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C h a p t e r 2

Excitations of Ellipsoid Packings
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2.1 Introduction

As we introduced in general Introduction (Chapter 1), one of the most robust generic
behaviors in all of materials science concerns the Density of States, i.e., spectral den-
sity of vibrational excitations, D(ω). In a three-dimensional solid, the low-frequency
spectrum should follow the Debye law D(ω) ∼ω2 dictated by the elastic modes. How-
ever, this law breaks down for the case of a rigid solid formed from the jamming of
spheres interacting via finite-ranged repulsions [7,18,28,54,55,77,78] (see Chapter 1,
Section 1.2). The onset of jamming in such systems has features of a first-order tran-
sition, with a discontinuity in the number of interacting neighbors per particle [7,37],
as well as features of a second-order transition, with power-law scaling and diverging
length scales [7, 18, 23, 28, 33, 37, 54, 55, 77, 79–83]. Just above the zero-temperature
transition, D(ω) is approximately constant down to zero frequency [7, 18] implying
the existence of a new class of low-frequency excitations that arise because the solid
is on the edge of instability [28, 54, 55]. The Maxwell criterion for rigidity [84] (Sec-
tion 1.2.3) proposes that the average number of interacting neighbors per particle,
Z , should be high enough to constrain all relevant degrees of freedom in the sam-
ple: Z ≥ Ziso. For frictionless spheres, the critical coordination number, Ziso = 6,
coincides [7] with the value found at the jamming threshold packing fraction, φc (i.e.,
Zc ≡ Ziso). At packing fractions φ> φc , Z exceeds Ziso and consequently the plateau
in the density of states persists only down to a frequency ω∗ that depends solely on
δZ = Z −Ziso [18,28,54,55] (see Section 1.2.2). In small systems (like ones we study in
this Chapter), an apparent gap emerges in the spectrum between ω = 0 and ω = ω∗,
while in large enough systems the “gap” is filled with ordinary elastic plane-waves
described by Debye theory. The question that we want to address in this Chapter is
whether the new physics of the excess modes is robust for jamming transitions gen-
erally [85] or whether it is applicable only to the idealized situation of spheres.

It was succinctly demonstrated [86] that in one sense spheres represent a singu-
lar situation and therefore may be a poor starting point for describing the generic
properties of jammed solids. The introduction of even a small distortion to a sphere
brings in many new degrees of freedom that need to be constrained for complete
stability. While a sphere has only three relevant (translational) degrees of freedom,
a spheroid (an ellipsoid with two equal axes) requires two additional coordinates to
specify its orientation. Maxwell’s counting argument, Section 1.2.3, for the rigidity of
spheroid packings would necessitate an average coordination number Ziso = 10. This
means that a discontinuous increase in density would be needed if the introduction
of an arbitrarily small ellipticity required the average number of contacts per parti-
cle to jump discontinuously from 6 to 10. The rapid increase with ellipticity of the
coordination number Z and, in particular, of the packing fraction [86–91] has gar-
nered much attention (“M&M’s pack more efficiently than spheres” [86, 87, 92]). Nev-
ertheless, at the jamming threshold Zc increases smoothly — not discontinuously —
from Z = 6, as spheres deform into ellipsoids, so that for small ellipticity Zc is below
Ziso = 10 in apparent violation of the Maxwell criterion. While there are exactly the
minimum number of contacts needed for mechanical stability at the jamming tran-
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sition of spheres, there are fewer than the minimum number needed for ellipsoids.
There must therefore be unconstrained degrees of freedom [89] so that the solid is
not stable (to quadratic order) to some excitations. In this Chapter we investigate how
rotational degrees of freedom introduce new non-zero-frequency excitations. In ad-
dition, we probe the nature of zero frequency modes. Remarkably, we find that these
modes do not destroy the picture developed for spheres but instead can be naturally
incorporated into this scenario.

This Chapter is organized as follows: First we are going to revisit in more detail
Maxwell’s counting argument for non-spherical particles. The following Section 2.3
will discuss the Gay-Berne potential used in our simulations. In Section 2.4 we are
going to give more details about our packings and the methods we use to make them.
Section 2.5 is devoted to the equations of motion and the derivation of the Dynamical
Matrix. The rest of the Chapter is reserved for our results.

2.2 The Maxwell stability argument for spheroids and
the occurrence of zero modes

It seems odd to think of Zc as jumping discontinuously as soon as there is a minute
distortion of the particles from spherical symmetry, so it is useful to briefly revisit
Maxwell’s argument for the stability/instability threshold [84] of spheroids (see Sec-
tion 1.2.3). The minimum number of contacts necessary to clamp all particles which
experience forces, Ziso, is according to this argument twice the number of degrees of
freedom of a particle. As the apparent discontinuity in Ziso simply arises from our de-
cision whether or not to include the rotational degrees of freedom in the counting, it
is more intuitive to restore continuity by thinking of each sphere as having 6 degrees
of freedom: three for translations and three for arbitrary rotations so that Ziso = 12.
The rotations of individual (frictionless) spheres do not contribute in any way to the
stability of the packing and are thus simply the (Ziso−Z )/2= 3 zero-frequency modes
per particle that are trivially localized on each particle. A natural scenario is that
these innocuous zero-frequency modes progressively become mobilized into finite-
frequency excitations with increasing ellipticity. There are clearly two important val-
ues of the coordination number, Zspheres = 6 and Ziso = 12. The important issue taken
up here is the question: which of these controls the spectrum of excitations for the
generalized case of ellipsoids?

From the above point of view, just above the jamming threshold, the fact that Z is
below Ziso should manifest itself in the presence of (Ziso − Z )/2 normal modes with
zero frequency per particle — see Fig. 2.9. We study the nature of these modes and
the question of how they become mobilized into finite-frequency excitations so as to
find out whether this process changes the jamming scenario of frictionless spheres
as the naive counting would suggest. We find that the above picture, in which the
nontrivial vibrational/rotational modes are continuously turned on as the ellipticity
is increased, unifies the scenario for aspherical particles with the one for spheres.
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Since we are ignoring in the analysis below the trivial rotations about their symmetry
axis, our spheroids (ellipsoids of revolution with one symmetry axis) actually have
five rather than six nontrivial degrees of freedom. In this analysis, the critical contact
number Ziso is therefore 10 rather than 12 [86].

2.3 Interaction potential: the Gay-Berne potential
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| |
0

^

^

Figure 2.1: An illustration of the Gay-Berne potential. Left: two Gay-Berne particles
with their orientations and distance vector marked. Right: Gay-Berne harmonic po-
tential, V , as a function of the separation of the particles |ri j |. Because of the nature
of this potential (see main text for details), the relative orientation of the particles in-
fluences their interaction. Note that the lowest curve describes the situation in which
ellipsoids are touching along their shorter axis (blue solid line), and the highest curve
is for the case when the ellipsoids touch along their longer axis (red dashed line).

In our numerical study we simulate ellipsoids that are spheroidal: they have two
principal axes a and b that are the same and a third one c that is different, a = b �= c.
Depending on the ratio of the axes, one distinguishes between oblate ellipsoids with
ε= c/a < 1 ("M&M"s) and prolate ellipsoids with ε= c/a > 1 ("cigars").

The interaction of the ellipsoids is modeled by a modified Gay-Berne potential
[93], which describes how two soft ellipsoids interact when they overlap. For two
ellipsoids i and j , whose centers are located at ri and r j , Fig. 2.1, the form of the
potential is

V (ri j ,σi j ) =
{

k
α

(
σi j−ri j

σ0

)α
, ri j <σi j ,

0, ri j >σi j ,
(2.1)
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in terms of the distance between the centers of the ellipsoids ri j = |r j − ri | and the
range parameter σi j . This expression is clearly the same as the power law potential
which has been used in jamming studies of frictionless spheres [7]: when ri j =σi j the
ellipsoids just touch and for ri j < σi j they repel with a force which is a power of the
effective overlap σi j −ri j . The orientation-dependent range parameter σi j is defined
as

σi j =σ0

[
1− χ

2

(
(r̂i j · ûi + r̂i j · û j )2

1+χûi · û j
+ (r̂i j · ûi − r̂i j · û j )2

1−χûi · û j

)]−1/2

, (2.2)

Here, û is a unit vector along the principal axis of the ellipsoid:

ûi = sinθi cosϕi x̂+ sinθi sinϕi ŷ+cosθi ẑ. (2.3)

By analyzing (2.2) in the two cases where ûi and û j are parallel and perpendicular to
each other, it is easy to see that σ0 = 2a = 2b and that the aspect ratio ε = c/a of the
particles is related to the dimensionless parameter χ by

χ= ε2 −1

ε2 +1
. (2.4)

A plot of the Gay-Berne potential for various configurations of two contacting parti-
cles is shown in Fig. 2.1. Depending on how the particles are oriented upon making a
contact, the potential between them differs (different curves in the plot).

The parameter k in the potential (2.1) sets the strength of the potential and plays
the role of the bond stiffness for a one-sided repulsive harmonic potential (α = 2 in
(2.1)). For anisotropic particles, it is known as the well-depth anisotropy function and
is typically taken to be a function of the three directions, k = k(ûi , û j , r̂i j ). In order to
simplify the expression for the potential, we take k = 1. This is a natural approxi-
mation for homogeneous particles with small δε. Thus, for a one-sided harmonic
potential (i.e., α= 2) , the bond stiffness equals 1 for every contact.

2.4 Preparation of the packings and elimination of rat-
tlers

Simulations were performed using N identical spheroids (equal size and mass m)1.
The ellipsoids interact via the Gay-Berne potential described in Section 2.3. We stud-
ied both repulsive harmonic springs (α= 2) and Hertzian interactions (α= 5/2). Most
simulations are done in a three-dimensional cubic box with periodic boundary con-
ditions in all directions. Packings of spheroids were prepared by quenching random
configurations at infinite temperature, T =∞ to their local energy minima using con-
jugate gradient energy minimization [94]. In order to obtain a jammed packing at a
desired δφ = φ−φc , where φc is the packing fraction of the jamming transition at

1The code used to make the 3D packings was written by Prof. Ning Xu, one of the authors of the paper
this Chapter is based on. This code was rewritten to produce 2D system by the author of this thesis.



26 Excitations of Ellipsoid Packings

fixed ε, we used the following protocol [18]. We first created a jammed configuration
at a packing fraction just above φc (ε). To achieve that, we set a small energy tolerance
per particle, say ΔE = 10−16 in units of kL3, where L is the length of the system. If
the energy per particle was larger than ΔE , the size of the spheroids was slightly de-
creased, and if the energy was smaller than ΔE , the size was increased. In doing so,
the increment of change in the particle size was decreased progressively in order to
eventually converge to a configuration with an energy per particle roughly equal to
ΔE . This configuration was taken to be at the jamming threshold, so that its packing
fraction was defined to be φc (this would be exactly true for ΔE = 0). In order to ob-
tain configurations at a given δφ, the system was gradually compressed by repeatedly
increasing the size of all particles slightly then quenching the system to its energy
minimum, until the desired value of δφ was reached. The pressure was monitored
during this process; a steady increase with packing fraction indicates an adiabatic
change, but if the pressure was found to drop, indicating a significant rearrangement
of the particles, the new corresponding φc was determined and the system was then
gradually compressed from the new φc .

2D systems are generally easier to depict. Although all of the results we are going
to show below are for the case of 3D ellipsoids, we will, however, often use 2D illus-
trations to emphasize some behavior. In Fig. 2.2 we are showing examples of packing
with differing ellipticity, in 2D.

Note that for our typical tolerance for the energy of a particle, ΔE = 10−16, the
tolerance for the overlap δi j = (σi j − ri j )/σ0 is of order 10−8 for one-sided harmonic
springs, but only of order 4 · 10−7 for Hertzian interactions. We suspect that this is
the reason that the spread in our data of the average contact number Z (Fig. 2.10(a)
below) is somewhat larger for Hertzian forces than it is for the harmonic springs.

We study two system sizes, N = 216 and N = 512, and average over about 100
independent initial configurations, at each value of Z and each density φ.

Rattlers (or floaters) were eliminated from the analysis as follows: in the first step,
ellipsoids with fewer than d +1 = 4 overlaps were removed. Since removal of a rat-
tler could eliminate overlaps with particles that initially had 4 or more neighbors,
we iteratively checked the number of overlaps and removed newly formed rattlers
until all remaining ellipsoids had at least 4 interacting neighbors. If a particle had
δi j = (σi j − ri j )/σ0 < 10−8 for all of its overlaps (this rarely happens), it was also re-
garded as a rattler, i.e., it was removed and the above procedure was repeated.

2.5 Equations of motion and dynamical matrix

In the following section we are going to derive the equations of motion that describe
our system and find the dynamical matrix.
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example packings

ε= 1.0001 ε= 1.05

ε= 1.1 ε= 1.9

Figure 2.2: Examples of 2D bidisperse packings with different ellipticities, for Har-
monic interaction potential. These packings are at the onset of jamming. Even by
eye, it is already clear that the density increases with increasing ε.

2.5.1 Equations of motion

The position of a rigid body is described by the coordinates of its center of mass,
(xi , yi , zi ), and its orientation that is parametrized by the Euler angles (θi ,ϕi ,ψi ). We
used two coordinate systems — one is the lab system (X ,Y , Z ), and the other one is
tied to the particle’s center of mass (x1, x2, x3), the so-called body system. For our
ellipsoids we chose the x3 axis along the vector �̂u (the vector along the c−axis of the
ellipsoid).

In standard rigid body framework, if one considers a rotation of the body for a
small angle, the angular velocity has a simple form:

�Ω= ϕ̇�eZ + θ̇ �eN + ψ̇�e3, (2.5)

where the �eN is the unit vector along the nodal line. In the body system it can be
written as �eN = cosψ�e1−sinψ�e2. The components of the �eZ in the body system can be
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found by applying the total rotational matrix (matrix that transforms the lab system
into the body system) on a vector (0,0,1)T . It is easy to show that the expression for
the �eZ is then �eZ = sinψsinθ�e1 +cosψsinθ�e2 +cosθ�e3.

The expression for the angular velocity Ω can now be rewritten in the body sys-
tem, with the following components:

⎧⎨
⎩

Ω1 = ϕ̇(�eZ )1 + θ̇( �eN )1

Ω2 = ϕ̇(�eZ )2 + θ̇( �eN )2

Ω3 = ϕ̇(�eZ )3 + θ̇( �eN )3 + ψ̇.
(2.6)

Working in the body system allows us to write the moment of inertia tensor in a diag-
onal form:

Î =
⎛
⎝I1 0 0

0 I2 0
0 0 I3

⎞
⎠ , (2.7)

where I1, I2 and I3 are principal moments of inertia. For our ellipsoids I1 = I2 = I =
m/5(a2 +c2) and I3 = 2m/5a2.

Now we have all the ingredients to write the equations of motion in the body sys-
tem (the last three equations are known as Euler equations):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

mẍ = F1

mÿ = F2

mz̈ = F3

I1Ω̇1 − (I2 − I3)Ω2Ω3 = K1

I2Ω̇2 − (I3 − I1)Ω3Ω1 = K2

I3Ω̇3 − (I1 − I2)Ω1Ω2 = K3.

(2.8)

From considering the change of energy of the system due to an infinitesimal change
of the particle’s position and orientation:

δE = F1d x +F2d y +F3d z +KZ dϕ+KN dθ+K3dψ, (2.9)

we can see that the torque along the principal (rotational symmetry) axis of the el-
lipsoid K3 has to be 0, since ψ describes a rotation around the rotational symmetry
axis of the ellipsoid (�e3), and thus does not change the energy, i.e., ∂E/∂ψ= 0. We can
include this result into the Euler equations together with the fact that I1 = I2 = I , and
the resulting equations are then:

⎧⎨
⎩

IΩ̇1 − (I − I3)Ω2Ω3 = K1

IΩ̇2 − (I3 − I )Ω3Ω1 = K2

I3Ω̇3 = K3 = 0.
(2.10)

From the third Euler equation we have that Ω̇3 = 0, i.e., Ω3 = const which we will
take to be zero, because we don’t have our ellipsoids rotating around their rotational
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symmetry axis. If we again return to the Euler equations and include this, we will get
even simpler expressions:

⎧⎨
⎩

IΩ̇1 = K1

IΩ̇2 = K2

Ω̇3 = 0.
(2.11)

Before linearizing the equations of motion, we need to find the components of the
force moment vector �K . We can write �K = K1�e1+K2�e2+K3�e3 = KZ�eZ +KN�eN+K ∗(�eN×
�eZ ). Since we know the vectors�eZ and�eN in the body system, it is easy to show that
the components of the force moment vector �K are:

⎧⎨
⎩

K1 = KZ sinψ/sinθ+KN cosψ
K2 = KZ cosψ/sinθ−KN sinψ

K3 = 0,
(2.12)

where we eliminated K ∗ by using K ∗ = −KZ cosθ/sinθ, a result that comes out from
the third equation.

We now proceed with the linearization of the equations of motion.

2.5.2 Linearization of the equations of motion

We are interested in the displacement of the ellipsoids around their equilibrium po-
sition. That means that x → x0+δx, y → y0+δy , z → z0+δz, ϕ→ϕ0+δϕ, θ→ θ0+δθ

and ψ→ψ0+δψ, where δ signifies a displacement. Since the variableψ describes the
rotation of an ellipsoid around its symmetry axis, it is justified to take the equilibrium
value ψ0 to be zero for each ellipsoid. Up to now we used a simplified notation by
considering one particle. All the above equations should be written for all the parti-
cles in a packing, i.e., we add an index i to all the variables.

The force moment vector �Ki is in principle a function of the positions and orien-
tations of all the particles. Since our energy (E ) is actually the potential (V ), which
is a pair-potential between neighboring particles, in practice �Ki will depend only on
the coordinates of the neighboring particles. From a many particle version of equa-
tion (2.9) we see that the components of the vectors �Ki are determined by the first
derivatives of the potential with respect to the coordinates (e.g., KZ ,i = ∂V /∂ϕi ). To
linearize the equations we Taylor expand the components of the �Ki and the �Ωi up to
linear order in the displacements. Since in equilibrium all the �Ki are equal to zero,
the lowest term in their expansion is already linear. The result of this expansion are
the linear parts of the relevant quantities, and with taking into account that ψi ,0 = 0,
they have the following form:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ωi ,1 = δθ̇i

Ωi ,2 = δϕ̇i sinθi ,0

Ωi ,3 = 0 = δϕ̇i cosθi ,0 +δψ̇i

Ki ,1 = δKi ,N

Ki ,2 = δKi ,Z /sinθi ,0

Ki ,3 = 0.

(2.13)

In the above we used the abbreviation δK for the linear part of K . More explicitly by
using the Taylor formula we get:

δ�Ki =
N∑

j=1, j �=i

∂�Ki

∂x j
|eqδx j + ∂�Ki

∂y j
|eqδy j + ∂�Ki

∂z j
|eqδz j + ∂�Ki

∂θ j
|eqδθ j + ∂�Ki

∂ϕ j
|eqδϕ j . (2.14)

Finally we can write down the linearized equations of motion:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mδ̈xi =∑
j �=i V ′′

xi x j
δx j +V ′′

xi y j
δy j +V ′′

xi z j
δz j +V ′′

xiθ j
δθ j +V ′′

xiϕ j
δϕ j

mδ̈yi =
∑

j �=i V ′′
yi x j

δx j +V ′′
yi y j

δy j +V ′′
yi z j

δz j +V ′′
yiθ j

δθ j +V ′′
yiϕ j

δϕ j

mδ̈zi =∑
j �=i V ′′

zi x j
δx j +V ′′

zi y j
δy j +V ′′

zi z j
δz j +V ′′

ziθ j
δθ j +V ′′

zi ϕ j
δϕ j

I δ̈θi =∑
j �=i V ′′

θi x j
δx j +V ′′

θi y j
δy j +V ′′

θi z j
δz j +V ′′

θi θ j
δθ j +V ′′

θiϕ j
δϕ j

I sin2θi ,0δ̈ϕi =
∑

j �=i V ′′
ϕi x j

δx j +V ′′
ϕi y j

δy j +V ′′
ϕi z j

δz j +V ′′
ϕiθ j

δθ j +V ′′
ϕiϕ j

δϕ j .

(2.15)
Since the coordinate ϕ quantifies the rotations around the Z axis, the movement δϕ
has to be weighed by the value of θ, hence the θi ,0 factor that appears in the fifth
equation (e.g., if θ0 = 0, δϕ is a rotation around the rotational symmetry axis, and so
has no dynamics).

2.5.3 Dynamical matrix

In the usual case of vibrations, the terms on the right hand side of the dynamical
equations, which are simply derivatives of the potential, determine the elements of
the dynamical matrix D. In the absence of the angular terms, we can divide the first
three equations of (2.15) through by m to get a symmetric dynamical equation D
whose eigenvalues give the vibrational eigenfrequencies ω2. However, in the pres-
ence of the angular degrees of freedom, the situation is slightly different [95], as we
shall see below.

From the equations of motion it is straightforward to see what the elements of the
dynamical matrix will be. But before we continue we need to rewrite our equations in
such a way, that when we go to the Fourier domain we have an eigenvalue problem
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(i.e., on the left side of the equations we want only ω2
i ). This means that we have to

rescale our coordinates — |ut
i 〉 →

�
m |ut

i 〉; |ur
i 〉 →

�
I |ur

i 〉. Since in our packings all
the particles have mass m = 1, and the moment of inertia of the particles is the same
for each particle, I = 1/5a2(1+ ε2), this rescaling of the coordinates can be trivially
done.

However, the equation for δϕ is still multiplied with a factor sin2θi
0. This factor

cannot be scaled out in the same manner as I and m factors, because it will make the
matrix non-Hermitian. Since we are looking at a real system, the resulting appearance
of the complex eigenvalues would indicate some sort of a damping in the system, that
we don’t have.

The solution to this problem is to solve the generalized eigenvalue problem : we
have |D̂ −ω2B̂ | = 0, where B̂ differs from the unit matrix by having elements sin2θi

0 at
the positions corresponding to the ϕi displacement. To obtain the eigenfrequencies
ω2, we solved the eigenvalue problem of the B̂−1D̂ matrix. It can be shown (for a class
of B̂ matrices to which ours belongs) that, although the B̂−1D̂ matrix is not Hermitian,
the obtained spectrum must be real.

To calculate the diagonal 5×5 blocks of the dynamical matrix (“self-interaction”),
we used expressions derived from imposing global translations and rotations as zero
energy modes. Because of the periodic boundary conditions, these global rotations
of the system are actually not eigenmodes of the system. This means that there are
always at least 3 zero eigenmodes that correspond to the global translations of the
system. Derived expression for the diagonal elements are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
αβ

i i =− ∑
j �=i

D
αβ

i j , where α= x, y, z,θ,φ and β= x, y, z

Dαθ
i i =− 1

Jθαi

·
[
− Jφx

i

J
φz
i

(∑
j �=i

J
φz
j D

αφ

i j +∑
j

D
αy
i j Rx

j −Dαx
i j R

y
j

)

+∑
j �=i

Jθx
j Dαθ

i j + J
φx
j D

αφ

i j +∑
j

Dαz
i j R

y
j −D

αy
i j Rz

j

]
, where α= x, y, z,θ,φ

D
αφ

i i =− 1

J
φz
i

(∑
j �=i

J
φz
j D

αφ

i j +∑
j

D
αy
i j Rx

j −Dαx
i j R

y
j

)
, where α= x, y, z,θ,φ.

(2.16)

In previous equations Ĵ is the Jacobian that connects spherical θ and φ coordinates
with x, y, z:

Ĵi =
( −sinφi

0 cosφi
0 0

−cotθi
0 cosφi

0 −cotθi
0 sinφi

0 1

)
, (2.17)

where the first row corresponds to θ and second row to φ coordinate.
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2.5.4 Units and rescaling of the frequencies

We arbitrarily set the mass of the spheroids equal to 1. For the one-sided harmonic
potential (α= 2) and k = 1, the units are then the same in the limit ε→ 1 to the ones
employed before in studies of the density of states, D(ω), of frictionless spheres [18].
Spatial scales are measured in units of σ0 = 2a = 2b.

For Hertzian forces (α= 5/2) the effective stiffness of the bonds becomes smaller
as the jamming point is approached. Since the effective stiffness keff scales as
keff(δi j ) � δ1/2 ∼ p1/3, where δ is the typical dimensionless overlap (σi j − ri j )/σ0,
and p is the pressure, the frequency scale goes down as δ1/4 ∼ p1/6. In order to fa-
cilitate comparison with the results for one-sided harmonic springs, we therefore re-
port, following [77], our results for Hertzian interaction in terms of scaled frequencies
ω̃=ω/p1/6 �ω/

√
keff(δ).

2.6 Analysis

2.6.1 Continuous change of the average contact number Z and vol-
ume fraction φ

As was already mention in the Introduction of this Chapter, numerical work on hard
ellipsoids and experimental work on M&M’s [86, 87, 92] showed that both the average
contact number Z and the volume fraction φ change continuously, when the elliptic-
ity of the particles is changed from the spherical value ε= 1.

In Fig. 2.3 we are showing this behavior for our 3D system with soft ellipsoid har-
monic interaction potential: In (b) we show the coordination number versus aspect
ratio, ε ≡ c/a of spheroids where c and a are the length along and the width per-
pendicular to the symmetry axis respectively. ε < 1 corresponds to oblate spheroids
(“M&M’s”) and ε> 1 to prolate ones. The black symbols correspond to configurations
evaluated very close to the jamming threshold φc(ε) for each value of ε. The other col-
ors correspond to compressions δφ≡φ−φc relative to the threshold jamming density
φc(ε). Note that Z depends both on ε andδφ. The horizontal dashed line at (Z−6) = 4
corresponds to Ziso = 10 which is the Maxwell criterion for rigidity of spheroids.

We have checked in all cases that the number of zero-frequency modes per par-
ticle at threshold is precisely (Ziso − Z )/2; this is shown by the gray crosses. The in-
set shows that for both oblate and prolate spheroids at the threshold δZ ≡ (Z −6) =
(6.6±0.3)|δε|0.50±0.04, where δε≡ ε−1, in agreement with results for two-dimensional
ellipses [89, 96].

In Fig. 2.3(b) we show the change of the volume fraction φ with the change of
δε. The black symbols correspond to configurations at the onset of jamming, while
the rest of the colored data is for compressed configurations. As in previous studies
[86–92], φ has a maximum for some value of the ellipticity (for our configurations at
the onset these values are φ≈ 0.7 and δε≈ 1.5), after which it starts to slowly decay.
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Figure 2.3: The average contact number Z and volume fraction φ, of harmonic pack-
ings. (a) Z as a function of the ellipticity δε ≡ ε−1 and distance from jamming δφ

for our 216-particle packings. The sharp decrease around the spherical case δε = 0
is consistent with earlier results [86, 90, 91] for hard ellipsoids and spherically capped
rods. The log-log plot of δZ versus |δε| in the inset shows that the rise of Z at jam-
ming is consistent with a δZ ∼

√
|δε| scaling. The crosses in the main plot for small

values of δε show that twice the measured number of zero-frequency eigenmodes per
particle plus Z −6 add up precisely to 4. (b) φ as a function of the ellipticity. For some
value of δε, the volume fraction develops a maximum, which was observed in earlier
studies as well [86, 90, 91].

2.6.2 Harmonic potential

In Fig. 2.4(a-d), we show the averaged density of states D(ω) for twelve typical situa-
tions. In Fig. 2.4(a), we show D(ω) for spheroids that are close to spheres, δε=−0.04,
for three different compressions: close to jamming at δφ < 10−6 (black line), at
δφ = 10−3 (green line) and for relatively large compression, at δφ = 10−2 (blue line).
We find that for small δε, the system behaves nearly as if it was made from spheres
but with a new “rotational” band of excitations. The plateau in the translational band
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Figure 2.4: (a) The density of states for slightly oblate ellipsoids, δε = −0.04, for our
packings close to jamming and at two compressions. The existence of two bands
separated by a gap as well as a gap at zero frequency is clearly visible. (b) For larger
ellipticities the two bands merge, in our case for δε = −0.17. Note how the different
shapes of the merged bands are still visible. (c) As we continue to increase the aspect
ratio of the particles, the separate shape of the bands vanishes, as illustrated here for
δε = −0.33. (d) Shows the data for δε = 1 where Z ≈ Ziso = 10 at jamming. In accord
with this, the gap near zero frequency increases with increasing compression (and
therefore increasing Z). This is consistent with the argument that ω∗ increases as Z
increases above Ziso.

of D(ω) still exists with a sharp onset, ω∗, determined by δZ . Our systems are too
small to see the elastic plane-waves below ω∗. As we will show, ω∗ scales in the same
way as the plateau onset for spherical systems [18,28,54,55]. The rotational band lies
below the translational band and extends over the range ω∗

s ≤ ω ≤ ωs < ω∗. As we
will quantify, the spectrum is therefore described as having a lower-frequency rota-
tional band separated by a gap from ω= 0 as well as by a gap from a higher-frequency
translational band.

As we increase ellipticity, at some value of δε the bands will merge, as can be seen
in Fig. 2.4(b). The individual band shape is still visible, but the nature of the modes in
the merged region will change, as we shall see in Section 2.6.2.

In Fig. 2.4(c), we show D(ω) for highly non-spherical particles, δε=−0.33 for the
same three values of compression as shown in Fig. 2.4(a). For these systems, the gap
between the two bands has disappeared. In addition, when we compress packings for
large ε which have Z ≈ Ziso at jamming, a plateau of low-frequency modes appears.
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Once we compress these packings that are at the isostatic point for ellipsoids, a gap
opens up near ω= 0, as shown in Fig. 2.4(d). This is in complete agreement with the
scenario for spheres.

Nature of the new excitations

We can determine the nature of the excitations in the two bands by analyzing the
eigenvectors of the dynamical matrix. We will do this only for the case of harmonic in-
teraction potential. First we look at the relative contribution of the rotational degrees
of freedom to the mode, uμ(i ), where μ = 1,2,3 labels the translations and μ = 4,5
labels the two Euler coordinates of the orientation of each particle. In Fig. 2.5, we plot
the rotational contribution:

〈u2
r 〉 =

∑N
i=1

∑5
μ=4 u2

μ(i )∑N
i=1

∑5
μ=1 u2

μ(i )
(2.18)

and the translational contribution

〈u2
t 〉 =

∑N
i=1

∑3
μ=1 u2

μ(i )∑N
i=1

∑5
μ=1 u2

μ(i )
(2.19)

separately. The lower band, existing below ωs , is predominantly rotational in nature
while the upper band, above ω∗, is translational. This is most pronounced when ε is
small as shown in Fig. 2.5(a) and illustrated in (a1).

In the limit as ε approaches 0, we find that the contribution of 〈u2
r 〉 in the upper

band falls off as (3.57(1) · 10−4 ) ω−2.07(1) up to the onset of localized modes at high
frequencies. The scaling ∼ω−2 is precisely what one expects from perturbation the-
ory if the rotational degrees of freedom are weakly coupled to the rotational ones.
Fig. 2.5(b) shows the data at a larger ε where the bands have just merged. The now
mixed character of modes is nicely captured by plots in Fig. 2.5(b1).

An illustration of how the purely rotational, translational and zero-frequency
modes look like is shown in Fig. 2.6, for the 2D system.

Spectrum of ellipsoids — a different representation

Instead of binning the data so as to present them in terms of a density of states, we
also give the individual frequencies as a function of mode number, obtained by av-
eraging approximately 50 harmonic packings of 216 particles each, Figs. 2.7 and 2.8.
The eigenvalues are ordered such that the frequency increases with increasing mode
number.

Fig. 2.7(a) shows the frequencies on a log-log scale for δε=−0.17. At this value of
δε, Z ∼ 8 at the jamming transition density φc (ε), so that we expect about 1 zero mode
per particle (about 216 in total). Due to our finite accuracy, these zero-frequency
modes appear in Fig. 2.7(a) as the nearly flat set of points with frequencies of order
10−4 or less at the lowest δφ. Note that these “zero-frequency modes” have ω2 ≈ 10−8,
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Figure 2.5: (a) Plot of the rotational component 〈u2
r 〉 and the translational compo-

nent 〈u2
t 〉 of the eigenmodes for δε = −0.02 as a function of ω. The lower frequency

band is predominantly rotational, while the upper band is essentially translational.
A predominantly rotational mode is illustrated in (a1). The red line indicates that at
high frequencies the rotational contribution decreases as ω−2. (b) The same as in (a),
but with δε = −0.17, when the gap between the two bands has just closed and most
modes have mixed character. The inset of (b) show the same data in a linear scale.
(b1) illustrates the character of a mixed mode at an even larger ellipticity.

which is consistent with the fact that we only determine typical forces in our packings
to an accuracy of order 10−8 (see Subsection 2.4). The larger the slope in Fig. 2.7(a),
the smaller the density of states, but the effect is not linear as it is distorted by the
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Figure 2.6: A purely translational, zero and rotational mode. Contributions of trans-
lations and rotations are plotted separately in the left and right column respectively.
The size of the arrows corresponds to the amount of translational motion, whereas
the color of the particles different than white indicates the amount of rotation of the
particles. Note how for the case of zero modes, only one particle is rotating. The na-
ture of the first rotational modes that appear in the spectrum is extended, as one can
see in the lower middle plot.

logarithmic scale.

The kink in the curve at a frequency of order 0.6 marks the point where the ro-
tational and translational bands merge, where D(ω) changes rapidly and the mixing
between the bands is large. Fig. 2.7 shows the same type of data for slightly oblate
ellipsoids, δε=−0.02. In this case, the presence of a gap between ω≈ 0.05 and 0.10 is
clearly visible.

Fig. 2.8 shows eigenfrequencies ω versus mode number as a function of ε for a
system of oblate ellipsoids, at a density close to jamming. The development of a gap
and its shift with δε is again clearly visible. All the results stated in this Section are
summarized in Fig. 2.9.
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numerical accuracy, the set of zero-frequency modes. A gap between the two bands
at frequencies between about 0.05 and 0.10 is clearly visible.

10-6

10-5

10-4

10-3

10-2

10-1

100

101

100 101 102 103

Mode number

ω

δφ = 10−6

δε = − 0.33
δε = − 0.17
δε = − 0.09
δε = − 0.06
δε = − 0.04
δε = − 0.02

Figure 2.8: Log-log plot of all the eigenfrequencies of our system vs. mode number,
for oblate particles of various ellipticities, at a density close to jamming, δφ= 10−6.



2.6 Analysis 39

5

4

3

2

1

1            2            3            4 
Z - 6

mixed modes

3 translational modes

zero modes

rotational modes

# 
of

 m
od

es
 p

er
 p

ar
tic

le

3+(Z-6)/2

2-(Z-6)/2

(Z-6)/2

Figure 2.9: Illustration of how the number of different modes per particle (excluding
rattlers) in the packings at jamming varies as a function of the average contact num-
ber Z . For Z � 9, there are two well-defined bands: a rotational band with (Z −6)/2
modes per particle and a translational band with three modes per interacting particle
as is the case for spheres. Upon increasing Z , the number of zero modes decreases as
zero-modes are converted into finite-frequency rotational modes. Above Z ≈ 9, there
is only one band.

2.6.3 Hertzian potential

In this subsection we present our results for Hertzian N = 216 particle packings, close
to the jamming threshold. All the observed features and derived conclusions for the
case of harmonic ellipsoid packings, described in the previous Subsection hold in the
Hertzian case as well, as long as we scale all frequencies by the effective spring con-
stant, keff, Subsection 2.5.4. Scaled frequencies are labeled as ω̃ for Hertzian systems.
The main difference lies in the increased statistical noise for the Hertzian packings,
which is due to the different scaling of the interaction energy (for which the numeri-
cal tolerance is prescribed) with the particle overlaps, as is discussed at the end of the
Subsection 2.4.

In Fig. 2.10(a) we plot the average excess of coordination δZ as a function of ellip-
ticity for particles with Hertzian interactions. The statistical fluctuations inherent to
our packings are very large for the smallest values of δε, where we see a large devia-
tion from the expected scaling δZ ∼ |δε|0.5.

The density of states of our Hertzian packings shown in Fig. 2.10(b) is qualitatively
consistent with our findings for the one-sided harmonic spring packings at small el-
lipticity, but the gap between the two bands is smaller and the scatter in the data is
larger, as expected given the lower accuracy of the Hertzian data. We attribute the
fact that the gap is smaller than for the harmonic packings to the fact that ω∗ and ωs
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Figure 2.10: (a) Average excess contact number δZ vs. ellipticity δε≡ ε−1 at the jam-
ming threshold for packings of 216 (oblate - open symbols and prolate -closed sym-
bols) ellipsoids interacting via a Hertzian interaction. The line has a slope of 0.65. (b)
Density of states averaged over 100 Hertzian configurations, for five different elliptic-
ities (oblate particles). Scaled frequencies are used, as explained in Subsection 2.5.4.

have, as we have seen, a different physical origin: ω∗ is determined essentially by the
excess coordination number δZ , irrespective of its origin, while ωs depends on the
form of the overlap potential and the ellipticity.

2.6.4 Participation ratio

To determine the homogeneity of the modes in space, we computed the participation
ratio

P (ω)= 1

N

(∑N
i=1 u2

x,μ

)2

∑N
i=1 u4

x,μ

(2.20)

of each mode. Fig. 2.11(a) shows that at low values of ε, the participation ratio is
small and that for the highest frequencies nearωs the modes become highly localized.
Modes in the plateau of P (ω) for the rotational band are extended in nature. Since
it is much easier to show this behavior for the 2D system, we simulated a packing
with δε = 0.08, where this extended nature is captured with all the particles rotating
throughout the system. The two largest values of δε shown in (a) are the also shown
in panel (b) of this figure, where on can see that they describe the case where the
bands have just merged. We also extracted the value of the plateau of P (ω) for various
ellipticities and system sizes, Fig. 2.11(c)2. Our data indicates that the plateau for the
smallest ellipticities has a finite value, indicating extended nature of the modes. For
sufficient ellipticities value of the plateau saturates to ≈ 0.3.

2Here we show only one system size, N = 216, but we have checked this behavior for N = 512 and N =
1024 as well
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Figure 2.11: Participation ratio P (ω) of the rotational modes for various ε as a function
of frequency. (a) The eigenmodes at the upper edge of the rotational band are seen
to be strongly localized; throughout the rest of the band P (ω) is quite flat and rather
small. The data at the largest ellipticities (δε=−0.17, and 0.20) correspond to values
where the gap between the two bands has just closed — the dip in these data is the
vestige of the merging of the two bands. These two curves, together with the one for
δε = 0.50, are shown in panel (b), but now for the whole spectrum. In panel (c) we
show the behavior of the plateau of the participation ratio with the increase of the
aspect ratio of the particles. Mode plots marked with 1-3, are the 2D illustrations of
the modes living in the plateau of P (ω), where one can see the extended behavior in
our finite systems.

2.6.5 Scaling of the relevant frequencies

Harmonic potential

In Fig. 2.12(a) the frequency of the lower edge of the rotation band, ω∗
s is plotted vs.

|δε| = |ε− 1|. For small ε, the behavior is essentially linear; for large ε, when Z at
jamming approaches 10, the gap closes. Fig. 2.12(b) shows ωs and ω∗ as functions of
|δε| for harmonic configurations of prolate ellipsoids that are close to the jamming
threshold. We find ω∗ = (1.4±0.3)|δε|0.6±0.1 and ωs = (3.5±0.3)|δε|1.1±0.1. The scaling
of ωs can be understood as the maximum frequency of a libration mode. As Fig. 2.11
shows, this mode is strongly localized, so we can obtain the scaling of the maximum
frequency by estimating the torque response for rotating a single ellipsoid, keeping
the other ones fixed. For a small rotation by an angle dθ, a contact is compressed
or decompressed by an amount σ0|δε|dθ, where σ0 is the size of the ellipsoids. This
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Figure 2.12: (a) Results for ω∗
s , the lower edge of the rotational band, as a function

of ellipticity. For large ellipticities ω∗
s decreases as Z approaches 10 at jamming. (b)

Scaling of ωs and ω∗ with δε. Data is for prolate ellipsoids. ωs , the frequency cor-
responding to the upper edge of the rotational band, which exists for small elliptic-
ity, scales approximately linearly in δε at jamming, in agreement with the argument
given in the text, while ω∗ scales as |δε|0.6(1) (the red lines are the best fits of the data).
The point where the two lines cross marks the vanishing of the gap between the two
bands. Inset: the same data for oblate ellipsoids. Numerically, the values are very
close to those for prolate ellipsoids at the same ellipticity. (c) Scaling of ω∗ for various
compressions for oblate and prolate ellipsoids, showing that ω∗ is determined by the
contact number only, and that ω∗ varies linearly in δZ , just as it does for spheres.

changes the normal force by an amount keffσ0|δε|dθ , with keff the effective bond
strength (which is constant for harmonic forces but density-dependent for Hertzian
ones). For a slightly oblate or prolate ellipsoid, the change in torque is smaller by an
amount |δε|, hence of order keffσ0|δε|2dθ (for the harmonic data keff is 1). Since we
scale out the factor k1/2

eff
from our frequencies, this implies that the maximum scaled

frequencyωs ∼ |δε|, independent of the force law (see the following Subsection for the
results of the Hertzian packings). Similar results are found in two dimensions [96].
The inset of Fig. 2.12(b) shows ωs and ω∗ as functions of |δε| for oblate ellipsoids.
Values of the exponents that we find for oblate ellipsoids are, within the error bars, the
same as for prolate ones, with prefactors of ωs and ω∗ that are 10% and 15% higher,
respectively.
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In Fig. 2.12(c) we show ω∗ as a function ofδZ for different compressions and ellip-
ticities. ω∗ is still dependent solely on δZ and therefore the translational band does
not depend on whether the increase in δZ occurs due to an increase in compression
or an increase in the aspect ratio of the particles. For spheres, the onset of the transla-
tional band is determined by the excess number of contacts. Our results show that for
ellipsoids, the same scenario applies, irrespective of the origin of the excess contacts.
Note that the upper and lower limits of the rotational band, ωs and ω∗

s do not obey
this simple behavior but depend differently on ellipticity and compression [97].
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Figure 2.13: The characteristic (scaled) band frequencies versus ellipticity and coor-
dination number for packings interacting via a Hertzian potential. (a) Lower edge ω̃∗

s
of the rotational band as a function of ellipticity. (b) Scaling of the upper edge ω̃s of
the rotational band with ellipticity, for prolate ellipsoids. The line which is a guide
to the eye has a slope of 1.1, the same value found for the harmonic packings. The
inset shows the same data for oblate ellipsoids; the line has the same slope. (c) The
dependence of ω̃∗ on the excess number of contacts. The line has a slope of 1.

Hertzian potential

Fig. 2.13 shows the change in characteristic band frequencies, scaled as explained in
Subsection 2.5.4, with ellipticity and coordination number for the case of particles
interacting with a Hertzian potential. Again the observed scalings are quantitatively
the same as for packings of harmonic ellipsoids.
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2.6.6 Absence of elastic modes in our systems

In this study we have dealt exclusively with small systems, N ≤ 512. This naturally
raises the question about what finite-size effects are important.

In our finite systems, there is a gap below the frequency scale ω∗, which is defined
as the low-frequency edge of the band of translational modes. For a sufficiently large
system, the behavior is always elastic beyond scales �∗ [98]; hence there will always
be elastic modes at frequencies below ω∗. In other words, the density of vibrational
states will show Debye scaling, D(ω) ∼ωd−1. Whether one observes elastic modes in
a finite system depends therefore on the system size and the pressure or density (as
the shear modulus depends on these). For large enough three-dimensional friction-
less sphere packings, clear peaks in the D(ω) resulting from transverse elastic modes
with ω = cT kn can indeed be seen [33]. However, the minimum frequency goes up
as the system size decreases, since the minimum wave number of such modes is
kmin = 2π/L with L the linear system size. On the basis of Fig. 2.4 of [33], we esti-
mate that the frequency of an elastic mode that occurs at our largest densities δφ is
of order 0.3. Since ω∗ is almost always smaller, in our relatively small systems the
translational band appears gapped. As the jamming point is approached, the trans-
verse elastic mode frequency becomes of course smaller, but since ω∗ decreases with
δZ faster than cT , the translational band remains effectively gapped throughout the
whole parameter range explored. Note that for large enough systems, plane-wave
elastic modes will hybridize with the modes found in this study, so that localized ro-
tational modes, for example, will become quasi-localized.

2.7 Conclusions and outlook

In conclusion, this study solves the problem of how the new degrees of freedom asso-
ciated with non-spherical objects are incorporated into the normal-mode spectrum
at the jamming threshold. Earlier findings [86–89] — that the isostatic conjecture
breaks down for ellipsoid packings in the regime where Z < 10 — suggest that what
happens for spheres does not immediately apply to more complex shapes. As a result,
the packing problem of spheres has sometimes been viewed as an anomaly [86, 92].
If this would extend to the nature of the jammed state and its dynamic response, any
perturbation from spherical symmetry would qualitatively change the character of
marginally-jammed solid determined for spheres at Point J . Instead, we find that the
structure of the normal-mode spectrum remains robust. The new modes that are in-
troduced do not affect the plateau in the density of states until the spheroid ellipticity
becomes large. Moreover, these rotational modes appear to be localized so that they
should not be efficient at transporting heat. The onset of the modes in the trans-
lational band still depends only on the excess number of contacts δZ = Z − 6 as it
does for spheres, irrespective of whether the excess contacts result from compression
or particle asphericity. Thus, the singular jamming transition for spheres, Point J, in
which the onset of jamming coincides with the isostatic point, controls the behavior
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of systems of particles with more complex shapes, just as it controls the behavior of
sphere packings that are compressed away from the transition.

There are two important regimes for ellipsoid packings: the first deals with small
values of |δε| = |ε−1| where the physics is a perturbation around the case of spheres;
the second deals with large values of |δε|, where Z → Ziso (with Ziso = 10 for spheroids
and 12 for general triaxial ellipsoids). In the large |δε| case, the system is well de-
scribed by a theory in which a plateau in the density of states opens up near zero
frequency just as it did for the case of spheres near Z = 6. An interesting open ques-
tion is how the gap closes when Z → 10 for large ellipticities.

The insights we obtain from the present study are complementary to those ob-
tained by including friction in the vibrational spectrum of a jammed solid [77]. Here
we have a situation where the system jams when there are many fewer contacts than
are needed according to the Maxwell rigidity criterion, while in the case of friction
there is always an excess of contacts compared to the minimum necessary for sta-
bility [77, 83, 99–101]. Thus, in the case of friction there was never a question of a
possible change in the underlying picture of the jamming threshold. Moreover, at the
Coulomb threshold to mobilization, the response dictated by the friction law is in-
herently discontinuous, which makes the properties of packings with friction much
more sensitive to the preparation history.

The addition of orientational degrees of freedom does introduce a new band that
is essentially rotational in character while the upper band remains nearly completely
translational. It is interesting to note that the low-frequency rotational modes cou-
ple in a simple manner to the higher-frequency translations. The boson peak seen
ubiquitously in glasses has been ascribed [102] to the excess modes associated with
the plateau of D(ω) — the fact that the jamming scenario is found to be so robust is
crucial for its applicability to glasses.
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