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C h a p t e r 1

Introduction

Light, the sound of G#, earthquakes, gravitational waves, water waves, microwaves...
visible or not, waves are everywhere around us. We are dependent on waves: without
them we would not be able to communicate or to perceive our environment. Their
ubiquity makes waves and wave phenomena some of the most important and studied
constituents of the physical world.

The nature of a wave depends on its physical origin, and here our focus is go-
ing to be on mechanical ones. Perturbations propagating in space and time within a
medium (i.e., mechanical waves) usually transfer energy between distant points but,
for small enough vibration amplitude, do not involve a lasting displacement of the
elementary particles of the medium. The building blocks, however big or small, in-
stead vibrate around their rest positions. Coupling of the elementary constituents of
the medium enables a vibration of one constituent to induce an oscillation in another
one. Therefore vibrations of elementary constituents constitute an emergent wave in
the medium.

The literature on waves and vibrations in simple systems and ordered structures
is vast. Once we move to disordered media, however, a whole new world of (non-
) intuitive phenomena emerges, and becomes a continuing source of exciting and
challenging new problems.

In general, the presence of disorder in materials can lead to fundamental changes
in mechanical, thermodynamic, static and dynamic properties. In particular, waves
in the material can completely change their character, and details of the nature of
vibrations become an important window into the physics of such materials. Further-
more, understanding the properties of vibrations is crucial for entire classes of mate-
rials which are dominated by disorder effects, but elude a simple description within
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the standard methods of solid state and statistical physics. A prominent example are
glasses, which still pose numerous long-standing puzzles, as they are systems intrin-
sically out of equilibrium.

This thesis is a journey throughout the world of materials with granularity, by
which we mean materials consisting of particles large enough, such that the temper-
ature does not play any role in the dynamics of the system. More specifically, we will
study properties of vibrations of systems consisting of collections of jammed spheri-
cal and ellipsoidal particles, as well as clusters of interacting bubbles. But before we
embark, we will spend some time in this Chapter to remind the reader of some of
the properties of vibrations in classical solids. We will also give a basic introduction
to the concept of jamming and mechanical properties of sphere packings and sound
propagation in clusters of bubbles.

1.1 Vibrations in Classical Solids

Classical solids represent a state of matter in which the motion of each constituent
element is confined to a small volume around its equilibrium position. The simplest
example is a crystal, where the equilibrium positions form a lattice in space. We will
keep the picture of a crystal in mind throughout this Subsection, since it is the easiest
to describe.

Most physical properties depend on the possible excitations of such a system, be-
cause these are probed by any external perturbation during a measurement. When
studying mechanical properties, the movement of atoms (or molecules) is the basic
degree of freedom that is excited (translational and/or rotational). When displaced
from its equilibrium position, an atom feels a restitutive elastic force towards its equi-
librium position, originating in the interaction with its neighbors, and therefore per-
forms oscillations around it. These vibrations form the elementary excitations of the
solid in this context.

1.1.1 Dynamical matrix

The energy of a given state depends on the displacements of the atoms around their
equilibrium positions. Throughout this thesis, we will focus on small-amplitude vi-
brations. Irreversible (plastic) rearrangements are not considered. Since the displace-
ments are small (the solid is “robust”), we can expand the excitation energy in a Tay-
lor series in the displacements [1]. Because the equilibrium state is a minimum of the
potential, all the terms linear in displacement vanish. The rest of the terms give the
potential energy (of elastic displacement), which is the starting point for our analysis.

More explicitly, the expression for the potential energy in the harmonic approxi-
mation for the dynamics, i.e., up to quadratic terms in the displacement, is:

U = 1

2

∑
i , j
α,β

uα
i Hαβ

i , j uβ

j , (1.1)
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where uα
i is the generalized displacement of particle at site i , and α in general enu-

merates the degrees of freedom of the particle. In the simplest case the particle can
only translate. We will, however, also give them the freedom to rotate or dilate. The
generalized displacements uα

i will represent displacements or angles or particle radii,
while masses mi (see below) will also denote moments of inertia. The matrix appear-
ing in the previous equation consists of second derivatives of the potential:

Hαβ

i , j = ∂2V (�u)

∂uα
i ∂u

β

j

, (1.2)

is the Stiffness or Hessian Matrix. In the language of elasticity, this is a matrix of spring
constants. This matrix appears in the equations of motion (we give the example of
spherical particles with different masses):

mi üα
i =−∑

j ,α
H

αβ

i , j u
β

j , i = 1, ...N . (1.3)

We define the Dynamical Matrix D̂ to be such that the equations of motion can be
written in a simple matrix form ü =−D̂u. The precise form of D̂ in this example is:

Dαβ

i , j = 1�
mi m j

Hαβ

i , j
1 (1.4)

Note that the diagonal elements of the Hessian, i.e., self-interactions, H
αβ

i i are unde-
fined. However, we know that translation or rotation of the entire system does not
change the energy of the system. Imposing this as a condition for the equations of
motion gives the values of the diagonal elements. In the above example (when there
are no angular degrees of freedom) the diagonal elements are:

D
αβ

i ,i =−∑
j �=i

D
αβ

i , j . (1.5)

We will use the Dynamical Matrix intensively throughout this thesis as the starting
point in the analysis of our systems. In typical solid state systems the interactions
are effectively short-ranged, hence the dynamical matrix is sparse. This will not be
true in the bubble vibrational problem of Chapter 4, however, where the interactions
originate from the long-ranged pressure field. Note that in problems like glasses, it
is highly non-trivial to write down an appropriate Dynamical Matrix because of the
disorder in the position of the constituents.

1.1.2 Vibrational spectrum

The fundamental step towards identifying the elementary excitations of a given solid
is solving the equations of motion. These take the form det |D̂ −ω2| = 0, where we

1Once particles are non-spherical, rescaling factor will contain moments of inertia and factors due to
use of non-linear coordinates (see Chapter 2).
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assumed that atoms vibrate with frequency ω, i.e., we assumed solutions in the form
uα

i ∼ eiωt . The result of the diagonalization of the Dynamical Matrix is a set of eigen-

vectors, or eigenmodes �qa = {qi ,α
a }, which are linear combinations of displacements

of individual atoms within the solid. The potential U becomes a sum of independent

harmonic (eigen)oscillator potentials, U = 1
2

∑
a,iαω2

a

(
qi ,α

a

)2
. That means that the a-

th eigenvalue of D̂, i.e., the coefficient of the potential energy of the a-th eigenmode
oscillation, is its frequency squared, ω2

a .
Eigenmodes are the elementary excitations of the solid we have sought! They are

independent and mutually orthogonal, i.e., if we were to excite one of the modes, it
would continue to oscillate in an unchanged form indefinitely. (This is true within
the harmonic approximation we are using, in which phonon-phonon and electron-
phonon scattering processes are neglected). In the present context of the vibrations
of solids, these eigenmodes are called phonons.

The set of eigenfrequencies {ω2
a } represents the spectrum of vibrational excita-

tions of the solid. The number of modes is equal to the total number of the degrees
of freedom N , i.e., a = 1...N , and therefore the spectrum becomes dense in the limit
of large systems. We can now ask how many modes there are in a given interval of
energy or frequency. This leads to a definition of the normalized Density of States
N D(ω). In the interval (ω,ω+dω) there are N D(ω)dω modes. Since many proper-
ties of the solid depend on its vibrational modes and the energy, the density of states
(DOS) is a central quantity in determining the behavior of the system.

Debye scaling

Let us now consider in more detail the case of a simple monatomic crystal, and the
behavior of its low energy D(ω). We focus on the low energy part of the spectrum,
since it has universal properties independent of the details of the crystal lattice. This
follows from the translational symmetry breaking, which occurs when the atoms in a
liquid state form a solid by occupying discrete positions in a lattice.

Phonons in crystals take the form of plane waves, i.e., they are periodic in space
with a fixed direction of propagation given by the wave-vector�k . In 3d there are two
transverse phonons (the vibration is orthogonal to �k) and one longitudinal phonon
(vibration is parallel to�k) for each given�k , since each atom has three degrees of free-
dom.

Since phonons are the sound waves in the crystal, at small momentum |�k | their
frequency in terms of momentum (i.e., the dispersion relation) is given by ω(�k) =
c(�̂k)|�k |, where c is the anisotropic speed of sound. To now find the D(ω), we just
use the fact that phonon states are counted by their momentum value. We take the
system to be represented by a box with side length L, which constrains the allowed
values of momentum to ki = (2π/L)n, with i = x, y, z, and n an integer. Now the
density of states follows from identifying the number of momentum states in a small
volume of momentum space, (2π)3/V d3�k, with the number of phonon states counted
by their frequency value, D(ω)dω. Using this together with the dispersion relation
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that connects ω to�k, one obtains the well-known Debye expression for the density of
states of low-frequency phonons:

D(ω) ∼ωd−1, (1.6)

where d is the dimension of the system.
This Debye behavior of D(ω) is very robust and is observed in a variety of real ma-
terials, at least indirectly through the low-temperature behavior of the heat capacity
cV ∼ T d . However, significant deviations can occur, as we will see later!

1.1.3 Disorder

Disorder is an unavoidable feature of all materials. There are classes of systems, in-
cluding some we will consider in this thesis, where disorder is the essential property
defining the system. There are also various types of disorder. In Chapter 4 we will
meet several of them, first acting in the system simultaneously, and then analyzed
separately. In the example of a crystal, we could imagine the spring constants be-
coming random (influencing interaction of particles), but could also consider just
randomizing masses of atoms (changing their inertia).

The central question for us is: What happens to waves in disordered systems? Just
how robust is the Debye behavior of the vibrational DOS? The search for answers to
these questions has been at the forefront of research for at least 50 years, and here we
will take a quick look at the central notions important for this thesis.

First concerning the DOS very generally, let us note that introducing disorder
causes the smearing of sharp peak features (van Hove singularities) which are a hall-
mark of the underlying lattice. In granular materials however, we will consider a state
near to a phase transition, which has the additional critical property of being barely
mechanically stable. This has an even more dramatic influence, leading to the failure
of the Debye model, as a plateau of low frequency modes develops in the DOS. Such
behavior is also observed in experiments on glasses.

1.1.4 Localization

If we imagine disorder centers introduced in a homogeneous medium, we can under-
stand that they will cause our waves to scatter multiple times between them. It has
been found [2,3] that this will result in a diffusive propagation (e.g., of energy), and of
course the loss of well defined momentum �k. This was novel behavior at the time of
discovery, not expected from a wave equation like the one governing phonons. Even
more interesting, the wave can experience weak localization when, due to interfer-
ence effects, it has an increase in backscattering probability, and the diffusion slows
down [2].

In 1958, by studying the problem of quantum mechanical electron wave propa-
gation, Anderson realized that diffusion can actually stop completely. This is called
strong localization of the wave pattern [4]. The result is a pattern localized in space,
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with an envelope that falls off exponentially with distance, thereby defining a local-
ization length ξ.

It turns out that dimensionality plays a decisive role in localization. Heuristically,
going back to the concept of diffusion, we can imagine it as representing a particle
that is taking a random walk through our system. The probability of finding the par-
ticle near the origin after a long time is finite in 1d and 2d , but goes to zero in 3d (in
the limit of infinite system size), leading to qualitatively different backscattering [2].
The outcome is that in 1d and 2d , all waves are strongly (“Anderson”) localized in an
infinite system with arbitrarily weak disorder. It was shown by John et al. [5] that in
the case of short range uncorrelated mass disorder the localization length diverges as

ξ∼ 1/ω2 in 1d and ξ∼ e1/ω2
in 2d as the translational modes at ω= 0 are approached.

In 3d , however, one can find a localization-delocalization transition at a finite fre-
quency.

Our focus is on vibrational modes in both 2d and 3d , and their experience of these
types of effects. An important realization is that systems are usually not infinite, cer-
tainly not in computer simulations. This means that the system size might be too
small to uncover the localized nature of a state (a vibrational mode) even in 2d . In
other words, it can happen that the mode spans the entire examined system, and
maybe even takes a shape resembling a plane-wave, but is actually intrinsically lo-
calized on a scale which happens to be larger than the particular system size L. In
Chapter 3 we will introduce a method able to discern the localization length ξ, even
when in the regime of ξ> L.

Finally we want to address the issue of interaction strength. In vibrational prob-
lems of solids, it is natural to consider only nearest-neighbor interactions (the Dy-
namical Matrix, i.e., “springs”, connect only nearest-neighbors in the lattice); this was
also the case in Anderson’s considerations, where electrons where able to hop only
between neighbor lattice sites. In Chapter 4 however we will consider a system of
coupled bubbles with long-range interactions that fall off as 1/r with distance. We will
see that the switch from short- to long-range interactions leads to power law localized
states, instead of the usual exponential form characteristic of strong localization.

1.2 Vibrational modes in granular matter near Jamming

The author of this thesis cannot resist introducing the intriguing aspects of granular
systems in the following illustrative way.

Imagine that you have cravings for pancakes, and you decide to make them. You
walk into the kitchen and start gathering the necessary ingredients, among which
is flour. What you are not aware of yet is the beautiful physics hidden in that bag.
Flour, as a type of granular material, can behave: (i) solid-like, since it will support
your weight, if you step on it, (ii) liquid-like, since it will pour out of the bag into the
mixing bowl, and (iii) gas-like, since you will start to sneeze or cough because of the
fine white powder in the air.

As illustrated in the above paragraph, we encounter granular matter on a daily ba-
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sis. Even more importantly, materials in this form are the second most used in indus-
try, right after water [6]. Although the thorough understanding of granular systems
therefore has vast relevance for practical applications, they have been the center of
much scientific attention in the past decade because they seem to exhibit properties
characteristic of glasses. They have proved themselves as a useful working model in
the description of some properties of glasses, limited by the fact that granular systems
are athermal.

The study of granular matter covers numerous static properties [7–36], as well as
rheological phenomena [37–43], explored in a variety of theoretical, numerical and
experimental models. Model systems consist of a range of particle types (e.g. spheres,
asymmetric particles...) immersed in various solutions (e.g. air, liquids...) and under
diverse external conditions (e.g. forcing, flow...). As will be explained in more detail
below, one of the central phenomenon exhibited by all granular materials is the tran-
sition from liquid- to solid-like behavior with increasing density. The appropriate
name of jamming should remind us of a traffic jam, the point at which flow becomes
arrested.

1.2.1 Jamming idea

Shear Stress

Temperature

1/Density

Unjammed

J (for finite-range
      repulsions)

Jammed

Figure 1.1: A sketch of a jamming phase diagram.

In 1998. Liu and Nagel put forward the idea to view diverse amorphous materials
— foams, colloids, emulsions, molecular glasses and other materials with granularity
— in the context of the jamming phase diagram, Fig. 1.1, [44]. All these materials jam
into rigid, disordered states, as different mechanical and thermodynamical variables
are changed. Flowing foams can exhibit the jamming transition, i.e., flow will be ar-
rested, if the shear stress is reduced below the yield stress σy . Another example of
a rigidity transition would be the transformation of supercooled liquids into glasses
once the temperature is lowered below the glass transition temperature Tg . On the
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other hand, flowing grains will jam as the density is increased above some critical
density φc , usually identified with the random close packing density [7, 11].

A canonical model system for studying properties of these disordered materials
are packings (i.e., collections) of soft, repulsive, frictionless spheres that interact only
when they are in contact. Throughout this thesis we will focus on packings that reside
on the zero temperature and zero shear stress axes of the jamming phase diagram,
which represent models for granular materials, foams and non-brownian emulsions.
Their transition to rigidity is governed by changes in the packing fraction φ.

The beauty of soft frictionless sphere packings is that for a given protocol used
to make packings, they exhibit the jamming transition at a well defined density φc .
Another way to characterize this transition is by saying that a packing is jammed once
the confining pressure p becomes positive (this is independent of the protocol used,
hence a more precise measure of a jammed system). The point in the jamming phase
diagram at which T = 0, σ= 0 and p = 0 is termed as point J (Fig. 1.1). At this point the
average contact number Z (i.e., average number of contacts per particle in a packing)
reaches the so-called isostatic value Ziso. As we will see in more detail in Sections 1.2.3
and 1.2.5, the very rich behavior these systems exhibit is intimately related with the
geometry of the underlying contact network, i.e., distance to this isostatic value. As
we will see in subsequent Sections, at Ziso these systems are marginally stable, i.e.,
they are marginal solids.

1.2.2 Density of States

As we introduced in Section 1.1.2, one of the most robust behaviors in material sci-
ence is that of the Debye behavior of the low-frequency range of the vibrational den-
sity of states. However, this law breaks down in a fascinating manner for the case of a
solid made by jamming spheres [7, 18]!

To analyze the vibrational modes of our granular packings, we need to form and
diagonalize the dynamical matrix D̂ that we introduced in Section 1.1.1. The eigen-
frequencies obtained for packings at different distances from the jamming point are
shown in Fig. 1.2. Let us first focus on what looks familiar. The dashed black curve
shows data considerably above the jamming point (see Fig. 1.2(1)), where one can
see the Debye-like behavior of the low-frequency range of the D(ω). Once we start
decreasing the density φ towards point J (see Fig. 1.2(2)), an excess of low-frequency
modes starts to appear, suppressing the Debye behavior (solid black line). This
plateau extends to a finite value for ω→ 0 at the jamming point, meaning that com-
pared to a “normal” (Debye-like) solid there are far more ways with which one can
“move” all the particles in the system around their equilibrium positions with lit-
tle energy cost! Modes belonging to the plateau in the DOS are usually called “soft
modes”. The existence of a low-frequency plateau in D(ω) is a hallmark of marginal
solids, i.e., solids that are on the verge of instability.

In glasses one universally observes an intriguingly similar enhancement of low-
energy excitations (the “boson peak”). In those materials, a long-standing candidate
explanation is the picture of abundant two level units within the material, which can
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Figure 1.2: The density of states for 2d harmonic packings at different distances to
the jamming point. Note how the Debye like behavior of highly compressed packing
(dashed line) transforms into a plateau of low-frequency excitations on approach to
the jamming point (solid black line).

easily “flip” between the two states at low energy cost [45–47]. It is exciting to consider
the possibility of understanding the appearance of these two level states in terms of
the low energy vibrational states of non-spherical particles, like the ellipsoids we con-
sider in Chapter 2.

1.2.3 Maxwell Rigidity Criterion

We have now mentioned phrases like marginal solid and isostatic packings several
times. This section is therefore devoted to explaining these concepts, which can be
traced back to Maxwell. The explanation is based on global counting arguments of
the number of degrees freedom needed to constrain all the available motions of the
system. As the reader will see, understanding these ideas is crucial for grasping the
origin of the excess low-frequency modes and some of the anomalous scalings we will
present in the subsequent Section.

According to Maxwell [48, 49], rigid means that all the available motions in the
system are constrained. Let us start from a jammed packing of N spherical friction-
less particles in d dimensions that have on average Z non-trivial contacts with their
neighbors2. The relevant degrees of freedom of these particles are translations in d
dimensions, hence we have d N degrees of freedom. Since every contact is shared
between two particles, and a particle has Z neighbors on average, the number of

2We are emphasizing the word non-trivial here because packings can have particles that are not in force-
carrying contact with the rest of the particles in the packing. The colloquial term used for these particles is
“rattlers” or “floaters”. They should be left out from the above counting arguments.
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contact forces is Z N /2, which is equal to the number of non-zero terms in the po-
tential energy. The potential energy is a function of all the d N non-trivial degrees
of freedom. Since we are jammed (there are no available motions in the system that
cost zero energy!), the number of terms in the potential energy exceeds the number
of degrees of freedom, i.e., Z N /2 ≥ d N , which gives Z ≥ 2d . On the other hand, at
the jamming point (p ↓ 0) particles are undeformed, which means that the distance
between touching particles has to be equal to the sum of their radii. The “touching”
condition then yields N Z /2 constraints for d N non-trivial degrees of freedom. In a
generic packing, there are solutions when Z ≤ 2d .

Combining the two obtained inequalities, both valid exactly at the jamming point,
we get the average coordination number of an isostatic solid:

Ziso = 2d . (1.7)

This result is very robust: it does not vary with the details of the interaction, poly-
dispersity or protocol for making the system. As we shall see nearly all the beautiful
behavior observed for granular packings can be related to the distance to the isostatic
point, i.e., δZ ≡ Z −Ziso.

(a) (b) (c)

Figure 1.3: (a) A bar-and-joint framework. The system is rigid: global translations
and rotation are the only available motions of the joints that do not stretch or com-
press any of the bars. If we remove one bar (marked), rigidity is lost. (b) By pushing
on the edges of the framework (arrows), the system can be deformed non-trivially at
zero energy cost, i.e., none of the bars change length. (c) The new state after defor-
mation. This example is directly relevant to disk and sphere packings because every
such packing can be mapped directly to a bar-and-joint framework.

The above result tells us that a packing at the isostaticity point has just enough
contacts to be stable (hence the expression marginally stable). Note that this is a
global condition, and it differs from the local stability condition, according to which
each particle needs d +1 contacts to have a fixed position. A natural question is then
what happens if we have fewer contacts than needed to maintain rigidity. A simple
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sketch of the answer to this question is shown in Fig. 1.3. Imagine that our packing has
one contact less than required. By the argument above, we expect that this permits
one rearrangement of the particles that will not change any distances between them.
By removing the contact, we have created a zero energy mode (in literature sometimes
called a “floppy” mode) in the system. Note that these are global modes, since all the
particles will be involved in the rearrangement if their relative distances are to stay
fixed! Later, floppy modes will help us identify the actual low-frequency soft modes
that populate the DOS plateau (see Section 1.2.5).

The Maxwell argument can be extended to the case of particles with additional
degrees of freedom, for example non-spherical particles that can also rotate around
their center. We will explore the case of axisymmetric ellipsoids, and ellipses, in Chap-
ter 2. There we will need to revisit the meaning of the Maxwell criterion, and settle the
question of how Ziso, and the accompanying vibrational density of states, change as
we gradually distort spheres to ellipsoids and introduce non-trivial rotational degrees
of freedom. We will find that the Maxwell criterion cannot capture the continuous
change of Ziso with ellipticity, but the introduction of a rotational band into the DOS
does leaves the main features of the jamming point scenario intact.

1.2.4 Packings

Over the past decade, many mechanical and dynamical properties of granular ma-
terials have been studied as a function of the distance to the jamming point. As we
already mentioned, the model system that is used to probe these properties are pack-
ings of repulsive frictionless soft spheres or discs, that interact only when they are
in contact. The force that two particles in contact exert on each other is a function
of the overlap between them, which is defined as δi j = Ri +R j − ri j . Ri and R j are
the radii of the i th and j th particle respectively, and ri j is the distance between their
centers. Force models one commonly encounters are: (i) one-sided harmonic springs,
for which the repulsive force is linearly proportional to the overlap, fi j ∼ δi j and (ii)
Hertzian springs, for which fi j ∼ δ3/2

i j .3

Once the force law is chosen, the aforementioned packings are made using proto-
cols like molecular dynamics [10, 14, 50, 51] and conjugate gradient method [7]. In the
former, the simulation starts from a loose gas of particles which are gradually com-
pressed (either by shrinking the container, or increasing their radii) until they reach
a jammed state. The system cools down through inelastic collisions or viscous drag.
The conjugate gradient (CG) method is based on the fact that a stable packing is in a
minimum of elastic energy (1.1). Starting from a random configuration (i.e., Poisson
point process, or T = 0 state), the system is brought to the nearest potential energy
minimum. In this thesis (Chapters 2 and 3) we used packings made with both proto-
cols.

In order to give the reader an idea of the kind of systems we are studying and

3For the case of Hertzian force law, contacts effectively become stiffer as the particles becomes more
compressed.
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how states far and close to the jamming point differ, Fig. 2.2 depicts packings, force
networks, density of states and response to shear at two different pressures p.

0.0 1.0 2.0
0.0

0.2

0.4
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0.8
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Ω
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(a1) (a2) (b1) (b2)

(c1) (c2)
(d1) (d2)

Figure 1.4: Illustrative example of different properties of granular packings for two
different pressures: at the jamming onset (a1-d1) and in the classical solid regime
(a2-d2). (a1) and (a2) are visualized packings, with rattlers removed. (b1) and (b2)
show the force networks. Force color different than red marks bonds with large forces.
(c1) and (c2) show the response to shearing of the two extremal packings. Note the
non-affine pattern for the case of just jammed packing. (d1) and (d2) are the corre-
sponding density of states. Close to the jamming point a plateau of low-frequency
modes develops (see main text for details), whereas far from jamming, low-frequency
part of D(ω) resembles the Debye behavior.

1.2.5 Anomalous scalings

In this Subsection we will give a flavor of the critical nature of the jamming point, by
looking at the response of granular packings to shear, and the scaling of the average
contact number Z (i.e., average number of contacts per particle within a packing).
The Z is the order parameter of the jamming transition: it is zero on the unjammed
side4, and has finite values on the jammed side. For a detailed introduction to many
other interesting behaviors, see the recent review by van Hecke [52].

The behavior of the average contact number Z near the jamming transition
(Fig. 1.5(a)) defies intuition. Let us start from a packing close to the jamming point
and compress it by 1% (i.e., we change the packing fraction φ by 1%). Assuming affine

4In a dilute system particles can be in contact, but to minimize the energy these contacts are not force-
carrying. Technically, all particles are rattlers.
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Z

φ

Ziso

φc

~ (φ−φc)0.5 K/k

Ziso Z Ziso Z

(a) (b2)(b1)

Figure 1.5: Anomalous scalings. (a) Sketch of the change of the average contact num-
ber Z with the change of density φ. This order parameter shows a discontinuous
jump, reminiscent of the first order phase transition. (b1-b2) Scaling of the elastic
moduli with the increase of average Z . (b1) shows the bulk modulus, and (b2) the
shear modulus. In both (b1) and (b2) k represents spring constant.

deformations5, one would naively expect a linear increase of δZ — all the particles
that were separated by 1% of their radii will now come into contact. However, many
studies have shown that the contact number has a universal square root dependence
on the excess packing fraction δφ=φ−φc , independent of the details of interactions,
polydispersity of particles and the dimension of the system! So we have a discontinu-
ous jump in the average contact number Z at point J, and then anomalous scaling as
we move away from it! Without going into details let us just state that over the years
explanations of this unusual scaling have been proposed, but in the opinion of this
author full understanding still does not exist.

The non-trivial power law scaling of the fundamental geometrical property Z is
the cause for other anomalous scalings of mechanical properties of the system near
jamming. Fig. 1.5(b1-b2) summarizes schematically the universal behavior as it is
found in numerical simulations: the bulk modulus K in the units of the contact stiff-
ness k stays constant as δZ is changed, i.e., remains on the order of the spring con-
stant k through the jamming transition; the rescaled shear modulus G/k vanishes
linearly with δZ , i.e., inherits the square root scaling with δφ, which means the pack-
ings become softer in response to shearing.

The same reasoning we demonstrated in the case of the change of δZ with the
change of density δφ holds for the elastic moduli — if we compress or shear the sys-
tem a bit, we are probing the elasticity of the “spring contacts” between our parti-
cles, which means that the elastic moduli should not change with δφ. But as we saw
above, this is true only for the bulk modulus, making the anomalous scaling of the
shear modulus seemingly exceptional. Without going into detail, we note that this
viewpoint has recently been reconsidered in an attempt to identify what is special
about the jammed packings in terms of the scaling of the elastic moduli; namely,

5Coordinates change smoothly, following the global deformation.



14 Introduction

a reference system to compare to should be random networks. Both G and K for
these networks scale linearly with δZ , which is also true only for the shear modulus
of jammed packings. The fact that the bulk modulus remains of the order of spring
constant at jamming is then to be considered exceptional, and is related to the fact
that local displacements do not exhibit pure scalings (see [53] for details).

Throughout this Section we have attempted to give the reader some insight into
the character of marginal solids. In the end let us go back to the vibrational spectrum
of jammed packings, in order to characterize the nature of the low-frequency modes
in the plateau of the DOS. The fact that the plateau has a finite value as ω→ 0 implies
the existence of a diverging length scale [18].

Isostatic length �∗

Understanding of the excess low-energy modes, i.e., the appearance of a plateau in
the DOS of granular systems upon approaching jamming, is obviously of fundamen-
tal importance. In this Subsection, we will present the arguments of Wyart [28, 54, 55]
about the nature of these low-energy vibrational modes and their contribution to the
DOS.

These arguments are based on the variational principle. Let us start at the iso-
static point. The first step is to construct trial modes which are based on the motions
of the system just below the jamming point, and which consequently have zero en-
ergies. After “relaxation” these modes become the actual vibrational modes of our
system, retaining on their properties. By counting these modes, we will see that the
DOS is bounded from below at low ω, i.e., must have a plateau.

The construction starts with cutting (removing) bonds along a boundary, which
isolates a subsystem of linear size � in our isostatic system. Because the system
was exactly at the isostatic point, each cut contact produces one zero (or so-called
“floppy”) mode in the subsystem. There are of order �d−1 bonds on this boundary,
which we have cut, and the same number of zero modes. To build the vibrational
modes, we multiply each floppy mode by a sinusoidal envelope that vanishes at the
boundary containing the cut bonds. This way we have removed the large motions
that occur for particles that have lost a contact. Within the harmonic approximation,
the mode has a frequency of order ω� ∼ 1/�. This is essentially the frequency of the si-
nusoidal envelope which spans the subsystem, because the underlying floppy mode
has energy (frequency) zero.

Finally, assuming that the relaxed, actual, modes in the subsystem will inherit
the properties of the Ansatz modes, we can summarize that there are ∼ �d−1 modes
of frequency ∼ 1/� in our subsystem of volume �d . (These low-energy modes are
also called “anomalous”, since they appear near isostaticity, and have no resemblance
with plane waves.) By using the definition of the DOS,

∫ω�
0 dωD(ω) ∼ N�/V� ∼ 1/�, we

see that D(ω) ∼ const (if D(ω) can be written as a power law for small ω). There is a
plateau in D(ω) independent of the dimension!

In Fig. 1.6 we demonstrate the above ideas at work. Panel (b) shows the “bound-
ary” along which we remove the particle contacts. The resulting floppy mode is
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Figure 1.6: Sketch of Wyart’s argument: (a) An example of a low-frequency mode.
(b) Marked boundary along which crossing contacts will be removed. (c) Resulting
floppy mode after removing n contacts. (d) Resulting floppy mode, after applying the
sinusoidal modulation.

shown in panel (c), where one can identify the unphysical large displacements that
occur on the boundary with severed bonds. In panel (d) however, the floppy mode
is multiplied by a sinusoidal envelope that vanishes at the cut, and we can now dis-
cern the features of the mode away from the boundary. This (“Ansatz”) displacement
field is very disordered, controlled by the isostaticity, and should resemble the actual
anomalous low-frequency modes that occur in the plateau of DOS of our system. The
reader can be convinced of this by looking at panel (a) which shows an actual low-
energy vibrational mode, having a shape very similar to the Ansatz in panel (d).

The questions that now arise are what happens at a finite pressure (away from
isostaticity). One would expect that at sufficiently large length scales, the response of
the packing is elastic — what sets the scale for the crossover to elasticity? And, is there
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a way to characterize this crossover of the plateau (isostatic regime) into the standard
DOS (which we now associate with “classical” elasticity). We now sketch the answer
to these questions, which involves a crossover frequency ω∗ occurring in the DOS,
and a corresponding crossover length scale �∗ characterizing the anomalous modes.

Let us now use all the preceding ideas in a system with a fixed excess contact num-
ber per particle equal to δZ . In this case, the total number of excess bonds in the
considered subsystem scales as δZ�d . On the other hand, we create N� ∼ �d−1 de-
grees of freedom by cutting that many contacts at the subsystem boundary. From the
Maxwell criterion in previous subsection, we see that if N� is less than the umber of
excess bonds, we cannot create any floppy modes, which were the source of our trial
modes. So, a crossover to the appearance of anomalous modes is given when the two
terms (freedom and constraint) are balanced:

N�∗ ∼ δZ�∗d =⇒ �∗ ∼ 1/δZ .

The frequency of anomalous modes at the crossover, i.e., the crossover frequency at
which the plateau forms, is accordingly given by ω∗ ∼ 1/�∗ ∼ δZ .

The crossover frequency has been extracted from the DOS of various granular
model systems, and is observed to obey the ω∗ ∼ δZ scaling. This has become one
of the hallmark results for granular systems near jamming, and we will establish its
meaning and validity for the more complicated case of non-spherical particles in
Chapter 2.

From visual inspection of the modes (as in Fig. 1.6(a)), it is apparent that on ap-
proach to point J they begin to organize in “swirling” patterns. It is tempting to at-
tempt to extract a length scale from these patterns in the expectation that it will be
related or identical to �∗. A fruitful implementation of such an analysis, however,
remains elusive 6. A more productive approach has proven to be that of Ellenbroek
and co-workers, who managed to extract �∗ directly from the response to mechanical
forcing [27].

1.3 Vibrational modes and response to driving in bub-
ble clusters

Finally, we turn our attention to systems of gas bubbles forming a bubble cloud in a
liquid. These bubble systems are ubiquitous in nature and application [57, 58]: they
appear in underwater acoustics, where underwater noise damping and absorption
can occur with the help of bubble clouds or curtains [59, 60]; in the form of bubble
curtains they can cause a (repelling) effect on fish schools [61]; they are important for
the sound production of colonies of snapping shrimp [62], for submarine detection,
for sound propagation in bubbly liquids [63, 64]. In medicine they find crucial appli-
cation in ultrasound diagnostics with ultrasound contrast agents [65–69], in shock-

6Similar patterns are observed in elastic or viscous response to shear. There it appears that the only
relevant macroscopic length scale is the system size [43, 56]
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wave lithotripsy [70, 71], in ultrasonic and megasonic cleaning [72–74], and also in
the process industry.

The bubbles in all of the systems mentioned above can be considered elemen-
tary constituents in a material. A single bubble in a liquid, we can understand that
it will change size and shape under the influence of the surrounding pressure field.
The dynamics of an isolated bubble in such an acoustic field is well understood both
theoretically and experimentally (see Chapter 4 and references therein). Considering
now a system of many bubbles, the sound emission of an oscillating bubble is felt
by the neighboring bubbles: they can attract or repel each other (depending on their
mutual size and the external driving pressure [75]).

At this level of detail, we can see the that the bubble clusters fit the paradigm of
a classical disordered condensed matter system we introduced in this Chapter. How-
ever, there are crucial differences between the jammed packings we have been dis-
cussing up to now, and oscillating bubbles, both in the model (equations of motion)
and in the physical quantities of interest.

Long range interactions and damping

When we study the vibrational properties of bubble clusters, the distinguishing char-
acteristic of the dynamical equations is that the interaction between the bubbles is
long-ranged, falling-off as 1/r with distance r between the bubbles. This means that
each bubble is essentially coupled to all the other bubbles in the system. This is in
contrast to the model of grains introduced in Section 1.2, where only neighbors in
contact interact!

In condensed matter it is well know that this kind of qualitative change in the
interaction can lead to the significant changes in the basic properties of the system
(in the example of interacting charged particles, long-range Coulomb force leads to
crystallization, e.g. colloidal crystals, Wigner crystals, etc. ). In terms of the localiza-
tion behavior of vibrational modes due to disorder, which we have discussed in this
Chapter, the long range coupling in bubble clusters makes a qualitative difference, as
we will show in Chapter 4.

The second peculiarity of the dynamics of bubbles is the presence of damping.
Physically, the bubbles dissipate energy as they oscillate because of the acoustic
waves they create. Note that loss of energy and damping of motion in a system is
common when friction or viscosity are present. However, adding friction to parti-
cles in granular packings matters only during the process of making the packing, and
does not lead to non-conservative forces in the vibrational dynamics within linear
response [76].

The equations of motion, (1.3), acquire an additional term in the presence of
damping (in the simplest example of uniform damping):

üα
i =−∑

j ,α
D

αβ

i , j u
β

j −μu̇α
i , i = 1, ...N . (1.8)

In this simple example the equations again take the form of an eigenvalue problem
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of a Dynamical Matrix. However, due to the first order time derivative, the vibrational
eigenfrequencies are complex functions of the eigenvalues of the matrix D̂. Their
imaginary part describes the exponential attenuation of oscillations in time. When
describing bubble clusters in Chapter 4, the dynamical equations are more compli-
cated and their solution is more technically involved, so we only demonstrate the
principle here.

Response to driving

In the studies of static granular systems near jamming, the primary interest is in un-
derstanding the static response of the system, i.e., the elastic moduli, through the
description of vibrational modes (not presented in this thesis). In contrast, because
of the nature of bubble clusters and the available experimental techniques, one is
here primarily interested in the real-time response to external driving. Typically in an
experiment there is an acoustic wave applied (representing a periodic driving force),
and one tries to understand the time dependent response of the bubbles, which can
also be characterized by quantities like the energy absorption or transmission. We
will achieve this by analyzing the vibrational properties with the use of condensed
matter methods presented in this Chapter. The direct connection between the vibra-
tional states and the dynamical response in the bubble clusters is described in detail
in Chapter 4.

1.4 This Thesis

This thesis concerns the vibrational properties of different classical disordered con-
densed matter systems.

In Chapter 2 we start with vibrational modes of three-dimensional jammed pack-
ings of soft ellipsoids of revolution as a function of particle aspect ratio ε and volume
fraction φ. We will find that at the jamming transition for ellipsoids, as distinct from
the idealized case of spheres where ε = 1, there are many unconstrained and non-
trivial rotational degrees of freedom. These constitute a set of zero-frequency modes
that are gradually mobilized into a new rotational band as |ε−1| increases. Quite sur-
prisingly, this new band is separated from zero frequency by a gap and lies below the
onset frequency for translational vibrations, ω∗. The presence of these new degrees
of freedom leaves unaltered the basic scenario that the translational spectrum is de-
termined only by the average contact number, as introduced in Section 1.2. Indeed,
ω∗ depends solely on coordination, as it does for compressed packings of spheres.
We also discuss the localization properties of vibrational modes in this new band and
the regime of large |ε−1|, where the two bands merge.

Chapter 3 is dedicated to the localization of vibrational modes of frictionless gran-
ular media. There we introduce a new method, motivated by earlier work on non-
Hermitian quantum problems, which works well both in the localized regime where
the localization length ξ is much less than the linear size L and in the regime ξ greater
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than or of order L, when modes are extended throughout our finite system. Our
very lowest frequency modes show “quasi-localized” resonances away from the jam-
ming point; the spatial extent of these regions increases as the jamming point is ap-
proached, as expected theoretically. Throughout the remaining frequency range, our
data show no signature of the nearness of the jamming point and collapse well when
properly rescaled with the system size. Using Random Matrix Theory we derive the
scaling relation ξ∼ Ld/2 for the regime ξ� L in d dimensions. To explore our method
more, we also calculate ξ for 1d disordered chains, 2d disordered hexagonal lattice
and 2d percolation clusters.

The last Chapter addresses the collective oscillations of a bubble cloud in an
acoustic field, using concepts and techniques of condensed matter physics. More
specifically, we will calculate the eigenmodes and their excitability, eigenfrequency,
densities of state, response, absorption, and participation ratio to better understand
the collective dynamics of coupled bubbles and to address the question of possible
localization of acoustic energy in the bubble cloud. We explore the effects of viscous
damping, distance between bubbles, polydispersity, geometric disorder, size of the
bubbles, and size of the cloud. For large enough clusters, the collective response is
often very different from that of a typical mode, as the frequency response of each
mode is sufficiently wide that many modes are excited when the cloud is driven by ul-
trasound. The reason is the strong effect of viscosity on the collective mode response,
which is surprising, as viscous damping effects are small for single bubble oscilla-
tions in water. Localization of acoustic energy is only found in the case of substantial
bubble size polydispersity or geometric disorder. The lack of localization for weak
disorder is traced back to the long-range 1/r interaction potential between the indi-
vidual bubbles. These results are connected to recent experimental observations of
collective bubble oscillations in a two-dimensional bubble cloud, where pronounced
edge states and a pronounced low frequency response had been observed, both con-
sistent with the present theoretical findings. Finally, an outlook on future possible
experiments is given.
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