above L ∼ 1000 the
localization length we measure is the intrinsic one.

To test the previous statements, we performed simulations for a range of system
sizes L. Some of the results are shown in Fig. 3.12(a). It is important to note that
our localization curves fall on top of each other without any rescaling. In Fig. 3.12(b)
we show the system averaged localization length (calculated with our method) as a

3Since the amount of disorder is fixed, the W parameter will not play a role in this analysis.
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function of a system size. This data suggest that a crossover from the square-root
behaviour is observed when we reach system size L > 1000. In these “large” systems,
length that we measure is the true localization length!

We predicted and found a scaling ξ � AL1/2 in the regime ξ
>∼ L. Since we expect

a crossover to the localization regime when the intrinsic localization length obeys
ξint � L, this suggests that we can estimate infinite size localization length from the
small system data simply as ξint � A2. Note that unfortunately for a 2d problem de-

termining ξint from ξ, when ξ
>∼ L, is not possible using this approach. However in 3d ,

ξint � 1/B2 when ξ� BL3/2 as long as we are applying it to the localized modes, above
the mobility edge. If ξint becomes infinite, our method gives an unbound value for ξ,
as we checked in 1d without disorder. We expect similar behavior for truly extended
modes in 3d .

The numerical simulations to check/confirm the connection between ξint and ξ

can in principle be repeated for any dimension larger than 1. But, as we pointed out
before, checking this for the 2d granular systems, is extremely hard, since achieving
an order of magnitude in linear system size requires our computer programs to run
for over a year.

3.6.2 2d : disordered hexagonal lattice

As already mentioned above, disentangling different types of disorder in the case of
granular packings is quite hard. In order to test our prediction of the scaling of the
localization length with the amount of disorder we have to move to another system,
where this can be controlled. Therefore we studied geometrically ordered hexagonal
lattices where the disorder is introduced by varying the masses of the particles at each
site (20% polydispersity in the radii). The spring constants k are all the same and
equal to 1.

For illustrative purposes, in Fig. 3.13 we show the density of states of disordered
hexagonal lattices, with different amounts of disorder. The linear system size is
L = 31. Increasing the amount of disorder causes an increase of the number of high-
frequency modes, on account of a decrease of mid-frequency ones. This rearrange-
ment of the modes in the spectrum “washes out” the peaks given by the lattice band
structure.

It is instructive to note here that the shape of the D(ω) for a very compressed
granular packing, shown in Fig. 3.2, resembles the disordered hexagonal ones in the
previous plot. In the granular case the average coordination number Z ∼ 5.2, slowly
approaching the hexagonal lattice (“classical 2d solid”) coordination, Z ≡ 6.

The main result of this Subsection is shown in Fig. 3.14: In (a) we plot ξ̄(ω)/L
for various system sizes and amounts of disorder. Groups of collapsed curves have
the same amount of disorder, i.e., the same width of the radii distribution! In order
to test our scaling prediction Eq. (3.12), we rescaled the localization length with the
amount of the disorder W (in this case it is the half width of the distribution of the
radii). As Fig. 3.14(b) shows, we obtain very good data collapse at all but the highest
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Figure 3.13: The density of states for disordered hexagonal lattice. Different curves
are for different amounts of polydispersity in particle radii.

frequencies. Note also that for small amount of disorder, we have ξ̄� L.

(a) (b)

Figure 3.14: (a) ξ(ω)/L for different system sizes of 2d disordered hexagonal lattice
and fixed disorder due to polydispersity in radii (b) Collapse of data consistent with
Eq. (3.12).

We have commented before, that the scaling of the tail of the distribution of large
ξ (that we observed and derived) is robust. To support this, in Fig. 3.15, we plot P (ξ/ξ̄)
for different amounts of disorder. As one can see the large localization lengths follow
the (ξ/ξ̄)−3 scaling as well.
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Figure 3.15: Log-log plot of the distribution of ξ’s for different amounts of disorder in
the hexagonal lattice. Solid black line shows the power law decay derived in Section
3.5.1.

3.6.3 Percolation clusters

One of the most used models of structurally disordered solids is the percolation model
[112]. The simplest way to understand this model is to start from a square lattice
where each site is occupied randomly with probability p, and is consequently empty
with probability p −14. Examples of percolation on a square lattice for four different
probabilities p are shown in Fig. 3.16. For low probabilities (p less than in Fig. 3.16(a))
occupied sites are isolated from each other, or they form clusters that are small com-
pared to the system size. As the probability is increased the average size of the clus-
ters grows, Fig. 3.16(a), and at some threshold concentration pc a large cluster forms
that spans the system, i.e., it percolates from one edge of the system to the other. In
Fig. 3.16(b) we show such a cluster just above the threshold value pc . When the prob-
ability p is increased further, the density of this so-called “infinite cluster” 5 increases
as well, Fig. 3.16(c-d).

It is intuitively clear that the percolation threshold strongly depends on the di-
mensionality of the problem and the coordination of the lattice considered. For the
two-dimensional case of site percolation on a square lattice (Z = 4) pc ≈ 0.592746.

Localization behavior of vibrational modes in the infinite percolation cluster
above pc was studied in detail in 2d and 3d by Bunde and collaborators in [105]. By
looking at the second moment of the level spacing distribution of the energy levels,
they found that all eigenstates are localized in d = 2. In this Subsection we are going to
address the vibrational behavior of percolation clusters using the method presented
in Section 3.2 and actually calculate the localization length.

We simulate 2d site percolation clusters above pc on a square lattice with periodic

4As an illustration one can think about occupied sites as electrical conductors and empty ones as insu-
lators. In this way the metal-insulator transition is mapped onto a percolation problem.

5It is called “infinite” because its size diverges in the thermodynamic limit.
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p = 0.580 p = 0.595

p = 0.610 p = 0.800

(a) (b)

(c) (d)

Figure 3.16: Percolation clusters on the square lattice at probability (a) p = 0.580, (b)
p = 0.595, (c) p = 0.610 and (d) p = 0.800. Going from (a) to (d) one can see how the
size of the cluster grows and becomes more dense.

boundary conditions using the Leath algorithm [113]. After making the clusters, the
dynamical matrix for each sample is generated assuming equal masses of the each
occupied site, and equal nearest neighbor coupling k ≡ 1. Effectively, this model is
not a proper dynamical model like we studied for jamming, it is essentially the scalar
diffusion problem on a percolating lattice.

In Fig. 3.17 we show the density of states of infinite percolation clusters made with
different probabilities p above pc . The general shape of the spectrum resembles the
one for disordered jammed packings above jamming (see Fig. 3.2) — as the threshold
p is increased above pc low frequency part of the density of states goes to zero in a
linear-like fashion, Fig. 3.17(a).

Following [105], we rescale both D(ω) with ωds−1and ω with (p −pc)dwν/2, where
ds = 2d f /dw is the spectral dimension, d f is the fractal dimension, dw is the anoma-
lous diffusion exponent and ν is the correlation length exponent (ν= 4/3 in 2d). The
arguments for this scaling can be found in [105] and references therein. In this way
DOS of different percolating systems separate into two groups: phonons, where the
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(a) (b)

Figure 3.17: (a) Density of states of infinite site percolation clusters at several proba-
bilities p above pc and fixed system size L = 50. (b) Density of states for infinite site
percolation clusters for a fixed probability p = 0.61 and varying system sizes.

Debye-like
behavior

phonons

fractons

Figure 3.18: Rescaled density of states for several probabilities p and several system
sizes L. Note how the rescaling separates two different types of modes: phonons and
fractons.

low-frequency part of the density of states follows the Debye law, and fractons, the
low-frequency part of the density of states scales anomalously with ω. Collapse of
our data for several probabilities p and several system sizes L are shown in Fig. 3.18.

To get an intuition on the differences in the appearance of fracton and phonon
modes, in Fig. 3.19 we are showing a few examples from different parts of the spec-
trum.

The main result of this Subsection is shown in Fig. 3.20 where we plot the aver-
age localization length ξ̄ as a function of eigenfrequency ω for percolation clusters
at different probabilities p and different system sizes L. Figs. 3.20(a-c) address the
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Figure 3.19: Examples of eigenmodes for systems of linear size L = 100 and two dif-
ferent probabilities: in (a1-a4) p = 0.80, and in (b1-b4) p = 0.61. The radii of the disks
in the plots are proportional to the amplitude of the oscillation and the color shows
the phase.

localization behavior of fractons and (d-e) the localization behavior of phonons.

Indeed as indirectly found by Bunde et al., we also find that the vibrational modes
are localized within our finite systems, i.e., we expect that we are measuring the in-
trinsic localization length of these modes. It is interesting that the localization be-
havior of fractons and phonons is different. In the case of fractons the values of ξ are
independent of the system size L as one expects if ξint � L. However the phonons
show ξ ∼ L — in practice we find that ξ � L/2. This is not unreasonable for an ex-
tended mode which takes on values of both sign in a box with periodic boundary
conditions (for a sign-wave like mode which just fits in the box, the correlation func-
tion reaches a minimum over a distance L/2). Also one should keep in mind that
while all definitions of the localization length agree as long as ξ� L, the precise value
of ξ depends on the definition, once ξ is of order L.

We mention in passing that the scaling of the tail of the distribution of large local-
ization lengths is consistent with the scaling we found for granular packings and 2d
disordered hexagonal lattice.

Bunde et al.finds that in 3d the localization-delocalization transition occurs
somewhere in the fracton regime, so that there are delocalized phonons and delo-
calized fractons at all probabilities p > pc . It would be interesting to repeat our cal-
culation of the localization length for 3d clusters and see if the different scaling of ξ
with L can distinguish between the different types of extended modes.
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(a) (b)

(c) (d)

(e)

Figure 3.20: ξ(ω) for different system sizes of percolation clusters at several probabil-
ities. For fractons, our method measures the intrinsic localization length: in (a), (b)
and (c) the localization length we measure does not scale with the system size — we
measure the intrinsic localization length of fracton modes! In (d) and (e) we show ξ̄/L
for phonons we find at large probabilities. Note that phonons behave as in granular
systems and 1d and 2d disordered lattice problems studied in previous Sections.

3.7 Conclusions

In this Chapter we have introduced a new method, motivated by previous studies of
non-Hermitian quantum problems [107,108], which allows an analysis of localization
in phonon spectrum, including the regime ξ̄� L when the eigenmodes are extended
within the finite systems we can study. The method is especially relevant for granu-
lar packings, where ξ̄� L throughout most of the frequency range, since even in this
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regime our method gives different results depending on the amount of disorder. The
disappearance of the quasi-localized low-frequency modes as we approach the jam-
ming point by lowering the pressure is quite intriguing and their role in the response
of the system is to be explored in the future.

A few final remarks are in order. (i) Our method allows us to determine which type
of disorder (mass disorder, bond disorder or geometrical disorder) plays the domi-
nant effect in the localization behavior. (ii) The results for ξ̄(ω) in finite system typ-
ically show an upswing for small ω, except at the largest pressures; whether this is a
finite system analogue of the well known ω→ 0 divergence in infinite 2d systems [5] is
unclear to us. (iii) The states with large but finite localization lengths at low frequency
that we find at high pressures (see Fig. 3.7(a)) are intriguing. It will be interesting to
see if these states persist in the presence of the entropic interactions at finite tem-
perature. (iv) Diffusion on percolation lattices is also an appealing model system to
apply the method to: close to the percolation threshold most eigenmodes are truly
localized and thus have ξ� L, while away from the percolation threshold there is a
crossover to the regime where ξ̄≥ L.


